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Abstract—Optimal control problems are prevalent in model-
based control, state and parameter estimation, and experimental
design for complex dynamical systems. An approach for obtaining
solutions to these problems is based on the notion of parsimonious
input parameterization and comprises two tasks: the enumeration
of arc sequences followed by the computation of optimal values
of a small number of decision variables for each sequence. This
paper proposes an efficient global solution method for single-
input optimal control problems for nonlinear dynamical systems
with a potentially large number of states or complex dynamics
via sum-of-squares polynomials and parallel computing. The
method approximates the problem for a given arc sequence as a
polynomial optimization problem that can be efficiently solved to
global optimality via semidefinite programming. It is established
that the difference between the cost obtained by the proposed
method and the globally optimal cost of the original problem is
bounded and depends on the polynomial approximation error.
The method is illustrated by simulation examples of a reaction
system and a rocket.

Index Terms—Optimal control; Global optimization; Poly-
nomial optimization; Sum-of-squares polynomials; Semidefinite
programming; Nonlinear systems

I. INTRODUCTION

Optimal control problems (OCPs) are extensively applied

for optimal design, analysis, and operation of a wide range

of complex dynamical systems. Efficient solution methods for

OCPs are useful for optimization-based state and parameter

estimation, experimental design, and model-based control,

among other tasks in engineering applications. In OCPs, the

selected decision variables represent time-varying functions

over a time interval such that a cost is optimized subject to

constraints. OCPs are generally complex to solve since they

involve infinitely many decision variables, and typically there

exist not only terminal constraints at the end of the time

interval but also path constraints along the trajectory [1].

Direct methods are a popular solution approach for OCPs

wherein the original infinite-dimensional problem is approx-

imated as a finite-dimensional one via discretization of the

time-varying functions [2], [3]. However, direct methods only

seek local optimality, rather than global optimality. The local
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optima attained by these optimization algorithms may be

suboptimal with respect to the global optimum by a significant

margin [4]. In contrast, indirect methods seek a solution to

the necessary conditions of optimality by using Pontryagin’s

maximum principle or the Hamilton-Jacobi-Bellman equation

[5], [6]. Although methods based on the Hamilton-Jacobi-

Bellman equation provide global solutions, indirect methods

lack scalability with respect to the number of states and can

be very sensitive to the choice of initial guess. Alternatively,

global optimization algorithms can be used. To this end, two

approaches can be highlighted: branch-and-bound approaches

and reformulation as a convex problem. Branch-and-bound

approaches locate the optimum by dividing the space of deci-

sion variables into subsets until the global optimum is found

[7]. The alternative is to reformulate the original nonconvex

problem as a convex problem with a single local optimum that

corresponds to the global optimum of the original problem.

For example, if the cost and constraints are explicitly written

as polynomial functions, one can express the problem as

a polynomial optimization problem (POP), which can be

reformulated as a convex semidefinite program (SDP) via

the concept of sum-of-squares polynomials [8], [9]. However,

with either approach to global optimization, the worst-case

complexity scales exponentially with the number of decision

variables [4]. Global optimality via direct methods is further

complicated by the fact that the number of decision variables

is large even after the use of typical discretization methods

[10].

The parsimonious input parameterization approach has been

proposed to reduce the number of decision variables in OCPs

[11], which is useful for attaining global optimality. This

approach (i) identifies all the arcs that can occur in the

solution to an OCP, (ii) generates a finite set of plausible

arc sequences, and (iii) describes each sequence by a small

number of decision variables. Then, for a given arc sequence,

one can compute the optimal values of these decision variables

via numerical optimization. It has been demonstrated that a

parsimonious input parameterization reduces the number of

decision variables without causing any loss of optimality [11].

This approach can be considered to be similar to the widely

known technique of switching point optimization [12]–[15].

However, switching point optimization relies on relatively

strong assumptions with respect to the arcs in the solution

to the OCP. More specifically, switching point optimization

assumes that the arcs are either bang-bang arcs or singular

arcs with an analytical expression for the input. This in turn
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implies that the OCP is not input-affine or is not related to

complex nonlinear systems, that is, nonlinear systems with

a large number of states or complex dynamics, otherwise

analytical expressions for the optimal input in singular arcs

are unknown. Input-affine OCPs may require an even number

of differentiations (that is, at least two differentiations) of the

switching function to obtain the optimal input in singular arcs.

This procedure is impractical or even intractable in the case of

complex nonlinear systems if the aim is to obtain an analytical

expression for the optimal input in singular arcs. In contrast,

with the more general formulation of parsimonious input

parameterization, any type of singular arcs can be considered.

A main advantage of parsimonious input parameterization,

which was suggested but not further investigated in [11], is

that the small number of decision variables provided by this

approach enables (i) accurate approximations of the terminal

cost and constraints as explicit polynomial functions of the

decision variables and (ii) efficient computation of globally

optimal values of the decision variables for each arc sequence

via polynomial optimization. The use of parsimonious input

parameterization for computation of global solutions via poly-

nomial optimization is investigated in the current paper. This

goal motivates the approximation of the terminal cost and

constraints as explicit polynomial functions of the decision

variables since that yields a POP for each arc sequence. This

procedure only requires numerical integration of the dynamic

equations of the states and of the adjoint variables for each

evaluated value of the decision variables, which addresses the

issue of scalability with respect to the number of states. Then,

one can compute the global solution to the POP for each arc

sequence via reformulation as an SDP, which enables efficient

global solutions to OCPs via parallel computing.

Hence, this paper aims to extend the parsimonious input

parameterization approach for efficient global solutions to

approximations of OCPs for complex nonlinear dynamical

systems, that is, with a large number of states or complex

dynamics. Particular emphasis is given to the case of single-

input OCPs with solutions that can be accurately described

by a relatively small number of arcs. For a general OCP

formulation, the paper first recalls how to formulate the

problem for a given arc sequence in terms of a reduced number

of decision variables. The first main contribution of this paper

is a method for approximating the latter problem as a POP via

multivariate Hermite interpolation and the establishment of a

quantifiable bound for the error between the solutions to both

problems. As the second main contribution, we demonstrate

that the POP can be solved efficiently to global optimality

via the concept of sum-of-squares polynomials. Finally, the

methods are illustrated via simulation examples.

II. PROBLEM STATEMENT

Consider the general class of OCPs formulated as

min
u(·),x(·),t f

J
(

u(·), t f

)

= φ
(

x(t1), . . . ,x(tT ), t f

)

, (1a)

s.t. T
(

u(·), t f

)

= ψψψ
(

x(t1), . . . ,x(tT ), t f

)

≤ 0nψ , (1b)

ẋ(t) = f
(

x(t),u(t)
)

, x(t0) = x0, (1c)

u ≤ u(t)≤ u, h
(

x(t)
)

≤ 0nh
, (1d)

where t0 is the initial time, t1 < .. . < tT are T times, t f = tT ∈
[t0, tmax] is the finite final time with upper bound tmax; u(t)
is the nu-dimensional vector of piecewise-continuous inputs

for all t ∈
[

t0, t f

)

with nu-dimensional vectors of lower and

upper bounds u and u; x(t) is the nx-dimensional vector of

piecewise-continuously differentiable states for all t ∈
[

t0, t f

)

;

f(x,u) is an nx-dimensional vector function, smooth for all

(x,u) ∈R
nx ×R

nu ; h(x) is an nh-dimensional vector function,

smooth for all x ∈ R
nx ; φ(X, t), ψψψ(X, t) are a scalar function

and an nψ -dimensional vector function, respectively, smooth

for all (X, t) ∈ R
T nx × [t0, tmax]. We assume that h(1)(x,u) :=

∂h
∂x
(x)f(x,u) depends explicitly on u.

The inputs that represent the solution to Problem (1) are

composed of several arcs. For each input u j, each arc can

be of type 1) bang-bang, such that it is determined by an

equality u j = u j or u j = u j, 2) active-state constraint, such

that it is determined by an equality h
(1)
k (x,u) = 0 for some

k = 1, . . . ,nh, or 3) free, such that it is determined by an

equality that stems from the dynamics given by f
(

x(t),u(t)
)

,

also labeled as singular in the relevant case of input-affine

OCPs with f
(

x(t),u(t)
)

affine in u(t) [11], [16]. Hence, there

is a finite number of arc types from which arc sequences can

be formed. If we consider as plausible arc sequences only

sequences with a number of arcs no larger than some upper

bound n̄a and without consecutive arcs of the same type, it

follows that the number of plausible sequences is also finite.

