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Abstract

Human error while performing well-learned tasks on a com-
puter is an infrequent, but pervasive problem. Such errors are
often attributed to memory deficits, such as loss of activation or
interference with other tasks (Altmann & Trafton, 2002). We
are arguing that this view neglects the role of the environment.
As embodied beings, humans make extensive use of external
cues during the planning and execution of tasks. In this paper,
we study how the visual interaction with a computer interface
is linked to user errors. Gaze recordings confirm our hypoth-
esis that the use of the environment increases when memory
becomes weak. An existing cognitive model of sequential ac-
tion and procedural error (Halbrügge, Quade, & Engelbrecht,
2015) is extended to account for the observed gaze behavior.
Keywords: Human Error; Memory for Goals; Eye-Tracking;
ACT-R; Cognitive Modeling

Introduction and Related Work
Our daily life is dominated by routine sequential behavior
like making coffee, washing clothes, or commuting to work.
While we have practiced these activities hundreds of times,
they are still subject to sporadic errors (Reason, 1990), a well-
known example being postcompletion errors (e.g., forgetting
a bank card in a vending machine after having completed a
purchase, Byrne & Davis, 2006).

This paper presents recent advances of a cognitive mod-
eling project on sequential behavior and error (Halbrügge &
Engelbrecht, 2014; Halbrügge et al., 2015). The model is
based on the memory for goals (MFG; Altmann & Trafton,
2002) framework which formulates how sequential behav-
ior is controlled using declarative memory. We call this the
knowledge-in-the-head strategy (Norman, 2002). By adding
a second cognitive strategy to the model that relies more on
external cues than on internal memory (the knowledge-in-the-
world strategy; Norman, 2002), we can reproduce omission
rates for different sub-tasks, comprising but not limited to
postcompletion errors. Furthermore, the model can account
for intrusions, an error type that has not been captured by
MFG-based cognitive models before.

While the original model is targeting only error rates,
the addition of the in-the-world strategy predicts behavior
changes in other areas as well that allow empirical valida-
tion. In the visual domain, using the bottom-up in-the-world
strategy means continously searching the UI for any suitable

element, while the top-down in-the-head strategy just looks
for the specific element that is needed to perform the current
task. We therefore designed an eye-tracking experiment that
should reproduce our previous findings and should confirm
the predictions of the knowledge-in-the-world assumption in
the visual domain.

The rest of this paper is organized as follows. We first give
an overview on the types of errors we are aiming to address
alongside the theoretical underpinnings of our model. We
will then introduce an experiment that shows the connection
of visual behavior to procedural error and compare the find-
ings to the predictions of our cognitive model. We conclude
with a discussion of the strengths and limitations of the model
and a summary of our contributions.

Procedural Error

Human error in its most general sense is commonly refered to
as “those occasions in which a planned sequence of mental or
physical activities fail to achieve its intended outcome, [and]
when these failures cannot be attributed to the intervention of
some chance agency” (Reason, 1990). It can be further de-
composed based on the level of action control on which an
error occurs (Rasmussen, 1983). Knowledge-based behav-
ior on the highest level of control is characterized by explicit
planning. Skill-based behavior on the opposite, lowest level
consists mainly of sensory-motor actions without conscious
control. Interaction with computer systems is mainly located
on the intermediate rule-based level of action control. On this
level, behavior is generated using stored rules and procedures
that have been formed during training or earlier encounters.
Errors on the rule-based level are not very frequent (below
5%), but pervasive and cannot be eliminated through training
(Reason, 1990). While Norman (2002) subsumes these er-
rors within the ‘slips’ category, Reason (1990) refers to them
as ‘lapses’. We escape this ambiguity by using the term pro-
cedural error. Procedural error is defined as the violation of
the (optimal) path to the current goal by a non-optimal action.
This can either be the addition of an unnecessary or even hin-
dering action, which is called an intrusion. Or a necessary
step can be left out, constituting an omission.
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Memory for Goals Theory
An explanation of procedural error must incorporate the gen-
eration of correct behavior as well. A very promising theo-
retical model of sequential action is the Memory for Goals
theory (MFG; Altmann & Trafton, 2002). The MFG pro-
poses that subgoals, i.e., atomic steps towards a goal, are rep-
resented in human memory, thereby underlying memory ef-
fects like time-dependent and noisy activation, interference,
and associative priming.

