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RESEARCH ARTICLE Open Access

Regulation of the yeast metabolic cycle by
transcription factors with periodic activities
Aliz R Rao1* and Matteo Pellegrini2*

Abstract

Background: When growing budding yeast under continuous, nutrient-limited conditions, over half of yeast genes
exhibit periodic expression patterns. Periodicity can also be observed in respiration, in the timing of cell division, as
well as in various metabolite levels. Knowing the transcription factors involved in the yeast metabolic cycle is
helpful for determining the cascade of regulatory events that cause these patterns.

Results: Transcription factor activities were estimated by linear regression using time series and genome-wide
transcription factor binding data. Time-translation matrices were estimated using least squares and were used to
model the interactions between the most significant transcription factors. The top transcription factors have
functions involving respiration, cell cycle events, amino acid metabolism and glycolysis. Key regulators of transitions
between phases of the yeast metabolic cycle appear to be Hap1, Hap4, Gcn4, Msn4, Swi6 and Adr1.

Conclusions: Analysis of the phases at which transcription factor activities peak supports previous findings
suggesting that the various cellular functions occur during specific phases of the yeast metabolic cycle.

Background
Budding yeast cells (Saccharomyces cerevisiae) exhibit
oscillatory dynamics in several cellular pathways, such
as those involving the cell cycle, glucose metabolism,
and respiration. Previous studies [1,2] have observed
metabolic cycles in yeast cultures in which most genes
were expressed in a cyclic manner. These cycles are
self-sustaining oscillatory patterns: once cells are syn-
chronized, they continue to exhibit robust oscillations
indefinitely [3,4]. Microarray analysis revealed that cells
exhibit cycles consisting of long reductive phases and
short respiratory bursts, accompanied by corresponding
changes in dissolved oxygen levels, and cell cycle events
are restricted to the reductive phase [1,2]. Interestingly,
the periods of the yeast metabolic cycles vary in the two
studies. Klevecz et al. [1] reports a period of ~40 mins,
and Tu et al. [2] observed periods of ~300 mins. There
is debate about the relationship between the cell division
cycle and the yeast respiratory oscillations, and whether
the short- and long-phase oscillations are fundamentally

different, or whether the variation in phase length is a
result of a difference in nutrient availability, cell spacing,
or errors in data interpretation [5-7].
Analysis of the regulatory network of transcription

factors involved in the genomewide oscillations may
shed light on the underlying causes of the yeast meta-
bolic cycle. A previous study suggests that the Cbf1-
Met4-Met28-Met31-Met32 transcription regulatory
complex and Gcn4p are important in regulating the
short-period metabolic cycle, although it is not likely
that there is a single pathway responsible for the
observed oscillation. Rather, there are several coupled
subsystems involved, with no hierarchical control [8].
The underlying metabolite responsible for synchrony in
cells seems to be hydrogen sulfide [9]. There are no pre-
vious studies aimed specifically at determining the tran-
scription factors regulating the long-period yeast
metabolic cycle, although Lelandais et al. [10] proposes
that the transcription factors Hap1, which is heme-acti-
vated and is known to function as an oxygen-sensor,
and Hap4, a subunit of a heme-activated complex, may
be important. Since each long-period cycle is character-
ized by the upregulation of several clusters of genes
with different functions in the various phases, there is
no doubt there are more key transcription factors
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regulating the timing of cellular events. The goal of this
study is to reveal information about the network of
transcription factors regulating the longer (~300 min)
metabolic cycle.
The long-period yeast metabolic cycle consists of three

phases: Ox (oxidative, respiratory), R/B (reductive, build-
ing) and R/C (reductive, charging). Each phase is asso-
ciated with a characteristic change in dissolved oxygen
levels in the yeast culture. During the Ox phase, oxygen
levels drop drastically. In the R/B phase, oxygen levels
increase, while in the R/C phase, the longest of the
three, oxygen levels stay relatively constant. During the
course of the experiment, the yeast culture is continu-
ously infused with low levels of glucose, however glu-
cose levels in the media are almost zero at all phases of
the cycle; cells appear to adsorb and metabolize avail-
able glucose immediately. Analyses of microarray time
series expression data revealed that ~57% of yeast genes
exhibit periodic expression during the course of a meta-
bolic cycle and cluster into one the three superclusters,
corresponding to the three phases of the yeast metabolic
cycle. Gene expression in different clusters peaks at dif-
ferent phases, and many common metabolites also oscil-
late, indicating that there is a clear temporal separation
between various cellular events [2,11].
In the oxidative phase, oxygen is rapidly consumed in

a burst of respiration. Genes whose expression peaks
during this phase are highly expressed during a very
narrow window of the yeast metabolic cycle. Functional
and metabolome analysis indicates that in the Ox phase,
oxidative phosphorylation is using up previously accu-
mulated acetyl-CoA while ATP is being rapidly pro-
duced. The oxidative cluster is enriched for genes
involving amino acid synthesis and ribosomes, indicating
that cells are preparing for cell division. Genes involved
in sulfur metabolism and RNA metabolism also show
increased expression. During the Ox phase, ATP is
abundant, and this is what enables the assembly of
translation machinery for the next phase: the reductive/
building phase [2,12].
In the R/B phase, 40-50% of cells enter the cell cycle

during each cycle of the yeast metabolic cycle [2].
Therefore, expression increases for genes involved in
cell division. Examples of these are histone genes, spin-
dle pole genes, and genes involved in DNA replication.
Meanwhile, respiration is shut off, possibly to protect
DNA from oxidative damage during cell division.
Instead, yeast cells shift to glycolysis and fermentation.
Oxygen consumption ceases, and mitochondria are
rebuilt. Consequently, the R/B cluster is also enriched
for genes involving mitochondrial biogenesis [2,12].
Finally, in the R/C phase, cells become dependent on