Remark 1. The effect of non-optimal inputs is different for

arcs of different types: a non-optimal input in bang-bang and

active-state constraint arcs has an important effect on the cost,

while a non-optimal input in free/singular arcs has a negligible

effect on the cost [16]. This difference is explained next. We

denote the adjoint variables that represent the sensitivity of the

Lagrangian Φ
(

x(t1), . . . ,x(tT ), t f

)

:= φ
(

x(t1), . . . ,x(tT ), t f

)

+
νννTψψψ

(

x(t1), . . . ,x(tT ), t f

)

with Lagrange multipliers ννν with

respect to the states x(t) as λλλ(t), the Lagrange multipli-

ers that correspond to the constraints u ≤ u(t), u(t) ≤ u,

h
(

x(t)
)

≤ 0nh
as µµµ(t), µµµ(t), πππ(t), respectively, and the Hamil-

tonian function as H
(

x(t),u(t),λλλ (t)
)

= f
(

x(t),u(t)
)T

λλλ (t).
From the interpretation of λλλ (t) as state sensitivities, it is

possible to conclude that the sensitivity of the Lagrangian

with respect to the inputs u(ξ ) over an interval ξ ∈

[t, t + δ t] is
∫ t+δ t

t
∂ f
∂u

(

x(ξ ),u(ξ )
)T

λλλ(ξ )dξ . If this interval is

included in a free/singular arc, it is known from Pontryagin’s

maximum principle that, at the optimal solution, the inte-

grand is also the switching function ∂ f
∂u

(

x(ξ ),u(ξ )
)T

λλλ (ξ ) =
∂H
∂u

(

x(ξ ),u(ξ ),λλλ (ξ )
)T

= 0nu . This implies that the first-order

approximation of the variation of the Lagrangian due to the

variation of an input u j(ξ ) over an interval ξ ∈ [t, t + δ t] in a

free/singular arc is equal to zero around the optimal trajectory.

On the other hand, at the optimal solution, the sensitivity of the

Lagrangian with respect to relaxations of the input constraints

u ≤ u(ξ ) and u(ξ )≤ u over an interval ξ ∈ [t, t + δ t] where

these constraints are active is
∫ t+δ t

t −
(

µµµ(ξ )+µµµ(ξ )
)

dξ , which

is different from zero. Similarly, at the optimal solution, the

sensitivity of the Lagrangian with respect to relaxations of

active constraints h
(

x(t)
)

≤ 0nh
is nonzero and depends on
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πππ(t). This implies that the first-order approximation of the

variation of the Lagrangian due to the variation of an input

u j(ξ ) over an interval ξ ∈ [t, t + δ t] in a bang-bang or active-

state constraint arc is different from zero around the optimal

trajectory. Hence, we use the fact that a non-optimal input in

free/singular arcs has a negligible effect on the cost to assume

that free/singular arcs are approximated by linear functions of

time throughout the paper. Even if the true optimal input in

a free/singular arc is not a linear function, its approximation

by a linear function does not have a significant effect on the

cost and leads to a small loss of optimality. On the other

hand, since a non-optimal input in bang-bang and active-state

constraint arcs has an important effect on the cost, constraint

handling is emphasized in the paper.

Parsimonious input parameterization is an effective ap-

proach for describing the optimal inputs using only a few

decision variables, in contrast to infinite-dimensional variables

in the original OCP [11], [17]. For a given plausible arc

sequence composed of ns+1 bang-bang and free/singular arcs,

the inputs are defined by the following decision variables: the

switching times t̄1, . . . , t̄ns to arcs of types 1 and 3, the final time

t̄ns+1 = t f , and the initial conditions of the free/singular arcs.

The difference with respect to switching point optimization

is precisely the inclusion of the initial conditions of the

free/singular arcs as decision variables, which allow repre-

senting singular arcs in input-affine OCPs related to complex

nonlinear systems [13]. The entry points in arcs of type 2

are given by the nη-dimensional vector ηηη = (η1, . . . ,ηnη ), but

the switching to these arcs cannot occur at arbitrary times

since it depends on the states x. In this paper, we assume that

h(1)(x,u) explicitly depends on u because otherwise it would

be impossible to ensure that the state constraint hk

(

x(t)
)

≤ 0

remains active for t > η once an entry point η is reached

such that hk

(

x(η)
)

= 0 for some k = 1, . . . ,nh. For example,

suppose that h(1)(x) does not explicitly depend on u but

h(2)(x,u) := ∂h(1)

∂x
(x)f(x,u) explicitly depends on u. Then,

once an entry point η is reached such that hk

(

x(η)
)

= 0 and

h
(1)
k

(

x(η)
)

> 0 for some k = 1, . . . ,nh, there exists no u(t) that

guarantees that hk

(

x(t)
)

≤ 0 for t > η . In contrast, if h(1)(x,u)
explicitly depends on u as assumed, once an entry point η is

reached such that hk

(

x(η)
)

= 0 for some k = 1, . . . ,nh, it is

possible to choose u(t) such that h
(1)
k

(

x(t),u(t)
)

= 0, which

ensures that the state constraint hk

(

x(t)
)

≤ 0 remains active

for t > η . Also, we assume that the optimal sequence of arcs

of types 1, 2, and 3 is known for each given sequence of

arcs of types 1 and 3 for clarity and convenience, that is, to

simplify the exposition in the remainder of the paper, although

this assumption is not a requirement.

The goal of this paper is to extend the parsimonious input

parameterization approach and show how OCPs formulated as

(1) can be solved efficiently to global optimality. Although

the methods in this paper can be generalized to OCPs with

multiple inputs u(t), these methods may be sensitive to the

number of inputs because it affects the number of arc se-

quences. For this reason, in the remainder we consider, without

loss of generality, OCPs with a single input u(t), that is,

nu = 1, not only for the sake of clarity, but also because

the proposed methods are most efficient in this case. Hence,

this paper presents a method for efficiently solving polynomial

approximations of single-input OCPs to global optimality, in

particular for OCPs with solutions that can be accurately

described by a relatively small number of arcs. The proposed

approach for global optimality relies on using the dynamics to

determine: (i) when and how the globally optimal switching

between arcs takes place for a given plausible arc sequence;

and (ii) which sequence provides the globally optimal solution.

The plausible arc sequences for which global solutions are

found can be chosen as shown in Section III. Then, addressing

question (i) consists in computing the globally optimal values

of the decision variables for the given arc sequence. For this,

we represent the cost and constraints of the OCP as explicit

polynomial functions since that converts the OCP into a set

of POPs, one for each arc sequence, as shown in Section IV.

Then, each POP is solved to global optimality as shown in

Section V. Once question (i) is addressed for each sequence

via parallel computing, it is trivial to answer question (ii)

efficiently.

III. CHOICE OF ARC SEQUENCES

Now we describe how one can choose the arc sequences

for which global solutions are found. As mentioned in Sec-

tion II, the plausible arc sequences under consideration are

the sequences with a number of arcs no larger than some

upper bound n̄a and without consecutive arcs of the same

type. Suppose that we denote the bang-bang arcs as 1L or

1U, depending on whether they are determined by u = u or

u = u. Indeed, it would be implausible to have consecutive

arcs of the same type: (i) two consecutive arcs of type 1L

would be equivalent to a single arc of type 1L, and the

same is valid for two consecutive arcs of type 1U; (ii) two

consecutive arcs of type 3 would be represented by two

consecutive linear functions, which would imply that an arc

of type 3 needs to be approximated by a piecewise-linear

function with two pieces and would contradict the assumption

that an arc of type 3 can be approximated by a linear function.

In addition, note that: (i) sequences with fewer than n̄a arcs

are particular cases of the sequences with n̄a arcs where

some arcs vanish, and (ii) the sequences that end with an

arc of type 3 are not plausible in input-affine OCPs since

they imply that the states x(t f ) at the final time must lie

in a set of measure zero where 0 = ∂ f
∂u

(

x(t f ),u(t f )
)T

λλλ (t f ) =
∂ f
∂u

(

x(t f ),u(t f )
)T ∂Φ

∂x(tT )

(

x(t1), . . . ,x(tT ), t f

)T
as given by Pon-

tryagin’s maximum principle [5], [18]. Hence, by recalling that

plausible arc sequences do not have consecutive arcs of the

same type, all these sequences can be determined as follows:

the final arc of an input-affine OCP can only be of type 1L or

1U; and each one of the previous arcs can be of type 1L, 1U,

or 3, but not of the same type as its successor. This implies that

the branching factor is 2 for each arc in a plausible sequence,

and the number of plausible sequences is equal to 2n̄a for an

input-affine OCP or 3
2
2n̄a otherwise.

However, in many cases, it is reasonable to assume that

one seeks a solution that includes a relatively small number
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of arcs with an upper bound such as n̄a between 3 and 5

since in practice one is not interested in chattering solutions

with arcs of infinitesimal duration even if these solutions are

globally optimal from a mathematical point of view [16], [17].

Note that such solutions are difficult to describe accurately by

any input parameterization, including the prevalent piecewise-

constant parameterization, unless a very large number of

decision variables is used. Hence, while the proposed method

may not be applicable to such problems, it is also true that

efficient global solutions to problems of this type seem to

be currently out of reach with any known method. For this

reason, this paper focuses on problems with solutions that

can be accurately described by a relatively small number of

arcs. However, while the approach in this paper can guarantee

global optimality for the OCP only if its globally optimal

solution does not include more than n̄a arcs, global optimality

among all plausible arc sequences can be guaranteed in any

case, which approximates the globally optimal cost even if

the globally optimal solution includes more than n̄a arcs. If

there exists a single-input OCP for which the globally optimal

cost with many arcs is significantly better than the globally

optimal cost among all plausible arc sequences, then that OCP

would always need to be described by a very large number of

decision variables for numerical optimization, which would

make that problem intractable with any existing method for

global optimization. On the other hand, the proposed approach

is useful for global optimization of all the remaining single-

input OCPs.