Within the MFG theory, errors arise when the activation
of a goal is not high enough to surpass interfering goals or
even falls below a general retrieval threshold. Cognitive mod-
els based on the MFG assumptions have been shown to ex-
plain procedural errors in the HCI domain, namely omissions,
very well (e.g., Trafton, Altmann, & Ratwani, 2011; Hiatt &
Trafton, 2015; Halbrügge et al., 2015; Li, Blandford, Cairns,
& Young, 2008).

The Role of the Environment
The MFG theory is clearly focused on managing task se-
quences in memory, i.e., within their head. This has been
critized for neglecting the role of the environment (e.g.,
Salvucci, 2010). As embodied beings, humans strive to
reduce cognitive complexity by exploiting the content and
structure of the external world.

Recent research has shown that better predictions can be
achieved and new error domains can be covered by extending
the MFG with an activation process that relies on external
cues (Halbrügge et al., 2015; Hiatt & Trafton, 2015). We
propose that when a user cannot retrieve the next goal, they
revert to an externalization strategy and randomly search the
visual scene (i.e., the UI) for interactive elements. Whenever
an element is found, the user tries to retrieve a goal that relates
to this UI element. Because visually attending the element
increases the activation of related goals through priming, a
goal that had previously been forgotten may now surpass the
retrieval threshold. As a consequence, the planned sequence
of actions may be resumed. But because visual priming is
independent of the currently planned sequence, it may also
help retrieve an outdated goal from a previous trial, or the
planned sequence may be resumed at an incorrect position.

Task- and Device-Orientation
The best known examples of procedural error are postcom-
pletion errors (e.g., forgetting the originals in the copy ma-
chine; Byrne & Davis, 2006) and initialization errors (e.g.,
forgetting to reset Caps Lock before typing a password; Gray,
2000). Common to both of them is that these errors happen
during procedural steps that do not directly contribute to the
users’ actual goals (i.e., making copies; logging into a sys-
tem). This common property of goal-irrelevance of a sub-task
has been coined device-orientation (Ament, Cox, Blandford,
& Brumby, 2013; Gray, 2000), its opposite is analogously
called task-orientation. The concept of device-orientation is
based on the MFG by assuming that device-oriented tasks are
“more weakly represented in memory”. While Ament et al.

(2013) discuss different encoding or lack of rehearsal as pos-
sible reasons for lower activation of device-oriented tasks, we
are assuming lack of priming in this case (Halbrügge & En-
gelbrecht, 2014). We will call this the task priming assump-
tion in the following.

The Role of the Application Logic
The elimination of device-oriented tasks is a reasonable de-
sign strategy for error reduction, but does not succeed in all
cases. When a device-oriented step can not be avoided (e.g.,
the removal of the bank card from a teller machine), it is often
made obligatory to make sure that users can not omit it. In the
ATM example, this would mean not handing out the money
before the user has taken back their card.

Previous research has shown that the impact of whether a
subtask is obligatory or not is much higher than whether it is
device-oriented or not, and the interaction of both needs to be
taken into account when researching procedural error in real-
world settings (Halbrügge et al., 2015). It is also worth noting
that memory-based processing as put forth by the MFG can
hardly explain why obligatory tasks are less prone to omis-
sions. The knowledge-in-the-world assumption fills this gap.

Experiment
As errors are relatively infrequent, but proper statistical anal-
ysis needs sufficiently big case numbers, researchers have de-
veloped several strategies to artificially increase error rates in
the laboratory. Among these are interruptions by the experi-
menter (Li et al., 2008; Trafton et al., 2011), secondary tasks
(Byrne & Davis, 2006; Ruh, Cooper, & Mareschal, 2010), or
special UIs that make users feel lost easily (Hiatt & Trafton,
2015). Because we want to maximize external validity, we
rejected all of these options and chose to observe human
error during repeated interaction with a real world applica-
tion instead. We selected a kitchen assistance system from
a “smart home” environment for the experiment. The assis-
tant aims at helping with the preparation of meals by suggest-
ing recipes, calculating ingredient amounts and maintaining
shopping lists. A screenshot of the recipe search screen of
the kitchen assistant is displayed in Figure 1.

