
UC Irvine
UC Irvine Previously Published Works

Title
A Suite of Tutorials for the WESTPA 2.0 Rare-Events Sampling Software [Article v2.0].

Permalink
https://escholarship.org/uc/item/3t6759vk

Authors
Bogetti, Anthony
Leung, Jeremy
Russo, John
et al.

Publication Date
2023

DOI
10.33011/livecoms.5.1.1655

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3t6759vk
https://escholarship.org/uc/item/3t6759vk#author
https://escholarship.org
http://www.cdlib.org/

A Suite of Tutorials for the WESTPA 2.0 Rare-Events Sampling
Software [Article v2.0]

Anthony T. Bogetti1,†, Jeremy M. G. Leung1,†, John D. Russo2,†, She Zhang3,†, Jeff P.
Thompson3,†, Ali S. Saglam4,†, Dhiman Ray5,†, Barmak Mostofian2, AJ Pratt1, Rhea C.
Abraham1, Page O. Harrison1, Max Dudek1, Paul A. Torrillo1, Alex J. DeGrave1, Upendra
Adhikari2, James R. Faeder4, Ioan Andricioaei5, Joshua L. Adelman4, Matthew C. Zwier6,
David N. LeBard3, Daniel M. Zuckerman2, Lillian T. Chong1,*

1Department of Chemistry, University of Pittsburgh, Pittsburgh, PA

2Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR

3OpenEye Scientific, Santa Fe, NM

4Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA

5Department of Chemistry, University of California Irvine, Irvine, CA

6Department of Chemistry, Drake University, Des Moines, IA

Abstract

The weighted ensemble (WE) strategy has been demonstrated to be highly efficient in generating

pathways and rate constants for rare events such as protein folding and protein binding using

atomistic molecular dynamics simulations. Here we present two sets of tutorials instructing users

in the best practices for preparing, carrying out, and analyzing WE simulations for various

applications using the WESTPA software. The first set of more basic tutorials describes a range

of simulation types, from a molecular association process in explicit solvent to more complex

processes such as host-guest association, peptide conformational sampling, and protein folding.

The second set ecompasses six advanced tutorials instructing users in the best practices of using

key new features and plugins/extensions of the WESTPA 2.0 software package, which consists of

major upgrades for larger systems and/or slower processes. The advanced tutorials demonstrate

the use of the following key features: (i) a generalized resampler module for the creation of

*For correspondence: ltchong@pitt.edu (LTC).
†These authors contributed equally to this work
8Author Contributions
AT Bogetti, JMG Leung, JD Russo, S Zhang, JP Thompson, AS Saglam, and D Ray developed and wrote the Advanced tutorials;
the primary author of each tutorial is designated as a co-first author of the overall manuscript. AT Bogetti, B Mostofian, AJ
Pratt, AS Saglam, PO Harrison, JL Adelman, M Dudek, PA Torrillo, AJ DeGrave, and U Adhikari developed and wrote the Basic
and Intermediate Tutorials 7.1–7.4 [38]. LT Chong, DM Zuckerman, DN LeBard, MC Zwier, JL Adelman, I Andricioaei, and JR
Faeder provided guidance for tutorial development. AT Bogetti, JMG Leung, LT Chong, DM Zuckerman, and MC Zwier wrote the
introductory sections leading up to the tutorials. RC Abraham helped generate trajectory data for Advanced Tutorial 7.5.
10Potentially Conflicting Interests
The authors declare the following competing financial interests): L.T.C. is a current member of the Scientific Advisory Board of
OpenEye Scientific and an Open Science Fellow with Psivant Sciences. S Zhang, JP Thompson, and DN LeBard are employees of
OpenEye Scientific.
12Content and Links
All files needed for the tutorials can be found at https://github.com/westpa/tutorials.

HHS Public Access
Author manuscript
Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

Published in final edited form as:
Living J Comput Mol Sci. 2023 ; 5(1): . doi:10.33011/livecoms.5.1.1655.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/westpa/tutorials

“binless” schemes, (ii) a minimal adaptive binning scheme for more efficient surmounting of free

energy barriers, (iii) streamlined handling of large simulation datasets using an HDF5 framework,

(iv) two different schemes for more efficient rate-constant estimation, (v) a Python API for

simplified analysis of WE simulations, and (vi) plugins/extensions for Markovian Weighted

Ensemble Milestoning and WE rule-based modeling for systems biology models. Applications

of the advanced tutorials include atomistic and non-spatial models, and consist of complex

processes such as protein folding and the membrane permeability of a drug-like molecule. Users

are expected to already have significant experience with running conventional molecular dynamics

or systems biology simulations.