In addition, one can note that the arcs of types 1L and 1U

can be seen as particular cases of arcs of type 3 since in arcs

of types 1L and 1U the input is constant, while in arcs of

type 3 the input is assumed to be approximated by a linear

function. This implies that certain arc sequences do not need to

be considered. For example, for n̄a = 3, the sequence 1U-1L-

1U does not need to considered because it is a particular case

of the sequences 1U-3-1U and 3-1L-1U. However, it is not

recommendable to express all the arc sequences as particular

cases of a hypothetical sequence with n̄a arcs of type 3 since

the number of decision variables for that sequence would be

excessive.

Hence, the algorithm that chooses and exhaustively encom-

passes all the plausible arc sequences in input-affine OCPs

with a number of arcs no larger than n̄a is as follows:

1) If n̄a = 2, start only with an empty sequence; if n̄a > 2, start

with an empty sequence, a sequence 1L, and a sequence

1U. For each sequence, go to the next step.

2) Create two copies of the sequence and append 3-1L to one

and 3-1U to the other one. For each sequence, go to the

next step.

3) If the number of arcs is equal to n̄a, return the sequence;

if the number of arcs is equal to n̄a − 1, go to the next

step; if the number of arcs is equal to n̄a − 2, go to step

2; otherwise create two copies of the sequence and go to

step 2 with one and to the next step with the other one.

4) Append 1L if the last arc was 1U or append 1U if the last

arc was 1L. If the number of arcs is equal to n̄a, return the

sequence; otherwise go to step 2.

By applying this algorithm, one can obtain fewer than 2n̄a

arc sequences with n̄a arcs. For example, for n̄a = 3, the 6

sequences are 3-1L-1U, 3-1U-1L, 1L-3-1L, 1L-3-1U, 1U-3-

1L, 1U-3-1U, that is, fewer than 2n̄a = 8 sequences. For n̄a = 4,

the 8 sequences are 3-1L-3-1L, 3-1L-3-1U, 3-1U-3-1L, 3-1U-

3-1U, 1L-3-1L-1U, 1L-3-1U-1L, 1U-3-1L-1U, 1U-3-1U-1L,

that is, fewer than 2n̄a = 16 sequences.

IV. REFORMULATION OF THE OCP AS POLYNOMIAL

OPTIMIZATION PROBLEMS

This section shows how to reformulate the OCP (1) as a set

of POPs, one for each plausible arc sequence.

A. OCP with new decision variables

For a given arc sequence, we describe the input in the ith

time interval [t̄i−1, t̄i), for i = 1, . . . ,ns + 1, by defining nz,i

new states and initial conditions for this interval as zi(t) and

zi,0. One can then combine all the states into vectors with a

dimension nz := nx + nz,1+ . . .+ nz,ns+1

z(t) := [x(t)T z1(t)
T ··· zns+1(t)

T ]T, (2)

with corresponding initial conditions z0.

The arc type determines the dimension and meaning of the

elements of zi(t), zi,0 and their effect on the input u(t) given

by the control law u(t) = c̃
(

z(t)
)

and on the dynamics of zi(t)
given by żi(t) = qi

(

x(t),zi(t)
)

. For bang-bang arcs, zi(t), zi,0

are of dimension 0 and c̃
(

z(t)
)

:= u or c̃
(

z(t)
)

:= u. For active-

state constraint arcs, zi(t), zi,0 are not needed and c̃
(

z(t)
)

is

such that h
(1)
k

(

x(t), c̃
(

z(t)
))

= 0 for some k = 1, . . . ,nh. For

free/singular arcs, since we assume that the input is approx-

imated by a linear function, zi(t) =
[

ũi(t)
p̃i(t)

]

and zi,0 =
[

u0
i

pi

]

are of dimension 2, where u0
i and pi are the initial value and

derivative of the input and ũi(t) is its value at time t, which

implies that c̃
(

z(t)
)

:= ũi(t) and qi

(

x(t),zi(t)
)

:=
[

p̃i(t)
0

]

. The

set {i : ith arc of u(·) is of type 3} is denoted as S , which

implies that nz,1 + . . .+ nz,ns+1 = 2|S |.
Then, upon eliminating input dependencies and rewriting

Problem (1) in terms of the extended states z, one obtains

χ̃χχ
(

z(t1), . . . ,z(tT ), t f

)

:=

[

φ̃
(

z(t1), . . . ,z(tT ), t f

)

ψ̃ψψ
(

z(t1), . . . ,z(tT ), t f

)

]

, (3)

with φ̃
(

z(t1), . . . ,z(tT ), t f

)

:= φ
(

x(t1), . . . ,x(tT ), t f

)

and a sim-

ilar definition of ψ̃ψψ
(

z(t1), . . . ,z(tT ), t f

)

, and the dynamics

f̃
(

z(t)
)

:=
[

f(x(t),c̃(z(t)))T q1(x(t),z1(t))
T ··· qns+1(x(t),zns+1(t))

T
]T
. (4)

Since the input parameters for the given arc sequence are

τττ :=
(

t̄1, . . . , t̄ns , t f ,z1,0, . . . ,zns+1,0

)

and it is assumed that any

differential equations are solved for each τττ , Problem (1) can

be reformulated in terms of these new decision variables as

min
τττ

φ̂ (τττ) := φ̃
(

z(t1), . . . ,z(tT ), t f

)

, (5a)

s.t. ψ̂ψψ(τττ) := ψ̃ψψ
(

z(t1), . . . ,z(tT ), t f

)

≤ 0nψ , (5b)

t̄i−1 ≤ t̄i, i = 1, . . . ,ns + 1, (5c)

u ≤ u0
s ≤ u, u ≤ u0

s + ps (t̄s − t̄s−1)≤ u, s ∈ S , (5d)

ż(t) = f̃
(

z(t)
)

, z(t0) = z0, (5e)
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which is convenient for numerical optimization since there are

only N := ns + 1+ nz,1+ . . .+ nz,ns+1 decision variables.

For each entry point η̂ j(τττ) := η j , there exists k = 1, . . . ,nh

such that h̃k

(

z(η̂ j(τττ)
−)

)

< 0, h̃k

(

z(η̂ j(τττ))
)

= 0, which means

that h̃k

(

z(t)
)

:= hk

(

x(t)
)

≤ 0 becomes active at t = η̂ j(τττ).

B. Reformulation as polynomial optimization problems

We aim to reformulate the OCP for each arc sequence as

a POP that is amenable to global optimization. This entails

expressing χ̂χχ(τττ) :=
[

φ̂ (τττ) ψ̂ψψ(τττ)T
]T

as a polynomial function

[19], [20]. To this end, we compute each function χ̂(τττ) and

its first-order partial derivatives with respect to τττ .

For this, it is essential to consider not only the extended

states z(t) and the extended adjoint variables

ζζζ (t) := [λλλ (t)T ζζζ 1(t)
T ··· ζζζ ns+1(t)

T ]T, (6)

but also the concept of modified Hamiltonian function

H̃
(

z(t),ζζζ (t)
)

= f̃
(

z(t)
)T

ζζζ (t). As shown in (5), the extended

states z(t) are described by the differential equations

dz
dt
(t) = ∂ H̃

∂ζζζ

(

z(t),ζζζ (t)
)T

= f̃
(

z(t)
)

, z(t0) = z0. (7)

Likewise, the extended adjoint variables ζζζ (t) are described

by the differential equations

dζζζ
dt
(t) =− ∂ H̃

∂z

(

z(t),ζζζ (t)
)T

=− ∂ f̃
∂z

(

z(t)
)T

ζζζ (t), ζζζ (tT ) = 0nz ,

ζζζ (t−k ) = ζζζ (tk)+
∂ χ̃

∂z(tk)

(

z(t1), . . . ,z(tT ), t f

)T
, k = 1, . . . ,T, (8)

and in addition, for each entry point η such that h̃k

(

z(t)
)

≤ 0

becomes active at t = η for some k = 1, . . . ,nh, it holds that

ζζζ (η−) = ζζζ (η)− ∂ h̃k

∂z

(

z(η−)
)T

(

f̃
(

z(η−)
)

−f̃
(

z(η)
))T

ζζζ (η)

h̃
(1)
k

(

z(η−)
) , (9)

where the last expression is known for the case of state

constraints of first order, that is, if h(1)(x,u) := ∂h
∂x
(x)f(x,u)

depends explicitly on u as assumed, but is unknown for state

constraints of higher order, to the best of our knowledge.