Methods
Participants 24 members of the Technische Universität
Berlin paid participant pool, 15 women and 9 men, aged be-
tween 18 and 54 (M=29.4, SD=9.4), took part in the exper-
iment conducted in January 2015. As the instructions were
given in German, only fluent German speakers were allowed.

Materials A personal computer with 23” (58.4 cm) touch
screen and a 10” (25.7 cm) tablet were used to display the
interface of the kitchen assistant. While the large screen op-
erated in landscape mode, portrait mode was used for the
tablet. We created two variations of the UI of the kitchen
assistant that were targeted at the large screen and the tablet,
respectively. All user actions were recorded by the computer
system.
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Figure 1: Screenshot of the English version kitchen assistant used for the experiment.

The participants’ gaze was recorded using a SR Research
Ltd EyeLink II head-mounted eye-tracker. Only the dominant
eye was tracked; the sampling frequency was 250 Hz. Gaze
recording was only applied during task blocks that used the
large monitor because the visual angles between UI elements
on the tablet were too small to obtain an unambigous map-
ping from gaze to element. Nevertheless, the eye-tracker was
worn by the participants during the complete procedure as its
scene camera view was recorded for subsequent error identi-
fication. The experiment was conducted in a laboratory with
fixed lighting conditions.

Design We used a four-factor within-subject design, the
factors being the physical device used, the UI variant, whether
a sub-task was obligatory, and whether it was device-oriented
as opposed to task-oriented. We collected user errors, task
completion times, and gaze position. The participants com-
pleted a total of 46 tasks grouped into 4 blocks. Physical de-
vice, UI variant, and block sequence were varied randomly,
but counterbalanced across the experiment.

Procedure After having played a simple game on each of
the two devices to get accustomed with the respective touch
technology, the participants received training on the kitchen
assistant. The training covered all parts of the application
that were used during the actual experiment. Each block of
tasks began with relativly simple tasks like “Search for Ger-
man main dishes and select lamb chops”. Afterwards, the
ingredients to a recipe were collected and some of them were
added to a shopping list that is part of the kitchen assistant
(e.g., “Create a shopping list for six servings and check-off
garlic”). The instructions followed the experiment described

in Halbrügge et al. (2015) closely, with only one new type of
device-oriented non-obligatory tasks added in order to gain
more insights about this special combination. When a partic-
ipant made an error during a trial, they were not interrupted
but informed after the trial and were given the chance to re-
peat this trial a single time. The complete procedure lasted
approximately 45 minutes.

Results
Errors A total of 6921 clicks were recorded. We observed
85 (1.2%) omissions and 53 (.8%) intrusions. Because of
the unequal number of observations per trial, mixed mod-
els were used to analyze the data (Bates, Maechler, Bolker,
& Walker, 2013). Neither physical device nor UI variant
showed relations to the error rate (mixed logit model with
subject and task block as random factors, all p > .3). Obliga-
tory task steps were less prone to errors (z =−2.1, p = .034)
and device-oriented steps showed higher error rates than their
task-oriented counterparts (z = 7.8, p < .001). Together with
the highly significant interaction (z = 4.4, p < .001), this is
mainly due to the relatively high omission rate for device-
oriented non-obligatory task steps (e.g., checking off previ-
ously selected ingredients; see Figure 2).

Eye-Tracking The gaze of three participants could not be
recorded because of calibration failure. For the remaining 21
participants, the raw screen coordinates were mapped to dy-
namic areas of interest (AOI) around the UI elements using
a computational bridge between the eye-tracker and the web
browser that rendered the UI (Halbrügge, 2015). Individual
gaze positions were collapsed into fixations using a hidden
Markov model (HMM) approach. Based on common rule-of-
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Figure 2: Error probabilities for the experiment (logarithmic
scale). Error bars are 95% confidence intervals using the
Agresti-Coull method. N denote predictions of the revised
model (400 runs).

thumb values of maximum 100 deg/s for fixations and min-
imum 300 deg/s for saccades (Salvucci & Goldberg, 2000),
the parameters for the states of the HMM and the respec-
tive transition probabilities were estimated from the recorded
data.

