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Abstract of the Dissertation 

Pattern Matching: A Sheaf-Theoretic Approach 
by 

Yellarnraju Venkata Srinivas 
Doctor of Philosophy in Information and Cornputer Science 

University of California, Irvine, 1991 
Professor Peter Freeman, Chair 

A general theory of pattern matching is presented by adopting an extensional, 
geornetric view of patterns. The extension of the rnatching relation consists of the 
occurrences of all possible patterns in a particular target. The geornetry of the pat
tern describes the structure of the pattern and the spatial relationships arnong parts 
of the pattern. The extension and the geornetry, when cornbined, produce a structure 
called a sheaf. Sheaf theory is a well developed branch of rnathernatics which studies 
the global consequences of locally defined properties. For pattern matching, an oc
currence of a pattern, a global property of the pattern, is obtained by gluing together 
occurrences of parts of the pattern, which are locally defined properties. 

A sheaf-theoretic view of pattern rnatching provides a uniforrn treatrnent of pat
tern matching on any kind of data structure-strings, trees, graphs, hypergraphs, 
and so on. Such a pararnetric description is achieved by using the language of cat
egory theory, a highly abstract description of cornrnonly occurring structures and 
relationships in rnathernatics. 

A generalized version of the Knuth-Morris-Pratt pattern rnatching algorithrn is 
derived by gradually converting the extensional description of pattern rnatching as a 
sheaf into an intensional description. The algorithrn results frorn a synergy of four 
very general program synthesis/transforrnation techniques: (1) Divide and conquer: 
exploit the sheaf condition; assemble a full match by gluing together partial matches; 
(2) Finite differencing: collect and update partial rnatches incrementally while travers
ing the target; (3) Backtracking: instead of saving all partial rnatches, save just one; 
when this partial match cannot be extended, fail back to another; ( 4) Partial evalu
ation: precornpute pattern-based ( and therefore constant) cornputations. 

The derivation is carried out in a general frarnework using Grothendieck topolo
gies. By appropriately instantiating the underlying data structures and topologies, 
the sarne scheme results in rnatching algorithms for patterns with variables and with 
multiple patterns. Slight variations of the derivation result in Earley's algorithrn for 
context-free parsing, and Waltz filtering, a relaxation algorithm for providing 3-D in
terpretations to 2-D irnages. 

Other applications of a geornetric view of patterns are briefiy considered: rewrites, 
parallel algorithms, induction and computability. 

XI 



Introduction 

If your thesis will cause great dissension 
Strive a Grothendieck topos to mention 

This device categorical 
Like the great Delphic oracle 

Ensures restful incomprehension 

- David Rector (1989) 

It is becoming increasingly clear that formal methods are essential for better 
controlling software development. Formal methods enable us to understand and sys
tematize the technical aspects of the process of software development, to understand 
and capture the domain-specific knowledge involved in a particular program, and 
to understand and capture the design and implementation knowledge involved in 
converting a specification into an implementation. My work within the Advanced 
Software Engineering group at Irvine is based on a combination of two appr_oaches: 
(1) the use of a transformational approach to software construction, and (2) the sys
tematic capture and use of domain-specific knowledge to control the transformation 
process. 

The Draco transformation tool, invented by Neighbors [Neighbors 84, Freeman 87], 
is a domain-based transformation system for systematically_ converting a formal speci
fication (written in an application-specific language) into an efficient implementation. 
The tool is semi-automatic and works by bridging the gap between a specification 
and an implementation via a series of intermediate domains which progressively in
troduce more detail. Domains thus serve t9 decompose descriptive knowledge into 
manageable chunks. Similarly, we need a theory of decomposing transformations 
( which implement domains in terms of lower-level domains) so that we may record 
implementation knowledge in a modular fashion and synthesize implementations out 
of pieces. 

The work reported in this dissertation is a solution to a part of the larger prob
lem of transformational construction of software. The sheaf-theoretic approach lays 
the foundation for a geometric treatment of patterns, rewrites, and transformations. 
The dissertation also serves as an example of a domain description. The analysis of 
the pattern matching domain is deep, in the sense that, it not only provides a lan
guage for describing concepts_ related to pattern matching, but also charts the design 

· space of converting a specification of a pattern matching problem into an efficient 
implementation. 

1 



2 Introduction 

We comment about the connection of this dissertation to reuse, another guiding 
research theme in our group. It is a common complaint that people do not tend 
to use reusable components. This dissertation illuminates the reason for this phe
nomenon. This entire dissertation is a description of a single reusable component: 
the implementation of pattern matching. The level of generality and abstractness 
of the description is such that it covers most oí pattern matching, and a significant 
portion of the design space for implementing pattern matching. 

This dissertation shows that code is just a miniscule part of the description of 
a reusable component. A large amount oí subsidiary information is necessary to 
describe a reusable component: the design, the design space, criteria for choosing 
between alternatives, relations between different parts oí the space, etc. Thus, each 
reusable component is an elaborate theory about a miniscule world; and theory for
mation is intrinsically hard. Non-realization oí this fact is the root cause of the failure 
of current approaches to reuse in solving the software construction problem. 

To motivate reuse in a larger context, we recapitulate Dijkstra's maxim that pro
gramming is hard. The philosophy oí reuse is to simplify the task oí programming by 
transferring the burden to the domain analyst. Dijkstra's maxim can be extended as 
follows: programming is hard; reusable programming is harder. 

Domain analysis, in its pure form, is just theory formation, and therefore very 
hard. The variety of domains used in computer science is comparable (barely!) to 
the variety of domains (i.e., axiomatic systems) in mathematics. However, the crucial 
difference is that the computer has opened up the possibility oí handling domains of 
hitherto unknown (to mathematicians) complexity. We quote from Dijkstra: 

Coping mathematically with the programming problem obviously implies 
that we regard the programming language we use as sorne sort oí formal 
system, and each program we consider as sorne sort of formal object. 
As long as we ignore problems of scale, there is nothing novel in that 
approach, for it would be rather similar to what ali sorts oí logicians do. 
But programs are big! Admittedly, most formal experiments have beeh 
carried out with rather small programs, but sizes are increasing, and how 
to push the barrier still further is becoming an explici tly stated research 
topic. 

E. W. Dijkstra [Dijkstra 82] 

Thus the essential problem in computer science is complexity. Even the_ most 
mundane domains in computer science require the most sophisticated techniques and 
theories oí mathematics. As this dissertation demonstrates, the simple problem oí 
pattern matching requires sheaí theory and category theory to formalize it properly. 
The essential complexity of computer science demands the best complexity control 
devices. We use category theory in this dissertation to control the complexity of the 
description in the presence of genericity. 



Chapter 1 

The Geornetry of Pattern Matching 

Alice laughed. "There's no use trying," she said: 
"one can't believe in impossible things." 

"I daresay you ha ven 't had mu ch practice," said the Queen. 
"When I was you age, I always did it for half-an-hour a day. 

Why, sometiems I've believed as many as six impossible things befare breakfast." 

- Lewis Carroll, Through the Looking-Glass (1871) 

Pattern matching is an interesting problem with applications in unification, rewrit
ing, image analysis, DNA sequencing, etc. The pattern matching problem consists of 
finding occurrences of a pattern in a target. A pattern is usually given by a constant 
entity (e.g., the string "Charlie"), an exemplar (e.g., the expression Ex E+ E, with 
the variable E matching any expression), or, in general, a predicate (e.g., a connected 
graph with a prime number of edges ). A target consists of an entity which is usu
ally much larger than the pattern-hence the possibility of multiple occurrences of 
the pattern-and which may spread out in space and time. Corresponding to the 
patterns above, sorne possible targets are a file representing a document, a syntax 
tree produced during compilation, and a graph representing a network. Usually, the 
pattern and the target are the "same kind" of entities: strings, graphs, bitmaps, etc. 
An occurrence is a piece of the target together with a correspondence with the pat
tern. If the pattern is a constant, this piece of the target should be the same as the 
pattern; if the pattern is an exemplar, the piece should ha ve the same shape as the 
pattern; if the pattern is a predicate, the piece should satisfy the predicate. In most 
of this dissertation, only exact matching (as opposed to approximate matching) and 
constant patterns are considered. 

Pattern matching in any data structure more complex than graphs is NP-complete. 
However, in most practica! situations, and when data structures such as strings and 
trees are used, more efficient algorithms are possible. In particular, a constant pattern 
string can be matched in a target string in linear time, as shown by the Knuth-Morris
Pratt string matching algorithm [Knuth et al. 77]. This algorithm uses sorne clever 
tricks to achieve this bound. In this dissertation, we will analyze this algorithm by 
providing a formal derivation of a generalized version of the algorithm which works 
for any data structure (but not necessarily in linear time). 

3 



4 Chapter 1. The Geometry o[ Pattern Matching 

1.1 The Knuth-Morris-Pratt 
pattern matching algorithm 

The Knuth-Morris-Pratt algorithm [Knuth et al. 77] (hereafter abbreviated as "KMP") 
is a fast pattern matching algorithm for finding occurrences of a constant pattern in a 
target string. It is linear in the sum of the sizes of the pattern and the target strings. 

The naive quadratic algorithm for string matching tests for an occurrence of the 
pattern at every position in the string. For a pattern string p, a target string t, 
with !si denoting the length of the string s, and with s[i] denoting the ith character 
of the string s, the naive algorithm can be written as 

for i = 1, !ti do 
if match(p, t, i) then output( i) 

where 
match(p, t, i) =V 1 '5: j '5: IPI · p[j] = t[i + j - l] 

KMP reduces the complexity of the naive algorithm by avoiding comparisons whose 
results are already known (from previous comparisons). In particular, when a charac
ter does not match after the pattern is partially matched, the next possible position 
in the target where the pattern can match can be computed by using the knowledge 
of the partial match. This "sliding" of the pattern on a mismatch is the most well 
known aspect of KMP. Here is an example, where there is a mismatch at the last 
character of the pattern, and the pattern can be slid three positions to the right. 

slide 
pattern 
match es 
target 

--+abe aba 
abe aba 
.¡..;..;..;..;x 

abcabcabc 

The amounts by which to slide the pattern on possible mismatches can be precom
puted in time proportional to the size of the pattern. Thus all occurrences can be 
enumerated in a single left-ro-right sean of the target string without backing up. 

Less apparent, but equally important in KMP is that an occurrence of the pattern 
is built by piecing together individual occurrences of each character in the pattern. 
This feature. will acquire prominence when we generalize the algorithm. Moreover, 
the left-to-right traversa! of the target strings is not crucial. The pattern can also be 
slid towards the left as shown below: 

slide a b e a b a +---

pattern 
match es 
target 

abcaba 
..;.¡..;.¡..;x 

abcababcab e a 

. i 
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1.2 The anatomy of an occurrence 

In generalizing KMP to data structures other than strings, the feature which acquires 
prominence is the piecing together of an occurrence from partial occurrences. We show 
two examples of this phenomenon, using strings and graphs, in figures 1.1 and 1.2: 
an occurrence arrow p --+ t is obtained by gluing together smaller arrows p¡ --+ t¡. 
The notion of building an occurrence arrow by "gluing" together or "sewing" together 
smaller arrows has a decidedly geometric flavor. The rest of this dissertation is devoted 
to formalizing and exploiting this geometric nature of the pattern matching problem. 

KMP has been generalized to data structures other than strings, such as trees 
[Hoffmann and O'Donnell 82, Burghardt 88], and two-dimensional arrays [Baker 78, 
Bird 77]. However, these generalizations are ad hoc in the sense that they do not 
provide a systematic way of obtaining a version of KMP for other data structures. 
This lack of generality arises from the lack of focus on the geometry of the problem. 

1.3 Problem definition 

The problem attacked in this dissertation is the following: 

To rigorously derive a generalized version of the Knuth-Morris-Pratt 
pattern matching algorithm which works for any data structure. 

A solution to this problem entails 

l. a general definition of pattern matching suitable for any data structure, and 

2. a description of the features of the Knuth-Morris-Pratt algorithm ( e.g., sliding) 
in this general setting. 

Although the focus of this dissertation is on the Knuth-Morris-Pratt algorithm, the 
theory of pattern matching developed here has more general applicability. Not only 
does the theory cover pattern matching for any data structure, but it also presents 
a unified picture of such diverse algorithms as Earley's algorithm for context-free 
parsing [Earley 70], and the Waltz filtering algorithm for image analysis [Waltz 75]. 
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PARTIAL OCCURRENCES 

e -- o --m-- e 

l l l l --
e -- o --m-- e 

eome PATTERN 

OCCURRENCE 

ARROW 

geometry TARGET 

Figure 1.1: Anatomy of an occurrence: example wi th strings 

PARTIAL OCCURRENCES 

b---c 

... 
' 

,,, 

... ... ... ... ... ... ... 

,,, ,,, ,,, ,,, ,,, 

a 

/\ PATTERN 

b e 

... ... 

,,, ,,, 

', OCCURRENCE 
,,, ,,, ARROW 

,,," d a e 

,,, \/\/ TARGET 

b---c 

Figure 1.2: Anatomy of an occurrence: example with graphs 
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1.4 A pproach 

A general theory of pattern matching is developed by focussing on its geometric 
aspects. Thus, the approach adopted in this dissertation is extensional, geometric, 
parametric, and sheaf-theoretic. 

Extensional: Rather than consider the occurrences of a specific pattern in a specific 
target, we consider the extension of the occurrence relationship. The extension 
captures the essential properties of pattern matching in an unbiased way, and 
brings the geometry of the problem to the fore. 

Geometric: The geometry of pattern matching is emphasized. As shown in sec
tion 1.2, the occurrence relation is intimately dependent on the spatial inter
connection of the data structures involved. The geometry is axiomatized using 
Grothendieck topologies. A Grothendieck topology formalizes the notion of 
"covering" an object by a collection of smaller objects. 

Parametric: The specific properties of the data structures involved are abstracted 
away by formalizing the geometry of the data structures using the language of 
category theory. Only certain well-defined geometric properties, such as the 
notion of "covering," are assumed of the data structures involved. 

Sheaf-theoretic: Once the pattern matching problem has been described extension
ally and parametrically, the real work consists of gluing together partial occur
rences. This inductive definition is carried out in the language of sheaf theory. 
Sheaf theory studies the global consequences of locally defined properties. 

1.5 Results 

The main results of the work described in this dissertation are 

1. A deep theory ( domain analysis) of pattern matching applicable to any data 
structure. This theory provides the appropriate primitive concepts to describe 
pattern matching and related problems such as rewriting. 

2. A rigorous derivation of a generalized version of the Knuth-Morris-Pratt pattern 
matching algorithm. Exploration of sorne alternatives along the main derivation 
path provide explanations for a related family of algorithms, such as Earley's 
parsing algori thm. 
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1.6 Outline 

Chapter 2 ·provides sorne background material on category theory and concepts from 
sheaf theory which are necessary for generalizing KMP. The reader who is famil
iar with categories, Grothendieck topologies, and sheaves may skip this chapter. 
Chapter 3 provides an extensional view of pattern matching by considering the occur
rence relation for a fixed target and for all possible patterns. The resulting structure 
is shown to be a sheaf. 

Chapters 4 and 5 form the core of the dissertation. Chapter 4 succinctly represents 
the material of Chapters 2 and 3 in the language of algebraic specification. The 
result is a formal specification of the pattern matching problem. Starting from this 
specification, a rigorous derivation of a generalized version of KMP is preserited in 
Chapter 5. The design space around the main derivation path is also explored to 
show alternatives and related algorithms. 

Chapter 6 shows the generality of the theory by outlining other potential applica
tions of a sheaf-theoretic view of pattern matching: multiple patterns, patterns with 
variables, parsing, etc. Chapter 7 is devoted to related work: other derivations of 
KMP, and other applications of sheaf theory in computer science. Chapter 8 provides 
a summary of the dissertation and outlines contributions of the work. 

The development of the ideas in this dissertation is supplemented by three running 
examples of pattern matching in strings, trees, and graphs (shown in figures 3.1-3.3). 
Given the highly abstract nature of category theory and sheaf theory, the reader 
may find it useful to connect all abstract concepts introduced back to these simple 
examples. 

Presentation 

The presentation technique chosen in this dissertation is somewhat unorthodox, be
cause the subject material is neither pure mathematics nor pure computer science. 
Papers in mathematics are intended to be read by other mathematicians and hence 
focus on high-level ideas, leaving the details to be inferred by the reader. In this 
dissertation, the intent is not only to present high-level ideas, but also to develop 
enough details of the KMP derivation so that a good transformation system can 
semi-automatically follow the steps. The ideal presentation would be to describe the 
high-level ideas and code up the details in a transformation system. However, current 
transformation systems are not powerful enough to incorporate sorne of the higher
order techniques used herein. Rather than submit to the idiosyncrasies of a particular 
transformation system at the expense of clarity, we have adopted the compromise of 
giving an algebraic specification of the derivation in parallel with the text: the alge
braic specification captures the details of the derivation, the text explains the ideas 
in volved. 



Chapter 2 

Background: Sites and Sheaves 

"When 1 use a. word," Humpty Dumpty sa.id, in ra.ther a. scornful tone, 
"it mea.ns just wha.t I choose it to mea.n-neither more nor less." 

"The question is," sa.id Alice, 
"whether you can ma.ke words mean so ma.ny different things." 

"The question is," sa.id Humpty Dumpty, "which is to be ma.ster-tha.t 's a.Ji." 

- Lewis Carroll, Through the Looking-Gla.ss (1871) 

The mathematical concepts required for the derivation of the Knuth-Morris-Pratt 
pattern matching algorithm are described in this chapter. The vocabulary of category 
theory is briefiy introduced in section 2.1. Sites, which are categories along with 
topologies, are defined in section 2.4. Sites are useful for capturing the geometric 
properties of data structures. Several exarnples are provided to help the reader gain 
an intuitive understanding of sites and the notion of "covering." Sheaves are defined 
in section 2.5. The definition is sornewhat abstract because of its generality. Sorne 
exarnples and non-exarnples are given to show how sheaves connect local and global 
properties, and how the sheaf condition is a forrnalization of "gluing." 

2.1 Category theory 

The reader is assurned to have a working knowledge of category theory. The level of 
category theory required for a thorough understanding of the material in this disser
tation precludes a short introduction here. However, to the extent possible, intuitive 
explanations are included so that the mythical "rnathematically mature reader" can 
follow the arguments. Although the language of category theory is abstract, the 
instantiation of categorical concepts for pattern matching is sirnpler and closer to 
computer science. The derivation of the pattern matching algorithm can be under
stood at an intuitive level without resorting to category theory. Hence, to help the 
reader who is less than expert in category theory, we briefiy introduce the vocabulary 
of category theory and show sorne exarnples. 

Relevant concepts of category theory can be found in rnathematics text books su ch 
as [Mac Lane 71, Herrlich and Strecker 73, Schubert 72] or cornputer-science-oriented 
introductions such as [Pierce 88, Rydeheard and Burstall 88, Barr and Wells 90]. 

9 
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The notation used in this dissertation closely follows [Mac Lane 71]. For reference, 
figure 2.1 summarizes the notation used. 

2.1.1 Definition of a category 

DEFINITION 2 .1: Category. A category is a collection of objects ( written a, b, e, etc.) 
anda collection of arrows (written f, g, h, etc.). Each arrow connects two objects, 
called its domain and codomain. To explicitly indicate the domain and codomain, an 
arrow f with dom(!) =a and cod(f) = b will be written as 

f: a ---+ b or f 
a----+ b. 

Two arrows f and g can be composed provided they share a common object, i.e., if 
cod(f) = dom(g), as shown below: 

gof 

~ 
a b • e 

The composition operation "o" is associative, i.e., fo (g o h) = (fo g) o h, whenever 
these compositions are defined. Moreover, each object a is associated with an identity 
arrow ida: a ---+ a, which acts as an identity for the composition operation, i.e., 

. f b given a----+ , 

D 

Categories will usually be denoted by calligraphic letters, C, V, etc., or by boldface 
words, Set., Graph, etc. The collection of objects of a category C will be denoted 
by ICI or Obj(C); the collection of arrows by Arr(C). Arrows are sometimes called 
"morphisms" or "maps." 

EXAMPLE 2. 2: The category of sets and functions. The prototypical example of 
a category is the category Set whose objects are all sets and whose arrows are all 
functions between sets. 1 Composi tion is the familiar composi tion of functions defined 
as (gof)(x) = g(f(x)). Associated with each set A is an identityfunction idA, defined 
as id A ( x) = x. Evidently, the associative and identity laws are satisfied. D 

1Strictly speaking, the arrows in this category are triples (a,/, b) consisting of a function along 
with its domain and codomain. This is so that all the arrows in the category are distinct, and to 
differentiate between inclusion functions, a c.....¡. b, and identity functions, idb. For readers interested 
in foundations, Set is the category of small sets (see also section 4.2). 
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l Notation 

c,v, .. . 
a, b, e, .. . 
f,g,h, .. . 
F,G, .. . 
J,Jx,Jy, ... 
r,v, ... 
Obj(C), or ICI 
Arr(C) 

>-+ 

-
~ t".,J =, or -----+ 

V: 
CºP 
Ce......., C>-+, ... 
Fun(C, V) 
Nat(F, G) 
~e 

v:~c....!+ F 
Cones(c, F) 

:J 
LimF 
~ 

:J 
ColimF 

-----+ 
:J 

1 

a X b 
e 

a+b 
e 

f lx 
f:x1-+y 

1 Meaning 

names of categories 
names of objects 
names of arrows 
names of functors 
names of diagram categories 
names of natural transformations 
collection of all objects of the category e 
collection of all arrows of the category C 
an arrow 
identity arrow on the object a 

inclusion arrow 
monomorphism or monic 
epimorphism or epic 
natural transformation 
inclusion natural transformation ( sub-functor) 

isomorphism 
functor category of functors from e to 1) 

opposi te category 
subcategory of e with arrows of kind ~, >-+, ... 
collection of functors from e to 1) 

collection of natural transformations from F to G 
constant functor 
corre from e to F 
collection of eones from e to F over diagram J 

limi t of functor F over diagram J 

colimi t of functor F o ver diagr am J 

terminal object 

pullback of a ~ e ~ b ( arrows f and g implicit) 

pushout of a+!.- e~ b (arrows f and g implicit) 

restriction of the domain of a function f: D -+ R to X ~ D 
alterna ti ve notation for f ( x) = y 

Figure 2.1: Table of categorical notation 

11 
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EXAMPLE 2.3: Pre-orders as categories. A binary relation Ron a set P (i.e., R ~ 
P x P) is called a pre-order if it is reflexive (i.e., for each p E P, we have p R p) and 
transitive (i.e., whenever p R q and q R r, we have p R r). Such a pre-order can be 
considered to be a category as follows. The objects are the elements of the set P. 
The arrows are the pairs (p, q) for which p R q, with dom(p, q) = p and cod(p, q) = q. 
Given a composable pair of arrows 

(p,q~ (q,r~ 
p q r, 

we define 
(q, r) o (p, q) = (p, r). 

The arrow (p, r) exists because the relation R is transitive. Since R is reflexive, the 
arrow (p, p) always exists. We define idp = (p, p). The associative and identity laws 
are satisfied by virtue of transitivity. D 

Other examples of categories will be given in the section on sites (section 2.4). 

2.1.2 Remarks about the categorical approach 

The central philosophy of category theory is that arrows are accorded equal status 
with objects. 2 Not only is the structure of an object relevcrnt, but also its behavior 
with respect to other objects ( defined via arrows) is relevant. An analogous situa
tion in computer science is the importance of operations in a data type: e.g., the 
same underlying collection of cells can be viewed as an array, stack, queue, or deque 
depending on the operations provided. 

Another characteristic of category theory is that concepts are frequently defined 

only up to isomorphism. An arrow a ~ b in a category is an isomorphism if the.re 

is an arrow a C b such that ¡-1 o f =ida and fo ¡-1 = idb. Isomorphic objects are 
considered to be "abstractly the same." This is another way of saying that all the 
relevant properties of the objects are contained in the arrows. For example, in the 
category Set, isomorphic objects have the same cardinality. The particular elements 
present in the sets are not relevant; only the cardinality is relevant. Similarly, in the 
category Graph of graphs and graph morphisms (see example 2.19 for a definition), 
isomorphic graphs ha ve the same "shape"; the particular nodes and vertices used to 
build the graph are not relevant. 

Category theory is a powerful abstraction device bécause we can control the 
amount of relevant structure by defining the arrows appropriately. Category theory 
was invented as an abstract language for describing certain structures and construc
tions which repeatedly occur in many branches of mathematics, such as topology, 

2Some authors adopt the more radical approach of treating arrows as primary, and objects as 
secondary. 
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Categorical Instantation 
Concept Posets Sets 

arrow sub-structure function 
monomorphism sub-structnre injection 
epimorphism - a surjection 
isomorphism equality bijection 
initial object minimum, or bottom empty set 
terminal oh ject maximum, or top any singleton set 
product intersection cartesian product 
coproduct umon disjoint union 
pullback intersection fibered product 
pushout umon shared union 
limit greatest lowerbound compatible families 
colimit least upperbound shared union 

ªAli arrows in a poset category are monomorphisms. 

Figure 2.2: Categorical concepts instantiated for posets and sets 

algebra, and logic. Hence it is a good language for parameterization: a base cate
gory with appropriate properties is assumed, and all the constructions of a theory 
are defined in this category; theorems proved in the general language can then be 
specialized to any structure satisfying the axioms of the base category. 

2.1.3 Sorne constructions in category theory 

The axioms for categories are quite weak, in the sense that _a large number of math
ematical structures satisfy them. Much of the utility of category theory comes from 
defining more complex constructions using arrows: products, pullbacks, colimits, etc. 
Properties determined and proved in the general setting then specialize to any cate
gory in which the construction is possible. 

Many of the categories used in this dissertation are partially ordered collections, 
e.g., the collection of all strings together with the substring relation, or the collection 
of all graphs together with the subgraph relation. Figure 2.2 lists sorne common 
concepts and constructions from category theory as instantiated for partially ordered 
collections (posets ). Also included are instantiations for the category of sets. Two 
frequently used constructions, limits and colimits, are described in detail in the next 
section. 
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2.1.4 Limits and colimits 

A standard method for analyzing or reasoning about a complex entity is by expressing 
it in terms of simpler, regularly defined entities. For example, a real number can be 
expressed as the limit of a sequence of rational numbers. In category theory, this 
notion of limit is generalized by defining it in terms of arrows; and since arrows have a 
direction, there arise two kinds of limits, called "limit" and "colimit." These concepts 
can be informally explained as follows. Considera diagram consisting of sorne objects 
and sorne arrows all pointing in the same direction, say, left to right. Then, a limit 
anda colimit for this diagramare objects which can be used to "universally complete" 
the diagram on the left and the right, respectively, as shown in the picture below. 

DIAGRAM 

r----------~---------------------1 
1 1 

1 ~· 1 

LIMIT ~ • 7 ~ • .... • ~ COLIMIT 

~ : "" / --------.. • - _j___ ~ 
·~ /·--·~ ¡~· 1. . ~ 

. 1 ------ ~ ~· 1 
1 ----. • ---· . 1 
1 1 

L--------------------------------~ 

The adjective "universal" means that the limit and the colimit are better than 
any other object which can be used to complete the diagram. For example, in poset 
categories, all the arrows are inclusions, and the limit and colimit of a diagramare just 
the greatest lowerbound and least upperbound. The greatest lowerbound is universal, 
in the sense that it is greater than any other lowerbound, i.e., it is "just to the left 
of the diagram." Here are formal definitions of these concepts. 

DEFINITION 2.4: Diagram. A diagram in a category C is a collection of objects in C 
and a collection of arrows between these objects. · O 

Here is what it means to "complete" a diagram on the left. Once it is recognized 
that objects, arrows, and composition are the only primitives in category theory, 
the definition below is somewhat inevitable. A similar definition, with the arrows 
reversed, applies for completing a diagram on the right. 
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DEFINITION 2.5: Cone. Given a diagram D in a category e andan object e in e, a 
con e from the object e to the base D is a collection of arrows { fi: e ---+ d¡ 1 d¡ E D } , 
one for each object d¡ in the diagram D, such that for any arrow g: d¡ ---+ di in D, the 
following triangle commutes, 

i.e., g o fi = fj. o 

A limit ( or, dually, a colimit) is the best, or universal, way to complete a diagram. 
Universal definitions such as. the one below are the key technique of manufacturing 
new arrows when using the language of category theory. In the case of pattern 
matching, this is how an occurrence arrow is built out of pieces. 

DEFINITION 2.6: Limit. A limit for a diagram D in a category C is an object e in C 
along with a cone { fi: e ---+ d¡ 1 di E D} from e to D such that for any other cone 
{ f[: ¿ ---+ d¡ 1 d¡ E D} from an object e' to D, there is a unique arrow f: e' ---+ e such 
that for every object d¡ in D, the following diagram commutes 

i.e., /¡o f = f[. o 

Limits and colimits are useful because they allow us to break up a complex struc
ture into an ascending or descending collection of simpler, more regular structures. 
We can then reason about these simpler structures and transfer properties from them 
to the complex structure by using universality. For example, we can decompose a 
pattern as a colimit of smaller pieces, find océurrences of the smaller pieces, and then 
compose them to get an occurrence of the pattern. 
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EXAMPLE 2. 7: Colimits in the category of graphs. Intuitively, it is clear that a graph 
can be defined by specifying all its nodes and edges. This fact is formally captured by 

'expressing a graph as a colimit of its nodes and edges, as shown in the picture below: 
the edges are glued together at shared nodes. The category of graphs is described in 
example 2.20. 

DIAGRAM, D = {g¡} 

r--------------------------1 

1 
1 

1 
1 
1 
1 
1 

1 96 1 

L--------------------------~ 

COLIMIT 

G = Colimg¡ 
--+ 
g¡ED 

Any graph which contains G can also be used to complete the diagram above. 
However, Gis minimal in the sense that it contains just the information necessary to 
complete the diagram and no more. 

A colimit can be thought of as "shared union," with the diagram specifying the 
components and the parts which are shared among these components. O 
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EXAMPLE 2.8: Limits in the category of sets. As we saw in section 1.2, an occurrence 
of a pattern string can be expressed in terms of occurrences of substrings of the 
pattern. The picture below shows how the.occurrences of the string "abe" are built 
as a limit of the occurrences of "ab" and "be". The picture consists of two parts: the 
first shows an overview of the limit; the second shows the details of the individual 
arrows. The category of sets of is described in example 2.2. 

DIAGRAM, D = {si} 

r---------------, 
1 

LIMIT 1 S3 

L=Lims¡ : ~ 
+---- 1 s s¡e:-----: 1 ~ 

L~~s4 
: S2~ 
1 S5 1 
1 1 

L---------------~ 

Any subset of L can also be used to complete the diagram above. However, Lis 
maximal in the sense that it contains ali compatible families of partial occurrences. 

A limit can be thought of as enumerating compatible families, or as a generalized 
intersection, with the diagram specifying how the pieces interconnect. O 
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When there are only two arrows in the diagram, as shown below, the limit and 
colimit are called "pullback" and "pushout," respectively. If the arrows are clear from 
the context, the pullback and pushout are written as a x b and a+ b, respectively. 

e e 

a X b 
7rb 

.. b 
g 

b e 
e 

~.! pullback !g f ! pushout ! ib 

a e a .. a+b 
f Za e 

In Set, the pullback of A __!__.. C ~ B is given by 

Ax B = { (x, y) E Ax B 1 f(x) = g(y) }, e 
with the arrows into A and B being the two projections from the product. It can be 
seen that the pullback forms the products ¡-1 (c) x g- 1 (c) for each element e E C; 
hence the name ":fibered" product u-1 (e) is the ":fiber" off over e). 

In Set, the pushout of A ~ C ~ B is given by 

A+ B =(A Il B)/{ (f(c),g(c)) 1 e E C }, e 
where "IJ" denotes disjoint union and "/" denotes the quotient operation. The arrows 
from A and B to the pushout object are given by the obvious injections. 

2.1.5 Sorne facts about functor categories 

Sheaf theory frequently involves manipulations in functor categories, i.e., categories 
in which the objects are functors and the morphisms are natural transformations. In 
the case of pattern matching, compatible families of partial matches are succinctly de
scribed in functor categories. The results below allow us to unravel such descriptions, 
look at the graphs of such families, and decompose the graphs into pieces. 

A fundamental tool for reasoning in functor categories is the Yoneda lemma, which 
allows us to "lift" objects and arrows of a category Cinto the functor category SetCºP. 
Before stating the contravariant form of the Yoneda lemma, we need sorne definitions. 

The collection of all the arrows into an object forms a functor as follows. 
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DEFINITION 2.9: Contravariant hom-functor. For any object a of C, the contravari
ant hom-functor associated with a, home(-, a): CºP---+ Set, is defined by the following 
assignments: 

l. for any object b in e, 
home ( - , a) ( b) = home ( b, a) ( the set of arrows from b to a in the category C); 

2. for any arrow f: b ---+ e in e' 
home(-, a)(!): home(c, a)---+ home(b, a) is defined by g H- g o f. 

o 

It is clear that a category can be completely specified by providing the hom
functors associated with all the objects in the category. Thus, instead of objects, 
we have hom-functors, and instead of arrows, natural transformations between hom
functors. The following definition precisely defines this transformation. 

