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Abstract

The weighted ensemble (WE) strategy has been demonstrated to be highly efficient in generating 

pathways and rate constants for rare events such as protein folding and protein binding using 

atomistic molecular dynamics simulations. Here we present two sets of tutorials instructing users 

in the best practices for preparing, carrying out, and analyzing WE simulations for various 

applications using the WESTPA software. The first set of more basic tutorials describes a range 

of simulation types, from a molecular association process in explicit solvent to more complex 

processes such as host-guest association, peptide conformational sampling, and protein folding. 

The second set ecompasses six advanced tutorials instructing users in the best practices of using 

key new features and plugins/extensions of the WESTPA 2.0 software package, which consists of 

major upgrades for larger systems and/or slower processes. The advanced tutorials demonstrate 

the use of the following key features: (i) a generalized resampler module for the creation of 
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“binless” schemes, (ii) a minimal adaptive binning scheme for more efficient surmounting of free 

energy barriers, (iii) streamlined handling of large simulation datasets using an HDF5 framework, 

(iv) two different schemes for more efficient rate-constant estimation, (v) a Python API for 

simplified analysis of WE simulations, and (vi) plugins/extensions for Markovian Weighted 

Ensemble Milestoning and WE rule-based modeling for systems biology models. Applications 

of the advanced tutorials include atomistic and non-spatial models, and consist of complex 

processes such as protein folding and the membrane permeability of a drug-like molecule. Users 

are expected to already have significant experience with running conventional molecular dynamics 

or systems biology simulations.

1 Introduction and Scope of Tutorials

The WESTPA (Weighted Ensemble Simulation Toolkit with Parallelization and Analysis) 

software package [1, 2] is a highly scalable implementation of the weighted ensemble 

(WE) path sampling strategy [3, 4] that has helped transform what is feasible for molecular 

simulations in the generation of pathways for long-timescale processes (> μs) with rigorous 

kinetics. Among these simulations are atomically detailed simulations of protein folding [5], 

protein-protein binding [6], protein-ligand unbinding [7], and the large-scale opening of the 

SARS-CoV-2 spike protein [8]. The latter involved the slowest process (seconds-timescale) 

yet studied for a massive system (one million atoms) using WE simulations. As a “bleeding 

edge” application, these efforts have motivated major upgrades to WESTPA (version 2.0) 

that enable the sampling of processes at even longer timescales and more streamlined 

handling of large datasets [2]. Like its predecessor, WESTPA 2.0 is a Python package that 

is (i) interoperable, enabling the use of any type of stochastic dynamics simulation (e.g., 

MD or Monte Carlo simulations) and any model resolution (e.g., atomistic, coarse-grained, 

non-spatial or spatially resolved systems biology models) [9, 10]; and (ii) extensible, making 

it straightforward to modify existing modules or create plug-ins in order to support new 

scientific efforts.

Here we present a suite of tutorials organized into two groups. The first four tutorials, 

presented in the original version of this paper, range in order of difficulty from basic to 

intermediate, including a tutorial involving the suite of analysis tools.

The second group of tutorials addresses new features in the major upgrades appearing in 

the WESTPA 2.0 software package. Among these tutorials is one involving the Markovian 

Weighted Ensemble Milestoning (M-WEM) approach [11], which interfaces the WE 

strategy with another path sampling method called milestoning [12, 13]. In the final 

tutorial, we broaden the scope of path sampling to a systems biology application involving 

a WESTPA plugin for enhancing the efficiency of Monte Carlo simulations using the 

BioNetGen systems biology package [14, 15].

For general prerequisites to attempting these tutorials, please see Section 1.3 below. All files 

for the tutorials can be found online in the WESTPA Tutorials GitHub repository https://

github.com/westpa/tutorials. In each tutorial, we outline learning objectives and expected 

outcomes.
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1.1 Learning objectives

After completing the Basic Tutorial 7.1 involving the simulation of Na+/Cl− association, the 

user should be able to:

1. Understand the main simulation directory layout

2. Choose a progress coordinate

3. Choose an appropriate binning scheme

4. Prepare input files

5. Monitor a simulation

After completing the Intermediate Tutorial 7.2 involving the conformation sampling of a p53 

peptide fragment, the user should be able to:

1. Set up a two-dimensional progress coordinate

2. Monitor this coordinate as the simulation progresses

3. Evaluate whether the binning scheme is effective

4. Combine and create bins “on-the-fly”

5. Store and access auxiliary data

After completing Intermediate Tutorial 7.3 involving the folding/unfolding of the chignolin 

mini-protein the user should be able to:

1. Use brute force simulations to identify appropriate initial and/or target states

2. Obtain the probability flux into the target state of a WESTPA simulation, convert 

it to a mean rate constant, and interpret the results

3. Approach larger, more biologically relevant events (like protein folding) with a 

WE-oriented mindset

After completing the Analysis Tutorials 7.4, the user should be able to:

1. Calculate progress coordinates using an external analysis suite (MDTraj or 

MDAnalysis)

2. Automate analysis and interactively explore WE simulation data using the w_ipa 

tool

3. Create a movie of how a probability distribution evolves with time

After completing Advanced Tutorial 7.5, which involves the simulation of Na+/Cl− 

association, the user should be able to:

1. Create a customized binless resampler scheme for splitting and merging 

trajectories based on by k-means clustering using the BinlessMapper 

resampler module;

2. Initiate a WE simulation from multiple starting conformations;
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3. Combine multiple WE simulations for analysis using the w_multi_west 

multitool;

4. Perform post-simulation analysis using the w_crawl tool.

After completing Advanced Tutorial 7.6 involving the simulation of drug membrane 

permeation, the user should be able to:

1. Set up a double membrane bilayer system for permeability studies;

2. Use the highly scalable HDF5 framework for more efficient restarting, storage, 

and analysis of simulations;

3. Apply the minimal adaptive binning (MAB) scheme.

After completing Advanced Tutorial 7.7 involving the simulation of ms-timescale protein 

folding, the user should be able to:

1. Apply the haMSM plugin for periodic reweighting of simulations;

2. Use the msm_we package to build an haMSM from WE data;

3. Estimate the distribution of first passage times.

After completing Advanced Tutorial 7.8 involving the creation of custom analysis routines 

and calculation of rate constants, the user should be able to:

1. Access simulation data in a west.h5 file using the high-level Run interface 

of the westpa.analysis Python API and retrieve trajectory data using the 

BasicMDTrajectory and HDF5MDTrajectory readers;

2. Access steady-state populations and fluxes from the assign.h5 and 

direct.h5 data files, convert fluxes to rate constants, and plot the rate constants 

using an appropriate averaging scheme;

3. Apply the RED analysis scheme to estimate rate constants from shorter 

trajectories;

After completing Advanced Tutorial 7.9 involving simulations of alanine dipeptide using the 

M-WEM method, the user should be able to:

1. Install the M-WEM software and perform a M-WEM simulation;

2. Create milestones to define the M-WEM progress coordinate;

3. Analyze an M-WEM simulation to compute the mean first passage time, 

committor, and free energy landscape.

After completing Advanced Tutorial 7.10 involving rule-based modeling of a gene switch 

motif using the WESTPA/BNG plugin, the user should be able to:

1. Install the WESTPA/BNG plugin and set up a WESTPA/BNG simulation;

2. Apply adaptive Voronoi binning, which can be used for both non-spatial and 

molecular systems;

3. Run basic analyses tailored for high-dimensional WESTPA simulations.
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The tutorials will use an array of different dynamics packages to showcase WESTPA’s 

interoperability. In each tutorial, all of the required software, including the dynamics engine 

and analysis tools, are freely available with easily-accessible online documentation. Please 

note the version of each software package listed in the Computational Requirements 
section of each tutorial.

1.2 The Weighted Ensemble Strategy

WE is a highly-parallel path sampling strategy for generating rare events, for studying non-

equilibrium steady states, and less commonly, for studying equilibrium properties. At heart, 

it is a simple and flexible strategy which is agnostic to system type and which therefore 

lends itself to numerous applications and optimizations. The properties of WE, including 

strengths and limitations, have been reviewed in detail before [4], although improvements 

continue to be developed [17–21]. Here, we briefly review key aspects of WE.

The Basic WE Procedure.—See Figure 1. WE orchestrates multiple trajectories—

each assigned a weight—run in parallel by stopping them at regular time intervals of 

length τ (typically a large multiple of the underlying simulation time step), examining 

the trajectories, and restarting a new set of trajectories. The new trajectories are always 

continuations of the existing set, but some trajectories may not be continued (they are 

“pruned”) and others may be replicated. Discontinued trajectories result from probabilistic 

“merge” events where a continued trajectory absorbs the weight of one that is pruned. 

Replicated trajectories are said to be “split” with the original weight shared equally among 

the copies. Usually bins in configuration space are used to guide split and merge events 

based on a target number of trajectories for each bin, but any protocol—including binless 

strategies highlighted below—may be used for this purpose. Regardless of the resampling 

protocol, a “recycling” protocol often is used whereby events reaching a user-specified target 

state are reinitiated according to a specified distribution of start states [22]. This recycling 

protocol focuses all sampling on a single direction of a process of interest and has valuable 

properties as noted below.

WE is Resampling, and Hence Unbiased.—The simple steps defining WE 

simulations stem from its basis as a statistical “resampling” procedure [16]. The split/merge 

steps generate a statistically equivalent (re)sample of an initial trajectory set by increasing/

reducing trajectory density in some regions of configuration space at a given time, using 

weight adjustments to maintain the underlying trajectory distribution. The trajectory set 

is therefore unbiased at all times, i.e., average time-dependent observables derived from 

many WE runs will match the average of a large number of conventional simulations 

without splitting or merging events [16]. Furthermore, the distributions of transition path 

times (“barrier crossing times”) from WE runs match those from converged conventional 

simulations, and can be generated in orders of magnitude less computing time [23, 24]. 

The lack of bias in the dynamics of WE runs holds true regardless of whether recycling is 

employed.

Observables and Ensembles Sampled by WE.—WE can yield transient and/or 

steady-state observables. When recycling is not used, WE provides pathways, i.e., sequences 
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of conformations in a transition and the frequencies of those sequences, in addition to 

time-dependent observables as the system relaxes to equilibrium, e.g., the probability of a 

given event at a given time after initiation in the chosen starting state. Complex systems are 

unlikely to relax fully to equilibrium during a WE simulation. With a recycling protocol, the 

system will not relax to equilibrium but instead to a non-equilibrium steady state (NESS) 

that has steady probability flow from initial to target state. If reached, the NESS provides a 

simple mechanism for computing rate constants via the Hill relation [22]. However, although 

relaxation to a NESS can be considerably faster than relaxation to equilibrium [25, 26], the 

process may be too slow for WE to reach NESS on practical timescales, motivating the 

haMSM approach [5, 18] described below.

Resampling Introduces Correlations, which Increase Variance.—WE has 

intrinsic limitations, like any method [27], and it is essential to understand them. Most 

fundamentally, splitting and merging introduce correlations into the sampled trajectory 

ensemble that could decrease its information content. These stem primarily from splitting 

events: multiple trajectories share an identical history up to the time of the split event and 

hence do not contribute fully independent information to any observable. These correlations, 

in turn, can lead to large run-to-run variance [5] because the trajectory ensemble in each 

WE run results from a relatively small number of “parent” trajectories which have been 

split repeatedly. This variance is addressed to some extent by the iterative haMSM protocol 

described below, and more directly by ongoing mathematical optimizations noted below. 

Importantly, correlations within WE ensembles lead to significant challenges in quantifying 

uncertainty [4, 28].

Ongiong Efforts at Optimization and Variance Reduction.—Because WE is 

unbiased so long as a correct resampling protocol is used [16], there is an opportunity 

to reduce the run-to-run variance noted above by improved resampling procedures. In 

the context of binned WE simulations, both the construction of bins and the number 

of trajectories per bin can be optimized based on a recently developed mathematical 

formulation [21, 29] or based on heuristics [19]. Bins do not need to be kept static over 

time [16, 19]. Optimization approaches are actively being studied and incorporated into 

WESTPA as appropriate.

WE Cannot Solve Every Problem.—Despite its great strengths and highly notable 

achievements [5, 7, 8], users should not assume WE can tackle any problem. Independent 

of the correlation/variance issues noted above, certain systems will remain too complex for 

WE given current hardware and algorithms. In every system, there is a minimum transition 

path time tTP (also called tb) [30, 31] for physically realistic events which sets an absolute 

requirement on sampling required: in a WE run, a set of trajectories exceeding the minimum 

tTP must be generated, which may be a prohibitive cost. Additionally, even if the necessary 

computing resources are available, current binning and resampling strategies might not be 

sufficient to generate events of interest. And finally, even if events of interest are generated, 

the sampled trajectories may be insufficient for producing observables of interest such as a 

reliable estimate of the rate constant.
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1.3 Prerequisites and Computing Requirements

Background Knowledge and Experience.—The WESTPA software is not intended 

for total beginners in molecular simulation. Users should already have extensive experience 

running conventional simulations using the underlying dynamics engine of interest (Amber 

[32], OpenMM [33], BioNetGen [14], etc.). Prior to applying the WE strategy to their own 

systems, we suggest that users run multiple conventional simulations to (i) ensure that the 

preparation of the system and propagation of dynamics is according to best practices (e.g., 

see [34]), (ii) identify potential progress coordinates and initially define the target state, and 

(iii) estimate the ns/day on a single CPU/GPU for your system and storage needs for the 

full-scale WE simulation. We highly recommend that new WESTPA users read this review 

article [4] and this introduction to non-equilibrium physics of trajectories [35]. It is also 

important to identify sources of validation for your simulation (e.g., from experiment and/or 

standard simulations) and to be familiar with the estimation of statistical uncertainty in the 

computed observables, including those used for validation [36].

Software Requirements.—The WESTPA 2.0 software is a standard Python package that 

can be used on any Unix operating system. The software requires Python versions ≥3.8 

and a number of standard Python scientific computing packages. We recommend installing 

WESTPA either as a PyPI or conda package using miniconda. Both packages provide all 

required software dependencies and can be installed using one-line commands: (1) python 

-m pip install westpa or (2) conda install -c conda-forge westpa. Note 

that it is a best practice to install WESTPA into an isolated virtual or conda environment, 

along with the dependencies specific to your project. Due to the use of the MDTraj Python 

library with the WESTPA 2.0 HDF5 framework, certain modifications to the installation 

procedure are required for running WESTPA 2.0 on ppc64Ie architectures (e.g., TACC 

Longhorn or ORNL Summit supercomputers; see https://github.com/westpa/westpa/wiki/

Alternate-Installation-Instructions).

WESTPA 2.0 is designed to be interoperable with any dynamics engine, requiring an 

external dynamics engine to propagate the dynamics in a WE simulation. Please see the 

prerequisite sections of each tutorial for additional software requirements that are specific to 

that tutorial.

Hardware Requirements.—Like its predecessor, WESTPA 2.0 is highly-scalable on 

CPUs/GPUs, making optimal use of high-performance computing (HPC) clusters available 

at academic institutions or supercomputing centers. Memory requirements are dependent on 

the underlying dynamics engine, e.g., ~1 GB per CPU core (or GPU) for atomistic MD 

simulations. Users should refer to the best practices of their dynamics engine of choice to 

determine the optimal allocation of resources for each CPU/GPU. The most efficient way 

to run WESTPA is to use a computing resource that provides the user with a number of 

CPUs/GPUs—all the same processor speed—that either matches the number of trajectories 

per WE iteration or a number by which the number of trajectories at any point in time is 

evenly divisible. WE can nevertheless run on heterogeneous hardware (different processor or 

memory bus speeds) or with trajectory counts that do not divide evenly onto CPUs/GPUs, 
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but this scenario decreases efficiency as some processors are inevitably idle for at least a 

portion of the overall runtime.

Users can estimate the approximate storage space required for their project by taking the 

product of the following: (i) amount of disk space required for storing data from one 

trajectory segment of length τ, (ii) the maximum number of trajectories per WE iteration, 

and (iii) the total number of WE iterations required to generate a reasonable maximum 

trajectory length. To optimize the use of storage space, we recommend that users tar up 

trajectory files into a single file for each WE iteration and remove coordinates of the system 

that are not of primary interest (e.g., solvent coordinates for certain processes). We note 

that the WESTPA 2.0 HDF5 framework dramatically reduces the storage space required 

for trajectory coordinates by consolidating the data from millions of small trajectory files 

into a relatively small number of larger HDF5 files, reducing the large overhead from 

the file system that results from the storage of numerous small trajectory files. By doing 

so, the HDF5 framework also alleviates potential I/O bottlenecks when a large amount of 

simulation files are written after each WE iteration.

2 Workflow of Running a WE Simulation

An overview of the workflow for running a WE simulation using WESTPA is detailed 

below. This workflow is only meant to give a sense of the mechanics and flow of using 

WESTPA once your system and WE parameters have already been carefully chosen. See 

Table 2 for a summary of all files mentioned in this workflow.

Overall Flow

Ready: The purpose of this step is to ensure that the chosen WE parameters are correctly 

specified in the proper places and that all environment variables are correctly set. Most of 

the WE parameters (such as the number of WE iterations, binning scheme etc.) and auxiliary 

datasets (auxdata; see Section 7.2) are specified in the west.cfg file. You can view an 

example of this file in any of the tutorials below; labels exist directing where to specify each 

parameter. More complex binning schemes (such as recursive schemes or schemes involving 

functional bin mappers) can be specified in an external file called system.py. A user may 

also choose to write functions to this file. Usually, these functions will calculate progress 

coordinate or auxiliary data and are more complex than usual.

The environment is set up in the env.sh file. The location of the main WESTPA simulation 

directory ($WEST_SIM_ROOT) and the location of dynamics/analysis programs are placed 

in your system path. When setting up WESTPA on a cluster, program modules will be 

loaded in the runwe.slurm file instead of the env.sh file (see Section 7.1.3 and view the 

cluster-specific runwe.slurm file). It is a best practice to define variables in env.sh for 

each program that will be called. These variables should contain the full path to that program 

(such as CPPTRAJ=$(which cpptraj), see Section 5.1 for more information). Always 

source env.sh before trying to run WESTPA just to see if any errors appear relating to 

programs not being found. If errors are present, edit env.sh to specify the proper locations of 

programs and try to source it again. The goal of this action is to make sure that any issues 
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with your environment are fixed before continuing so that troubleshooting becomes much 

easier later on.

Set: After setting up the system environment and specifying the WE parameters, users will 

need to initialize the simulation. This involves running the init.sh script, which will take 

an initial structure (or structures), calculate a progress coordinate (pcoord for short, this is 

also the name used in WESTPA datasets pertaining to the progress coordinate) value for that 

structure and then place that structure in the appropriate bin. The init.sh file is also the 

location where users can specify whether the simulation will be run under equilibrium or 

steady-state conditions.

Place the starting structure(s) in the bstates/ directory. The structure should be a 

coordinate file giving the starting configuration of your system (e.g. Amber restart file). 

The bstate.file tells WESTPA which structure to use as the initial structure for the 

simulation. If you have only one structure, this file will contain the name of that structure 

only; if you have more than one structure, bstate.file should list each structure along 

with its associated statistical weight. An example of the latter is a representative ensemble 

of unbound protein conformations in a binding process that could be generated using a prior 

equilibrium WE simulation [6, 37].

Next, specify whether the simulation will be run under equilibrium or steady-state 

conditions. This specification is made in the init.sh file. Including a $TSTATE_ARGS 

argument for w_init will signal for WESTPA to run under steady state conditions. The 

tstate.txt file in the main simulation directory is where the progress coordinate value 

of the target state is specified. If the $TSTATE_ARGS argument is absent, the simulation 

will be run under equilibrium conditions. See the tutorials in Sections 7.1 and 7.2 below 

for examples of how init.sh will change from running a steady-state simulation versus an 

equilibrium simulation (respectively).

Running init.sh will cause WESTPA to execute get_pcoord.sh, which is a script 

located in westpa_scripts/. This script will give an initial progress-coordinate value for 

the basis state(s) (located in bstates/) to WESTPA.

Users will need to modify get_pcoord.sh to either read or calculate the progress 

coordinate for their particular simulation. For instance, in the Basic Tutorial 7.1, the distance 

between the Na+ and Cl− ions is used as the progress coordinate. The get_pcoord.sh 

file for that tutorial simply prints the contents of an already-existing file (pcoord.init, 

which already contains the calculated value) and passes that value to WESTPA. However, 

get_pcoord.sh can also perform the calculation for the basis state, as in the Intermediate 

Tutorial 7.2. However this is done, a value (or values) for that progress coordinate should 

be echoed into $WEST_PCOORD_RETURN, a WESTPA variable containing all of the progress 

coordinate values for the entire simulation (see Section 7.2 for the added considerations if a 

two-dimensional progress coordinate is used).

If errors appear while trying to initialize the simulation, the following troubleshooting 

methods are recommended. First, make sure that the command entered in get_pcoord.sh 
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properly calculates the progress coordinate. Copy the initial structure from the bstates/ 

directory to another directory and run the command. If the command does not work, make 

sure the proper atoms and residues are selected and then try running the command again. If 

the command works, make sure that the calculated value is being successfully echoed into 

$WEST_PCOORD_RETURN.

To make troubleshooting easier, turn on logging for the get_pcoord step in the west.cfg 

file. By setting the location of the standard output (stdout) and/or standard error (stderr) 

to $WEST_SIM_ROOT/get_pcoord.log, you can more closely monitor the output of the 

get_pcoord.sh script to try to find out where things are not working.

Go: Running the run.sh script will start a WESTPA simulation. If init.sh was just run, 

a new simulation will begin and continue until the number of WE iterations specified in 

west.cfg have been completed. If the simulation was stopped after previously running, 

run.sh will continue the simulation from the point at which it was stopped. If WESTPA 

is being run on a cluster, then this script will take the form of a Slurm or other submission 

script (such as runwe.slurm, see the Basic Tutorial 7.1 for an example). WESTPA 

will propagate dynamics for one trajectory segment (of length τ) and calculate progress 

coordinate values (and all auxiliary data) for the propagated structure(s). After completing a 

trajectory segment, WESTPA will combine and replicate trajectories to maintain the target 

number of trajectories per bin (as specified in the west.cfg file). One cycle of dynamics 

and combination/replication is referred to as a single WE iteration. The number of iterations 

is repeated until the observable of interest (e.g. rate constant) is reasonably converged.