With these results, one can obtain the first-order partial

derivatives of χ̂(τττ) with respect to τττ

∂ χ̂
∂ t̄i

(τττ) = H̃
(

z(t̄−i ),ζζζ (t̄−i )
)

− H̃
(

z(t̄i),ζζζ (t̄i)
)

=
(

f̃
(

z(t̄−i )
)

− f̃
(

z(t̄i)
))T

ζζζ (t̄i), i = 1, . . . ,ns, (10)

∂ χ̂
∂ t f

(τττ) = ∂ χ̃
∂ t f

(

z(t1), . . . ,z(tT ), t f

)

+ H̃
(

z(t−f ),ζζζ (t
−
f )
)

= ∂ χ̃
∂ t f

(

z(t1), . . . ,z(tT ), t f

)

+ f̃
(

z(t−f )
)T

ζζζ (t−f ), (11)

∂ χ̂
∂zi,0

(τττ) = ζζζ i(t0)
T, i = 1, . . . ,ns + 1. (12)

Then, suppose that there exists τ̄ττ such that, for all ∆τττ ∈ R,

χ̂(τττ) = ∑k∈K N
n

(

cχ̂

)

k
∆τττk +Rχ̂(τττ), (13)

where cχ̂ is the vector of polynomial coefficients of χ̂(τττ), with
(

cχ̂

)

k
:= 1

k!
∂ k χ̂
∂ τττk (τ̄ττ), k the vector of monomial powers in the

set K N
n :=

{

(k1, . . . ,kN) ∈ N
N
0 : 0 ≤ k1 + . . .+ kN ≤ n

}

in the

case of a polynomial of degree n, ∆τττ := τττ− τ̄ττ the deviation of

τττ around τ̄ττ , k! := k1! . . .kN!, ∆τττk :=(τ1 − τ̄1)
k1 . . . (τN − τ̄N)

kN ,
∂ k

∂τττk := ∂ k1+...+kN

∂τ
k1
1 ...∂τ

kN
N

, and Rχ̂(τττ) is the orthogonal part with

respect to the polynomial basis.

An efficient approach to approximating χ̂χχ(τττ) as a polyno-

mial function consists in (i) computing the partial derivatives

of each one of the nχ functions χ̂(τττ) up to first order with

respect to τττ and (ii) using multivariate Hermite interpolation

to obtain a polynomial of degree n > 1 such as the one in (13)

that fits the value χ̂(τττ l) and the partial derivatives
∂ χ̂
∂τττ (τττ l) at the

sample points τττ l , for l = 1, . . . ,mτ [21]. Note that this requires

no more than computing the extended states z(t) and adjoint

variables ζζζ (t) for every χ̂(τττ) that correspond to each point

τττ l , which amounts to solving nχ +1 systems of nz differential

equations for each l = 1, . . . ,mτ .

Remark 2. One could also avoid computing the partial

derivatives
∂ χ̂
∂τττ (τττ l) and obtain a polynomial that fits only the

value χ̂(τττ l) at the sample points τττ l , for l = 1, . . . ,mτ . This

would require no more than computing the extended states

z(t) that correspond to each point τττ l , which would amount

to solving one system of nz differential equations for each

l = 1, . . . ,mτ . Hence, this would entail solving mτ systems of nz

differential equations to obtain mτ values for interpolation. In

contrast, the approach proposed in this paper requires solving

only (nχ +1)mτ systems of nz differential equations to obtain

(N + 1)mτ values and partial derivatives for interpolation,

owing to the computation of the extended adjoint variables

ζζζ (t). Since nχ is expected to be smaller than N, the latter

approach was chosen.

Hence, one can compute the coefficient vector ĉχ̂ that

minimizes ∑κκκ∈K N
1
||pχ̂,κκκ −Aτ,κκκ ĉχ̂ ||

2, where
(

ĉχ̂

)

k
is an ap-

proximation of
(

cχ̂

)

k
, for all k ∈ K N

n , and

(

pχ̂ ,κκκ

)

l
= ∂ κκκ χ̂

∂ τττκκκ (τττ l), κκκ ∈ K N
1 , l = 1, . . . ,mτ , (14)

(Aτ,κκκ)l,k =

{

k!
(k−κκκ)! ∆τττk−κκκ

l , k ≥ κκκ

0, otherwise
, κκκ ∈ K N

1 ,

l = 1, . . . ,mτ , k ∈ K N
n . (15)

The vector of polynomial coefficients ĉχ̂ is of dimension
(

N+n
N

)

, while the number of value vectors pχ̂,κκκ of dimension

mτ is N +1. This means that the number mτ of sample points

must be at least
(N+n)!

n!(N+1)! , which is polynomial in N since

n is typically bounded to avoid an overfitting polynomial.

In addition, recall that N is typically small owing to the

parsimonious nature of the input parameterization.

This yields the polynomial representation of χ̂(τττ)

pχ̂(τττ) = ∑k∈K N
n

(

ĉχ̂

)

k
∆τττk. (16)

Remark 3. The polynomial functions pχ̂(τττ) are used to

approximate mappings between the decision variables τττ and

functions of the states x(t) at a finite number of times t1, . . . , tT
that do not include the switching times t̄1, . . . , t̄ns in τττ . In other

words, no switching time t̄i is simultaneously related to the

inputs and outputs of the mappings that are approximated

by the polynomial functions pχ̂(τττ). Hence, the polynomial

functions do not approximate the dependence of any functions

of the states x(t) on the generic time t < t f .

Remark 4. To avoid non-smoothness of χ̂(τττ) due to the

existence of different sequences of arcs of types 1, 2, and 3
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for the given sequence of arcs of types 1 and 3, the sample

points τττ l must be restricted to the ones that correspond to the

optimal sequence of arcs of types 1, 2, and 3. The procedure

is as follows. For the given sequence of arcs of types 1 and

3, sample points τττ l are chosen. Different points τττ l will lead

to different sequences of arcs of types 1, 2, and 3, depending

on which state constraints become active and result in arcs of

type 2 and on the order of these arcs of type 2 with respect

to the arcs of types 1 and 3. For example, suppose that, for

a given sequence 1U-3-1U of arcs of types 1 and 3, it is

known that the optimal sequence of arcs of types 1, 2, and 3

is 1U-3-1U-2, where the arc of type 2 is an arc with an active

state constraint. In this example, some points τττ l lead to the

optimal sequence of arcs 1U-3-1U-2, while other points may

lead to other sequences such as 1U-3-1U (without active state

constraints) or 1U-2-3-1U (with a different order of the arcs

of type 2 with respect to the arcs of types 1 and 3), among

others. Then, only the points τττ l that correspond to the optimal

sequence of arcs of types 1, 2, and 3 (the sequence 1U-3-1U-

2 in the previous example) are used for the computation of

the polynomial approximation pχ̂(τττ) in (16). This is done to

avoid the non-smoothness of χ̂(τττ) that would occur if all the

points τττ l were used to construct the polynomial approximation

regardless of their sequences of arcs of types 1, 2, and 3.

Hence, we consider the problem only for the optimal sequence

of arcs of types 1, 2, and 3. To this end, we use a support vector

machine pη̂ j
(τττ) with polynomial kernel to decide whether the

points τττ are such that each entry point η̂ j(τττ) in arcs of type

2 is placed with respect to t̄1, . . . , t̄ns according to the optimal

sequence of arcs of types 1, 2, and 3. To construct the support

vector machine, the points τττ l are classified in two groups: the

points τττ l that correspond to the optimal sequence of arcs of

types 1, 2, and 3 (the sequence 1U-3-1U-2 in the previous

example) are labeled with the value 1, and the remaining

points are labeled with the value -1. This is done to prevent the

POP from searching values of τττ for which the corresponding

sequence of arcs of types 1, 2, and 3 is not the optimal one.

Hence, when each function χ̂(τττ) is expressed as a polyno-

mial pχ̂(τττ) in the variables τττ for a given arc sequence, the

OCP for that arc sequence is reformulated as the POP

min
τττ

pφ̂ (τττ), s.t. pγ̂γγ(τττ)≥ 0nγ ,

(

pγ̂γγ(τττ)
)

j
:=











































h
ψ
j (τττ), j=1,...,nψ ,

h
η
j−nψ

(τττ), j=nψ+1,...,nψ+nη ,

ht
j−nψ−nη

(τττ), j=nψ+nη+1,...,n̄ψ ,

hb
j−n̄ψ

(τττ), j=n̄ψ+1,...,n̄ψ+|S |,

h
b
j−n̄ψ−|S |(τττ), j=n̄ψ+|S |+1,...,n̄ψ+2|S |,

he
j−n̄ψ−2|S |

(τττ), j=n̄ψ+2|S |+1,...,n̄ψ+3|S |,

h
e
j−n̄ψ−3|S |(τττ), j=n̄ψ+3|S |+1,...,nγ ,

(17)

where n̄ψ := nψ + nη + ns+ 1, nγ := n̄ψ + 4|S |,

h
ψ
j (τττ) :=−pψ̂ j

(τττ), j = 1, . . . ,nψ , (18a)

h
η
j (τττ) := pη̂ j

(τττ), j = 1, . . . ,nη , (18b)

ht
i(τττ) := t̄i − t̄i−1, i = 1, . . . ,ns + 1, (18c)

hb
i (τττ) := u0

s − u, h
b

i (τττ) := u− u0
s ,

he
i (τττ) := u0

s + ps (t̄s − t̄s−1)− u,

h
e

i (τττ) := u− u0
s − ps (t̄s − t̄s−1) , s = Si, s ∈ S , (18d)

and γ̂γγ(τττ) is defined as pγ̂γγ(τττ) using ψ̂ j(τττ) instead of pψ̂ j
(τττ).

Remark 5. The differential equations and initial conditions in

(5e) are removed from (17) since the approximated functions

φ̂(τττ) and ψ̂ψψ(τττ) are replaced by their polynomial approxi-

mations pφ̂ (τττ) and pψ̂ψψ(τττ), which no longer depend on any

differential equations or initial conditions.