In order to examine the knowledge-in-the-world assump-
tion, the gaze recordings were split into segments based on
the clicks within a trial (e.g., a trial with five clicks yielded
four segments). Because of the varying length of these seg-
ments, we use the fixation rate (number of fixations divided
by segment length) as dependent variable. A mixed model
with subject and sub-task as random factors yielded signifi-
cantly higher rates for segments before erroneous clicks com-
pared to correct clicks (F2,1952.5 = 5.3, p = .005, see Fig-
ure 3). This could still mean that the users were recurrently
fixating the ultimately clicked UI element instead of search-
ing the screen. We addressed this by counting the fixations
on the AOI corresponding to the element that concluded its
segment. Because the resulting counts are extremely right-
skewed (median = 1), we divided them into two groups for
statistical analysis. A logit mixed model with subject and sub-
task as random factors revealed that the probability to fixate
the ultimately clicked element at least once during a segment
was actually lower before errors (z =−2.5, p = .012).

Discussion
The results partially reproduce the findings of our previous
studies. Compared to Halbrügge et al. (2015), the combina-
tion of non-obligatory device-oriented tasks yielded a much
higher error rate. This is probably due to the changed set of
user tasks that seems to have included device-oriented task
steps that were much harder to remember than the ones used
before.

The eye-tracking data confirms the knowledge-in-the-
world assumption nicely. The higher fixation rate before
erroneous clicks matches the proposed process of (random)
search for ‘inviting’ elements on the surface of the UI. In prin-
ciple, this could also be caused by memory-based processing,
e.g., a re-fixation strategy to strengthen the activation of the
current subgoal through visual priming. But the AOI-based
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Figure 3: Fixation rate before performing a correct vs. an
erroneous click. Error bars are 95% confidence intervals.
Right: Rates have been normalized to the baseline of cor-
rect clicks to allow a comparison between data and cognitive
model. N denote predictions of the revised model (400 runs).

analysis shows that the frequent fixations before errors are on
other elements than the one that is eventually clicked.

Cognitive Model
To gain more insight in the implications of our theoretical as-
sumptions, the task priming and the knowledge-in-the-world
assumptions have been implemented in a cognitive model
based on the ACT-R framework (Anderson et al., 2004). A
simplified flow-chart of the model is displayed in Figure 4.
The model had been fit to the error rates of the previous ex-
periment and reached good fits in this domain (Halbrügge et
al., 2015).1 The new data presented here allows constraining
the existing model. The model fit to the error rates of the cur-
rent data is still good with R2=.76, but somewhat increased
RMSE=.044. The eye-tracking results confirm the theoretical
assumptions at least qualitatively. But what about the actual
quantitative predictions of the model in the visual domain?

As ACT-R’s visual module operates on an abstract atten-
tion layer (as opposed to raw eye movements), the model’s
visual behavior cannot be compared directly to the human
sample. Nevertheless, effects that were significant in the hu-
man data should be present in the model results as well. The
initial model produces fixation rates that are actually lower
for erroneous trials compared to correct trials, in contrary to
both the theory and the human data. This happens because
the memory test that is part of the knowledge-in-the-world
strategy (try-retrieve-goal-for-element in Figure 4) is not re-
stricted in time. If it fails to retrieve a matching goal chunk,
this is only signaled after approximately one second. As a
result, the visual search process is slowed down considerably.

Revised Model
In order to speed up the knowledge-in-the-world strategy, we
make use of ACT-R’s temporal buffer (Taatgen, Van Rijn, &
Anderson, 2007). A timer is started with the initiation of the
memory test and a single production was added that aban-

1The source code of the model is available for download at
http://www.tu-berlin.de/?id=135088
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Figure 4: Simplified flow chart of the cognitive model.
Dashed arrows denote retrieval errors, the dotted arrow de-
notes visual search failure.

dons the retrieval after a fixed amount of time ticks. Based on
the observed fixation rate between 3 and 4 per second before
erroneous clicks, we set the tick threshold to approximately
250 ms (9 to 12 ticks using ACT-R standard parameters).