DEFINITION 2.10: Yoneda functor. Let C be a category with small hom-sets. The 
Yoneda functor y: e ---+ SetCºP is defined by the following assignments: 

l. for any object a of C, Y(a) =home(-, a); 

2. for any arrow f: a ---+ bofe, 
Y(!): home(-, b)---+ home(-, a) is a natural transformation, 
with the component Y(f)c at e ( an object of C) given by g H- fo g. 

o 

The transformation defined by the Yoneda functor is an embedding, i.e., we ha ve 
a copy of the base category e in the functor category SetCºP; the Yoneda functor 
"lifts" the base category into the functor category. 

LEMMA 2.1: Yoneda embedding. The Yoneda functor Y:C ---+ SetCºP defined above 
is full and faithful, i.e., an embedding. 

PROOF. The fact follows from the Yoneda lemma (lemma 2.2 below). For a direct 
proof, see (Barr and Wells 90, page 98]. O 

The correspondence between arrows and natural transformations given by the 
Yoneda functor remains valid even when one of the functors is replaced by an arbitrary 
set-valued functor (rath~r than a hom-functor). 
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LEMMA 2.2: Yoneda. If e is a category with small hom-sets, F: CºP ~ Set is a func
tor, and e is an object of e, then there is a bijection between natural transformations 
home(-, e)~ F and elements of F(c): 

Nat(home(-, e), F) ~ F(c). 

PROOF. (Sketch) The bijection above arises because each natural transformation 
r: home(-, e) ~ F is uniquely and completely determined by the image under Te (the 
component of Tate) of the identity arrow on c. Thus the isomorphism of the lemma 
is given in one direction by 

and in the other direction by 

o 

Just as a category can be described using hom-functors, so can a set-valued func
tor on that category be described using hom-functors. The following construction 
essentially builds pieces of the graph of a functor, and defines that functor to be the 
colimit of all such pieces. 

DEFINITION 2.11: The category C/ F [SGA4, Exposé I, §3.4.0]. Let C be a category 
and F: CºP ~ Set a functor. Then the category C / F is defined as follows: 

l. The objects are pairs (a, o:) with a an object of C and o:: home(-, a) ~ F a 
natural transformation. 

2. The arrows from (a, o:) to (b, /3) are arrows f E Arr(C) such that the following 
diagram commutes: 

hom(-, f) 
hom(-, a) hom(-, b) 

~/i 
F . 

o 
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LEMMA 2.3: Decomposition into hom-functors [SGA4, Exposé I, §3.4]. Every functor 
in SetCºP can be expressed as the colimit of a diagram whose vertices are hom-functors. 

PROOF. (Sketch) Consider the "forgetful" functor U: e/ F -+ SetCºP which maps 
each object (a, a) into the hom-functor home(-, a) and each arrow home(-, J) into 
itself. Then 

F = ColimU. 
----+ 
C/F 

Each object (a, a) in C/ F corresponds, by the Yoneda lemma, to an element of 
F(a). Each arrow (a, a) -+ (b, {3) in C/ F corresponds to a piece of the graph of the set 
map F(J). The colimit of all such pieces is just the graph of F, and hence isomorphic 
to F. 

For a full proof which verifies universality, see [Schubert 72, section 10.2]. D 

We finally come to the result which is necessary for the derivation of the pattern 
matching algorithm in Chapter 5: 

LEMMA 2.4: Natural transformations as a limit [SGA4, Exposé I, §3.5]. If F, G: CºP-+ 

Set are two functors, then there exists an isomorphism 

Nat(F, G) ~ Lim G(a). 
+--

(a,a)EC/F 

PROOF. Using the decomposition of a functor into hom-functors (lemma 2.3 above), 
we have 

Nat(F,G) = Nat( C~m homc(-,a),G). 
(a,a)EC/F 

Now, Nat(F, G) is just another name for homsetcºP(F, G). Since (contravariant) hom
functors carry colimits to limits [Mac Lane 71, page 112], we have 

Nat( Colim home(-, a), G) = . Lim Nat(homc(-, a), G). 
--+ +--

(a,a)EC/F (a,a)EC/F 

By the Yoneda lernma (lemma 2.2 above), the expression Nat(home(-, a), G) in the 
right-hand side is isomorphic to G( a), and hence 

Nat(F, G) ~ Lim G(a). 
+--

(a,a)EC/F 

o 
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2.2 Geometry, topology, and flavors of topology 

Geometry is the study of the spatial relationships of structures. Topology is the study 
of geometric properties via particular axiomatizations. 

There are several kinds of topology used in mathematics: the point-set topology 
used in analysis ( also called general topology) and the simplicial and Grothendieck 
topologies used in algebraic geometry. 

The objects of study in general topology are collections of open sets which are 
closed under arbitrary union and finite intersection. The primary goal is to study 
continuity, especially properties of spaces which are invariant under continuous defor
mation. For example, a doughnut can be deformed into a coffee cup; since the number 
of holes is an invariant, the hole in the doughnut persists as the hole in the handle of 
the cup. General topology is not very useful for our purposes because many structures 
of interest in computer science do not satisfy the axioms. For example, if we treat all 
the substrings of a string as open sets, then this collection is not closed under union. 
Hence the results and techniques of general topology do not immediately apply to 
strings. U sually, the general topology of finite structures is uninteresting. 

On the other hand, Grothendieck topologies, one of the kinds of topologies used 
in algebraic geometry, are based on the concept of a cover, which can be defined for 
any category. A cover captures the spatial interconnection between the parts of a 
structure. For example, the set of substrings { "abrac", "acada", "dabra"} covers the 
string "abracadabra", because we can glue together the substrings ( at the overlapping 
parts, "ac" and "da") to obtain the original string. The axioms for a Grothendieck 
topology are somewhat milder than those of general topology, and thus well suited to 
the structures which arise in computer science. 

2.3 Sheaf theory 

Sheaf theory studies the global consequences of locally defined properties. The notion 
of "local" is characterized using a topology. This topology associates a collection of 
"covers" with each object in an underlying category. A collection of sets, together 
with a map from the objects of the topology, is called a sheaf if the map is defined 
"locally," i.e., the value of the map on an object can be uniquely obtained from its 
values on any cover of that object. 

For example, consider a complicated three-dimensional surface, such that on 
any small enough region it can be defined by a polynomial in a three-dimensional 
Euclidean coordinate system. Thus, muchas in calculus, the whole surface is broken 
up into small pieces, a coordinate system is erected on each piece, and each piece 
is described by a polynomial. For such a description to be well-defined, it should 
be the case that whenever two pieces intersect, the descriptions in the two coordi
nate systems attached to the two pieces should agree on the intersection. Then, the 
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surface is uniquely defined everywhere. U sing the same technique, any transforma
tion of the surface ( e.g., a continuous deformation) can be defined by specifying local 
transformations which agree on the intersections. 

[Tennison 75] provides a gentle introduction to sheaf theory, concentrating on 
ha.sic definitions and results; the later chapters provide a taste of sorne applications. 
[Seebach et al. 70] is a short introduction at the level of undergraduate topology. The 
authors show three examples to provide an overview of what a sheaf is. 

As opposed to classical sheaf theory which uses general topology as its basis, 
Grothendieck generalized the notion of topology to any category. Grothendieck 
topologies and the resulting sheaf theory are described in detail in (SGA4, Exposé I-IV]. 
However, the description is highly abstract, terse, and is characterized by frequent use 
of functorial descriptions and universes; hence it is not easy reading. [Schubert 72, 
Chapter 21] is a concise description ha.sed on [SGA4]. [Goldblatt 84, Chapter 14] 
provides basic definitions. 

2.4 Sites 

In classical sheaf theory, the base of a sheaf consists of a topological space, i.e., 
a collection of open sets. Grothendieck generalized sheaf theory by removing the 
restriction that the base be formed of open sets and inclusion arrows between these 
sets. When generalized to an arbitrary category, the points in a topological space 
disappear; only the open sets exist as objects in the category. The inclusion relation 
between open sets is replaced by arbitrary arrows in a category. The topology itself 
is captured in the notion of a "cover," which is a generalization of open covers in 
general topology. One crucial differenee is that open sets ( now oh jects in a category) 
need not be closed under union (i.e., coproducts need not exist in the category), nor 
under intersection (i.e., pullbacks need not exist).3 

We define below the notion of a Grothendieck topology on an arbitrary category 
[SGA4, Exposé 11]. We then describe several comp~ter science examples illustrating 
this notion. 

DEFINITION 2.12: Sieve. A sieve Son an object a is a collection of arrows with 
codomain a which is closed under composition on the right, i.e., if f: b -t a is in S, 
then for any arrow g: e -t b, the composite fo g: e -t a is in S. O 

3 It is somewhat inappropriate to compare topologies of open sets and Grothendieck topologies 
at this level; a more meaningful comparison is at the level of closures. Each Grothendieck topology 
uniquely corresponds to a closure operator (on functors). The axioms satisfied by this operator are 
similar to the Kuratowski axioms for closure (see, for example, (Johnstone 77]). 
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DEFINITION 2.13: Grothendieck topology. A Grothendieck topology J on a cat
egory e is an assignment to each object a of e, a set J(a) of sieves on a, called 
covering sieves ( or just covers), satisfying the following axioms 

l. (ldentity cover) 
For any object a, the maximal sieve { f 1 codomain(f) =a} is in J(a); 

2. (Stability under change of base) 
If R'E J(a) and b ~ a is an arrow of C, then the sieve J*(R) = {e~ b 1 

fo g E R} is in J(b); 

3. (Stability under refinement) 
If R E J (a) and S is a sieve on a su ch that for each arrow b ~ a in R, we 
have f*(S) E J(b), then SE J(a). 

o 

DEFINITION 2.14: Site. A site is a category along with a Grothendieck topology. 
The si te formed by a topology J on a category C will be denoted by ( C, J). o 

Convention. From now on, we will drop the adjective "Grothendieck" when refer
- ring to Grothendieck topologies. 

Explanation of axioms. Axiom 1 for a topology states that the sieve generated by 
the identity arrow is a cover. Axiom 2 may be interpreted as in figure 2.3. Roughly 
speaking, given a cover of an object and a sub-structure of that object, the restriction 
of the cover to the sub-structure is a cover of the sub-structure. Axiom 3 states that 
covers of covers are also covers (figure 2.4). ·Specifically, given a cover of an object, 
and given a cover for each of the objects in the cover, the composed cover is a (finer) 
cover of the original object. 

DEFINITION 2.15: Covering family. A collection of arrows with common codomain 

{ ai L a 1 i E I } is said to be a covering family for a topology J, if the sieve 
generated by the family is a covering sieve for the topology J. O 

It is Clear that every sieve is generated by a collection of "prime" arrows, i.e., 
arrows which are not factors of any other arrow of the sieve. In view of this, we 
will usually display a sieve by providing its prime arrows. Topologies can also be 
de:fined using covering families: the concept is called a pretopology. Such a de:finition 
requires the existence of pullbacks in the underlying category. We prefer a de:finition 
which does not rely upon pullbacks, because sorne of the categories in which we are 
interested do not have pullbacks. Definitions of a pretopology can be found in [SGA4, 
Exposé II] and [Johnstone 77, Goldblatt 84, Schubert 72]. 
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cover for a 
R = { h1, ... , h1} 

cover for b 
J*(R) = {g1,g2,g3} 

a 

·Figure 2.3: Restriction of a cover along an arrow b ~ a 

cover for b1 cover for b2 
J;(S) = {gi,g2,g3} J;(S) = {94,gs} 

composed cover for a 
S={h1, ... ,hs} 

Figure 2.4: Stability of a cover under refinement 

25 
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2.4.1 Examples of sites 

We start with two trivial examples. These form two extremes within which all other 
topologies will fall: the finest grained topology and the coarsest grained topology. 

EXAMPLE 2.16: Chaotic topology. The chaotic topology on a category e is the 
topology in which every sieve is a covering sieve. O 

EXAMPLE 2 .1 7: Discrete topology. The discrete topology on a category e is the 
topology iri which the only covering sieves are those generated by the identity arrows. 

o 

We now give a series of examples of topologies on data structures induced by 
considering the sub-structure relationship. 

EXAMPLE 2.18: Sets. Sets and functions forma category Set (see example 2.2). A 
cover of a set Sis a family of subsets of S, {Si C-+ S 1iE1 }, whose union is S, i.e., 

LJ S¡ =S. 
iEI 

o 

EXAMPLE 2.19: Directed graphs. A graph (unlabeled, directed, multigraph) is a 
4-tuple (N, E, s, t) of two sets called nodes (N) and edges (E) and two functions 
called source ( s) and target ( t) which assign nodes to edges. The relations between 
these are captured in the following diagram: 

s 
E~N 

t 
The nodes and edges of a graph G are :denoted by N(G) and E(G). A graph 

morphism f: G ~ H is a pair of functions UN: N(G) ~ N(H), fE: E(G) ~ E(H)) 
which map nodes to nodes and edges to edg~s, sucli that the functions are compatible 
with source and target maps, i.e., for all edges e E E( G) 

sH(JE(e)) = fN(sa(e)) 

and tH(JE(e)) = fN(ta(e)). 

Graphs and graph morphisms form a category, Graph. A subgraph of a graph H 

is a graph G such that 

N(G) ~ N(H),E(G) ~ E(H) 

and sa = sHIN(G), ta= tHIN(G)· 
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Corresponding to a subgraph G of H, we have an inclusion arrow G ~Hin the 
category Graph. A graph is concisely represented by drawing the nodes as points 
and edges as arrows, with the tail of arrow indicating its source and the head its 
target. The graph 

{a, b, e, d}, 
/ {p,q,r,s,t}, ) 
\ {p i-+ a, q i-+ b, r i-+ a, s i-+ e, t i-+ b}, 

{p i-+ b, q i-+ d, r i-+ e, s i-+ d, t i-+ e} 

is represented by the following picture: 

A cover of a graph G is a family of subgraphs { Gi ~ G 1 i E I} such that 

LJ N(Gi) = N(G) and LJ E(Gi) = E(G). 
iEl iEl 
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For example, the following sets are sorne of the covers of the graph shown above: 

/b' 
p 1 q" 

l. 

2. 

3. 

a/ t d 
'r 1 s/ 

"+ / e 

b 

1 
t ¡ 
e 

o 

EXAMPLE 2. 20: Undirected, connected graphs. An undirected graph is a pair of sets 
(N, E ~ N x N) called nodes and edges. A path from the node a1 to the node ak 

in the graph G is a sequence of nodes ai, a2,, ••• , ak, such that each (a¡, a¡+i) is an 
edge in G, for all 1 :::; i < k. A graph is connected if there is a path between any two 
nodes in the graph. 

A graph morphism f: G ~ H is a pair of functions 

(JN:N(G) ~ N(H),fE:E(G) ~ E(H)) 

which map nodes and edges compatibly, i.e., 

V(a, b) E E(G) · fE( (a, b)) = (f N(a), fN(b)). 

Undirected, connected graphs and their morphisms forma category UCGraph. 
A subgraph of a graph H is a graph G such that E(G) ~ E(H). The fact that 
N ( G) ~ N ( H) follows beca use G is connected. A cover of a graph G is a family of 
subgraphs { G¡ C-..-+ G 1 i E I} such that 

LJ E(G¡) = E(G). 
iEI 

A similar fact about nodes follows from connectedness. These definitions are similar 
to those for directed multigraphs in the example above. O 
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EXAMPLE 2. 21: Trees. A tree ( rooted, unlabeled) is an undirected, connected, acyclic 
graph with a distinguished node called the "root." The definitions of morphisms, 
subtrees, inclusions, and covers carry over from those of graphs, with appropriate 
substitutions. The definition of subtree is different from the conventional one: a 
subtree is a subgraph which is also a tree. We thus have a subcategory of UCGraph 
called Tree. 

A tree is pictorially represented by drawing its root at the top, the children of the 
root at the next level, their children at the next level, and so on. The tree 

/ {a, b, e, d, e, J}, ) 
\ {(a, b), (a, e), (b, d), (b, e), (b, J)} 

is represented by the following picture: 

a 

/\ 
b e 

/1\ 
d e f 

The following sets are sorne of the covers of the tree shown above: 

a 

/\ 
l. b e 

/1\ 
d e f 

¡ a 

11\ ) 2. /\ 
b e d e f 

3. ¡ a a b b b\f) / \ / 1 

b e d e 
o 
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EXAMPLE 2.22: Strings. A string (unlabeled) is a pair (s, <s) consisting of a sets and 
a linear order <s (i.e., a total, irreflexive, and transitive relation). A subset r ~ s of a 
string (s, <s) is said to be contiguous if for all elements a, b in r and for all elements 
x in s, a <s x <s b => x E r. A morphism of strings is an order-preserving map 
whose image is contiguous. Strings and string morphisms form a category, String. 
A substring of (t, <t) is a string (s, <s) such that s ~ t is a contiguous subset of t 
and <s is the restriction of <t to s. Corresponding to a substring s of t, we have an 
inclusion arrow s c.......+ t in the category String. A string is concisely represented by 
enumerating its elements in order, e.g., the string 

j {a,b,c}, ) 
\ {(a< b), (a< e), (b <e)} 

is represented by "abe". 
A cover for a string (s, <s) is a collection of substrings the union of whose images 

is equal to s. For example, the families {"a", "be"} and {"ab", "b", "e"} are covers 
for the string "abe". O 

EXAMPLE 2.;23: Strings, alternative morphisms. Another category can be built using 
the strings of the previous example but different morphisms. A string morphism is 
an order-preserving map; there is no contiguity requirement. A substring is a monic 
( with respect to the new definition of morphism); in detail, a substring of (t, <t) is a 
string (s, <s) such that s ~ t and <s is the restriction of <t to s. The definition of 
covers cardes over. The difference between the two kinds of morphisms is illustrated 
in the picture below. 

·-·-· ·-· ·-·-· ·-· \ \ \ ¡ ¡ \ ·-·-·-·-· ·-·-·-·-· 
o 

In all the examples above, the arrows were relatively simple and "structurally" 
defined. Sites can accommodate more complex arrows, and arrows with semantics 
attached to them. Here is a site in which the arrows are a little more complex. 
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EXAMPLE 2.24: Expression trees. Let E be a signature, i.e., a collection of sort names 
and a collection of operation names defined on these sorts. Here is an example, the 
signature for stacks: 

sign'ature STACK = 
sorts ELEM' STACK 

operations 
nil: ---+ STACK 

push : ELEM, STACK ---+ STACK 

pop : STACK ---+ STACK 

top : STACK ---+ ELEM 

end 

The collection of expressions over the signature E is defined inductively as follows: 

l. The distinguished symbol v ( for "variable") is an expression of sort s, for every 
sort s in E. 

2. If e: ---+ s is a constant of sort s, then e is an expression of sort s. 

3. If f: s1, s 2 , ••• , Sn ---+ s is an operation, and e1, e2, ••• , en are expressions of sorts 
s1, s 2 , •.• , sn, then f ( ei, e2, ••• , en) is an expression of sort s. 

Expressions can be represented as rooted, ordered, labeled trees. Here are sorne 
examples using the signature STACK-SIG (1 and 2 are constants of sort ELEM): 

push top 

/\ 
1 push 

1 

push 

/\ /\ 
2 nil V pop 

1 

V 

The matching relation between express1ons (generated from a signature E) is 
inductively defined as follows: 

l. For any expression e, the "variable" expression v matches e. 

2. Any constant e matches itself. 
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3. Given matches of ei with e~, for i = 1, ... , n, and if f( e1, ••• , en) is a valid 
expression, then f( e¡, ... , en) matches J( e~, ... , e~). 

r 

Sub-expressions are defined inductively as follows: 

l. Every expression is a sub-expression of itself. 

2. The expressions e¡, ... , en are sub-expressions of f(e1, ... , en)· 

3. If e1 is a sub-expression of e2 , and e2 a sub-expression of e3, then e1 is a sub
expression of e3 • 

A morphism of expressions, e --+ e', is a match of e with sorne sub-expression 
of e'. Given a signature ~' expression and their morphisms form a category called 
Expr(~). 

A cover of an expression e is a family of morphisms { e¡ --+ e 1 i E I } such that 
for each sub-expression e' of e, there is at least one e¡ such that root( e¡) = root( e'). 
The intent of this restriction is to ensure that not all of the e¡ 's are variables, which 
essenti~lly contain no information about covering. 

Here is a cover for each of the expressions shown above: 

push push 

/\ /\ 
1 V 2 nil 

top push pop 

1 /\ 1 

V V V V 

o 

Several other examples of sites, in the spirit of the examples above, suggest them
selves: hypergraphs, labeled strings, trees, and graphs, sets of strings, trees, and 
graphs ( useful for parallel matching). The variety in these examples shows the gener
ali ty of Grothendieck topologies and the fact that many data structures in computer 
science have interesting topologies. 

2.5 Sheaves 

As mentioned in section 2.3, a sheaf consists of a collection of sets associated with 
objects of a topology. In addition, consistent with the spirit of category theory, 
corresponding to each arrow, there is a restriction function on the sets as shown in 

1 
1 
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figure 2.5. These assignments determine a contravariant functor on the base category; 
the functor is called a presheaf (to be a sheaf, i t has to satisfy the sheaf con di tion, 
described in sections 2.5.1 and 2.5.3). 

DEFINITION 2.25: Presheaf. A presheaf on a category C is a contravariant functor 
from C to the category of sets Set. o 

Explicitly, a presheaf F: CºP ___.., Set assigns to each object a of C a set F( a) and 
to each arrow f: a ___.., b of C a "restriction" function F(J): F(b) ___.., F(a) (note the 
reversal of direction) su ch that 

(i) F(ida) = idF(a)' and 

(ii) if h = g o J in C then F(h) = F(J) o F(g). 

F(b) 

y~ 
F(a)~ F(h) F(c) a e 

EXAMPLE 2. 26. For any set J(, the constant presheaf J(: CºP ___.., Set is defined by 
K(a) = J( for all objects a in C, and K(J) = idK for all arrows J in C. O 

EXAMPLE 2.27. Any contravariant hom-functor home(-, ~):CºP ___..,Set (see defini
tion 2.9), with a an object of e, is a presheaf. o 

EXAMPLE 2.28. Let "sieves( a)" denote the collection of all sieves on an object a of 
a category C. The presheaf f!:CºP ¿ Set is defined by f!(a) = sieves(a). For any 
arrow f: b ___..,a in e, n(J) = J*' whete J*: n(a) ___.., f!(b) maps sieves on a to sieves º1?
b by s ~ {e--!....+ b 1 fo g E s }. The name n is derived from the fact that n is the 
truth-values object in the topos SetCºP. O 

2.5.1 The sheaf condition: Simple form 

A contravariant functor only provides the basic structure needed for a sheaf. To 
be a sheaf, such a functor F has to satisfy the additional condition that elements 
of F( a) can be obtained by "gluing" together elements of { F( ai) 1 i E I} where 

{ ai ~ a 1 i E I} is a cover of a (see figure 2.6). In other words, such presheaves 
are "locally" defined, a notion which is formally described in the definition of "sheaf" 
below. 
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an object 
~ in the site 

' ' 

RESTRICTION 

FUNCTION 

an arrow 
in the site 

I 
I 

CATEGORY 

OF SETS 

Set 

CONTRAVARIANT 

FUNCTOR 

F:CºP-+ Set 

SITE ce . ', ___ ,;....._'---·~e 
------~~~~~~~-----------

Figure 2. 5: P arts of a sheaf 

glue 

Figure 2.6: The sheaf condition 

CATEGORY 

OF SETS 

Set 

ONTRAVARIANT 

FUNCTOR 

F:CºP-+ Set 
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Before defining a sheaf using covering sieves, we give a simpler definition, using 
covering families, which is valid if pullbacks exist in the underlying site. We first 

introduce sorne notation. Let F: CºP ---+- Set be a presheaf and {a¡ ~ a l i E /} be 
a covering family for a. Form the pullback shown below: 

JI 
a· llij J 

1;J kj 
a¡ 

f¡ a 

The images of the~e arrows by the functor F are written as follows: F¡ - F(f¡), 
Fj = F(fj), and Ff = F(ff). 

DEFINITION 2.29: Sheaf (üsing pullbacks). A sheaf on a ori a site (C, J) is a presheaf 
F: CºP ---+- Set which satisfies the following "gluing" condi.tion: given any covering 

_ family {a¡ ~a 1 i E I} of an object a in C, and any selection of elements s¡ E F( a¡) 
for all i E I which are pa~rwise compatible, i.e., Fj(si) = F/(si) for all i,j E/, then 
there is exactly one element s E F( a) such that F¡( s) = s¡ for all i E I. O 

The gluing condition in the definition above can be concisely stated as requiring 
the following diagram of sets to be an equalizer: 

2.5.2 More about sieves 

To define a sheaf using sieves (i.e., without using pullbacks), we need sorne basic 
facts about sieves: how they can be ;treated as comma categories or as sub-functors 
of a hom-functor. The simple definition of a sieve ( definition 2.12) defines a sieve 
to be a set of arrows closed under composition on the right. This definition is more 
set-theoretic than category-theoretic. To capture the extra structure which is present 
in a sieve, we can represent it as a comma category. 
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DEFINITION 2.30: Sieve: comma category representation. A sieve R = {a¡ ~a 1 

i E I} on an object a oí a category C can be represented as a sub-category oí the 

conima category Cla. The objects are arrows a¡ ~ a contained in R. The arrows 
are given by commutative triangles oí the following form: 

u 

a 

o 

The structure of the comma category defined above can be succinctly captured in 
a functor as shown next. 

DEFINITION 2.31: Sieve: functor representation. A sieve R = {a¡ ~a 1 i E I} on 
an object a oí a category C can be represented as a sub-functor oí the hom-functor 
home ( - , a) as follows: 

b 1--+ { f E home ( b, a) 1 f E R } 

e~ b 1--+ g*, where g*: f 1--+ fo g 

o 

By abuse oí notation, both a sieve R and its associated representations as a comma 
category or as a functor (as defined above) will be denoted by the same symbol, the 
context serving to resolve the ambiguity. 

Figure 2. 7 shows the different representations oí a sieve on an example graph. 
In the functor representation oí a sieve, we notice that, although the functor is 

defined over the entire category C, the values oí the functor are empty for all those 
objects for which there no arrows belonging to the sieve with the objects as domains. 
The subcategory over which the functor is non-empty is called the base oí the sieve. 
This notion will be useful in subsequent chapters, and is formally defined below. 

DEFINITION 2.32: Base of a sieve. Given a sieve R represented as a functor R: CºP-+ 

Set, the base oí the sieve, written base(R), is defined to be the full subcategory of C 
induced by the collection oí objects for which the values of R are non-empty. O 

We are now ready to give a definition oí a sheaf which does not require pullbacks 
to exist in the underlying site. 
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R(f1) 

a- b 

a- b 

SIEVE '.AS FUNCTOR '. 

R: UCQraphºP --+ Set ~ 

R(h) 

37 

SIEVE AS COMMA CATEGORY 

R ~ UCGraph!G 

LEGEND: 

--. objects 
__.,. arrows 

b - b 

Figure 2. 7: Representations of a sieve 
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2.5.3 Definition of a sheaf 

DEFINITION 2.33: Sheaf (using sieves). A sheaf on a site (C, J) is a presheaf F: CºP ~ 
Set such that for every object a of C and every covering sieve R E J(a), each mor
phism R ~Fin SetCºP has exactly one extension to a morphism home(-, a)~ F. O 

Formally, the condition above can be described as follows. Let ÍR: R c..:+ home(-, a) be 
the inclusion of the sieve R, considered as a functor, in the hom-functor on a. This in
clusion induces a map of natural transformations, Nat(home(-a, ), F) ~ Nat(R, F), 
defined by r 1-+ roiR. The sheaf condition above requires that this map be a bijection. 

Let us now try to understand the definition of a sheaf in elementary terms. Let R = 
{ ai ~ a 1 i E I} be a covering sieve of a. A natural transformation "': R ~ F ( with 
R being considered as a functor) corresponds to a compatible family of elements {Si E 
F( ai) 1 i E I }. We see this by unrolling the definition of a natural transformation: 
"': R ~ F maps each arrow fi: a¡ ~ a of the sieve R onto to an element "'ªi (Ji) E F ( ai). 
Further, for any commutative triangle in the sieve (considered as a comma category), 
we have the following assignments: 

u l(a. 

fi !---.!.+ Si E F ( ªi) 

fj ~ Sj E F(ai) 

a 
F(u) 

Sj ~Si 

Thus, each morphism R ~ F is a compatible family of elements on R. By the 
Yoneda lemma, each morphism home ( - , a) ~ F corresponds to an element s E F (a). 
When translated, the sheaf condition of definition 2.33 says that corresponding to each 

compatible family of elements {Si E F( a¡) 1 i E l} over the sieve R = { ai ~ a 1 

i E I }, there is a unique element s E F(a) such that Si= F(f¡)(s) for all i E J. This 
can be seen to be equivalent to definition 2.29, when pullbacks exist in the underlying 

si te. 
The concept of "compatible family" of elements will arise frequently in the rest of 

this dissertation. Hence, for reference, we record the definition here. 
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DEFINITION 2.34: Compatible Jamily of elements. Given a presheaf F: CºP --+ Set, 

an object a E Obj(C), and a sieve R = {a¡ ~ a 1 i E I} on a, a compatible family 
of elements of Fon the sieve R is a collection of elements { s¡ E F(a¡) 1 i E I }, one 
for each arrow in the sieve R, such that for any arrow u: a¡ --+ ªi in R for which the 
triangle below commutes, the function F(u) maps Sj onto s¡. 

u 

F(u) 
Sj ~Si 

a 

o 

2.5.4 Examples of sheaves 

The sheaves with which this dissertation is mostly concerned are sheaves of occur
rences of a pattern in a target. Chapter 3 provides three simple examples of such 
sheaves (figures 3.1-3.3). The reader may wish to glance at these sheaves to under
stand the definition of a sheaf. We provide below a few other examples. 

EXAMPLE 2.35: Bobks in a library. Consider a site T in which objects are time 
intervals4 and arrows are inclusions. An interval [s, t] is covered by a collection of 
intervals { [s¡, t¡] 1 i E I} if Uiei[s¡, t¡] = [s, t]. With respect to a particular library, 
define a contravariant functor B: TºP --+ Set as follows: 

For any interval [s, t], 
B([s, t]) is the set of books wh.ich are present in the library throughout the 
interval [ s, t]. 

For any inclusion of intervals f: [s, t]. ~ [u, v], 
B(J) is the restriction function which maps each book onto itself. A book 
present in the library throughout the larger interval [u, v] is obviously present 
during the sub-interval [s, t]. 

This functor forms a sheaf because, if { [s¡, t¡) 1 i E I} covers [s, t], and if a book is 
present in the library throughout each of the interváls [s¡, t¡), then it is also present 
throughout [s, t]. O 

4It <loes not matter whether these intervals are open, closed, or any mixture of these. 
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The sheaf of library books illustrates the slogan 

if a property is local/y true over a cover of an object, 
then it is true over the entire object, 

and shows how sheaves connect local and global properties. In the graph coloring 
sheaf below, it is possible to connect the chromatic number of a graph (a global 
property) with colorings of subgraphs (local properties ). 

EXAMPLE 2.36: Graph coloring. Consider the site of undirected, connected graphs 
described in example 2.20. Let us confine our attention to a sub-category UCGraph'-+ 
of UCGraph which contains all the objects but only inclusion arrows. Consider the 
task of coloring such graphs with at most k colors. Define a contravariant functor 
C: UCGraph~ ~ Set as follows: 

For any graph G, 
C ( G) is the set of all k-colorings of the graph G. 

For any graph inclusion f: G t......+- H, 
C(f) is the function which restricts the coloring of H to G. If a graph H has a 
k-coloring, then each of its subgraphs also has a k-coloring. 

This functor is a sheaf because, if { G¡ 1 i E I} covers G, and if {e¡ E C( G¡) 1 i E I} is 
a family of colorings such that the colorings agree on intersections among the graphs 
Gi, then there is a unique coloring of the entire graph G. O 
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EXAMPLE 2.37: Sheaf of functions. Let D be a set (the domain), and P(D) its 
powerset. P(D) forms a category with objects being subsets oí D and arrows being 
inclusions. We obtain a site by defining a cover oí a set X to be a family of sets 
{X¡ 1 i E I} such that UieJXi = X. Let R be another set (the range). Define a 
contravariant functor F: P( D)ºP ---+ Set as follows: 

For any set X~ D, 
F(X) is the set oí all functions with domain X and range R. 

For any inclusion f: X~ Y, 
F(J) is the map g 1-+ glx which restricts the domain of a function. 

This functor forms a sheaf because, extensionally, a function is defined by specifying 
its value for each element oí the domain. Thus, if {X¡ 1 i E I} covers the set X, and 
{ Íi: X¡ ---+ R 1 i E I } is a family of functions such that 

for i,j E J,X¡ n Xj # 0, 

_ then there is a unique function J: X ---+ R su ch that 

f (X) = Íi (X), for any i su ch that x E X¡. 