non-respiratory modes of metabolism, and acetyl-CoA
accumulates, which is a precursor to the upcoming

respiratory Ox phase. The R/C cluster is enriched for
genes involving fatty acid oxidation, glycolysis, stress-
associated response and protein degradation, and this
also includes genes involved in peroxisomal function,
vacuoles and ubiquination machinery. Little oxygen is
being consumed, and dissolved oxygen levels continue
to rise. Altogether, cycles in metabolism, respiration and
mitochondrial function are all important components of
the yeast metabolic cycle [2,12].
Analysis of intracellular concentrations of metabolites

shows that many metabolites show periodic oscillations
during the yeast metabolic cycle, and some may be
important in the establishment and regulation of cycles
[11]. NADP(H), sulfur and heme metabolic pathways
may be especially important, and blocking the produc-
tion of either of these metabolites prevents oscillations
from appearing [11].
Time-series microarray data may be analyzed to deter-

mine the transcription factors that are most likely regu-
lating the periodic genes. Other studies searched the
promoters of periodic genes to find the most frequently
occurring motifs and deduce the most significant tran-
scription factors [8,10]. Cokus et al. [13] developed an
alternative method to reverse-engineer the regulatory
network behind oscillating cellular systems. For each
transcription factor, linear regression is used to calculate
a-coefficients, which capture whether the genes a tran-
scription factor binds to are differentially expressed or
not, assuming that the effects of other transcription fac-
tors are held constant. They are essentially a measure of
transcription factor activity, and when calculated for
each time point, one can find the a-coefficients ("activ-
ities”) over time for each transcription factor.
Transcription factor a-coefficient profiles can be

further analyzed for periodicity, and treated as if they
were time-series expression data. Cokus et al. [13] uses
a Fourier-based periodogram method to find the most
periodic transcription factors, under the assumption that
the transcription factors exhibiting the most robust
oscillations are the ones likely to be regulating the cycle
involved. Fourier analysis works well for scoring a-coef-
ficient profiles that resemble a sinusoidal curve. How-
ever, it would not be as effective for studying expression
profiles from the yeast metabolic cycle, because some
clusters of genes contain a sharp spike or two peaks per
cycle [2] (Supporting Material). In this case, calculating
the autocorrelation function would give a more accurate
periodicity score. Since the length of each period is
known, we expect to see a peak in a specific location,
and the relative magnitude of the peak is a measure of
periodicity.
In order to determine the connections between the

transcription factors themselves, Cokus et al. [13] used
the collection of time-dependent a-coefficients to
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compute a time-translation matrix. This can be used to
determine a-coefficients for successive time points using
matrix multiplication, and allows one to compute the
asymptotic amplitudes and phases of the transcription
factor a-coefficients, as well. Since each entry of the
time-translation matrix can be interpreted as one tran-
scription factor affecting the a-coefficient of another in
the successive time point, this is a useful quantitative
model of the dynamical properties of the system.
The amplitudes and phases of the a-coefficients may

also be estimated directly from the a-coefficient profiles,
instead of using the translation matrix. Lelandais et al.
[10] developed a Bayesian decomposition based algo-
rithm, EDPM, to decompose gene expression profiles
into a sum of predefined model patterns: sine waves
with equivalent periods but different phases. Thus, each
time-series profile is represented as the sum of sine
waves with various phases and amplitudes, and the mag-
nitudes of the contributing model patterns are a unique
“footprint” for each profile. From these, the best-fitting
phases and amplitudes can be calculated for each gene
or, for the purposes of this study, each transcription
factor.
We analyzed time-series microarray data from a pre-

vious study [2] to identify the transcription factors regu-
lating the yeast metabolic cycle. We used the methods
of Cokus et al. [13] to calculate transcription factor a-
coefficients using linear regression. We also calculated
the time-translation matrix, with some modifications
from the previous study’s methods. Considering that
oxygen is a major oscillating metabolite, and that Hap1,
a likely candidate for metabolic cycle regulation, had
been previously described to function as an oxygen sen-
sor [14], we also included oxygen in the transition
matrix, and hence, in the dynamical model. a-coefficient
profiles were analyzed for periodicity using autocorrela-
tion. Finally, the phase and amplitude of each transcrip-
tion factor’s a-coefficients were calculated using a
simplified version of the EDPM algorithm [10]. Essen-
tially, for each transcription factor, we found the single
sine wave that best fits its a-coefficient profile.
The advantage of the linear regression based method

for estimating transcription factor activities is that calcu-
lations use existing high-throughput data to provide an
elegant, purely computational solution for finding not
only the most periodic and most robustly oscillating
transcription factors, but also the network of relation-
ships between them. The goal of this study is to identify
the key transcription factors regulating the yeast meta-
bolic cycle and to construct a dynamical model of the
activities of these transcription factors. The hypothesis
is that the most significant transcription factors encom-
pass cellular functions corresponding to the known

phases of the yeast metabolic cycle as previously defined
in [2], [12].

