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Lawrence Radiation Laboratory 
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Berkeley, California 

March 1964 

ABSTRACT. 

The validity of the Bardeen·-Cooper-Schrieffer variational method is 

reexamined for two nuclear model cases, one resembling the system of deformed 

nuclei and the other spherical nuclei. For simplicity, a constant-pairing-

force approximation is adopted. The projected BCS wave functions compare 

badly with the exact wave functions at pairing force strength around the criti-

cal force strength, and only for sufficiently strong pairing forces, does the 

BCS method seem to approach the exact. For the spherical case, the average 

value of the pair operator (~) is also calculated over a wide range of force 

strength, and the general behavior is found to be consistent with the results 

obtained on the wave function components. Finally the errors in eigenvalues 

are computed, and discussions are given as to the possible sources of the 

deviations. 
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I. INTRODUCTION 

There has been a considerable amount of work devoted to the examina­

tion of the superconductivity theory of Bardeen, Cooper and Schrieffer (BCS), 1 

and of Bogoliubov2 applied to nuclear structure problems. The BCS variational 

approach (or eg_uivalently Bogoliubov lowest-order "compensation" method) seems 

the best for larger pairing-force strength and large number of particles. It 

is well known that the ordinary BCS wave functions fail to conserve the number 

of particles. Attention has been given to the improved wave functions obtained 

by taking only those components of the BCS wave function which conserve the 

particle number.3 There is generally a lowering in eigenvalue accompanying 

the projection procedure. 

We will be mainly concerned here with an examination of the errors 

remaining after projecting the proper particle number components from lowest 

BCS solutions of some simple systems. Comparison is made with exact solutions 

over a wide range of pairing-force strength. We use only a simple constant 

pairing-force Hamiltonian and do not consider higher-order corrections to BCS 

solutions sUch as admixture of 4-g_uasi-particle components. 

First, we examine a half-filled system with the nucleon pairs in six 

eg_ually spaced levels. Such a system has some similarity to those in deformed 

nuclei. 

Second, we study in greater detail the case of two orbitals with the 

same pair degeneracy D, and with D pairs of nucleons. In particular we 

study the case of D = 5 (we call this a "symmetric case"), We shall also 

examine an unsymmetric case where Duf.D £. For example, Du =3, D p_=4, with four 

pairs of nucleons. 

These systems all have in common the feature that below a certain 

critical pairing force strength there is no non-trivial BCS solution. That is, 
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at low force strength the BCS approximation gives no configuration mixing 

whatsoever, obviously a serious defect. From simple perturbation theory it 

is clear that no matter how small the residual force is, there will always 

be some configuration mixing. This spurious "threshold" behavior is not ex-

hibited by BCS solutions for systems where a partly-filled degenerate level 

lies at the Fermi surface. Thus the well:..studied system of a single, partly. 

filled degenerate orbital does not exhibit this "threshold" behavior. 4 

II. A REVIEW OF BCS SOLUTIONS 

This section is intended to define the notations. Let us take the 

convention of writing a complete set of quantum numbers by Greek letters, 

and all except the magnetic quantum number by Roman letters, i.e., a = 

(n £ j m .•. ), and a= (n £ j .•. ). In this notation, the BCS reduced 
· ' 1a a a a '1a a a 

Hamiltonian is given by (for constant force strength) 

where the fermion operator a a 

Using the trial wave function 

(1) 

satisfies the usual anticommutation rule. 

+ v a 
(2) 

a variational calculation yields equations for determining the parameters 

u and v 

.G \ 
2L 

a 

(3) 

(4) 

• 

• 
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with 

= = I: 
a>O [ ( E -

a 

UCRL-11224 

(5) 

(6) 

In spherical representation, the summation index a is replaced by a Roman 

index, while multiplying the. summand by n 
a 

should then be in Roman letters. 

1 
2' All the subscripts 

The non-linear equation (3) with Eqs. (4), .(5) and (6) can be solved 

analytically only for exceptional cases (an example is given later); however 

the solutions can be easily obtained by an electronic computer for more gen-

eral cases • 
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III. UNIFORM SPACING ( 6-LEVEL) CASE 

We consider here a system with three pairs of nucleons in six doubly 

degenerate levels; this is a case rather similar to those in deformed nuclei. 