1 Introduction and Scope of Tutorials

The WESTPA (Weighted Ensemble Simulation Toolkit with Parallelization and Analysis)

software package [1, 2] is a highly scalable implementation of the weighted ensemble

(WE) path sampling strategy [3, 4] that has helped transform what is feasible for molecular

simulations in the generation of pathways for long-timescale processes (> μs) with rigorous

kinetics. Among these simulations are atomically detailed simulations of protein folding [5],

protein-protein binding [6], protein-ligand unbinding [7], and the large-scale opening of the

SARS-CoV-2 spike protein [8]. The latter involved the slowest process (seconds-timescale)

yet studied for a massive system (one million atoms) using WE simulations. As a “bleeding

edge” application, these efforts have motivated major upgrades to WESTPA (version 2.0)

that enable the sampling of processes at even longer timescales and more streamlined

handling of large datasets [2]. Like its predecessor, WESTPA 2.0 is a Python package that

is (i) interoperable, enabling the use of any type of stochastic dynamics simulation (e.g.,

MD or Monte Carlo simulations) and any model resolution (e.g., atomistic, coarse-grained,

non-spatial or spatially resolved systems biology models) [9, 10]; and (ii) extensible, making

it straightforward to modify existing modules or create plug-ins in order to support new

scientific efforts.

Here we present a suite of tutorials organized into two groups. The first four tutorials,

presented in the original version of this paper, range in order of difficulty from basic to

intermediate, including a tutorial involving the suite of analysis tools.

The second group of tutorials addresses new features in the major upgrades appearing in

the WESTPA 2.0 software package. Among these tutorials is one involving the Markovian

Weighted Ensemble Milestoning (M-WEM) approach [11], which interfaces the WE

strategy with another path sampling method called milestoning [12, 13]. In the final

tutorial, we broaden the scope of path sampling to a systems biology application involving

a WESTPA plugin for enhancing the efficiency of Monte Carlo simulations using the

BioNetGen systems biology package [14, 15].

For general prerequisites to attempting these tutorials, please see Section 1.3 below. All files

for the tutorials can be found online in the WESTPA Tutorials GitHub repository https://

github.com/westpa/tutorials. In each tutorial, we outline learning objectives and expected

outcomes.

Bogetti et al. Page 2

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/westpa/tutorials
https://github.com/westpa/tutorials

1.1 Learning objectives

After completing the Basic Tutorial 7.1 involving the simulation of Na+/Cl− association, the

user should be able to:

1. Understand the main simulation directory layout

2. Choose a progress coordinate

3. Choose an appropriate binning scheme

4. Prepare input files

5. Monitor a simulation

After completing the Intermediate Tutorial 7.2 involving the conformation sampling of a p53

peptide fragment, the user should be able to:

1. Set up a two-dimensional progress coordinate

2. Monitor this coordinate as the simulation progresses

3. Evaluate whether the binning scheme is effective

4. Combine and create bins “on-the-fly”

5. Store and access auxiliary data

After completing Intermediate Tutorial 7.3 involving the folding/unfolding of the chignolin

mini-protein the user should be able to:

1. Use brute force simulations to identify appropriate initial and/or target states

2. Obtain the probability flux into the target state of a WESTPA simulation, convert

it to a mean rate constant, and interpret the results

3. Approach larger, more biologically relevant events (like protein folding) with a

WE-oriented mindset

After completing the Analysis Tutorials 7.4, the user should be able to:

1. Calculate progress coordinates using an external analysis suite (MDTraj or

MDAnalysis)

2. Automate analysis and interactively explore WE simulation data using the w_ipa

tool

3. Create a movie of how a probability distribution evolves with time

After completing Advanced Tutorial 7.5, which involves the simulation of Na+/Cl−

association, the user should be able to:

1. Create a customized binless resampler scheme for splitting and merging

trajectories based on by k-means clustering using the BinlessMapper

resampler module;

2. Initiate a WE simulation from multiple starting conformations;

Bogetti et al. Page 3

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

3. Combine multiple WE simulations for analysis using the w_multi_west

multitool;

4. Perform post-simulation analysis using the w_crawl tool.

After completing Advanced Tutorial 7.6 involving the simulation of drug membrane

permeation, the user should be able to:

1. Set up a double membrane bilayer system for permeability studies;

2. Use the highly scalable HDF5 framework for more efficient restarting, storage,

and analysis of simulations;

3. Apply the minimal adaptive binning (MAB) scheme.

After completing Advanced Tutorial 7.7 involving the simulation of ms-timescale protein

folding, the user should be able to:

1. Apply the haMSM plugin for periodic reweighting of simulations;

2. Use the msm_we package to build an haMSM from WE data;

3. Estimate the distribution of first passage times.

After completing Advanced Tutorial 7.8 involving the creation of custom analysis routines

and calculation of rate constants, the user should be able to:

1. Access simulation data in a west.h5 file using the high-level Run interface

of the westpa.analysis Python API and retrieve trajectory data using the

BasicMDTrajectory and HDF5MDTrajectory readers;

2. Access steady-state populations and fluxes from the assign.h5 and

direct.h5 data files, convert fluxes to rate constants, and plot the rate constants

using an appropriate averaging scheme;

3. Apply the RED analysis scheme to estimate rate constants from shorter

trajectories;

After completing Advanced Tutorial 7.9 involving simulations of alanine dipeptide using the

M-WEM method, the user should be able to:

1. Install the M-WEM software and perform a M-WEM simulation;

2. Create milestones to define the M-WEM progress coordinate;

3. Analyze an M-WEM simulation to compute the mean first passage time,

committor, and free energy landscape.