Results
Transcription factors with highly periodic a-coefficients
We selected transcription factors that had significant a-
coefficients at a large number of time points, and itera-
tively recomputed a-coefficients and p-values to obtain
a reduced set of transcription factors. Among these, we
selected the transcription factors with periodic a-coeffi-
cients. The 13 transcription factors that remain after
iterative selection and filtering for high periodicity
include the expected transcription factors Hap1, Hap4
and Gcn4 (Table 1). None of the transcription factors in
the Cbf1-Met4-Met28-Met31-Met32 complex, important
in regulating short-period metabolic oscillations in yeast,
are found in the list. Neither is any transcription factor
with an explicit role in sulfur metabolism. About half of
the transcription factors are known cell cycle regulators.
This is not surprising, since roughly 50% of yeast cells
in the culture divide in each cycle, and cell division is
always initiated within a short window during the yeast
metabolic cycle, in the R/B phase [2].
Ordering transcription factors according to phase

reveals a clear temporal separation between peaks in
their a-coefficients (Figure 1). A spike in several tran-
scription factors can be seen at the time points corre-
sponding to 4157, 4432 and 4737 minutes. Specifically,
there is a brief increase in a-coefficients for transcrip-
tion factors Bas1, Spt2 and Gcn4, and a decrease for
Ace2, Adr1 and Hap1 (Figure 1). This coincides with
the time at which oxygen levels are dropping at the fast-
est rate. Normalized oxygen levels were also included in
Figure 1 for comparison.
Cluster analysis reveals that the transcription factors

exhibiting sharp spikes belong to the same cluster (Fig-
ure 2). In fact, most of the transcription factors have
similarly shaped profiles, with the exception of the five
transcription factors Hap3, Hap4, Gal3, Msn4, and Swi6
(Figure 2, 3). The two distinct clusters of transcription
factor profiles are shown separately in Figure 3, which
presents a different view of the heatmap in Figure 1.
Oxygen levels do not closely follow any curve, although
the curve appears most similar to the opposites of Hap3
and Gal3 a-coefficients (Figure 1, 2, 3).
The phases and amplitudes of the best-fit sine waves

for the a-coefficients are shown in Figure 4. Note that
transcription factors with similar curves that would
otherwise cluster together have a phase shift of 180°
relative to one another if the curves are opposite.
The three phases of the metabolic cycle are defined by

the changes in oxygen levels [2], and we can use this to
determine what phase different transcription factor a-
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coefficient profiles peak in. In the Ox phase, dissolved
oxygen levels drop dramatically. The R/B phase is char-
acterized by no oxygen consumption in the yeast cells, i.
e. dissolved oxygen levels increase. The remaining phase
is the R/C phase. Using this classification, the temporal
location of the phases of the metabolic cycle can be
assigned on Figure 3 and aligned with the points on the
polar plot in Figures 4 and 5. Thus, had we calculated
best-fit cosine waves instead of sine waves, the points
would represent peaks in oscillations, and the Ox phase
would be around 285-345°, the R/B phase would be
around 165-285°, and the R/C phase, which is the long-
est of the three [12], would occupy the area around -15-
165° (Figures 4, 5). We expect transcription factor activ-
ities to peak in different phases according to their cellu-
lar function. For example, Gcn4, the main regulator of
amino acid control, should peak in the Ox phase, and
Swi6, a transcription factor involved in cell cycle initia-
tion, should peak near the beginning of the R/B phase.
The phases of the best fit sine waves do not fit

expectations for every transcription factor (Figure 4).
Instead, taking the maximum of the transcription factor
a-coefficients generates results that are more consistent
with the known function of these factors (Figure 5).

Regulatory network among transcription factors
A transition matrix was calculated to model the network
of relationships between transcription factors. A pre-
vious study used a transition matrix with entries con-
strained to be positive [13], but our results indicate that
the unconstrained transition matrix is a better represen-
tation of this system. When the matrix was constrained
for non-negative entries, the most significant entries
corresponded to the most significant positive entries in

Table 1 List of top 13 transcription factors

TF Periodicity Phase Amplitude Function

ACE2 0.520 45° 0.048 Cell cycle (early G1 specific transcription).

ADR1 0.518 48° 0.047 Glucose repression.

ARO80 0.544 44° 0.066 Aromatic AA degradation

BAS1 0.562 293° 0.082 Recombination. Purine and histidine synthesis.

GAL3 0.452 215° 0.036 Galactose metabolism.

GCN4 0.548 2° 0.085 Main regulator of general AA control.

HAP1 0.449 80° 0.049 Respiration. Heme-responsive. Growth potential.

HAP3 0.503 255° 0.048 Respiration. Subunit of heme-activ’d Hap2/3/4/5.

HAP4 0.620 227° 0.124 Respiration. Subunit of heme-activ’d Hap2/3/4/5.

MSN4 0.595 0° 0.062 Cell cycle. Stress-responsive gene expression.

RLR1 0.515 42° 0.063 Recombination. Transcriptional elongation.

SPT2 0.497 302° 0.108 Cell cycle (interacts w/histones, SWI-SNF).

SWI6 0.631 225° 0.058 Cell cycle (progression from G1 to S phase).

Shown are the transcription factors that remain after iterative filtering for the highest periodicity scores of their a-coefficients. Phase and amplitude were
calculated from the best-fit sine waves.
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the non-constrained matrix, with the difference that sig-
nificant negative entries were close to zero (Additional
Files 1 and 2). Upon closer observation of the non-con-
strained time-translation matrix, transcription factors
with opposite a-coefficients, such as Bas1, Spt2 and
Gcn4 compared to the opposite group Ace2, Adr1 and
Hap1, have column entries resembling the opposite

groups in absolute value but with opposing signs.
Assuming that the two opposite clusters are indeed clo-
sely related in regulating the yeast metabolic cycle, the
large negative entries should also count as significant
relationships, since they would be significant positive
entries, had the a-coefficient curves been mirrored
across the x-axis. Calculations of the model residuals
confirms that the non-constrained transition matrix
models the regulatory network more accurately (Addi-
tional File 3). For this reason, the nonconstrained transi-
tion matrix was used when illustrating the regulatory
network graphically. If an entry was greater than 0.5 in
absolute value, the connection between transcription
factors was deemed significant. This threshold resulted
in a connected graph with only a small number of tran-
scription factor pairs that are connected in both direc-
tions. Finally, nodes were arranged to maximize the
number of downward arrows (Figure 6).