Running run.sh will cause WESTPA to execute runseg.sh, which is a script similar to 

get_pcoord.sh, located in westpa_scripts/. Users will need to modify runseg.sh to 

call the dynamics engine and calculate the appropriate progress coordinate (and auxiliary 

data) value(s). Refer to the runseg.sh file in the Basic Tutorial 7.1 as an example. This 

particular simulation uses Amber’s pmemd program for dynamics propagation. Running this 

program requires a certain input/output syntax that is specific to the dynamics engine (such 

as Gromacs or OpenMM). The section of this file that calculates the progress coordinate 

will be identical to that in the get_pcoord.sh file. If a user is collecting auxiliary data (as 

specified in the west.cfg file), those values will need to be calculated after calculating the 

progress coordinate value (see Intermediate Tutorial 7.2).

Since runseg.sh will cause many different files to be generated, it is important to consider 

how WESTPA is handling these files, especially when using a shared file space such as on 

a cluster. The methods used in the example runseg.sh files that have been provided in the 

tutorials below are sufficient in most cases, but please refer to Section 5.1 for a discussion on 

file management and network traffic.

If there are any errors in the WESTPA setup (e.g. incorrect number of elements in the 

pcoord array, misplaced input files), the simulation will not proceed past the first WE 

iteration. If this is the case, check the west.log file to see if there is a good reason for 

why the simulation is failing. Usually, however, detailed logging of any errors is available 

in the seg_logs/ directory for each segment of each iteration. View the segment log for a 
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particular segment to see if the dynamics are completing successfully and that the progress 

coordinate (and auxdata) values are being calculated and passed to the appropriate variables 

(such as $west_pcoord_return).

If the dynamics fail to start, copy all necessary input files into an empty directory and run 

the dynamics manually. If no errors appear, make sure that your progress coordinate consists 

of the proper number of datapoints (as specified in the west.cfg file). Also remember that 

you must include the parent coordinate file as your first data point when storing the progress 

coordinate data. This will ensure that the analysis tools work properly.

This is determined by the frequency at which the progress coordinate is being calculated. 

For example, if WESTPA expects 50 progress coordinate values per τ and only receives 10 

values, the simulation will fail after the first WE iteration. Check the dynamics input file 

(md.in in the Basic and Intermediate Tutorials 7.1–7.2) to make sure that the coordinates of 

your system are being saved at a frequency that matches the number of specified progress 

coordinate values.

If the simulation proceeds to the second iteration, there should not be any errors in the 

WESTPA setup. To monitor the progress of the WE simulation, use w_pdist to generate 

probability distributions as a function of your progress coordinate and WE iteration. 

WESTPA’s piothist command will allow you to visualize these probabity distributions 

with a few different visualization options (see Tutorials 7.1–7.2).

Analyze: All data generated from the simulation is contained in one place: the west.h5 

file. From this data, users can track the evolution of progress coordinate values, calculate 

fluxes into certain bins or states (see the w_ipa analysis tutorial in Section 7.4.2) and view 

other statistics pertaining to the simulation. To visualize a completed trajectory, refer to 

Basic Tutorial 7.1 and the Analysis Tutorial 7.4 involving the visualization of trajectories 

(Section 7.4.3).

To assess the convergence of the simulation, a user might want to monitor the evolution of 

the flux into a target state as a function of the number of WE iterations by using the hdfview 

program to plot the target_flux_ evolution dataset in the direct.h5 file generated by 

w_ipa (see Tutorial 7.1).

3 Additional Simulation Workflow with WESTPA 2.0 Upgrades

Given the major upgrades in the WESTPA 2.0 software package [2], we recommend the 

three-stage simulation workflow illustrated in Figure 2. These workflow details are meant 

to supplement the simulation workflow outlined above. Details of the particular schemes 

mentioned are provided in the relevant Advanced tutorials 7.5–7.10.

In the first (“Ready”) stage, if one uses a binned resampling scheme, we recommend 

using one of the two adaptive binning schemes available in WESTPA 2.0: the minimal 

adaptive binning (MAB) scheme or adaptive Voronoi binning scheme. These adaptive 

binning schemes enable quicker explorations of the chosen progress coordinate than 

manual, fixed binning schemes. The MAB scheme is effective at surmounting barriers in 
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a direction of interest [19] while the adaptive Voronoi binning scheme [16] is ideal for 

enhanced sampling in high-dimensional space (more than three dimensions) when all parts 

of the progress-coordinate space are potentially important. However, if progress-coordinate 

space includes, for example, undesirable unfolded protein conformations, adaptive Voronoi 

binning might allocate bins and computing resources to those regions. Besides the adaptive 

binning schemes, one can opt for a “binless” resampling scheme by defining a grouping 

function as described in Advanced Tutorial 7.5 below. The choice of τ (the resampling 

interval used for your WE simulation) should also be made on a system-by-system basis, 

with a sufficiently long time interval to capture relevant motions of interest but not so long 

that no net progress is made toward the target state. Examples of τ values used for various 

systems in previous WE studies are provided in the first suite of WESTPA tutorials [38], 

but some trial-and-error will likely be necessary. Convergence of a WE simulation will 

ultimately depend on the overall goal of running the simulation, but will most likely involve 

the time-evolution of an observable of interest leveling off over time (e.g., trajectory flux 

into a user-defined target state). If the convergence criterion is not met, a WE simulation 

using WESTPA can be resumed by simply running the run.sh script or resubmitting the job 

if it was originally run with slurm. Even if changes were made to the progress coordinate or 

binning, WESTPA will incorporate those changes and resume the simulation accordingly.

In the second (“Set”) stage, we recommend starting the WE simulation from multiple, 

pre-equilibrated starting conformations that are representative of the initial stable state (at 

least one “basis state” for each trajectory walker) to improve the sampling of the initial state 

and diversity of generated pathways to the target state. Initial structures for a WE simulation 

should be chosen on a system-by-system basis, but in general, more starting structures 

(each with a slightly different initial configuration) should provide you with a more diverse 

trajectory ensemble. When the initial state of interest is well-defined, only a small number 

of structures may be necessary, but a truly heterogeneous initial state such as the unbound or 

unfolded states will require more structures to be representative of the intrinsic diversity. As 

discussed in Section 7.5, these “basis” structures will govern the recycling process (if used), 

so care should be exercised in choosing them.

In the third (“Go/Analyze”) stage, we recommend applying one of the following three 

options to further accelerate convergence to a steady state once successful pathways are 

generated. The Rates from Event Durations (RED) analysis scheme [20] estimates rate 

constants more efficiently than the original WE scheme [3] by exploiting information in 

the transient region of the simulation. Another option is the haMSM plugin, which employs 

a fine-grained “microbin” analysis and can be used to not only estimate rate constants 

following WESTPA simulation (e.g., for the seconds-timescale coronavirus spike opening 

process [39]), but to also restart trajectories with their weights adjusted for a steady state 

[2], Because restarts in the haMSM plugin are initiated from configurations occurring 

throughout previously run trajectories, the continuity of the generated pathways is broken. 

The third option is the weighted ensemble steady state (WESS) plugin [22], which uses the 

less fine-grained WE bins to estimate steady state but preserves the continuity of pathways, 

restarting from only the final points of trajectories. While all trajectory files of the chosen 

dynamics engine are saved by default, we recommend storing the trajectory coordinates 
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using the WESTPA 2.0 HDF5 framework, which greatly facilitates the restarting, storage 

efficiency, and analysis of WE simulations. When possible, users should run multiple 

WE simulations, which provides a greater number of independent pathways and enables 

straightforward estimation of error using the Bayesian bootstrap method [28] (see https://

github.com/ZuckermanLab/BayesianBootstrap).

Random Seeds for Simulations.

For WE trajectories to diverge from one another after a splitting event, a stochastic 

thermostat is required for MD simulations. Furthermore, the random number seeds for 

such thermostats must be sufficiently random (uncorrelated) to avoid undesired bias of 

the dynamics when trajectories are restarted at short time intervals (e.g., in the case of 

WE simulations) [40]. To avoid such bias, we strongly recommend using WESTPA’s 

system entropy-seeded random number facility instead of any time-seeded random number 

generator of the chosen dynamics engine. To use this facility, we first set the random seed 

to RAND in the dynamics input file (e.g., ig=RAND in the AMBER md. in file) and then 

specify this input file in runseg.sh, which will replace the RAND stringwith the WESTPA 

random number seed.

Extremely Low Trajectory Weights.

While it is possible to set a minimum threshold weight (e.g., 10−100) for trajectories 

to be considered for splitting, the generation of trajectories with extremely low weights 

(e.g., <10−100) is a potential warning sign that the division of configurational space is 

not capturing all relevant free energy barriers. If a WE simulation yields such trajectories, 

we strongly suggest re-evaluating the choice of progress coordinate and/or restricting the 

binning to a carefully chosen subset of configurational space that would avoid generating 

such trajectories. For example of the latter, see Advanced Tutorial 7.6.

4 General Guidelines for Choosing WE Parameters

Suitable WE parameters such as the progress coordinate, binning scheme, and resampling 

interval τ depend on the particular system under investigation and the particular process of 

interest. Note that all of these WE parameters are tightly coupled to one another. Below 

are general recommendations that aim to assist in choosing these parameters. See Table 2 

for examples from the literature. Currently, choosing WE parameters is something of an art, 

although the hope is to automate some aspects of parameter selection in the future. For now, 

we suggest what may be considered a semi-systematic, trial-and-error procedure:

1. Initially, choose the simplest 1D coordinate that would be expected to capture 

the slowest relevant motion along with initial bin spacings, τ value, and number 

of trajectories/bin. Choose these initial parameters following examples in the 

tutorials and/or literature, bearing in mind they likely will require modification.

2. The τ value should be sufficiently long such that at least one trajectory 

progresses to the next bin. In addition, a code scaling test (plot of the time 

required to complete a WE iteration vs. τ value) should be carried out for a range 
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of potential τ values on the intended computer hardware to identify a τ value that 

yields reasonable linear scaling.

3. If your system stops advancing along your progress coordinate, consider 

reducing the τ value, increasing the number of trajectories/bin, and/or using 

a finer bin spacing in that region of the progress coordinate while combining 

bins from higher probability regions. Note that bin spacings are arbitrary in 

WESTPA and the most efficient bin sizes likely are not exactly equal. Details for 

combining and creating bins “on-the-fly” are provided below in the Intermediate 

Tutorial 7.2.

4. If none of the above efforts in step 3 are effective based on a one-dimensional 

progress coordinate, your progress coordinate may be missing orthogonal and 

relevant slow degrees of freedom. To address this issue, consider using a two-

dimensional progress coordinate (Section 7.2) [[6, 37]] or a “nested” coordinate 

in which the progress coordinate switches to monitoring another observable 

once a particular value for the initial observable is reached. Note that additional 

dimensions in the progress coordinate greatly increase the number of bins and 

hence the cost of the WE run, which is the motivation for nesting an additional 

coordinate in only a subset of the initial bins. You might also consider binning 

strategies that are not based on user-defined coordinates, but instead employ 

Voronoi cells potentially in conjunction with a string method. The WESTPA 

community will continue researching the important topic of self-adjusting 

adaptive bins. If all of your best efforts fail to generate transitions, consider 

simplifying your system (e.g. coarse-graining the model) and/or applying 

methods that involve the introduction of external forces (e.g. umbrella sampling) 

to generate initial transitions that can further inform the choice of progress 

coordinate.

5 Cluster-Specific Considerations

To take full advantage of WESTPA’s scaling and parallelizability, users may seek to run the 

software on HPC clusters. The tutorials included herein are written with the goal of teaching 

new and relatively inexperienced users the basics of using the software and therefore do not 

focus on optimizations pertaining to the code. We recommend that users become familiar 

with running WESTPA on a cluster, especially the cluster-specific issues and considerations 

that may arise.

5.1 Minimizing the Number of Output Files

It is advisable to minimize the number of output files generated by your simulation as this 

reduces the I/O overhead and will therefore be less taxing on the filesystem of the computing 

cluster. We recommend saving only the restart files that are necessary for continuing 

trajectories and analysis of the simulation. If the user needs additional information (e.g. 

coordinates that have been saved at a greater frequency than the τ value) contained in certain 

output files, those files should of course be kept. To further reduce the number of files, we 
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suggest separately tarring up the files for each WE iteration. The resulting tarballs will also 

facilitate any transferring of your simulation data to another location.

In some cases such as WE simulations that are run using GPUs, trajectory segments can 

complete too quickly, leading to a bottleneck where the transfer of files over the network to 

the local storage of the node is too slow or there are too many transfers over the network. 

In such cases, copy over the data of the entire previous WE iteration as a tarball to the local 

storage of the node, run the entire iteration from this local storage, and copy back the results 

to the scratch space in a single tarball. While these transfers over the network will add some 

overhead to each WE iteration, they will avoid the network bottleneck.

5.2 Data Management

A single WE simulation may generate multiple terabytes of data, presenting a challenge for 

storage and retrieval of data. Moreover, using short trajectory segments in WE simulations 

commonly results in a large numbers of small files, which are managed more slowly on 

some file systems than a smaller number of large files with the same overall disk size. To 

alleviate these potential issues, we recommend the following:

1. Perform an initial run to monitor data storage and retrieval. Note that the initial 

number of trajectory segments may be a small fraction of the amount that would 

be generated in the eventual production run.

2. Delete unnecessary files as each trajectory segment is simulated (see example 

runseg.sh files in the Basic and Intermediate Tutorials 7.1–7.3). Unnecessary 

files may include input files, log files from analysis tools, and raw text output 

files from analysis tools. Often, useful data from log files (e.g., temperature from 

an MD simulation) may be extracted from the log files and saved as auxiliary 

data to the WESTPA data file (west.h5 file), which stores data more efficiently 

than raw text.

3. Tar and optionally compress data from each WE iteration. This strikes a balance 

between excessive file count and excessive file size, either of which is typically 

sub-optimal for long term storage, especially on tape systems that may not 

guarantee the integrity of large files.

4. Consider saving coordinates for only the solute atoms of your system to an H5 

file.

5.3 Minimizing Network Traffic Across Multiple Computing Nodes

Given the large scale of a WESTPA simulation, it is advisable to limit the number and 

frequency of network operations (e.g. I/O operations and file transfers from the local disk to 

the global filesystem). We recommend the following strategies for reducing network traffic:

1. Perform a code scaling test to identify an appropriate τ value (see Section 4 

above).
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2. Set environment variables to the full pathnames of repeatedly used programs 

(e.g. analysis tools used to calculate progress coordinates; see Basic Tutorial 

7.1).

3. Copy repeatedly accessed files (e.g. reference structures and analysis scripts) to 

local scratch space and temporarily write the output files to this scratch space. 

After each trajectory segment of length τ completes, tar the output files, and 

copy the tarred files to the globally accessible filesystem using rsync.

5.4 Advice when Using GPUs

If your WE simulation has extremely frequent starting up of simulation segments, your 

simulation may overheat gaming GPUs and potentially damage the hardware. For example, 

folding simulations of the NTL9 protein in implicit solvent with a τ value of 15 ps 

resulted in such issues on gaming GPUs (i.e. NVIDIA GTX 1080Ti GPUs) while the 

same simulations have no such issues on professional-graphics-programming GPUs. Coarse-

grained simulations (residue-level models and coarse-grained) with high I/O are also 

problematic on gaming GPUs.

6 Uncertainty Quantification and Monitoring of Convergence

Although they can report on much longer timescales, WE calculations still have limitations 

analogous to those of conventional MD simulations – namely, force field inaccuracy and 

inadequate sampling. Assessing convergence requires care, as noted below. Even if sampling 

is adequate, as with any simulation result, error bars are required to set the results in 

context because there is always a finite range of results which are predicted in any stochastic 

calculation [36]. Error analysis is particularly challenging because WE results ultimately 

depend on a large number of trajectories which typically are significantly correlated with 

one another due to repeated replication (“splitting”) events. Over the years, different error 

analyses have been employed [28, 31, 37]. Here we give a brief overview of current practice.

The primary recommendation is to perform multiple, fully independent WE simulations 

when possible. To understand the variation intrinsic to WE sampling, we suggest performing 

these runs from identical starting states. The data from these runs will not go to waste, 

as it can be combined for estimating observables, convergence, and error bars. When 

multiple runs are not feasible for a large-scale application, a sufficiently large number 

of trajectories/bin (at least 4 trajectories/bin) should be used to increase the chances of 

obtaining a diverse ensemble of pathways. To further enhance the diversity of the pathways, 

we recommend starting the simulation from multiple starting states when that is physically 

appropriate such as in protein binding. We note that a single run with a large number of 

trajectories/bin (4-50 trajectories/bin) has been shown to be more efficient in calculating rate 

constants than multiple runs with a small number of trajectories/bin (i.e. < 4 trajectories/bin) 

for molecular association/dissociation systems [41].

We focus here on understanding uncertainty in rate-constant estimation. First, there is the 

issue of “convergence”: how much time is required to obtain a result without systematic 

bias that is governed only by statistical noise? In a typical simulation started in a single 
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state (A), the rate constant into a target state B is estimated by the steady-state probability 

flux into B – i.e., the amount of probability arriving per unit time as sketched in Figure 

3. However, there is a transient regime before the flux levels off to its steady value, and 

it is unknown in advance how long the transient will last. Of course, one should examine 

the time-dependence of the average flux (averaged over all WE runs) by eye, but this is 

unlikely to be sufficient. In addition, one can plot the flux as a function of some continuous 

coordinate which progresses from A to B: in steady state, the flux will be constant along 

any such coordinate [18]. Finally, we recommend using a “history augmented” Markov state 

model (haMSM) employing very fine bins/microstates, which can be built from the WE data 

as a different means for estimating steady-state flux values which can be compared to those 

measured directly in WE simulation [18]. Alternatively, the impact of transient effects on 

rate-constant estimation can be reduced by incorporating the distribution of event durations 

(excluding dwell time in the initial stable state) that correspond to pathways captured by 

the simulation. This strategy has been shown to yield rate constants using a fraction of the 

simulation time required by the original WE method [20].

Once the transient has completed, if multiple runs were performed, it is necessary to 

estimate the uncertainty in the rate constant based on the group of independent WE runs. 

The flux curves from the individual runs, plotted as a function of molecular time, may vary 

significantly as sketched in Figure 3. This large variation invalidates typical uncertainty 

estimation schemes based on the standard error of the mean, and we therefore recommend 

employing a Bayesian bootstrapping procedure [28]. This approach appears to be better than 

alternative approaches for handling estimates which vary over orders of magnitude, but we 

emphasize that the nominal 95% “credibility regions” produced are overly optimistic and 

only cover the true mean a much smaller percentage of the time [28].

7 Tutorials

7.1 Basic Tutorial: Na+/Cl− Association

7.1.1 Introduction—This tutorial involves carrying out a WE simulation of a molecular 

association process: Na+/Cl− association. After completing this tutorial, a user should be 

able to set up a simple WE simulation using the WESTPA software and develop an intuition 

for how changes in the WE parameters will influence the efficiency of sampling a process of 

interest, thus allowing the user to choose appropriate parameters for that process.

Learning Objectives.: Though we strive to make the WESTPA software as user-friendly 

as possible, there are many system-specific parameters that must be carefully specified. The 

purpose of this basic tutorial is to introduce a new user to WESTPA and have that user 

become familiar with the flow of setting up and running a WE simulation. Specific learning 

objectives are:

1. Become familiar with the main simulation directory layout

2. Choose a progress coordinate

3. Choose an appropriate binning scheme

4. Prepare input files
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5. Monitor a simulation

7.1.2 Prerequisites—Users should install the latest version of the WESTPA software 

package through Conda. Installation instructions can be found on our Github wiki (https://

github.com/westpa/westpa/wiki/Installing-WESTPA). For analysis of simulation data, the 

hdfview software greatly facilitates the visualization of large datasets. We will make use of 

that program in the Analysis Tutorials (Section 7.4).

Users should have basic knowledge of command line usage and the Python programming 

language. Since WESTPA is designed to conveniently interface with any external dynamics 

engine, users will also need to have experience using an MD engine (Amber, Gromacs, 

etc.). This tutorial will not provide instructions on how to use those engines; only how to 

interface the engines with WESTPA. In addition, a knowledge of analysis programs (such 

as Amber’s cpptraj program or the MDAnalysis software) is necessary and will not be 

covered here. This tutorial will go over examples of the various input files that are necessary 

for interfacing with WESTPA. This tutorial also assumes the user has some knowledge of 

the WE strategy, as its basic theory is not discussed herein.

Computational Requirements.: A user should set aside at least 18 GB of disk space. This 

simulation took ~50 hrs to complete using 1 Intel Xenon 3.50 GHz CPU core.

This tutorial uses OpenMM version 7.3 for dynamics propagation (http://openmm.org/) 

and MDTraj 1.9.3 for progress coordinate calculations (http://mdtraj.org/1.9.3/index.html). 

System setup and equilibration was performed separately in OpenMM. A minimum version 

of 3.1.0 for HDFView is required for H5 file analysis.

7.1.3 Setting up a WE Simulation Using WESTPA

Overview.: WESTPA is run by calling the w_run program from the command line with 

the appropriate options. This is normally done by running the run.sh script from the main 

simulation directory. The simulation will then run until it has either completed the number 

of iterations specified by the user or has run out of time. Both of these parameters can be 

adjusted. Before a simulation can be run, however, the system must be initialized by calling 

the w_init program from the command line with the appropriate options. This is normally 

done by running the init.sh script from the main simulation directory.

Therefore, assuming the system is set up properly and all parameters have been properly 

specified, the WESTPA simulation can be run with the following at the command line 

(throughout our suite of tutorials, the command prompt is indicated with $, which itself is 

not part of the commands that should be entered by the user):

$ ./init.sh

$ ./run.sh
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Data from a WESTPA simulation will be stored in a file called west.h5, which is an H5 

file that can be opened with Python’s h5py package or with a graphical interface such as 

hdfview.