The BCS equations then yield six independent parameters The exact 

solution, which amounts to diagonalizing the reduced Hamiltonian (1) exactly, 

has twenty components. The wave function then has the form 

with 

'I' 
ex 

+ + + + + + a a a a a a 
a -a f3 -(3 'Y ~-y 

c 1 jo) 
O'.f3'Y O'.f3'Y 

(7) 

If we label the levels as 1, 2, ... , 6 in increasing order, then c
123 

is the 

lowest amplitude, c124 ·the amplitude with one pair·excited and so on. 

In order to compar~ the amplitude (7) with the ~CS wave function (2), 

we need to project the appropriate component from the BCS wave function. The 

remaining parts in the BCS wave function are spurious, but necessary to make 

the wave function easy to.handle. Defining a projection operator by 

w·e have 

P(f.Lvd 

(OjA1~4P(l24)j'l'0) 
( o!A123P(l23) I '1'0 ) 

which may be. compared with 

= 

~l vvv 
f.L V E 

vlv2u3v4u5u6 

vlv2v3u4u5u6 

+ 
A,, . 

.... vE 

of the exact solution. 

I o > (8) 

(9) 

• 

• 

• 
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In Figs. 1 through 3 are given the ratios of amplitudes for both the 

BCS and exact solutions. We have taken- six equally spaced levels each separ-

ated by 100 keV. Figure 1 shows the comparison for two of the nine amplitudes 

that. involve a single pair promotion from the lowest levels 1, 2, 3 across the 

Fermi energy to 4, 5 or 6. The limiting slope. in the weak-force limit is 

unity, corresponding to the firstpower dependence on G from first-order 

perturbation theory. For the ratio c124Jc
123 

thr BCS value crosses the exact 

for a force strength just above critical. For the other ratio plotted, the 

BCS ratio only very slightly ever exceeds the exact. The second order am-

plitudes plotted in Fig. 2 do not cross until about three times critical 

force strength, while for the third order amplitude of Fig. 3 the BCS always 

lies below the exact. 

In Fig. 4 are plotted the errors in eigenvalues of ordinary and pro-

jected BCS solutions of the system in question, as deduced by comparison with 

exact solutions of the 20 x 20 matrix. Notice that the curves are super-

imposed up to the critical force strength and thereafter the projected solu.;.;. 

tion shows much less error. The maximum error for the projected solution 

comes at a force less than tw·ice critical strength, and this error is about 

17 keV, or one sixth the single-particle level spacing of 100 keV. The 

ordinary BCS eigenvalue may show an error of as much as half the single parti-

cle level spacing • 
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IV. SYMMETRIC TWO-DEGENERATE-LEVEL CASE 

In this section, vre· examine the case of n :pairs of nucleons. in two 

levels of pair degeneracy n, separated by an energy difference of E. In 

this case, the BCS equation can be solved analytically, and interesting fea-

tures emerge from the comparison of the BCS and exact solutions. In order to 

be more general, a parallel calculation with two +evels of different degener-

acy (n 
2 

= 4; stf.l = 3, N = 8) is also performed. In. tpe later case no such 

simple analytical BCS solution is available and hence the solutions are ob~ 

tained by iterative numerical solution of the Belyaev equations. 

What. we will examine here are the followif!g: first we calculate 

for the upper level and compare. the BCS and exact ~ve functions, second w·e 

compare the ratios of amplitudes in a manner analogous to Sec. III, and lastly 

make a comparison of ground state energy. 

A. Quasi-Spin Method 

For the system with large magnetic degeneracy, the Hamiltonian (1) 

can be easily diagonalized by the s:pin-wave method introduced by Ap_derson,
6 

and later applied to nuclear problem by Kerman et al. 7 Let us use this 

method to calculate ex:plicitly the Hamiltonian matrix of the system. 