The sheaí above is typical of the sheaves used in real and complex analysis. U sually, 
a restricted class of functions, such as co_ntinuous functions, analytic functions, or 
polynomials, is considered. Each set F(X) then has an algebra associated with it, 
e.g., polynomials form a ring. The sheaf relates the geometry in the base with the 
algebra in these sets. O 

To help the reader understand the mechanics of the sheaí condition, here is an 
example oí a functor which is not a sheaf. The example shows that sometimes local 
properties alone are not sufficient to determine global properties. 

For any site (C, J), the topology .J forms.a functor as follows (a sub-functor of n, 
example 2.28): 

a 1-+ J(a) 
f 1-+ J* 

for a E Obj(C) 
for f E Arr(C) 

This functor does not form a sheaf because, given a cover { a¡ ~ a 1 i E I } of 
an o b j ect a, and a family of covers { e¡ E J (a¡) 1 i E I } , there may be several covers 
on a which extend this family. Also, the constant presheaí oí example 2.26 is not, 
in general, a sheaf. Contravariant hom-functors are sheaves only if the covers in the 
underlying site are strict epimorphic families (see section 3.2). 



Chapter 3 

Pattern Matching: 
An Extensional View 

Now the ideal aim of design is to remove from the object, 
be it an automobile or a bedroom, 

every detail, every moulding, every variation of surface, 
every extra part except that which induces to its effective function. 

- Lewis Mumford, Drama oí the Machines (1930) 

We first adopt a simple view of pattern matching in section 3.1: constant patterns 
and simple topologies on the structures involved. We will later consider sorne gener
alizations in Chapter 6. In section 3.2, we add an assumption to the axioms for sites 
to eliminate "covers" which do not cover the entire object. In section 3.3, we consider 
the extension of the occurrence relation and show that it is a sheaf. Section 3.4 is 
devoted to three simple examples of occurrence sheaves; these will be used as running 
examples throughout the dissertation. Section 3.5 summarizes the chapter with a 
specification of pattern matching. 

3.1 A simple view of the. occurrence relation 

Matching is a binary relation. The two entities involved will be called the pattern 
and the target. A simple view of matching is that a specified sub-structure of the 
target has a shape, and possibly other attdbutes, such as labels, which are the same 
as those of the pattern. We will call such a relation an occurrence relation, preferring 
the word match for more general patterns, e.g., patterns with variables, predicates, 
etc. 

An occurrence is formally represented as an arrow p ~ t in sorne category. We 
assume that both the pattern and the target are the same kind of entities and belong to 
the same category. It is possible to define a matching relation between heterogeneous 
objects, e.g., a string matching a path in a graph. This added generality is not needed 
in this dissertation. 
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We further assume that every arrow in the category is an occurrence arrow. We 
thus arrive at the following specification for pattern matching (with constant pat
terns ): 

Given a category C of structures, a pattern p E Obj(C), and a target 
t E Obj(C), the collection of occurrences of the pattern p in the target t 
is the collection of all arrows p -T t in e' i.e.' 

occurrences of p in t = home (p, t). 

3.2 Strict epimorphic families 

To examine the geometric aspects of patterns and pattern matching, we need a topol
ogy on the structures involved. A simple topology can be obtained by considering 
the sub-structure relation, which is represented by monic arrows. To obtain a site 
from the base category C, we have to define covers for eacli object. Looking back at 
the examples of topologies in section 2.4, we see that the axioms for Grothendieck 
topologies are not strong enough to rule out certain non-intuitive "covers" such as 
those which do not cover the entire target. 

EXAMPLE 3 .1. An example of non-intuitive "covers" is the topology in which every 
sieve is a covering sieve (see example 2.16). In the category of stririgs, the following 
sieve is a cover for this topology, although the image of this sieve is smaller than the 
target string. 

"n" "o" "p" 

\./\./ 
"no" "op" 

'\ I 
"snoopy" 

o 

To rule out such non-intuitive cases, we use covers which are strict epimorphic 
families [SGA4, Exposé I], [Demazure 70]. An epimorphic family is a formalization 
of the idea that a cover is surjective,1 i.e., it covers the entire target. The following 
defini tion is a straightforward generalization of the notion of epimorphic from a single 
arrow to a family of arrows. 

1 As usual, with respect the arrows in the category. For a surprising epimorphic family, see 
example 3.6. 
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DEFINITION 3.2: Epimorphic family. A collection of arrows with common codomain 

{ ai ~ a 1 i E I} is said to be an epimorphic family, if for any parallel pair of arrows 
g, h: a =t b, we have 

(Vi E l · (g o fi = h o Ji)) => g = h. 

o 

An epimorphic family { ai ~ a 1 i E I} is strict if there is an effective way of 
"gluing" together arrows defined on pieces ai of the family to obtain an arrow on the 
codomain a. 

DEFINITION 3.3: Strict epimorphic family. Let F = { ai ~ a 1 i E I} be an 
epimorphic family. A family of arrows G = { ai ~ b 1 i E I } is said to be compatible 
with F if for every object e, every pair of indices i, j E I, and every pair of arrows 
u: e--+ ai, v: e--+ aj, 

Íi O U = fj O V => 9i O U = g j O V. 

The family F is said to be a strict epimorphic family if for every family of arrows G 
which is compatible with F, there is a unique arrow h: a --+ b such that 

h o f¡ = g¡ for all i E I. 

o 

DEFINITION 3.4: Gluing operation. Given a strict epimorphic family F, anda family 
G of arrows compatible with F, the assignment of the unique arrow h to G (provided 
by the definition of a strict epimorphic family above) is called a gluing operation. O 

The motivation for this terminology will become clear when, in the next section, 
we consider sheaves of occurrences of a pattern in a target. 

We now add the assumption about strict2 epimorphic families to a site to make it 
suitable as a basis for pattern matching: 

2Normally, one worild choose effective epimorphic families. However, the definition of this concept 
requires the existence of pullbacks. When pullbacks do exist, the two notions are equivalent. 
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ASSUMPTION: All covers in the base topology J of the si te (C, J) are 
strict epimorphic families. 

Here are sorne examples which illustrate the notion of strictness. Roughly speak
ing, all the information about an object can be obtained from any of its covers. 

EXAMPLE 3.5: Strict vs. non-strict. Consider the site of example 2.22. The cover 
{ "ab", "cd"} of the string "abcd" is not strict, since it also covers the string "cdab". 
The cover {"abe", "cd"} of the string "abed" is strict, since there is only one way 
to glue the pieces of the cover to obtain the original string back. A cover which is 
strict contains all the essential information for constructing the object it covers. We 
formally define below the site of strings along with covers which are strict epimorphic 
families. 

Given a string (s, <s) and two elements x, y E s, we say that x and y are adjacent 
in s if the string "xy" is a substring of s. A cover of a string s is a family of 
substrings { s¡ '--+ s 1 i E_ I} su ch that for any pair of. elements x, y which are 
adjacent in s, there is a substring s¡ in the cover in which x and y are adjacent. Thus, 
for the string "abcd", the following families are covers: { "abcd"}, {"abe", "bcd"}, 
{"ab", "be", "ed"}. However, {"ab", "ed"} is nota coverbecause the letters b and 
e are adjacent in "abed" but they are not adjacent in any element of the cover. To 
understand the requirement about adjacency, observe that the cover has to not only 
cover the elements of a string but also cover the total order of the string. 

A string can alternatively be considere<;! to be a simple, acyclic path in a graph 
(i.e., all the sources and targets of the edges in the path are distinct ). The definition 
of cover for strings is then a specialization of that for graphs. O 

EXAMPLE 3.6: Strict =fo surjective. Here is an example which shows strictness does 
not mean that everything in the ob ject should be present· in the cover. The only 
requirement is that all the information about the.object be systematically recoverable 
from the cover. 

In the site of example 2.24, the variables contain no essential information. Thus 
we can prune away variables from the trees (variables can only occur as leaves ). To 
do so, we extend the underlying category Expr(l:) with certain "malformed" objects 
satisfying the following rule: 

any expression with sorne variables removed is also an expression. 

No essential information is lost beca use we can always complete an expression tree 
by examining the signature. In the same spirit, we add new covers: 

the collection {e¡ 1 i E I} covers the expression e, if it covers e with sorne 
variables removed. 

These covers are strict although their images may be smaller than the objects they 
cover. o 
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3.3 The extension of the occurrence relation 

U sing a topology in which covers are strict epimorphic families, we can give a more 
detailed description of the occurrence function homc(p, t). We get an extensional 
description by considering the values of this function for all patterns p. Such an 
extension is not justa set; there is a functorial relationship between the sets homc(p, t) 
as p varies. If i: q -+ p is an arrow (i.e., q occurs in p), then every occurrence 
m: p -+ t of p in t induces an occurrence m o i: q -+ t of q in t by restriction. Thus 
the extension of the occurrence function is given by the contravariant hom-functor 
home(-, t): CºP---+ Set, defined as follows: 

For an object p E C, 
home(-, t)(p) = hornc(p, t) = the set of occurrences of pin t. 

For an arrow i: q >-+ p of C, 
home(-, t)(i): homc(p, t) -+ homc(q, t) is given by g ~ g o i 
( the restriction of occurrences of p to occurrences of q). 

There is more structure to the extension than this. The functor is a sheaf on the 
topology on the underlying site. If {Pi -+ p 1 i E I} is a cover of the pattern p, 
the sheaf condition states that an occurrence of p can be obtained by gluing together 
occurrences of the pieces Pi. An occurrence of Pi will be called a partial occurrenc~. 

DEFINITION 3. 7: Partial occurrence. A partial occurrence of a pattern pin a target t 
is an occurrence of a sub-structure of pin the target t, i.e., a pair of arróws p ~ q-+ t. 

o 

It is evident, from the definition of a strict epimorphic family, that every hom
functor is a sheaf.3 However, it will be instructive to explicitly go through the details. 

3 The alert reader with sorne background in category theory will have noticed that, since hom
functors translate colimits into limits [Mac Lane 71, page 112], we could have taken the much simpler 
approach of assuming that a pattern is a colimit of each of its covers. We do not do so because this 
is a stronger assumption than the one that covers are strict epimorphic families. Moreover, colimits 
need not generally exist in the sites we work with. 
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LEMMA 3.1: Hom-functors as sheaves. Given a site (C,J) such that every covering 
sieve in J is a strict epimorphic family, for any oh ject b E C, the contravariant hom
functor home ( - , b): CºP ---+ Set is a sheaf. 

PROOF. We will show that home(-, b) satisfies the sheaf condition. Let a be any 

object of C, and let R = { ai ~ a 1 i E 1} be a covering sieve for a. Let G = 
{a¡ ~ b 1 i E 1} be a selection of elements from home( a¡, b) which is a compatible 
family of elements on the sieve R. Compatibility means that whenever the diagram 
on the left commutes for any arrow u: ªi ---+a¡ in the sieve, then the diagram on the 
right also commutes, i.e., we have home(-, u): 9i 1-+ 9i· 

ª¡·~ u a 

/( 
a. J 

J 

ªj'"'Z u b 

~ a· J 
J 

By juxtaposing two such pairs of diagrams, we have the following diagram in which 

Íi O U = fk O V * 9i O U = 9k O V. 

;/ª'""' ¡, 
¡. ~ h 

ªi~ ,Aª------- b 

Since we have assumed that all covers are strict epimorphic families, it follows from 
the definition of a strict epimorphic family that there is a unique arrow h: a ---+ b (i.e., 
an element of home(a, b)) such that h o Íi = g¡ for all i E /, i.e., home(-, f¡): h 1-+ 9i· 

D 

We thus see that, given a pattern p, a target t, anda cover {Pi ---+ p 1 i E 1} of p, 
a compatible family of partial occurrences {Pi ---+ t 1 i E 1} on a cover of the pattern 
p can be glued together to obtain an occurrence p---+ t of pin t. 
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3.4 Examples of occurrence sheaves 

We now give three examples of sheaves of occurrences, figures 3.1-3.3, for trees, 
graphs, and strings. The underlying sites are as follows. 

LTree (labeled trees ): 
A labeled tree (T, lr) is a tree T (see example 2.21), along with a function f,T: N(T)-+ 
L assigning labels to nodes, from a fixed label set L. A labeled tree morphism 
f: (T,fr)-+ (U,fu) is a tree morphism f:T--+- U (see example 2.21) which preserves 
labels, i.e., lu(f(n)) = fT(n), for all nodes n E N(T). Covers are as defined in 
example 2.21. All arrows in the site are occurrence arrows. 

LUCGraph (labeled, undirected, connected graphs): 
A labeled, undirected, connected graph (G, la) is an undirected, connected graph G 
(see example 2.20), along with a function fa: N(G) ---+- L assigning labels to nodes, 
from a fixed label set L. A labeled graph morphism f: (G,la)-+ (H,lH) is a graph 
morphism f: G---+- H (see example 2.20) which preserves labels, i.e., fH(f(n)) = la(n), 
for all nodes n E N( G). Covers are as defined in example 2.20. All arrows in the site 
are occurrence arrows. 

LString (labeled strings ): 
A labeled string (s, <s, fs) is a string (s, <s) (see example 2.22), along with a function 
fs: s ---+- L assigning labels to elements of the string, from a fixed label set L. A labeled 
string morphism f: (s, <s,fs) ---+- (t, <t,ft) is a string morphism f: (s, <s) ---+- (t, <t) 
(see example 2.22) which preserves labels, i.e., ft(f(x)) = ls(x), for all elements x E s. 
Covers are as defined in example 3.5. Occurrence arrows are monics. 

3.4.1 Guide to the figures of occurrence sheaves 

Each of the figures of occurrence sheaves, figures 3.1-3.3, consists of: 

1. a specific target t, 

2. a specific pattern p, along with a specific cover P, and 

3. the portion of the occurrence sheaf, home(-, t): CºP-+ Set, related to the pat
tern cover' w here e is one of the si tes defined a hove ( trees / graphs / strings): 

The subscripts and superscripts used in the figures are not part of the labels; 
they are just used to disambiguate the various structures involved without explicitly 
drawing the inclusion arrows. Thus, in figure 3.1, a1 -- b3 represents an inclusion 
arrow (a -- b) ~ t ( where t is the target shown) with a being mapped to the 
particular a in the target with subscript 1 and so on. 
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LEMMA 3.1: Hom-functors as sheaves. Given a site (C, J) such that every covering 
sieve in J is a strict epimorphic family, for any object b E C, the contravariant hom
functor home ( - , b): CºP --+ Set is a sheaf. 

PROOF. We will show that home(-, b) satisfies the sheaf condition. Let a be any 

object of C, and let R = { ai ~ a 1 i E 1} be a covering sieve for a. Let G = 
{a¡ ~ b 1 i E 1} be a selection of elements from home( a¡, b) which is a compatible 
family of elements on the sieve R. Compatibility means that whenever the diagram 
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o 

We thus see that, given a pattern p, a target t, and a cover {Pi --+ p 1 i E 1} of p, 
a compatible family of partial occurrences { p¡ --+ t 1 i E 1} on a cover of the pattern 
p can be glued together to obtain an occurrence p--+ t of pin t. 
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3.4 Examples of occurrence sheaves 

We now give three examples of sheaves of occurrences, figures 3.1-3.3, for trees, 
graphs, and strings. The underlying sites are as follows. 

LTree (labeled trees ): 
A labeled tree (T, fT) is a tree T (see example 2.21), along with a function fT: N(T)-+ 
L assigning labels to nodes, from a fixed label set L. A labeled tree morphism 
f: (T, fT) -+ (U, fu) is a tree morphism f: T -+ U ( see example 2.21) which preserves 
labels, i.e., fu(f(n)) = fT(n), for all nodes n E N(T). Covers are as defined in 
example 2.21. All arrows in the site are occurrence arrows. 

LUCGraph (labeled, undirected, connected graphs): 
A labeled, undirected, connected graph ( G, fa) is an undirected, connected graph G 
(see example 2.20), along with a function fa: N(G) -+ L assigning labels to nodes, 
from a fixed label set L. A labeled graph morphism f: (G,fa)-+ (H,fH) is a graph 
morphism f: G-+ H (see example 2.20) which preserves labels, i.e., fH(f(n)) = fa(n), 
for all nodes n E N( G). Covers are as defined in example 2.20. All arrows in the site 
are occurrence arrows. 

LString (labeled strings): 
A labeled string (s, <s, fs) is a string (s, <s) (see example 2.22), along with a function 
fs: s -+ L assigning labels to elements of the string, from a fixed label set L. A labeled 
string morphism f: (s, <s, fs) -+ (t, <t, ft) is a string morphism f: (s, <s) -+ (t, <t) 
(see example 2.22) which preserves labels, i.e), ft(f(x)) = fs(x), for all elements x E s. 
Covers are as defined in example 3.5. Occurrence arrows are monics. 

3.4.1 Guide to the figures of occurrence sheaves 

Each of the figures of occurrence sheaves, figures 3.1-3.3, consists of: 

1. a specific target t, 

2. a specific pattern p, along with a specific cover P, and 

3. the portion of the occurrence sheaf, home(-, t): CºP-+ Set, related to the pat
tern cover' w here e is one of the si tes defined above ( trees / graphs / strings): 

,The subscripts and superscripts used in the figures are not part of the labels; 
they are just used to disambiguate the various structures involved without explicitly 
drawing the inclusion arrows. Thus, in figure 3.1, a1 -- b3 represents an inclusion 
arrow (a -- b) ~ t ( where t is the target shown) with a being mapped to the 
particular a in the target with subscript 1 and so on. 
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The pattern cover is represented as a functor, but only the image of the functor 
is shown. For each occurrence sheaf, a sample compatible family of occurrences is 
indicated with bold arrows. Elements of the sheaf which do not form part of a 
compatible family are indicated with dashed arrows. 

Circles and ellipses denote objects of the category C of the underlying site. Boxes 
with rounded corners denote sets, i.e., objects in the category Set. Arrows in C are 
denoted by arrows (!). Arrows in Set (i.e., functions) are exploded: the mapping of 
each element in the domain is shown by an arrow. 

The reader who is unfamiliar with sheaf theory will find it instructive to carefully 
study figures 3.1-3.3, and 

l. verify the definitions and axioms of section 2; and 

2. see how occurrences of a pattern can be obtained by gluing together occurrences 
of pieces of the pattern. 

The reader may note that a compatible family of partial occurrences is just an 
instance of the pattern cover in the graph of the sheaf. This intuitive concept will be 

-formalized using "eones" in Chapter 5; see figures 5.3-5.4. 
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PATTERN,p 

b 

/\ 
a e 

UNDERLYING SITE, C 

OCCURRENCE SHEAF . . 
ho~(-, t): CºP ~Set 

' ' ' 

LEGEND: 

a1- bl 

See section 3.4.1 
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COVER FOR PATTERN, P 

bl- C1 C1 

b3- C3 C2 

b2- C3 C3 

ª1 C1 b4- C4 C4 
b3 

/ \ 
ª1 C3 

b4 
/ \ 

a3 C4 

Figure 3.1: Sheaf of occurrences: example with trees 
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PATTERN,p 

b 

/\ 
a -- e 

COVER FOR PATTERN, P 

OCCURRENCE SHEAF ,.· 

home(-, t): CºP--+ s.~t 

LEGEND: 

See section 3.4.1 

TARGET, t 

b1 "" / a2 "" 

1 /ª1 - b2"" 1 /b3 
C¡ C2 

UNDERLYING SITE, C 

a¡-C¡ 

Figure 3.2: Sheaf of occurrences: example with graphs 
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,1 PATTERN, p TARGET, t 

a1 ba2 

COVER FOR PATTERN, P UNDERLYING SITE, C 

OCCURRENCE SHEAF 

hornc(-t): ~ºP --+.Set 

LEGEND: 

See section 3.4.l 

ba2 

Figure 3.3: Sheaf of occurrences: example with strings 
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3.5 Summary: A simple speci:fication of pattern 
matching 

We now collect the details and assumptions about pattern matching discussed in this 
chapter. A more formal version is presented in the next chapter. 

A pattern matching problem consists of 

The context: 
A site (C, J) such that all covers in the topology J are strict epimor-

phic J amilies. 

The occurrence relation: 
Some of the arrows, p ~ t, represent occurrences of a pattern p in a 

target t. 

Under the additional assumption that all arrows are occurrence arrows, it trivially 
follows that the extension of the occurrence relation, home(-, t), for a fixed target, 
and all possible patterns, forms a sheaf. 

Admittedly, the characterization above does not. constrain the problem enough, 
because it is too general. However, even with such weak assumptions, the derivation 
in Chapter 5 can proceed quite a few steps before. needing additional assumptions. 

The sheaf characterization of pattern matching shows the power of category theory 
to concisely represent information about a problem. N one of the information in the 
sheaf is new or surprising; such information is either evident or implicitly known to 
people familiar with the problem. Categorical language is an excellent vehicle for 
articulating such implicit knowledge. 
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Chapter 4 

An Algebraic Specification of 
the Pattern Matching Problern 

First-order logic is surely an artifi.ce, 
albeit one of the most important inventions in human thought. 

But none of us thinks in a fi.rst-order language. 
The predicates of natural dialectics are order-insensitive 

(one moment's individuals are another's equivalence classes) 
and our appreciation of mathematics depends on our ability to 

interpret the words of mathematics. 
The interpretation itself is not fi.rst-order. 

- Peter Freyd, Aspects of Topoi ( 1972) 

We need a formal specification method for rigorously deriving a pattern match
ing algorithm in Chapter 5. We have chosen algebraic specification to encocle the 
specification of pattern matching for severa! reasons: 

1. The theory of algebraic specification is well developed: see, for example, the 
surveys [Srinivas 90, Wirsing 90], or the textbooks [Ehrig and Mahr 85, Ehrig 
and Mahr 90]. . 

2. The axiomatic methods of algebraic specification are well suited to the kind of 
pattern matching theory developed in;this dissertation. 

3. Algebraic specification provides severa! structuring operations for making a 
specification modular: see, for example, [Sannella and Tarlecki 88a]. 

4. Formal transformations and implementations can be explicitly encoded us
ing the language of algebraic specification: see, for example, [Sannella and 

Tarlecki 88b]. 

4.1 Algebraic specification 

We do not adopt any particular language for algebraic specification, so as not to 
constrain the exposition. The syntax and operations used are based on the institution
independent work ofSannella and Tarlecki [Sannella and Tarlecki 88a], and the kernel 
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language ASL [Astesiano and Wirsing 86, Wirsing 86]. Along with these, we freely 
use higher-order functions, dependent types, and subsorts, treat algebras as first-class 
objects, and use constraints such as "small" and "finite" for constraining the possible 
models of a specification. In general, such a mixture may lead to inconsistencies; 
but, in a concrete situation such as sheaf theory, there is little danger of the theory 
collapsing. 

The notation for algebraic specification used in this dissertation is summarized in 
figure 4.1. We frequently 'use dependent sorts to specify the domains of operations. A 
dependent sort is a sort which is constructed from another sort via a given function; 
this is a convenient way of specifying subsorts. The structuring operations we use to 
builq specification are extend, conservative extension, include, syntactic inclusion, 
and parameterization. The semantics of all specifications is loose, i.e., there is no 
restriction on the models, unless otherwise indicated. For implementing one speci
fication by another, we use the constructors defined in [Sannella and Tarlecki 88b]. 
A specification S is implemented by a specification T via a constructor K, written 
S "'-+ K(T), if K converts every model of T into a model of S. We expect T to have 
fewer models than S, since sorne implementation decisions would ha ve been made 
in T. 

4.2 Foundations 

The semantics of an algebraic specification is defined using category theory. In this 
dissertation, we need a specification for categories themselves. Hence, sorne care needs 
to be exercised in using algebraic specification so as to avoid foundational paradoxes. 

Another problem is that algebraic specification is an axiomatic specification method. 
It- works most of the time, but sometimes it is difficult to axiomatically define sorne 
entity; it is easier to exhibit its construction. For example, it is difficult to axiomati
cally specify the category of graphs, whereas it very easy to construct the category of 
graphs. The category of graphs is the model category of the following specification. 

spec GRAPH = 
sorts NODES, EDGES 

operations 
source : EDGES -+ NODES 

target : EDGES -+ NODES 

end 

We will assume an ambient category théory, e.g., a first-order theory of "meta
categories" as defined in [Mac Lane 71]. We will also assume an ambient set theory 
with three levels of universes: small, large, and very large. 1 Here are sorne specific 
entities in the ambient category theory: 

1 It <loes not matter whether the theories of categories and sets are separate or one is defined 
within the other. 
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spec SPEC-NAME = 
sorts DOMAIN' RANGE, SPECIAL 

-the subsort relationship; modeled as a subset 
subsorts SPECIAL ~ DOMAIN 

operations 
-a total function 

tot-fun : DOMAIN' DOMAIN ---+ RANGE 

-a partial function; partiality indicated by a comment 
par-fun : DOMAIN ---+ RANGE -partial 

-a function defined on a subsort 
sub-fun : SPECIAL ---+ RANGE 

-dependent sorts; domains of variables indicated at the right 
dep-fun: v, some-fun(v)---+ RANGE for V E DOMAIN 

-a higher~order function; ---+ associates to the right 
hi-fun : DOMAIN ---+ DOMAIN ---+ RANGE 

ax1oms 
-functions need not be completely specified 
-the variables x and y are implicitly universally quantified 

tot-fun(x, y)= tot-fun(x) + tot-fun(y) 
-definedness predicate 

Defined(par-fun(x)) if tot-fun(x, x) =O , 
-characteristic function for subsort 
-signature of XsPECIAL is DOMAIN ---+ BOOL 

XsPECIAL =AX· tot-fun(x,x) <O · 
-convention: XsPECIAL is sometimes'.written as "special" 
-i.e., the subsort name in roman Í<;mt 

special(x) => Defined(par-fun(x)) /\ par-flm(x) E [-1, 1] 
-notation for Curried functions 

tot-funx =Ay · tot-fun(x, y) -Currying on first argument 
tot-funY = Ax · tot-fun( x, y) -Currying on second argument 

-notation for application for higher-order functions 
hi-fun(x)(y) = hi-funx(Y) = hi-funY(x) 

end 

Figure 4.1: Summary of notation for algebraic specification 
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the category of small categories 
the category of large categories 
the collection of functors between the categories e and 'D 
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Cat 
CAT 
Fun(C, 'D) 
Nat(F, G) the collection of natural transformations between the functors F and G 

The semantics of any algebraic specification is defined in terms of the ambient 
category theory. Models of a specification form a category, which is a model of the 
ambient theory. In particular, the model category of the specification CAT below is 
the category of small categories, Cat. 

For cases where it is easier to construct models rather than use axiomatic specifi
cation, we assume a meta-construct Mod, which returns the model category of any 
specification; thus, Mod( CAT) = Cat. 

4.3 Categories, sites, and sheaves 

The specifications dealing with category theory and sheaf theory below are for refer
ence, so that we can proceed with the derivation rigorously. They tend to be compact, 
and frequently not suited for easy understanding. Detailed explanations are given in 
the text. References to relevant portions of the text are attached to the specifications. 

spec CAT = 
-section 2.1.1, deB.nition 2.1 

sorts OBJ' ARR 

subsorts COMPOSABLE -< ARR x ARR -composable arrows 
constraints small( ARR) -models are small categories 
operations 

dom: 
cod: 
id : 

ARR ~ OBJ 

ARR ~ OBJ 

OBJ ~ ARR 

-domain of an arrow 
-codomain of an arrow 
-identity arrow on an object 

_ o _ : COMPOSABLE ~ ARR -composition 
ax1oms 

XcoMPOSABLE = Af, g · dom(!) = cod(g) 
fo (g oh)=(! o g) oh -associative law 

Va --1...+ b · ida o f = f = f o idb -identity law 
end 

Notation: In the specifications below, the expression CAT named C denotes a 
renaniing operation on the specification CAT with the assignments 

OBJ 1-+ Obj(C), and ARR 1-+ Arr(C). 

The composition operator and identity arrows are not renamed; the context usually 
determines the category with which they are associated. 
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spec SIEVE-SPEC = 
-section 2.4, deB.nition 2.12 

extend CAT named C 
sorts SIEVE 
subsorts SIEVE ~ SET(Arr(C)) 
operations 

sieves: Obj(C) ~ SET(SIEVE) 
ax1oms 

-a sieve is a set of arrows closed under right composition 
XsIEvE = >..S · f E S:::} (Vg E Arr(C) · composable(f, g) :::} fo g E S) 

-tbe set of sieves on an object 

sieves(a) =· {SE SIEVE 1 3b ~a ES} 
-derived fact: elements of a sieve bave tbe same codomain 

VS E SIEVE, 3a E Obj(C) · (Vf ES· cod(f) =a) 
end 

spec SIEVE-AS-FUNCTOR = 
· -section 2.5.2, deB.nition 2.31 

ºextend SIEVE-SPEC 
-tbe operation </> below converts a sieve into a functor 
-this conversion is usually implicit, and </> will be omitted 

operations 
</> : SIEVE ~ Fun( CºP, Set) 

ax1oms 
-a sieve is a sub-functor of a cóntravariant hom-functor 

</>s(b) = { f E homc(b, a) 1 f E S} 
</>s(c ~ b) = g* 
where a = cod( S) -codomain of the arrows in S 
and g*:J~fog 

end 

In the specifications below, the sort SIEVE will be written as SIEVE(C) to explicitly 
indicate the category in which the sieves are defined. 
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spec SITE = 
-section 2.4, defi.nitions 2.13 and 2.14 

extend SIEVE-SPEC 
operations 

J: a---+ SET(sieves(a)) for a E Obj(C) 
axioms 

-axioms for a Grothendieck topology 
-maximal sieve (generated by the identity arrow) is a cover 

{ f 1 cod(f) = a } E J (a) 
-stability of covers under change of base 

RE J(a) ::;i. Vb ~a E Arr(C) · J*(R) E J(b) 
where J*(R) ={e ...L.+ b 1 f og E R} 

-stability of covers under refi.nement 

RE J(a) /\ 3S E sieves(a) · (Vb ~a E R · J*(S) E J(b)) 
::;i. SE J(a) 

end 
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Notation: The notation (C, J) in the specification for a sheaf below just assigns 
names to relevant parts of the site. 

spec SHEAF-SPEC( (C, J) :: SITE) = 
-section 2.5, defi.nition 2.33 

include SIEVE-AS-FUNCTOR -for the sieve R below 
sorts SHEAF 
subsorts SHEAF-< Fun(CºP, Set) 
operations · 

glue: F-+ Nat(R,F)---+ F(a) for FE SHEAF,a E Obj(C),R E J(a) 
ax1oms 

-the sheaf condition; 
-- o ÍR is the restriction ·af natural transformations induced 
-by the inclusion of the; sieve R in the hom-functor home(-, a) 

XsHEAF = 
AF · Va E Obj( C), V R E J( a) · bijective(_ o iR) 

where ÍR: R c.......+ home(-, a) 
and _o ÍR: Nat(homc(-, a), F)---+ Nat(R, F) 

glueF =y o /F 
where /F =(_o iR)-1 : Nat(R, F)---+ Nat(hornc(-, a), F) 

and y: Nat(hornc(-, a), F) ~ F(a) for a E Obj(C) 
--y is the bijection given by the Yoneda lemma; lemma 2.2 

end 

Notation: The sort SHEAF from the specification SHEAF-SPEC above will usually 
be written as SHEAF( (C, J)) to explicitly indicate the underlying site. 
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spec STRICT-EPl-FAMILY = 
-section 3.2, definitions 3.2, 3.3, and 3.4 

extend CAT named C 
sorts CC-FAMILY, EPl-FAMILY, STRICT-EPl-FAMILY 
subsorts STRICT-EPl-FAMILY-< EPl-FAMILY-< CC-FAMILY-< SET(Arr(C)) 

operations 
compatible: CC-FAMILY, CC-FAMILY-+ BOOL 

ax1oms 
-family of arrows with a common codomain 

Xcc-FAMILY = ')..F · 3a E Obj(C) · (V/ E F · cod(f) =a) 
-any FE CC-FAMILY will be represented below as {a¡-~ a 1 i El} 
-generalization oí "epimorphic" to íamilies oí arrows 

XEPI-FAMILY = ')..F · cc-family(F) /\ 
Vg, h: a :::i b · (Vi E I · g o/¡ = h o/¡) * g = h 
-family oí arrows compatible with a strict epimorppic íamily 

compatible( {a¡ ~a 1 i E I }, {a¡ ~a 1 i E l}) = 
Ve E Obj(C), Vi,j E/, Ve~ a¡, e~ ªi E Arr(C) · 

(/¡ O U = /j O V =} 9i O U = 9j O V) 

-strictness: the unique assembly property 
XsTRICT-EPI-FAMILY = >..F · epi-family( F) /\ 

VG E CC-FAMILY · compatible(F, G) =} (3!a ~ b · (Vi E I · h o/¡= g¡)) 

end 
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4.4 Pattern matching 

Finally, we provide a specification for pattern rnatching from which an algorithrn is 
derived in Chapter 5. The simplifying assurnptions rnade in this specification were 
discussed in Chapter 3. 

spec PM-SITE = 
-site suitable for pattern matching, sections 3.1 and 3.5 

extend SITE named (C, J), STRICT-EPl-FAMILY 
operations 

glue: R-+ (cc-FAMILY-+ Arr(C)) for RE J(a), a E Obj(C) 
ax1oms 

-all covers are strict epimorphic famiiies 
Va E Obj(C) · VS E J(a) · strict-epi-farnily(S) 

-gluing operation associated with a PM-SITE 
Defined(gluen( F)) if compatible( R, F) 

-the function below is obtained by Skoiemizing the existential 
-quantifi.er in the defi.nition of a strict epimorphic family 

gluen(F) = h -see the defi.nition of XsTRICT-EPI-FAMILY 

end 

spec PATTERN-MATCH( (C, J) :: PM-SITE) = 
sorts OCCURRENCE 
subsorts OCCURRENCE -< Arr( ~) -sorne arrows are occurrences 
operations 

occurrences: Obj(C), Obj(C)-+ SET(OCCURRENCE). 
ax1oms 

-ali arrows are occurrence arrows 
-simpiifying assumption ( section 3.1) 

XoccURRENCE =AX· true 
-derived fact; since ali arrows are occurrence arrows 

occurrences(p, t) = home (p, t) 
end 



Chapter 5 

Derivation of a 
Pattern Matching Algorithrn 

"Would you tell me, please, which way I ought to go from here?" 
"That depends a good deal on where you want to get to," said the Cat. 