Discussion
The transcription factors that we identify as regulators
of the yeast metabolic cycle peak can be classified into
the three phases described by Tu et al. [2]. The tran-
scription factor Swi6, a component of the SWI-SNF
complex that is responsible for the progression of the
cell cycle from G1 to S phase, peaks in the R/B phase.
This is consistent with the fact that many genes
involved in the cell cycle peak in the R/B phase [2]. We
expect to find that transcription factors involved in
stress-responsive adaptation, glycolysis, and protein
degradation peak in the R/C phase. Msn4, which is
involved in stress-responsive gene expression, peaks in
this phase, and so does Aro80, a transcription factor
involved in the degradation of aromatic amino acids.
Adr1, a transcription factor involved in glucose metabo-
lism, peaks in the R/C phase. Amino acid synthesis and
RNA metabolism takes place mainly in the Ox phase,
and this is consistent with the peaks for a transcription
factor involving general amino acid control, Gcn4, and a
regulator of RNA polyadenylation and transcription
elongation, Spt2. Some transcription factors may have
similar functions and yet peak in different phases. For
example, Hap1 is involved in respiration, and so are
Hap3 and Hap4, but Hap1 clearly peaks in the R/C
phase, while the two members of the Hap2/3/4/5 com-
plex are most active in the R/B phase. For the most
part, however, transcription factor a-coefficients peak in
the phases that we would predict based on their known
functions. Many of the transcription factors are known
to be associated with pathways that may be related to
phases or transitions in the yeast metabolic cycle, such
as the diauxic shift, response to oxidative stress, or cell
cycle initiation. Examples of these transcription factors
are Hap1, Hap4, Swi6 and Msn4.
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Hap4
This transcription factor has been previously suggested
to have an important role in regulating the yeast meta-
bolic cycle [10] and is the regulatory subunit of the
Hap2/3/4/5 complex [15]. It functions as a transcrip-
tional regulator of mitochondrial function by regulating
genes involved in the respiratory pathway [15,16], and it
is also an important regulator of mitochondrial biogen-
esis and allows mitochondrial function to escape from
glucose repression [15,17]. The transcription factor
Hap4 responds primarily to the availability of carbon
source, and secondarily to heme [15].

Hap1
Another key regulator of respiration in yeast, Hap1, is
directly regulated by heme, an intermediate in the sig-
naling mechanism for oxygen levels in yeast [18]. In
aerobic growth conditions, when oxygen levels are high,
increased heme levels activate Hap1 [14,19]. Then, Hap1
promotes the transcription of many genes encoding
functions involving respiration and the control of oxida-
tive damage [19,20]. As a result, we see that in the Ox
phase of the yeast metabolic cycle, when oxygen levels
drop sharply, Hap1 also shows a sudden decrease in
activity. This drop in Hap1 activity marks a decrease in

Figure 6 Network of transcription factors regulating the yeast metabolic cycle. The time-translation matrix is illustrated as a dynamical
model of the a-coefficients of the 13 most significant transcription factors, in which the matrix entries of highest absolute values represent
couplings between transcription factors. A line from factor A to factor B indicates that the activity of A affects the activity of B at the next time
point. The displayed order of factors minimizes the number of upward arcs (these arcs being grouped on the right side of the figure). This
representation can be seen in [13]. Levels of dissolved oxygen in the yeast culture were normalized and included in the dynamical model.
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the rate of respiration after that point, and the rate of
oxygen consumption appears to level off afterwards, as
yeast cells enter the R/B phase. Interestingly, Hap1
activity appears to follow the derivative of the curve for
dissolved oxygen levels (Figure 3A/B), i.e. it is propor-
tional to the change in the amount of oxygen. Hap1 acts
as an activator in aerobic conditions and a repressor in
hypoxic conditions, which likely allows for greater tran-
scriptional control in response to changing oxygen levels
[21].

Swi6
The transcription factor with the most periodic activity
during the yeast metabolic cycle is Swi6, a known regu-
lator of the yeast cell cycle [22-26]. Therefore, this tran-
scription factor is likely to be the one synchronizing cell
division initiation in the R/B phase. The question then
becomes, what is regulating Swi6 activity, and what trig-
gers cell division initiation? The high levels of ATP pro-
duced during respiration cannot be the inducing signal
for progression into the S phase, because glucose-
starved cells can contain significant levels of ATP and
yet not enter the cell cycle [27], although ATP is likely
to contribute to the ability of cells to assemble the
translation machinery in the Ox phase. What is more
important in cell division initiation is nutrient availabil-
ity and cell size. Budding yeast cells divide once they
reach a certain size threshold [28,29], unless the G1/S
transition is disabled by certain inhibitors. It may be the
case that such inhibitors are active in the Ox phase, and
a drop in their activity enables the yeast cells to initiate
cell division. It is also possible that a byproduct of the
Ox phase promotes the “start” of initiation.

Msn4
The third most periodic transcription factor that peaks
at the end of the R/C phase–just before the Ox phase–
is Msn4, which is known to be involved in the diauxic
transition and general stress response [30-33]. The fact
that Msn4 activity decreases near the time that oxygen
levels start to decrease also suggests that Msn4 activity
may be changing in response to oxidative stress. Msn4
has also been predicted to show periodic regulatory
behavior during the cell cycle, with greatest function
during the G1 phase [34]. It is worth noting that Msn4
and Swi6 clustered close together and have extremely
similar, but opposite a-coefficient profiles. Therefore,
Msn4 may have a role in inhibiting the activity of Swi6
and delaying the G1/S transition of the cell cycle under
the stress conditions caused by oxidative respiration.
The advantage of delaying “start” is that DNA is pro-
tected from oxidative damage that would occur if the
DNA were replicated during the Ox phase [1,2,35].