After completing Advanced Tutorial 7.10 involving rule-based modeling of a gene switch

motif using the WESTPA/BNG plugin, the user should be able to:

1. Install the WESTPA/BNG plugin and set up a WESTPA/BNG simulation;

2. Apply adaptive Voronoi binning, which can be used for both non-spatial and

molecular systems;

3. Run basic analyses tailored for high-dimensional WESTPA simulations.

Bogetti et al. Page 4

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The tutorials will use an array of different dynamics packages to showcase WESTPA’s

interoperability. In each tutorial, all of the required software, including the dynamics engine

and analysis tools, are freely available with easily-accessible online documentation. Please

note the version of each software package listed in the Computational Requirements
section of each tutorial.

1.2 The Weighted Ensemble Strategy

WE is a highly-parallel path sampling strategy for generating rare events, for studying non-

equilibrium steady states, and less commonly, for studying equilibrium properties. At heart,

it is a simple and flexible strategy which is agnostic to system type and which therefore

lends itself to numerous applications and optimizations. The properties of WE, including

strengths and limitations, have been reviewed in detail before [4], although improvements

continue to be developed [17–21]. Here, we briefly review key aspects of WE.

The Basic WE Procedure.—See Figure 1. WE orchestrates multiple trajectories—

each assigned a weight—run in parallel by stopping them at regular time intervals of

length τ (typically a large multiple of the underlying simulation time step), examining

the trajectories, and restarting a new set of trajectories. The new trajectories are always

continuations of the existing set, but some trajectories may not be continued (they are

“pruned”) and others may be replicated. Discontinued trajectories result from probabilistic

“merge” events where a continued trajectory absorbs the weight of one that is pruned.

Replicated trajectories are said to be “split” with the original weight shared equally among

the copies. Usually bins in configuration space are used to guide split and merge events

based on a target number of trajectories for each bin, but any protocol—including binless

strategies highlighted below—may be used for this purpose. Regardless of the resampling

protocol, a “recycling” protocol often is used whereby events reaching a user-specified target

state are reinitiated according to a specified distribution of start states [22]. This recycling

protocol focuses all sampling on a single direction of a process of interest and has valuable

properties as noted below.

WE is Resampling, and Hence Unbiased.—The simple steps defining WE

simulations stem from its basis as a statistical “resampling” procedure [16]. The split/merge

steps generate a statistically equivalent (re)sample of an initial trajectory set by increasing/

reducing trajectory density in some regions of configuration space at a given time, using

weight adjustments to maintain the underlying trajectory distribution. The trajectory set

is therefore unbiased at all times, i.e., average time-dependent observables derived from

many WE runs will match the average of a large number of conventional simulations

without splitting or merging events [16]. Furthermore, the distributions of transition path

times (“barrier crossing times”) from WE runs match those from converged conventional

simulations, and can be generated in orders of magnitude less computing time [23, 24].

The lack of bias in the dynamics of WE runs holds true regardless of whether recycling is

employed.

Observables and Ensembles Sampled by WE.—WE can yield transient and/or

steady-state observables. When recycling is not used, WE provides pathways, i.e., sequences

Bogetti et al. Page 5

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

of conformations in a transition and the frequencies of those sequences, in addition to

time-dependent observables as the system relaxes to equilibrium, e.g., the probability of a

given event at a given time after initiation in the chosen starting state. Complex systems are

unlikely to relax fully to equilibrium during a WE simulation. With a recycling protocol, the

system will not relax to equilibrium but instead to a non-equilibrium steady state (NESS)

that has steady probability flow from initial to target state. If reached, the NESS provides a

simple mechanism for computing rate constants via the Hill relation [22]. However, although

relaxation to a NESS can be considerably faster than relaxation to equilibrium [25, 26], the

process may be too slow for WE to reach NESS on practical timescales, motivating the

haMSM approach [5, 18] described below.

Resampling Introduces Correlations, which Increase Variance.—WE has

intrinsic limitations, like any method [27], and it is essential to understand them. Most

fundamentally, splitting and merging introduce correlations into the sampled trajectory

ensemble that could decrease its information content. These stem primarily from splitting

events: multiple trajectories share an identical history up to the time of the split event and

hence do not contribute fully independent information to any observable. These correlations,

in turn, can lead to large run-to-run variance [5] because the trajectory ensemble in each

WE run results from a relatively small number of “parent” trajectories which have been

split repeatedly. This variance is addressed to some extent by the iterative haMSM protocol

described below, and more directly by ongoing mathematical optimizations noted below.