- Lewis Carroll, Alice's Adventures in Wonderland (1865) 

5.1 Overview of the derivation 

A generalized version of the Knuth-Morris-Pratt pattern matching algorithm [Knuth 
et al. 77] is derived by gradually converting the extensional description of pattern 
matching as a sheaf into an intensional description. The ~lgorithm results from a 
synergy of four very general program synthesis/transformation techniques (figure 5.1): 

l. Divide and conquer: exploit the sheaf condition; assemble a full match by gluing 
together partial matches; 

2. Finite differencing: collect and update partial matches incrementally while 
traversing the target; 

3. Backtracking: instead of saving all partial matches, save just one; when this 
partial match cannot be extended, fail back to another; 

4. Partial° evaluation: precompute pattef,;n-based (and therefore constant) compu
tations. 

The derivation is carried out in a general framework using the axioms of a site 
( suitable for pattern matching) and the sheaf condition. All the theories and transfor
mations involved are formally described using the techniques of algebraic specification 
[Srinivas 90, Wirsing 90] (also see section 4.1). In addition to obtaining the Knuth
Morris-Pratt pattern matching algorithm for strings, trees, graphs, etc., by appropri
ately instantiating the underlying data structures and topologies, the same program 
derivation results in matching algorithms for patterns with variables and with multi
ple patterns. Pursuing other alternatives along the path of the main derivation results 
in algorithms such as Earley's algorithm for context-free parsing, and Waltz filtering, 
a relaxation algorithm for providing 3-D interpretations to 2-D images. These other 
algorithms will be discussed in Chapter 6. 
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(surveyed in [Srinivas 90, Wirsing 90]) 
lmplementations 

[Sannella and Tarlecki 88b] 

Figure 5.1: Overview of the derivation and classification of domain knowledge 
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5.2 Decision sequence and design space 

Before presenting the detailed derivation, we show an informal picture of the rele
vant decisions made during the derivation. Alternatives at each decision point are 
also briefly described, thus showing the part of the design space around the main 
derivation. 

The sheaf condition immediately provides a divide-and-conquer strategy for enu
merating the occurrences of a pattern in a target: 

l. (Decomposition step) Choose a cover for the pattern. 

2. (Recursive invocation) Find occurrences of elements of the cover, i.e., find par
tial occurrences of the pattern. 

3. ( Composition step) Compose partial occurrences to obtain occurrences of the 
pattern. 

Termination of the algori thm above requires the following assumption 

AssUMPTION. A finest cover exists for each pattern. 

In sites where finest covers may not exist, e.g., context-free parsing, other means 
of termination have to be employed. 

On scrutiny, we see that the recursive invocation in step 2 above will apply the 
algorithm using covers for each element of the original cover. Since covers are stable 
under refinement ( the third axiom of a Grothendieck topology), we can elimina te the 
recursive call by choosing the composite cover (a finer cover) in step l. 

If we choose the finest cover in step 1, then step 2 becomes the primitive step 
of a divide-and-conquer algorithm. This pri.mitive step is usually trivial, e.g., in the 
sheaves of section 3, this step consists of enu¡nerating the identity arrows on the finest 
cover of the target. Hence, we do not consider this step further. 

Having disposed of steps 1 and 2, we look at step 3, which is the most complex 
part of the algorithm. There are two parts in this step: 

3.1. Enumerate compatible families of partial occurrences on the chosen cover. 

3.2. Glue together compatible, partial occurrences to obtain total occurrences. 

By our assumption that covers are strict epimorphic families, the gluing operation 
required in step 3.2 is provided by the underlying site, which is a parameter to the 
derivation. 

After examining several characterizations of compatible families of elements, we 
select the representation of such families by eones. This representation reduces the 
problem of pattern matching on any site to that of graph matching, thus allowing us 
to exploit the properties of graphs in the rest of the derivation. 
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Canes over a diagram can be obtained by combining eones over parts of the dia
gram. This leads to a divide-and-conquer algorithm for enumerating the eones over 
a diagram. The relevant diagram here is that generated by the chosen cover of the 
pattern. We have chosen a binary decomposition so as to simplify the composition 
step. 

l. (Decomposition step) Split the pattern cover P into two pieces. 

2. (Recursive invocation) Find all the eones on each piece. 

3. ( Composition step) Combine the eones on pieces of the cover to obtain the eones 
on P. 

The recursion stops when a diagram cannot be decomposed any more, i.e., it 
consists of a single object or a single arrow. Cones on objects are trivial; eones on 
arrows can be obtained by an image computation. 

At this stage, we make a decision to sequentially traverse the target, rather than 
assuming that the extension of the sheaf is already given. Traversing the target 
inverts the computation of the eones; rather than actively assembling eones on pieces 
of the pattern cover, eones are assembled in the order given by the traversa!. Such 
an incremental algorithm is obtained by applying finite differencing to the recursive 
cone assembly above. 

1. Maintain a cache of partial occurrences; start with an empty cache. 

2. Traverse the target, producing a stream of eones on pieces of the pattern cover. 

3. For each increment, update all partial occurrences in the cache which are af-
fected. · . 

The incrementál algorithm above is a naive algorithm which maintains all partial 
occurrences. To facilitate optimizati,on, the problem is now reformulated as a search 
problem. 

1. A state in the search space consists of a partial occurrence (a cone), and the 
unprocessed part of the stream of increments. 

2. An operation in the search space consists of expanding the partial occurrence 
in a state using sorne increment in the stream. 

3. The goal predicate tests for states which contain full occurrences. 

The incremental algorithm above is equivalent to a breadth-first search of this 
state space. It can be improved by applying standard optimizations to the search. 
For example, we can prune away states which are not expandable. In the case of 
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strings, with a left-to-right traversa! of the target, we need only save those partial 
occurrences which touch the right end of the part of the target already traversed. 
This reduces the number of partial occurrences which have to be updated on each 
cycle of the incremental algorithm. 

We can further reduce the number of partial occurrences at any stage by employing 
our overall heuristic of converting an extension into an intension: we replace a set 
of partial occurrences by a generator for that set. Such sets can be precomputed, as 
shown below. 

Examination of the definition of compatible families reveals that, in a partial 
occurrence, each piece of target is associated with a piece of the pattern. In other 
words, each piece of the target is "parsed" as a piece of the pattern. Now, if a piece 
of the pattern occurs more than once in the pattern, then a piece of the target can 
generate multiple parses. The relationship of the pattern with itself can be precisely 
represented as the pattern-pattern-sheaf, i.e., the sheaf of occurrences of the pattern 
in the pattern. 

By applying the first few steps of our derivation to the pattern-pattern-sheaf 
(observe that our derivation applies to any sheaf, not just to sheaves of occurrences ), 
we can precompute the following: 

for each partial occurrence v, the set of partial occurrences which can be gen
erated from v by parsing its pieces differently. 

Such alternative partial occurrences which are generated are said to be subsumed 
by the original partial occurrence. The subsumption relation forms a partial order. 
U sing such precomputed sets, we can more efficiently search (breadth-first search with 
dependency-directed backtracking) the space: of partial occurrences: 

1. Try to expand the current set of partial occurrences using sorne parse of the 
current increment. 

2. If sorne partial occurrence cannot be expanded, replace it with the largest partial 
occurrences subsumed by it and try again. 

In the algorithm above, it may happen that for a particular increment, a par
tial occurrence has to be repeatedly replaced by subsumed partial occurrences until 
the increment can expand one. This repetition can be avoided by precomputing the 
appropriate subsumed partial occurrences for each partial occurrence and increment 
pair: this function is the failure function of the Knuth-Morris-Pratt algorithm. All 
these optimizations are then consolidated into a generalized Knuth-Morris-Pratt al
gorithm. 
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5.3 Detailed derivation 

The starting point of our derivation is the algebraic specification of pattern matching 
given in the previous chapter. For convenience, we repeat that specification here. 

spec PATTERN-MATCH( (C, J) :: PM-SITE) = 
sorts OCCURRENCE 

subsorts OCCURRENCE -< Arr( C) -sorne arrows are occurrences 
operations 

occurrences: Obj(C), Obj(C)--+ SET(OCCURRENCE) 

ax1oms 
-all arrows are occurrence arrows 
-simplifying assumption ( section 3.1) 

X occURRENCE = ,.\x · true 
-derived fact; since all arrows are occurrence arrows 

occurrences(p, t) = home (p, t) 
end 

5.3.1 The extension of the occurrence relation 

To derive an algorithm for finding occurrences, we will use the technique of converting 
the extension of the occurrence relation into an efficient intension (i.e., algorithm). 
The advantage of investigating the extension is that it captures only the essential 
properties of the occurrence relation, and is also impartial to sequential and parallel 
algorithms. Extensionally, the occurrence relation for a fixed target and variable 
pattern forms a sheaf, as shown by lemma 3.1. We include this fact in the specification 
below. 

spec PATTERN-MATCH-1( (C, J) ·:: PM-SITE) = 
extend PATTERN-MATCH( (C, .J) ), SHEAF-SPEC( (C, J)) 
operations 

occ-sheaf: Obj(C)--+ Fun(CºP, Set) 
ax1oms 

-fixed target; variable pattern 
occ-sheart = home ( - , t) 

-hom-functors are sheaves when covers are strict epimorphic families 
-Lemma 3.1 

occ-sheaft E SHEAF( (C., J)) 
end 
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5.3.1.Alt.1 Pattern matching as search: Geometry vs. algebra 

Rather than choose to fix the target, we can choose to fix the pattern, and investigate 
the properties of hornc(p, -). This converts pattern matching into a search problem, 
and most derivations of the Knuth-Morris-Pratt algorithm in the literature start with 
such a characterization. For example, Dijkstra starts with the following specification 
for matching in strings [Dijkstra 76]: 

Given a pattern p and a target t, find all indices i, with 1 ~ i ~ ltl, such 
that p matches t at i. 

The collection of indices 1 ~ i ~ ltl defines a search space. The condition "match(p, t, i)" 
is the goal predicate. 

We have not chosen the approach of matching as search because it is difficult 
to generalize this specification: the formulation depends on the properties of the 
particular data structure chosen. Also, this approach misses the geometric aspects of 
pattern matching, and hence results in a poorer theory. 

Any treatment of pattern m~tching has to deal with aspects concerning both the 
pattern and the target. For example, later on in Dijkstra's derivation, the decompo
sition of the matching relation given by 

match(p, t, i) = Vl ~ j ~ IPI · p[j] = t[i + j - 1] 

is used to design the failure function by considering the relationship of the pattern 
with itself. 

In our derivation, we postpone considering aspects concerning the target until 
section 5.3.17. 

Whenever there is a problem described in terms of hom-sets, e.g., hornc(p, t), there 
are, in general, two ways of looking for solutions: explore properties of p, and explore 
properties of t. The former results in geometric concepts; the latter in algebraic or 
logical concepts. This duality is characteristic of category theory, arising from the fact 
that arrows are accorded a first-class status, and from the fact that the directionality 
of arrows differentiates objects which are domains and objects which are codomains. 

The interaction between the two approaches comes to the fore in sheaf theory: the 
site captures the geometry, the stalk space captures the algebra. The power of sheaf 
theory comes from this ability to combine the two aspects. Our use of sheaf theory to 
describe pattern matching not only exploits well-known mathematical results, but also 
shows that many data structures in computer science possess interesting geometric 
properties. 
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5.3.2 A divide-and;..conquer theory 

The sheaf condition provides an opportunity for calculating occurrences(p, t) using 
partial occurrences on pieces of p (a piece of pis an element of a cover of p). Thus, 
we use a divide-and-conquer strategy to compute occurrences. To do so, we will 
first describe a theory of divide-and-conquer algorithms, and then see what addi
tional assumptions are necessary by comparing this theory with the specification 
p ATTERN -MATCH-1 above. 

We reproduce below the divide-and-conquer theory invented by Smith [Smith 85], 
simplified and translated into the algebraic specification notation being used here. 
We are interested in divide-and-conquer program schemes1 of the following kind: 

F(x) = 
if 

Primitive( x) -4' DirectlySolve ( x) O 

--, Primitive ( x) -4' Compase o a( F) o Decompose( x) 
fi 

Translated into our notation, the specification of F looks as in the specification 
DIVIDE-AND-CONQUER below. The specification SET-1 defines the higher-order func
tion "a", which applies a given function to all the elements of a set, and builds the 
set of results. 

spec SET-1 = 
extend SET 

operations 
a: (D -4- R) -4- (SET(D) -4- SET(R)) 

ax1oms 
-apply a function to eacb element of a set 
-and return tbe set of the results 

a(f)(0) = 0 
a(!)( { x}) = {f(x)} 
a(!) ( x U y) = a(!) ( x) U a(!) (y) 

end 

1The notation is similar to that of Dijkstra's guarded commands [Dijkstra 76]. 
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spec DIVIDE-AND-CONQUER = 
-based on {Smith 85} 

extend SET-1 

sorts D, R -domain and range 
subsorts P -< D, NP -< D -primitive and non-primitive elements of D 

operations 
_ >- _ : D, D -+ BOOL -well-founded arder on D 

primitive : D -+ BOOL 

directly-solve : P -+ R 

decompose : NP -+ SET( D) 

compose: SET(R) -+ R 

ax1oms 
-D is the disjoint union of primitive and non-primitive elements 

D = P U NP P n NP = 0 
XP = primitive XNP = ..., primitive 
well-founded(>-) -no iilfinite descending cbains 

-tbe decompose operator preserves >-
V xi E decompose( x) · x >- Xi 

end 

The intent is to use the divide-and-conquer specification above to implement an 
arbitrary specification II-SPEC, 

spec II-SPEC = 
sorts D, R 

operations 
Il:D-+R 

end 

via a constructor DC-IMP (see [Sannella and Tarlecki 88.b] for a definition of construc-
tor implementations) ' 

II-sPEC ~ nc-IMP(mv'rnE-ANn-coNQUER) 

where the constructor DC-IMP defines a recursive function F in the specification 
DIVIDE-AND-CONQUER as shown below: 

constructor DC-IMP = 
derive from 

extend DIVIDE-AND-CONQUER with 
F:D-+R 

-· recursive definition of F 
primitive( x) =} F( x) = directly-solve( x) 
--, primitive( x) =} F( x) = compose o a( F) o decompose( x) 

by { II ~ F, D ~ D, R ~ R_} 

end 
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The implementation above is correct if we can prove that 

Vx E D · IT(x) = F(x). 

The key feature of a divide-and-conquer implementation is that the proof of the 
proposition above is carried out by structural induction over the domain D using the 
well-founded order >-. This entails 

l. proving primitive(x):::} II(x) = directly-solve(x); and 

2. proving -, primitive( x) :::} II( x) = compose( { F( x¡)}) with the assumption that 
Vxi E decompose(x) · IT(xi) = F(xi)· 

Given proofs of the two parts above, we can conclude (using Theorem 6.1 of 
[Smith 85)) that the implementation of II by F is correct. 

5.3.3 Exploiting the sheaf condition 

Comparing the specifications II-SPEC and PATTERN-MATCH-1, we get the following 
correspondence: 

II 1-+ occurrences 
D 1-+ Obj(C) X Obj(C) 
R 1-+ SET( OCCURRENCE) 

Thus the problem now is to design appropriate decomposition and composition 
operators. Since we are interested in: exploiting the sheaf condition, we postulate a 
decomposition operator which assigns a covering sieve to each non-primitive pattern. 

decompose: Obj(C) ---+ SIEVE(C), -partial 
-decomposition yields a covering sieve 
-decision about which deqomposition to pick is delayed 

decompose(p) E J (p) , 
Defined( decompose(p)) if -, primitive(p) 

The appropriate sheaf to use for computing occurrences is given by the following 
sequence of equations. 

occurrences(p, t) 
= hornc(p, t) -defi.nition from PATTERN-MATCH 
= home ( - , t) (p) -Curry on the second argument 
= occ-sheaft(p) -defi.nition from PATTERN-MATCH-1 

\ 

By the sheaf condition, using the cover for p given by the decomposition operator, 
we have 
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occ-sheae (p) = { glueocc-sheaf ( T) 1 T E N at( P, occ-sheaft) } 
where P = decompose(p) 

The expression Nat(P, occ-sheaft) above is ha.sed on the declarative/extensional 
view of the sheaf where the values of occ-sheaft(x), for all arguments x, are all assumed 
to exist in advance. Since we are interested in an algorithm to compute occ-sheaf\p), 
we do not have the luxury of this assumption. Thus, let us see for what x's the values 
of occ-sheaft(x) are necessary to compute Nat(P,occ-sheaft). By definition, a natural 
transformation T E N at( P, occ-sheafi) assigns a function Tp¡: P(pi) --+ occ-sheaft(Pi) 
for each Pi E Obj(C). These functions are. trivial for all Pi for which P(p¡) 'is empty. 
Thus, we need only values of occ-sheaft(Pi) for each Pi for which P(pi) is not empty. 
This collection of Pi is precisely the base of cover P of p given by the decomposition 
operator (see definition 2.32). 

Thus, for a non-primitive pattern p, we have the following steps for calculating 
occ-sheaft (p): 

decompose p, obtaining a covering sieve P with base {Pi 1 i E I} 
recursively invoke occ-sheaf\p¡ )lhase(P) 
compute Nat(P, occ-sheaft) -using values of occ-sheaft at Pi, i E I 
VT E Nat(P,occ-sheaft) · glueocc-sheaít(T) 

In the sequence of steps above, the decomposition operator does not produce a 
set; it produces a sieve. 2 Thus, the signature of the DIVIDE-AND-CONQUER the
ory is not general enough to accommodate this situation. We will not, however, 
generalize the DIVIDE-AND-CONQUER theory. In the two instances where we use a 
functorial version of divide-and-conquer '3 we validate the implementation: the imple
mentation DC-PATTERN-MATCH in section 5.3.5 is justified by the sheaf condition; the 
implementation CONE-DECOMPOSITION in section 5.3.10 is justified by Theorem 5.1 
on cone decomposition. 

5.3.4 Existence of finest covers 

To determine the particular cover assigned by the decomposition operator to a pat
tern, let us examine the recursive invocation of the divide-and-conquer algorithm. In 
this step, for each non-primitive pattern p¡, the decomposition operator is applied 
again to yield a cover for Pi. ~Since covers are stable under refinement ( the third 
axiom of a Grothendieck topology), we can design the decomposition operator such 
that the composed, finer, cover is returned on the first invocation. By unfolding the 

2It is not possible to treat the sieve here as a set; the structure of the sieve is essential for 
determining compatible families of partial occurrences which can be glued together. 

3 A functorial version of divide-and-conquer implements a functor. Both objects and arrows are 
decomposed. The decomposition is via a colimit; the composition is via a limit. 
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divide-and-conquer algorithm further, we can continue this process until the decom
position operator yields a cover none of whose pieces can be further decomposed. 
This necessitates the assumption that finest covers exist in the underlying site. 

Moreover, for the divide-and-conquer algorithm to terminate, we require that the 
decomposition operator always yield a finite cover, and that primitive objects be 
finite, so that the base step, "directly-solve" will termínate. Together with the finest 
cover assumption, this implies that all objects in the site are finite. 

spec FINITARY-NOETHERIAN-PM-SITE = 
-PM-.SITE in which objects are fi.nite and fi.nest covers exist 

extend PM-SITE 

axioms 
-~ is the inclusion relation on sieves 
-S ~ R mea.ns S is at least as fi.ne as R 
-a fi.nest covering sieve exists for each object; additional assumption 

Va E Obj(C), ::lF E J(a) · (VR E J(a) · F ~ R) 
-fi.niteness of objects 

Va E Obj(C) · finite(a) 
end 

5.3.4.Alt.1 No finest covers 

The assumption that finest covers exist need not al ways be true. For an example, 
consider the standard topology on complex numbers, with the problem of computing 
Mandelbrot sets on the unit circle. The computation can be split up by using a cover 
for the unit circle. A finest such split does not exist. Since the ordering imposed 
by splitting is not well-founded, a divide-and-conquer algqrithm will not terminate. 
Hence we have to resort to other means to terminate the algorithm: e.g., impose 
restrictions on the precision, or on the time allocated for the process. 

For another example, where finest covers need not exists, see section 6.2. 

5.3.5 A divide-and-conquer algorithm 

Using the existence of finest ~overs, we can eliminate the recursion in the divide-and
conquer algorithm by unfolding it completely. We thus have the following implemen
tation for PATTERN-MATCH-1. 
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spec DC-PATTERN-MATCH( (C, J) :: FINITARY-NOETHERIAN-PM-SITE) = 
sorts P-OBJ' NP-OBJ, P-ARR, NP-ARR 

-primitive and non-primitive objects and arrows 
subsorts P-OBJ -< Obj(C), NP-OBJ -< Obj(C), 

P-ARR-< Arr(C), NP-ARR-< Arr(C) 
operations 

dc-occs : Obj(C) -+ Fun(CºP, Set) 
prim-obj : Obj(C) -+ BOOL 

pnm-arr: Arr(C)-+ BOOL 

directly-solve: P-OBJ, Obj(C)-+ Obj(Set) 
directly-solve: P-ARR, Obj(C)-+ Arr(Set) -overloaded 

decompose : NP-OBJ -+ SIEVE( C) 
-a decomposition operator for non-primitive arrows is not necessary4 

-the composition operator is implicit 
ax1oms 

-primitive and non-primitive objects are disjoint 
XP-OBJ = prim-obj XNP-OBJ = ..., prim-obj 

-primitive and non-primitive arrows are disjoint 
XP-ARR = prim-arr XNP-ARR = ..., prim-arr 

-primitive objects have no non-trivial covers5 

prim-obj(p) iff J(p) = { { f 1 cod(f) = p}} 
-arrows are primitive if their domain and codomain are primitive objects 

prim-arr(p ~ q) iff prim-obj(p) /\ prim-obj(q) 
-decomposition yields the fi.nest covering sieve 

decompose(p) E J(p) /\ VR E J(p) · decornpose(p) ~ R 
-details of "directly-solve" will be delayed 

-defi.ni tion of "dc-occs" 
prim-obj(p) => dc-occst(p) = directly-sol~et(p) 
prim-arr(f) => dc-occst(f) = directly-sol;vet(f) 

-the composition operator applies the sheaf condition 
-to go from partial occurrences to full occurrences 

•prim-obj(p) => dc-occst(p) = {gluep(r) 1 TE Nat(Plbase(P),dc-occstlbase(P))} 
where P = decompose(p) -the sieve P is represented as a functor 

-computation oí "dc-occs" for non-primitive arrows in not necessary 
end 

4Computing the sheaf for non-primitive arrows is done by choosing a cover for the codomain and 
pulling-back the cover to the domain using the second axiom of a Grothendieck topology. 

5The trivial cover is the sieve generated by the identity arrow, and guaranteed to be a cover by 
the first axiom of a Grothendieck topology. 
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divide-and-tonquer algorithm further, we can continue this process until the decom
position operator yields a cover none of whose pieces can be further decomposed. 
This necessitates the assumption that finest covers exist in the underlying site. 

Moreover, for the divide-and-conquer algorithm to terminate, we require that the 
decomposition operator always yield a finite cover, and that primitive objects be 
finite, so that the base step, "directly-solve" will terminate. Together with the finest 
cover assumption, this implies that all objects in the site are finite. 
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Va E Obj(C), 3F E J(a) · (VR E J(a) · F ~ R) 
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end 

5.3.4.Alt.1 No finest covers 

The assumption that finest covers exist need not always be true. For an example, 
consider the standard topology on complex numbers, with the problem of computing 
Mandelbrot sets on the unit circle. The computation can be split up by using a cover 
for the unit circle. A finest such split does not exist. Since the ordering imposed 
by splitting is not well-founded, a divide-and-conquer algqrithm will not terminate. 
Hence we have to resort to other means to terminate the algorithm: e.g., impose 
restrictions on the precision, or on th.e time allocated for the process. 

For another example, where finest covers need not exists, see section 6.2. 

5.3.5 A divide-and-conquer algorithm 

U sing the existence of finest covers, we can eliminate the recursion in the divide-and
conquer algorithm by unfolding it completely. We thus have the following implemen
tation for p ATTERN - MATCH- l. 
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-primitive and non-primitive objects and arrows 
subsorts P-OBJ -< Obj(C), NP-OBJ -< Obj(C), 

P-ARR-< Arr(C), NP-ARR-< Arr(C) 
operations 

dc-occs : Obj(C) --+ Fun(CºP, Set) 
prim-obj : Obj(C) --+ BOOL 

pnm-arr: Arr(C) --+ BOOL 

directly-solve: P-OBJ, Obj(C)--+ Obj(Set) 
directly-solve: P-ARR, Obj(C) --+ Arr(Set) -overloaded 

decompose : NP-OBJ --+ SIEVE( C) 
-a decomposition operator for non-primitive arrows is not necessary4 

-the composition operator is implicit 
ax1oms 

-primitive and non-primitive objects are disjoint 
XP-oBJ = prim-obj XNP-oBJ = ..., prim-obj 

-primitive and non-primitive arrows are disjoint 
XP-ARR = prim-arr XNP-ARR = ..., prim-arr 

-primitive objects have no non-trivial covers5 

prim-obj(p) iff J(p) = { { J 1 cod(f) = p}} 
-arrows are primitive if their domain and codomain are primitive objects 

prim-arr(p ~ q) iff prim-obj(p) /\ prim-obj(q) 
-decomposition yields the E.nest covering sieve 

decompose(p) E J(p) /\\IR E J(p) · decompose(p) ~ R 
-details oí "directly-solve" will be delayed 

-denni tion of "dc-occs" 
prim-obj(p) => dc-occs\p) = directly-solvet(p) 
prim-arr(J) => dc-occst(J) = directly-solyet(J) 

-the composition operator applies the sheaf condition 
-to go from partial occurrences to full occurrences 

•prim-obj(p)::::} dc-occst(p) = {gluep(r) 1 TE Nat(Plbase(P),dc-occst lbase(P))} 
where P = decompose(p) -the sieve P is represented as a functor 

-computation of "dc-occs" for non-primitive arrows in not necessary 
end 

4Computing the sheaf for non-primitive arrows is done by choosing a cover for the codomain and 
pulling-back the cover to the domain using the second axiom of a Grothendieck topology. 

5The trivial cover is the sieve generated by the identity arrow, and guaranteed to be a cover by 
the first axiom of a Grothendieck topology. 
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The specification PATTERN-MATCH-1 is implemented by the specification 
DC-PATTERN-MATCH above via the following constructor which extends the speci
fication with a function to return occurrences, renames sorne functions, and hides 
others: 

PATTERN-MATCH-1 ~ K-DC(DC-PATTERN-MATCH) 

where 

constructor K-DC = 
derive from 

extend DC-PATTERN-MATCH with 
operations 
occurrences: Obj(C), Obj(C) ~ SET(OCCURRENCE) 

axioms 
-the main fµnction being implemented 

· occurrences(p, t) = dc-occst (p) 
by { occurrences .,_+, occurrences, occ-sheaf 1-+ dc-occs} 
end 

Note that, in the specification DC-PATTERN-MATCH, we not only have imple
mented the body of the specification PATTERN-MATCH-1, but also added an addi
tional assumption to the parameter theory PM-SITE ( that finest covers exist). For 
the specification above to be a valid implementation, we have to invoke the theorem 
about the compatibility of vertical implementation steps and horizontal structuring 
Óperations (parameterization) [Sannella and Tarlecki 88b]. 

EXAMPLE 5 .1. Here is an example to illustrate the working of the algorithm in 
DC-PATTERN-MATCH using the occurrence sheaf. for graphs shown in figure 3.2. 

Primitive patterns in this site (LUCGraphr_¡.) consist of graphs which have only 
one node or only one edge. The pa~tern pis not primitive. Hence it is decomposed 
in to the finest cover P shown in the figure. Note that the pieces of the finest cover 
are primitive (i.e., nodes or edges), and cannot be decomposed further. 

The operation "directly-solve" finds occurrences of the pieces in the pattern cover. 
Note that "directly-solve" not only has to enumerate occurrences of pattern pieces 
but also has to compute restrictions corresponding to any arrow in the pattern cover. 
Thus, "directly-solve" builds the part of the occurrence sheaf shown in the figure, 
except the occurrences of p. 

N ext, compatible families of partial occurrences are enumerated; an example is 
shown in bold arrows in the figure. Finally, the elements of such families are glued 
together to obtain occurrences of the pattern p. O 
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5.3.5.Alt.1 A complex-divide-simple-merge strategy 

In the divide-and-conquer implementation DC-PATTERN-MATCH above, we chose a 
one-step decomposition operator, thus pushing all the work into the composition op
erator (see section 5.3.7 below). An alternative is to choose a simple composition 
operator, e.g., a binary decomposition of the pattern, so that the composition oper
ator has to handle only two arguments at a time. In this case, the computation of 
Nat(P, dc-occst) can be reduced to a simple pullback (using the equivalence with lim
its in section 5.3. 7 below ). Such a strategy is useful when designing parallel pattern 
matching algorithms. 

5.3.6 The gluing operation 

In the implementation DC-PATTERN-MATCH above, in the expression 

we used the gluing operation associated with the- cover P. Strictly speaking, this glu
ing operation depends on the sheaf "occ-sheaft" in the specification PATTERN-MATCH-1. 

However, the natural transformation r above corresponds to a family of arrows 
F = {Pi ---+ t 1 Pi E P} which is compatible with the covering sieve P ( cf. Lemma 3.1). 
Thus, we can substitute for "glueocc-sheaft", the gluing operation "gluep'' obtained from 
the underlying site: "gluep'' is the gluing operation associated with the cover P by 
virtue of its being a strict epimorphic family. 

5.3. 7 Compatible families of partial occurrences 

. The most complex step of the implementation DC-PATTERN-MATCH is the compu
tation of the set of natural transformations. Nat(P, dc-occst). Intuitively, any such 
natural transformation is a compatible famÍly of partial occurrences of the pattern 
(see section 2.5.3). We now examine several characterizations of compatible fainilies 
to see which is most amenable to efficient cbmpufation. 

Let F: CºP---+ Set be a sheaf on a site (C, J), and let RE J(a) be a covering sieve 
of the object a E Obj(C). 

5.3. 7.Alt.1 Computing natural transformations from first principies 

We can compute the set of natural transformations Nat(R, F) by going back to first 
principies, using a generate-and-test algorithm, as shown in figure 5.2. 
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l. (Generate) For each object a E ICI, enumerate the set of functions 
from R(a) to F(a). Compute the product IlaelCI Set(R(a), F(a)) of 
all these sets. 

2. (Test) For each tuple T in the product, for each arrow a~ bine, 
test the commutativity of the following diagram: 

R(a). Ta .. F(a) 

R(f)l 

R(b) 

!F(f) 

Tb .. F(b) 

? 

Retain only those tuples which pass the test. 

Figure 5.2: Generate-and-test algorithm for N at( R, F) 

5.3. 7.Alt.2 Exploiting the limit theorem 

77 

An alternative characterization is given by the following bijection (lemma 2.4, sec
tion 2.1.5): 

Nat(R,F) ~ ~F#, 
C/R 

where the functor F#: C/ R-+ Set is given by 

F#((a,a)) = F(a) and 

The diagram over which the limit is calculated is the graph of the sieve R. 
The limit above may be directly cmp.puted using the limit theorem [Mac Lane 71, 
page 109], which states that limits can be computed using products and equalizers. 
For readers who have the inclination for such details, it is interesting to note that 
the computation of the limit above by products and equalizers is identical to the 
generate-and-test scheme for natural transformations presented above, but restricted 
to the base of the sieve R. [Rydeheard and Burstall 88, page 82] shows a slightly 
different formulation of the dual of the limit theorem, and also shows how to convert 
such a constructive theorem into an algorithm. 