Following Kerman et al~_, we introduce the quasi-spin operators 

J+ I: S (a) z + + .a a 
+ a-a 

a a.> o (10) 
;I_ I: s_(a) L a-aaa 

a a> o 

)z 1 L + + L S (a) =~I: + ~L st(a) {aaaa- a-aa-a} = aaaa 2 z 
a>O a a a 

.• 

• 

• 

• 
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where n(a) = j + 1/2, 
a 

and a >·0 restricts the summation over only posi-

ti ve magnetic quantum numbers ( I = ) ) while a goes over both 

a> 0 a,m > 0 
a 

positive and negative values. In the operators of (10), we have for (1) 

H = 2\ 
red L 

a 

E S (a)+ \ 
a z L 

a 

E n(a) - G 1 ° a ;D+ A _ (11) 

In the strong-coupling limit (g >> 1, where E is an average level spacing) 
E 

(12) 

and in the weak-coupling limit, only the kinetic energy term remains 

Hw ~ 2 \ E (s (a)+n(a)/2) 
red ~ a z 

(13) 

a 

Thus one could take a state that is diagonal in either H:ed o~ H~ed for a 

zero-order wave function. Let us introduce the quantum numbers cr,cr0 as 

follows: since the operators defined in (10) obey the usual angular momentum 

commutation rules, 

2 
~ jcr

1
cr2 ••• ; crcr0) = cr(cr+l)jcr1cr2 ••. ; crcr0 ) (14) 

)'

2

1cr
1

cr2 ••. ; crcr0 ) = cr0 jcr
1

cr2 ••• ; crcr0 ) 
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and 

sz(a) I cr1cr~, 2 
cr2cr0, ... ' cracr~, ••. ) = aJ 1 cro crlcrO, 

2 
cr2cr0, ... ' a 

cr a cr O' ... ) 
(15) 

s2 (a)Jcr1cr~, 
2· a ••• ) = cra(cra+l) Jcr1cr~, cr2cf0, 

a ... ) a2cr0, ... ' craao, ... ' a a cro, 

Here a is the total quasi-spin quantum number, cr
0 

the projection of cr on z 

axis, a
1 

the quasi-spin quantum number of state lahelled by 1, and so on. 

The representation given in (14) is a "coupled representation" (equivalent 

to "J-representation" in shell model notation); that in (15) is a "i:ri-repre-
1 

sentation."8 For our purpose, it is more convenient to choose the m-repre-

sentation and assign the quantum numbers as folJ.owing: suppose we have a 

configuration given by 

(16) 

Then 

a =maxi n -Q J/2 - K K K 

K 
= (n - Q )/2 (17) ao K K 

a = ~ QK /2 

K 

ao = ~ . (nK-nK)/2 

K 

K = a,b, 

which yields for (16) wave function of the form 

• 

t 
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The seniority quantum number is related to the quantity given above by 

v = D - 2a a a a 

Thus the ground state of even-particle system is given by 

a 
a 

D 
'a =-
2 ' 

D 
which implies that we have to construct the wave functions with a = f 

D D a 
Thus an empty shell is denoted by I 2a, - 2a ), and hence a state with 

p pairs in ~ may be generated by 

D 
a 

2 ) = (
p! n (D -l) ••. (D -p+l))l/21D2a' ~a :P) a a a ·· - 2+ 

! 

Now a matrix element of the Hamiltonian given by Eq. (11) can be easily 

written down. Let us specialize in two-level case; we get 

Furthermore one can easily check that (since 

. ·{18) 

(19) 
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0 .0 
I Hred I crl cr~ ' 

o,) I= 0 (20) ( crl crl, cr2°2 ' cr2cr2 

only if 
0 o, o, ±:1 cr - crl = 1 

0 o, o, - 1 cr - cr2 = + .. 
2 

This is, of course, physically rather obvious, since one knows that the two 

states (in the bra and ket) could differ by at most two·particles. 

If we put Da =Db = 5, N = 10; €a - Eb = € in the "symmetric" 

example w·e get a matrix of the form 

-5G -5G 0 0 0 0 

-5G 2E-l3G . -8G 0 0 0 

H red 0 -8G 4E-l7G -9G 0 0 

0 0 -9G 6E-17G -8G 0 

0 0 0 -8G 8E-13G -5G 

0 0 0 0 -5G 10E-5G 

For a slightly "non-symmetric" case with Da = 4, Db = 3, N = 8, we have 

I -4G -2'1{5G 0 0 

I -2\/3G 2E-9G -2J6G 0 
H -
red 

l 0 -2J6G 4E-10G -3..J2G 

0 0 -3..J2G 6E-7G 

(21) 

(22) 

Let us consider the behavior atlarge and small G of the lowest 

state eigenfunction of Eq. (11). For small G 

first order perturbation theory 

(i.e., Q_<< 1), we get by 
E 

• 

• 

• 
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N G2 [L c(g Q Q go) c(g g cr Q (~) ~ 