To monitor the simulation’s progress, we will use the w_pdist program of WESTPA. This 

will generate probability distributions (histograms) as a function of the progress coordinate 

and will enable the user to view those histograms with the plothist program.

A WESTPA simulation, even after the requested number of iterations, may not be 

“complete.” Completion is assessed by whether some observable has converged to an 

expected or steady value. The choice of this observable is up to the user. To obtain these 

observables (such as the flux or rate constant), one will have to access the data in the H5 file 

and plot it using Python’s matplotlib package (or another equivalent package).

Once a simulation is deemed complete, users can make use of the WESTPA analysis tools 

suite of programs, specifically w_ipa in order to extract relevant data from the H5 file.

The System.: To obtain a basic understanding of WESTPA’s parameters and learn how 

the software works, we will begin by studying the molecular association of Na+ and Cl− 

ions. Our system will consist of a single Na+ cation along with a single Cl− anion modeled 

with Joung and Cheatham parameters [42] and solvated in a box of TIP3P water molecules 

[43]. These ions are initially dissociated at a separation distance of 12 Å. The system 

was prepared using OpenMM and the appropriate input files are provided under “westpa/

tutorials” on GitHub, where you will also find a copy of this tutorial’s simulation directory 

(basic_nacl). We will not cover how the input files were generated or the rationale behind 

choices made when setting up the system (e.g. force field, water model etc.).

Choosing an Initial State.: In looking at the association of two entities, especially thinking 

about how to extensively sample this process, there are some things we want to consider 

before we begin WE. The first is how our initial state should look. If we choose to place 

the ions too close together, we may only observe one “type” of binding pathway, since 

the ions will not have as much time to orient themselves before binding. In reality, ions 

are symmetrical and we will not need this consideration but this would be an issue when 

determining how far apart to space, say, a drug and protein system or two protein binding 

partners. We also do not want to space the ions too far apart, as that would unnecessarily 

increase the time needed to observe binding events. We will therefore choose a generous 

distance of 12 Å.

The coordinates (and velocities) of this starting structure, bstate.xml, are placed in the 

bstates/directory. This is an OpenMM save-state file, which was saved after equilibration. 

This is the file needed to directly resume dynamics. Depending on the dynamics engine 

you are using, this file will be different but will have the same function (for instance, an 

Amber restart file would be placed here if one were using sander to run dynamics). Also 

in this directory is a file named bstates.txt. This file contains the name of our basis 

state structure and the probability of it being chosen if we want to sample a variety of 

initial structures (since we are preparing only one basis state, that probability is just 1). To 
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more fully sample the configurational space of some process, it is often prudent to include 

more than one initial structure. In that case, all of those structure files can be placed in this 

directory with their file names and probabilities included in the bstates.txt file.

Files for Dynamic Propagation.: Also necessary for running an Amber simulation are the 

topology and simulation input files. Those two files (bstate.pdb and nacl_prod.py) are 

placed in the common_files/ directory. This is a catch-all folder for any files needed while 

running dynamics. Notice that our τ value is defined in the nacl_prod.py file, which is a 

Python script that runs OpenMM. This is the length of each WE iteration; so if the MD input 

script will run dynamics for, say, 10 ps then your τ value is 10 ps. This number needs to be 

carefully chosen depending on your system of interest. For this simulation, we will use a τ 
value of 50 ps.

Preparing the System Environment.: Next, we will want to make sure that WESTPA 

can properly access the MD engine we want to use and set up our simulation environment 

properly. These variables are all defined in the env.sh file. You will need to open that 

in vim or another text editor and make sure that your WESTPA environment is being 

sourced correctly (only if you are not using the Conda environment) and that your dynamics 

environment is being sourced correctly. It is also advised to set the runtime command 

variables for more efficient system calls, if applicable.

Equilibrium vs Steady State WE.: Now, let’s examine the init.sh file, which initializes 

the simulation. In this file, we can specify whether to run an equilibrium or steady state 

simulation. The file in the tutorial directory is set up to run a steady state simulation. This 

is specified with the definition of the $TSTATE_ARGS variable and its use in the w_init 

command. To run an equilibrium simulation, simply delete those two lines.

The choice of whether to run an equilibrium vs steady state simulation will depend on 

the research question being asked. Where do we want the system to go? Equilibrium 

simulations can be efficient in exploring configurational space and sampling ensembles of 

conformations. On the other hand, steady state simulations, where trajectories that reach 

some target state are recycled back to the initial state (along with their trajectory weights), 

can be more efficient in generating rate constants, and for exploring pathways towards some 

known target state [41].

In our simulation, we do have a specific target state in mind and we know exactly what it 

looks like: Na+ and Cl− interacting ionically at a close distance. We will therefore prepare to 

run a steady state simulation.

Progress Coordinate, Binning Scheme and τ value.: For any WE simulation, we 

recommend choosing a progress coordinate that monitors the slowest relevant motion(s) 

such that faster motions will “go along for the ride.” The efficiency of generating pathways 

is tightly coupled to the choice of progress coordinate, along with how you choose to divide 

up that coordinate into bins. For the molecular association process involving the Na+ and 

Cl− ions, a logical choice of progress coordinate would simply be the distance between the 

two ions, assuming that the surrounding solvent molecules respond relatively quickly to the 
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positions of the ions. In other words, we can measure the simulation’s “progress” by how 

close the ions are to each other in a particular trajectory. This will turn out to be a good 

choice for our system, but for systems in which the binding partners involve ensembles of 

conformations, a pure distance-based progress coordinate will not be adequate and must be 

combined with a second dimension of the progress coordinate that tracks some other motion 

of the system.

Now that we have chosen a progress coordinate, we will need to consider our binning 

scheme. Imagine a space that contains all of the possible values of our progress coordinate. 

A good place to start is to perhaps define our progress coordinate as ranging from your 

initial state (basis state) to a preliminary definition of your target state and divide up this 

coordinate into 1 Å-wide bins. One way to obtain a preliminary definition of the target 

state for the Na+/Cl− association process is to subject a model of the associated Na+ and 

Cl− ions to energy minimization using the same force field that will be used during the 

WE simulation and calculate the resulting distance between the ions using cpptraj. This 

distance ended up being 2.6124 Å, so we will set 2.60 Å as our preliminary definition of 

the target state. We recommend choosing the most strict definition possible for the target 

state for the recycling of trajectories in a steady state WE simulation to enable the use 

of more lenient definitions after the completion of the simulation. Make sure to add this 

number to tstate.file in the main simulation directory, where your steady-state target 

state definition should always be placed.

Back to our bin definitions. If we choose to space our bins by ones from 2.6 to 12 Å by 

1 Å’s (or some similar increment), this can lead to your simulation stalling. If trajectories 

cannot move to the next bin before a round of combination and replication occurs, the bins 

may be too large with respect to the chosen τ value or progress coordinate. It is a good idea, 

therefore, to run a short (10-20 iterations) WESTPA equilibrium simulation to see how your 

trajectories are progressing with the WE parameters you have set. If necessary, adjust the 

binning or include an additional dimension to your progress coordinate.

Here is the preliminary binning scheme we will employ, which is defined in the west.cfg 

file:

[0.00, 2.60, 2.80, 3.00, 3.20, 3.40, 3.60, 3.80, 4.00, 4.50, 5.00, 5.50, 

6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, ‘inf’]

Notice how we start at 15 Å (a little bit beyond our initial value of 12 Å) and increment 

by ones, but as we get closer to our preliminary state of 2.60 Å, we start incrementing 

more finely. This finer binning will help to collect probability closer to our target state and 

promote more binding events.

Other WE Parameters.: The following WE parameters are discussed along with where 

they are specified in the parameter files. First, make sure you have chosen an appropriate 

τ value (see Section 4) and that it is properly specified in your dynamics input file. As 

mentioned above, the τ value, along with the number of trajectories per bin, is coupled to 

the choice of progress coordinate and binning scheme. We recommend starting with ~4-5 
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trajectories/bin. This value is specified in the west.cfg file as bin_target_counts. 

Make sure that the frequency at which conformations are saved in your trajectories 

(as indicated in your dynamics input file, e.g. md.in for Amber) matches the number 

of elements in the pcoord array of the west.cfg file. We recommend running the 

simulation for a short time to test the effectiveness of the WE parameters, setting 

max_total_iterations to 10 in the west.cfg file before letting the simulation run 

to Å full 100 iterations.

Trajectory Imaging.: Since the replication and combination of trajectories in Å WE 

simulation depends on the values of the progress coordinate, trajectories that are carried 

out with periodic boundary conditions should be imaged before calculating the progress 

coordinate (e.g., after completing each trajectory segment of length τ). Otherwise, erroneous 

values of the progress coordinate may result from parts of the simulation system drifting 

outside of the periodic box. MDTraj, which is used to calculate the distance in this tutorial, 

is able to only calculate distances for nearest-image ion pairs (essentially what Amber does 

with the autoimage command in AmberTools’ cpptraj program.)

7.1.4 Initializing the WE Simulation—To initialize the simulation, run the init.sh 

script as mentioned before. You will see a body of text output indicating that the 

initialization has completed successfully. We will briefly present the key features of this 

script.

As mentioned before, init.sh calls the w_init program, which in turn, runs a script in 

the westpa_scripts/directory called get_pcoord.sh. This script, in this tutorial, is very simple. 

It prints the contents of a file, pcoord.init, and gives that to $west_pcoord_return. 

The pcoord.init file contains the progress coordinate value of the basis state, and so this 

operation essentially tells WESTPA which bin your basis state falls into. The pcoord.init 

file is generated by running the get_distance.py script in common_files/on bstate.xml and 

redirecting the output into a file named pcoord.init. Initializing your system this way is 

often a good idea, as it allows you to test outyour particular method of progress coordinate 

calculation. However, get_pcoord.sh can calculate the progress coordinate directly (see 

Intermediate Tutorial 7.2), or run whatever script you need to do so. In fact, get_pcoord.sh 

can include any additional commands; this built-in flexibility allows you to perform 

operations on your basis states before beginning the WESTPA simulation.

7.1.5 Running the WE Simulation—To carry out the simulation, run the run.sh script 

as mentioned before. Youwill not see any output. What run.sh does is call w_run which, 

among other things, runs the runseg.sh script that is in the westpa_scripts/directory. This 

scriptwill run dynamics each iteration, calculate a progress-coordinate value for the updated 

structure and then return that value to $west_pcoord_return.

In this tutorial, OpenMM is used to run dynamics (by running the nacl_prod.py script) and 

MDTraj is used to calculate the progress coordinate (by running the get_distance.py script). 

If a user wishes to change either the dynamics or analysis programs, these are the two 

locations where it will need to be done.
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For an example script for using Slurm to run a job on a computing cluster, see 

runwe.slurm. You can adapt this template script to run WESTPA on your desired cluster.

7.1.6 Monitoring the WE Simulation—We recommend checkingthe progress 

ofyourWE simulation every 10 iterations or so. This can be done with the w_pdist program. 

To use this program, first stop the simulation (it can be started easily from the point it left off 

by running run.sh again) and then call w_pdist:

$ w_pdist

This will produce a new H5 file called pdist.h5. To see how our progress coordinate is 

evolving over time, we can use the plothist program with the evolution option:

$ plothist evolution pdist.h5

This will produce a pdf file called hist.pdf. Open this file, the contents of which are 

displayed in Figure 4.

As expected, most of the probability at the start of our simulation is concentrated around 

the progress coordinate value for our initial state (10 Å). As our simulation progresses, 

the probabilities fan out in both directions, with most of the probabilities moving towards 

larger values and some of the probabilities nearing our target value of 2.6 Å. To see if your 

simulation has generated some successful binding events after only 10 iterations, run the 

following:

$ w_succ

The example simulation had its first successful event after 14 iterations. The output will 

show (if a successful event occured) the iteration and segment number in which the first 

event occurred (e.g. iteration 14, segment 2).

You can trace this successful trajectory back to the basis state to obtain a complete trajectory 

with the w_trace command. You will need to provide the iteration and segment of the 

successful trajectory as options separated by a colon:

$ w_trace 14:2

The output will be written to the file traj_14_2_trace.txt. That file contains the parents of the 

successful trajectory all the way back to the basis state.

7.1.7 Analyzing the WE Simulation—One way to assess the convergence of our 

simulation is to determine when the primary observable of interest (i.e. the flux into the 

target state) levels off. To monitor the flux, we will first need to prepare our west.cfg file 

to analyze the simulation. This is normally done by adding an analysis module to the end, 

which is already present in this tutorial’s files. Use this as a template for future analyses.
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You will see that we create an analysis instance called TEST and then define bins and states 

for this scheme. These bins are strictly for analysis and have nothing to do with our progress 

coordinate bins defined earlier. Since we only need to designate the bound and unbound 

states here, we define three bins:

[0.0, 2.6, 10.0, ‘inf’]

The way that state definitions work is that you provide a progress coordinate in the 

configurational space and whichever analysis bin that coordinate is in becomes that state. 

For instance, our bound state definition is given by [0], so whichever bin above that the 

value 0 falls into will be our “bound” state. This is the bin from 0 to 2.6. The same goes for 

the unbound state (10.0 to infinity). The intermediate state (2.6 to 10.0) does not need to be 

defined.

With these states defined we can now analyze how much probability, in the form of 

trajectory weight, is entering or leaving each state using the w_ipa program, which will 

run two separate WESTPA tools, w_assign and w_direct. To generate the H5 files needed to 

analyze the fluxes, run the following from the main simulation directory:

$ w_ipa-ao

You will see that a new directory titled ANALYSIS has been created, inside of which is a 

subdirectory corresponding to our TEST analysis scheme that was defined in the west.cfg 

file. Inside of this subdirectory are our assign.h5 and direct.h5 files. The direct.h5 

file is where the fluxes are stored. We can open it up with hdfview and view all of the 

datasets.

The target_flux_evolution dataset gives the flux over time (number of WE iterations) into 

each state we defined earlier. To view this dataset, double click on it. The 0th column 

corresponds to the flux into state 0, which we defined as our target state. The iter stop is at 

the beginning of that iteration, so if you had a binding event by iteration 10, observe the flux 

into our target state. Highlight the “expected” column and click the plotting button in the 

upper-left hand corner to view the flux evolution as a function of 0-indexed iteration.

By iteration 10, the flux has most likely not levelled off, so our simulation cannot be 

considered converged. Let’s continue the simulation for a total of 100 WE iterations and 

analyze the resulting dataset. a completed H5 file is included in the for_analysis/directory 

for your convenience. Your plot should look something similar to Figure 5, which was 

generated in matplotlib.

While the flux into the target state has not completely levelled off, it is much more steady 

than previously, so we can stop the simulation here and consider how much longer we 

should extend the simulation. For other systems, you may want to run the simulation longer 

for better convergence. You may also want to have additional criteria for convergence.

To visualize a trajectory, one must first identify a continuous series of trajectory segments 

in each iteration from the basis state to the target state. This will be given in the w_succ 
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output along with w_trace, as we have done previously. However, you will also need to 

retrieve the trajectory file from each of those segments and combine them using cpptraj. To 

automate this process, we have provided the amberTraj.sh script, which can be adapted for 

other systems. This script uses the cpptraj program available in AmberTools to extract the 

binding trajectory of a successful event. The resulting trajectory file can be loaded along 

with the system topology into the VMD visualization software to generate a movie of the 

association process.

7.1.8 Conclusion—Hopefully by this point you have gained a good idea of the 

work flow required to set up, run, and analyze a WESTPA simulation using a simple 

progress coordinate. If you desire more complex options for your simulations (e.g. 

multidimensional progress coordinates) and further discussion of how to choose various 

simulation parameters, we highly suggest going through the other tutorials to get a sense of 

how that can be done.

7.2 Intermediate Tutorial: P53 Peptide Conformational Sampling

7.2.1 Introduction—Since the WE algorithm aims to fill empty bins in configurational 

space, WE simulations can be effective in the enhancement of conformational sampling [1] 

as well as the generation of pathways and rate constants for rare events. This tutorial will 

focus on the conformational sampling of a peptide and instruct users on how to set up and 

analyze a simulation involving a two-dimensional progress coordinate. In addition, we will 

go over how the binning scheme can be chosen and adjusted in order to balance efficiency 

and performance.

Learning Objectives.: This tutorial will help users develop a sense for which progress 

coordinates may be effective for conformational sampling of a peptide and how to bin along 

those progress coordinates.

Specific learning objectives include:

1. How to set up a two-dimensional progress coordinate

2. How to monitor this coordinate as the simulation progresses

3. How to evaluate whether the binning scheme is effective

4. Combining and creating bins “on-the-fly”

5. Storing and accessing auxiliary data

7.2.2 Prerequisites—Users should have completed the Basic Tutorial 7.1 and have a 

potential progress coordinate in mind for their system of interest.

Computational Requirements.: This simulation required at least 10 GB of disk space and 

~36 hours to complete (40 iterations) on a 12-core, 2.6 GHz Intel Xeon node. This tutorial 

uses AmberTools19’s sander package for dynamics propagation and the cpptraj package 

for progress coordinate calculations (http://ambermd.org/AmberTools.php). AmberTools is 

available free of charge.
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7.2.3 Adding Another Dimension to the Progress Coordinate—While a one-

dimensional progress coordinate can be effective for molecular association processes 

(e.g. Na+/Cl− in the Basic Tutorial), a two-dimensional coordinate may be necessary 

for more complex processes such as peptide/protein conformational transitions. To add 

another dimension to the progress coordinate, we first specify the progress coordinate 

dimensionality as “2” in the west.cfg file. Next, we calculate the values corresponding 

to each dimension of the progress coordinate and pass the resulting two values at the 

same time to $WEST_PCOORD_RETURN in both the get_pcoord.sh and runseg.sh 

scripts. For example, if the first dimension of the progress coordinate has a value of 1 

and the second dimension has a value of 5, (1 5) must be passed atthe same time to 

$west_pcoord_return instead of sequentially as 1 and then 5. This can be done with the 

paste command in bash (see example get_pcoord.sh and runseg.sh files). In addition, 

the bins will need to be specified as two lists, one for each of the two dimensions. This is 

done by adding dashed entries (one underneath the other) in the west.cfg section for bin 

definitions. a user may alternatively choose to define a two-dimensional binning scheme in a 

system.py file.

7.2.4 Preparing the WE System

The System.: We will focus on the conformational sampling of a 15-residue, N-terminal 

peptide fragment of tumor suppressor p53 that has been thought to be disordered in its 

unbound state and adopts an α-helical conformation upon binding the MDM2 protein. 

Simulations were run at 275 K using the Amber ff14SBonlysc force field [44] and 

generalized Born implicit solvent [45]. As in the BasicTutorial, we will not go into detail 

about how the files were generated in Amber or the decisions made in setting up the system 

with Amber.

Choosing an Initial State.: Our WE simulation will be started from the MDM2-bound 

conformation of the p53 peptide. In particular, coordinates for the peptide conformation 

will be extracted from the crystal structure of the MDM2-p53 peptide complex [46]. This 

α-helical conformation of the peptide will then be energy-minimized and equilibrated before 

subjecting the resulting, solvated system to a WE simulation.

Files for Dynamics.: The topology file (P53.MDM2.prmtop) and dynamics input file 

(md.in) can be found in the common_files/directory. In the md.in file, it should be 

specified that the trajectory segment will be run for a length that corresponds to a τ value of 

50 ps.

Preparing the Simulation Environment.: See the corresponding subsection in the Basic 

Tutorial 7.1.

Equilibrium vs Steady State WE.: In the init.sh file, observe that all lines mentioning 

TSTATE_ARGS have been removed. This signals WESTPA to run an equilibrium WE 

simulation in which we do not have a set target state. This is a good option when the goal 

of your process is to generate as many configurations as possible and you have no set target 

state in mind.
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Progress Coordinate, Binning Scheme and τ Value.: To extensively sample the 

conformations of the peptide, we might define a progress coordinate that monitors the extent 

of “unfoldedness” in the peptide using the RMSD of a given conformation from the initial 

structure. However, RMSD cannot differentiate among conformations that have the same 

large RMSD values. To further differentiate between such conformations, we can include 

another orthogonal measure of unfoldedness such as the end-to-end distance of the peptide.

To determine a suitable binning scheme, we will start with an upper limit of 10 Å for 

the heavy-atom RMSD dimension of the progress coordinate. Spacing the bins along this 

dimension by 1’s may be too large for any transitions to occur between bins so we opt for a 

finer bin spacing:

[0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.4, 1.8, 2.2, 2.6, 3.0, 3.5, 4.0, 5.0, 6.0, 

7.0, 8.0, 9.0, 10.0, ‘inf’]

We will see how the trajectories progress and adjust accordingly. Notice that a bin spacing 

of 0.2 is not maintained for the entire length, as 50 bins even along one dimension would 

result in a very large number of total trajectories (4 trajectories per bin would yield a total of 

200 trajectories if all of the bins are occupied). Furthermore, care must be exercised in the 

addition of bins along a second dimension as the total number of trajectories can “blow up” 

to an enormous number of trajectory segments (e.g. 10,000).

To get a feel for how the end-to-end distance evolves in the simulation, let’s expand out from 

the initial distance of 28.5 Å with 0.5-Å wide bins in either direction:

[0, 20, 20.5, 21, 21.5, 22, 22.5, 23, 23.5, 24, 24.5, 25, 25.5, 26, 26.5, 

27, 27.5, 28, 28.5, 29, 29.5, 30, 30.5, 31, 31.5, 32, 32.5, 33, 33.5, 34, 

34.5, 35, 35.5, 36, ‘inf’]

Our τ value should allow for successful transitions between bins of this spacing.

Other WE Parameters.: Let’s run our WE simulation with 4 trajectories/bin for 40 

iterations. Since the goal here is the conformational sampling of a peptide and we are 

running an equilibrium WE simulation, we do not need to define a target state.