Importantly, correlations within WE ensembles lead to significant challenges in quantifying

uncertainty [4, 28].

Ongiong Efforts at Optimization and Variance Reduction.—Because WE is

unbiased so long as a correct resampling protocol is used [16], there is an opportunity

to reduce the run-to-run variance noted above by improved resampling procedures. In

the context of binned WE simulations, both the construction of bins and the number

of trajectories per bin can be optimized based on a recently developed mathematical

formulation [21, 29] or based on heuristics [19]. Bins do not need to be kept static over

time [16, 19]. Optimization approaches are actively being studied and incorporated into

WESTPA as appropriate.

WE Cannot Solve Every Problem.—Despite its great strengths and highly notable

achievements [5, 7, 8], users should not assume WE can tackle any problem. Independent

of the correlation/variance issues noted above, certain systems will remain too complex for

WE given current hardware and algorithms. In every system, there is a minimum transition

path time tTP (also called tb) [30, 31] for physically realistic events which sets an absolute

requirement on sampling required: in a WE run, a set of trajectories exceeding the minimum

tTP must be generated, which may be a prohibitive cost. Additionally, even if the necessary

computing resources are available, current binning and resampling strategies might not be

sufficient to generate events of interest. And finally, even if events of interest are generated,

the sampled trajectories may be insufficient for producing observables of interest such as a

reliable estimate of the rate constant.

Bogetti et al. Page 6

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

1.3 Prerequisites and Computing Requirements

Background Knowledge and Experience.—The WESTPA software is not intended

for total beginners in molecular simulation. Users should already have extensive experience

running conventional simulations using the underlying dynamics engine of interest (Amber

[32], OpenMM [33], BioNetGen [14], etc.). Prior to applying the WE strategy to their own

systems, we suggest that users run multiple conventional simulations to (i) ensure that the

preparation of the system and propagation of dynamics is according to best practices (e.g.,

see [34]), (ii) identify potential progress coordinates and initially define the target state, and

(iii) estimate the ns/day on a single CPU/GPU for your system and storage needs for the

full-scale WE simulation. We highly recommend that new WESTPA users read this review

article [4] and this introduction to non-equilibrium physics of trajectories [35]. It is also

important to identify sources of validation for your simulation (e.g., from experiment and/or

standard simulations) and to be familiar with the estimation of statistical uncertainty in the

computed observables, including those used for validation [36].

Software Requirements.—The WESTPA 2.0 software is a standard Python package that

can be used on any Unix operating system. The software requires Python versions ≥3.8

and a number of standard Python scientific computing packages. We recommend installing

WESTPA either as a PyPI or conda package using miniconda. Both packages provide all

required software dependencies and can be installed using one-line commands: (1) python

-m pip install westpa or (2) conda install -c conda-forge westpa. Note

that it is a best practice to install WESTPA into an isolated virtual or conda environment,

along with the dependencies specific to your project. Due to the use of the MDTraj Python

library with the WESTPA 2.0 HDF5 framework, certain modifications to the installation

procedure are required for running WESTPA 2.0 on ppc64Ie architectures (e.g., TACC

Longhorn or ORNL Summit supercomputers; see https://github.com/westpa/westpa/wiki/

Alternate-Installation-Instructions).

WESTPA 2.0 is designed to be interoperable with any dynamics engine, requiring an

external dynamics engine to propagate the dynamics in a WE simulation. Please see the

prerequisite sections of each tutorial for additional software requirements that are specific to

that tutorial.

Hardware Requirements.—Like its predecessor, WESTPA 2.0 is highly-scalable on

CPUs/GPUs, making optimal use of high-performance computing (HPC) clusters available

at academic institutions or supercomputing centers. Memory requirements are dependent on

the underlying dynamics engine, e.g., ~1 GB per CPU core (or GPU) for atomistic MD

simulations. Users should refer to the best practices of their dynamics engine of choice to

determine the optimal allocation of resources for each CPU/GPU. The most efficient way

to run WESTPA is to use a computing resource that provides the user with a number of

CPUs/GPUs—all the same processor speed—that either matches the number of trajectories

per WE iteration or a number by which the number of trajectories at any point in time is

evenly divisible. WE can nevertheless run on heterogeneous hardware (different processor or

memory bus speeds) or with trajectory counts that do not divide evenly onto CPUs/GPUs,

Bogetti et al. Page 7

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/westpa/westpa/wiki/Alternate-Installation-Instructions
https://github.com/westpa/westpa/wiki/Alternate-Installation-Instructions

but this scenario decreases efficiency as some processors are inevitably idle for at least a

portion of the overall runtime.