The complexity of the proposed approach is relatively

insensitive to the number of states, which only changes the

number of dynamic equations to be integrated. This means

that the proposed approach deals efficiently with complex

nonlinear dynamical systems since it scales well with a large

number of states. In contrast, the approaches that use indirect

methods related to the Hamilton-Jacobi-Bellman equation to

solve OCPs to global optimality are limited by the number of

states that they can handle, even when these methods involve

the formulation of POPs (see [22] and Chapter 10 in [9]).

However, as mentioned in Section II, the proposed approach

would be sensitive to a larger number of inputs because it

would affect the number of arc sequences. For this reason,

OCPs with a single input u(t) have been considered because

the proposed methods are most efficient in this case.

Section V shows that the POP (17) is solved efficiently to

global optimality via reformulation as a hierarchy of convex

SDPs using the concept of sum-of-squares polynomials.

C. Error due to polynomial approximation

Since the solution to the POP (17) is not exactly the same as

the solution to Problem (5) due to the fact that the polynomial

functions pφ̂ (τττ), pγ̂γγ(τττ) are approximations of the cost and

constraint functions φ̂ (τττ), γ̂γγ(τττ), the question arises as to

whether one can quantify the error in the optimal solution

and the optimal value of the cost of the POP.

Suppose that the global solution to the POP (17) is τττ∗
p,

for which na constraints −pγ̂γγ(τττ) ≤ 0nγ given by a selection

matrix Sa are active with Lagrange multipliers ννν∗
p ≥ 0na . The

Karush-Kuhn-Tucker (KKT) conditions for τττ∗
p are

∂ pφ̂

∂τττ (τττ∗p)
T −

∂pγ̂γγ

∂τττ (τττ∗p)
TST

a ννν∗
p = 0N , (19a)

−Sapγ̂γγ(τττ
∗
p) = 0na . (19b)

We aim to obtain explicit expressions for (i) the difference

δδδτττ between τττ∗p and τττ∗, the KKT point of Problem (5) that

corresponds to τττ∗p, and (ii) the difference δ φ̂ between pφ̂ (τττ
∗
p)

and φ̂(τττ∗), the cost of Problem (5) at τττ∗. It is impossible

to obtain exact and explicit expressions for these differences

since that would involve infinite series expansions around τττ∗p
and would imply explicit solutions to high-degree polynomials

for δδδτττ and δ φ̂ and the Abel-Ruffini theorem states that there is

no closed-form algebraic expression for the solution to general

polynomial equations of degree five or higher with arbitrary

coefficients [23]. However, one can obtain explicit expressions

for the approximations of δδδτττ and δ φ̂ , as well as exact and
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implicit expressions that consider the variations of the second-

order derivatives of the cost and Lagrangian functions and of

the first-order derivatives of the constraint functions, which is

done in the following theorem.

Theorem 1. For a first-order approximation of the KKT

conditions for Problem (5) and a second-order approximation

of its cost, the explicit difference between the KKT points is

δδδτττ ≃
(

Lp −LpZT
p

(

ZpLpZT
p

)−1
ZpLp

)

∂εL̂
∂τττ (τττ∗p,ννν

∗
p)

T

−LpZT
p

(

ZpLpZT
p

)−1
Saεεε γ̂γγ (τττ

∗
p), (20)

while the explicit difference between the costs is

δ φ̂ ≃ εφ̂ (τττ
∗
p)+

∂ φ̂
∂τττ (τττ

∗
p)δδδτττ − 1

2
δδδτττTHpδδδτττ, (21)

with the Lagrangian L̂ (τττ,ννν) := φ̂ (τττ)− νννTSaγ̂γγ(τττ), the ap-

proximation errors εφ̂ (τττ) := pφ̂ (τττ)− φ̂(τττ), εεε γ̂γγ (τττ) := pγ̂γγ (τττ)−

γ̂γγ(τττ), and εL̂ (τττ,ννν) := εφ̂ (τττ)− νννTSaεεε γ̂γγ (τττ) for the cost, the

constraints, and the Lagrangian, and the definitions Lp :=

− ∂ 2L̂
∂τττ2 (τττ

∗
p,ννν

∗
p)

−1, Zp := Sa
∂ γ̂γγ
∂τττ (τττ

∗
p), and Hp := ∂ 2φ̂

∂ τττ2 (τττ
∗
p).

Implicitly, the exact difference between the KKT points is

δδδ τττ =
(

L−LZT
(

ZLZT
)−1

ZL
)

∂εL̂
∂τττ (τττ∗

p,ννν
∗
p)

T

−LZT
(

ZLZT
)−1

Saεεε γ̂γγ (τττ
∗
p), (22)

while the exact difference between the costs is

δ φ̂ = εφ̂ (τττ
∗
p)+

∂ φ̂
∂τττ (τττ

∗
p)δδδτττ − 1

2
δδδτττTHδδδτττ, (23)

with the definitions

L :=−
(

∫ 1
0

∂ 2L̂
∂τττ2 (τττ

∗
p − ξ δδδτττ,ννν∗

p − ξ δδδννν)dξ
)−1

, (24)

Z :=
∫ 1

0 Sa
∂ γ̂γγ
∂τττ (τττ

∗
p − ξ δδδτττ)dξ , (25)

H :=
∫ 1

0 2(1− ξ ) ∂ 2φ̂
∂ τττ2 (τττ

∗
p − ξ δδδτττ)dξ . (26)

Proof. The KKT conditions for the solution τττ∗p −δδδτττ to Prob-

lem (5) are given by

∂L̂
∂τττ (τττ∗

p,ννν
∗
p)

T +L−1δδδτττ +ZTδδδ ννν = 0N , (27a)

−Saγ̂γγ(τττ∗p)+Zδδδτττ = 0na . (27b)

Upon using the first-order approximation of these KKT

conditions, they become

∂L̂
∂τττ (τττ∗

p,ννν
∗
p)

T +L−1
p δδδτττ +ZT

pδδδ ννν ≃ 0N , (28a)

−Saγ̂γγ(τττ∗p)+Zpδδδτττ ≃ 0na . (28b)

Hence, from (19), it holds that

L−1δδδτττ +ZTδδδ ννν =
∂εL̂
∂τττ (τττ∗p,ννν

∗
p)

T, (29a)

Zδδδτττ =−Saεεε γ̂γγ (τττ
∗
p), (29b)

which yields (22) by using the blockwise inversion formula,

while the approximation

L−1
p δδδτττ +ZT

pδδδ ννν ≃
∂εL̂
∂τττ (τττ∗p,ννν

∗
p)

T, (30a)

Zpδδδτττ ≃−Saεεε γ̂γγ (τττ
∗
p), (30b)

yields the explicit expression for δδδ τττ in (20) by using the

blockwise inversion formula.

Then, since the cost of Problem (5) at τττ∗ is given by

φ̂(τττ∗p − δδδτττ) = φ̂(τττ∗
p)−

∂ φ̂
∂τττ (τττ

∗
p)δδδ τττ + 1

2
δδδ τττTHδδδτττ, (31)

(23) holds and one can use the second-order approximation

φ̂ (τττ∗p − δδδτττ)≃ φ̂(τττ∗p)−
∂ φ̂
∂τττ (τττ

∗
p)δδδτττ + 1

2
δδδτττTHpδδδτττ (32)

to obtain the explicit expression for δ φ̂ in (21).

Remark 6. Theorem 1 only provides an explicit expression for

the first-order approximation of the difference δδδτττ between τττ∗
p,

the global solution to the POP (17), and τττ∗, the KKT point of

Problem (5) that corresponds to τττ∗
p. This means that τττ∗

p −δδδτττ
is a good approximation for τττ∗ with an explicit expression.

One can obtain the exact KKT point τττ∗ of Problem (5) that

corresponds to τττ∗
p via local optimization of Problem (5) with

initial guess τττ∗p − δδδτττ .

Moreover, one can assess the quality of the solution τττ∗

obtained by solving the POP (17) to global optimality followed

by local optimization of Problem (5). To this end, the following

theorem shows that the difference between the cost φ̂ (τττ∗)
obtained from (17) and the globally optimal cost of (5) is

bounded and depends on the polynomial approximation errors

εφ̂ , εεε γ̂γγ ,
∂εL̂
∂τττ defined in Theorem 1.

Theorem 2. If δ φ̂KKT
max is the maximum difference between the

costs of any KKT point of the POP (17) and any corresponding

KKT point of Problem (5), then the difference between φ̂ (τττ∗)
and the cost of Problem (5) at its globally optimal solution is

at most δ φ̂KKT
max −δ φ̂ and is bounded if the errors εφ̂ , εεε γ̂γγ ,

∂εL̂
∂τττ

are bounded.

Proof. The globally optimal solution to Problem (5) is a KKT

point τττKKT of Problem (5) that corresponds to some KKT

point τττKKT
p of the POP (17), and φ̂ (τττ∗)− φ̂(τττKKT)−δ φ̂KKT

max +

δ φ̂ ≤ pφ̂ (τττ
∗
p)− pφ̂ (τττ

KKT
p )≤ 0 since τττ∗p is the globally optimal

solution to the POP (17). In addition, from Theorem 1, δ φ̂KKT
max

and δ φ̂ depend on εφ̂ , εεε γ̂γγ ,
∂εL̂
∂τττ .