7.2.5 Tracking the Auxiliary Data—While it is possible to go back after a simulation 

has run and calculate some value you wish you had kept track of, it can be tricky to do 

so (though possible with a tool called w_crawl which is not discussed in this guide). We 

strongly recommend conducting all relevant analysis during the simulation and storing the 

resulting data as auxdata in the H5 file. In our case, we will calculate and store the φ/ψ 
backbone dihedral angles of the peptide as auxdata for each of the sampled conformations.

To signal for WESTPA to collect auxdata, you will need to add an auxiliary dataset into the 

west.cfg file and make sure it is enabled. See the west.cfg file in the tutorial directory 

for an example of how this might look. You can name the dataset whatever you would like.
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Once you have specified the datasets and named them, you will need to add in commands 

to runseg.sh that calculate those values and pass them to WESTPA system variables. 

The variables will be named $WEST_XYZ_RETURN where “xyz” is the name given to the 

dataset in the west.cfg file. This can be treated analogously to the pcoord value and 

$WEST_PCORD_RETURN.

7.2.6 Initializing and Running the WE Simulation—Make sure that your 

get_pcoord.sh and runseg.sh files are calculating the RMSD and end-to-end distance 

and returning these values to $WEST_PCOORD_RETURN. The get_pcoord.sh script will 

calculate the initial progress coordinates using AmberTools’ cpptraj program from within 

the script, as opposed to reading the value from an external file as in the Basic Tutorial 7.1. 

The runseg.sh uses AmberTools’ sander program for dynamics propagation and does so 

within the script.

7.2.7 Monitoring the WE Simulation (10 Iterations)—Once the simulation has run 

for about 10-20 iterations, copy the H5 file and run w_pdist with the copied file. You can 

then use plothist to view each dimension of the progress coordinates separately as the 

values evolve over the course of those few iterations:

$ plothist evolution pdist.h5 0 -o hist_dim0.pdf

$ plothist evolution pdist.h5 1 -o hist_dim1.pdf

Where the “0” or “1” after the plothist command is the progress coordinate dimension (zero 

indexed). Observe the two probability distributions in Figure 6.

7.2.8 Adjusting Bin Spacings “On the Fly”—The RMSD has reached a value of 4-5 

Å and the end-to-end distance has reached ~10 Å, which is encouraging progress for only 10 

iterations. Note that most of the probability (and therefore most of the computation) is still 

stalled in the initial states of 1-2 Å RMSD and 20-25 Å end-to-end distance. We can help 

focus the computing power on the more interesting “edge” conformations by modifying the 

binning scheme before continuing the simulation.

In WESTPA, the binning scheme can be updated at any time since the trajectory weights 

are independent of the bins (and progress coordinate). To do so, first stop the simulation and 

then adjust the bins in your west.cfg file. Re-start your simulation by running the run.sh 

script again and the simulation will continue from where it left off. At the start of the next 

iteration, the new bins will have been implemented.

In our case, I would like to focus sampling on higher RMSD values (3-4 Å) instead of those 

~1-2 Å. To do this, I will collapse the bins from 0 to 1.8 Å and define some more bins past 

10 Å:

[0.0, 1.8, 2.2, 2.6, 3.0, 3.5, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11, 12, 

14, 16, 18, 20, ‘inf’]
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For the end-to-end distance, I will add more bins for the lower distances and collapse bins 

over 26 Å. We would normally want to keep these bins over 26 Å but having fewer will 

shorten the runtime of this tutorial.

[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 22, 23, 24, 25, 26, ‘inf’]

The reason we eliminated the initial 0.5 Å spacings is that this degree of freedom is readily 

explored in the system.

7.2.9 Monitoring the WE Simulation (40 Iterations)—After running the simulation 

for another 30 iterations (for a total of 40), we obtained the following updated probability 

distributions displayed in Figure 7. The completed H5 file is included in for_analysis/for 

your convenience.

The effects of the bin-modifications can clearly be seen in the case of the end-to-end 

distribution. No more trajectories with an end-to-end distance >30 Å can be seen after 

iteration 10, a result of the choice not to bin over 26 Å in that dimension.

The end-to-end distance seems to have reached 2-3 Å around iteration 20. The RMSD 

plateaued a bit from iterations 20-30 but then proceeded to values around 7 Å. Two lessons 

can be learned from these observations. First, if you do not have bins in a particular 

direction, you may not see sampling in that direction. Second, even though the RMSD 

coordinate appeared to have stalled around iteration 20-30, it eventually was able to 

surmount whatever barrier existed and attain some higher RMSD values. Patience is key, 

as a single trajectory may replicate to become many trajectories if it crosses into a new bin.

7.2.10 Accessing Auxiliary Data—To access the auxdata from the H5 file, you can 

open west.h5 in hdfview but this will not allow you really use the data. To plot all of the 

dihedrals as a Ramachandran plot in matplotlib as shown in Figure 8 (actually, we just 

did so for the second dihedral, but you could extend it to all if you so desire), you will need 

to utilize the h5py package in Python to extract the auxdata values from the west.h5 file 

and then plot them. The plotting script is included in the tutorial directory.

7.2.11 Conclusion—Users should now be familiar with setting up a two-dimensional 

progress coordinate and working with auxiliary data. These two “tools” will help to expand 

your repertoire of WESTPA simulation techniques and give you access to more complex 

and informative simulations. Users should also now be familiar with changing bin spacings 

“on-the-fly” as well.

7.3 Intermediate Tutorial: Folding of Chignolin Mini-Protein

7.3.1 Introduction—Protein folding processes have been challenging to simulate due to 

the relatively long time scales involved. In this tutorial, we will use WESTPA to simulate 

the folding and unfolding of the chignolin mini-protein and to calculate the corresponding 

rate constants. We will run steady-state WE simulations of chignolin folding and unfolding 

processes separately. We will also compare the results of these simulations with those from 
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brute force MD simulations, demonstrating the correctness and potential usefulness of the 

WE strategy.

Learning Objectives.: This tutorial demonstrates how steady state WE simulations can 

be used to generate pathways and rate constants for both protein folding and unfolding 

processes.

Specific learning objectives include:

1. How to use brute force simulations to identify appropriate initial and/or a target 

states

2. How to obtain the probability flux into the target state of a WESTPA simulation, 

how to convert it to a mean rate constant, and how to interpret the results

Prerequisites.: Users should have completed the Basic Tutorial 7.1.

Computational Requirements.: We note that significantly more computing time is required 

for the folding simulations to yield converged rate constants and hence we suggest the 

user should start with the unfolding simulations. In particular, the WE unfolding simulation 

required ~53 hours for 1000 iterations on 32 CPU cores of 2.6 GHz Intel Xeon processors 

(~5 GB of disk space) while the WE folding simulation required ~8 days for 10,000 

iterations (200 ns of molecular time) using the same resource (~50 GB of disk space). 

To become familiar with setting up and running the WE simulations, the users can carry 

out several iterations. Also, the brute-force simulation described below can be performed 

for tens of ns, as we benchmarked this system to produce ~150 ns per day on one of 

the above-mentioned CPUs. Output files for 1000 iterations of the WE unfolding and 

10000 iterations of the WE folding simulations (as well as for 4 us of the brute-force 

simulation) can be found in the corresponding subdirectories. These files should be used for 

the analysis procedures outlined below. This tutorial uses AmberTools19’s sander package 

for dynamics propagation and the cpptraj package for progress coordinate calculations 

(http://ambermd.org/AmberTools.php). AmberTools is available free of charge.

The System.: The chignolin mini-protein with the sequence GYDPETGTWG forms a β-

hairpin and folds/unfolds on a timescale that is accessible to brute force simulations, which 

provide a reference data set for comparison with WESTPA results. The folded chignolin 

structure (PDB code: 1UAO, [47]), serves as the starting structure for both the brute-force 

and WE unfolding simulations. Both dynamics propagation and simulation analysis are 

carried out using the Amber software package. Simulations were run at 275 K using the 

Amber ff14SBonlysc force field [44] and generalized Born implicit solvent [45].

7.3.2 Brute Force Simulations

Overview.: As mentioned in Section 1.3, it is important to run multiple, short, brute force 

simulations prior to using WESTPA. In the case of chignolin, which both folds and unfolds 

on timescales accessible to brute force simulation, brute force simulations can provide 

information on defining the unfolded and folded states.
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Running and Analyzing the Brute Force Simulation.: We perform a 4-μs brute force 

simulation of chignolin and write out coordinates every 20 ps. All files can be found in 

the brute_force/ directory. The user can change these parameters in the MD config file 

md.in. The simulation can be submitted with the following command:

$ ./run.sh

This submission script may have to be adjusted to the user’s computing platform.

The chignolin Cα RMSD can be computed in the following way:

$ cpptraj chignolin.prmtop < get_rmsd.in

This command assumes the brute force simulation trajectory as well as the chignolin 

parameter topology and folded structure pdb files are all in the current directory.

The output RMSD data file, rmsd.dat, lists the time evolution of the chignolin Cα RMSD 

over the course of the simulation (each line corresponds to a frame).

Figure 9 shows the Cα RMSD over simulation time for a brute-force simulation that started 

from the folded β-hairpin, revealing several unfolding and refolding events within 4 μs. The 

unfolded and folded states are defined by visual inspection of the RMSD plot and simulated 

conformations, which show a fully formed β-sheet and native hydrogen bonds at RMSD < 

0.5 Å and a disrupted β-sheet with broken native hydrogen bonds at RMSD > 4 Å (this 

pair of RMSD values will also be used later to define target states in WESTPA simulations). 

Note that the (un)folding rate constants will be sensitive to the state definitions, and defining 

states is a challenging process beyond the scope of this tutorial. Our state definitions are 

designed to avoid potential recrossing artifacts in rate calculations: once a trajectory reaches 

a state it should tend to remain there, rather than immediately returning to the previous state.

According to the Hill relation [48], the rate constant is exactly the inverse mean first-passage 

time (MFPT) of the underlying process, where, for instance, the FPT for unfolding is the 

time required to reach the unfolded state (RMSD > 4 Å) after first folding (RMSD < 0.5 

Å). The user can run the following to obtain the MFPTs for both the folding and unfolding 

processes:

$ python get_mfpt.py rmsd.dat 20e–12 0.5 4.0

The command-line arguments are the RMSD data file, time interval at which the RMSD 

values are calculated in seconds, and threshold RMSD values for the folded and unfolded 

states in Angstroms. The rate constant of unfolding is estimated to be 0.13 x 108 s−1 

(confidence interval: 0.09 x 108 s−1 – 0.18 x 108 s−1) and that of folding is estimated to be 

0.71 x 107 s−1 (confidence interval: 0.44 x 107 s−1 – 1.24 x 107 s−1). Confidence intervals 

are derived from a Bayesian bootstrapping procedure [28].
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7.3.3 Using WESTPA

Overview.: We will carry out separate steady-state WE simulations for the unfolding and 

folding processes. This strategy is not only more efficient than equilibrium WE simulations 

in estimating rate constants (see Section 7.1.3), but enables us to set WE parameters for each 

process (e.g. bin spacing) in a more process-specific way if needed. The target state of the 

folding simulation will be used as the initial state of the unfolding simulation and vice versa.

Choosing an Initial State.: As done for the brute force simulations, WE simulations of the 

unfolding process will be started from the NMR structure of chignolin. WE simulations of 

the folding process will be started from an unfolded conformation of chignolin (RMSD > 4 

Å) that has been generated by the above brute force simulations.

Files for Dynamics.: All files are in the common_files/ subdirectory of either the 

WE_folding/ or the WE_unfolding/ directory.

Preparing the Simulation Environment.: See the corresponding subsection in Basic 

Tutorial 7.1.

Equilibrium vs Steady State WE.: Here we will run separate steady state WE simulations 

of the folding and unfolding processes, defining a target state (TSTATE_ARGS) in the 

init.sh files.

Progress Coordinate, Binning Scheme and τ value.: As mentioned above, we will use a 

one-dimensional progress coordinate consisting of the Cα RMSD from the folded structure 

of chignolin. Although the RMSD with respect to a single reference structure may not be 

an ideal coordinate for distinguishing between various conformation, it proves sufficient 

for our example. Folded and unfolded states are defined based on maximum and minimum 

RMSD values, respectively, that have been sampled by the above brute force simulations. 

We will use a bin spacing of 0.2 Å and a τ value of 20 ps. However, the very first bin for 

the unfolding simulations is larger than the regular bin width with RMSD = [0 Å, 0.5 Å] 

because any structure with RMSD < 0.5 Å is considered to be in the folded initial state. 

Analogously, for the folding simulations, the very last bin is larger than the regular bin width 

of 0.2 Å.

Other WE Parameters.: As done in the previous tutorials, our WE simulations were 

carried out using 4 trajectories/bin. The unfolding and folding simulations were run for 1000 

and 10,000 WE iterations, respectively, in order to reach a steady value ofthe corresponding 

rate constants.

Initializing and Running the WE simulations.: The init.sh and run.sh files can be 

found in the corresponding directories for both WESTPA simulations. The RMSD progress 

coordinate is calculated and its values returned to $WEST_PCOORD_RETURN.
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Monitoring and Analyzing the WE Simulations.: To compute the rate constant for the 

folding or unfolding process, we first calculate the mean probability flux into the target state 

by running the following WESTPA analysis tool:

$ w_fluxanl

The output is the H5 file fluxanl.h5, which contains the instantaneous probability flux 

into the target state for each iteration. The following Python script calculates, for any WE 

iteration, the average rate constant based on the corresponding probability flux arriving in 

the target state over a preceding window of molecular simulation times (e.g., over 1 ns):

$ python get_mean_rate.py  20e–12  1e–9

The command-line arguments are the τ value and the time width for window-averaging. 

Both arguments are in units of seconds.

Figure 10 shows the evolution of the average unfolding rate constant of chignolin as 

a function of molecular time for three independent WE simulations. After a few ns, 

the average rate constants for all of these simulations have leveled off and are roughly 

comparable to that derived from brute force simulations. One difference between the WE 

and brute force simulations is that the former estimates the MFPT based on the chosen 

initial structure(s) which may not correspond precisely to the ensemble of starting structures 

implicit in extracting first-passage events from brute force simulations. Note that a three-fold 

difference in the rate constants among the three WE simulations amounts to only ~0.6 

kcal/mol difference in the effective free energy barrier to unfolding (at the simulation 

temperature of 275 K).

Figure 11 shows the evolution of the average folding rate constant for chignolin as a 

function of molecular time for three independent WE simulations. Compared with unfolding 

simulations, the folding simulations require much longer to reach a converged average rate 

constant that is in rough agreement with that from the brute force simulations; we note 

that the average rate constant is dominated by the largest flux. In addition, the folding 

rate constant exhibits significantly larger fluctuations, even after the apparent transient 

period of the first ~100 ns, indicating that the chosen bins are less suited for the folding 

process. During the folding process, distinct hydrogen bonds must be formed between the 

neighboring anti-parallel strands, and possibly in a specific order, to eventually reach an 

RMSD < 0.5 Å. In contrast, the unfolding process results in faster convergence of the 

corresponding rate constant and likely involves the simultaneous breaking of hydrogen 

bonds in order to reach an RMSD > 4 Å.

The resulting WE simulations consist of multiple continuous unfolding or folding pathways 

that may cover different regions of configurational space at any given time. To select for 

particular pathways (trajectories), we can run the following:

$ python get_target_trajs.py  1  10000
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The command-line arguments indicate the first and last iteration number to be considered. 

The output file target_trajs.dat has two columns: one with the iteration number and 

one with the segment number of the trajectory that has reached the target state at that 

iteration. Thus, the number of rows indicates the total number of generated events. The 

iteration and segment numbers can be used by w_trace to obtain the full path of a particular 

folding or unfolding event (see Section 7.1.6).

7.3.4 Conclusion—In this tutorial, you have learned how to apply the WE strategy to 

simulate a protein folding process under steady state conditions. The recycling of trajectories 

at a target state allows the generation of a non-equilibrium steady state, to which the 

trajectory ensemble converges faster compared to an equilibrium ensemble of trajectories. 

Such steady states trajectories enable the direct computation of rate constants as described in 

this tutorial.

7.4 Analysis Tutorials

In this tutorial, we will go over how to calculate progress coordinates using external analysis 

suites, automate analysis of a WE simulation using the WESTPA w_ipa tool and visualize 

the evolution of WE datasets with time. We focus on the p53 peptide system described above 

in the Intermediate Tutorial 7.2 in which the progress coordinate is the Cα RMSD of the 

peptide from its folded, α-helical conformation.

7.4.1 Calculating Progress Coordinates Using External Analysis Suites

Introduction.: Here we will demonstrate how to write scripts for calculating custom 

progress coordinates for WESTPA simulations using the external analysis suites 

MDAnalysis and MDTraj [49–51]. A prerequisite to this tutorial is completion of the Basic 

Tutorial 7.1. You will also need to install the MDAnalysis or MDTraj analysis suites. Other 

required files are provided on GitHub.

Learning Objectives.: The specific learning objective of this tutorial is to calculate progress 

coordinates using an external analysis suite (MDAnalysis or MDTraj).

Explanation of Files and Scripts.: The master configuration file for the simulation, 

west.cfg, specifies the dimensionality of the progress coordinate (pcoord_ndim), as 

well as how many progress coordinate data points should be returned from each segment 

(pcoord_len) (it specifies many other things but these are of primary interest for this 

tutorial as they specify the shape of the progress coordinate).

The script rmsd.py is responsible for using MDTraj or MDAnalysis to calculate the RMSD 

values during the simulation. Read the comments in the script to understand its setup for 

each package (there is a unique version for both).

Two scripts are responsible for calling rmsd.py at different points in the simulation (both 

found in westpa_scripts/):

• get_pcoord.sh calculates the progress coordinate during the initialization of 

the system. Because dynamics have not been run yet, WESTPA only needs 
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a single point progress coordinate, rather than an array. This difference is 

controlled by the FORM argument, explained in the rmsd.py script.

• runseg.sh calculates the progress coordinate during dynamics propagation. It 

passes each segment’s trajectory file as input to the custom progress coordinate 

loader, rmsd.py.

There are slight differences in these files for the MDAnalysis and MDTraj setups, explained 

in the comments of each script.

Files in amber_config/ directory:

• P53.MDM2.prmtop - The topology file.

• md.in - The input file which specifies conditions for dynamics propagation.

The other files needed for the simulation are found in the bstates folder, and are explained in 

the MDAnalysis/MDTraj specific sections below.

Running the Simulation.: Before running the simulation, you may want to change the 

binning scheme, the number of iterations, or other parameters, which can be found in 

west.cfg.

To run the simulation, only two scripts must be executed.

To initialize the system:

$ ./init.sh

To run the simulation in the background:

$ ./run.sh &

To monitor the progress of the simulation:

$ tail –f west.log

The rest of the tutorial is specific to the software package used. See below for specifics 

involving the MDAnalysis and MDTraj analysis suites.

Using the MDAnalysis Analysis Suite: Files in bstates/ directory:

• P53.MDM2.ncrst - Used as initial crystal structure to compare to the trajectory 

when calculating the RMSD and to start new trajectories in runseg.sh.

• bstates.txt - specify restart file P53.MDM2.ncrst.

Using the MDTraj Analysis Suite: Files in bstates/ directory:

• P53.MDM2.nc - because MDTraj does not support restart files, this file is used 

in get_pcoord.sh to calculate the initial progress coordinate. It is also used 
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by runseg.sh as an initial crystal structure to compare to the trajectory when 

calculating the RMSD.

• P53.MDM2.ncrst - Used to start new trajectories in runseg.sh.

• bstates.txt - specify restart file P53.MDM2.ncrst.

Conclusion.: You have learned in this tutorial the basic structure of a Python script to 

calculate progress coordinates for WESTPA using the MDAnalysis and MDTraj analysis 

suites. There are two scripts run by WESTPA which call pcoord_loader.py, triggering 

the calculation of progress coordinates. The bash script, get_pcoord.sh, triggers the 

calculation of only a single progress coordinate, while runseg.sh triggers the calculation 

of the progress coordinate at multiple points in a trajectory, as defined in west.cfg. It is 

important to include the last line of the Python scripts, setting segment.pcoord equal to 

the progress coordinate array, so that the progress coordinate may be used to further the 

simulation.

7.4.2 The w_ipa Analysis Tool

Introduction.: The w_ipa analysis tool is designed to facilitate analysis of WESTPA 

simulation datasets through a single interface (Jupyter Notebooks or the command line). 

In particular, w_ipa automates analysis routines, ensures data consistency through the use 

of automatically updated “analysis schemes”, enables a user to easily view a particular 

dataset or trajectory segment in the H5 file, and monitors the progress of the simulation (e.g. 

trajectory weights, progress coordinates, and other properties of interest).

Learning Objectives. The specific learning objectives of this tutorial are to use the w_ipa 

analysis tool to:

1. Calculate rate constants

2. Trace and analyze trajectory segments (weight, pcoord, auxdata)

3. Plot datasets

Setting Up.: Using w_ipa is straightforward. The west.cfg file, which specifies most of 

the simulation parameters, also specifies the analysis parameters under the Analysis heading.

The general format of the analysis section can be seen in the included west.cfg file. More 

detailed examples are available in the Basic and Intermediate Tutorials (Sections 7.1–7.3).

In order to run w_ipa, there must be at least a single analysis scheme specified. This scheme 

does not have to consist of the bins and/or state definitions used during the simulation. 

Less physically relevant schemes may be employed. Any changes made to analysis schemes 

in the west.cfg file will be actualized the next time w_ipa is run. The user is therefore 

guaranteed to never wonder whether the analysis files are up to date.

The assign.h5, reweight.h5, and direct.h5 files are stored under ANALYSIS/

SCHEME_NAME. The optional arguments that can be passed to w_assign, w_direct, and 
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w_reweight can be specified by creating a section with the tool name and using the value 

pairs argument.