N otation. In subsequent dÍscussion, we will drop the superscript in p# as it can 
be deduced from the context. 
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The chosen alternative 

Another way to compute the limit, taking advantage of the fáCt that F is a set-valued 
functor, is given by the following bijection [Mac Lane 71, page 106]: 

LimF ~ Cones(l, F), 
~ C/R 
C/R 

where "1" denotes any singleton set. We give below a functorial definition of "cone" 
( cf. definition 2.5), so as to connect the notion to that of a compatible family of partial 
occurrences. 

DEFINITION 5.2: Cone. Let e and :r be two categories, :r being the "index" or "di
agram" category (usually finite or small), and Fa functor F: :J-+ C. Corresponding 
to any C-object e, we have the constant functor 6.c which maps all :J-objects onto e 
and all :J-arrows onto idc. A cone from e to the functor F: :J-+ C is defined to be a 
natural transformation 6.c ~ F. O 

Thus, a cone v from the object e to the functor F assigns to each object j E :J 
an arrow e ~ F (j) su ch that for each arrow j ~ k in :J, the following diagram 
commutes: 

e 

i~ 
F(j) ~ F(k) 

F(f) 

The diagram above also shows the origin of the name "cone" for this construct. 
We will now interpret the definition of a' cone in the context of pattern matching. 

We are interested in eones of the form Cones(l, F) with F: CºP-+ Set an occurrence 
C/P 

sheaf and P a covering sieve for a pattern p E ICI. As we saw in section 2.1.5, C/ Pis 
just the graph of the sieve P considered as a functor. The objects of C/ P are pieces 

Pi -+ p of the pattern, and the arrows are of the form Pi ~ Pi. A cone from "1" to 
F assigns to each piece Pi -+ p of the pattern an element q¡ E F(p¡), such that for 

any arrow Pi ~ Pi in C/ P, we have F(f): q¡ .....+ qi. Thus, it can be seen that each 
such cone is a compatible family of partial occurrences. 

Two examples of eones using the example occurrence sheaves in figures 3.1 and 3.3 
are shown in figures 5.3 and 5.4. 

We choose the cone characterization of compatible families of occurrences to fur-
ther proceed with the derivation, because it is a direct description of the intuitive 
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PATTERN,p 

b 

COVER FOR PATTERN, P 
(same as C/ P) 

/\ 
a e 

UNDERLYING SITE, C 

. . 
occuRRENCE s:i¡¡EAF, F: CºP ~ Set 

' ' ' ' ' ' ' 

a1- b3 

' \ I 
' \ I 

I 
I 

I b4 
; I 

I 

I 
I 

' \ I " 

" " 

' \ I " .,. 
' \ I " .,. .,. 

" " " 

" " " 

b 

bi- Ct 

b3- C3 

' \ I " .,. 
',, / / .,. ... "'"'v E Cones(l,F) 

,, 1,,".,.""' C/P 
1 ... 

Figure 5.3: Cone on an occurrence sheaf: example with trees (cf. figure 3.1) 
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PATTERN,p COVER FOR PATTERN, P 

GRAPH OF PATTERN COVER, C/ P 

UNDERLYING SITE, C 

.· 
OCCURRENCE SHEAF F: CºP --+ Set 

Figure 5.4: Cone on an occurrence sheaf: exarnple with strings ( cf. figure 3.3) 
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notion of compatible family of elements, and because it can be converted into an 
efficient algorithm. We record this decision in the specification in section 5.3.8 below, 
where the gluing operation is also accordingly modified. 

5.3.8 Assessment 

Consolidating the work of the past few sections, we have the following implementation 
for pattern matching. 

spec DC-PATTERN-MATCH-1( (C, J) :: FINITARY-NOETHERIAN-PM-SITE) = 
extend DC-PATTERN-MATCH 

axioms 
-primitive part of "dc-occs" does not change 

prim-obj(p) ~ dc-occst(p) = directly-solvet(p) 
prim-arr(f) ~ dc-occst(f) = directly-solvet(f) 

-non-primitive part of "dc-occs" is modifi.ed to use eones 
• prim-obj(p) ~ dc-occst(p) = { gluep(v) 1 v E Cones(l, dc-occst)lhase(P)} 

C/P 

where P = decompose(p) 
end. 

Examination of the occurrence sheaves in figures 3.r-3.3 and the cone exam
ples 5.3-5.4 reveals that enumerating compatible families of partial occurrences, 
Cones(l, occ-sheaft), is equivalent to finding occurrences of the graph of the pattern 

C/P 

cover ( represented as a functor) in the graph of the occurrence functor. Thus, we ha ve 
converted the pattern matching problem into a graph matching problem. This seems 
circular, and a retrograde step, since our intention is to derive a pattern matching 
algorithm. However, this characterization is helpful because of severa! reasons. 

First, it reduces pattern matching on any FINITARY-NOETHERIAN-PM-SITE to 
pattern matching on graphs. To realize the significance of this, consider the fact that 
the underlying site can be arbitrarily complex.6 This reduction illustrates the power 
of category theory as a language for parameterization. 

Second, it allows us to use specific properties of graphs to design a general pur
pose pattern matching algorithm. For example, the distributive law in section 5.3.15 
crucially depends on the fact that strict epimorphic families in the category of graphs 
are colimi ts ( this is generally not true, see footnote on page 46). 7 

Third, the richness of the topology on graphs provides opportunities for decom
posing covers in many different ways. Such decomposition opportunities may not 
exist in the underlying site. Here are two examples. 

6This does not mean that the problem has been simplified. Graph matching is a hard problem: 
subgraph isomorphism is NP-complete. 

7Strict epimorphic families are colimits in any topos. The category of graphs is a topos since it 
is equivalent to the functor category Set~. 
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EXAMPLE 5.3. Consider the site of strings (exarnple 2.22), in which the only non
identity covers are the finest covers. Hence, there a;e no interrnediate decornpositions 
possible. O 

Lest the reader think the exarnple above is a pathological case: 

EXAMPLE 5.4. Sorne interrnediate sieves between the identity cover and the finest 
cover are not covers in a tree. Consider the tree pattern 

X 

/\ 
a + 

/\ 
b e 

in the site LTree'- (see section 3.4). When the target is traversed depth-first, and 
occurrences are assernbled bottorn-up, it is possible to have a partial occurrence of 
the form 

X 

/ 
a + 

/\ 
b e 

which is obviously not a tree. A similar situation arises when assembling occurrences 
of connected graphs: partial occurrences during intermediate stages need not be 
connected graphs. O 

When such decomposition opportunities do not exist, a top-down complex~divide
simple-merge strategy ( see section 5.3.5.Alt.1) becornes useless. This is the essential 
difference between the parallel algorithms generated by using the design alterna
tive 5.3.5.Alt.1 and the alternative 5.3.13.Alt.1. 

In the examples above, we can rectify the lack of decomposition opportunities 
for covers by altering the topology or expanding the underlying category of the site. 
Rat.her than do this on a site-by-site basis, our approach using eones shows a system
atic and general way of accomplishing this. 
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5.3.9 Reduction of pattern matching to graph matching 

Before proceeding with the derivation, we slightly modify the divide-and-conquer 
implementation of pattern matching into an implementation solely in terms of eones. 
This formalizes the informal remarks in the previous section, and also simplifies the 
rest of the derivation. 

In the divide-and-conquer implementation DC-PATTERN-MATCH-1, primitive ob
jects and arrows are not implemented using eones. To fold the handling of primitive 
objects and arrows into cone computation, we use the identity cover on primitive ob
jects. Thus, the partial function "decompose" can be extended into a total function. 
We have the following implementation by separating the primitive computations into 
a separate function: 

spec DC-PATTERN-MATCH-2( (C, J) :: FINITARY-NOETHERIAN-PM-SITE) = 
enrich DC-PATTERN-MATCH-1 
operations 

decompose: Obj(C) :-.+ SIEVE(C) 
prim-occs: Obj(C)--+ Fun(CºP,Set) 

ax1oms 
-decomposing a primitive object yields the identity cover 

prim-ob j (p) =? decompose(p) = { f 1 cod(f) = p } 
- "prim-occs" is the restriction oí "dc-occs" 
-to primitive objects and arrows 

prim-obj(p) =? prim-occst(p) = directly-solvet(p) 
prim-arr(/) =? prim-occst(/) = directly-solvet(f) 

-definition oí "dc-occs" just in terms oí eones 
dc-occst(p) = { gluep(v) 1 v E Cones(l, prim-occst)lbase(P)} 

C/P 
where P = decompose(p) 

end 

5.3.10 Piecewise assembly of eones 

To compute eones over the diagram generated by the pattern cover P, we again use 
a divide-and-conquer algorithm. ~his time, however, we will use a decomposition of 
the diagram given by a colimit, rather than a cover. This is permissible since we will 
be working in the category of (small) diagrams; or, more precisely, the site generated 
by this category along with the standard topology given by inclusion arrows.8 

8This category is similar to the category of graphs in exarnple 2.19, except that the cornposition 
operation is absent for graphs. The essential structure is that of graphs; the cornposition operation 
is not used. Different books on category theory adopt one of the two approaches to diagrama: treat 
thern as categories or treat thern as graphs. Treating thern as categories is sirnpler in the context of 
this dissertation. 
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DEFINITION 5.5: The site of diagrams. The category of small diagrams with inclusion 
arrows, denoted Diag'-, is the subcategory of Cat (the category of small categories) 
containing all the objects but only inclusion arrows. A sieve { d¡ ~ d 1 i E I} is a 
covering sieve for the diagram d if UieI d¡ = d. O 

We can define a well-founded order on diagrams by d >- d' if there is an inclusion 
d' ~ d. This order is well-founded because a finest cover always exists for every 
diagram; it consists of the collection of objects and the collection of arrows in the 
diagram. 

The existence of finest covers guarantees termination of a divide-and-conquer com-
putation of eones on finite diagrams. The ha.sis step of the divide-and-conquer algo
rithm is also easy. Cones on a diagram consisting of a single object are trivial. Corres 
on a diagram consisting of a single arrow are obtained by taking the image of the set 
function corresponding to the arrow. 

Finally, to complete the divide-and-conquer algorithm, we need a proof of the 
strong problem reduction principie (i.e., structural induction for diagrams ). Here is 
a theorem which states that eones on a diagram can be obtained by composing eones 
on sub-diagrams. 
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THEOREM 5.1: Decomposition of eones. Let F: :r-+ e be a functor, with :r a small 
"diagram" category. Let the category :J be given by a union9 over the diagram X: 

J = LJ Jx with inclusions Íx: Jx c.......+ J. 
xeX 

For each Jx, we have a restriction of F given by 

Fx =FO Íx: Jx-+ C. 

and, for e E Obj(C), a projection of eones 7rx: Cones(c, F)-+ Cones(c, F) given by 
:T :Ts 

{ e -12..+ F (j) 1 j E J } ~ { e ~ F ( Íx (j)) 1 j E Jx } . 

Consider a functor G: XºP -+ Set defined over the diagram X as follows (see fig
ure 5.5). It assigns to each element of X a set of eones, and to each inclusion arrow 
a projection function on eones (note the change in direction). 

x ~ Cones(c, Fx) 
:Ts 

X c.......+ y ~ 7r yx: Corres( e, Fy) -+ Cones( e, Fx) 
:Ty :Ts 

The eones on F can then be obtained as a limit of the eones on Fx: 

Cones(c,F) = LimG = LimCones(c,Fx)· 
:T +-- +-- :Ts 

X xEX 

PROOF. We will show that every compatible family of eones on the diagrams Jx 

{ Vx E Cones(c, Fx) 1 x E X} 
:Ts . 

can be uniquely extended to a cone v E Cones( e, F) on the diagram :J. Let the cone 
:r 

Vx be given by the set 

Vx = { e ~ F(j) li E Jx } · 

To construct the cone v = {e~ F(j) 1 j E :J} on the diagram .:J, choose the 
arrow Vj as Vj = Vxj for any x such that j E Jx· Such a choice is possible because, 
by assumption, the chosen collection of eones on the diagrams .:lx is compatible, a:rrd 
hence for any j such that j E Jx n Jy, the~ arrows V:cj and Vyj must be equal. The 
projections 1rx are defined by mapping Vj to Vxj· 

The choice of the arrows in the cone v and the definition of the projections 1rx is 
clearly unique, and hence the collection of ali eones of the form v is a limit. O 

9This is a simplifying assumption. The theorem is valid for colimits of diagrams. 
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DIAGRAM DECOMPOSITION 

. . Jx . 

17~ 
Jxy Zxy .:J = C~m Jx 

i>:JY~ xeX 

A BASE DIAGRAM X 

CONE DECOMPOSITION 

Cones( e, Fx) 
:Tz "'lrx 

. Kx-~ - ~ 
Cones(c, Fxy).. 'lrxy Cones(c, F) 

:Tzy ~ ~ :T - LimCones(c,Fx) 
+-- :Tz 

'lry-xy xEX 

y 

Cones(c, Fy) 
.711 

FUNCTOR RESTRICTION 

Fx =FO Íx 

CONE RESTRICTION 

. V t-+ V O 'tx 

Figure 5.5: Diagrams and functors involved in Theorem 5.1 
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EXAMPLE 5.6: Cone decomposition. Figure 5.6 shows an exarnple of eones on a 
diagrarn cornputed as a lirnit of eones on sub-diagrarns. The sheaf is the occurrenee 
sheaf of figure 3.1. The diagrarn :T over which the eones are required is the graph 
of the pattern cover. This diagrarn is split up into two pieees Jx and Jy with a 
non-ernpty interseetion Jxy· The whole diagrarn can then be expressed as a pushout 
of the sub-diagrarns. 

Cones on each of the sub-diagrarns are enumerated, along with the relevant pro
jeetions. Cones on the diagrarn :T are given by the limit of eones of :Tx, Jy, and Jxy; 
the limit, in this case, is a pullback. O 

5.3.11 A functorial divide-and-conquer implementation of 
eones 

In preparation for using cone deeornposition in our derivation, we now translate 
Theorem 5.1 above into the language of algebraie speeifieation. The eone deeom
posi tion theorem enables the irnplernentation of the speeifieation CONE-SPEC by the 
divide-and-eonquer algorithm in the specifieation CONE-DECOMPOSITION. 

In the speeifieation CONE-SPEC below, we define eones funetorially ( cf. defini
tions 2.5 and 5.2), beeause the eomputation of eones via deeomposition not only 
requires eones on a diagram bu t also restrietions of eones on one diagram to eones on 
another diagram. 

spec CONE-SPEC = 
extend DIAGRAM 

operations 

eones: e---+ Fun((DiaglC)ºP, Set) for e E C,C E Cat 
axioms 

eones( e, F) = N at( ~e, F) 
where F: :T ---+ C, ~e: :T ---+ C 
and Vj E Obj(:T) · ~c(j) ~ e; V f E Arr(:T) · ~c(f) = idc 

eones( e, r: F-!.+ G) = _o r 
end 

Here is the speeifieation whieh expresses eones on a diagram as a limit of eones 
on sub-diagrams. Note that the divide-and-eonquer theory used here is more gen
eral than Smith's theory [Smith 85] ( deseribed in section 5.3.2). The specification 
below implements a functor rather than a function. Both objects and arrows are 
deeomposed into eolimit diagrams, and eones and their projections are eomputed as 
limits. The deeomposition of arrows_ is indueed by deeompositions of their domains 
and eodomains. 
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Zxy-x 

Jxy 

PUSHOUT 

Cones( e, Fxy) 
Jzy 

PULLBACK 

Zxy-y 

Jy 

:T = Colim Jx 
--+ 
xEX 

Cones (e, Fy) 
.J'y 

Cones(c, F) 
.:T 

- Lim Cones( e, Fx) 
+--- .J'z . 
xEX 

Figure 5.6: Example of cone decomposition ( cf. figure 3.1) 
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spec CONE-DECOMPOSITION = 
sorts P-OBJ' NP-OBJ, P-ARR, NP-ARR 

-primitive and non-primitive objects and arrows 
-objects in Diag!C are functors over diagrams 
-arrows in Diag!C are inclusions oí functors 

subsorts P-OBJ -( Obj(Diag!C), NP-OBJ -( Obj(Diag!C), 
P-ARR -( Arr(Diag!C), NP-ARR -( Arr(Diag!C) 

operations 
-variable declarations for the signature below 
-e E C, CE Cat, X E Diag 
de-eones : e ~ Fun ( (Diag!C)ºP, Set) 
prim-obj : Obj(Diag!C) ~ BOOL 

pnm-arr : Arr(Diag!C) ~ BOOL 

directly-solve: e, P-OBJ ~ Obj(Set) 
directly-solve: e, P-ARR ~ Arr(Set) -overloaded 

decompose : NP-OBJ ~ Fun(X, Diag!C) 
compase: Fun(X, SetºP) ~ Obj(Set) 

ax1oms 
-prímitive and non-primitive objects are disjoint 

XP-OBJ = prim-obj XNP-OBJ = ...., prim-obj 
-primitive and non-primitive arrows are disjoint . . 

XP-ARR = pnm-arr XNP-ARR = ...., pnm-arr 
-details oí primitive objects will be delayed 
-arrows are primitive ií their domain and codomain are primitive 

prim-arr(p ~ q) iff prim-obj(p) /\ prim-obj(q) 
-the decomposition operator produces a colimit diagram 

F = C~m decompose(F) 

-the composition operator is just a limit 
compase( C) = Lim C 

+--
-details oí "directly-solve" will be delayed 
-recursive defi.nition oí "de-eones" 

prim-obj(F) * dc-cones(F) = directly-solve(F) 
prim-arr( T) * de-eones( T) = directly-solve( T) 

-computation oí eones as a limit; valid by Theorem 5.1 
...., prim-obj(F) *de-eones( e, F) =compase o de-eones( e,-) o decompose(F) 

-computation oí projections oí eones 
...., prim-arr( r: F ~ G) ~ de-eones( T) = ~ 7r y 

yET*(X) 

end 

where G = Colim Gx and ix: Gx ~ G, 1rx = dc-cones(ix) 
~ 

xEX 
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For . the case of pattern matching, comparing the specification 
CONE-DECOMPOSITION and the expression Cones(l, prim-occst lbase(P)) in the spec

C/P 
ification DC-PATTERN-MATCH-2, we get the following correspondence: 

:r~c¡P 

F ~ prim-occst lbase(P) 

C ~Set 
e~ 1 

and the following implementation of the specification DC-PATTERN-MATCH-2: 

spec DC-PATTERN-MATCH-3( (C, J) :: FINITARY-NOETHERIAN-PM-SITE) = 
extend DC-PATTERN-MATCH-2( (C, J) ), CONE-DECOMPOSITION 

ax1oms 
-eones are computed by decomposition 

dc-occst(p) = { gluep(v) l 11 E dc-cones(l, prim-occst lbase(P)H 

where P = decompose(p) 
end 

5.3.11.Alt.1 Direct computation of eones 

Cones can also be computed using data-flow techniques on the extension of the sheaf. 
Assign one process to each element of the sheaf. Processes communicate with each 
other by sending tokens via the arrows. When two processes connect to the same 
intermedia te process (compatible on the intersection }, they can be coalesced in to 
one. The final processes which remains after 'iterating this represent the compatible 
families. . 

5.3.12 Canes on indecomposable diagrams 

In the specification CONE-DECOMPOSITION above, we left the handling oí primitive 
diagrams unspecified. A diagram is primitive if it consists of only one object or only 
one arrow. The computation of eones for such diagrams is shown below. 
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spec CONE-DECOMPOSITION-1 = 
extend CONE-DECOMPOSITION 

ax1oms 
-a primitive diagram consists of a single object ora single arrow 

prim-obj(F:J" ~ C) if J ~•V J ~ (* ~ •) 
-a cone on a single object is just a hom-set 

directly-solve( e,• ....!:...+ C) = home( e, F( •)) 
-a cone on a single arrow is the graph of a map between hom-sets 

directly-solve( e, ( * -1-+ •) ....!:...+ C) = 

end 

{ (x, y) E hornc(c, F(*)) x hornc(c, F( • )) 1 y= F(f) o x} 
-projections for primitive arrows can be computed similarly 

5.3.13 Choice of decomposition for eones 
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On examining the specification CONE-DECOMPOSITION, we can notice that the com
position operator is a limit, and hence may not be easy to calculate. To simplify 
this operator, we can assume that the pattern cover is always decomposed into two 
pieces. Thus the pattern cover is expressed as a pushout diagram, and the limit in 
the composition operator is reduced to a pullback. For an example, see figure 5.6. 
The choice of the two pieces into which the pattern is decomposed is dictated by the 
rest of the algorithm. The incremental algorithm discussed in section 5.3.18 below 
forces a particular choice: a big piece for the partial match, and a small piece for the 
increment. 

5.3.13.Alt.1 Pyramid algorithms 

If we choose a parallel algorithm, then a binary decomposition of the pattern (with 
the two pieces being roughly of the same size) minimizes the number of levels in the 
decomposition tree. This choice leads to the pyramid algorithms which are used in 
image processing [Rosenfeld 84]. ,. 

5.3.14 Incremental computation 

Consider the expression 

dc-occst(p) = {gluep(v) 1 v E dc-cones(l,prim-occst lbase(P))} 

in the specification DC-PATTERN-"MATCH-3. There are essentially two strategies for 
computing this expression. We can proceed from right to left: computing primitive 
occurrences, and then eones, and then gluing them; this leads to the pyramid-style 
algorithms of section 5.3.13.Alt.1. We can also interleave the computation of the 
sub-expressions; this leads to the sequential algorithms considered below. In the case 
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of pattern matehing, the population of the sheaf and the computation of eones can 
be interleaved. To justify the interleaving, we need a distributive law. 

5.3.15 A distributive law for incremental computation 

To interleave the population of the sheaf and the computation of eones, we will use a 
technique called finite differeneing [Paige and Koenig 82, Paige 81]. Finite differencing 
is an optimizing transformation whieh efficiently updates the value of a function when 
the parameter to the function is ehanged, rather than recomputing the value of the 
function for the new parameter. Here are two simple examples of this technique. 

EXAMPLE 5. 7: Multiplication by shift-and-add. Let m and n be two decimal numbers, 
and suppose that their product p = m x n has already been eomputed. If we now 
change the multiplier by adding another digit, 

n X 10 + d, 

the product can be updated by computing 

p X 10 + p X d. 

Defining a binary operation _ • _ by 

a • b ~e a x 10 + b, 

the incremental update of the product can be described the following distributive law: 

m x ( n • d) = ( m x n) • ( m x d). 

o 

EXAMPLE 5.8: Generate and test. A comnion computation where finite differencing 
can be profitably applied is when a set is btiilt by filtering elements from another set. 
For example, we can enumerate all the odd multiples of a number n by filtering the 
odd numbers from the set of all multiples of n: 

odd-multiples(n) = filter-odd(multiples(n)). 

Suppose the multiples of n are generated incrementally. Then the set of odd multiples 
can be efficiently updated by using the following distributive law: 

filter-odd( s U { m}) ·= filter-odd( s) U filter-odd( { m} ). 

o 
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As can be seen from the examples above, finite differencing works in the presence 
of a distributive law. Hence, we will try to formulate a distributive law to connect the 
population of the sheaf and the computation of eones. The two relevant operations, in 
the two dimensions in which a sheaf spreads out, are cone-combination and set-union 
(figure 5. 7). 
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Figure 5. 7: Distributive law for assembling eones ( cf. figure 3.1) 
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Formally, the distributive law for computing eones over a diagram :J can be ex
pressed as below. Let the diagram :J be built from two pieces, i.e., as the following 
pushout: 10 

:J = Jx + Jy• 
Jxy 

Jxy Jy 

! pushout ! 
Jx :J 

For any part :lx of the diagram, anda sheaf F, define the notation Cx ~ Cones(l, F). :r% 
By theorem 5.1, the eones on P are given by the following pullback: 

e:r ey 

! pullback ! 
ex exy 

Assuming that the sheaf is populated incrementally, let the eones on Jy be given by 
the following set-union: 

ey =e~ u e;. 
The distributive law which relates cone-combination and set-union is: 

ex X (e~ u e;)= (ex X e~) u (ex X e;), 
exy exy exy 

et et :r y ! pullback ! 
e2 e2 :r y ! pullback ! 

ex exy . ex exy 

e} u e}----_..- et u e2 l pullback Y l Y 

ex ---------1-exy 

where 
and e}= (ex X e;). 

exy 
For this distributive law to hold, we need the following theorem. 

1ºThe distributive law is true even if there are more than two pieces, i.e., the pattern cover is 
expressed a colimit (see section 5.3.19). However, for our pürposes, pushouts are sufficient. 
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THEOREM 5. 2: Distributive law for eones. In the category Set, coproducts commute 
with pullbacks, i.e., the pullback of a coproduct diagram is also a coproduct diagram. 

PROOF. The distributive law follows from the fact that the category Set is a topos, 
since, in any topos colimits are universal (i.e., the pullback of a colimit diagram yields 
a colimit diagram) [Goldblatt 84, Freyd 72, Kock and Wraith 71]. 
However, it is more intuitive to do a direct calculation in the category Set. Let 

B =ax b and 
d 

C=axc 
d 

B---- b C---... e 

7rf ! pullback ! p 7rf ! pullback ! q 

a -------- d a ___ ... d 
f f 

be the pullbacks along the arrow a~ d of the two arrows b 2....+ d ande~ d. 
We have to show that a x (b +e)= a x b +a x c. 

d d d 
Pullbacks in Set are calculated as subsets of products. Thus, 

B = a x b = { ( x, y) E a x b 1 J ( x) = p( y) } , and 
d 

C =a X e= { (x, y) E a X e 1 f(x) = q(y) }, 
d 

B C 

with the arrows into a given by the projections (a x b) ~ a and (a x e) 1l"t a, 
d d 

both defined as (x, y) 1-+ x. The coproduct of these two pullbacks is given by ("11" is 
disjoint union, "/" is the quotient operator) 

(1) a X b + a X 
1

C = B 11 e, 
d d 

with projection [7rf, 7rf] into a. The coproduct of b 2....+ d and e ~ d is given by 

b + e = b U e [p,q! d. 

The pullback of b + e along a ~ d is theri given by 

(2) ax (b+c) = { (x,y) E ax (b+c) I J(x) = [p,q](y)} 
d 

n+c---- b+c 

[7rf, 7rf] ! pullback ! (p, q] 

a f d 

It is evident that the expressions (1) and (2) are equal, and the hence the distributive 
law is true in the category Set. O 
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Remarks. 

l. Coproducts in Set are disjoint unions. In the informal description of the dis
tributive law above, we have used union. The two are equivalent for pattern 
matching, beca use only new partial occurrences will be added to the sheaf. 

2. We have assumed that when a new partial match is added, Cxy remains the 
same. This need not be true. However, new values added to Cxy cannot produce 
new eones. Hence, the pullbacks taken over the old Cxy and the new Cxy are 
the same. 

5.3.16 A theory of incremental computation 

Fini te diff erencing is an optimization transformation; not an implementation strategy. 
We now combine finite differencing with recursion removal to provide an implemen
tation scheme for functions whose arguments are incrementally provided as a stream 
of inputs. J ust as a divide-and-conquer implementation requires the strong problem 
reduction principle, so does incremental implementation require a distributive law 
and an associative law. 

The source specification consists of a domain equipped with an associative binary 
operation, and an arbitrary function f which satisfies the distributive law. 

spec FD-SPEC = 
sorts D, R 

operations 
f: D ~R 

OR: ~ R 

_+o_: D,D ~ D 

- +R _: R,R ~ R 

axioms 
r +R OR = r -right identipy for +R 
(x +o y) +o z = x +o (y +o z} -the associative law 
f(x +o y)= f(x) +R f(y) -the distributive law 

end 

The function f is implemented by decomposing its input into a stream of incre
ments, and feeding these increments one-by-one toan accumulating function g which 
exploits the distributive law to compute the value of f. 
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spec STREAM-SPEC(X :: ANY) = 
sorts STREAM, NON-EMPTY-STREAM 

subsorts NON-EMPTY-STREAM-< STREAM 

constraints -ini ti al model 
operations 

hd: NON-EMPTY-STREAM __.. ANY 

tl: NON-EMPTY-STREAM __.. STREAM 

nil: 
cons: 

concat: 
¡ _: 

ax1oms 

__.. STREAM 

ANY,STREAM __.. NON-EMPTY-STREAM 

STREAM, STREAM __.. STREAM 

(ANY, ANY __.. R) __.. (STREAM __.. R) 

STREAM = NON-EMPTY-STREAM il {nil} 
hd(cons(x, s)) = x 
tl(cons(x, s)) = s 
cons(hd(s), tl(s)) = s 

-concatenation of streams 
concat ( nil, t) = t 
concat(cons(x, s), t) = cons(x, concat(s, t)) 

-the "reduce" operator; it inserts a binary operator between 
-the elements of a stream and evaluates the resulting expression 

/ J(nil) = id1 
/ J(cons(x, s)) = f(x, / f(s)) 

end 

spec FD = 
sorts D, R 

include STREAM-SPEC(D) 

operations 
g: R, STREAM(D) __.. R 

f: D_..R 

R,R __.. R 

axioms 
-pis the current partial result 
-the second argument is the rest of the stream 

g(p, nil) = p 
g(p,cons(x,s)) = g(p+a f(x),s) 

end 

The constructor implementation below postulates a decomposition operator called 
"stream" 11 , and invokes the iterative function g to implement f. 

11The name "stream" should be interpreted as a verb, in the sense of "convert into a stream." 



5.3. Detailed derivation, §5.3.17 

constructor FD-IMP = 
derive from 

extend FD + FD-SPEC with 
operations 

stream : D -+ STREAM ( D) 

ax1oms 
J(x) = g(OR, stream(x)) 
/+0 (stream(x)) = x 

by a: FD-SPEC c......+ (FD + FD-SPEC) 

end 
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The decomposition operator "stream" is left unspecified above. The choice de
pends on how the function f is specified. For example, if J is specified by a recursive 
description as in the specification DIVIDE-AND-CONQUER, then a good strategy is to 
design the decomposition operator such that it produces a stream of only primitive el
ements. This reduces the computation off in the distributive law to "directly-solve," 
and hence converts the recursive definition of f into an _iterative implementation. 

5.3.17 Incremental population of the occurrence sheaf 

Considering the specification DC-PATTERN-MATCH-3 again, we see that for an in
cremental computation of "dc-occst(p)," the stream of inputs should come from 
"prim-occst(p¡)," which populates the occurrence sheaf over the base of a cover P 
of p. Rather than execute "prim-occst(pi)" for each piece Pi E base(P) of the pattern 
cover, we can "invert" the computation. We assume that the target is traversed just 
once, populating the sheaf at each Pi, and thus generating a stream of presheaves 

w here ti is the part of the target traversed at stage i. 
By traversing the target, we enco,unter primitive objects in the underlying site. 

However, the goal is to populate the sheaf, whose objects are occurrence arrows. 
To pass from objects to occurrence arrows, we need a definition of the occurrence 
relation, which, for our derivation is not completely specified (it is a parameter). The 
computation of occurrence arrows depends on the data structures involved and the 
specific form of the occurrence relation. We show below a few examples to illustrate 
that this computation can vary from simple enumeration to complex theorem-proving. 
We will not further consider this aspect because it is a parameter; the characterization 
above as a sequence of presheaves is sufficient. 

EXAMPLE 5.9: Strings, constant patterns. Simple enumeration of inclusions. Each 
piece of the target matches at most one piece of the pattern. O 
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EXAMPLE 5.10: Strings, patterns with variables. Each piece of the target rnay match 
more than one piece of the pattern. O 

EXAMPLE 5.11: Strings, non-standard morphisms. See exarnple 2.23 for a definition 
of this site. The processing of each incrernent to the target needs the updating of all 
the elernents of part of the sheaf populated until then. . O 

EXAMPLE 5 .12: A complex occurrence relation. If the occurrence relation in vol ves 
sernantic conditions, theorern-proving rnay be required to compute occurrence arrows. 

o 

5.3.18 Incremental assembly of occurrences 

U sing the theory of incremental cornputation presented in section 5.3.16 above, we 
now convert the recursive algorithrn of DC-PATTERN-MATCH-3 into an iterative algo
rithrn. For convenience, we repeat the specification DC-PATTERN..:MATCH-3 here. 

spec DC-PATTERN-MATCH-3( (C, J) :: FINITARY-NOETHERIAN-PM-SITE) = 
extend DC-PATTERN-MATCH-2( (C, J) ), CONE-DECOMPOSITION 

ax1oms 
-eones are computed by decomposition 

dc-occst(p) = { gluep(v) I v E dc-cones(l, prirn-occst lbase(P))} 
where P = decornpose(p) 

end 

For the piecewise assernbly of eones in "de-eones", we have to choose a decornpo
si tion of the diagrarn corresponding to the cover P of the pattern. We can choose 
the finest decornposition ( consisting of single objects .and single arrows) as in the 
specification CONE-DECOMPOSITION-1. However, such a decornposition is too fine
grained. We instead adjust the decornpositión so that it rneshes with the incremental 
population of the occurrence sheaf. 