Comparing the model predictions based on the fixation
rates is tricky because ACT-R only models shifts of attention
and assumes completely stable gaze otherwise, which results
in unnaturally low fixation rates. An exploratory approach
to this based on the relative change compared to the ‘correct
click’ baseline is shown in Figure 3. The corresponding fit
is unimpressive with R2=.41, but should be interpreted with
care. Of higher importance is the qualitative result that error
trials show increased fixation rates.

Errors After having optimized the model for visual be-
havior, the fit in the error domain somewhat degrades with
R2=.70 and RMSE=.044 (see Figure 2).

General Discussion
The current paper presents an empirical study and a cognitive
user model of procedural error. The study has been designed
to foster external validity, featuring a real-world application
in a household scenario and drawing participants mainly from
non-student populations. The model extends the activation-
based Memory for Goals theory (Altmann & Trafton, 2002)
by highlighting the importance of external cues during se-
quential action. Internal cues are divided into task-oriented,
i.e., steps that directly contribute to the users’ goals, and
device-oriented ones (Ament et al., 2013). Together with the
assumption that only task-oriented steps receive additional
priming from the user’s overall goal, this allows not only to
explain our data, but also provides an acceptable explanation
of how device-orientation actually affects sequential behav-
ior. The role of external cues as formulated in the knowledge-
in-the-world assumption is fostered by the eye-tracking re-
sults.

Eye-tracking has been used before to predict special sub-
types of procedural error (Ratwani & Trafton, 2011) with
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Figure 5: Average time until successful task completion when
using the knowledge-in-the-world strategy as function of the
maximum time ticks spent on the retrieval test. The vertical
dashed line demarks the average wait tick value chosen for
the model. (3000 model runs)

good success. Ratwani and Trafton’s system uses a cognitive
model based on the MFG theory in combination with a statis-
tical classifier that uses eye-tracking data as input to predict
and prevent postcompletion error. The approach presented in
this paper differs therefrom in two important ways. Firstly,
we are targeting not only omissions of the final step within a
sequence, but other types of omissions and intrusions as well.
And secondly, we are trying not only to predict when a user
makes an error, but also why this happens and have therefore
incorporated the necessary visual processes into our cognitive
model.

How do the strategies that we propose relate to the soft
constraints hypothesis (SCH; Gray & Boehm-Davis, 2000;
Gray, Sims, Fu, & Schoelles, 2006)? According to this hy-
pothesis, users select (micro-) strategies based on a temporal
cost-benefit tradeoff. The reduction of the waiting time for
the retrieval test that is part of the knowledge-in-the-world
strategy can already be viewed as the application of such a
tradeoff. After a few hundred milliseconds, it may be more
beneficial to try a new visual target than to wait for the suc-
cessful retrieval of a matching goal chunk. We explored this
hypothesis by varying the maximum time ticks the model
waits until abandoning the retrieval test and comparing the
success rates of the knowledge-in-the-world strategy depend-
ing on the ticks. Keeping all other model parameters fixed,
the results show that the wait time chosen based on the fixa-
tion rates is also close to a local minimum of the time spent
per successful click (see Figure 5). This criterion represents
a time/benefit tradeoff as proposed by the SCH.

While providing good fits to the data, the model also has
several limitations. Firstly, the model only covers expert be-
havior. The initial formation of the task sequence by novice
human users is beyond its capabilities. The model also does
not account for errors caused by the UI design violating gen-
eral expectations of its users towards computer systems.

Secondly, the empirical basis of the model is limited. So
far, we have only collected data using a single paradigm.
Changing the experimental tasks resulted in changed error
rates, but the overall pattern remained stable and the model fit
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is still satisfactory. While the current addition of eye-tracking
data represents a significant extension of its empirical foun-
dation, the generalizability of the model still needs further
investigation.

Conclusions
We have presented a model of procedural error grounded in
the Memory for Goals theory. The model consists of two in-
terdependent cognitive strategies, one relying only on mem-
ory and another that is mainly using cues from the environ-
ment. The underlying assumptions, namely the task priming
assumption and the knowledge-in-the-world assumption, are
confirmed by an error analysis of newly gathered data without
further parameter fitting. Eye-tracking data recorded at the
same time qualitatively backs our theoretical assumptions. A
revised cognitive model provides reasonable fit to both the
error and the gaze data.
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