However, no previous studies support the connection
between Msn4 and Swi6.
Possible connection to the diauxic shift
The previously discussed transcription factors are, coin-
cidentally, some of the transcription factors known to
be involved in the diauxic shift, the metabolic shift from
fermentation to respiration. Hap1, Hap2/3/4/5, Msn2/4
and Yap1 are the transcription factors that mediate the
activation of genes encoding antioxidant defenses during
this transition [36], and many of these transcription fac-
tors were in our list of top transcription factors. There
are also other similarities between the diauxic shift and
the yeast metabolic cycle. The diauxic shift happens
when yeast cells exhaust glucose in the medium and
transition into using another carbon source such as
ethanol, to produce ATP. In the process, genes encoding
mitochondrial biosynthesis and respiratory proteins that
had been under glucose repression become derepressed
[36]. These are the same events we see happening at the
transition of the yeast metabolic cycle from the reduc-
tive R/B phase to the oxidative Ox phase. Therefore, it
is possible that the long-period yeast metabolic cycle is
similar to a cycle of repeated diauxic shifts. During a
diauxic shift, the mRNA expression level of more than
1,700 or 27% of all yeast genes changes by more than a
factor of two [37]. In addition, 800 or 13% of all yeast
genes show periodic expression over the course of the
yeast cell cycle [38], adding up to approximately 50% of
yeast genes. This number comes close to the 57% of all
yeast genes that show periodic expression during the
yeast metabolic cycle [2]. On the other hand, one of the
main regulators of the diauxic shift is Sip4, which inter-
acts with Snf1, the main regulator of glucose repression
[37], and Sip4 is not included in our list of significant
transcription factors. Neither is Yap1, another one of
the transcription factors involved in oxidative damage
during the diauxic shift. These two transcription factors
were not significant even when lower thresholds were
set during the iterative steps of transcription factor
selection. Also, this model does not explain the distinc-
tion between genes expressed in the R/B and R/C
phases. In summary, although the shift from the respira-
tory to the oxidative phase of the yeast metabolic cycle
show characteristics of the diauxic shift, there are likely
other factors at play, as well.
Cluster of transcription factors with sharply peaked profiles
Other transcription factors may also be important in
regulating the yeast metabolic cycle, based on their peri-
odicity scores, known function, and connectivity in the
regulatory network diagram. We will discuss the addi-
tional five transcription factors Ace2, Adr1, Bas1, Gcn4
and Spt2 in detail. All five belong to the larger of the
two clusters based on cluster analysis and have
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characteristic spikes in their a-coefficient profiles during
the Ox phase. Bas1, Gcn4 and Spt2 peak in the Ox
phase and show the lowest activity during the R/C
phase, while Ace2 and Adr1 have the opposite pattern.
All five transcription factors have different functions
and contribute in different ways to the patterns of gene
expression seen in the yeast metabolic cycle.

Bas1 and Gcn4
The transcription factors Bas1 and Gcn4 are involved in
amino acid and nucleotide metabolism, and they peak in
the Ox phase, which is known to be enriched for genes
encoding amino acid metabolism, among other func-
tions [2]. Bas1 is involved in histidine, purine and pyri-
midine synthesis [39-41] and it is regulated by adenine,
a purine derivative which antagonizes its activity [42].
On the other hand, Gcn4 is such is the master regulator
of general amino acid control and is involved in regulat-
ing 19 of the 20 biosynthesis pathways, and directly or
indirectly regulates purine synthesis, organelle biosynth-
esis, autophagy, glycogen homeostasis, and multiple
stress responses [41]. Gcn4 activity is induced by the
transcription factor Gcn2, which promotes amino acid
storage in yeast vacuoles under glucose starvation [43].
If we assume that glucose starvation conditions are ana-
logous to the respiratory Ox phase of the yeast meta-
bolic cycle, Gcn4p levels would increase during the Ox
phase. Then, when metabolism shifts back to fermenta-
tion, it would be analogous to returning to the non-
starved experiment, where Gcn4p gets degraded, as is
the case under normal conditions [44]. Meanwhile, Bas1
activity may follow Gcn4 activity because they are linked
by purine. Hypothetically, Gcn4 and Bas1 levels may be
tied to the oxidative phase of the yeast metabolic cycle
in such a manner.

Adr1
Glucose repression is regulated in part by Adr1. This
transcription factor is required for the expression of the
glucose-repressed gene Adh2, peroxisomal protein
genes, and genes required for ethanol, glycerol, and fatty
acid utilization [45]. This corresponds with the functions
enriched in the R/C phase, which include fatty acid oxi-
dation, peroxisome biosynthesis, and glycolysis [2].
There is controversy about what regulates Adr1 bio-
synthesis and activity. Previous studies have suggested
glucose levels, carbon source, or phosphorylation by a
functional Snf1 protein kinase [46-48]. We found that
Snf1 has low periodicity scores, suggesting that it is not
the factor determining Adr1 activity (Rao, data not
shown). On the other hand, intracellular glucose levels
[11] have a profile very similar to the opposite of the
Adr1 a-coefficient profile. Snf1 increases the DNA bind-
ing activity of Adr1 in the absence of glucose [49], so as

glucose levels drop, Adr1 activity would increase even if
Snf1 levels remain relatively constant. Thus, genes
involved in non-fermentative modes of metabolism
would be upregulated at the same time as glucose levels
drop. This happens in the R/C phase of the yeast meta-
bolic cycle, as indicated by the peak in Adr1 a-coeffi-
cients in this phase. It may be the case that increased
rates of glycolysis in the R/B phase [2,50] consume
intercellular glucose faster than the rate at which glu-
cose enters cells, and in response to a drop in intercellu-
lar glucose levels, Adr1 activates alternative metabolic
pathways such as fatty acid oxidation to supplement the
cell’s need for energy.