Befare proceeding, we need sorne definitions. 

DEFINITION 5.13: Prime arrow and prime sieve. Given a sieve S, an arrow f E S 
is said to be prime (in S) if it is not a factor of any other arrow in the sieve, i.e., 
~g, h E S · h = g o f. A sub-sieve R ~ S is said to be prime (in S) if it is generated 
by a prime arrow f E S. O 

DEFINITION 5 .14: Complement of a sieve. Given a pair of sieves R ~ S, the 
cornplernent of R with respect to S, written as SrvR, is defined to be the sieve 
generated by S - R (set difference). When the sieve Sis clear frorn the context, the 
cornplement of R will be written as R'. D 
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PATTERN,p COVER FOR PATTERN, P 

b 

/\ 
a·-- e 

PRIME SIEVES, { Qi} COMPLEMENT SIEVES, { Qj} 

Figure 5.8: Prime sieves and complements: example with graphs ( cf. figure 3.2) 
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N ow, let P be the cover chosen by the divide-and-conquer algorithm in the spec
ification DC-PATTERN-MATCH-3. Let { qi -+ p} be the set of prime arrows i!l P and 
let { Qi} be the (prime) sieves generated by these arrows. It can be seen that when
ever "prim-occs" finds an occurrence of qi, i t can also find, by restriction, occurrences 
of all elements of the sieve Qi (since, if qi is primitive, then all objects and arrows 
in Qi must also be primitive). By inverting the computation done by "prim-occs," 
as discussed in section 5.3.17 above, we postulate an operation which traverses the 
target and produces increments to the occurrence sheaf over prime sieves: 

traverse: Obj(C)-+ STREAM(Fun(C/Qj, Set)) 
for Qi E prime-sieves(P),P E J(p),p E Obj(C) 

As discussed in section 5.3.16, to convert "de-eones" into an iterative algorithm, 
we must choose the decomposition of eones such that one of the pieces is on C/Qj, 
the diagram over which increments are generated by the traversa! operation above. 
Since the decomposition is binary (so as to reduce the limit to a pullback), the other 
piece of the cone must be on C/(P~Qi) = C/Qj. Then the pattern cover can be 
expressed by the following pushout: 

C/Qj I C/Q:ushout cr 
C/Qi C/P 

Considering that the traversa! of the target can produce increments over any piece 
C/Qi of the pattern cover, it follows that eones on C/Qj, for each j must be available 
on each cycle of the incremental computation. To keep eones on all C / Qj 's available 
in the face of increments on any C/Qk, cone~ on C/(Qj~Qk) should also be available. 
Continuing this process, and using the following identities about prime sieves, 

P = LJ Q i, where Q i is a prime sieve in P, and 

Qj =u Qk, 
i# 

it follows that eones on any combination of C/Qj's must be available on each cycle. 
Let us define 

subpatterns(P) = { Ilk = LJ C/Qkz 1 Qkz E prime-sieves(P) }, 
x=l .. n 
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where the notation Ilk is chosen to remind the reader that a cone on Ilk corresponds 
to a partial occurrence. Apart from eones on the Ilk 's, eones on the intersection of 
any two Ilk 's must also be available, so that the pushout diagram shown above can 
be built. 

The informal reasoning presented here can be formalized by choosing an initial 
decomposition of the diagram C / P in to the pair (C / Q h C / Qj) and then "differenti
ating" the computation of "de-eones" with respect to the increments that are pro
duced by the traversa! of the target. For details about differentiation, see (Paige and 
Koenig 82, Paige 81]. We omit the formalization here and present the final iterative 
algorithm resulting from the particular decomposition we have chosen. 

As discussed above, the iterative algorithm has to update the eones on each II1c 
and each II1c n II, on each cycle. Thus we need one instance of the iterative algorithm 
in FD-SPEC for each of these. However, since all these algorithms feed off the same 
input stream ( that produced by traversal of the target ), they can be merged into a 
single algorithm as shown below. Again, we omit the details of this transformation. 

Observe the use of the distributive law of Theorem 5.2 in the specification below. 
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spec FD-CONES(c :: Obj(C),P :: SIEVE(C)) = 
-incremental computation oí eones 

sorts CACHE, INCREMENT 
-a cache associates a set oí eones with each Ih E subpatterns(P) 
-a cache is a functor because it contains projections oí eones as well 

subsorts CACHE-< Fun(DiagºP, Set) 
-increments are functors defined over diagrams oí prime sieves 

subsorts INCREMENT-< Fun(Cf Qh Set) for Qi E prime-sieves(P) 
operations 

fd-cones : STREAM(INCREMENT) __., SET( CONE) 
update : CACHE, STREAM(INCREMENT) __., CACHE 

pnm-cones : INCREMENT __., SET( CONE) 
axioms 

-start iterative algorithm with empty cache; return eones on C / P 
fd-cones( s) = final-cache( C / P) 

where final-cache = update(0, s) 
-incremental update oí the cache 
-when the increment stream is exbausted, return the current cache 

update( cache, nil) = cache 
-process one element oí the stream ata time 

update(cache,cons(C/Qi ....!....+ Set,s)) = update(cache',s) 
where cache' = cache except 

end 

-update eones on e/ Q j 
cache'(C/Q;) = cache(C/Qi) U prim-cones(F) and 

-update all eones which intersect with eones on C/Q; 
-using the distributive law for eones; Theorem 5.2 

Vlh E subpatterns(P) · C/Qi ~ IIk =} 

cache'(IIk) = cache(IIk) U cache(IlevC/Qi) x prim-cones(F) 
cache(Ilt) 

where Ilt = (IIk"'C/Qi) n C/Qi) 
-the pullback above also updates projections oí eones 

The expression "de-eones(!, prim-occst lbase(P)) }" in the specification 
DC-PATTERN-MATCH-3 is implemented by "fd-cones(s )" with the following assign
ments: 

e i-+- 1 
Pi-+-P 
si-+- traverse(t) 

prim-cones(F: C/Q;--.. Set) 1-+ de-eones(!, prim-occst lc/Q;) 

We consolidate the work of the past few sections into the incremental implemen
tation of pattern matching below. Since the specification FD-CONES is parameterized, 
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the operations "fd-cones" and "prim-cones" are given subscripts to indicate the in
stance of FD-CONES to which they belong. 

spec FD-PATTERN-MATCH( (C, J) :: FINITARY-NOETHERIAN-PM-SITE) = 
extend FD-CONES -see above for explanation of subscript notation 
extend CONE-DECOMPOSITION-1 with 

decompose renamed as decompose. CONE 

operations 
fd-occs: Obj(C), Obj(C) ~ SET(OCCURRENCE) 

traverse: Qbj(C) ~ STREAM(INCREMENT) 

decompose: Obj(C) ~ SIEVE(C) 

axioms 
fd-occs(p, t) = a(gluep) o fd-cones1,p(traverse(t)) 

where P = decompose(p) 
-decomposition yields the fi.nest covering sieve 

decompose(p) E J(p)./\ VR E J(p) · decompose(p) ~ R 
-computation of eones on C/Q; is done by "de-eones" 

prim-conesc,P ( F) = de-eones( e, F) 
-tbe traversal operation for tbe target is left unspecifi.ed 

end 

Here is the constructor which connects the specification PATTERN-MATCH of pat
tern matching with the incremental implementation above. 

PATTERN-MATCH ~ K-FD(FD-PATTERN-MATCH) 

where 

constructor K-FD = 
derive from FD-PATTERN-MATCH 

by { occurrences ......+ fd-occs } 
end 

To help the reader understand the operation of the incremental algorithm, we 
show a trace of this algorithm for graphs in figure 5.9. 
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Traversa! order: 

Partial occurrences (increments to the cache of eones): 

l. aib2 

2. a2b2 

3. a2b3 

4. b3c2, a2b3c2 

5. a 2c2, a2b3c2a2, b3c2a 2, c2a 2b3, c2a2b2 

6. b2c2, c2a2b2c2, b2c2a2, c2b2a2 

7. aibi 

8. bici, aibi Ci 

9. ciai, aicibi, ciaibi, ciaib2, aibiciai 

Figure 5.9: Trace of incremental algorithm on graphs ( cf. figure 3.2) 
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5.3.19 Sheafification: An alternative view 
of incremental cone assembly 

The incremental algorithm of the previous section can be succinctly characterized as 
sheafification. The operation of computing eones over every sub-cover of the pattern 
cover corresponds to converting a presheaf of occurrences into a sheaf. 

Sheafification of a presheaf F is defined by a universal property ( the "minimal 
completion" of a presheaf in to a sheaf by adding all eones which are absent), artd is 
constructed as 

sheafify(F) =(Lo L)(F), 

where L is a natural transformation defined by 

L(F)(a) = C~mNat(R, F), 
REJ(a) 

where the collection of covering sieves J( a) is treated as a diagram by considering the 
partial order induced by inclusion of sieves. 

The colimit above can be seen as computing eones over bigger and bigger sub
covers of the pattern until eones on the entire pattern are obtained. For the case 
of pattern matching, one application of L is sufficient because a presheaf of occur
rences is already a separated presheaf.12 When combined with the distributive law 
for sheafification, 

Colimsheafify(F¡) = sheafify(ColimF¡), 
---t ---t 

sheafification can be seen to the sarne as the incremental computation defined in sec
tion 5.3.18. This is another instance of a universal construction such as sheafification 
yielding a naive algorithm.13 

5.3.20 Assessment 

The incremental algorithm in FD-PATTERN-MATCH is a general version of the naive 
algorithm for pattern matching. Was all this theoretical machinery necessary to 
derive it? The answer is "yes," because of the generality of the algorithm. It is easy 
to generate a naive generate-and-test algorithm for data structures for which there is 
a natural scherne for enumerating all "positions" in the data structure. For example, 
in a string the possible positions for an occurrence are given by the indices in the 
array representation. Thus, we can enumerate all the indices up to the length of the 

12The first application of L converts a presheaf into a separated presheaf; the second application 
converts a separated presheaf into a sheaf. 

13For a unification algorithm obtained from characterizing a most general unifier as an equalizer, 
see [Rydeheard and Burstall 88]. 
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string and try to match the pattern at each of these positions. For data structures like 
graphs, i t is not straightforward to enumera te all the positions where an occurrence 
may exist. Our derivation always produces a generate-and-test pattern matching 
algorithm for any data structure, given a traversa! mechanism. 

Most derivations start by assuming the naive algorithm. We do not. This differ
ence results in our deeper explanation of the "sliding" operation and "failure" function 
of the Knuth-Morris-Pratt algorithm. Again, by treating the Knuth-Morris-Pratt al
gorithm in a general context, we expose its basic simplicity and elegance. 

5.3.21 Optimizations 

The incremental algorithm in FD-PATTERN-MATCH is not very efficient, because it 
saves all partial matches. In particular, for strings, with pattern p and target t, the 
complexity is 0(21PI x jtl). The complexity of the algorithm depends on the length 
of the stream generated by traversing the target and the complexity of the pullback 
operation in each cycle, which in turn depends on the size of the cache and the size of 
the increments. There are two conceptual sources of optimization for the algorithm: 
reducing the size of the cache, and reducing the length of the stream. 

One way to reduce the size of the cache is to remove all partial occurrences in 
the cache which have no potential to be expanded, as indicated by the traversa! 
of the target, e.g., reaching a leaf in a tree. For strings, assuming a linear left-to
right traversa!, there can be at most IPI - 1 partial matches which are potentially 
expandable (as opposed to 21PI above), thus reducing the complexity to O(IPI x ltl). 
In the example of figure 5.9, at step 7, all the elements of the cache can be removed 
because none of them can be expanded. 

Since the decision to drop elements of the cache depends on the particular data 
structure and the traversa! mechanism, we do not consider it further here. 

To reduce the length of the stream generated by traversing the target, we re
examine the traversa! operation to see how increments· are generated. Recall that 
traversing the target initially produces a sequence of objects, which are then con
verted into occurrence arrows (see section 5;3.17). Now, when a piece of a pattern 
occurs in the pattern itself, each piece of the target may produce multiple occurrence 
arrows. 

EXAMPLE 5.15. Here is an example with strings, for a pattern "abab" anda target 
"ababab". To disambiguate the various parts, we number them: a1b1a2b2 for the 
pattern and a1b1a2b2a3b3 for the target. When the piece a2b2 is encountered while 
traversing the target, since "ab" occurs twice in the pattern, we obtain two occurrence 
arrows: a1b1 >-+ a1b1a2b2a3b3, and a 2b2 >-+ a1b1a2b2a3b3. O 

Informally, this means that each piece of the target can be "parsed" in severa! 
ways as a piece of the pattern. The operation "directly-solve" generates occurrence 
arrows over pieces of pattern, p¡. These arrows produce eones over the diagrams Qi 
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for all qi such that Pi ~pisan arrow in the pattern cover. Thus, the q/s correspond 
to different ways of parsing the occurrence arrows on p¡'s. 

The assignrnent of qi 's representing parses to any Pi can be precornputed for a 
given pattern cover. Moreover, this cornputation can be extended to any collection of 
Pi 's. The extension of this relation, called the pattern-pattern-sheaf, will be described 
in section 5.3.28. 

Consistent with our overall direction of converting the extension of the pattern 
rnatching relation into an intension, we can replace the cache with a collection of 
generators: the generator associated with Ilk will produce eones which are built using 
alternative parses of the occurrence arrows rnaking up Ih. This reduces the number of 
elements in the cache, and hence the cornplexity of the rnatching algorithm (provided 
building occurrences by composing with arrows in the generators is more efficient 
than directly updating the cache). 

The scherne above requires that, when there are multiple occurrence arrows gen
erated by a piece of the target, sorne of the extra occurrence arrows are delayed in the 
stream. This is indeed valid, because the distributive law for eones ( section 5.3.15) 
and, more generally, the sheafification operation (section 5.3.19), are insensitive to 
the order in which the increments to the occurrence sheaf are presented. 

The net effect of these manipulations is that incrernentally updating partial rnatches 
has been converted into a search problem: that of searching for compatible parses of 
pieces of the target. In the following sections, we will describe a theory of search, and 
precisely formulate the optimizations discussed above. 

5.3.22 A theory of search 

A search problem consists of a search ~pace and a goal predicate. The search space is a 
collectlon of states which are explored; it is usually specified intensionally by providing 
a generator for states. The goal predicate indicates states which are acceptable as 
solutions. 

We reproduce below a slightly inodified version of Srnith's characterization of 
the abstract structure of a global ~earch problem [Smith 88]. The problem to be 
implemented is specified as a relation O(x, z) between input and output elements. 

spec 0-SPEC = 
sorts D, R 

operations 
Ü: D,R ~ BOOL 

end 

The states in a state space are given by "descriptors" such as r and s. The state 
space corresponding to an input x is generated as follows: f 0 ( x) produces the initial 
state, and Split(r, s) generates a new state s from an old state f. Acceptable states 
are indicated by a predicate Extract(z, r) which states that the output element z 
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can be immediately obtained from the state f. The predicate Satisfies(z, f) is the 
transitive closure of Extract(z, f). 

spec GLOBAL-SEARCH = 
-based on {Smith 88} 

sorts D, R -doma.in and range 
-state descriptors corresponding to input x form a dependent type 

sorts .\x E D · sn(x) 
operations 

-fo( x) is the initial state· descriptor associated with input element x 
ro : D --+ SD 

-the next state generator 
-Split( r, s) means that s is one possible next state for r 
Split : SD, SD --+ BOOL 
-Extract(z, f) means that the output element z is directly extractable 
-from the state r' i. e.' wi thou t generating any more states 

Extract : R, SD --+ BOOL 
-Satisfies(z, f) means that the output element z can be extracted 
-from a state s generated from the state r 

Satisfies : R, SD --+ BOOL 

ax1oms 
-the denotation oían arbitrary state descriptor 
-is the collection oí all elements which are generated by 
-a fi.nite number of applications oí ''Split" 

Satisfies(z, r) ~ 3k E NAT, s E SD ~ (Splitk(r, s) /\ Extract(z, s)) 
where 

-Splitk is the k-fold composition oí Split 
Splitº(r,i) ~ r = i 
Splitk+1 (r, i) ~ 3.S E SD . (Split(r, .S) /\ Splitk(s, t)) 

end 

Srnith has an additional axiorn which states that all solutions can be generated 
frorn the initial state associated with an input elernent: 

O(x, z) =} Satisfies(z, fo(x)). 

This axiom is not necessary in our scheme because it will be contained in any con
structor which is used in the irnplernentation of a problern via the global search theory 

above. 
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5.3.23 Updating the cache as a search problem 

To optirnize the incremental algorithm in FD-PATTERN-MATCH, we reformulate it as 
a search problem. The state space consists of states of the cache together with the 
unprocessed part of the stream of increments. The next state is generated by picking 
off an increment from the stream of increments and updating the cache in the current 
state. The formal version is shown below. Observe that this view of the pattern 
matching problem as search is somewhat different from that in section 5.3.1.Alt.1. 
There the search space consists of positions in the target; here the search space 
consists of partial occurrences. 

In our earlier description of the traversa! operation ( cf. section 5.3.17 and the 
specification FD-PATTERN-MATCH), we assumed that it produced increments over 
diagrams of prime sieves C/Q;, i.e., over pieces of the pattern cover. Since we want 
explicit control on how any piece of the target is parsed, we now change the traversa! 
operation so that it produces increments over diagrams of the sieves P¡ generated by 
objects p¡ in the base of the pattern cover. 

spec TARGET-TRAVERSAL(P :: SIEVE(C)) = 
sorts INCREMENT, PARSE 

-increments are functors defined over diagrams C/ P¡ 
-P¡ is the sieve generated by p¡, with Pi E base(P) 

subsorts INCREMENT -< Fun( C / P¡, Set) 
-a parse is an interpretation of an increment on C / P¡ 
-~ an occurrence associated with sorne prime sieve Q i 

subsorts PARSE-< Fun(C/Qj, Set) for Qi E prime-sieves(P) 
operations 

traverse: Obj(C) ~ STREAM(INCREMENT) 
parses : INCREMENT ~ SET(PARSE) 

ax1oms 
-parsing of increments will be disussed in section 5.3.28 

end 
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spec GS-CONES(c :: Obj(C), P :: SIEVE(C)) = 
-incremental cone computation as search 
-states are caches, ares are parses 
-import the defi.nition and updating of a cache from FD-CONES 

include derive from FD-CONES( c, P) by 
update i-+ update 
CACHE 
PARSE 

i-+ CACHE 
i-+ INCREMENT 

prim-cones i-+ prim-cones 
extend GLOBAL-SEARCH renamed as 

D i-+ STREAM(INCREMENT) 
R 1-+ SET( CONE) 
SD 1-+ CACHE X STREAM(INCREMENT) 

extend TARGET-TRAVERSAL(P) 
operations 

gs-cones : STREAM(INCREMENT) -+ SET( CONE) 
ax1oms 

-the initial state is the empty cache 
-together with the initial stream of increments 

ro(s) = (0,s) 
-the next state expands the cache in the current state 
-using some parse of some increment from the input stream 

Split( (cache, t), (cache', u)) ~ . 
u= tl(t) /\ 3F E parses(hd(t)) ·cache'= update(cache, cons(F, nil)) 

-the denotation of a state descriptor (cache, s) · 
-is the set of all eones on the p'attern cover C / P which can be 
-obtained by updating the cache using parses of the stream s 

Satisfies(C, (cache,s)) ~ C = update(cache,s')(C/P) 
where s' = / concat o a(parses )( s) 

-eones on e/ p are directly extractable in any state 
Extract( cache(C/ P), (cache, s)) 

-the effective function computed by the state space 

gs-cones( s) = / U o{ z I Satisfies(z, ro( s))} 
end 
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U sing the search theory above, we get the following implementation of pattern 
matching. 

spec GS-PATTERN-MATCH( (C, J) :: FINITARY-NOETHERIAN-PM-SITE) = 
extend GS-CONES 
extend CONE-DECOMPOSITION-1 with 

decampase renamed as decampase. CONE 
operations 

gs-occs: Obj(C), Obj(C)-+ SET(OCCURRENCE) 
decampase: Obj(C) -+ SIEVE(C) 

ax1oms 
gs-occs(p, t) = a:(gluep) o gs-cones1,p( s) 

where P = decompose(p), s = traversep(t) 
-decomposition yields the finest covering sieve 

decompose(p) E J (p) /\ V R E J (p) · decompose(p) ~ R 
-compu tation oí eones on e/ Q j is done by "de-eones" 

prim-conesc,P ( F) = de-eones( e, F) 
end 

Here is the constructor which connects the specification PATTERN-MATCH. of pat
tern matching with the global search implementation above. 

PATTERN-MATCH ~ K-GS(GS-PATTERN-MATCH) 

where 

constructor K-GS = 
derive from GS-PATTERN-MATCH 
by { occurrences ~ gs-occs } 
end 

5.3.23.Alt.1 Commutativity in the design space 

We could have reached the characterization of pattern matching as search above, 
GS-PATTERN-MATCH, via a different route. The problem of enumerating compatible 
families of partial occurrences (see section 5.3. 7) can be described as a search problem. 
The generate-and-test natural transformation formulation produces a search space 
during the generate phase which is then filtered for feasible solutions. Similarly, the 
limit formulation generates a search space of products which is then filtered using 
an equalizer. After applying the theory of cone decomposition (see section 5.3.10) to 
either search space, we get an algorithm equivalent to the one above. 
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5.3.24 Search strategies 

Two general strategies for searching in a state space are breadth-first search and 
depth-first search. The choice to be made in each state is which parse of the next 
increment to choose. A breadth-first strategy explores all parses befare moving on 
to the next increment. A depth-first strategy chooses sorne parse, and immediately 
moves on to the next increment. If a depth-first strategy is to enumerate all states 
satisfying the goal predicate, then it also has to backtrack and explore alternative 
parses when the input stream is exhausted. 

5.3.24.Alt.1 Breadth-first search 

A breadth-first search of the state space of cache values is equivalent to the incremen
tal algorithm in FD-PATTERN-MATCH, provided we merge all the states after each ply 
of the search. This follows because of the following relation between the stream of 
increments in the two algorithms: 

traverse. FD-PATTERN-MATCH = concat o a(parses) o traverse. GS-CONES. 

Thus, the sequence of updates in FD-PATTERN-MATCH corresponds to applying the 
"Split" operator of GS-CONES in all possible ways, and hence to a breadth-first ex-

ploration. 

5.3.24.Alt.2 Depth-first search 

In a depth-first strategy, rather than explote all possible parses, one is chosen for 
further exploration. Since, the state space in GS-CONES is bounded, both the depth
first and breadth-first strategies explore all t~e paths in the space, and, therefore, are 

equiyalent. 
A depth-first strategy becomes more efficient when we can avoid exploring certain 

paths. As observed in section 5.3.21, eacli increment in the stream is capable of 
generating multiple parses. We can choose only one parse to explore, generating the 
other parses on demand. This scheme reduces the number of elements in the cache 
and thus leads to a more efficient algorithm. Since we are interested in reducing the 
number of elements in a cache, we reformulate the specification GS-CONES as search 
at a finer grain: the states are eones rather than caches (a cache is a set of eones). 
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5.3.25 Computing eones as search: 
A backtracking implementation 

We reformulate the search algorithm GS-CONES of section 5.3.23 so that the states 
are eones rather than sets of eones. This involves decomposing a cache into its 
constituents and recasting the update operation on caches as a search problem. 

Before presenting the specification, we need sorne notation to denote the expansion 
of eones. 

spec CONE-GLUING = 
operations 

_ Q9 _ : CONE, CONE -+ CONE 

ax1oms 
-partial 

-a cone v on a diagram D is written as VD 

-the restriction of VD to a sub-diagram E ~ D is written as vlE 

Defined(vD Q9 TE) if vlDnE = TIDnE 

vv Q9 TE = O'DuE where O'ID = VD /\ O'IE = TE 

end 

In the search algorithm of GS-CONES-1 below, a state consists of a cone and a 
stream of increments. The ares are parses of increments. Next states are generated 
by expanding eones. 

Paths in this search space are sequences of parses of elements of the input stream. 
The end-states are those in which the parses along the path can be glued together to 
produce an occurrence of the pattern. The search space can be viewed as constraint · 
propagation in the extension of occurrence sheaf: the graph of the sheaf represents 
local constraints ( compatibility between partial occurrences )_, and the goal is to spread 
these local constraints so as to cover the pattern and produce a full occurrence. 
This view allows us to derive Waltz filtering [Waltz 75], a relaxation algorithm for 
interpreting 2-D images by local constraint propagation, using a slight variation of 
the derivation of the Knuth-Morris-Pratt algorithm (see section 6.3). 
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spec GS-CONES-l(c :: Obj(C), P :: SIEVE(C)) = 
-incremental cone computation as searcb 
-states are eones, ares are parses 

,include CONE-GLUING 

extend GLOBAL-SEARCH renamed as 
D i--+ STREAM(INCREMENT) 

R i--+ CONE 

SD i--+ CONE X STREAM(INCREMENT) 

extend TARGET-TRAVERSAL( P) 
operations 

prim-cones: PARSE ~ CONE 

gs-cones-1: STREAM(INCREMENT) ~ SET(CONE) 

ax1oms 
-tbe initial state is tbe cone on tbe ernpty diagram, called "O" 
-and tbe initial stream of incrernents 

ro(s) = (O,s) 
-a next state expands tbe cone in tbe current state 
-using sorne parse of sorne incrernent frorn tbe input stream 

Split( (vv, t), (TE, u)) <===> 
u = tl(t) /\ 3F E parses(hd(t)) · TE = vv © prim-cones(F) 

-a next state can also be generated 
-by sirnply ignoring tbe current incrernent 

Split( (vv, t), (vv, u)) <===> u = tl(t) 
-tbe denotation of a state descriptor (v, s) 
-is tbe set of all eones on C / P wbicb can be obtained · 
-by expanding tbe cone v using'incrernents in tbe stream s 

-tbere is no need for an axiorn for Satisfies because 
-tbis denotation follows frorn tbe axiorns oí GLOBAL-SEARCH 

-eones on e/ p are directly extractable in any state 
Extract(vc¡p, (vc¡p, s)) 

-tbe effective function cornputed by tbe state space 
gs-cones-l(s) = { z I Satisfies(z, ro(s))} 

end 
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We now ineorporate the modified seareh theory in the implementation of pat tern 
matehing. 

spec GS-PATTERN-MATCH-1( (C, J) :: FINITARY-NOETHERIAN-PM-SITE) = 
extend GS-CONES-1 

extend CONE-DECOMPOSITION'-1 with 
decompose renamed as decompose. CONE 

operations 
gs-oecs-1 : Obj(C), Obj(C) ~ SET(OCCURRENCE) 

decompose: Obj(C) ~ SIEVE(C) 

axioms 
gs-occs-l(p, t) = a(gluep) o gs-cones-1 1,p(s) 

where P = decompose(p), s = traversep(t) 
-decomposition yields the finest covering sieve 

decompose(p) E J(p) /\ VR E J(p) · decompose(p) ~ R 
-computation of eones on C/Qi is done by "de-eones" 

prim-eonesc,P(F) =de-eones( e, F) 
end 

Here is the constructor which eonnects the speeifieation PATTERN-MATCH of pat
tern matching with the global search implementation above. 

PATTERN-MATCH ~ K-GS-l(GS-PATTERN-MATCH-1) 

where 

constructor K-Gs-1 = 
derive from GS-PATTERN-MATCH-1 

by { oecurrences .....+ gs-occs-1 } 
end 

The global search description of cone computation in GS-CONES-1 can be imple
mented by a depth-first search strategy with backtracking. This is recorded in the 
speeification BT-CONES below. This implementation is similar to the linear recursive 
seheme for implementing global search in (Smith 88, Theorem 3.2]. 
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spec BT-CONES(c :: Obj(C), P :: SIEVE(C)) = 
-backtracking implementation of cone computation using search 

extend GS-CONES-1( e, P) 
operations 

bt-cones : STREAM(INCREMENT) -+ SET( CONE) 
dfs : SD, SET( CONE), SET(SD) -+ SET( CONE) 

pick-arc: SET(SD) -+ SD, SET(SD) 
pick-bt : SET(SD) -+ SD, SET(SD) 

ax1oms 
-start search at the initial state 

bt-cones(s) = dfs(r0 (s), 0, 0) . 
--<lfs takes three arguments: the current state being explored, 
-a partial set of solutions, and a set of states yet to be explored 

dfs( cur-state, Solutions, Active-States) = 
-process current state: add solutions extractable from current state 

let New-Solutions = Solütions U { z 1 Extract(z, cur-state)} 
-generate next states 

and New-States = { s I Split( cur-state, s)} in 
if N ew-States = 0 then 

-current state cannot be expanded; backtrack to another state 
if Active-States = 0 then -nowhere to backtrack; return solutions 

N ew-Solutions 
else -pick an unexplored state to backtrack to 

let ( new-state, New-Active) = pick-bt( Active-States) m 

dfs( new-state, New-Solutions, ~ew-Active) 
else -proceed depth-first: pick one of the next states to explore 

let ( new-state, New-Active) = pick-arc( New-States) in 
dfs( new-state, New-Solutions, Active-States U New-Active) 
-axioms constraining the choice functions 

pick-arc(S) = (s,T) => S = {s} U T 
pick-bt(S) = (s,T) => S = {s} U T , -

end 

Here is the constructor which implements the global search specification GS-CONES-1 

by backtracking. 

GS-CONES-1 ~ K-BT(BT~CONES) 

where 

constructor k-BT = 
derive from BT-CONES 
by { gs-cones-1 ~ bt-cones } 
end 
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5.3.26 Search filters 

A search filter removes certain states which do not lead to a solution. Smith considers 
three kinds of filters, necessary, sufficient, and heuristic, depending on whether the 
filters are conservative or eager in pruning away states [Smith 88]. We describe below 
two filters which are necessary, in the sense that the states they prune away are 
guaranteed not to lead to a solution. 

The traversa! dead-end filter 

In the search space of eones above, the next-state generator is defined such that a 
state cannot be expanded only if the input stream has been exhausted. We can 
discard unexpandable states earlier in the search using information from the traversa! 
operation. For example, if we can deduce while traversing the target that a certain 
part of the target has been completely explored, then partial occurrences in that 
part of the target cannot be expanded, and can be discarded. In the case of pattern 
matching in strings, with a left-to-right traversa! of the target string, ali partial 
occurrences not touching the current position of traversa! can be discarded. This 
filter is crucial in reducing the complexity of the search. This filter is incorporated in 
the specification BTF-CONES below. 

The invalid partial occurrence filter 

If the underlying diagram of a partial occurrence does not correspond to any Ilk, then 
that partial occurrence can be discarded, because it cannot be expanded into a full 
occurrence. Formally, we add another filter, "is-partial-occurrence," to the search 
algorithm in BTF-CONES below. 

The full occurrence filter 

If the underlying diagram of a partial occurrence is C / P, then we ha ve a full occur
rence which cannot be further expanded. We can extract the full occurrence and 
discard the state. The full occurrence filter is denoted by "is-full-occurrence" in the 
specification BTF-CONES below. 
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spec FILTER = 
-this specincation just collects the E.lters for BTF-CONES 

-it is not expected to be interpreted independently 
operations 

filter : SD ---+ BOOL 

is-partial-occurrence : SD ---+ BOOL, 

is-full-occurrence : SD ---+ BOOL 

dead-end : SD ---+ BOOL 

axioms 
-E.lter dennitions 

fil ter( s) = dead-end( s) V • is-partial-occurrence( s) V is-full-occurrence( s) 
is-partial-occurrence( (vD, s)) if 3Ih · D = Ih 
is-full-occurrence( (vc¡p, s)) 

-details oí "dead-end" are obtained from the traversa] mechanism 
end 
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spec BTF-CONES(c :: Obj(C), P :: SIEVE(C)) = 
-backtracking implementation of cone computation using search 
-includes the traversal dead-end, invalid partial occurrence, 
-and full occurrence filters for eliminating unexpandable eones 

extend GS-CONES-1( e, P) 
include FILTER 
operations 

btf-cones : STREAM(INCREMENT) -+ SET( CONE) 
dfs: SD, SET( CONE), SET(SD) ~SET( CONE) 

pick-arc: SET(SD) -+ SD, SET(SD) 
pick-bt : SET(SD) -+ SD, SET(SD) 

ax1oms 
-start search at the initial state 

btf-cones(s) = dfs(r0(s), 0, 0) 
--<lfs takes three arguments: the current state being explored, 
-a partial set of solutions, and a set of states yet to be explored 

dfs( cur-state, Solutions, Active-States) = 
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-process current state: add solutions extractable from current state 
let N ew-Solutions = Solutions U { z 1 Extract( z, cur-state) } 

-generate next states 
and New-States = { s I Split( cur-state, s)} in 

-FILTER INCLUDED HERE: ''filter(.S)" means s can be pruned 
if N ew-States = 0 V fil ter( cur-state) then 

-current state cannot be expanded; backtrack to another state 
if Active-States = 0 then -nowhere to backtrack; return solutions 

N ew-Solutions 
else -pick an unexplored state to backtrack to 

let ( new-state, New-Active) = pick-bt( Active-States) m 
dfs( new-state, New-Solutions, New-Active) 

else -proceed depth-fi.rst: pick one of the next states to explore 
let ( new-state, New-Active) = pick-arc( New-States) in 
dfs( new-state, N ew-Solutions, Active-States U N ew-Active) 
-axioms constraining the choice functions 

pick-arc(S) = (s, T) ::::} S = { s} U T 
pick-bt(S) = (s, T) ::::} S = { s} U T 

end 
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By replacing the specification BT-CONES with the specification BTF-CONES ( which 
contains search filters ), 

GS-CONES-1 ~ K-BTF(BTF-CONES) 

where 

constructor K-BTF = 
derive from BTF-CONES 

by { gs-cones-1 ~ btf-cones } 
end 

and composing the constructor implementations using global search ( K-Gs-1, sec
tion 5.3.25) and backtracking (K-BTF above), we get the following implementation of 
pattern matching. 14 

PATTERN-MATCH ~ K-GS-1 o K-BTF(BT-PATTERN-MATCH) 

where 

spec BT-PATTERN-MATCH( (C, J) :: FINITARY-NOETHERIAN-PM-SITE) = 
extend BTF-CONES 

extend CONE-DECOMPOSITION-1 with 
decompose renamed as decompose. CONE 

operations 
bt-occs: Obj(C), Obj(C) ~ SET(OCCURRENCE) 

decompose : Obj( C) ~ SIEVE( C) 
ax10ms 

bt-occs(p, t) = a(gluep) o btf-cones1,p( s) 
where P = decompose(p), s = traversep(t) 

-decomposition yields the fi.nest covering sieve 
decompose(p) E J (p) /\ V R E J (p) · decompose(p) ~ R 

-computation oí eones on C/Q; is done by "de-eones" 
prim-conesc,P(F) =de-eones( e, F) 

end 

5.3.27 Dependency-directed backtracking: Motivation 

The major choice that has to be made in a depth-first backtracking search strategy, 
corresponding to the function "pick-bt" in the specification BT-CONES above, is the 
state to which the algorithm backtracks when the current state cannot be expanded 
by eones generated by any parse of the current increment. 