Users can estimate the approximate storage space required for their project by taking the

product of the following: (i) amount of disk space required for storing data from one

trajectory segment of length τ, (ii) the maximum number of trajectories per WE iteration,

and (iii) the total number of WE iterations required to generate a reasonable maximum

trajectory length. To optimize the use of storage space, we recommend that users tar up

trajectory files into a single file for each WE iteration and remove coordinates of the system

that are not of primary interest (e.g., solvent coordinates for certain processes). We note

that the WESTPA 2.0 HDF5 framework dramatically reduces the storage space required

for trajectory coordinates by consolidating the data from millions of small trajectory files

into a relatively small number of larger HDF5 files, reducing the large overhead from

the file system that results from the storage of numerous small trajectory files. By doing

so, the HDF5 framework also alleviates potential I/O bottlenecks when a large amount of

simulation files are written after each WE iteration.

2 Workflow of Running a WE Simulation

An overview of the workflow for running a WE simulation using WESTPA is detailed

below. This workflow is only meant to give a sense of the mechanics and flow of using

WESTPA once your system and WE parameters have already been carefully chosen. See

Table 2 for a summary of all files mentioned in this workflow.

Overall Flow

Ready: The purpose of this step is to ensure that the chosen WE parameters are correctly

specified in the proper places and that all environment variables are correctly set. Most of

the WE parameters (such as the number of WE iterations, binning scheme etc.) and auxiliary

datasets (auxdata; see Section 7.2) are specified in the west.cfg file. You can view an

example of this file in any of the tutorials below; labels exist directing where to specify each

parameter. More complex binning schemes (such as recursive schemes or schemes involving

functional bin mappers) can be specified in an external file called system.py. A user may

also choose to write functions to this file. Usually, these functions will calculate progress

coordinate or auxiliary data and are more complex than usual.

The environment is set up in the env.sh file. The location of the main WESTPA simulation

directory ($WEST_SIM_ROOT) and the location of dynamics/analysis programs are placed

in your system path. When setting up WESTPA on a cluster, program modules will be

loaded in the runwe.slurm file instead of the env.sh file (see Section 7.1.3 and view the

cluster-specific runwe.slurm file). It is a best practice to define variables in env.sh for

each program that will be called. These variables should contain the full path to that program

(such as CPPTRAJ=$(which cpptraj), see Section 5.1 for more information). Always

source env.sh before trying to run WESTPA just to see if any errors appear relating to

programs not being found. If errors are present, edit env.sh to specify the proper locations of

programs and try to source it again. The goal of this action is to make sure that any issues

Bogetti et al. Page 8

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

with your environment are fixed before continuing so that troubleshooting becomes much

easier later on.

Set: After setting up the system environment and specifying the WE parameters, users will

need to initialize the simulation. This involves running the init.sh script, which will take

an initial structure (or structures), calculate a progress coordinate (pcoord for short, this is

also the name used in WESTPA datasets pertaining to the progress coordinate) value for that

structure and then place that structure in the appropriate bin. The init.sh file is also the

location where users can specify whether the simulation will be run under equilibrium or

steady-state conditions.

Place the starting structure(s) in the bstates/ directory. The structure should be a

coordinate file giving the starting configuration of your system (e.g. Amber restart file).

The bstate.file tells WESTPA which structure to use as the initial structure for the

simulation. If you have only one structure, this file will contain the name of that structure

only; if you have more than one structure, bstate.file should list each structure along

with its associated statistical weight. An example of the latter is a representative ensemble

of unbound protein conformations in a binding process that could be generated using a prior

equilibrium WE simulation [6, 37].

Next, specify whether the simulation will be run under equilibrium or steady-state

conditions. This specification is made in the init.sh file. Including a $TSTATE_ARGS

argument for w_init will signal for WESTPA to run under steady state conditions. The

tstate.txt file in the main simulation directory is where the progress coordinate value

of the target state is specified. If the $TSTATE_ARGS argument is absent, the simulation

will be run under equilibrium conditions. See the tutorials in Sections 7.1 and 7.2 below

for examples of how init.sh will change from running a steady-state simulation versus an

equilibrium simulation (respectively).

Running init.sh will cause WESTPA to execute get_pcoord.sh, which is a script

located in westpa_scripts/. This script will give an initial progress-coordinate value for

the basis state(s) (located in bstates/) to WESTPA.

Users will need to modify get_pcoord.sh to either read or calculate the progress

coordinate for their particular simulation. For instance, in the Basic Tutorial 7.1, the distance

between the Na+ and Cl− ions is used as the progress coordinate. The get_pcoord.sh

file for that tutorial simply prints the contents of an already-existing file (pcoord.init,

which already contains the calculated value) and passes that value to WESTPA. However,

get_pcoord.sh can also perform the calculation for the basis state, as in the Intermediate

Tutorial 7.2. However this is done, a value (or values) for that progress coordinate should

be echoed into $WEST_PCOORD_RETURN, a WESTPA variable containing all of the progress

coordinate values for the entire simulation (see Section 7.2 for the added considerations if a

two-dimensional progress coordinate is used).