Ace2
Ace2, a transcription factor that activates genes in the
G1 phase of the cell cycle [51-53], has an a-coefficient
profile similar to that of Adr1; it peaks in the R/C
phase, and has a spike of decreased activity in the Ox
phase. This corresponds with the fact that cell division
happens during the R/C phase [2], because cells will be
in the G1 phase of the cell cycle during the R/B and Ox
phases of the yeast metabolic cycle. Ace2 activity is
regulated by phosphorylation through a complex signal-
ing network [54-56]. This is associated with Ace2 loca-
lizing to the nucleus, where it exhibits its regulatory
effect [57]. A transcription factor related to Ace2, Swi5,
is regulated in the yeast cell cycle similarly and has a
similar expression and a-coefficient profile as Ace2
[51,58] (Rao, data not shown). Together, Ace2 and Swi5
regulate the M/G1 transition of the cell cycle [51], and
this occurs during the R/C phase of the metabolic cycle,
which is where Ace2 peaks.

Spt2
The transcription factor Spt2 peaks in the Ox phase of
the yeast metabolic cycle and is a negative transcrip-
tional regulator associated with transcription elongation,
chromatin dynamics, and genome stability [59,60]. Con-
sidering that Spt2 peaks during the Ox phase of the
yeast metabolic cycle, when DNA is most likely to suffer
oxidative damage, it may be that Spt2 plays a role in
inhibiting transcription in this phase, although the
mechanism of the regulation of Spt2 activity is not clear.
Sulfur metabolism and comparison with the short-period
metabolic cycle
A previous study on the short-period metabolic cycle [8]
suggested that a key regulator of the metabolic cycle is
the Cbf1-Met4-Met28-Met31-Met32 complex, which is
involved in sulfur assimilation [8,61]. Tu et al. [11]
observed that several metabolites in the sulfur assimila-
tion pathway exhibit robust oscillations as a function of
the long-period yeast metabolic cycle, and strains with a
mutation in Cys4, an enzyme in the sulfur pathway, did
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not undergo metabolic cycles. This suggests that the sul-
fur metabolic pathway is important in the establishment
of the long-period yeast metabolic cycle, as well as the
short-period one. However, we did not find any of the
transcription involved in the regulation of the sulfur
metabolism pathway in the list of top transcription fac-
tors. Selecting transcription factors with more lenient
thresholds did not result in a list containing any of the
Cbf1-Met4-Met28-Met31-Met32 complex, either. Met4
is regulated through general amino acid control by the
transcription factor Gcn4 [62]. Since Gcn4 activity is
highly periodic over both the long- and short-period
metabolic cycles [8] (Table 1), this may explain why the
metabolites of the sulfur assimilation pathway oscillate
in both types of metabolic cycles. Furthermore, an
increase in sulfur metabolism promotes cell division
initiation [63], which may explain why cell division is
initiated following the Ox phase, which is characterized
by an increase in sulfur metabolism [2,11].
Accounting for repressor or activator function of
transcription factors
The fact that many transcription factors have opposite
a-coefficient profiles raises the question of whether the
profile may be flipped, considering that a transcription
factor may be either an activator or a repressor. In some
cases, the precise role of a transcription factor is not
known. In other cases, the problem may be further com-
plicated by the fact that some transcription factors can
act as both a repressor and an activator depending on
context [64,65]. Therefore, it may be surprising that the
most of the transcription factor a-coefficients peak
where they are expected to. Hap4, Bas1, Swi6, Msn4
and Gcn4 are known to be transcriptional activators,
whereas Spt2 is a transcriptional repressor. In the case
of Spt2, the negative role means that an increase in
activity results in the repression of genes that it binds
to. This must be kept in mind when considering the
role of Spt2 or other known repressors in the yeast
metabolic cycle, to avoid making an incorrect
conclusion.

Conclusions
Low rates of glucose induce oscillations in yeast meta-
bolism because cells may be maintaining a balance
between different pathways of energy production, while
most effectively using accumulated resources in each
phase. Yeast is unique because it prefers fermentation
over respiration, even under aerobic conditions. Under
normal aerobic growth conditions and high glucose con-
centrations, the high rate of fermentation inhibits the
synthesis of enzymes involved in respiration; this effect
is known as the Crabtree effect [66]. Then, as glucose
concentrations decrease, the rate of respiration
increases. It is when cells are synchronized by a short

period of starvation, as in [2], that we observe oscilla-
tions in the form of respiratory bursts. Pathways other
than respiration also exhibit oscillations as a function of
the yeast metabolic cycle, including cell cycle initiation,
fermentative metabolism and other, non-fermentative,
modes of reductive metabolism. Studying the regulation
of the yeast metabolic cycle requires an understanding
of each pathway and their regulation. We chose to high-
light only a select group of transcription factors that are
involved in regulating the yeast metabolic cycle.
Among the transcription factors regulating the yeast

metabolic cycle, Hap1 and Hap4 are directly involved in
respiration and are regulated primarily by levels of heme
and carbon source, respectively. Therefore, it is likely
that these are indeed the main regulators of mitochon-
drial function in the cycle, as Lelandais et al. [10] had
proposed. The importance of heme in the yeast meta-
bolic cycle is supported by findings of Tu et al. [11].
However, due to the complexity of changes in cellular
function during the yeast metabolic cycle, no single
transcription factor can be responsible for the observed
oscillations, and each transcription factor must be con-
sidered in order to form a unified model for the regula-
tion of the yeast metabolic cycle.
In the early Ox phase, we propose that low intracellu-