The Interface.: To run w_ipa from the command line, enter the command w_ipa after 

having sourced westpa.sh (if not already sourced). To run w_ipa in a Jupyter notebook 

enter the command w_jupyter from the command line. When you create a new Jupyter 

notebook, there are some basic Python commands that must be executed:

import w_ipa

w = w_ipa.WIPI()

# At startup, it will load or run the analysis schemes specified in the 

configuration file (typically west.cfg)

w.main()

w.interface = ‘matplotlib’

The Python kernel must be launched with the use of w_jupyter, or otherwise, the 

$PYTHON_PATH variable must be set to include the WESTPA directories. The command 

w_env, which ships with WESTPA, is responsible for setting environment variables and can 

be used with the Jupyter notebook command to ensure w_ipa is importable.

All commands are applicable from both the command line and Jupyter notebook interface; 

if plotting functions are called from the command line, the plot will appear within the 

console (it can be configured to use matplotlib if desired; this requires an active, available X 

session).

All of the variables are now accessible from the w object.

Changing Schemes and Accessing Datasets.: A typical analysis routine begins by 

selecting an appropriate analysis scheme that may consist of multiple state definitions, 

averaging options, or reweighting parameters that are appropriate for the simulation. Most of 

the datasets are presented from the current, “active” state, although access to other datasets 

is conveniently available. All numerical datasets are given as NumPy arrays, allowing for 

easy analysis of data.

To see what schemes are available, run the following command:

$ w.list_schemes

To change schemes, you may set the w.scheme variable to a string or integer value 

(corresponding to the index of the scheme). For instance, suppose you have the following 

two schemes: “EXAMPLE”, and “ALTERNATE”, and the current scheme is “EXAMPLE”. To 

access the properties of the current iteration in the current scheme (explained in more detail 

below), you would type the following:
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$ w.current

However, to access the alternate scheme, you would run the following command:

$ w.schemes.ALTERNATE.current

Where “ALTERNATE” corresponds to the scheme name written in the west.cfg file.

The w_ipa tool works by presenting an iteration and all its data as a single object. Each 

iteration object contains numerous datasets and helper functions designed to ease analysis. 

After loading, w_ipa defaults to the final iteration. You can change the iteration by using the 

following command:

$ w.iteration = 39

At any time, we have three iteration objects available in the object w: current, past, future. 

The past and future datasets are keyed to the parents and children of the segments in the 

current dataset. For instance, if you are analyzing segment 200 in the current iteration and 

wish to analyze the parent segment it came from, you could access the two datasets using the 

following iteration objects:

$ w.current [200]

$ w.past [200]

Even though it is very unlikely that the actual segment ID of the parent of segment 200 is 

200, it is mapped correctly to enable convenient analysis. To obtain the actual segment ID, 

just run:

$ w.past[200] .seg_id

OR

w.past [200][‘seg_id’]

As indicated above, objects in w_ipa can be called either as Python dictionaries or as 

attributes on the object. These can be listed by calling the print method on the parent object. 

In addition, as w_ipa is using iPython under the hood, tab completion works as when using 

the command-line interface (CLI).

To access the main datasets of interest, pcoord and auxdata, type the following:

$ w.current.pcoord

$ w.current.auxdata
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These commands will output the full datasets, which can be useful for calculating properties 

on all trajectory segments at once. But what if we are only interested in looking at the 

properties of particular segments?

You could manually find a segment of interest, but w_ipa includes a few convenient 

properties that return certain segments. In particular, w.current provides the following:

maxweight

minweight

successful_trajectories

The maxweight and minweight properties return objects which contain data about the 

segments that carry the highest and lowest weights in the current iteration, respectively. The 

successful_trajectories property returns the IDs of the segments that successfully 

transitioned between states (the states are defined in your west.cfg). Calling these 

functions on an iteration object yields all datasets pertaining to the segment with the 

desired property. In this WE simulation, each trajectory contains 101 timepoints. Therefore, 

the maxweight segment (seg_id 177) in iteration 49 has (101,2) pcoord values, 101 

auxdata values, and it can switch bins and states 101 times. You can see this by running 

w.current.maxweight.

The auxdata dataset is unique in that the simulations can contain any number of auxiliary 

datasets with any unique name. Here, they are returned as a dictionary where the key is the 

dataset name defined in west.cfg and the value is a NumPy array containing the actual 

dataset.

Segment 177 above was in state 1 during the entire iteration. But what is state 1? It is 

defined in west.cfg, but we do not have to go back to west.cfg to look it up. Simply run:

$ w.state_labels

It is also in bin 0 the entire time (note that these are the bins defined in west.cfg for this 

analysis scheme and not the bins used in the simulation). What is the pcoord value of that 

bin? Run:

$ w.bin_labels

To track the immediate parent and children of a segment, we can use w.past and 

w.future. These iteration objects are similar to w.current, but keyed to give information 

about the segments in w.current. For instance, to look up the weight of segment 177’s 

parent, run the following:

$ w.past[177].weights

Likewise, to see whether the same segment had any children, run:
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$ w.future[177]

Segments always have a past, but do not always have a future. They may also produce 

multiple children, so the values returned by w.future[seg_id] are usually more 

complicated. Rather than being given the datasets directly, w.future returns a list of the 

datasets.

To determine the properties of a complete trajectory (that is, the string of segments going 

back to the first iteration), w_ipa includes a fast trace function. To trace segment 177 in 

iteration 39 (current iteration), run the following:

$ s = w.trace(177)

It returns an object similar to w.current[177], except that it also contains all historical 

information. The auxdata, bins, pcoord, and states datasets are all going to be very 

large; their shape should be the product of the number of time-points per iteration and the 

trajectory length. As we are at iteration 39, and have 101 time points per τ value, we should 

have 3939 values in each dataset!

Plotting.: Rather than visually inspecting each value, let us just plot it. Run the following:

$ clear

$ s.weights.plot()

$ clear

$ s.pcoord.plot()

$ clear

Many datasets, such as weight, default to a logscale; others, such as pcoord, use a linear 

scale. By default, the 0th dimension of pcoord is plotted. When the plotting function is 

called via the CLI, a rough estimate of how the trajectory’s pcoord has evolved is plotted in 

the terminal.

The w.current iteration object contains information about the rate constants that were 

calculated in the active analysis scheme. To view an array containing the rate constants 

along with the upper and lower confidence intervals, run the following (do not forget about 

tab completion):

$ w.current.direct.rate_evolution

OR

$ w.current.rate_evolution.direct
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To view a plot of their evolution, run the following:

$ w.current.direct.rate_evolution.plot()

The w_ipa tool displays the upper and lower confidence intervals on the plot as well.

7.4.3 Visualization of WE Datasets—In addition to generating probability 

distributions as a function of the progress coordinate (or other observables of interest), it 

can be helpful to examine movies of how the distributions evolve with time. Such movies 

can be used to determine the optimal number of trajectories per bin in a particular region of 

the progress coordinate by tracking how the probability distribution evolves with the number 

of trajectories that region.

Learning Objectives.: The specific learning objectives of this tutorial are:

1. Create a movie of how a probability distribution evolves with time.

2. Trace representative trajectories over this probability distribution.

Here, we will create a movie of how a two-dimensional probability distribution (Figure 12) 

evolves with time. This movie-making feature is currently carried out using a bash script 

(pdist_evol.sh) and will eventually be added to the WESTPA plothist tool.

The bash script involves the following three steps: (1) run the w_pdist tool on the west.h5 

file to generate probability distributions in a specified folder that will also contain the 

eventual movie of how the distributions evolve with time, (2) generate a plot of a two-

dimensional probability distribution for each iteration as a cumulative moving average from 

iteration 1 to 40 and (3) create the movie from the 40 generated frames of the probability 

distributions. The most important part of this script is the --postprocess-function 

option of plothist that is defined in postprocess.py. This function requires a basic 

knowledge of Python and matpiotlib, and can be used to modify features of the plot (e.g. 

adjustment of axis labels, tick marks, titles, and lines) via the matpiotlib interface. In 

addition, external files from various analyses can be uploaded and overlaid on the plot as 

demonstrated in this example.

Here, we will select two trajectories from the last WE iteration and overlay their pathways 

on the probability distribution of the overall simulation as a function of progress coordinate. 

First, we will use the trace_walker function to determine the segment number of the 

selected trajectories in each WE iteration going all the way back to the corresponding 

conformation of the initial state ensemble. This process of tracing can also be accomplished 

by using WESTPA tools w_ipa and w_trace. After the segment numbers are obtained, 

the get_pcoords function loads in 10 progress coordinate values per iteration for the 

trajectories. Finally, a movie-making tool (here, we use mencoder) creates a movie from the 

40 frames of probability distributions.
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7.5 Advanced Tutorial: Creating “Binless” Resampling Schemes: Na+/Cl− Association 
Simulations

7.5.1 Introduction—The non-linearity of certain progress coordinates (e.g., those 

identified by machine learning tools) requires the creation of “binless” rather than binned 

resampling schemes for rare-event sampling (Figure 13). In addition, binless schemes can 

be useful in grouping trajectories by a feature of interest for resampling. For example, 

trajectories could be grouped by history (sharing the same parent structure) to improve the 

diversity of trajectories that successfully reach the target state, or by a simple k-means 

clustering. This tutorial builds upon the Basic Tutorial (Na+/Cl− association simulations, 

Section 7.1) by introducing users to running and analyzing a WESTPA simulation that 

employs “binless” resampling schemes. This tutorial is a prerequisite for Advanced Tutorials 

7.6–7.8.

Learning Objectives.: This tutorial introduces users to the generalized resampler module in 

the WESTPA 2.0 software package that allows for the creation of either binned or binless 

resampling schemes.

The tutorial also instructs users on how to initiate a WE simulation from multiple 

representative conformations of the starting state and how to apply two key post-simulation 

analysis tools. Specific learning objectives are:

1. How to create a binless scheme for splitting and merging trajectories based on 

k-means clustering using the BinlessMapper resampler module;

2. How to initiate a WE simulation from multiple starting conformations;

3. How to combine multiple WE simulations for analysis using the w_muiti_west 

tool;

4. How to perform post-simulation analysis using the w_crawl tool.

7.5.2 Prerequisites

Computational Requirements.: This simulation can be completed in 5 hrs using 8 Intel 

Xeon W3550 3.07 GHz CPU cores, generating 1 GB of data using the HDF5 framework 

of the WESTPA 2.0 software package. Two independent west.h5 files, each containing 

100 WE iterations of simulation data, are provided for the analysis portions of this tutorial 

in the for_anaiysis/ directory. This tutorial uses the OpenMM 7.6 software package 

for dynamics propagation (https://openmm.org) and the MDTraj 1.9.5 analysis suite (https://

www.mdtraj.org/1.9.5/index.html) for calculations of the WE progress coordinate. The 

scikit-learn 1.1.0 package (https://scikit-learn.org) is used to identify the “binless” groups.

Jupyter Notebook.: Sample code for running and analyzing a WESTPA simulation 

according to “best practices” is made available in a Jupyter notebook. For the visualization 

portions of the notebook, nglview, matplotlib, and ipympl are required.
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Quick Start for this Tutorial.: Users can run the following command within the 

tutorial7.5-hdf5/ directory to install all the software dependencies for this tutorial to an 

existing conda environment:

$ conda env update --name <your WESTPA conda env> --file environment.yml

7.5.3 Setting up the WE Simulation—This simulation uses the same WE parameters 

(τ, number of trajectories per bin, etc.) as the Basic Tutorial (Na+/Cl− association 

simulations, Section 7.1). The following are major differences from the Basic Tutorial that 

highlight more advanced features of WESTPA simulation setup.

Binless Resampler Module.: The binless resampler module can be accessed from the 

west.cfg file in the system_options section where binned and binless schemes are all 

defined. If the BinlessMapper is used by itself, the entirety of configurational space will 

be binless. To recycle trajectories while using a binless framework, we will need to place a 

BinlessMapper inside of a RecursiveBinMapper bin and demarcate the target state in 

a separate RecursiveBinMapper bin. This framework is identical to the one used for the 

MAB scheme with recycling.

The BinlessMapper takes three mandatory arguments. The first, ngroups, specifies the 

total number of groups to assign trajectory walkers in the binless space. The second, ndims, 

specifies the dimensionality of the progress coordinate and is limited to either 1 or 2 

at this time. The ndims parameter specifies the dimensionality of clustering, e.g., 2 for 

generating clusters in two-dimensional space (each dimension will not be grouped separately 

as is typically the case for binned resampling schemes). The clustering of trajectories 

enables sampling of high-dimensional space without an exponential increase in the number 

of walkers. The final argument is group_function, which specifies the function for 

grouping trajectories in an external file (here, group.py) and will take as input the progress 

coordinates and the ngroups values. We provide a general example of using this function 

for a one-dimensional progress coordinate using k-means clustering. Additional keyword 

options can be specified under group_arguments in the west.cfg file. An example of 

using a recursive binless scheme is shown in the west.cfg snippet below:

west:

 system:

  system_options:

   bins:

    type: RecursiveBinMapper

    base:

     type: RectilinearBinMapper
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     boundaries: # Under base:

      – [0, 2.60, ‘inf’]

     mappers:

     – type: BinlessMapper

      ngroups: [5] # Number of groups

      ndims: [1] # Number of grouping

             # dimensions

      group_function: group.kmeans

      at: [5] # Location of binless mapper

           # relative to base mapper

Initiating a WE Simulation from Multiple Structures.: Ideally, a WE simulation is 

initiated from multiple pre-equilibrated structures that are representative of the initial state 

for the rare-event process of interest, e.g. using a conventional simulation or a separate WE 

simulation of the initial state. Within the WESTPA framework, we refer to these structures 

as “basis states”. If the simulation is run under non-equilibrium steady-state conditions, 

trajectories that reach the target state are “recycled” by terminating that trajectory and 

initiating a new trajectory with the same statistical weight from one of the basis states. 

Structural files (XML files in this tutorial) for basis states contain the coordinates and 

velocities, and are placed in separate, numbered folders within the bstates/ directory. 

Accompanying each XML file is a pcoord.init text file which contains the progress 

coordinate value of that basis state. These progress coordinates are saved to the HDF5 

file during the initialization process. The bstates/ directory also contains a reference 

file (bstates.txt) that lists all of the available basis states. The bstates.txt file 

is formatted with three columns, corresponding to the basis states’ names, associated 

probabilities, and folder name, respectively. Additional basis states can be added as separate, 

additional lines at the end of the bstates.txt file. The probability over all basis states 

must sum to one, and will be normalized by WESTPA during the initialization process to 

sum to one if the condition is not met. Compared to the Basic tutorial 7.1 involving Na+/Cl− 

association [38], the get_pcoord.sh and runseg.sh files are also modified such that 

$WEST_DATA_STRUCT_REF now corresponds to the directory for each basis state and not 

the xml file itself.

7.5.4 Running the WE Simulation—As with previous versions of WESTPA, the 

simulation can be initialized using ./init.sh and run using ./run.sh. Alternatively, both 

steps could be executed consecutively using the new Python API by running the following 

command:
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$ python init_and_run.py

The init_and_run.py script will print out simulation updates to the console in real-time. 

An example runwe.slurm file with commands for both methods of execution is provided 

for use with SLURM-like workload managers. We also provide a Jupyter notebook that 

demonstrates the steps for cleaning up, initializing, and running the WE simulation.

Note that this tutorial is using the new HDF5 trajectory storage framework, which will 

be explained further in Advanced Tutorial 7.6. To enable the use of the HDF5 framework 

in your own simulation, you may use the current tutorials directory as an example. The 

location of the trajectory h5 files will need to be specified in the west.cfg file, and the 

appropriate restart and topology files will need to be copied to the locations specified in 

the get_pcoord.sh and runseg.sh files. You will also need to make sure that the file 

extensions for any trajectory files are readable by mdtraj.load(), (e.g., Amber restart files 

must end in .ncrst) which simply requires renaming. To save disk space, trajectory files 

outputted by the dynamics engine can be deleted after every iteration in the post_iter.sh 

file, which is located in the westpa_scripts/ directory.

7.5.5 Monitoring and Analyzing the WE Simulation

Combining Multiple WE Simulations for Analysis.: To combine multiple WE simulations 

into a single aggregate simulation file for analysis, we can use the w_multi_west tool, 

which creates a single multi.h5 file that contains the data from all of the west.h5 

files of each WE simulation. Each WE iteration in the multi.h5 file contains all of the 

trajectory segments from the corresponding iterations of the individual WE simulations, all 

normalized to the total weight for that iteration. For backwards compatibility, a version of 

w_multi_west for use with previously run WESTPA 1.0 simulations (v2020.XX) has been 

available since version 2020.04.

To apply the multitool to a combination of west.h5 files, place the west.h5 file for each 

simulation in a numbered directory starting with 01/. If all of the simulations used a custom 

grouping function (such as in group.py), you must also include that file in the top-level 

analysis directory.

The files will be organized as follows:

01/

 west.h5

02/

 west.h5

group.py [if used in simulation]

Next, in this directory, run the following to merge the west.h5 files:
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$ w_multi_west –m . –n 2

The –m flag specifies the path to your directories and the –n flag specifies the number of WE 

simulations to combine for analysis. To combine auxiliary datasets, one can add either an 

--aux=NAME_OF_DATASET flag for a specific dataset or an --auxall flag for all auxiliary 

datasets; note that the inclusion of auxiliary datasets will substantially extend the time 

needed to combine the simulation data. The above w_multi_west --auxall command 

will generate a list of WE simulation datasets to combine based on the datasets listed in 

01/west.h5 and generate a multi.h5 file with the combined simulation datasets. The 

--ibstates flag will merge the initial and basis states if the bstates dataset is identical 

across all the simulations. You may want to rename this file to west.h5 in order to apply 

the w_pdist tool to the combined simulation dataset. Note that the w_multi_west tool 

will only merge up to the N-1 WE iteration, ignoring the last WE iteration. The resulting 

multi.h5 file will not link to the individual iteration HDF5 files generated using the HDF5 

framework.

Post-Simulation Analysis.: As mentioned above, WESTPA 2.0 enables efficient post-

simulation analysis of trajectory data by storing trajectory data in highly compressed 

HDF5 files. The w_crawl tool can then be used to “crawl” through the trajectory data 

in single HDF5 files per WE iteration rather than millions of trajectory files. Results from 

the analysis are written to a dataset in a new HDF5 file. Before crawling through an 

entire simulation dataset, we recommend that users first test their analysis scheme in the 

wcrawl_functions.py file to ensure that the scheme works as expected. For this tutorial, 

we will only be using a single CPU core for these w_crawl calculations but also include 

a sample script as an example of how to use w_crawl on multiple CPU cores in parallel. 

The wcrawl_functions.py file contains the main analysis code. This script first identifies 

the final frame of a segment’s parent trajectory file from the previous WE iteration and 

makes sure this is eventually combined with the trajectory segment from the current WE 

iteration. The inclusion of the parent structure at the beginning of the current iteration 

trajectory is necessary for using the crawled dataset with WESTPA’s kinetics analysis 

tools. In this example, trajectory coordinates of only Na+ and Cl− are extracted using the 

MDTraj analysis suite and multiplied by 10 to convert from nm to Å. Resulting per-iteration 

coordinate values are then saved to an array, which is subsequently saved to a coord.h5 

file. The coord.h5 file is formatted similarly to a west.h5 file, where the new per-iteration 

values are stored under iterations/iter_{n_iter:08d}/coord. To ease analysis, a 

copy_h5_dataset.py script is provided to copy coord.h5’s contents into a west.h5 file 

as an auxiliary dataset. Note that if you store a WESTPA simulation’s trajectory HDF5 files 

in a separate directory from what is used in this tutorial, you need to specify the directory 

where the iter_XXXXXX.h5 files are located in the wcrawl_functions.py file.

The run_w_crawl.sh shell script runs the w_crawl tool at the command line and provides 

options for running the tool in serial or parallel modes. In this tutorial example, we will run 

the w_crawl tool in the serial mode using the --serial flag, analyzing one WE iteration 

at a time on a single CPU core. While the serial mode is sufficient for “crawling” relatively 

small datasets, the parallel mode using the --parallel flag is desirable for datasets with 
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over 100 trajectory segments per WE iteration and/or hundreds of WE iterations. In the 

parallel mode, each CPU core of a single compute node analyzes a different WE iteration at 

the same time. To run the w_crawl tool across multiple nodes, one can use the ZMQ work 

manager. Once satisfied with the wcrawl_functions.py and run_w_crawl.sh files, run 

the w_crawl tool locally:

$ ./run_w_crawl.sh

or on a multi-node cluster using the Slurm workload manager:

$ sbatch run_w_crawl.sh

To monitor the progress of the analysis, we examine the w_crawl.log file, which contains 

analysis results for each WE iteration and each trajectory segment. Finally, to copy the 

coord.h5 file to the west.h5 file, run the copy_h5_dataset.py script.

7.5.6 Conclusion—After completing this tutorial, users will gain an understanding of 

how to configure the upgraded resampler module for using a binless scheme, initiate a WE 

simulation from multiple structures using the new HDF5 trajectory storage framework, and 

apply the w_multi_west and w_crawl post-simulation analysis tools.

7.6 Advanced Tutorial: Simulations of Membrane Permeation by 1-Butanol

7.6.1 Introduction—The ability of a drug-like molecule to cross (or permeate) a lipid 

bilayer has been of great interest to drug discovery [52], but is challenging to simulate due to 

the long timescales involved. In this tutorial, we will use WESTPA 2.0 to simulate pathways 

for membrane permeation by a small molecule (1-butanol) and calculate the permeability 

coefficient. Our WE protocol employs and explains two new features in WESTPA 2.0 [2]: 

(i) the Minimal Adaptive Binning (MAB) scheme [19], and (ii) the HDF5 framework for 

efficient restarting, storage, and analysis of a WE simulation.