If errors appear while trying to initialize the simulation, the following troubleshooting

methods are recommended. First, make sure that the command entered in get_pcoord.sh

Bogetti et al. Page 9

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

properly calculates the progress coordinate. Copy the initial structure from the bstates/

directory to another directory and run the command. If the command does not work, make

sure the proper atoms and residues are selected and then try running the command again. If

the command works, make sure that the calculated value is being successfully echoed into

$WEST_PCOORD_RETURN.

To make troubleshooting easier, turn on logging for the get_pcoord step in the west.cfg

file. By setting the location of the standard output (stdout) and/or standard error (stderr)

to $WEST_SIM_ROOT/get_pcoord.log, you can more closely monitor the output of the

get_pcoord.sh script to try to find out where things are not working.

Go: Running the run.sh script will start a WESTPA simulation. If init.sh was just run,

a new simulation will begin and continue until the number of WE iterations specified in

west.cfg have been completed. If the simulation was stopped after previously running,

run.sh will continue the simulation from the point at which it was stopped. If WESTPA

is being run on a cluster, then this script will take the form of a Slurm or other submission

script (such as runwe.slurm, see the Basic Tutorial 7.1 for an example). WESTPA

will propagate dynamics for one trajectory segment (of length τ) and calculate progress

coordinate values (and all auxiliary data) for the propagated structure(s). After completing a

trajectory segment, WESTPA will combine and replicate trajectories to maintain the target

number of trajectories per bin (as specified in the west.cfg file). One cycle of dynamics

and combination/replication is referred to as a single WE iteration. The number of iterations

is repeated until the observable of interest (e.g. rate constant) is reasonably converged.

Running run.sh will cause WESTPA to execute runseg.sh, which is a script similar to

get_pcoord.sh, located in westpa_scripts/. Users will need to modify runseg.sh to

call the dynamics engine and calculate the appropriate progress coordinate (and auxiliary

data) value(s). Refer to the runseg.sh file in the Basic Tutorial 7.1 as an example. This

particular simulation uses Amber’s pmemd program for dynamics propagation. Running this

program requires a certain input/output syntax that is specific to the dynamics engine (such

as Gromacs or OpenMM). The section of this file that calculates the progress coordinate

will be identical to that in the get_pcoord.sh file. If a user is collecting auxiliary data (as

specified in the west.cfg file), those values will need to be calculated after calculating the

progress coordinate value (see Intermediate Tutorial 7.2).

Since runseg.sh will cause many different files to be generated, it is important to consider

how WESTPA is handling these files, especially when using a shared file space such as on

a cluster. The methods used in the example runseg.sh files that have been provided in the

tutorials below are sufficient in most cases, but please refer to Section 5.1 for a discussion on

file management and network traffic.

If there are any errors in the WESTPA setup (e.g. incorrect number of elements in the

pcoord array, misplaced input files), the simulation will not proceed past the first WE

iteration. If this is the case, check the west.log file to see if there is a good reason for

why the simulation is failing. Usually, however, detailed logging of any errors is available

in the seg_logs/ directory for each segment of each iteration. View the segment log for a

Bogetti et al. Page 10

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

particular segment to see if the dynamics are completing successfully and that the progress

coordinate (and auxdata) values are being calculated and passed to the appropriate variables

(such as $west_pcoord_return).

If the dynamics fail to start, copy all necessary input files into an empty directory and run

the dynamics manually. If no errors appear, make sure that your progress coordinate consists

of the proper number of datapoints (as specified in the west.cfg file). Also remember that

you must include the parent coordinate file as your first data point when storing the progress

coordinate data. This will ensure that the analysis tools work properly.

This is determined by the frequency at which the progress coordinate is being calculated.

For example, if WESTPA expects 50 progress coordinate values per τ and only receives 10

values, the simulation will fail after the first WE iteration. Check the dynamics input file

(md.in in the Basic and Intermediate Tutorials 7.1–7.2) to make sure that the coordinates of

your system are being saved at a frequency that matches the number of specified progress

coordinate values.

If the simulation proceeds to the second iteration, there should not be any errors in the

WESTPA setup. To monitor the progress of the WE simulation, use w_pdist to generate

probability distributions as a function of your progress coordinate and WE iteration.

WESTPA’s piothist command will allow you to visualize these probabity distributions

with a few different visualization options (see Tutorials 7.1–7.2).

Analyze: All data generated from the simulation is contained in one place: the west.h5

file. From this data, users can track the evolution of progress coordinate values, calculate

fluxes into certain bins or states (see the w_ipa analysis tutorial in Section 7.4.2) and view

other statistics pertaining to the simulation. To visualize a completed trajectory, refer to

Basic Tutorial 7.1 and the Analysis Tutorial 7.4 involving the visualization of trajectories

(Section 7.4.3).