V. GLOBAL SOLUTION TO EACH POP

This section first summarizes the concept of sum-of-squares

(SOS) polynomials and its application to global optimization

of POPs via semidefinite programming based on a more

detailed discussion in [24], [25]. Then, the concept of SOS

polynomials is used to obtain efficient global solutions to the

OCP (1) reformulated as the POPs (17) via SDPs.

A. Sum-of-squares polynomials for global optimization

A polynomial p(τττ) of degree 2d in the N variables τττ is

an SOS polynomial if it can be written as a sum of squares

of polynomials, and p(τττ) is an SOS polynomial if and only

if there exists a positive semidefinite matrix Q such that

p(τττ) = vd(τττ)
TQvd(τττ), where vd(τττ) is the s(N,d)-dimensional

vector of monomials of degree up to d in the N variables τττ ,

with s(N,d) :=
(

N+d
N

)

[9]. Hence, constraining p(τττ) to the set

of SOS polynomials amounts to satisfying the linear matrix

inequality (LMI) Q � 0s(N,d)×s(N,d), which can be done via a

convex SDP [26].

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3165481

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



If ϕ(τττ) is strictly positive on a compact basic semi-algebraic

set K specified by some polynomials g j(τττ), that is, if ϕ(τττ)> 0

∀τττ ∈K=
{

τττ : g j(τττ)≥ 0,∀ j = 1, . . . ,nc

}

and K satisfies some

technical assumptions, then ϕ(τττ) can be represented as a

combination of SOS polynomials. This important result is

summarized in the following theorem [27].

Theorem 3. Assume that there exists q ∈ {1, . . . ,nc} such that
{

τττ : gq(τττ)≥ 0
}

is compact. If ϕ(τττ)> 0 ∀τττ ∈K, then

ϕ(τττ) = p0(τττ)+∑
nc
j=1g j(τττ)p j(τττ) (33)

for some SOS polynomials p0(τττ) and p1(τττ), . . . , pnc(τττ).

Proof. See [27] for the proof.

Remark 7. If Theorem 3 applies and ϕ(τττ)> 0 ∀τττ ∈K, then

there exists a positive integer d such that ∀ααα ∈ Xd

ϕααα = tr(R0,αααQ0)+∑
nc
j=1 ∑ βββ∈Xd−v j

ααα−βββ∈Xv j

g j,ααα−βββ tr
(

Rv j ,βββ Q j

)

(34a)

and

Q0 � 0s(N,d)×s(N,d), (34b)

Q j � 0s(N,d−v j)×s(N,d−v j), j = 1, . . . ,nc, (34c)

where the matrices Rv,ααα are such that ∑ααα∈Xd−v
Rv,ααα τττααα =

vd−v(τττ)vd−v(τττ)
T, for v = 0, . . . ,d, the coefficients of ϕ(τττ) of

degree 2v0 or 2v0 − 1 and g j(τττ) of degree 2v j or 2v j − 1

are denoted as ϕααα and g j,ααα , with cd := max j=1,...,nc v j, such

that ϕ(τττ) = ∑ααα∈Xd
ϕααα τττααα and g j(τττ) = ∑ααα∈Xv j

g j,ααα τττααα , for

j = 1, . . . ,nc, and the monomials τττααα := τα1
1 . . .ταN

N of degree up

to 2d in the variables τττ involve powers ααα := (α1, . . . ,αN) in

the set Xd :=
{

(α1, . . . ,αN) ∈ N
N
0 : 0 ≤ α1 + . . .+αN ≤ 2d

}

,

with the relaxation order d ≥ v := max j=0,1,...,nc v j [8].

This result is very useful for the problem of comput-

ing J∗, an accurate approximation of the global minimum

of J(τττ) subject to the constraints g j(τττ) ≥ 0, for j =
1, . . . ,nc. Equivalently, one computes the maximum value ξ
such that ϕ(τττ) = J(τττ)− ξ is strictly positive ∀τττ ∈ K =
{

τττ : g j(τττ)≥ 0,∀ j = 1, . . . ,nc

}

. Such a problem can be formu-

lated as the SDP minξ ,Q0,Q1,...,Qnc
−ξ ,s.t. (34) [24], [25].

Hence, if N and the maximum degree v of the polynomials

are relatively small, the SDP can be solved efficiently since

the relaxation order d that provides a representation in terms

of SOS polynomials is usually not much larger than v. If this

representation exists for some order d, a certificate can be

obtained upon convergence of the SDP. The result about the

representation for the order d is stated as follows [28].

Theorem 4. Denote the optimal values of the dual vari-

ables for the constraints (34a) as µ∗
ααα ∀ααα ∈ Xd and of

the dual variables for the LMI (34b) as L∗
0. If ∃G : G =

rank(L∗
0) = rank

(

∑ααα∈Xd−cd
Rcd ,ααα µ∗

ααα

)

, then ϕ(τττ) = J(τττ)−J∗

can be represented as in (33) with p0(τττ) of degree 2d and

p j(τττ) of degree 2(d − v j), for j = 1, . . . ,nc. In addition, the

global minimum J∗ = ξ ∗ and G global minimizers τττ∗p can be

computed using the fact that vd(τττ
∗
p) lie both in the null space

of Q∗
0 and in the row space of L∗

0.

Proof. See [28] for the proof.

B. Application to an OCP reformulated as POPs

This section shows how to apply the concept of SOS

polynomials in Section V-A to obtain efficient global solutions

to the POPs (17) that stem from the OCP (1) via SDPs.

In Section IV, it is shown that the OCP (1) can be refor-

mulated as the POP (17) for each arc sequence. In terms of

the notation in Section V-A, the POP (17) involves N decision

variables, and each polynomial in the problem, both in the cost

function and the constraints, is at most of degree n, which

means that v = ⌈n/2⌉. Then, each relaxation order d in the

hierarchy of semidefinite relaxations requires solving one LMI

of size
(

N+d
N

)

, with d ≥ v.

Hence, we introduce the following definitions:

ϕ(τττ) := J(τττ)− ξ , J(τττ) := pφ̂ (τττ), (35a)

g j(τττ) :=
(

pγ̂γγ (τττ)
)

j
, j = 1, . . . ,nγ . (35b)

Then, the POP (17) is equivalent to the problem of com-

puting the maximum ξ such that ϕ(τττ) is strictly positive

∀τττ ∈K=
{

τττ : g j(τττ)≥ 0,∀ j = 1, . . . ,nγ

}

.

However, we still need to add a new constraint to ensure

that the condition of Theorem 3 is satisfied. To this end, we

redefine K=
{

τττ : g j(τττ)≥ 0,∀ j = 1, . . . ,nc

}

, with nc := nγ +1,

by adding the polynomial

gnc(τττ) := r2v −∑N
k=1 (τk − τ̄k)

2v , (35c)

where r is a constant. If r is finite but sufficiently large

to ensure that the minimizers τττ∗p of the POP (17) are such

that the 2v-norm of ∆τττ∗p is bounded by r, then adding the

new constraint does not change the minimizers. Moreover, the

polynomial (35c) is of degree 2v since the polynomials with

compact superlevel sets are at least of degree 2 and the poly-

nomials that specify the other constraints are at most of degree

2v or 2v−1. Now, the condition in Theorem 3 is satisfied since

the superlevel set
{

τττ : gq(τττ)≥ 0
}

is compact for q = nc. The

boundedness of the 2v-norm of ∆τττ∗p implies that t̄1, . . . , t̄ns ,

t f , z1,0, . . . ,zns+1,0 are bounded. Since the polynomials pφ̂ (τττ),
pψ̂ j

(τττ), pη̂ j
(τττ) are obtained from points τττ l such that ∆τττ l ∈R,

it can be assumed that ∆τττ∗p is bounded.

Since the condition in Theorem 3 is satisfied, the problem of

computing the global minimum of J(τττ) subject to g j(τττ)≥ 0,

for j = 1, . . . ,nc, can be formulated as the SDP described in

Section V-A for some relaxation order d ≥ v = ⌈n/2⌉ [24],

[25]. A certificate of the representation in terms of SOS

polynomials for the order d is obtained upon convergence of

the SDP as shown in Theorem 4, which is a certificate of

global optimality of the solution τττ∗p and the cost ξ ∗ = J∗.

Suppose that cd ≥ 1 and a global optimum is computed

and certified for the relaxation order d = 5 as in the ex-

amples of Section VI. This implies that the SDP in Sec-

tion V-A has been solved for d = 5, which is an SDP with
(

N+2d
N

)

= (N+10)...(N+1)
3628800

equality constraints, one LMI of size
(

N+d
N

)

= (N+5)(N+4)(N+3)(N+2)(N+1)
120

, and nc = nγ + 1 LMIs of

size
(N+d−v j

N

)

≤ (N+4)(N+3)(N+2)(N+1)
24

. Since the complexity of

SDPs is polynomial in their input size, that is, the number of

constraints and the size of the LMIs, it means that a global

solution τττ∗p is computed and certified in polynomial time.
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The solution τττ∗p to each POP (17) allows us to compute the

global solution τττ∗ for a given arc sequence. Hence, when the

globally optimal cost is known for each arc sequence, one can

check which sequence is the best one. As mentioned in Section

III, the number of plausible arc sequences in input-affine OCPs

is less than 2n̄a . Regarding the number of decision variables

for each arc sequence, it is N = ns + 1+ 2|S | ≤ 2n̄a. This

means that, even for a relatively large upper bound n̄a = 5,

less than 2n̄a = 32 arc sequences need to be considered, and

the problem for each sequence can be solved in parallel and

involves only N ≤ 2n̄a = 10 decision variables. Despite the

limitations in the size of the SDPs stemming from reformula-

tion of POPs that the current SDP solvers can handle, POPs

with about 10 decision variables have been characterized as

problems that can be solved efficiently [29]. In contrast, if

the arc sequences were not enumerated, we would need to

use an input parameterization such as the piecewise-constant

parameterization that is typically used for numerical solution

of OCPs, which would require a large number of decision

variables. In summary, since the problem for each sequence

can be solved in parallel and involves only a reduced number

of decision variables, the proposed approach provides a logical

framework for efficient parallel computation of the global

solution to single-input OCPs.