14We have taken a slight liberty wit4 the composition; a precise treatment would invoke 
the compatibility of the constructor ~-BTF (a vertical operation) with the horizontal operation 
extendGS-CONES-1 in the specification GS-PATTERN-MATCH-1. 
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5.3.27 .Alt.1 Chronological backtracking 

Chronological backtracking retracts to the point of the most recent unexhausted 
choice-point and continues exploration there with another choice. This is the simplest 
choice for backtracking. However, chronological backtracking frequently rediscovers 
dead-ends and performs sorne unnecessary recomputation [Mackworth 77]. In the case 
of pattern matching, the existence of a partial occurrence excludes certain combina
tions of parses, combinations which would be discovered and eliminated, one-by-one, 
during chronological backtracking. 

5.3.27.Alt.2 The chosen alternative 

We can backtrack more intelligently by using information contained in the partial oc
currence currently being explored. The general strategy of using information collected 
along a path to backtrack to another state is called dependency-directed backtracking. 
U sually, the intent is to minimize recomputation of information already collected 
along the path. As an added benefit, we can avoid exploring certain paths in the 
space, resulting in an algorithm more efficient than one using a breadth-first strategy. 

In the case of pattern matching, the multiple parses corresponding to an increment 
can be extended to sequences of increments. Thus, if the partial occurrence in the 
current state is over the diagram Ih, and is obtained via a collection of increments Pn, 
all the alternative paths generated by parsing the elements of Pn differently can be 
computed from the curi."ent state. Moreover, most of this computation depends only 
upon the pattern cover P; thus alternative parses can be precomputed for a given 
pattern cover. 

We can exploit the information contained in the current partial occurrence to 
backtrack to a state different from that given by chronological backtracking. Keeping 
with the spirit of expanding partial occurrences as far as ·possible, we backtrack to 
the largest alternative partial occurrence which can be derived from the current state. 

This scheme of expanding a partial occurrence until i t is no longer expanda ble is a 
hill-climbing strategy. The backtracking step corresponds to jumping toan adjacent 
hill w hen a local maximum is reached. 

The precomputation of multiple parses for sets of increments and the partial order 
imposed on partial occurrences is described in the sections below. 
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5.3.28 The pattern-pattern-sheaf 

As mentioned above, the multiple parses associated with a piece of the target can be 
extended to bigger pieces. We first show how multiple parses are generated and then 
show how they can be extended to form a sheaf. 

Traversing the target generates occurrence arrows of the form Pi ---+ t, where Pi is 
an element in the base of the cover P for the pattern p. As discussed in section 5.3.18, 
we assume that finding an arrow Pi ---+ t also provides, by restriction, all arrows of the 
form p~ ---+ t where p~ ---+Pi is an arrow in the sieve Pi corresponding to Pi· Thus, as in 
the specification TARGET-TRAVERSAL, we assume that traversa! generates increments 
which are functors on the diagrams C/ Pi. 

We are interested in computing eones over the diagram C / P of the pattern cover, 
whereas traversa! provides increments over diagrams in the category base( P). In other 
words, we need increments which are over the diagrams C/Qi which comprise the 
pattern cover. Recall the relationship between the functors ( see section 5.3. 7.Alt.2) 

F: base(P)ºP---+ Set 

and 

given by 

and 

Traversa! provides increments to the functo:r F whereas we need increments for the 
functor F#. The transition from F to F# is in two steps: the computation of sieves Qi 
corresponding to a sieve Pi, and the translation of F defined over Pi to F# defined 
over Qi. The first can be precomputed for a given pattern cover, the second is a 
straightforward application of the definition of p#. 

The relationship between the sieves P¡ and the sieves Q i is as follows: there are 
as many Q/s corresponding to a Pi as there are arrows qf Pi ---+ p (i.e., the number 
of times Pi occurs in the pattern p). Each increment over Q i is said to be a parse 
of the increment on P¡. When extended to bigger pieces, this relation is called the 
pattern-pattern-sheaf. 
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DEFINITION 5 .16: Pattern-pattern-sheaf. The underlying category ~hase(P) of the 
pattern-pattern-sheaf consists of ali diagrams over base(P) together with inclusion 
arrows. Covers are as in definition 5.5, section 5.3.10. The functor 

4>: ~~~e(P) ---t Set 

assigns to each diagram in base(P) a set of parses, i.e., diagrams in C/ P. The functor 
4> is inductively defined as follows: 

l. For a diagram consisting of a single object Pi, 

4> (Pi) = { (Pi, Pi -:!!...+ P) 1 qi E C / P } . 

2. For a diagram consisting of a single arrow f: p} ---t Pl, 

<P(f) = { (p~, qj) ¡oP (p~, q}) 1 q} = qj o f in base(P) }. 

3. For an arrow of the form g: p} ~ (p} ~ p¡) between diagrams, 

4. For any other diagram 8, let 8 = Colim Óx, where 8x is a diagram of the forms 
---+ 
xEX 

in items 1 or 2 above. Then, 

4>{8) = ~4>(8x)· 
xeX 

5. For any other arrow, 4> is defined via the limit in item 4 above. 

The functor 4> evidently forms a sheaf. o 

We show, in figure 5.10, an example of the pattern-pattern-sheaf for a tree pattern 
using the finest cover. 

Before proceeding, we define a concept which will be frequently used in the sequel: 
the underlying diagram of a sub-pattern. 

DEFINITION 5.17: Underlying diagram. Given a pattern cover P, for any sub
pattern ITk, the underlying diagram of ITk, written T(Ilk), is the diagram Pi such 
that Ilk E <P(Pi), where 4> is the pattern-pattern-sheaf corresponding t'o P. The 
assignment of Pi to ITk is clearly unique and can be extended to arrows. We thus 
have a partial functor T: Set ---t ~~~e(P) which is the left-inverse of 4>. Intuitively, T 
projects a sub-pattern onto its underlying diagram. O 
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Figure 5.10: The pattern-pattern-sheaf: example with trees 
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5.3.29 The subsumption relation 

To improve the efÉ.ciency of the depth-first search of the space of eones (partial oc
currences ), we explore only one parse at a time, using the pattern-pattern-sheaf to 
generate the other parses on demand. Alternative parses which can be generated on 
demand are said to be subsumed by the original parse. We only need the subsump
tion relation between eones on the diagrams IIk (sin ce eones on other diagrams are 
filtered out during the search). Moreover, the subsumption relation between parses is 
uniquely determined by the subsumption relation on sub-patterns. This subsumption 
relation between sub-patterns is formally defined below. 

DEFINITION 5.18: The subsumption relation. Given two diagrams rrk and Ilt in C/ P, 
IIk subsumes IIt, written IIk !:::: Ilt, if i(Ilt) ~ i(IIk) (note the change in direction). O 

The subsumption relation is evidently a partial order. 
The definition of the subsumption relation comprises two parts: subsumption via 

alternative parses, and subsumption via inclusion. The first, denoted by ~, is an 
equivalence relation. It is defined by IIk ~ Ilt ~ i(IIk) = i(Ilt), i.e., two 
sub-patterns mutually subsume each other if they are alternative parses of the same 
diagram. The second part, denoted by >-, is strict subsumption induced by strict 
inclusion of underlying diagrams. It is defined by IIk >- IIt ~ i(Ilt) e T(IIk)· 

The assignment of alternative parses to each diagram Pi generates a sheaf, the 
pattern-pattern-sheaf (section 5.3.28).15 Hence, to compute the subsumption rela
tion, we can re-apply our derivation to this sheaf: the sheaf condition provides a 
recursive algorithm which is then converted into an iterative. algorithm by travers
ing the pattern. For the second part of the subsumption relation, that induced by 
inclusion, it is sufficient to compute the inclusion order on diagrams. This order is 
synergistically incorporated into the algorithm as the well-founded order required by 
the divide-and-conquer step. 

We omit the details of the recursive sub-derivation and present the final result. 16 

Observe that the traversa! operation produces occurrence arrows with respect to the 
pattern, and that the invalid partial bccurrence filter (section 5.3.26) has already been 
incorporated ( since the pattern-pattern-sheaf is only computed for diagrams of the 
form "T(IIk)"). 

15The two parts of the subsumption relation can be combined in to a single sheaf by adding an extra 
element, .l (to indicate discarding of that increment), to each set of parses. The sheaf then assigns 
to each pattern diagram a set of parses, which is then closed under subsumption. We omit this 
characterization because, later on in the derivation, it becomes necessary to split the subsumption 
relation into two parts. 

16The synthesis and optimization of this algorithm can be rigorously carried out as a sub
derivation. However, we omit the details, since the focus of this dissertation is the main sequence of 
design decisions which leads to the Knuth-Morris-Pratt algorithm. 
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spec PATPAT-SHEAF(P :: SIEVE(C)) = 
-incremental computation oí the pattern-pattern-sheaf 
-algorithm obtained by a recursive application oí the derivation 
-cf. FD-CONES, section 5.3.18 

sorts PP-SHEAF, INCREMENT 
-a pattern-pattern-sheaf associates a set oí parses 
-with each diagram built from pieces oí the pattern 

subsorts PP-SHEAF ~ Fun(~~~e(P)' Set) 
-increments are functors defined over diagrams oí prime sieves 
-the increments are occurrence arrows oí the pattern within itselí 

subsorts INCREMENT ~ Fun(C/ P¡, Set) for Pi E prime-sieves(base(P)) 
operations 

pp-sheaf : STREAM(INCREMENT) ___., PP~SHEAF 
update : PP-SHEAF, STREAM(INCREMENT) ___., PP-SHEAF 

ax1oms 
-start iterative algorithm with empty sheaf 

pp-sheaf(s) = update(0,s) 
-incremental update oí the pattern-pattern-sheaf 
-when the increment stream is exhausted, return tbe current sbeaf 

update(pp-sheaf, nil) = pp-sheaf 
-process one element oí the stream at a time 

update(pp-sheaf, cons( C /Pi .l:.+ Set, s)) = update(pp-sheaf', s) 
where pp-sheaf' = pp-sheaf except 

end 

-update parses oí e/ pi 
pp-sheaf'(C/ P¡,) = pp-sheaf(C/ Pi) U.P(C/ Pi) and 

-update parses for all diagrams which intersect with e/ pi 
-using the distributive law; Theorem 5.217 

VIIk E subpatterns(P) · C/ Pi ~ T(Ih) => 
pp-sheaf'(T(Ilk)) = pp-sheaf(T(Ilk)) U pp-sheaf(C/P!) x F(C/ Pi) 

pp-sheaf(C/ Pf n C/ P¡) 
where C/ Pf = T(Ilk)"'C/ P¡ . 

-the pullback above also updates projections oí parses 

The axiom for updating the pattern-pattern-sheaf uses quantification over the sub
patterns Ih. However, the collection of sub-patterns is not known in advance; indeed, 
one of the purposes of traversing the pattern is to enumerate this collection. We can 
remove this circularity by building the collection Óf sub-patterns while building the 
pattern-pattern-sheaf. This is based on the observation that the value of the pullback 
pp-sheaf(C/ PI)® F is empty when pp-sheaf(C/ PI) is empty, i.e., the incrernents to 

17Strictly speaking, we cannot use this theorem since the elements of the pattern-pattern-sheaf 
are no~ eones; they are parses. However, this slight imprecision is justified by the faet that parses 
are just eones which have already been glued together. 
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the sheaf built ·by expanding already existing sub-patterns. Thus, we can build the 
category ~base(P) while building the pattern-pattern-sheaf. 

Let ~ be the category of pattern diagrams (i.e., diagrams of the form "i(Ih)") 
found until now. Given an increment C/ Pi _.!_...., Set, the increment to the category ~ 
consists of: 

New objects: C/ Pi UD, for all D E Obj(~); and 

New arrows: D ~ (C/ Pi UD), for all DE Obj(~). 

Observe that in incrementally enumerating the category ~base(P), we have com
puted the inclusion relation on diagrams. However, this inclusion relation need not 
be completely computed. Our intent is to save on space by representing the collection 
of active states (i.e., states yet to be explored) in the specification BTF-CONES using. 
generators. This also saves on time by exploring states only on demand. As discussed 
above, when the current partial occurrence cannot be expanded, we backtrack to the 
largest partial occurrence that can be derived from the current state using alterna
tive parses. When a unique such partial occurrence does not exist for sorne Ih, we 
have to explore the states corresponding to the least upperbounds of all connected 
components of the set { Ilt 1 rrk >- Ilt } of sub-patterns strictly subsumed by rrk. 
Let us denote this set ( of upperbounds) by E(Ilk)· Just as the pattern-pattern-sheaf 
can be computed incrementally, so can the subsumption sets for each sub-pattern. 
The identity required for the incremental computation is (provided neither diagram 
is empty):18 

Finally, we remove another dependency in the computation of the subsumption 
relation: the dependency on the pattern cover P. This cover can be built while 
traversing the pattern. However, as we will see below, this cover is not explici tly 
required in the pattern matching algorithm; all that is needed is the assumption 
that traversing an object produces increments over pieces of the finest cover ( of that 
object ). 

We consolidate all the details discussed above into a computation of the subsump
tion relation, which includes the computation of the pattern-pattern-sheaf. 

18This identity can be rigorously derived by applying finite differencing to the recursive definition 
of the subsumption relation. Again, we omit the details. 
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spec TRAVERSAL( (C, J) :: FINITARY-NOETHERIAN-PM-SITE) = 
sorts INCREMENT 

subsorts INCREMENT-< Fun(C/Ai, Set) for Ai E prime-sieves(base(A)) 
where -A is the finest cover of an object a E Obj(C) 

operations 
traverse: Obj(C) ~ STREAM(INCREMENT) 

axioms 
-the pointwise union of the increments generated by traversing 
-an object yields the finest cover of that object 

/ U o traverse( a) = A -A is the fi.nest cover of a 
end 
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spec SUBSUMPTION(p :: Obj(C), (C, J) :: FINITARY-NOETHERIAN-PM-SITE) = 
extend TRAVERSAL( (C, J)) 
sorts PP-SHEAF' IMM-SUBS 

-a pattern-pattern-sheaf associates a set of parses 
-with each diagram built from pieces of the pattern 
-Pis the finest cover for the object p 

subsorts PP-SHEAF -< Fun( ~ op' Set) for ~ ~ ~base(P) 
-the immediate subsumption relation E(D) is the set of 
-the least upperbounds of the connected components of 
-{E 1 D >-E}, the set of diagrams strictly subsumed by D 

subsorts E -< (D -+ SET(D)) for D E ~base(P) 
operations 

pp-sheaf : -+ PP-SHEAF 

131 

update : PP-SHEAF, IMM-SUBS, STREAM(INCREMENT) -+ PP-SHEAF, IMM-SUBS 

ax1oms 
-start iterative algorithm with a sheaf containing only 
-the empty diagram and a subsumption relation mapping 
-the empty diagram onto the emtpy set 

pp-sheaf ( s) = update(0 -+ 0, 0 -+ 0, s) 
-incremental update of the pattern-pattern-sheaf 
-when the increment stream is exhausted, return the current sheaf 

update(pp-sheaf, E, nil) = (pp-sheaf, E) 
-process one element of the stream at a time 

p· 
update(pp-sheaf, E, cons( C / P¡ ---+- Set, s)) = update(pp-sheaf', E', s) 

where pp-sheaf' = pp-sheaf /\ E' = E except 
-update parses of C / P¡ 

pp-sheaf'(C/ P¡) = pp-sheaf(C/ P¡) U F(C/ Pi) and 
-populate the sheaf for ali new diagrams generated by C / P¡ 
-using the distributive law; Theorem 5.219 

VD E dom(pp-sheaf) · 
pp-sheaf'(D U C/ P¡) = pp-sheaf(D) x F(C/ P¡) 

pp-sheaf(D n C/ P¡) 
-update the "immediately subsumed" relation 

E'(C/ P¡) = 0 
VD E dom(pp-sheaf) · _ 
D # 0 ~ E' ( D u e/ Pi) = { D} u { E u e/ P¡ 1 E E E ( D) } 

end 

19See footnote on page 128. 
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5.3.30 Dependency-directed backtracking: Algorithm 

We now add dependency-directed backtracking to the specification BTF-CONES by 
replacing the collection of active states by generators. We will need sorne preliminary 
definitions. 

First, we need an operation to transfer a corre defined on a diagram Ilk to a cone 
defined on the diagram Ilt, where Ilt is subsumed by IIk. This operation corresponds 
to sliding the pattern in the original Knuth-Morris-Pratt algorithm. The definition 
below is a little complicated; however, the intuition of sliding is straightforward. 

DEFINITION 5.19: Slide. Let v be an occurrence (i.e., cone) on a sub-pattern Ilk, 
and let lle be another sub-pattern subsumed by Ilk, i.e., Ilk t lle. Subsumption 
implies that the underlying diagrains of the two sub-patterns are related by i(Ilt) ~ 
i(Ilk), which establishes a correspondence i: Ilt >-+ ITk between the two sub-patterns. 
The sliding of the occurrence v from Ilk to Ilt, written "sliderrk>-rrl(v)," is just the 
restriction of the cone v along the arrow i. O 

Second, we need to extend the subsumption relation from sub-patterns to partial 
occurrences, and then to states in the search space of BTF-CONES. 

DEFINITION 5.20: Subsumption of states. A partial occurrence VD subsumes another 
partial occurrence TE, written VD !::: TE, if and only if D t E (subsumption of 
diagrams, definition 5.18) and r = slideD>-E(v). 

A state20 (vD, s) subsumes another st~te (rE, t), written (vD, s) t (rE, t), if and 
only if VD !::: TE (subsumption of partial occurrences, see above) and s =t. O 

We now proceed to replace the set of a~tive states in the depth-first search of 
BTF-CONES by generators. Considera state (vD,cons(i,s)). If the increment i ex
pands the partial occurrence v to give r, then we need not add any new states to the 
set of active states; the new states which would be added via alternative parses of 
the increment i are subsumed by (r, s). However, if the increment i does not expand 
the partial occurrence v, then we cannot simply discard it; the state (v, s) will not 
subsume any state which incorporates i in its partial occurrence. The appropriate 
additions to the set of active states is the set of states immediately subsumed by the 
original state: 

{ (rE,cons(i,s)) 1 E E ~(D),r = slideDtE(v) }. 

All other states subsumed by the original state can be generated from this set. If the 
increment i does not expand sorne r, then it is tried with another set of subsumed 
states. This process will ultimately stop because any increment always expands the 
empty partial occurrence, the bottom element of the subsumption relation. 

· ~ºThis refers to the states in the search space of BT-CONES or BTF-CONES. A state is a pair, 
consisting of a partial occurrence together with the rest of the input stream. 
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In other words, every increment in the input stream is "accounted" for. At every 
stage, the collection of active states is capable of generating all states obtainable from 
any combination of parses of the input stream. 

spec DDBT-CONES(c :: Obj(C), P :: SIEVE(C)) = 
-dependency-directed backtracking implementation oí cone computation 

extend GS-CONES-1( c, P) 
operations 

ddbt-cories : STREAM(INCREMENT) --+ SET( CONE) 
dfs-ddbt : SD, SET( CONE), SET(SD) --+SET( CONE) 
pick-arc: SET(SD) --+ SD, SET(SD) 
pick-bt : SET(SD) --+ SD, SET(SD) 

filter : SD --+ BOOL 
axioms 

-start search at the initial state: the empty cone and the input stream 
ddbt-cones(s) = dfs-ddbt( (O, s), 0, 0) 

-<lfs-ddbt takes three arguments: the current state being explored, 
-a partial set oí solutions, anda set oí states yet to be explored 

dfs-ddbt( cur-state, Solutions, Active-States) = 
let (vv, cons(i, s)) = cur-state 

end 

-process current state: add solutions extractable from current state 
and N ew-Solutions = if D = e/ p then Solutions u {V} else Solutions 

-generate next states 
and New-States = { (rE, s) 1 r .= v ® prim-cones(F), FE ~(base(i))} m 
if New-States = 0 V filter( cur-state) then 

-current state cannot be expanded or can be pruned 
-add subsumed states to the list oí active states 
-discard current state; backtrack to another 
let New-Active = Active-States U 

{ (rE,cons(i,s)) 1 E E E(D),r = slidem-E(v)} in 
if New-Active = 0 then -nowhere to backtrack; return solutions 

N ew-Solutions 
else -pick an unexplored state to backtrack to 

let ( new-state, New-Active) = pick-bt( New-Active) in 
dfs-ddbt( new-state, New-Solutions, New-Active) 

else · -proceed depth-first: pick one oí the next states to explore 
let ( new-state, New-Active) = pick-arc( New-States) in 
dfs-ddbt( new-state, New-Solutions, Active-States U New-Active) 
-axioms for "pick-arc", ''pick-bt", and "filter" are as in BTF-CONES 
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5.3.31 The failure function 

In the standard version of the Knuth-Morris-Pratt algorithm [Knuth et al. 77], which 
works on strings with a left-to-right traversa! of the target, only those partial occur
rences are considered which touch the right edge of the portion of the target already 
traversed. Hence, a partial occurrence can be expanded in only one direction. Thus, 
for any partial occurrence which cannot be expanded, i.e., the next character is a 
mismatch, we can test whether the next immediately subsumed partial occurrence 
offers a new opportunity for expansion; otherwise, the subsumed partial occurrence 
can be rejected in favor of a smaller one. Here is the appropriate picture, where the 
first subsumed occurrence can be rejected since it does not offer a new choice: 

target 
match es 
pattern 
1 stshift 
2ndshift 

abcaabc 
..;..;..;..;x 

abe a b e 
a b e abe 

a be abe 

The subsumption relation, after this precomputation has been performed, is called 
the failure function. 

In a generalized version of the Knuth-Morris-Pratt algorithm, since partial oc
currences can be expanded in more than one direction ( consider the si te of graphs ), 
the failure function is a multifunction, which computes a subsumed occurrence for 
each direction in which the partial occurrence may be expanded. The directions of 
expansion depend upon the geometry of the underlying data structures; this part of 
the geometry is not axiomatized in a Grothendieck topology. Hence, we omit this ad
ditional precomputation, relegating it to data-structure-specific optimizations which 
are done after the generalized algorithm is ip.stantiated. 

5.3.32 Assessment 

In the last few sections, we have optimized depth-first search in the space of eones 
by replacing the set of active states with a generator. On scrutiny, this optimization 
is independent of the search strategy. The optimization represents the entire search 
space more compactly by exploiting the subsumption relation between states; thus 
any search strategy which can be used in the original space can also be used in the 
compressed space, provided non-existent states are always generated when the search 
strategy requires ( demands) them. 
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5.3.32.Alt.1 Breadth-first search with demand-driven state generation 

We now show how the breadth-first search strategy in the space of partial occurrences 
can be modified to accommodate the representation of states via generators. 

spec BFS-CONES(p, e:: Obj(C), (C, J) :: FINITARY-NOETHERIAN-PM-SITE) = 
extend SUBSUMPTION(p, (C, J) ), GS-CONES-1( e, P) -P = decompose(p) 
operations 

bfs-cones : STREAM(INCREMENT) ~ SET( CONE) 
bfs : STREAM(INCREMENT), SET(SD ), SET( CONE) ~SET( CONE) 

expand : SET(SD) ~ SET(SD) 

ax1oms 
-start search at the initial state: 
-the empty cone and the input stream 

bfs-cones(s) = bfs(s,{(O,s)},0) 
- ''bfs" takes th.ree arguments: the rest of the stream 
-the set of active states, and a partial set oí solutions 
-the fi.rst argument is just a convenience 
-the algorithm proceeds by processing one increment ata time 
-all currently active states contain the same stream 

bfs( s, Active-States, Solutions) = 
-extract full occurrences from active states 

let N ew-Solutions = Solutions U 
{ v 1 (vc¡p, t) E Active-States } in 
-return solution when input stream is exhausted 

if s = nil then N ew-Solutions else 
-expand all active states and continue 

bfs( tl( s), N ew-Active, N ew-Solutions) 
where New-Active =/U oa(expandhd(a))(Active-States) 

-expanding a state 
-if current state can be fi.ltered, then fail back to subsumed states 

expandi( x) = 
if is-full-occurrence(x) V dead-end(x) then E(x) 
else let N ew-States = 

{(v®G,tl(s)) 1 x= (v,s),G=F#,FE <P(dom(i))} in 
-if current state can be expanded, return expansions 

if N ew-States =F 0 then N ew-States 
-otherwise, fail back to subsumed states 

else E(x) 
end 
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5.3.33 The generalized Knuth-Morris-Pratt algorithm 

The breadth-first search algorithm above, together with the computation of the sub
sumption relation, comprises the generalized Knuth-Morris-Pratt algorithm. It im
plernents the pattern matching specification PATTERN-MATCH as follows. 

PATTERN-MATCH ~ K-KMP(KMP-PATTERN-MATCH) 

where 

spec KMP-PATTERN-MATCH( (C, J) :: FINITARY-NOETHERIAN-PM-SITE) = 
extend BFS-CONES(-, -, (C, J)) 
extend CONE-DECOMPOSITION-1 with 

decompose renamed as decompose. CONE 
operations 

kmp-occs: Obj(C), Obj(C) ~ SET(OCCURRENCE) 
decompose: Obj(C) ~ SIEVE(C) 

axioms 
kmp-occs(p, t) = a(gluep) o bfs-cones1,p( s) 
where P = decompose(p), s = traverse(t) 

-decomposition yields the fi.nest covering sieve 
decompose(p) E J (p) /\ V R E J (p) · decompose(p) ~ R 

-computation of eones on C/Q; is done by "de-eones" 
prim-conesc,P ( F) = de-eones( e, F) 

end 

and the constructor K-KMP is defined by 

constructor K-KMP = 
derive from KMP-PATTERN-MATCH 
by { occurrences i--+ kmp-occs } 
end 

The specification KMP-PATTERN-MATCH can be somewhat simplified by removing 
the dependencies on the pattern cover P, since this cover is implicitly generated by 
traversa!. Moreover, the functions "glue" and "prim-cones" can be specified inde
pendently of the pattern cover (but dependent on the underlying site). We omit the 
details, and use the definition 

· kmp-occs(p, t) = a(glue) o bfs-cones1,p(s) 
where s = traverse(t) 

as the basis of the generic algorithm which will be specialized to strings and graphs 

in the next chapter. 
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Traversa! order: 

Partial occurrence: 

3. a i b2, a2 b2, a 2 b3 

4. a1b2, a·2b2, a2b3c2 -expand a2b3 

5. a1b2, c2a2b2, a2b3c2a2 -expand a2b2 and a2b3c2 

-filter tbe full occurrence a 2b3c2a2 

-replace it by subsumed occurrences: a2b3c2, b3c2a2, c2a2b3 

-eliminate c2a2b2c2, a2b3c2, b3c2a2, c2a2b3 

-using traversal dead-end filter 

-expand a1 b1 

9. a1b2, a1b1c1a1 -expand a1b1c1 

-end of algoritbm 

-traversal dead-end filter removes all partial occurrences 

Figure 5.12: Trace of generalized KMP on graphs ( cf. figures 3.2 and 5.9) 



Chapter 6 

Future Work: Applications of 
a Sheaf-Theoretic View 

The woods are lovely, dark, and deep, 
But I have promises to keep, 

And miles to go before I sleep, 
And miles to go before I sleep. 

- Robert Frost, Stopping by Woods on a Snowy Evening (1923) 

In this chapter, we investigate the effects of relaxing sorne of the simplifying 
assumptions we made during the derivation of the Knuth-Morris-Pratt algorithm. 
Relaxing these assumptions does not debilitate the derivation; instead, we get several 
related algorithms, comprising the design space around the main derivation. Sorne 
of these relations are obvious ( e.g., matching with multiple patterns ); sorne, which 
were only hinted before [Knuth et al. 77, Hoffmann and O'Donnell 82], are rendered 
explicit ( e.g., the connection with LR-parsing and Earley's algorithm for context
free parsing); sorne others were a complete surprise even to the author ( e.g., Waltz 
filtering for image analysis1 ). The richness of the design space, in spite of a simple 
set of axioms, is testimony to the power of Grothendieck's machinery. 

6.1 More general patterns 

The sheaf-theoretic view of pattern matching can handle more general kinds of pat
terns: patterns with variables, multiple patterns, pattern matching modulo com
mutativity / associativity, etc. by defining the underlying categodes and topologies 
appropriately. 

Suppose we have two patterns, p and q, and want to find all the occurrences of p 
or q in a target. This can be done by taking the union of the occurrences of p and q. 

We thus have a logical operation "p V q" on patterns, defined by 

hom(p V q, -) = hom(p, -) U hom(q, -). 

11 thank Dr. Ira Baxter, a fellow graduate student, for pointing out the similarity between the 
Knuth-Morris-Pratt algorithm and Waltz filtering. 
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Applying our KMP derivation using the patterns p and q (individually), we get two 
algorithms for finding occurrences. Occurrences of p V q can then be computed by 
the equation above. However, this in vol ves traversing the target twice. To avoid this, 
we interleave the two algorithms: the target is traversed only once, but each piece of 
the target is parsed according to both p and q. We thus get a combined search space 
of partial occurrences of both p and q as well as a failure function which depends 
on both patterns. We thus get the Aho-Corasick version of the KMP algorithm for 
multiple patterns [Aho and Corasick 75]. 

An alternative way to incorporate disjunction of patterns is to modify the under
lying site. Corresponding to any pair of objects, p and q, we add a new object p V q 

together with two new arrows 7r1:pVq-+ p and 7r2:pVq-+ q. Corresponding to every 
arrow u -+ p, we add a new arrow u V q -+ p V q; similarly, an arrow v V p -+ p V q 
for each arrow v -+ q. The arrows are then closed under composition. It is clear that 
p V q behaves as a product and satisfies the identity on hom-sets given above. 2 We 
define a cover ofp V q to be a product (in the category of sieves) of covers of p and q. 

Other operations on patterns, such as p /\ q, can be modeled similarly. The direct 
characterization, using operations on hom-functors is more convenient for deriving 
algorithms. We have presented the alternative of modifying the site so as to connect 
these operations to variables, and context-free parsing. 

An untyped variable can be modeled as the pattern p V q V r V s · · · (infinite 
disjunction). Thus, a variable is represented by the collection of all its instances (its 
extension). In a pattern matching algorithm, since a variable matches anything, for 
every piece of the target t¡, we always have the parse v-+ t¡. Alternatively, a variable 
can be added to the underlying site, along with new arrows to every object in the 
site. Thus, a variable behaves as an initial object, and satisfies the equation 

hom( v, -) = hom(p, -) U hom(q, -) U hom(r, -) U··· (inifinite union). 

Typed variables can be modeled by only adding arrows to objects in their extension. 

6.2 Context-free parsing: Earley's algorithm 

Earley's algorithm for context-free parsing [Earley 70] scans the input string from 
left-to-right accumulating partial parses (left contexts) of the input seen so far. For 
each input increment, sorne partial parses in the current set of parses are expanded, 
and sorne are discarded, depending on the compatibility of the increment with the 
parses. 