To assess the convergence of the simulation, a user might want to monitor the evolution of

the flux into a target state as a function of the number of WE iterations by using the hdfview

program to plot the target_flux_ evolution dataset in the direct.h5 file generated by

w_ipa (see Tutorial 7.1).

3 Additional Simulation Workflow with WESTPA 2.0 Upgrades

Given the major upgrades in the WESTPA 2.0 software package [2], we recommend the

three-stage simulation workflow illustrated in Figure 2. These workflow details are meant

to supplement the simulation workflow outlined above. Details of the particular schemes

mentioned are provided in the relevant Advanced tutorials 7.5–7.10.

In the first (“Ready”) stage, if one uses a binned resampling scheme, we recommend

using one of the two adaptive binning schemes available in WESTPA 2.0: the minimal

adaptive binning (MAB) scheme or adaptive Voronoi binning scheme. These adaptive

binning schemes enable quicker explorations of the chosen progress coordinate than

manual, fixed binning schemes. The MAB scheme is effective at surmounting barriers in

Bogetti et al. Page 11

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

a direction of interest [19] while the adaptive Voronoi binning scheme [16] is ideal for

enhanced sampling in high-dimensional space (more than three dimensions) when all parts

of the progress-coordinate space are potentially important. However, if progress-coordinate

space includes, for example, undesirable unfolded protein conformations, adaptive Voronoi

binning might allocate bins and computing resources to those regions. Besides the adaptive

binning schemes, one can opt for a “binless” resampling scheme by defining a grouping

function as described in Advanced Tutorial 7.5 below. The choice of τ (the resampling

interval used for your WE simulation) should also be made on a system-by-system basis,

with a sufficiently long time interval to capture relevant motions of interest but not so long

that no net progress is made toward the target state. Examples of τ values used for various

systems in previous WE studies are provided in the first suite of WESTPA tutorials [38],

but some trial-and-error will likely be necessary. Convergence of a WE simulation will

ultimately depend on the overall goal of running the simulation, but will most likely involve

the time-evolution of an observable of interest leveling off over time (e.g., trajectory flux

into a user-defined target state). If the convergence criterion is not met, a WE simulation

using WESTPA can be resumed by simply running the run.sh script or resubmitting the job

if it was originally run with slurm. Even if changes were made to the progress coordinate or

binning, WESTPA will incorporate those changes and resume the simulation accordingly.

In the second (“Set”) stage, we recommend starting the WE simulation from multiple,

pre-equilibrated starting conformations that are representative of the initial stable state (at

least one “basis state” for each trajectory walker) to improve the sampling of the initial state

and diversity of generated pathways to the target state. Initial structures for a WE simulation

should be chosen on a system-by-system basis, but in general, more starting structures

(each with a slightly different initial configuration) should provide you with a more diverse

trajectory ensemble. When the initial state of interest is well-defined, only a small number

of structures may be necessary, but a truly heterogeneous initial state such as the unbound or

unfolded states will require more structures to be representative of the intrinsic diversity. As

discussed in Section 7.5, these “basis” structures will govern the recycling process (if used),

so care should be exercised in choosing them.

In the third (“Go/Analyze”) stage, we recommend applying one of the following three

options to further accelerate convergence to a steady state once successful pathways are

generated. The Rates from Event Durations (RED) analysis scheme [20] estimates rate

constants more efficiently than the original WE scheme [3] by exploiting information in

the transient region of the simulation. Another option is the haMSM plugin, which employs

a fine-grained “microbin” analysis and can be used to not only estimate rate constants

following WESTPA simulation (e.g., for the seconds-timescale coronavirus spike opening

process [39]), but to also restart trajectories with their weights adjusted for a steady state

[2], Because restarts in the haMSM plugin are initiated from configurations occurring

throughout previously run trajectories, the continuity of the generated pathways is broken.

The third option is the weighted ensemble steady state (WESS) plugin [22], which uses the

less fine-grained WE bins to estimate steady state but preserves the continuity of pathways,

restarting from only the final points of trajectories. While all trajectory files of the chosen

dynamics engine are saved by default, we recommend storing the trajectory coordinates

Bogetti et al. Page 12

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

using the WESTPA 2.0 HDF5 framework, which greatly facilitates the restarting, storage

efficiency, and analysis of WE simulations. When possible, users should run multiple

WE simulations, which provides a greater number of independent pathways and enables

straightforward estimation of error using the Bayesian bootstrap method [28] (see https://

github.com/ZuckermanLab/BayesianBootstrap).

Random Seeds for Simulations.