4E 2 -cr 2- 2- 1, 2 2 2 2 2 2 
cr 

Q 
1 o) cr (a+ l)r. G2 s (n) (23) - 2 + ·== 

4~2 

for the case of Q£ = Qu = n, Eu- E£ = E, the subscripts £, and u de­

noting lower and upper levels respectively. For Q = 5, s (!1=5) = 25, and 

hence the slope of (23) as a function of G goes as 25G 
(for the non-

2E
2 

6a cl 
symmetric example, it goes as2). The ratio of amplitude 

co 
(whe_re the 

E 
subscript denotes the number of pairs excited) behaves like~: for low G 

values. 

In the strong-pairing-force limit ( ~ >> 1), the "J-scheme" diago-

nalizes the matrix and hence we have 

0 1 . 
(cr · + - n) 2 2 (24) 

As we shall see later, this high-G limit coincides with the BCS method. 

B. The BCS Solutions 

In the case where Q = Q = Q £ u 
and the number of particles makes the 

system half filled, the chemical potential /1. lies exactly half way between 

upper and lower levels. If we measure the single-particle energy from /1. = 0, 

obviously E 
-E = E = - • 

£ u 2 

are readily obtained. 

Therefore the solutions of the set of BCS equations 



-12- UCRL-11224 

2 2 
(1 -

E )/2, u.e = v = u.evu = u 2GD 

2 2 
(1 + 2~h )/2, u = v.e = u v = u u .e 

6.2 2 E
2 

(GD) - 4 (25) 

From Eq. (25), we see that in order for 6. to be real, the condition should 

hold 

E 
G > 2D 

Thus the BCS solution breaks down for pairing force smaller than € 

2.\1 

(26) 

It is instructive to notice that the "critical" pairing force strength given 

by G 
c 

E 
= 2D is proportional to E 

D 
thus the requirement that E 

D 
should be 

small for the validity of BCS solutions is in fact related to the size of G . 
c 

Using Eq. (25), we obtain 

D [l _ E 

2 2GD 

Thus the behavior of the BCS solution at small pairing-force strength is 

drastically different 
N 

from the exact solution. One can see that the BCS 

value of (~) 
2 

falls much faster than the exact value 

As was mentioned before, as G becomes large, 

for small G. 
N 

(~) 
2 approaches 

(27) 

and the BCS and exact solutions approach each other at large force strength 

G. 

For the purpose of comparing the amplitudes, a slightly different 

representation of the BCS wave function is needed. The BCS wave function, 

Eq. (2), has to be rewritten in the quasi-spin operators introduced in Eq. 

(10), since the exact wave function is expanded in the basis vectors of the 

type 

~) ... 
t._: 
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n 
' - 2 a + p) = (p!n (n -l) ••• (n - p + 1~-l/2 (s (a))PI o) 

a a a I + a (28) 

-where .n 
lo) =I~ 

a 2 ' -
n 
~) 
2 

denotes an empty a-orbital, and p denotes the number of pairs in the a-shell. 

A rather straightfor-ward manipulation of Eq. (2) easily gives 

n 
n K 

'¥0 = II K [ I: u 
K=a, b, ••• 

K 

A. = 

In the representation of Eq. (28), 

'¥0 = 
n 

K 
II UK 

K=a, b, ... 

(v • t 1 K: 
A.! UKJ 

9 

-where -we have used the usual binomial-coefficient notation (n) = 
m 

(29) 

(30) 

n! 
(n-m) ! m ! · 

No-w -we designate the amplitude of the lo-west zero-order configuration by c
0

, 

the next by c
1

, and so on. In the absence of interaction, the lo-w·est con-
,-' 

figuration -with p pairs is then I p 0 0 
a b c ... ), -where a is the lo-west j-

shell, the next I p-2 2 0 ) a b c .•. a state -with a pair excited from a to b. 

From Eq. (30), -we have (for the case of p = n ) 
a 

etc. 

(31) 

If -we specialize -with the symmetric t-wo-level case, the result becomes simple. 