Learning Objectives.: This tutorial demonstrates how steady state WE simulations can be 

used to generate pathways and permeability coefficients for membrane permeation by a 

small molecule. Specific learning objectives include:

1. How to set up a double membrane bilayer system for permeability studies;

2. How to use the highly scalable HDF5 framework for more efficient restarting, 

storage, and analysis of simulations;

3. How to apply the minimal adaptive binning (MAB) scheme.

7.6.2 Prerequisites—In addition to completing the Basic and Intermediate WESTPA 

Tutorials [38], a prerequisite to this advanced tutorial is completion of the above Advanced 

Tutorial 7.6. Also required is a working knowledge of the CHARMM-GUI membrane 

builder, PACKMOL, OpenEye Scientific’s OEChem and Omega toolkits (for system 

preparation only), MDTraj analysis suite, and the OpenMM 7.6 dynamics engine (for 

running WE).
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Computational Requirements.: The membrane permeability tutorial simulation runs best 

using, at minimum, a dual-GPU workstation. For this tutorial, simulations were tested with a 

compute node containing both a NVIDIA Titan X (Pascal) GPU and a NVIDIA GTX 1080 

GPU, as well as a 16-core Intel Xeon X5550 CPU running at 2.67 GHz with a total of 100 

GB of system memory. In the case a user does not have a GPU and only CPUs, switch 

between OpenMM’s GPU and CPU platforms by changing the platform name in line 22 of 

memb_prod.py to CPU instead of CUDA. The complete tutorial simulation run length (37 

iterations) required ~4 days of continuous wall clock time on both GPUs, as well as ~30 GB 

of hard disk space with the HDF5 framework and MAB options turned on.

This tutorial uses the OpenMM 7.6 dynamics engine [33] and MDTraj 1.9.5 analysis suite 

(https://www.mdtraj.org/1.9.5/index.html) for progress coordinate calculations. Force fields 

used in this tutorial can be installed via openmmforcefields (https://github.com/openmm/

openmmforcefields). System setup and equilibration were performed separately using 

OpenMM. In order to run the companion Jupyter notebook, nglview, matplotlib are required 

for visualization purposes. Other dependencies, including NumPy and MDTraj, are installed 

with WESTPA 2.0 itself.

Quick Start for this Tutorial.: Users can run the following command within the tutorial 

7.6-membrane/directory to install all the software dependencies to an existing conda 

environment:

$ conda env update --name <your WESTPA conda env> --file environment.yml

7.6.3 Preparing the simulation—The following preparation steps have already been 

completed and are presented to instruct the reader on how to prepare similar systems for WE 

simulation.

Our system consists of a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) 

membrane bilayer. The 1-butanol-double POPC membrane bilayer system was prepared by 

piecing together several smaller molecular systems in the following way. First, a single 

POPC membrane bilayer was generated using CHARMM-GUI’s membrane builder with 50 

lipids per leaflet and zero salt concentration. This membrane was then equilibrated using 

a single GPU with the OpenMM dynamics engine using the standard CHARMM-GUI 

procedure. The membrane plus the outer aqueous layer to the membrane, once combined, 

(see Figure 14) was equilibrated for an additional 500 ns. A 2D representation of 1-butanol 

was generated from an input SMILES string (CCCCO) using OEChem, and converted to a 

3D structure using the Omega TK toolkit. The 3D structure of 1-butanol was then solvated 

with a 2 nm slab of water molecules at a density of 1 gm/cm3 using PACKMOL along with 

the OEChem TK and Omega TK toolkits from OpenEye. Finally, the full double-membrane 

bilayer system was assembled by placing the butanol-embedded slab of water at the origin, 

with a single-membrane system at each z-edge of the water slab. The resulting system was 

then subjected to energy minimization and equilibrated before the initiated WE simulations 

of butanol permeating the membrane bilayer were initialized.

Bogetti et al. Page 48

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.mdtraj.org/1.9.5/index.html
https://github.com/openmm/openmmforcefields
https://github.com/openmm/openmmforcefields


The System.: In this tutorial, we will run a WE simulation of 1-butanol crossing 

one membrane of a double POPC membrane bilayer system. To run the WESTPA 2.0 

simulation, the AMBER LIPID17 force field is applied to all POPC lipids, explicit water 

molecules are represented by the TIP3P model, while the parameters for 1-butanol were 

taken from the GAFF 2.11 force field. All force field parameters were applied using the 

openmmforcefields Python package.

Progress Coordinate.: The progress coordinate (z) is defined as the (signed) distance from 

the center of mass (COM) of the butanol molecule to that of the closest membrane. The 

width of a single leaflet of the membrane is roughly 2 nm, so a z < −2 nm, between −2 

nm and 2 nm, or >2 nm indicates that the butanol molecule has not yet crossed, is currently 

crossing, or has crossed the membrane, respectively. A target state of z ≥3.5 nm is used to 

recycle trajectory walkers. The actual computation is performed by measuring the signed 

distances between the COMs of butanol and each of the two membranes, z1 and z2, using the 

MDTraj analysis suite and then taking the larger value of the two, z=max(z1, z2).

Preparing the Simulation Environment.: Once we have constructed and equilibrated the 

1-butanol membrane system, we will prepare the WESTPA system environment. First, we 

will analyze the equilibrated double membrane bilayer system to define an initial progress 

coordinate. The progress coordinate, equilibrated coordinate file (e.g. XML file), and 

bstates.txt file describing the initial basis states are placed in the bstates/ directory. 

Second, we will edit the west.cfg file with options for using the MAB scheme and 

HDF5 framework. To initialize the WESTPA 2.0 environment, we will run ./init.sh. 

This command will source the WESTPA 2.0 environment, construct the seg_logs/, 

traj_segs/, and istates/directories, and will run the w_init command with the correct 

settings for the target state (z = 3.5 nm) and the basis states constructed above.

Adaptive Binning using the MAB Scheme.: By default, this tutorial uses a manual, 

fixed binning scheme, but can be modified to use the Minimal Adaptive Binning (MAB) 

module, which adaptively positions bins along the progress coordinate. To enable this 

adaptive binning scheme, uncomment the MAB-related lines in the west.cfg file, which 

specify the MABBinMapper as the primary bin mapper type, and comment the lines related 

to the inner RectilinearBinMapper. Next, define n_bins (the number of MAB bins 

placed per progress coordinate dimension) in the same section of the west.cfg (e.g., 

if a two-dimensional progress coordinate is being used, [20, 20] indicates 20 bins in 

each dimension). It is important to note that if the recycling of trajectories at a target 

state is desired within the MAB framework, recursive bins must be specified by adding a 

MABBinMapper inside of a RecursiveBinMapper outer bin and defining the target state in 

terms of the recursive outer bins. An example of a MAB recursive binning scheme is shown 

below:

west:

 system:
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  system_options:

   bins:

    type: RecursiveBinMapper

    base:

     type: RectilinearBinMapper

     boundaries:

      – [-inf, -44, 34, inf]

     mappers:

     – type: MABBinMapper

      nbins: [20] # Number of bins

      direction: [0] # Split both directions

      skip: [0] # Bin along this dimension

      at: [0] # Location of MAB mapper

            relative to base mapper

In the above example, the at option in the last line specifies which outer bin to place 

the MAB scheme inside of range [−44, 34]. For a two-dimensional progress coordinate, 

this option will require a list with two values, one for each dimension. The nbins option 

specifies the number of MAB linear bins that will be used inside the bin, plus two more 

bins for extrema and bottleneck trajectories, respectively. Optional direction, skip and 

mab_log parameters can also be specified for the MAB scheme. The direction parameter 

(0, −1, or 1) can be used to specify the direction along the progress coordinate for splitting 

of trajectories, where 0 indicates both directions, −1 indicates the direction of decreasing 

values along the progress coordinate, and 1 indicates the direction of increasing values 

along the progress coordinate. The skip parameter (1 or 0) designates whether a particular 

dimension along the progress coordinate will be binned during the simulation, but will be 

used to define the target state (1 indicates that the dimension will be skipped for binning 

and 0 indicates that the dimension will not be skipped for binning). The mab_log parameter, 

when enabled with true, will print MAB-related statistics such as the progress coordinate 

values of extrema walkers to the west. log file. Multiple MAB schemes can be added to a 

recursive binning setup, but only one MAB scheme may be used per each outer bin.

If users choose to combine the application of the MAB scheme with the weighted ensemble 

steady-state (WESS) plugin [22], which reweights trajectories towards a non-equilibrium 
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steady state, they must provide fixed bins for the reweighting procedure. The positions of 

these fixed bins can be specified in the WESS plugin section of the west.cfg file:

plugins:

 – plugin: westpa.westext.wess.WESSDriver

  enabled: true

  do_reweighting: true

  window_size: 0.75

  bins:

   type: RectilinearBinMapper

   boundaries:

    – [‘-inf’, 0.5, 1.0, 1.5, 2.0, 2.5, ‘inf’]

HDF5 Framework.: The setup for a WESTPA simulation with the HDF5 framework is 

similar to a vanilla one with the addition of the following procedures, which are a more 

detailed list of the same steps discussed briefly in Advanced Tutorial 7.5 above:

1. An iteration entry was provided in west.cfg under 

west.data.data_refs to specify where and how the per-iteration HDF5 files 

should be saved and named.

2. All the necessary files needed for propagating the next segment, such as state/

restart and topology files, are passed on to WESTPA through the environment 

variable, $WEST_RESTART_RETURN, after initialization and propagation of 

each iteration (Figure 15A). This information is typically placed in the 

get_pcoord.sh and runseg.sh files.

3. All the trajectory files, and topology files if the topology is not stored as 

part of the trajectory file, are provided to WESTPA through the environment 

variable, $WEST_TRAJECTORY_RETURN, after the propagation of each iteration. 

This, again, is typically placed in the get_pcoord.sh and runseg.sh files. 

The coordinates of the basis states can be provided through the environment 

variable during initialization to be stored as the “trajectories” of the zero-th 

iteration. Note that the procedures described in step 2 and 3 are similar to how 

the progress coordinates are returned through $WEST_PCOORD_RETURN in the 

vanilla WESTPA simulation. The trajectory and restart files will be saved as part 

of the per-iteration HDF5 files. In turn, these files do not need to be located 

and copied over to the directory for propagating the next segment, and they will 

be automatically extracted and put into the segment folder by WESTPA instead 

(Figure 15B).
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These additional procedures simplify the data management on the user’s end for two 

reasons. First, all the trajectories are stored in a standard way which enables fast and easy 

access to these trajectories with their associated WE-related data using the newly added 

analysis module (see Section 7.5.4). Second, the restart/state files are much easier to locate 

as when they are generated than when they are needed in the next iteration, so letting the 

users pass trajectory and restart files to WESTPA for it to manage frees users from tracking 

those files themselves which would require the critical knowledge of how two WESTPA-

assigned environment variables work (namely, $WEST_CURRENT_SEG_INITPOINT_TYPE 

and $WEST_PARENT_DATA_REF).

For this membrane permeation example, the per-iteration HDF5 files are saved in a folder 

named traj_segs/ and named following the pattern iter_XXXXXX.h5. The basis states 

are returned to WESTPA in get_pcoord.sh as both the “trajectories” of the zero-th 

iteration and the restart files for propagating the first iteration and recycled walkers. The 

dynamics is propagated using OpenMM for 100 ps for each iteration, and the output 

trajectory files and state XML files are returned to WESTPA in runseg.sh. These files 

are deleted once they are returned in order to save disk space. See the sample project setup 

files for detail.

7.6.4 Running the WE Simulation—Similar to other examples, the simulation can be 

run using ./run.sh from the top-level permeability tutorial directory.

7.6.5 Analyzing the WE Simulation—The analysis of the membrane permeation 

simulation can be found in the accompanying Jupyter notebook titled Membrane 

Permeability Tutorial (Analysis). In this tutorial notebook, we demonstrate how to extract 

a complete, continuous pathway of a membrane-crossing event and calculate the incoming 

flux to the target state from the WE membrane permeation simulation. Note that this tutorial 

assumes that you already have a completed simulation using the HDF5 framework with at 

least one crossing event (~40 iterations).

7.6.6 Conclusion—In this tutorial, we have illustrated the relative ease in which one 

may use the WESTPA 2.0 software package to perform advanced WE path sampling 

simulations of membrane permeation for a small molecule (butanol). Using a single 

workstation with two GPUs, our WE simulation can generate membrane permeation events 

within a few days of wall-clock time. WE simulations, when using the WESTPA 2.0 HDF5 

framework and MAB binning scheme, are relatively cost effective, both in terms of total 

computing time and disk storage.

7.7 Advanced Tutorial: Analysis and restarting with haMSMs: NTL9 Protein Folding

7.7.1 Introduction—Although the WE strategy provides an efficient framework for 

unbiased rare-event sampling, slow relaxation to steady state and impractically large 

variance in rate constant estimates may still be limiting factors for complex systems. 

History-augmented Markov state models (haMSMs) have been demonstrated to provide 

estimates of steady state from transient, relaxation-phase WE data, which can be used to 

start new WE simulations [18]. As shown in Figure 16, the haMSM plugin for the WESTPA 
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2.0 software package automatically constructs an haMSM from one or more independent 

WE simulations to estimate steady-state observables and then can automatically initiate 

new simulations from those estimates and iteratively repeat this procedure when those 

simulations complete. The underlying haMSM analysis library, msm_we, can also be used to 

perform stand-alone haMSM analysis of existing WESTPA data.

Learning Objectives.: This tutorial demonstrates the use of an haMSM restarting workflow 

in WE simulations of the ms-timescale folding process of the NTL9 protein. Specific 

objectives are:

1. How to apply the haMSM plugin for periodic restarting of simulations;

2. How to use the msm_we package to build an haMSM from WE data;

3. How to estimate the distribution of first passage times from the haMSM, using 

msm_we.

7.7.2 Prerequisites—The Basic and Intermediate WESTPA Tutorials [38] should be 

completed before running this tutorial.

Computational Requirements.: This tutorial can be completed on a computer with a single 

NVIDIA GTX 1080 GPU and a 2.4GHz Intel Xeon E5-2620 in 90 min. The WE simulation 

will generate ~5 GB of data, though on a typical cluster filesystem, overhead associated with 

data redundancy may increase this to ~15 GB. Aversion of the Amber software package 

compatible with Amber 16 restart and topology files must be installed to propagate the 

dynamics and calculate the WE progress coordinate.

The msm_we Python package must also be installed, which can be done by first cloning 

the repository and then installing it into your existing conda environment (with WESTPA 

already installed) by running:

$ git clone https://github.com/westpa/msm_we

$ cd msm_we

$ conda env update --name <your WESTPA conda env> --file environment.yml

7.7.3 Plugin functionality—Once we initiate a WESTPA run with the haMSM plugin 

enabled, the plugin will execute a series of independent WE simulations (runs) from the 

same starting configuration for the number of WE iterations specified in west.cfg. For this 

tutorial, the runs will not use the HDF5 trajectory-saving framework.

If none of the WE runs have reached the target state, the haMSM plugin will sequentially 

extend each run for a number of iterations specified in west.cfg. This extension procedure 

will be repeated until at least one run has reached the target state. For consistency, all of 

the other runs in the set will be extended to match the length of this run. As a result of this 

extension procedure, runs used for the first restart may be longer than runs in subsequent 

restarts.
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After completing the extension procedure, the plugin will construct an haMSM from these 

runs, and estimate the steady-state distribution and flux into the target state. All structures 

sampled by the set of runs are used to build this haMSM, and are then weighted according to 

a steady state. Note that this haMSM uses only the first and last frame of each WE iteration, 

which effectively sets the lag-time equal to the WE resampling time. A number of plots are 

automatically generated from the model. The flux profile, shown in Figure 17, provides an 

important metric of convergence, and should be examined carefully. A flatter flux profile 

indicates more converged weighted ensemble.

A new set of runs from the resulting weighted structured are initialized. These runs are 

correlated but independent from this point onward. As a technical note, when initializing 

the new WE simulations, these structures are used as “start states”. Within the WESTPA 

2.0 framework, start states are a third category of state, in addition to basis states and target 

states. Like basis states, start states are used for seeding trajectory walkers when initializing 

a simulation with w_init; however, unlike basis states, start states are not used after this 

point and walkers reaching the target state will not be recycled into start states but rather 

only to the basis states. The new WE runs are executed for the number of WE iterations 

specified in west.cfg, in series. At this point, the model is saved, a new restart is prepared, 

and the process repeats from that point onward.

Please see [2, 18] for more theoretical background on the models used by this plugin.

7.7.4 Preparing the system

The system.: For our simulation of the NTL9 protein folding process, we use a stochastic 

Langevin thermostat with low-friction (collision frequency γ = 5 ps−1) and a generalized 

Born implicit solvent model. The system consists of ~600 atoms. We will use the haMSM 

restart plugin to automatically perform three independent WESTPA runs serially before 

constructing an haMSM. A single restart will be performed from the haMSM steady state 

estimate, and then WE simulation will be continued for another 106 WE iterations for each 

of the three runs.

To reduce runtime for this tutorial, we provide a partially completed set of three independent 

WE simulations. In this set of simulations, the first two runs have completed, and the third is 

nearing completion. None of these simulations have yet reached the target state.

After continuing this set of WE simulations, the third simulation will finish and reach its 

maximum number of WE iterations. With very high probability, none will have reached 

the target folded state, and pre-restart extensions will be triggered. The initialized runs 

were chosen such that it is unlikely that the third run will reach the target state before 

the next restart. However, it is possible that in the remaining few WE iterations of the 

third simulation, this simulation will reach the target state, in which case we will skip the 

extension procedure.

After a single round of extensions, the target state should be reached in run 2, though not 

necessarily runs 1 or 3. We will construct the haMSM from the three extended runs, and 

restart a new set of three runs from the steady-state estimates.
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Structure of Plugin-Specific Files.: A list of important files used and generated in 

$WEST_SIM_ROOT by the haMSM plugin is shown in Table 3.

The following files contain more adjustable parameters or are more tightly integrated in the 

workflow and therefore warrant a more in-depth explanation.

west.cfg: The haMSM restarting plugin requires a number of parameters 

to be set in the appropriate section of west.cfg. Details regarding 

these parameters are listed at https://westpa.readthedocs.io/en/latest/documentation/ext/

westpa.westext.hamsm_restarting.html#west-cfg.

restart_initialization.json: When initializing each run, the plugin needs to know 

what configuration it should be launched with. After the first restart, this is automatically 

generated. However, before the first restart (i.e. in producing the initial set of runs in 

Workflow Step 1), there is no way for the plugin to determine how the first run was 

initialized. So, the parameters initially passed to w_init must be manually entered into 

restart_initialization.json.

westpa_scripts/restart_overrides.py: When building the haMSM, some 

dimensionality reduction is typically necessary as it’s generally neither practical nor useful 

to analyze the model on the full set of coordinates. This dimensionality reduction is 

highly system-specific, so no general procedure is distributed with the plugin. Instead, 

the user is required to define a function which takes in an array of full-atomic 

coordinates of shape (n_segments, n_atoms, 3), perform the desired dimensionality 

reduction, and then return the reduced coordinates in an array of shape (n_segments, 

n_features). This functions are then loaded by the haMSM analysis code at run-time, 

and used throughout. More details are available at https://westpa.readthedocs.io/en/latest/

documentation/ext/westpa.westext.hamsm_restarting.html#featurization-overrides.

Preparing the WE Simulation Environment.: To prepare the system for using the haMSM 

restarting plugin, first clone the tutorial repository. In env.sh, change $TEMPDIR_ROOT to 

point to a directory on your filesystem where temporary files will be created (on a cluster, 

this should ideally be some node-local scratch/temp space that supports I/O, but on a local 

workstation can be a new folder such as $WEST_SIM_ROOT/temp). This temp space will 

be used for temporary files created during progress coordinate calculation. In the same file, 

change AMBER_EXEC and CPPTRAJ to point to your AMBER and CPPTRAJ executables. 

In west.cfg, change ray_tempdir to point to the same directory as TEMPDIR_ROOT. 

Then examine haMSM plugin-specific configuration files above to familiarize yourself with 

them, though for this tutorial, no further changes are required. To download and extract the 

prepared files for the in-progress simulation this tutorial uses, run the following command 

from within the main simulation directory.

$ bash pull_sample_data.sh

7.7.5 Running the WE simulation—Now, we are ready to (re)start the WE simulation. 

The haMSM plugin will automatically perform the restarting and analysis. Typically, we 
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would initialize the system using w_init as we do for all WE simulations using the 

WESTPA 2.0 software package. However, to reduce the runtime for this tutorial, we 

have provided a pre-prepared system, and running w_init is not required. Once we have 

configured the haMSM plugin through west.cfg, we can restart the WE simulation and run 

the simulation for a few iterations, by simply executing the following command.

$ ./run.sh

If the target state has not been reached after running for the specified number of iterations, 

additional rounds of restarting/extending the WE simulation will automatically be launched. 

Once the target state has been reached, the plugin will build an haMSM, update statistical 

weights for each sampled structure, and restart a new set of WE trajectories initialized from 

those structures with updated weights. This will all be done automatically.

Start States.: After performing a restart, we will find under the restart0/ directory a 

startstates.txt reference file that lists all the structures used for the restart (start states) 

and their associated weights for initializing new WE simulations from the first round of 

restarting. As noted, these are distinct from the basis states. The startstates.txt text 

file is formatted with three columns, which define the names (e.g., “b21s0”), associated 

probabilities, and name of the directory containing the structure files of the start states 

(relative to the path defined under west.data_refs.basis_states in west.cfg). 

Structure files corresponding to these start states are in restart0/structs/ and are 

named according to the structure’s haMSM bin and the structure’s index within that bin. 

Start states can be added to the pool of potential structures for WE initialization by adding 

the --sstates-from or --sstates option to the w_init command. Similar to the 

--bstates options for basis states in the above Intermediate Tutorial 7.3, the --sstates-

from option is used to indicate a text file with a list of start states and the --sstates 

option is used to append additional start states through the command line.

7.7.6 Analyzing the WE simulation—After the plugin finishes running, you will find 

the associated west.h5 for each run and the associated haMSM pickled hamsm.obj objects 

for each marathon in the restart*/ directories. Although the plugin will automatically 

build the haMSMs and perform some of the analysis based on the configuration files, 

haMSM analysis can also be manually performed post-simulation on WESTPA data with the 

msm_we library (as used internally by the plugin).

For this tutorial, you can use either the data generated by the steps above, or the pre-

prepared west.h5 files containing data generated from a similar simulation configuration. 

This analysis largely follows the msm_we usage instructions provided in the msm_we 

documentation (https://msm-we.readthedocs.io/en/latest/usage.html).