lar glucose concentrations cause cells to progress
through the diauxic shift, and oxidative respiration is
switched on by the transcription factor Hap1. The oxi-
dative stress induces Msn4, which activates other genes
involved in the diauxic shift, as well. Gcn4 activity,
which increases during periods of glucose starvation,
peaks during the Ox phase, which seems analogous to
conditions of glucose starvation regarding cellular func-
tion. The peak in Gcn4 indirectly promotes sulfur meta-
bolism by activating the transcription factor Met4 [62].
Energy metabolism is restricted to respiration, and
acetyl-CoA and dissolved oxygen levels decrease, while
intracellular glucose levels increase.
After oxygen and acetyl-CoA are depleted, respiration

ceases, and yeast cells enter the reductive phase of the
yeast metabolic cycle. In the R/B phase, Swi6 initiates
cell division, possibly due to the burst of sulfur metabo-
lism during the previous phase. In this phase, cell
undergo highly glycolytic metabolism to protect DNA
from oxidative damage during replication [1,2,35]. Hap4
is responsible for the activation of mitochondrial bio-
genesis in the R/B phase.
The R/C phase of the yeast metabolic cycle is asso-

ciated with the transcription factor Adr1. It is involved
in glucose repression, and its role is to activate glucose-
repressed genes as intracellular glucose levels decrease.
This results in the activation of pathways involving fatty
acid oxidation, and ethanol and glycerol utilization dur-
ing the R/C phase.
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Further studies should analyze the microarray data set
from studies on the short-period oscillations using the
methods from this study. Depending on the similarity of
the lists of transcription factors regulating the short-
and long-period cycles, it would reveal whether the two
types of metabolic cycles are fundamentally different or
not. It may also be helpful to include other oscillating
metabolites, such as glucose, acetyl-CoA, and NADP(H),
in the dynamical model.
Wolf et al. [67] derived a mathematical model show-

ing that oscillations are induced in the metabolic cycle
when the inhibitory effect of H2S is added to the glyco-
lysis model. This model supports the importance of the
sulfur metabolic pathway for establishing oscillations in
the short-period yeast metabolic cycle. A further study
could create a mathematical model that includes path-
ways involving heme synthesis to determine whether the
Hap2/3/4/5 complex and regulation of heme biosynth-
esis are sufficient for inducing oscillations in the long-
period yeast metabolic cycle.
Determining how the yeast metabolic cycle is regu-

lated may have implications on other biological cycles
and studies on transcription factors, as well. For exam-
ple, as a function of the mammalian circadian cycle,
heme concentrations oscillate [68]. Similarities between
the a-coefficient profiles of different transcription fac-
tors may suggest novel interactions or regulatory
mechanisms. For example, Msn4 and Swi6 have very
similar, but opposite, a-coefficients, suggesting that
these may form the connection between oxidative stress
and delaying cell cycle initiation during stressful condi-
tions. We speculate that many interesting connections
may be discovered by comparing detailed a-coefficient
profiles from other types of oscillating biological sys-
tems, and it would be especially interesting to use the
methods of this study to analyze the short-period meta-
bolic cycle.

Methods
Estimation of transcription factor a-coefficients
The method for calculating transcription factor a-coeffi-
cients, from [13], uses the assumption that gene expres-
sion levels are proportional to the product of the levels
of each transcription factor that binds to its promoter.
This can be described by the following equation:

Ri = c
N∏

j=1

b
αj

ij (1)

where Ri is the relative expression level of gene i, bij is
the degree to which transcription factor j binds to the
promoter of gene i, and aj is the a-coefficient ("activ-
ity”) of transcription factor j. The variable c is a residual
constant that the binding factors get scaled by. Taking

the logarithm of both sides, Equation 1 becomes:

log(Ri) =
N∑

j=1

αjlog(bij) + c

which can be solved using multiple linear regression,
as implemented in the MATLAB function robustfit.
This function accounts for a constant term in the model
by default. For the current problem, the inputs passed
to the function are the logarithm of the matrix contain-
ing the binding coefficients, and the logarithm of the
vector of gene expression data for the time point. The
function returns a vector of a-coefficients and the
regression residual, and these are calculated for each of
the 36 time points (Additional File 4). Binding coeffi-
cients relating 6229 genes with 203 transcription factors
were obtained from Harbison et al. [69]. Time series
expression data obtained from Tu et al. [2] contains
gene expression data for 36 time points, starting at 3973
mins after the start of the experiment and ending at
4837 mins. Unlike in the methods of [13], data was not
pre-filtered for rows with missing values, because such
rows would automatically be filtered out in later steps, i.
e. when scoring genes for periodicity.
The MATLAB function robustfit also returns esti-

mates of the standard error for each a-coefficient, and
these were used to iteratively discard the least significant
transcription factors. In each iteration, transcription fac-
tors were retained if they had at least nine time points
with a p-value below 0.1, and the remaining transcrip-
tion factors’ a-coefficients were recalculated. This was
repeated until no more transcription factors could be
eliminated. Finally, 20 transcription factors remained.
Setting different p-value thresholds and number of sig-
nificant time points such that ~20 transcription factors
remain resulted in lists consisting of mostly the same
transcription factors.