Remark 8. It might be possible to improve the efficiency

of the proposed scheme based on exhaustive enumeration of

plausible arc sequences by (i) formulating POPs for computing

global upper and lower bounds on the optimal solutions for

comprehensive sets of arc sequences and (ii) enumerating

only the parts of the search tree that cannot be eliminated

by bounding steps. However, the details of a method that

would allow efficient implementation of this idea are currently

unclear. Hence, the implementation of this idea represents a

possible direction for future work that is considered out of the

scope of this paper.

VI. SIMULATION EXAMPLES

This section illustrates the proposed method to efficiently

compute the global solution to OCPs via two simulation

examples: production maximization in a chemical reaction

system and maximization of the peak altitude of a rocket.

A. Production maximization in a chemical reaction system

This simulation example corresponds to a problem of pro-

duction maximization in an acetoacetylation reaction system

with the species A, B, C, D, E [11]. This OCP is formulated

with the states x(t) :=
[

xr(t)
T xin(t)

]T
that represent the

extents of reaction and inlet as:

max
uin(·),t f

J
(

uin(·), t f

)

= nC(t f ), (36a)

s.t. T
(

uin(·), t f

)

=

[

nB(t f )−cB,maxV (t f )

nD(t f )−cD,maxV (t f )
t f −t f ,max

]

≤ 03, (36b)

ẋ(t) = f
(

x(t),uin(t)
)

=

[

rv(t)
uin(t)
1000

]

, x(t0) = 0R+1, (36c)

[

uin(t)− uin uin − uin(t)
]T

≤ 02, (36d)

where xr(t) :=
[

xr,1(t) xr,2(t) xr,3(t)
]T

, uin = 0, uin =
2 mL min−1, t f ,max = 250 min, cB,max = 0.025 mol L−1, and

cD,max = 0.15 mol L−1, the R = 3 reaction rates rv(t) :=
[

rv,1(t) rv,2(t) rv,3(t)
]T

are given by rv,1(t) = k1
nA(t)nB(t)

V (t) ,

rv,2(t) = k2
n2

B(t)

V (t) , rv,3(t) = k3nB(t), with the rate constants

k1 = 0.053 L mol−1 min−1, k2 = 0.128 L mol−1 min−1, and

k3 = 0.028 min−1, the volume is given by V (t) = V0 +
xin(t), with V0 = 1 L, and the numbers of moles n(t) :=
[

nA(t) nB(t) nC(t) nD(t) nE(t)
]T

are given by n(t) =

NTxr(t) + cinxin(t) + n0, with n1 =
[

−1 −1 1 0 0
]T

,

n2 =
[

0 −2 0 1 0
]T

, n3 =
[

0 −1 0 0 1
]T

, N =
[

n1 n2 n3

]T
, cin =

[

0 5 0 0 0
]T

mol L−1, as well as

n0 =
[

0.72 0.05 0.08 0.01 0
]T

mol.

It was shown by [11] that, when linear functions are used

to approximate free/singular arcs, a locally optimal solution

consists of 3 arcs: in the first arc, u∗in(t) = uin; the second

arc is free/singular with uin < u∗in(t) < uin, for which an

approximation by a linear function is used; and in the third arc,

u∗in(t) = uin. This results in an input trajectory described by the

5 decision variables t̄1, t̄2, t f , u0
2, p2. The optimal switching

times are t̄∗1 = 5.96 min, t̄∗2 = 230.26 min, and the optimal

final time is t∗f = 250 min. The optimal initial conditions

for the second arc are the initial value and the constant

derivative of the linear function that describes u∗in(t) in this

arc: u0∗
2 = 1.262 mL min−1, p∗2 = −1.13× 10−3 mL min−2.

The optimal cost is n∗C(t
∗
f ) = 0.51373 mol, and all the terminal

constraints are active. The local optimality is indicated by

the fact that the gradients (10), (11), (12) are equal to zero

and the solution satisfies the necessary conditions given by

Pontryagin’s maximum principle [5].

The proposed approach for obtaining global solutions to

OCPs is applied by investigating all the 6 plausible arc

sequences with a number of arcs no larger than n̄a = 3. Table

I reports the execution time of the procedure on an Intel

Core i7 3.4 GHz processor, the optimal cost φ̂ (τττ∗), and the

optimal values of the decision variables for these plausible

arc sequences. The execution time includes the evaluation of

mτ = 1000 sample points to obtain the polynomial representa-

tions pφ̂ (τττ), pψ̂ j
(τττ) of degree n= 6 and the local optimization

needed to compute τττ∗ for each arc sequence. For all the arc

sequences, it is possible to extract the unique solution τττ∗p to

the POP (17) from the solution to the SDP for the relaxation

order d = 5 and certify the global optimality of τττ∗p with the

cost J∗. The duration of the formulation of the SDP and the

extraction and certification of the global solution is much

smaller than the execution time of the SDP solver MOSEK

9.2. One can observe that the execution time is below 40 s for

all arc sequences and the sequence with the best optimal cost is

1U-3-1L, that is, the sequence of the locally optimal solution.

In addition, the globally optimal values t̄∗1 , t̄∗2 , t∗f , u0∗
2 , p∗2 of the

decision variables for that arc sequence also correspond to the

optimal values given by the locally optimal solution. For this

problem, the solution of which has been accurately described

by 5 decision variables in this paper by enumerating 6 < 23

arc sequences, Figure 2 in [11] had shown that 25 decision

variables are necessary to describe the optimal solution with

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3165481

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



TABLE I
EXECUTION TIME, OPTIMAL COST φ̂(τττ∗), AND OPTIMAL VALUES t̄∗1 , t̄∗2 , t∗f , u0∗

i , p∗i OF THE DECISION VARIABLES FOR THE GLOBAL SOLUTION TO THE

OCP (36) FOR DIFFERENT PLAUSIBLE ARC SEQUENCES.

Arc sequence Execution time (s) φ̂(τττ∗) (mol) t̄∗1 (min) t̄∗2 (min) t∗f (min) u0∗
i (mL min−1) p∗i (mL min−2)

3-1L-1U 35.0 -0.51350 230.52 250.00 250.00 1.328 -1.49 ×10−3 (i = 1)

3-1U-1L 34.0 -0.51350 228.31 229.46 250.00 1.329 -1.50 ×10−3 (i = 1)

1L-3-1L 25.1 -0.51350 0.00 230.52 250.00 1.328 -1.49 ×10−3 (i = 2)

1L-3-1U 37.6 -0.50476 0.00 250.00 250.00 1.909 -6.92 ×10−3 (i = 2)

1U-3-1L 24.9 -0.51373 5.96 230.26 250.00 1.262 -1.13 ×10−3 (i = 2)

1U-3-1U 34.4 -0.50476 1.62 250.00 250.00 1.896 -6.92 ×10−3 (i = 2)

the same accuracy in terms of cost when a piecewise-constant

input parameterization is used. Hence, if it is assumed that

the worst-case complexity of global optimization is given

by O(2N), where N is the number of continuous decision

variables, branch-and-bound with input parameters as decision

variables may entail a complexity of O(225) for this example,

while exhaustive enumeration of arc sequences only requires

a complexity of O(25) for less than 23 arc sequences, where

these arc sequences can be evaluated in parallel.

In summary, one can show that the locally optimal solution

to the OCP (36) shown in Fig. 1 is also the globally optimal

solution with no more than n̄a = 3 arcs, and this only requires

solving 6 problems in parallel in less than 40 s. We repeated

the same procedure with a value n̄a = 4. Since we obtained

the same three-arc solution as with n̄a = 3, it is reasonable

to conclude that the three-arc solution is indeed the globally

optimal solution to the OCP (36). As predicted, when the opti-

mal solution for some sequences of n̄a = 4 arcs corresponds to

the three-arc solution, some switching points coincide. We did

not encounter any issues with the polynomial approximation

or non-smoothness in the feasible region of the POP (17) due

to the coincidence of switching points since all the functions in

the OCP formulation (36) are smooth. Recall that, if we had

only used local optimization to compute a local solution to

the OCP (36), we could have obtained a local solution worse

than τττ∗ and it would not have been possible to provide any

guarantee that the local solution is in any way close to the

globally optimal solution.