For detailed instructions on how to analyze your simulation results, please refer to the 

Jupyter notebook distributed along with this tutorial.

7.7.7 Conclusion—Complex systems may exhibit relaxation slow enough to prevent 

direct measurement of rate constants using probability flux in WE. This tutorial 
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therefore presents the haMSM plugin for leveraging relaxation-phase WE simulations 

by automatically (i) building a haMSM; (ii) generating an estimate of the steady-state 

probability distribution and the corresponding steady flux; and (iii) if desired, restarting a 

new WE simulation or set of simulations from the estimated steady state. Each haMSM 

yields an estimate for the MFPT and FPT distribution using msm_we.

7.8 Advanced Tutorial: Creating Custom Analysis Routines and Calculating Rate 
Constants

7.8.1 Introduction—In this tutorial, we will go over how to create custom analysis 

routines using the westpa.analysis Python API and how to calculate rate constants 

using the Rate from Event Durations (RED) analysis scheme, which enables rate-constant 

estimates from transient, pre- steady-state data and therefore shares the same motivation 

as the haMSM analysis scheme [2, 18] used in the above Advanced Tutorial 7.7. For 

the creation of custom analysis routines, we will focus on the membrane permeability 

simulations completed in Advanced Tutorial 7.6. For the calculation of rate constants, 

we will focus on previously published protein-protein binding simulations involving the 

barnase/barstar system [6].

Learning objectives.: Specific learning objectives for this tutorial include:

1. How to access simulation data in a west.h5 file using the high-level Run 

interface of the westpa.analysis Python API and how to retrieve trajectory 

data using the BasicMDTrajectory and HDF5MDTrajectory readers;

2. How to access steady-state populations and fluxes from the assign.h5 and 

direct.h5 data files, convert fluxes to rate constants, and plot the rate constants 

using an appropriate averaging scheme;

3. How to apply the RED analysis scheme to estimate rate constants from shorter 

trajectories.

7.8.2 Prerequisites—In addition to completing the Basic and Intermediate Tutorials 

7.1–7.4 [38], a prerequisite to this tutorial is completion of the above Advanced Tutorials 7.5 

and 7.6.

Computational requirements.: Users should have access to at least 1 CPU core for 

running the analysis tools. For larger datasets, one may want to parallelize some of the 

tools (especially w_direct). The size of a dataset is mainly determined by the number of 

iterations. For a dataset of greater than 1000 iterations, it may be best to use at least 4 CPU 

cores at a time.

7.8.3. Creating custom analysis routines—For this part of the tutorial, we will 

create custom analysis routines using the westpa.analysis API for the membrane 

permeability simulations completed in Advanced Tutorial 7.6.

The main abstraction of the westpa.analysis API is the Run class, which provides a 

read-only view of the data in the main WESTPA output file (west.h5). We will start 
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by opening the west.h5 file from the permeability run. We assume that the current 

working directory is the simulation root directory you are interested in analyzing, though 

the resulting west.h5 file from Advanced Tutorial 7.6 is linked to the main directory of this 

tutorial for convenience. Open a Python interpreter and run the following commands:

>>> from westpa.analysis import Run

>>> run = Run.open(‘west.h5’)

>>> run

<WESTPA Run with 500 iterations at 0×7fcaf8f0d5b0>

We now have convenient access to a wealth of information about the permeability 

simulation, including all trajectory segments at each WE iteration and any data associated 

with those segments, including values of the progress coordinate and other auxiliary data. 

Iterating over a run yields a sequence of Iteration objects, each of which is a collection of 

Walker objects. For example, the following loop iterates over all trajectory walkers in a run, 

but does nothing with each trajectory walker:

>>> for iteration in run:

…   for walker in iteration:

…     pass

We can access a walker by providing its (1-based) iteration number and (0-based) segment 

ID:

>>> walker = run.iteration(10).walker(4)

>>> walker

Walker(4, Iteration(10, <WESTPA Run with 500 iterations at 0×7fcaf8f0d5b0>))

To access the progress coordinates of a certain trajectory walker, we use the pcoords 

attribute:

>>> pcoords = walker.pcoords

Other properties available through this Python API include the weight, parent and children 

of a trajectory walker. We can access auxiliary data by looking up the dataset of interest in 

the auxiliary_data dictionary attribute (note that the following auxiliary dataset is not 

actually present, and the command is provided as an example):

>>> auxdata = walker.auxiliary_data[‘test_data’]
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We can also view a list of all recycled (successful) trajectory walkers and choose one walker 

to trace its pathway through the membrane:

>>> walkers = run.recycled_walkers

>>> walker = max(walkers,

…   key=lambda walker: walker.weight)

The history of a trajectory walker can be traced by using the trace() method, which returns 

a Trace object:

>>> trace = walker.trace()

Using the WE iteration and IDs of the trajectory segments obtained from this trace, we 

can plot the data of our traced trajectory to see how that property is changing. Remember 

that the test_data auxiliary dataset does not actually exist, but can be replaced with an 

auxiliary dataset of your choice.

>>> xs = [walker.iteration.number

…     for walker in trace]

>>> ys = [walker.auxiliary_data[‘test_data’]

…     for walker in trace]

>>> import matplotlib.pyplot as plt

>>> plt.plot(xs, ys)

One goal of the westpa.analysis API is to simplify the retrieval of trajectory 

coordinates. Two built-in readers are provided for retrieving MD trajectory coordinates: (1) 

BasicMDTrajectory, which handles trajectory files outputted by the dynamics engine; or 

(2) HDF5MDTrajectory, which handles trajectories stored using the new HDF5 framework, 

as is done in the above Tutorials 7.5 and 7.6. For users requiring greater flexibility, custom 

trajectory readers can be implemented using the more general Trajectory class. Here we 

provide a brief overview of both the BasicMDTrajectory and the HDF5MDTrajectory 

readers. The following is included only as an example, since the trajectory files required are 

not provided. MD trajectories stored in the traditional manner may be retrieved using the 

BasicMDTrajectory reader with its default settings:

>>> from westpa.analysis import BasicMDTrajectory

>>> trajectory = BasicMDTrajectory()
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Here, trajectory is a callable object that takes either a walker() or a trace() object as 

input and returns an mdtraj.Trajectory() object (https://mdtraj.org/1.9.5/api/generated/

mdtraj.Trajectory.html). To retrieve the trajectory of the trace obtained above, then save the 

coordinates to a DCD file (e.g., for visualization using the VMD program), we can run the 

following:

>>> traj = trajectory(trace)

>>> traj.save(‘trace-coords.dcd’)

Note that in the code above, we have relied on the fact that the traj_segs/ directory 

of interest is contained in the current working directory. In the general case, the name 

of the simulation root directory may be provided to the trajectory reader via the 

optional sim_root parameter. Minor variations of the “basic” trajectory storage protocol 

(e.g., use of different file formats) can be handled by changing the parameters of the 

BasicMDTrajectory reader:

>>> trajectory = BasicMDTrajectory(traj_ext=‘.nc’, state_ext=‘.ncrst’, 

top=None)

However, suppose that instead of storing the coordinate and topology data for trajectory 

segments in separate files (seg.dcd and bstate.pdb), we store them together in 

an HDF5 trajectory file (such as iter_XXXXXX.h5) using the new HDF5 restarting 

framework available in WESTPA 2.0. This change can be accommodated by using the 

HDF5MDTrajectory reader:

>>> trajectory = HDF5MDTrajectory()

The examples above highlight the flexibility and convenience provided by the 

westpa.analysis package and provide the building blocks available to a user wanting 

to explore the west.h5 file and create custom analysis routines using data in the west.h5 

file.

7.8.4. Calculating rate constants using the original WE scheme—For the two 

remaining sections of this tutorial, we will focus on applying the RED analysis scheme [20] 

to calculate the association rate constant from previously published protein-protein binding 

simulations involving the barnase/barstar system [6]. The RED scheme involves three steps:

1. Calculate State Populations and the Flux into the Target State.: The target state can 

be defined using either the WE progress coordinate or auxiliary coordinates. The analysis 

bins and state definitions are placed in the analysis section of the west.cfg file.

west:

 analysis:
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  kinetics:

    evolution: cumulative

   analysis_schemes:

    OVERALL:

     enabled: True

     bins:

      - type: RectilinearBinMapper

      boundaries:

       – [0, 3.5, ‘inf’]

       – [0, 3, 15, ‘inf’]

     states:

      – label: unbound

       coords:

        – [0.5, 50.0]

        – [50.0, 50.0]

      – label: bound

       coords:

        – [0.5, 0.5]

To calculate the flux into a state defined by the progress coordinate, we can use the w_ipa 

program. Flux calculation with w_ipa involves two steps: (1) assigning trajectory segments 

to states using the w_assign command-line tool, and (2) calculating the probability flux 

between each pair of defined states using the w_direct command-line tool. Given the large 

size of the barnase-barstar simulation HDF5 file, we have provided the resulting assign.h5 

and direct.h5 files for the remainder of the tutorial. To use w_ipa for flux analysis, one 

would run the following at the command line:

$ w_ipa -ao
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This command will analyze the pcoord data from west.h5 using the scheme for bins and 

states defined in west.cfg and not drop the user into an IPython environment (to make 

use of that functionality, remove the -ao options from the above command). The resulting 

assign.h5 and direct.h5 files, the latter containing the fluxes, will be outputted to a 

newly created directory that is named for the relevant scheme (in this case that will be in ./

ANALYSIS/OVERALL/. The evolution:cumulative option (which is the default option) 

ensures that all evolution datasets are calculated with a rolling average, a requirement for 

using the RED scheme (see below).

To calculate the flux into a state defined by auxiliary coordinates, we still use the scheme for 

bins and states defined in the west.cfg file. However, instead of using the w_ipa program, 

we use the command-line tools, w_assign and w_direct. Before using these tools, we 

need to copy module.py to your current directory first (by default, module.py is located 

in the ./scripts/ directory). Then, we can assign trajectory segments to specified states 

using the w_assign tool:

$ w_assign --config-from-file --scheme OVERALL --construct-dataset 

module.load_auxdata --serial

The--config-from-file option tells the program to read analysis parameters from the 

west.cfg file’s analysis section and the --scheme option specifies the relevant scheme for 

bins and states. The--construct-dataset option provides a function to w_assign for 

loading in the auxiliary data which is located in the file module.py. The--serial option 

tells w_assign to run the assignment in serial mode. Running w_assign will generate an 

ANALYSIS/ directory and place an assign.h5 file in a scheme-specific folder there. Next, 

we apply the w_direct tool to the assign.h5 file.

$ w_direct all -a ./ANALYSIS/OVERALL/assign.h5

This command will generate a direct.h5 file in the same directory where we ran the 

w_direct command. Move this file to the analysis/ folder that was generated by 

w_assign and proceed with the analysis. Note that the above is not part of the following 

tutorial and is only included to provide an example to users of how to perform an analysis on 

auxiliary data.

2. Correct the Fluxes using the RED Scheme.: To correct the calculated fluxes 

using the RED scheme, we apply the w_red command-line tool, which will read in 

the rate_evolution and durations datasets in your direct.h5 file and calculates a 

correction factor for the flux value at each iteration. To use this tool, add the following to the 

analysis section of your west.cfg file:

red:

 scheme: OVERALL

 istate_label: unbound
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 fstate_label: bound

 nstiter: 21

 nstrep: 1

For the scheme option, specify the desired scheme for bins and states to use from your 

west.cfg analysis section and for the istate_label and fstate_label options, specify 

the initial and target states, respectively. The nstiter parameter is the number of frames 

per WE iteration that were saved during the WESTPA simulation and nstrep is the 

frequency of outputting progress of the RED calculation. After setting all parameters, run 

the w_red tool from the command line:

$ w_red

A new dataset containing the corrected fluxes, named red_flux_evolution, will be 

added to your direct.h5 file. If that dataset already exists, the w_red tool will ask if you 

want to overwrite the existing dataset.

The new red_flux_evolution dataset is created by adjusting the rate_evolution 

dataset by the correction factor determined by the RED scheme. The rate_evolution 

dataset, in turn, is composed of the relevant conditional_flux_evolution 

dataset (from direct.h5) normalized by the steady state populations from 

labeled_populations (from assign.h5). Therefore, when using the RED scheme (or 

the original rate_evolution dataset), no explicit normalization of the fluxes by the steady 

state populations is necessary.

3. Convert the Flux to a Rate Constant.: The fluxes that we just calculated are already 

rate constants in units of inverse τ (the resampling interval used for your WE simulation).

For a unimolecular process, the final units of the rate constant should be inverse time (e.g., 

s−1) and can be obtained by converting from units of per τ for the extracted flux array to the 

desired time unit. Note that the τ value needs to be provided by the user and is not currently 

recorded in the west.h5 file.

For a bimolecular process, which is the case for our OVERALL scheme, the rate constant 

should be in units of inverse time and inverse concentration (e.g., M−1s−1) and can be 

obtained by first converting to the desired time unit, as done for unimolecular processes, 

and dividing the resulting flux values by the effective concentration of the solutes involved 

in the bimolecular process given the volume of the simulation box. In the case of our 

barnase-barstar system, the τ value was 20 ps and the effective concentration for the barstar 

ligand was 1.7 mM. We will therefore divide all of the conditional_flux values by 20 × 

10−12 s and 0.0017 M to obtain per iteration rate constants in units of M−1 s−1.

7.8.5. Monitoring Convergence of the Rate Constant—To monitor the 

convergence of the rate-constant estimate, we can plot the time-evolution of the rate constant 
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using both the original and RED schemes and assess how close our original estimate is to 

the RED estimate. If the two schemes are converging to the same value, that can be one 

indication that the simulation has begun to converge.

To obtain the rate constant using the original scheme [3], simply convert the 

rate_evolution dataset to the appropriate units as discussed above. The time-evolution of 

this rate-constant estimate can then be compared with the RED-scheme estimate to assess 

convergence of the simulation to a steady state (Figure 18A).

A note on averaging schemes.: There are three main types of averaging schemes that can 

be used to monitor convergence when plotting the rate constant evolution using the original 

scheme. It may be useful to plot different schemes depending on the behavior of your 

specific system. A few examples are shown here with instructions on how to generate the 

plots.

The first averaging scheme is the default which is a rolling average (Figure 18B), which can 

be achieved by specifying evolution: cumulative in the analysis section of west.cfg 

and setting step_iter: 1. This method of visualizing the rate constant evolution offers the 

smoothest curve and is recommended as the most stringent way of assessing convergence, 

as it incorporates information from the entire simulation. A rolling average is also implicitly 

incorporated into the RED scheme, which by design never excludes data from the start of a 

simulation. When analyzing rate constant estimates generated by the RED scheme, specify 

evolution: cumulative to ensure that only the implicit rolling average is performed.

The second averaging scheme is a window average, which can be achieved in w_ipa by 

specifying evolution: cumulative and step_iter: 10, or whatever your desired 

averaging window is. A recommended starting averaging window size is 10% of the length 

of your simulation, but the most robust would be the lag time of your simulation as 

determined from an autocorrelation of the flux plot. A windowed average is not as smooth as 

the rolling average but can give a better indication of convergence at different stages of your 

simulation relative to other stages.

The third and final averaging scheme is a block average. This will require setting 

evolution: blocked and step_iter: 10. The rationale behind choosing the block 

size here is the same as the window size discussed above. The block average will appear like 

a step function where each block an average of the preceding block is plotted. This method 

of plotting is the least smooth, but can be best for obtaining a final value of the rate constant 

that is not influenced by earlier, lower values.

7.8.6 Conclusion—Among the upgrades introduced in the WESTPA 2.0 software 

package are ones that enable the creation and execution of more streamlined analysis 

of simulations and more efficient estimation of rate constants. The westpa.analysis 

subpackage can be utilized to more carefully inspect WESTPA trajectory data and to create 

custom analysis routines. The RED analysis scheme for correcting rate constants based on 

the “ramp-up” time in the fluxes is implemented in the w_red command-line tool. The files 
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contained in this tutorial for utilizing the RED scheme are intended to provide useful starting 

points for analyzing the kinetics of WESTPA simulations.

7.9 Advanced Tutorial: M-WEM Simulations of Alanine Dipeptide

7.9.1. Introduction—The Markovian Weighted Ensemble Milestoning(M-WEM) 

approach [11] is a modified version of the Weighted Ensemble Milestoning (WEM) [53, 54] 

approach. Both approaches are designed to use the WE strategy to enhance the efficiency of 

the milestoning method in calculating equilibrium and non-equilibrium properties (e.g., free 

energy landscape and rate constants, respectively).

In the milestoning method [12, 13] the reaction coordinate is stratified using multiple 

high-dimensional interfaces— or milestones. Short trajectories are propagated between the 

interfaces and using the principles of continuous time Markov chains, the properties of a 

long timescale process can be calculated. But the milestones need to be placed significantly 

far from each other to lose memory of the previous milestone. But converging the transition 

statistics between distant milestones can be expensive depending on the underlying free 

energy landscape and the complexity of the system. Because of the use of shorter trajectories 

that do not require trajectories to transit from the initial to final states, the WEM and 

M-WEM calculations are computationally less expensive than a WE simulation. On the 

downside, however, one cannot obtain continuous pathways due to the lack of continuous 

trajectories between the starting and the final state.

In the M-WEM approach, regions between the milestones are referred to as “cells”. WE 

simulation is performed within the cell with half-harmonic walls present at the milestone 

interfaces to prevent trajectory escape [11, 55, 56]. In this tutorial, we will use M-WEM to 

calculate the mean first passage time (MFPT), free energy landscape and committor function 

for the conformational transition in the alanine dipeptide system.

Learning objectives.: This tutorial covers the installation of and use of the Markovian 

Weighted Ensemble Milestoning (M-WEM) software in combination with WESTPA to 

compute the kinetics and the free energy landscape of an alanine dipeptide. Specific learning 

objectives include:

1. How to install the M-WEM software and perform an M-WEM simulation;

2. How to create milestones to define the M-WEM progress coordinate;

3. How to analyze an M-WEM simulation to compute the mean first passage time, 

committor, and free energy landscape.

7.9.2. Prerequisites—The users should have a basic understanding of running WE 

simulations using the Minimal Adaptive Binning (MAB) scheme, and should have 

completed Advanced Tutorial 7.6 before commencing the M-WEM tutorial. Also, a basic 

idea of the Markovian Milestoning framework is necessary. For that purpose, the users 

should refer to the following manuscripts [11, 55, 56].
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Computational requirements.: In terms of software, this tutorial requires several Python 

modules (NumPy, SciPy, and Matplotlib) in addition to the WESTPA 2.0 software and 

NAMD 2.14 simulation package.

Note: M-WEM is implemented using the Colvars module in NAMD. Please check out the 

NAMD tutorial (http://www.ks.uiuc.edu/Training/Tutorials/namd-index.html) and colvars 

tutorial (https://colvars.github.io/colvars-refman-namd/colvars-refman-namd.html).

In terms of computer hardware, this tutorial will require approximately 4 GB of disk space. 

Running the simulation 100 WE iterations for each milestone takes ~85 min on an Intel Core 

i5-8250U CPU @ 1.60GHz processor with 4 CPU cores. For 8 milestones that amounts to 

about 11-12 hr if the calculation is performed serially with 4 CPU cores used at a time. 

But if a computer cluster is available, each milestone should be run in parallel which will 

significantly reduce the wall clock time. The analysis for each milestone takes ~5 min for 

each milestone with the same computing hardware but with 1 CPU core. For 8 milestone 

cells that would be ~40 min, but similar to the simulation, the analysis for each milestone 

can be done in parallel.

7.9.3. Installation of the M-WEM software package—The M-WEM software package 

can be downloaded from https://github.com/dhimanray/MWEM. To install the package go to 

the main directory that contains the setup.py file and run the following command:

$ python -m pip install .

The M-WEM software should be installed in the same conda environment in which 

WESTPA 2.0 is installed.

7.9.4. Setting up a M-WEM environment

Overview.: For performing the M-WEM simulation, we need to first create the milestone 

anchors along the transition pathway. This is a typical prerequisite for milestoning 

simulation. It is typically done using steered MD simulation [57] which is a common 

technique in MD simulation. To avoid spending extra time and possible variability in the 

results, we have generated the milestone anchors and provided them in the anchors directory.

The system.: We will be studying the conformational change of gas phase alanine dipeptide 

using the M-WEM scheme. The details of this example are provided in [11].

The free energy landscape for the system is shown in Figure 19. To simulate the transition 

from state A to state B, 9 milestones are placed at φ = −80°, −60°, −40°, −20°, 0°, 20°, 40°, 

60°, 80°. This created 8 cells bound by the milestones. The anchors are chosen in a way that 

they are located approximately in the middle of each cell.

Preparing the simulation environment.: The tutoriai 7.9-mwem/ directory contains all 

simulation and analysis files and will be referred to as the simulation home directory for 

the rest of the tutorial. The milestone anchors for all cells generated from the steered MD 

simulation are provided as pdb files in the anchors/ directory.
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The build.py script is a python script which will set up all the milestones for the 

simulation. Each milestone cell will be simulated in a different directory, numbered from 

0 to 7.

The template/ directory is a generic template for M-WEM simulation for any one cell. It 

contains all necessary files except for the pdb files which are specific to each cell (which are 

in the anchors/ directory). Also, the colvars.in files have replaceable strings which are 

used by the build.py script to create cell specific files. For example, there are terms like 

“CENTER”, “HIGH”, and “LOW”. These are places where the position of the center and 

the two milestones are written by the build.py code. Make sure to edit the env.sh file to 

include the path to your NAMD installation.

In the common_files/ directory the topology (.psf), the parameter (.prm) and the NAMD 

configuration files are provided. The structure file (.pdb) in this directory and in the 

equilibration/ directory are prepared by the build.py script, and are different for 

each milestone cell.