Letting na =Db= D. , and Pa + Pb = n (Pa + Pb is the total number of pairs). 



cl = C[a2.11~2 b2] 

c2 = C[a 2.11-4 b 4] 

-14-

= .11 u 
.11-1 .11-1 v ~ vb a a 

=~ (.11-1) 
2 .11-2 .11-2 u v ~ 2 a a 

(.11) p . .11-p .11-p p 
p ua va ~ V"b 
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2 
vb ' 

(32) 

where p is number of pairs promoted from a to b. The ratio of a higher 

order amplitude to the lowest order one is then given by 

(33) 

Substituting Eqs. (25) into Eq. (33), we finally have 

(34) 

Thus for very large pairing-fbrce strength, the ratio approaches just (.11)' 
p 

the number of ways of distributing p pairs in .11 places. 

c. Numerical Solutions 

Here we make a detailed comparison of the BCS and exact solutions for 

the symmetric (and the unsymmetric) example, computed over a range of pairing-

force strength. The separation between the a and b levels is taken to be 
N 

1 MeV. In Figs. 5 and 6 are given the · ( 2 u) values vs. G for the 

symmetric and unsymmetric cases respectively. Notice,that both cases exhibit 

a similar appearance. We shall now look more closely at the symmetric case. 

In this case, the critical pairing-force strength G = 0.1 MeV. The average 
N c 

(.-u) f B S 1 number of pairs in the upper level 2 coincides or C and exact so ution 

• 
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at a force just above critical, and thereafter the BCS solution remains above 

the exact solution. At larger G the two methods approach asymptotically. 

The exact wave funtion here has six components and we now wish to compare 

I 
BCS and exact splutions with respect to all components. In Figs. 7 through 

9, are plotted the ratios of amplitudes for the symmetric, degenerate case 

analogous to Figs. 1 through 3. It is to be noted that there always occurs 

a cross-over of the two ratios, and also that the largest error is made in the 

amplitude for promotion of a single pair, the error being smaller in the 

higher order components. The cross-over points do not all occur at exactly 

the same force strength, but there is actually a region of maximum accuracy 

of the projected BCS wave function just above threshold. 

One other point to be noted is the existence of inflection points in 

the ratios of amplttudes in the exact solution. In the absence of an analyt-

ical solution for the exact case the precise force strength G where the 

inflection point occurs is not sharply determined; however, it appears to 

occur very close to G ' ·C 
that is, just where the configuration mixing 

ceases to be present in the BCS method. The configuration mixing in the 

exact solution drops rapidly at G ; 
c 

however, whereas the BCS solution goes 

down all the way to zero, there always remains configuration mixing of the 

pair-promotion type in the more correct solution. Thus the breakdown of the 

BCS method at G is probably an exaggerated manifestation of such a change 
c 

of configuration mixing. The sharp transition between superfluid and normal 

states of nuclear matter is clearly an artificial feature of the BCS approxi-

mation~ for the size of our system is comparable to those in real nuclei. 

The errors in energy are plotted in Fig. 10. The general trend is 

similar to Fig. 4 for the non-degenerate example with one anomaly in Fig. 10. 

As was seen before, the amplitudes of the wave functions from the two methods 
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cross over in a narrow range of pairing-strength. As Fig. 10 shows, the G 

value where the first order amplitudes cross is about the same G value at 

which the error plot from the projected solution shows a strange dip. The 

projected solution has the maximum error very near the critical pairing­

strengt~, a somewhat different feature from the non-degenerate case. 

It is important to keep in mind two distinct types of error associated 

with BCS energies. The first arises from the presence of wave function com­

ponents with spurious numbers of particles, and projecting out the spurious 

components from a BCS solution, we see, results in a considerable decrease in 

error above critical force strength. The remaining error is associated with 

the spurious phenomenon of the sharp superfluid-normal phase transition. The 

projected BCS solution simply has fewer variational parameters than the de­

grees of freedom in the system. Further marked improvements without an in­

crease in the number of variational parameters have been achieved by Dietrich, 

Mang, and Pradal3 through performing the variation with the fixed-particle 

Hamiltonian expression, rather than first wolving the BCS equations. Also 

Bang, Mihailov, and Soloviev9 have achieved improved solutions by inserting 

a renormalized Geff (increasing over G more as G decreases in magnitude) 

into the BCS equations. Both these methods give non-trivial solutions, no 

matter how weak the pairing-force strength. Such new methods appear to be 

of great importance in pairing-force calculations where small or zero 6-

values would appear in the ordinary BCS solutions. 

v 
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