For this problem in particular, the analytical expression for

the time derivative of the optimal input in free/singular arcs

is known (see (39) in [17]). Hence, it is possible to compare

the costs that are achieved by considering (i) the analytical

expression for the input in the free/singular arc and (ii) the

approximation of the input in the free/singular arc by a linear

function. The optimal input trajectories for both (i) and (ii)

are presented in Fig. 1, which shows that, even though the

input trajectories are similar, they are not coincident. Despite

this difference between the input trajectories for (i) and (ii),

the optimal costs are very similar: the cost is 0.51374 mol

for (i), which is better than the cost for (ii) by a margin of

only 6 × 10−6 mol. This shows that the difference in cost

is negligible, which confirms that the approximation by a

linear function is sufficiently accurate. At the same time, the

proposed approach allows determining a global solution for the

approximated problem, which is an accurate approximation of

the original problem as shown. Note that, although the use of

analytical expressions to represent the free/singular is possible

for this illustrative problem, in general it is not possible to

0 50 100 150 200 250
0

0.5

1

1.5

2

Fig. 1. Globally optimal input trajectory for the OCP (36) with the approx-
imation of the input in the free/singular arc by a linear function (solid line)
and the analytical expression for the input in the free/singular arc (dashed
line).

use such analytical expressions for every problem since they

are typically unknown. This justifies the need for numerical

approaches that are generally applicable to any single-input

OCP.

B. Maximization of the peak altitude of a rocket

This simulation example corresponds to a problem of max-

imization of the peak altitude of a rocket, known as the God-

dard problem, in a dimensionless formulation [30]. This OCP

is formulated with the states x(t) :=
[

x1(t) x2(t) x3(t)
]T

that represent the altitude, velocity, and mass as:

max
u(·),t f

J
(

u(·), t f

)

= x1(t f ), (37a)

s.t. T
(

u(·), t f

)

= 0.6− x3(t f )≤ 0, (37b)

ẋ(t) = f
(

x(t),u(t)
)

=







x2(t)
u(t)−d(t)

x3(t)
− 1

x1(t)2

− u(t)
c






, x(t0) =





1

0

1



 ,

(37c)
[

u(t)− u u− u(t)
]T

≤ 02, (37d)

where u= 0, u= 3.5, and d(t) := ax2(t)
2 exp

(

b−bx1(t)
)

, with

a = 310, b = 500, c = 0.5.

It can be shown that, when linear functions are used

to approximate free/singular arcs, a locally optimal solution

consists of 3 arcs: in the first arc, u∗(t) = u; the second arc is

free/singular with u < u∗(t)< u, for which an approximation

by a linear function is used; and in the third arc, u∗(t) = u.
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TABLE II
EXECUTION TIME, OPTIMAL COST φ̂(τττ∗), AND OPTIMAL VALUES t̄∗1 , t̄∗2 , t∗f , u0∗

i , p∗i OF THE DECISION VARIABLES FOR THE GLOBAL SOLUTION TO THE

OCP (37) FOR DIFFERENT PLAUSIBLE ARC SEQUENCES.

Arc sequence Execution time (s) φ̂(τττ∗) (-) t̄∗1 (-) t̄∗2 (-) t∗f (-) u0∗
i (-) p∗i (-)

3-1L-1U 36.3 -1.012752 0.074949 0.197437 0.197437 3.5000 -2.2189 ×10 (i = 1)
3-1U-1L 25.5 -1.012760 0.064014 0.071770 0.198229 3.5000 -2.4986 ×10 (i = 1)
1L-3-1L 16.7 -1.012752 0.000000 0.074949 0.197437 3.5000 -2.2189 ×10 (i = 2)
1L-3-1U 31.7 -1.009223 0.000000 0.157158 0.157158 2.5452 -1.6195 ×10 (i = 2)
1U-3-1L 24.1 -1.012837 0.023998 0.073133 0.198847 1.9766 1.5644 ×10 (i = 2)
1U-3-1U 27.2 -1.012505 0.057143 0.187327 0.187327 0.0000 0.0000 ×10 (i = 2)

This results in an input trajectory described by the 5 decision

variables t̄1, t̄2, t f , u0
2, p2. The optimal switching times are

t̄∗1 = 0.023998, t̄∗2 = 0.073133, and the optimal final time is

t∗f = 0.198847. The optimal initial conditions for the second

arc are the initial value and the constant derivative of the

linear function that describes u∗(t) in this arc: u0∗
2 = 1.9766,

p∗2 = 1.5644× 10. The optimal cost is x∗1(t
∗
f ) = 1.012837,

and the terminal constraint is active. The local optimality is

indicated by the fact that the gradients (10), (11), (12) are equal

to zero and the solution satisfies the necessary conditions given

by Pontryagin’s maximum principle [5].

The proposed approach for obtaining global solutions to

OCPs is applied by investigating all the 6 plausible arc

sequences with a number of arcs no larger than n̄a = 3. Table

II reports the execution time of the procedure on an Intel

Core i7 3.4 GHz processor, the optimal cost φ̂ (τττ∗), and the

optimal values of the decision variables for these plausible

arc sequences. The execution time includes the evaluation of

mτ = 1000 sample points to obtain the polynomial representa-

tions pφ̂ (τττ), pψ̂ j
(τττ) of degree n= 6 and the local optimization

needed to compute τττ∗ for each arc sequence. For all the arc

sequences, it is possible to extract the unique solution τττ∗
p to

the POP (17) from the solution to the SDP for the relaxation

order d = 5 and certify the global optimality of τττ∗p with the

cost J∗. The duration of the formulation of the SDP and the

extraction and certification of the global solution is much

smaller than the execution time of the SDP solver MOSEK

9.2. One can observe that the execution time is below 40 s

for all arc sequences and the sequence with the best optimal

cost is 1U-3-1L, that is, the sequence of the locally optimal

solution. In addition, the globally optimal values t̄∗1 , t̄∗2 , t∗f ,

u0∗
2 , p∗2 of the decision variables for that arc sequence also

correspond to the optimal values given by the locally optimal

solution.

In summary, one can show that the locally optimal solution

to the OCP (37) shown in Fig. 2 is also the globally optimal

solution with no more than n̄a = 3 arcs, and this only requires

solving 6 problems in parallel in less than 40 s. We repeated

the same procedure with a value n̄a = 4. Since we obtained

the same three-arc solution as with n̄a = 3, it is reasonable

to conclude that the three-arc solution is indeed the globally

optimal solution to the OCP (37). As predicted, when the opti-

mal solution for some sequences of n̄a = 4 arcs corresponds to

the three-arc solution, some switching points coincide. We did

not encounter any issues with the polynomial approximation

or non-smoothness in the feasible region of the POP (17) due

to the coincidence of switching points since all the functions in

the OCP formulation (37) are smooth. Recall that, if we had
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Fig. 2. Globally optimal input trajectory for the OCP (37) with the approx-
imation of the input in the free/singular arc by a linear function (solid line)
and the analytical expression for the input in the free/singular arc (dashed
line).

only used local optimization to compute a local solution to

the OCP (37), we could have obtained a local solution worse

than τττ∗ and it would not have been possible to provide any

guarantee that the local solution is in any way close to the

globally optimal solution.

For this problem in particular, the analytical expression for

the optimal input in free/singular arcs is known [30]:

u∗ = ax2
2 exp(b− bx1)+

c(1+x2/c)x3(bx2
2+2/x2

1)

2c+4x2+x2
2/c

−
2cx2

3

aexp(b−bx1)x
3
1(2c+4x2+x2

2/c)
. (38)

Hence, it is possible to compare the costs that are achieved

by considering (i) the analytical expression for the input in

the free/singular arc and (ii) the approximation of the input in

the free/singular arc by a linear function. The optimal input

trajectories for both (i) and (ii) are presented in Fig. 2, which

shows that, even though the input trajectories are similar, they

are not coincident. Despite this difference between the input

trajectories for (i) and (ii), the optimal costs are very similar:

the cost is 1.012837 for (i), which is better than the cost for (ii)

by a margin of only 2× 10−7. This shows that the difference

in cost is negligible, which confirms that the approximation by

a linear function is sufficiently accurate. At the same time, the

proposed approach allows determining a global solution for the

approximated problem, which is an accurate approximation of

the original problem as shown. Note that, although the use of

analytical expressions to represent the free/singular is possible

for this illustrative problem, in general it is not possible to

use such analytical expressions for every problem since they
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are typically unknown. This justifies the need for numerical

approaches that are generally applicable to any single-input

OCP.

VII. CONCLUSIONS

This paper presented an efficient global solution method for

single-input OCPs that relies on the enumeration of plausible

arc sequences. It was shown that the cost and constraints for a

given arc sequence can be approximated as explicit polynomial

functions of the decision variables, which in turn allows for

reformulation of OCPs as a set of polynomial optimization

problems. The latter problems can then be reformulated as

a hierarchy of convex semidefinite programs and efficiently

solved to global optimality via the concept of sum-of-squares

polynomials. The paper showed that the difference between the

cost obtained by the proposed approach and the globally op-

timal cost of the original problem is bounded and depends on

the polynomial approximation errors. The proposed approach

can deal efficiently with nonlinear dynamical systems with a

large number of states or complex dynamics.

In future work, it would be useful to extend the proposed

method to OCPs with multiple inputs and stochastic dis-

turbances. In addition, enumeration of all the plausible arc

sequences can be a limitation of the approach proposed in this

paper. Although this limitation does not make the proposed

approach less efficient than existing alternative methods based

on branch-and-bound, it would be beneficial to address this

limitation in future work.
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