Identification of periodic transcription factors
Transcription factors were given a periodicity score
based on autocorrelation, which is the cross-correlation
of a signal with itself at various time shifts. We first cal-
culated the raw, unscaled cross-correlation sequence of
the a-coefficients using the MATLAB function xcorr,
and found the value at the point where a peak would be
expected, if the a-coefficient’s period were indeed 300
minutes. We normalized this value by dividing it with
the cross-correlation at a time shift of zero, in order to
obtain the autocorrelation value. The complete
MATLAB implementation may be found in Additional
File 5. These normalized autocorrelation values were
used as periodicity scores, and transcription factors with
periodicity scores below a threshold of 0.44 were dis-
carded, such that 13 transcription factors remained.
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Having this number of transcription factors in the final
model maintains a reasonable data-to-parameter ratio
[13] and allows our final list to contain several tran-
scription factors of interest, e.g. Hap1 and Hap4, which
have been suggested to be regulators of the yeast meta-
bolic cycle by a previous study [10]. By randomly per-
muting the order of time points for the top 13
transcription factors (N = 1000 times for each transcrip-
tion factor) and recalculating periodicity scores, it was
found that they exceeded the threshold of 0.44 in only
0.023% of the random permutations, i.e. the threshold of
0.44 is highly significant (p-value = 2.3 × 10-4).

Computation of amplitudes and phases of a-coefficients
Sine waves were fitted to the time-dependent a-coeffi-
cient curves to estimate the phase and amplitude of
each transcription factor, in order to determine the
phase of the metabolic cycle they peak in. Indirectly,
this would also determine the order of the cellular
events taking place in the yeast metabolic cycle. Lelan-
dais et al. [10] decomposed profiles into sums of sine
waves with different phases. Since these sine waves have
the same period, the algorithm reduces to finding the
single sinusoidal curve that best fits the data. Therefore,
we generated a single sine wave with a period corre-
sponding to one period of the metabolic cycle. The
model pattern was shifted in time to find the phase at
which the sum of squares of residuals was minimized.
After the best phase had been found, the amplitude was
varied until the residual sum of squares was again
minimized.
The phase of the peaks of a-coefficients were also cal-

culated. The data from the 36 time points was averaged
to produce 12 time points for each transcription factor,
representing the average of a-coefficients across the
three cycles for which we have data. The maxima of the
averaged out a-coefficients was found for each tran-
scription factor, and the location along the time axis
was converted into radians.

Further analysis of transcription factor a-coefficients
Transcription factors were clustered based on their
time-dependent a-coefficient profiles using a hierarchi-
cal clustering method. Clustering was done using the
absolute values of a-coefficients, because transcription
factors in the same cluster may have opposite a-coeffi-
cient curves depending on whether they are activators
or repressors.
Temporal data for levels of dissolved oxygen in the

yeast culture were obtained from [2] and included in
the dynamical model. Oxygen levels were normalized
and treated as a 14th transcription factor’s a-coeffi-
cients, in order to compare transcription factor a-coeffi-
cients and oxygen levels side-by-side.

Determination of time-translation matrices
Computing a transition matrix enables the prediction of
transcription factor a-coefficients at one time point
from the a-coefficients at the preceding time point by
matrix multiplication:

At+1 = TAt.

The set of equations can be solved for T using:

T = (AT · A)−1 · AT · B

where A and B are the matrix of a-coefficients exclud-
ing the last and first time points, respectively [70]. The
transition matrix was also calculated introducing a con-
straint to produce only non-negative entries, using the
MATLAB function lsqnonneg. A transition matrix with
the non-negative constraint may make the resulting
model more readily interpretable biologically [13].
The two time-translation matrices were verified for

correctness in modeling the dynamical system by multi-
plying them with the a-coefficients of the first time
point, and multiplying the resulting vectors with the
time-translation matrices again for each successive time
point. Model residuals were calculated for each time
point by finding the difference between the mean activ-
ity of a-coefficients calculated using regression and the
mean activity of a-coefficients calculated using matrix
multiplication.
To illustrate the network of transcription factors

visually, the transition matrix was converted into a dia-
gram such that the nodes represent transcription factors
and edges correspond to the most significant entries in
the translation matrix. If connections existed in both
directions, only the more significant connection was
considered.

Computational Tools
Algorithms for computing transcription factor a-coeffi-
cients and their autocorrelation functions, amplitudes
and phases, and time-translation matrices were imple-
mented in MATLAB [71]. The network of transcription
factors was visualized using the freely available diagram
editor yED [72]. a-coefficient curves were clustered using
TimeClust, a MATLAB-based tool for clustering genes
according to their temporal expression profiles [73].

Additional material

Additional file 1: Time-translation matrix with no constraints.
Shaded entries show significant interactions between transcription
factors, with a significance threshold of 0.5. Entries shaded darker are
positive values, lighter are negative values. Italics indicate that the
interaction was not included in the graphical representation of the
transition matrix (Figure 7), because an interaction with a greater
magnitude exists in the opposite direction.
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Additional file 2: Time-translation matrix with constraint to produce
non-negative entries. Shaded entries show significant interactions
between transcription factors, with a significance threshold of 0.5.

Additional file 3: Model residuals for two phases of the yeast
metabolic cycle. Residuals were calculated from A) the transition matrix
constrained for non-negative entries and B) the non-constrained
transition matrix.

Additional file 4: Goodness of fit for multiple linear regression.
Estimates of the square root of residual variance, s, are reported for each
time point and were calulated by the MATLAB function robustfit in order
to aggregate the residuals into a single measure of predictive power.
First, a s estimate (root-mean-square-error) is calculated from ordinary
least squares (sOLS), and a robust estimate of sigma (srobust) is also
calculated. The final estimate of s is the larger of srobust and a weighted
average of sOLS and srobust. Note that s is equal to median absolute
deviation (MAD) of the residuals from their median, scaled to make the
estimate unbiased for the normal distribution: s = MAD/0.6745. Also
shown are the mean of the residuals at each time point. To put residuals
on a comparable scale, they are “studentized,” that is, they are divided by
an estimate of their standard deviation that is independent of their
value.

Additional file 5: Autocorrelation function. MATLAB code for
calculating the autocorrelation function of transcription factor a-
coefficients.
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