Earley's algorithm has a dual nature: it can be seen either as a top-clown approach 
( unfolding grammar rules, predicting the next increment, and testing against the 

2The rea.son why p V q, a disjunction, behaves as a product is because of the contravariance of 
the occurrence sheaf. The object p V q is trying to represent the union of occurrences. In the same 
spirit, p /\ q, representing the occurrence of both p and q, is modeled as a coproduct. 
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input), or as a bottom-up approach ( expanding the current left contexts using the 
next increment, possibly accompanied by folding of grammar rules). We explain this 
duality, and also the close connection with the KMP algorithm, using two different 
topologies. 3 

Bottom-up 

The goal of parsing is to assign a parse to a target string. A parse is a derivation oí 
the target string from the start symbol of the grammar. A derivation is a sequence of 
applications of productions in the grammar. In the bottom-up approach to parsing, 
we choose a cover oí the target string, compute all partial parses of each piece of the 
target, and glue together compatible partial parses to obtain one or more parse of the 
entire string. Rather than give detailed definitions, we illustrate these concepts via 
an example in figure 6.1. The relevant sheaf is the sheaf of partial parses oí strings. 
The resulting topology on parses is close to the topology described in [Eytan 80]. 

It can be seen that the frontier of a partial parse tree is a sentential form divided 
into three parts: the middle part is a terminal string, the other two parts are the 
left and right contexts. A partial parse tree is usually represented using dotted pro
ductions. Applying our KMP derivation to the sheaf of partial parses, and using a 
left-to-right traversa! of the target string, we see that the partial parses will always 
have their left contexts filled out. Thus we need only consider partial parses with 
right contexts missing: these correspond to the item sets in Earley's algorithm. 

Top-down 

In a top-clown approach, we view the parsing problemas matching with an infinite 
collection of patterns: the collection of strings which constitute the language gener
ated by the grammar. The problem is not so much to enumera te all the occurrences 
of these patterns as to determine which patterns match the ( entire) target. Thus, 
we can apply the generalization of KMP to multiple patterns. However, this poses 
a problem because the collection oí patterns is infinite. Hence we use the standard 
technique of representing this collection intensionally. 

The grammar provide the requisite intension. Consider a rule of the form: 

s~ ABCICBA. 

This rule says that the collection of patterns represented by S is union of those 
represented by ABC and CBA. Thus, we use the generalization of KMP for two 
patterns. Next, to find occurrences of the patterns represented by ABC, we can use 
the standard version of KMP ( choose a cover of ABC, finds occurrences of each piece, 

3 Compare our approach to the derivation of Earley's algorithm given in [Partsch 84], where the 
notion of ítem sets is introduced in an unmotivated embedding of the specification of parsing into a 
more general specification. 
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Figure 6.1: A sheaf-theoretic view of context-free parsing 
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etc.). We continue alternating between logical operations ( alternation in a grammar 
rule) and geometric operations ( decomposing a sentential form) until we reach a 
sentential form which starts with a terminal symbol. This can be tested against the 
target string. Depending on the result, we either discard sorne patterns, or proceed 
to match the next piece of the sentential form. 

Implementing the alternation operator (1) by a breadth-first exploration of all 
alternatives, we see that the item sets of Earley's algorithm represent the collection 
of all patterns which can potentially match the ( entire) target. 

6.3 Constraint propagation: Waltz filtering 

Relaxation algorithms for constraint propagation can be described by sheaves when 
the constraints are local. An example is Waltz filtering [Waltz 75], an algorithm which 
assigns three-dimensional interpretations to two-dimensional line drawings of scenes. 
The underlying site is that .of undirected, connected graphs; these graphs represent 
(parts of) line drawings of three-dimensional scenes. The algorithm assigns labels to 
each edge in the drawing, labels such as shadow edge, concave edge, convex edge, 
obscuring edge, etc. The possible combinations of labels for commonly occurring 
junctions, L-junctions, T-junctions, forks, etc., are precomputed by using physical 
properties of three-dimensional space. 

The algorithm works by choosing a junction cover (see figure 6.2) for the given 
line drawing, assigning the precomputed label combinations to each junction, and 
eliminating inconsistent combinations of labels: when two junctions share an edge, 
then the edge should be assigned a unique label. Thus, the Waltz filtering algorithm 
can be obtained by applying the KMP derivation to the sheaf of labelings of graphs 
( this sheaf is similar to the graph coloring sheaf of example 2.36). 

6.4 Non-local properties 

A sheaf is a useful structure to work with if we are interested in modeling local 
properties. However, sorne problems may contain sorne non-local properties. Consider 
the property of being a monic arrow in the category of graphs. If we only consider the 
finest covers for graphs, this is a non-local property, in that a compatible collection 
of monic arrows on a cover <loes not yield a monic arrow on the entire graph. This 
is because the property of being monic requires that no two edges in the domain of 
the arrow be mapped onto the same edge in the codomain. Since the finest cover of a 
graph consists of individual edges, it cannot detect the incompatibility between maps 
on pairs of edges. 

There are two ways to handle such non-local properties in the sheaf characteriza
tion of a problem: in the definition of a cover, or in a filter which removes "pseudo
compatible" families. In the example above, we can redefine covers so that two edges 
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which can be potentially mapped onto the same edge are never split up in a cover, 
i.e., the grain of locality of the property of being monic is pairs of edges. We can 
also work with separated presheaves (resulting in a partial gluing function) and ex
amine compatible families before trying to glue them. Thus, although the occurrence 
relation defined by monics between graphs does not yield a sheaf, we can work as 
if it did, and apply the KMP derivation, provided we in.elude a test before gluing 
compatible families. This is also the appropriate place to handle semantic properties 
such as those which arise in conditional pattern matching~ 

6.5 Rewriting 

A rewrite rule can be considered as a pair of patterns whose pieces are related by 
editing relations such as preserve, add, and delete. The geometry of patterns induces a 
geometry of rewrites. Not only does this view provide a uniform treatment of rewriting 
( on strings, trees, graphs, hypergraphs, etc.), but it also allows us to decompose 
rewrites into pieces and glue together these pieces. 

Typically a rewrite rule is a pair of patterns, e.g., 

x+y--+x-y. 

There are severa! aspects of such a rewrite which are implicit. First, the editing 
operations-what changes and what remains the same-are implicitly encoded by 
using the same variable names in both sides. Second, it is implicitly assumed that 
the part of the target which is outside the binding of the pattern remains unchanged 
af ter the rewri te. 

To handle the connections of the ~est of the target to the rewritten portian (for 
graph rewriting), Ehrig introduces the notion of gluing poínts: the target graph is 
expressed as a pushout of the pattetn and a complement graph [Ehrig 78]. This 
approach can be generalized by defining rewrites at the level of covers. Thus, a · 
rewrite rule would be a pair of covers (for the left and right patterns) together with a 
description of which parts are preserved, added, and deleted. A rewrite then consists 
of the following steps: 

l. explode the target into pieces, i.e., find a cover which matches ~hat of the left
hand-side pattern; 

2. edit the target cover as specified by the rewrite rule; this is a double pushout 
(as in [Ehrig 78]); and 

3. reglue the revised cover ·to obtain the rewritten target. 

By working at the level of covers, we abstract away from the underlying d~~a. · 
tures involved, and provide a uniform treatment of rewriting for all sif. 
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approach also allows us to decompose rewrites into smaller pieces and investigate 
relationships among them, e.g., the independence/commutativity of two rewrites. 
Exploiting the geometry of the data structures is sometimes more efficient [Baxter 90] 
than using algebraic properties of rewrites (as in [Ehrig 78]). 

6.6 lnduction and computability 

The sheaf condition, which allows us to pass from properties defined on elements of 
a cover to properties defined on the en tire oh ject, is essentially a general form of 
induction. Given that induction is the only general principle we have for reasoning 
about infinite collections of entities, the question arises whether computability has a 
sheaf-theoretic characterization. 

Gandy's paper on principles for mechanisms [Gandy 80]4 comes clase to a sheaf
theoretic characterization of computability. In investigating what it is "to compute," 
Gandy goes beyond Turing's machine, and propases five principles for mechanisms, 
principles that any mechanism performing a computation should satisfy. These prin
ciples assume a state transition model. The important principles are that the next 
state is obtained by examining a finite amount of information from the current state, 
and that the next state is built inductively /reductionistically out of pieces of the 
current state. Gandy observes at the end of his paper that his principles can be 
formulated using sheaf theory, but he didn 't use sheaf theory for expository reasons. 

Since sheaf theory is a combination of geometric and algebraic aspects, we ask 
whether there is a connection between computation and geometry. This connection 
can be illustrated by an example. Consider ·a typical algebraic equation such as: 

(a + b) 2 = a 2 + 2a b + b2
• 

Let us analyze the meaning of this equation. · First, there are a collection of symbols: a, 
b, 2, +, etc. Second, these symbols can be spatially arranged in diff erent configurations 
(as letters on paper, as dots on a screen, .. as frequency modulation of a wave, etc.). 
Third, we assign a denotation to each cbnfiguration. Fourth, we assert that the 
denotations assigned to certain pairs of configurations are the same (in this case, the 
two expressions on ei ther si de oí the equation). 

The first two are geometric; they are formal, meaningless manipulations. The last 
two are algebraic; they allow us to reason about such manipulations. 

Formal symbol manipulation is meaningless; to exploit it for sorne purpose, we 
should be able to determine the meanings. Computation is geometric manipulation 
which is meaningful, i.e., which can be inductively reasoned about (finite induction). 
Given a collection of symbols, legal configurations are inductively defined. The de
notation of a configuration is inductively defined in terms of denotations of its pieces_ 
( compositional semantics ). 

4See also [Shepherdson 88, Dahlhaus and Makowsky 88]. 
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Different formulations of computability use different geometric entities as their 
basis: strings (Post systems), trees (lambda-calculus), arrays (Turing machines, also 
multi-dimensional arrays ), etc. The common characteristic is induction and compo
sitional semantics. I conjecture that sheaf theory can be used to precisely state that 
the induction (sheaf condition, together with a well-founded order on the site) is pri
mary, and the site is just a parameter. This is a much better approach than having 
several different characterizations of computability and then proving that any two are 
equivalent. 
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Related Work 

"The time has come," the Walrus said, 
"To talk of many things: 

Of shoes-and ships-and sealing-wax
Of cabbages-and kings

And why the sea is boiling hot
And whether pigs have wings." 

- Lewis Carroll, Through the Looking-Glass (1871) 

We divide the work related to this dissertation into two parts: other derivations 
of the Knuth-Morris-Pratt algorithm, and other uses of sheaf-theoretic methods in 
computer science. 

7.1 Other derivations of KMP 

We consider five other derivations of KMP which have appeared in the literature: 
[Dijkstra 76, Bird et al. 89, van derWoude 89;, Morris 90, Partsch and Volker 90]. All 
these derivations derive the algorithm for strings, represented as arrays or lists, and 
are difficult to generalize because of their dependence on properties of strings. Their 
explanation of the failure function is also -soinewhat inadequate. 

To compare these derivations to ours, we list the major design decisions which 
characterize KMP ( these are not mutually ,exclusive, and the order of presentation 
below does not reflect logical dependencies )": 

• The assembly of an occurrence from pieces (di vide-and-conquer). 

• Searching in the target. 

• The invention of the notion of a partial occurrence. 

• Incremental building of partial occurrences. 

• Exploiting relationships between partial occurrences. 

• The invention of the notion of "sliding" the pattern and the failure function. 

• Precomputing the failure function by matching the pattern against itself. 
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7.1.1 Specification of pattern matching as search 

The starting specifications for the derivations in (Dijkstra 76, van derWoude 89, 
Morris 90, Partsch and Volker 90) (array representation) is, for a pattern p and a 
target t, 

enumerate all i such that match(p, t, i), with 1 :::; i :::; ltl 
where 
match(p, t, i) = V'l :::; j ~ IPI · p[j] = t[i + j - 1). 

The starting specification in [Bird et al. 89] (list representation) is 

match p t = 3u, v · t =u -t+ p -t+ v - "-t+" denotes concatenation 

where _ = _, the equality of strings is defined by 

[] = [] -empty list 
"a" = "a" -singleton list 
(x = z /\y= w)::;. x -t+ y= z -t+ w -induction step 

Two features of these characterizations bear highlighting. First, the pattern 
matching problem is formulated as a search problem: search for those "positions" 
in the target which satisfy certain properties. Second, the definitions of~equality and 
the match relation implicitly incorporate a divide-and-conquer strategy for construct
ing matches. 

The specifications above immediately yield generate-and-test algorithms. For the 
list representation, this algorithm is 

-pis a segment (i.e., a substring) of t 
match p t = p E segs t 
where 

-segments are obtained by taking all tail segments (i.e., sufB.xes) 
-of all initial segments (i.e., prefixes) 
-/is the "reduce" operator; * is the "apply-to-all" operator 

segs = -t+ / o tails *o inits 

Observe the bias introduced by the use of a certain set of constructors, e.g., 
enumera te the indices O ••• lt 1, or enumerate all the tails of a string. A different set of 
constructors for the data types involved would lead to a (possibly) different order in 
which the target is searched. Ideally, the search order should be an explicit decision in 
the derivation. The KMP algorithm <loes not depend on a left-to-right search order; 
it works equally well with a right-to-left order, or any mixture (see [Sunday 90] for a 
search order based on probability of occurrence). 
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This implicit use of constructors also surfaces when the algorithm is generalized 
to other data structures. The generalization of the specification 

match p t = :3u, v · t = u ++ p ++ v 

to graphs would be 

match p t = :3q · t = p + q 
pnq 

i.e., the target graph is expressed as a pushout of two graphs, one of which is the 
pattern. Roughly speaking, the graph q is the "complement" (in t) of the graph p. 

With this characterization, it is not obvious how to enumerate the collection of q's. 
Our characterization of the extension of the occurrence relation as a sheaf is inde

pendent of any constructors which are used to define the underlying data structures. 

7.1.2 Partial occurrences 

The next step is to improve the efficiency of the naive algorithm for matching. In 
[Dijkstra 76, Partsch and VOlker 90], the authors ask the following question, a natural 
by-product of a derivation style using loop invariants: 

given a mismatch, what is the smallest index where the next occurrence 
is possible? 

The appropriate picture is the following: 

slide 
pattern 
match es 
target 

---+abe aba 
abe aba 
..;..;..;..;..;x 

abcabcabc 

Implicit in the definition of a mismatch is the notion of a partial occurrence. 
In [Bird et al. 89], the notion of a partial occurrence is introduced in an attempt 

to apply fini te diff erencing to the specification 

match p = V/ o ( endswith p) * o inits 

To massage the expression into an appropriate form, Bird et al. replace the function 
"endswith" by a function "overlap": the expression "overlap p x" returns the longest 
initial segment of p that ends x. Thus this step introduces partial occurrences. It 
also converts the recursive algorithm into an iterative one. 
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The derivations of [van derWoude 89, Morris 90] start with the maximal prefix
suffix problem: 

give a string x, 
for every prefix y of x, 
determine the longest string that is both a prefix and suffix of y. 

This problem is a generalization of the pattern matching problem and implicitly 
contains the notion of a partial occurrence. The relationship with matching is (the 
definition also applies the function "overlap" above ): 

pattern p matches a substring s of target t 
if the longest prefix of p which is also a suffix of s is p itself. 

In these derivations, the generalization to the maximal prefix-suffix problem is 
unmotivated. In our derivation, we consider the extension of the occurrence relation 
as the pattern varíes. This is not a generalization; it is just a description of the 
essential properties of the problem. 

7.1.3 The failure function 

The invention of the notion of partial occurrence seems to be the key step en route 
to the failure function. In [Dijkstra 76, Partsch and Volker 90], the problem of 
computing slide amounts results in a specification and sub-derivation of essentially 
the same problem as the maximal prefix-suffix problem. In the other derivations, 
since pattern matching has already been generalized, we get another instance of the 
original problem, leading to a recursive algorithm. 

In generalizing these derivations to other data structures, the notions of "slide," 
"prefix," and "suffix" have to be generalized. Observe that a string spreads out in 
two directions, left and right, leading to the notion of "prefix" and "suffix." Other 

·data structures, e.g., graphs, may spread out in any number of directions. This ne
cessitates the investigation of the geometry of other data structures so as to formalize 
the notions of "boundary" and "sub-patterns which touch the boundary" ( the latter 
replace prefixes and suffi.xes). In our derivation, it turns out that the essential notion 
is not sliding, but that, from a given partial occurrence, other, smaller partial occur
rences can be generated. When the larger partial occurrence cannot be expanded, it 
may be possible to expand the smaller ones, i.e., on a mismatch, we "fail" toan alter
native. Our explanation of the failure function in terms of backtracking removes the 
mystery of the failure function, not by introducing unmotivated generalizations ( the 
maximal pre:fix-suffi.x problem) but by reducing it to a standard, and very general, 
search strategy. 
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7.1.4 General remarks 

We now summarize the major steps in our derivation to highlight the differences 
with other derivations. We start with an extensional characterization of the pattern 
matching problem: this removes the bias introduced by using constructors to define 
the underlying data structures; it also emphasizes the geometric nature of the prob
lem. We then systematically try to convert this extension into an intension. We start 
with a divide-and-conquer strategy: to find an occurrence of the pattern, find a piece 
of the target corresponding to each piece of the pattern. This algorithm is made 
incremental by traversing the target. This step inverts the computation: each piece 
of the target is "parsed" as a piece of the pattern. It is this notion of parsing that 
leads to the pattern-pattern-sheaf and the precomputation of the failure function. 

The incremental assembly of partial occurrences is then formulated as a search 
problem: find a full occurrence in a space of partial occurrences ( alternatively, find 
consistent collections of parses of pieces of the target ). We use a standard depth-first 
search strategy with backtracking for searching in this space: expand the current 
partial occurrence; if expansion is not possible, backtrack to another choice. The 
pattern-pattern-sheaf defines a partial order on partial occurrences: a partial occur
rence is subsumed by another if it can be generated by a different set of parses. Using 
this subsumption relation, the set of choices for backtracking is replaced by a gen
erator (lazy list ): alternatives are generated on demand. The failure function thus 
corresponds to backtracking to an alternative partial occurrence. 

The major difference between our derivation and others is the search space: the 
space of partial occurrences vs. the space of "positions" in the target, and the conse
quent explanation of the failure function as backtracking. Once the pattern matching 
problem is formulated as finding a consistent collection of parses of pieces of the tar
get, the invention of the pattern-pattern-sheaf and backtracking to improve efficiency 
become inevitable. 

The ideal derivation is one in which the final algorithm inevitably follows from the 
specification and given efficiency considerations. We do not claim to have such an 
ideal derivation; however, our derivation. comes closer than others. The derivations 
of KMP in the literature convincingly demonstrate that the KMP algorithm can 
be obtained from a formal specification via a sequence of formal transformations. 
However, the important problem is how to invent this sequence of transformations. 
To this end, alternatives for each transformation have to be explored and the choice of 
a particular one justified. The derivations in the literature rarely explore alternatives, 
and sometimes contain leaps ( e.g., unmotivated generalizations ). In this dissertation, 
we have attempted to explore alternatives and thus chart the design space surrounding 
thé main derivation path. Other paths in the space lead to interesting algorithms, as 
shown in Chapter 6. 

Finally, we quote from [van derWoude 89] on the resemblance between the pre
processing of the pattern and the main algorithm: 



Chapter 8 

Surnrnary and Contributions 

8.1 Summary 

I shall be telling this with a sigh 
Somewhere ages and ages hence: 

Two roads diverged in a wood, and I -
I took the one less traveled by, 

And that has made all the difference. 

- Robert Frost, The Road Not Taken (1916) 

This dissertation has presented a generic theory of pattern matching and derived a 
generalized version of the Knuth-Morris-Pratt algorithm. The theory and the deriva
tion are generic in the sense that they apply to any data structure. 

A generic theory of pattern matching is developed by emphasizing the geometry of 
the data structures involved. The geometry is formalized as a Grothendieck topology. 
The central concept of a Grothendieck topology is that of a cover: the decomposition 
of an oh ject in to a collection of pieces su ch that the pieces can be glued back together 
to obtain the original object. 

A simple view of matching is adopted, wherein a pattern is said to occur in the 
target if the pattern is exactly the same as sorne sub-structure of the target. The 
extension of the occurrence relation is considered for a fixed target and all possible 
patterns. This extension forms a sheaf: 

1. associated with each pattern p is a set of occurrences of p in the target t; 

2. if q is a piece of p, then corresponding to every occurrence of p there is an 
occurrence of q by restriction; 

3. given a cover of p, i..e, a decomposition of p into a set of pieces {Pi I i E l }, 
and given occurrences of each Pi in t, (i.e., partial occurrences of p), such that 
these occurrences agree with each other whenever two pieces Pi and Pi intersect, 
the partial occurrences can be glued together to give an occurrence of p. 

The derivation of the generalized Knuth-Morris-Pratt algorithm starts with the 
extension of the occurrence relation and exploits the sheaf condition (item 3 above) 
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7. 2. Related formal methods 

Several people have noticed the strong resemblance of those parts (prepro
cessing of the pattern and search in the target], but in the literature we 
searched in vain for a presentation or derivation ( at all) of the algorithm 
that did j ustice to that resemblance. . .. Since the two parts are almost 
identical, such a statement is puzzling .... In our opinion, exploitation of 
pre- and postfixes simplified the "derivation" of the algorithm ... 
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Woude achieves the similarity by starting with a generalized problem, the maximal 
prefix-suffix problem. Note that the preprocessing step of KMP, which computes 
the slide amount for each piece of the pattern, is the maximal prefix-suffix problem. 
Thus, it is not surprising that the two parts of the algorithm ( and their derivations) 
are similar. 

We provide a somewhat deeper explanation of this similarity. First, the two parts 
of the algorithm are different: one is maximal prefix-suffix, the other is matching. 
What is similar is that both the preprocessing and the matching can be extensionally 
described by sheaves and the same derivation can be applied to both sheaves: divide
and-conquer, finite differencing, backtracking. The derivations diverge at the end, 
resulting in the slight difference in the two parts: one argument (pattern against 
pattern) vs. two arguments (pattern against target ). 

7 .2 Related formal methods 

With the increased emphasis on formal methods in computer science, a considerable 
number of derivations have appeared in the literature. However, most of these deriva
tions tend to list a sequence of transformations from a specification to a program, 
with little discussion of the rationale behind choosing those transformations. Of the 
papers which go a little beyond and develop deeper theori~s, we cite two: [Smith 85] 
which develops a theory of divide-ancf-conquer algorithms, and [Partsch 86] which the 
develops the theory of context-free parsing algorithms. 

Category theory is becoming mor,e prevalent in computer science; see, for example 
the proceedings of the conferences on. Category Theory and Computer Science, Lecture 
Notes in Computer Science, Volumes 240, 283, and 389. The use of category theory 
has been particularly successful in algebraic specification and type theory. 

There are only a few uses of sheaf theory in computer science. Concurrent pro
cesses are modeled using sheaves in [Monteiro and Pereira 86, Ehrich et al. 91]. Michel 
Eytan [Eytan 82, Eytan 80] uses Grothendieck topologies on context-free grammars 
to model similarity of derivations. ~ 
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I shall be telling this wi th a sigh 
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Two roads diverged in a wood, and I -
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- Robert Frost, The Road Not Taken (1916) 

This dissertation has presented a generic theory of pattern matching and derived a 
generalized version of the Knuth-Morris-Pratt algorithm. The theory and the deriva
tion are generic in the sense that they apply to any data structure. 

A generic theory of pattern matching is developed by emphasizing the geometry of 
the data structures involved. The geometry is formalized as a Grothendieck topology. 
The central concept of a Grothendieck topology is that of a cover: the decomposition 
of an object into a collection of pieces such th,at the pieces can be glued back together 
to obtain the original object. 

A simple view of matching is adopted, wherein a pattern is said to occur in the 
target if the pattern is exactly the same as: sorne sub-structure of the target. The 
extension of the occurrence relation is considered for a fixed target and all possible 
patterns. This extension forms a sheaf: . 

1. associated with each pattern p is a set of occurrences of p in the target t; 

2. if q is a piece of p, then corresponding to every occurrence of p there is an 
occurrence of q by restriction; 

3. given a cover of p, i .. e, a decomposition of p into a set of pieces {Pi 1 i E I }, 
and given occurrences of each Pi in t, (i.e., partial occurrences of p), such that 
these occurrences agree with each other whenever two pieces Pi and Pi intersect, 
the partial occurrences can be glued together to give an occurrence of p. 

The derivation of the generalized Knuth-Morris-Pratt algorithm starts with the 
extension of the occurrence relation and exploits the sheaf condition (item 3 above) 
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to obtain a divide-and-conquer algorithm. An incremental, sequential algorithm is 
then obtained by applying finite-differencing to the divide-and-conquer algorithm: 

• the target is traversed, producing a stream of information about partial occur
rences of the pattern; 

• a cache of partial occurrences is maintained and updated for each increment 
from the stream. 

This algorithm is quite inefficient because it saves too many partial occurrences in 
the cache. An immediate optimization is to save only those occurrences which have 
a possibility of being expanded. 

A second optimization is to update the cache lazily. The problem of updating 
the cache can be recast as a search problem: the state space consists of partial 
occurrences, and the goal is to find a full occurrence. Lazy updating now corresponds 
to dependency-directed backtracking. Specifically, the largest partial occurrence is 
saved (a greedy, or hill-climbing strategy) along the edge of the portion of the target 
already explored. When it is no longer possible to expand a partial occurrence, the 
algorithm backtracks to the next largest partial occurrence. These optimizations 
result in a generalized Knuth-Morris-Pratt algorithm. 

Exploration of the design space around the main derivation path, by relaxing sorne 
assumptions, and by pursuing alternative paths, provides explanations for related 
algorithms such as Earley's algorithm for context-free parsing and Waltz filtering for 
assigning 3-D interpretations to 2-D images. Algorithms for patterns with variables 
and multiple patterns can be obtained by appropriately instantiating the underlying 
topology. 

8.2 Contributions 

The contributions of this dissertation can be summarized as follows: 

• A deep domain analysis of pattern matching, emphasizing geometry, and pa
rameterized using category theory. 

• A rigorous derivation of a generalized version of the Knuth-Morris-Pratt pattern 
matching algori thm. 

• A derivation style which converts an extension into an intension. 

• A theory for a generic, highly reusable component for pattern matching. -

e A foundation for studying geometric properties of data structures. 

We expand upon each of these in the following sections. 
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8.2.1 A theory of pattern matching 

This dissertation has provided a deep theory of the domain of pattern matching. The 
domain language primitives are taken from 

• category theory, which results in a parameterized theory by abstracting away 
inessential structure, and 

• sheaf theory, which emphasizes the geometry of the data structures involved, 
specifically, the notion of decomposing a pattern into a collection of pieces (a 
"cover") and the "gluing" together of partial occurrences. 

The surprising variety of applications of this theory illustrates the power of cate
gorical methods to succinctly describe the common features of a class of problems. 

8.2.2 A derivation of generalized KMP 

We have rigorously derived a generalized version of the Knuth-Morris-Pratt pattern 
matching algorithm which works for any data structure by exploiting general theorems 
in category theory and by using general transformations such as divide-and-conquer, 
finite differencing, and backtracking. The main features of this derivation are 

• the expression of the Knuth-Morris-Pratt algorithm as a divide-and-conquer 
algorithm; 

• the explanation ( and, hence, generalization) of the "failure function" as back
tracking in the space of partial occurr~nces; and 

• the explicit description of the funda~ental similarity between KMP, Earley's 
parsing, and Waltz filtering. 

8.2.3 Converting extensions into intensions 

The derivation style adopted is this dissertation is that of gradually converting an ex
tensional description of the problem into an intensional description, i.e., an algorithm. 
The extensional description has the advantages that 

• it is impartial to sequential or parallel algorithms, and 

• it captures only the essential properties of the problem, thus eliminating acci
dental features which may creep in due to the use of a particular language or 
formalism. 
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It appears that, in converting an extension into an intension, two basic imple
mentation steps are crucial: divide-and-conquer and finite differencing. Divide-and
conquer converts the extension into an inductive computation; this step is essential 
because induction is the only principle of computation. Finite differencing is essential 
for any sequential algorithm; an algorithm can only maintain a finite amount of state 
information and hence has to calculate the output incrementally. 

8.2.4 A reusable component for pattern matching 

The major result of this dissertation is a theory for a highly reusable component for 
pattern matching. Such a theory consists of two parts [Arango 88]: 

• domain analysis: a language for describing problems in the domain; here, the 
language of category theory and sheaf theory, as specialized to pattern matching; 
and 

• domain engineering: the recording of design and Ímplementation knowledge; 
here, the derivation of the generalized KMP and the explanation of related 
algorithms. 

Two features of this theory with respect to reusability bear highlighting: 

• Reusability is related t9 genericity: The variety of applications of our theory 
arise from using category theory as a language for parameterization. Previous 
attempts at generalizing KMP have been restricted to modifications pertaining 
to a single data structure. I firmJy believe that such modifications to algorithms 
can be properly cast as instantiations of a parameterized theory which uses the 
right primitives and which has the appropriate level of abstractness. 

• Design information is important: The final code is just a small part of a reusable 
component. The explicit recording of design information in our derivation con
tributed to its reusability by allowing us to modify and reuse the derivation to 
obtain other algorithms. 

8.2.5 The geometry of data structures 

Perhaps the most far-reaching contribution of this dissertation is its geometric view 
of data structures. We seem to routinely, but implicitly, use geometric concepts when 
dealing with data structures, as indicated, for example, by the phrases "rightmost 
node in the bottom level of a heap," and "propaga te tokens along edges of a graph." 
Such descriptions are frequently more intuitive than algebraic ones, perhaps because 
of the increased bandwidth of information transfer. However, little work has been 
done to formalize and systematically use such concepts in computer science. One 
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reason for this is that geometry,1 because of its abstractness and generality, is a 
hard branch of mathematics; it is even harder to transfer such abstract machinery 
to computer science, unless there are concrete examples to bring the theory clown to 
ground-level. 

I hope that this dissertation, by analyzing a well-known area like pattern matching 
using basic concepts from sheaf theory, has benefitted both fields: in computer science, 
by showing that informal usage of geometric concepts can be formalized, and that 
such formalization has great unifying power; in mathematics, by providing elementary, 
intuitive, examples of abstract concepts in sheaf theory. 

1 By "geometry," 1 do not mean Eudidean geometry or co-ordinate geometry; these are specific 
theories of specific real-world entities. Instead, by "geometry," I mean the spatial, structural, di
rectional, and continuity aspects of any mathematical entity whatsoever; in short, geometry in the 
abstract, formalized axiomatically as sorne kind of topology: general topology for studying continu
ity, or Grothendieck topologies for studying "direction," etc. 



Epilogue 

On Pure, Applied, and 
Experiniental Coinputing 

We do not know: we can only guess. 
And our guesses are guided by the unscientifi.c, the metaphysical .. . 

faith in laws, in regularities which we can uncover-discover . .. . 
Once put forward, none of our 'anticipations' are dogmatically upheld. 

Our method oí research is not to defend them, in order to prove how right we were. 
On the contrary, we try to overthrow them. 

Using all the weapons of our logical, mathematical, and technical armoury 
we try to prove that our anticipations were false-in order to put forward, 

in their stead, new unjustifi.ed and unjustifi.able anticipations ... 

- Sir Karl Popper, The Logic of Scientifi.c Discovery (1934) 

Most derivations of KMP (actually, most program derivations, e.g., in the journal 
Science of Computer Programming) show detailed sequences of low-level transfor
mations which lead to a particular algorithm from a given specification. The only 
conclusions one can draw from such derivations are something like 

if transform T is applied to P, we get Q. 

We liken these to observations in physics; in physics, the observations are about 
nature; in our field, the observations: are about computing. Observations in physics 
typically arise in the context of experiments. Current activity in program derivation 
can be likened to experimentation with computing. 

To continue the analogy, an explanation of a set of observed facts is a theory which 
derives the observations from a small collection of assumptions in a logical way. It 
follows that we need theories that explain program derivations. Unfortunately, the 
analogy breaks down here, because our observations can themselves be considered to 
be theories ( observations in physics have an incontrovertible status when compared 
to theories, e.g., the decomposition of protons by high-energy particles, vs. the quark
theory explanation). The activity of producing theories for explaining observations 
can be justifiably called pure computing. 

Given that we have theories explaining other theories, what characteristics should 
such explanatory theories have? We can apply Occam's razor and mandate that 
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explanatory theories should be simple, have a small number of assumptions, and 
explain a large class of observations. There is a subtler property which good theories 
have: they somehow provide "deeper" explanations. 

In this dissertation, we have attempted to provide a deep explanation of pat
tern matching; not in the sense that a particular algorithm can be derived by sorne 
sequence of transformations, but in terms of fundamental properties of patterns (pat
terns are geometric and they can be glued together). The assumptions we make are 
minimal: the three axioms for a topology, and strict epimorphic families as covers. 
A surprising variety of concepts ( observations about computing in certain domains) 
can be explained starting with these assumptions: pattern matching, context-free 
parsing, rewriting, unification, etc. 
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