Once you have your M-WEM setup ready, prepare the cell-specific folders by running the 

following command:

$ python build.py

7.9.5. Running the M-WEM simulation—In the equilibration/ directory 

of each cell, a constrained equilibration of the anchor will need to be 

performed to keep the anchor approximately in the middle of the cell. The 

milestone_equilibration.colvars.traj file contains the collective variable 

information, which, in this case, are the Phi and Psi torsion angles of the alanine 

dipeptide. The milestone_equilibration.xsc, milestone_equilibration.coor 

and milestone_equilibration.vel files are NAMD restart files that will be used to 

start WE trajectories from the endpoint of the equilibration simulation.

The running of the M-WEM simulation for each individual cell is done separately, for 

the convenience of parallelizing it in a computing cluster. The run.sh script performs the 

simulation via the command ./run.sh. Unlike typical WESTPA setups, the initialization 

setup code is included in the run.sh script here. Although it does not make a significant 

difference for a small system like this, we found it is more convenient to submit multiple 

milestone jobs to a computer cluster by using a single run.sh script. Both the equilibration 

and running of each cell is performed by executing the following command from within 

each cell-specific folder:

$ ./run.sh

In the first part of the script, equilibration is performed. Then relevant files are copied to 

the bstates/ directory, from which they are read by the westpa_scripts/runseg.sh. 

Then the WE simulation is initialized and propagated as usual by the w_init and w_run 

commands. In this example script, only one trajectory is propagated at a time. But this can 
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be parallelized based on the computing resources available. Alternative Slurm scripts for 

running and restarting the simulation are also provided in the same directory.

The total number of iterations performed per milestone is 100. The user may choose to 

change this number according to their preference. The results reported in this work are from 

100 iterations. The convergence is achieved after 40 iterations in our calculation. But it may 

slightly vary for independent calculations.

7.9.6 Analyzing the M-WEM simulations—After the M-WEM simulations are 

completed, it is important to properly analyze the results. Please refer to the M-WEM 

publication for the theoretical details of the analysis [11]. We perform the analysis in two 

steps:

Step 1.: Move into the analysis/ directory and execute the following command:

$ python analysis_build.py

The analysis_build.py script will produce directories cell_0/ through cell_7/ and 

copy the corresponding west.h5 files (WESTPA output files) from the propagation/ 

directory into each cell. It will also copy the west.cfg files (different from the west.cfg 

files for propagation), and the analysis.py files from westpa_analysis_files/ 

directory to each cell. The analysis.py file also has strings like “LOW” and “HIGH”, 

which will be replaced by floating point numbers corresponding to the left and right 

milestones.

Running the analysis.py script from within a specific cell directory will produce the 

trajectories.pkl, crossings.pkl and weights.txt files. The files generated by 

analysis.py contain information on the trajectory traces (history of the segments in 

the final iteration), the time and location (which milestone right or left) of the milestone 

crossings, and the weights of each traced trajectory respectively.

Perform analysis in all cells by running the following command from within the analysis/ 

directory:

$ ./analyze_all_convergence.sh

This script will execute python analysis.py from within each cell-specifc directory 

to produce the .pkl and .txt outputs for the final iteration. But, for the sake of checking 

convergence of our results, it will also produce similar files for some subsequent iterations. 

To do that, the script will copy the analysis.py to analysis_x.py (where x = iteration 

number) and replace the w.niters inside each analysis.py to the corresponding 

iteration number. Then, it will produce trajectories_x.pkl, crossings_x.pkl and 

the weights_x.txt files for each x. This step can take several minutes to a few hours 

depending on the computing hardware. If you have access to a computing cluster, you may 

choose to submit this as a job. Note that the analyze_all_convergence.sh script is 

customizable. For example, if you want to run all cells in parallel on a cluster you can create 
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separate bash scripts for each cell. Also, analysis_build.py will produce the following 

directories for milestoning analysis in Step 2: cell_probability/, N_i_j_files/, 

R_i_files/, and committor/.

Step 2.: After the analysis of the WESTPA output files are done, we will proceed to 

analyze our results using the Markovian milestoning framework in two Jupyter notebooks: 

kinetics.ipynb and free-energy-landscape.ipynb.

First, run the kinetics.ipynb notebook to obtain the mean first passage time and the 

committors. This will also produce the probability distribution file in the milestone space. 

Details can be found inside the notebook. The MFPT convergence plots and the committor 

functions should look like Figures 20 and 21.

Next, run the free-energy-landscape.ipynb to reconstruct the free energy landscape 

along Phi and Psi coordinates from the M-WEM data. It will first produce the unscaled 

probability distribution, rescale it and then compute the rescaled free energy landscape. The 

final free energy landscape should look like Figure 22.

Note that before executing any notebook, you will need to set the kernel to the environment 

in which you installed the M-WEM software. If the kernel is not available, activate the 

Jupyter notebook for that environment by executing:

$ python -m ipykernel install --user --name=westpa2

Replace westpa2 with the environment in which you installed M-WEM.

7.9.7 Conclusion—This tutorial presents the Markovian Weighted Ensemble 

Milestoning (M-WEM) Python package for use with the WESTPA 2.0 software package 

to estimate equilibrium and non-equilibrium observables for the alanine dipeptide. In the 

M-WEM approach, the WE strategy is applied to enhance the efficiency of the Markovian 

milestoning approach to accelerate the convergence between milestones. While it is not 

possible to use this approach to generate continuous pathways between the initial and 

final states of a rare-event process, the M-WEM approach can be highly efficient in the 

calculation of “end-point properties” such as the MFPT and free energy differences between 

the two states. Beyond the alanine dipeptide, the M-WEM approach has been applied to 

more complex processes such as receptor-ligand binding, yielding the kon, koff, and binding 

free energy for the trypsin benzamidine complex [11].

7.10 Advanced Tutorial: Systems Biology Simulations using the WESTPA/BNG Plugin

7.10.1 Introduction—This tutorial focuses on a scenario in systems biology in which 

the WE strategy can be useful: enhanced sampling of rare events in a non-spatial model. 

Here we focus on a BioNetGen language (BNGL) rule-based model for a biological 

signaling network that consists of a set of structured molecule types and a set of rules 

that define the interactions between the molecule types. While the average steady-state 

behavior of the model can be obtained using ordinary differential equations, the full kinetics 

of the model can only be obtained from stochastic simulations. However, adequate sampling 
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of any rare events in the model can be a challenge for stochastic simulations. In this 

tutorial, we will use WESTPA to orchestrate BNGL simulations that are propagated by the 

BNG software package. As mentioned above, WESTPA is interoperable with any stochastic 

dynamics engine, including the BNG software.

Learning objectives.: We will simulate a BNGL rule-based model of a two-gene switch 

motif that exhibits mutually exclusive activation and inhibition. Specific learning objectives 

include:

1. How to install the WESTPA/BNG plugin and set up a WESTPA/BNG 

simulation;

2. How to apply adaptive Voronoi binning, which can be used for both non-spatial 

and molecular systems;

3. How to run basic analyses tailored for high-dimensional WESTPA/BNG 

simulations.

7.10.2 Prerequisites—Users should have a working knowledge of BNGL models 

(http://bionetgen.org) and the WESTPA 2.0 software package. This tutorial will make use of 

the WEBNG Python package, which facilitates the integration of WESTPA with the BNG 

software and requires Python 3.8 or later versions. To install the WEBNG package:

$ git clone https://github.com/ASinanSaglam/webng.git

$ python -m pip install -e .

For common installation issues, see https://webng.readthedocs.io/en/latest/

quickstart.html#installation. Alternatively the user can use a Docker container where the 

environment is already prepared correctly using the command:

$ docker pull ghcr.io/westpa/westpa2_tutorials:webng

Note that this requires a Docker installation, for more information see Docker 

documentation (https://docs.docker.com/get-docker). Once the docker image is downloaded, 

you can run the image with:

$ docker run -it --entrypoint /bin/bashghcr.io/westpa/westpa2_tutorials:webng

Computational requirements.: This tutorial requires ~500 MB disk space. The simulation 

takes at most 1 hour of wall-clock time using a single CPU core of a 3.2GHz Intel Core i7 

processor. We recommend using the WEBNG package on a Unix system. While the package 

has not been tested on Windows systems, one can try using the Windows subsystem for 

Linux (WSL; https://docs.microsoft.com/en-us/windows/wsl/install).

7.10.3 Setting up the simulation

The model.: Our BNGL model consists of two genes, gene A and gene B, that are 

transcribed to produce proteins A and B, respectively (Figure 23). Protein A binds to the 
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gene A promoter site to activate protein A production and to the gene B promoter site to 

repress B production. Likewise, protein B activates gene B and represses gene A. The two 

most populated states therefore consist of either (1) high quantities of protein A and low 

quantities of protein B, or (2) high quantities of protein B and low quantities of protein A. 

Transitions between these two states are rare events.

Preparing the simulation environment.: For this portion of the tutorial, you can use 

either your own BNGL model or the ExMISA model described above, which is the default 

WEBNG example. WEBNG uses a YAML configuration file to set up a WESTPA folder. 

The WEBNG template subcommand gives you a YAML config file with the same defaults 

which you can then edit and use to generate the WESTPA simulation folder.

If you are using the default example, the command to generate the template is the following:

$ webng template -o mysim.yaml

If you are using your own model file called exmisa.bngl, the command is:

$ webng template -i exmisa.bngl -o mysim.yaml

This command will generate the YAML file, mysim.yaml. For the full set of configuration 

options, see https://webng.readthedocs.io/en/latest/config.html. Path options are specified 

automatically using the libraries that are already installed. Propagator options will also 

be automatically populated according to the BNGL model. By default, this simulation 

setup will use an adaptive Voronoi binning scheme [16] due to the fact that rectilinear 

binning is not feasible for high-dimensional BNG models. The center_freq option sets 

the frequency of Voronoi bin addition, in units of WE iterations, max_centers is the 

maximum number of Voronoi bins that will be added, traj_per_bin is the number of 

trajectory walkers per Voronoi bin, and max_iter option sets the maximum number of WE 

iterations. All of these options can be modified after the simulation folder is set up (see 

https://github.com/westpa/westpa/wiki/User-Guide#Setting_Up_a_WESTPA_Simulation).

By default, the stochastic simulator is set to libroadrunner (http://libroadrunner.org). To use 

this simulator, we must first convert the BNGL model to a systems biology markup language 

(SBML) model. Next, we use the WEBNG software to compile the SBML model into a 

Python object, which allows for efficient simulation of the model. WEBNG also supports the 

use of the BNG simulation package. However, the use of this package will result in higher 

file I/O operations. Any other stochastic simulator will require the use of a custom WESTPA 

propagator.

7.10.4 Running the WE simulation—To run the simulation, we first need to generate 

a WESTPA folder using the YAML configuration file generated in the previous step:

$ webng setup --opts mysim.yaml
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The above command will use the path option sim_name as the WESTPA folder, which is 

automatically set to the model name in the folder you ran the template command. Next, we 

initialize the simulation and run the model in a serial mode using a single CPU:

$ cd exmias

$ ./init.sh

$ w_run --serial

To run the model in a parallel mode using multiple CPU cores, please refer to WESTPA 

documentation for options available with the w_run command-line tool. The resulting 

simulation can be found in the exmisa/ folder directory.

7.10.5 Analyzing the WE simulation—To analyze the simulation, we will 

use the WEBNG package. To begin, we edit the YAML file under the 

folder that contains the configuration file mysim.yaml, setting analyses.enable, 

analyses.average.enable, and analyses.evolution.enable to True; and 

analyses.average.first-iter to the simulation half point (default: 50). To run the 

analysis, we use the following command:

$ webng analysis --opts mysim.yaml

The above command will generate an analysis/ folder in the simulation folder, run the 

analyses, and generate associated figures.

By default, average.png provides an N×N matrix of plots of the average two-dimensional 

probability distributions of each observable (dimension) of the WE progress coordinate 

(Figure 24) and each of the other observables. The evolution.png file gives the time-

evolution (number of WE iterations) of probability distributions for each observable (Figure 

25) and can be used to assess the convergence of simulation, making modifications to the 

binning scheme if necessary.

The average two-dimensional probability distributions reveal a total of four states: a low 

A/low B state, the symmetric low A/high B state and high A/low B states, and a high A/high 

B state (Figure 24). The fourth state is the least probable while the first three states are 

all highly probable. Transitions from low A/high B to high A/low B states are difficult to 

sample and transitions from low A/high B to high A/high B states are even more difficult 

to sample. The WE algorithm allows the user to sample these states and transitions between 

the states. All analyses should be based on the portion of the simulation that is done 

evolving. If the simulation is still evolving, we recommend extending the simulation until 

the observables of interest are reasonably converged.

7.10.6 Conclusion—As demonstrated by this tutorial, the WEBNG Python package 

provides a framework for applying the WESTPA 2.0 software package to BNGL models 

with minimal user input and simplified installation. The adaptive Voronoi binning scheme 
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enables efficient application of high-dimensional progress coordinates for both molecular 

and non-spatial systems. Voronoi bins can be effective for exploratory simulations, placing 

bins as far away as possible from previous bins to inform the creation of a custom 

binning scheme for sampling the rare-event process of interest. However, such bins may 

not be as effective for surmounting barriers (e.g., compared to the MAB scheme [19]), as 

demonstrated by the probability distribution as a function of the WE progress coordinate 

where many bins near the edges of the configurational space are occupied, but are not of 

interest. Future work with WEBNG will include more detailed analysis options such as 

automated clustering, generation of networks from bins and clusters, and the estimation of 

rate constants for transitions between the clusters.
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Figure 1. 
Overview of the weighted ensemble (WE) strategy [10]. WE typically employs bins, 

demarcated here by dashed vertical lines, to guide a set of trajectories to sample throughout 

configuration space. Using only ordinary dynamics–without biasing forces–WE replicates 

(“splits”) trajectories in unoccupied or under-occupied regions of space and prunes 

(“merges”) trajectories in over-occupied regions, according to the user-specified allocation 

scheme which here is a target of two trajectories per bin. Throughout the process, weights 

(partially filled circles) are tracked by statistical rules of inheritance that ensure that the 

overall ensemble dynamics are consistent with non-equilibrium statistical mechanics [16]. 

Figure adapted with permission from [9].
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Figure 2. 
Recommended simulation workflow that makes use of major upgrades in the WESTPA 2.0 

software.
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Figure 3. 
Convergence assessment and error analysis in the face of large run-to-run variation. The 

flux of probability into the target state B computed as a function of continuous molecular 

time, tmol, is shown for several independent WE runs (grey). The large variation among 

individual runs makes it challenging both to assess whether the transient period has ended 

and to construct reliable error bars (see text). The history augmented Markov State Model 

(haMSM) analysis (green lines) provides an estimate of the long-time behavior, and the 

Bayesian bootstrap credibility region (red lines) estimates the average transient behavior.
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Figure 4. 
Probabiity evolution of Na+/Cl− association as a function of interatomic distance and WE 

iteration. The distribution from your particular simulation may look slightly different. 

Observe that at the beginning of the simulation, the probability is centered around 12 Å 

(the initial distance).
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Figure 5. 
Mean flux evolution of Na+/Cl− association as a function of WE iteration. The mean 

flux alternatively rises sharply and then relaxes. These “peaks” correspond to probability 

crossing into the target state. Your plot may still not be completely converged after 100 WE 

iterations.
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Figure 6. 
Probability distributions for each of the two progress coordinate dimensions versus WE 

iteration for the p53 system. The simulation was analyzed after 10 WE iterations.
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Figure 7. 
Probability distributions for each of the two progress coordinate dimensions versus WE 

iteration for the p53 system. The simulation was re-analyzed after 40 WE iterations
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Figure 8. 
Ramachandran plot showing the occurance of φ/ψ angles of the second peptide bond of the 

p53 peptide, for each WE segment throughout the course of the simiulation.
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Figure 9. 
Cα RMSD vs simulation time for the brute force simulation of chignolin.
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Figure 10. 
Estimating the unfolding rate constant of chignolin. The 1 ns window-averaged unfolding 

rate constant is shown in a semi-logarithmic plot for three independent WE simulations 

(black, red, and green) that were started from the same folded starting structure (see lower 

left). The corresponding unfolding rate constant from the brute force simulation is indicated 

by the horizontal blue line and its confidence interval by the shaded region. The molecular 

time is the time elapsed, Nτ where N is the number of WE iterations that each have a length 

of τ. The aggregate simulation time was on average, ~1.3 μs for each simulation.
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Figure 11. 
Estimating the folding rate constant of chignolin. The 20-ns window-averaged folding rate 

constant is shown in a semi-logarithmic plot for three independent WESTPA simulations 

(black, red, and green profiles) with the same unfolded starting structure (see lower left). 

Note the significantly longer molecular and aggregate simulation times for each simulation 

to obtain converged rate constants of folding compared to unfolding (see Figure 10). The 

corresponding rate constant from the brute force simulation is indicated by the horizontal 

blue line and its confidence interval by the shaded region.
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Figure 12. 
Two-dimensional probability distribution as a function of the progress coordinate. Two 

representative, continuous trajectories that originate from distinct initial states are traced in 

cyan and white, respectively.
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Figure 13. 
Flow chart for simulating Na+/Cl− association using the new binless resampler module. 

After dynamics propagation in step 1, trajectories in each bin are grouped with the user-

specified group.py function. In this example, trajectory walkers are grouped using k-means 

clustering.
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Figure 14. 
The equilibrated double-membrane bilayer system used for initiating WE simulations of 

membrane permeation by 1-butanol in this tutorial. Both the POPC membrane bilayers 

(gray; hydrogens removed for clarity) and 1-butanol (black) are represented in van der Waals 

representation, while layers of explicit water molecules are shown as a transparent blue 

surface.
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Figure 15. 
Diagrams showing the differences in the propagation procedure between a vanilla WESTPA 

run and a run with the HDF5 framework. A) Procedures for propagating one WE iteration 

using the original WESTPA 1.0 framework (blue text) and WESTPA 2.0 HDF5 framework 

(red text). Using the WESTPA 2.0 HDF5 framework, the WESTPA software prepares the 

input files while the user is responsible for returning the progress coordinate (pcoord), 

restart, trajectory, and optional log files. B) Workflow for using the WESTPA 2.0 HDF5 

framework. Blue: Steps and files from the original WESTPA 1.0 procedure. Red: Files 

generated or prepared by the WESTPA 2.0 HDF5 framework.
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Figure 16. 
Schematic of haMSM restarting procedure. Trajectories from one or more WE runs are used 

together to build an haMSM. An estimate of steady-state is obtained from the haMSM, and 

is used to assign weights to all sampled structures. New WE runs are initiated from these 

steady-state weighted structures, and the procedure repeats. Figure reprinted with permission 

from [2]. Further permission related to the source material should be requested from ACS.
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Figure 17. 
Sample flux profile generated by haMSM restarting plugin after a restart. The x-axis 

is labeled “pseudocommittor”, since these are committor values generated from a 

unidirectional path ensemble. This plot should flatten in successive restarts until steady 

state is reached. The color scale indicates the progress coordinate associated with each 

pseudocommittor—notably, most of the dynamic range in committor-space is restricted 

to a small range of progress coordinate values. This image can be found in restart0/plots/

psuedocomm-flux_plot_pcoordcolor.pdf after restart is performed.
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Figure 18. 
A) A comparison of the RED and original schemes for estimating the rate constant for 

protein-protein association involving the barnase/barstar system from previously published 

WE simulations [6]. In this case, the simulation has not converged to a steady state, as 

indicated by different rate-constant estimates using the original and RED schemes. B) 

A comparison of different averaging schemes using the same dataset. While the RED 

scheme is, in principle, only compatible with rolling averages, the use of block and window 

averaging can still be informative for monitoring convergence of the simulation. C-E) 

Schematic illustrations of rolling, window, and block averaging schemes, indicating points 

where averages are calculated (blue) and the extent of data used for the averages (red).
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Figure 19. 
Free energy landscape of alanine dipeptide in the gas phase. Milestone positions are shown 

as vertical lines. Our aim is to simulate the MFPT of the transition from state A to state B.
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Figure 20. 
Convergence of the mean first passage time (MFPT) as a function of M-WEM iterations.
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Figure 21. 
Committor function along the φ coordinate from M-WEM simulation.
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Figure 22. 
Free energy landscape reconstructed from an M-WEM simulation.
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Figure 23. 
Two-gene network of exclusive mutual inhibition and self activation. Blue squares represent 

genes and orange circles represent proteins.
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Figure 24. 
Probability distributions as a function of the two-dimensional progress coordinate (off-

diagonal) and each dimension of the progress coordinate (diagonal). Axes A and B show 

the quantity of each protein in the two-gene model. Grey lines in each off-diagonal plot 

delineate adaptive Voronoi bins used during the WE simulation.
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Figure 25. 
Probability distributions of each observable (A or B) of the two-dimensional progress 

coordinate as a function of WE iteration. The striped nature of the distributions is due 

to the fact that A and B are discrete as opposed to continuous observables.
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Table 2.

$WEST_SIM_ROOT organization and file explanations

bstates/ directory containing basis states

env.sh set environment variables

init.sh initialize the WESTPA simulation

common_files/ directory containing files for dynamics (i.e. topologies)

run.sh run the WESTPA simulation

tstate.file define the target state (for steady state simulations only)

west.cfg specify main WE simulation parameters

westpa_scripts/ directory containing essential scripts

system.py a separate script to define functions or parameters (optional)

reference/ directory containing reference files for calculations (optional)
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Table 3.

haMSM plugin organization and file explanations

restart.dat Tracks current restart/run

restart_initialization.json User provided on start, modified by plugin during run

west.h5 Generated by WESTPA for the currently active run

restart0// Stores data from the first restart. 0-indexed.

 /JtargetSS.txt haMSM target steady-state flux estimate

 /pSS.txt haMSM steady-state distribution estimate

 /hamsm.obj Pickled msm_we.ModelWE object

 /startstates.txt Used for next restart, holds all weighted structures

 /basisstates.txt The initial set of basis states supplied to w_init

 /targetstates.txt The initial set of target states supplied to w_init

 /struct/ Complete set of structure files for all structures in startstates/

 /run*/ Backed up traj_segs/, seg_logs/, and west.h5 from each run in this 
marathon. 1-indexed.

 /plots/*.pdf Various auto-generated plots

restart*/ Other restarts
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