For WE trajectories to diverge from one another after a splitting event, a stochastic

thermostat is required for MD simulations. Furthermore, the random number seeds for

such thermostats must be sufficiently random (uncorrelated) to avoid undesired bias of

the dynamics when trajectories are restarted at short time intervals (e.g., in the case of

WE simulations) [40]. To avoid such bias, we strongly recommend using WESTPA’s

system entropy-seeded random number facility instead of any time-seeded random number

generator of the chosen dynamics engine. To use this facility, we first set the random seed

to RAND in the dynamics input file (e.g., ig=RAND in the AMBER md. in file) and then

specify this input file in runseg.sh, which will replace the RAND stringwith the WESTPA

random number seed.

Extremely Low Trajectory Weights.

While it is possible to set a minimum threshold weight (e.g., 10−100) for trajectories

to be considered for splitting, the generation of trajectories with extremely low weights

(e.g., <10−100) is a potential warning sign that the division of configurational space is

not capturing all relevant free energy barriers. If a WE simulation yields such trajectories,

we strongly suggest re-evaluating the choice of progress coordinate and/or restricting the

binning to a carefully chosen subset of configurational space that would avoid generating

such trajectories. For example of the latter, see Advanced Tutorial 7.6.

4 General Guidelines for Choosing WE Parameters

Suitable WE parameters such as the progress coordinate, binning scheme, and resampling

interval τ depend on the particular system under investigation and the particular process of

interest. Note that all of these WE parameters are tightly coupled to one another. Below

are general recommendations that aim to assist in choosing these parameters. See Table 2

for examples from the literature. Currently, choosing WE parameters is something of an art,

although the hope is to automate some aspects of parameter selection in the future. For now,

we suggest what may be considered a semi-systematic, trial-and-error procedure:

1. Initially, choose the simplest 1D coordinate that would be expected to capture

the slowest relevant motion along with initial bin spacings, τ value, and number

of trajectories/bin. Choose these initial parameters following examples in the

tutorials and/or literature, bearing in mind they likely will require modification.

2. The τ value should be sufficiently long such that at least one trajectory

progresses to the next bin. In addition, a code scaling test (plot of the time

required to complete a WE iteration vs. τ value) should be carried out for a range

Bogetti et al. Page 13

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/ZuckermanLab/BayesianBootstrap
https://github.com/ZuckermanLab/BayesianBootstrap

of potential τ values on the intended computer hardware to identify a τ value that

yields reasonable linear scaling.

3. If your system stops advancing along your progress coordinate, consider

reducing the τ value, increasing the number of trajectories/bin, and/or using

a finer bin spacing in that region of the progress coordinate while combining

bins from higher probability regions. Note that bin spacings are arbitrary in

WESTPA and the most efficient bin sizes likely are not exactly equal. Details for

combining and creating bins “on-the-fly” are provided below in the Intermediate

Tutorial 7.2.

4. If none of the above efforts in step 3 are effective based on a one-dimensional

progress coordinate, your progress coordinate may be missing orthogonal and

relevant slow degrees of freedom. To address this issue, consider using a two-

dimensional progress coordinate (Section 7.2) [[6, 37]] or a “nested” coordinate

in which the progress coordinate switches to monitoring another observable

once a particular value for the initial observable is reached. Note that additional

dimensions in the progress coordinate greatly increase the number of bins and

hence the cost of the WE run, which is the motivation for nesting an additional

coordinate in only a subset of the initial bins. You might also consider binning

strategies that are not based on user-defined coordinates, but instead employ

Voronoi cells potentially in conjunction with a string method. The WESTPA

community will continue researching the important topic of self-adjusting

adaptive bins. If all of your best efforts fail to generate transitions, consider

simplifying your system (e.g. coarse-graining the model) and/or applying

methods that involve the introduction of external forces (e.g. umbrella sampling)

to generate initial transitions that can further inform the choice of progress

coordinate.

5 Cluster-Specific Considerations

To take full advantage of WESTPA’s scaling and parallelizability, users may seek to run the

software on HPC clusters. The tutorials included herein are written with the goal of teaching

new and relatively inexperienced users the basics of using the software and therefore do not

focus on optimizations pertaining to the code. We recommend that users become familiar

with running WESTPA on a cluster, especially the cluster-specific issues and considerations

that may arise.

5.1 Minimizing the Number of Output Files

It is advisable to minimize the number of output files generated by your simulation as this

reduces the I/O overhead and will therefore be less taxing on the filesystem of the computing

cluster. We recommend saving only the restart files that are necessary for continuing

trajectories and analysis of the simulation. If the user needs additional information (e.g.

coordinates that have been saved at a greater frequency than the τ value) contained in certain

output files, those files should of course be kept. To further reduce the number of files, we

Bogetti et al. Page 14

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

suggest separately tarring up the files for each WE iteration. The resulting tarballs will also

facilitate any transferring of your simulation data to another location.

In some cases such as WE simulations that are run using GPUs, trajectory segments can

complete too quickly, leading to a bottleneck where the transfer of files over the network to

the local storage of the node is too slow or there are too many transfers over the network.

In such cases, copy over the data of the entire previous WE iteration as a tarball to the local

storage of the node, run the entire iteration from this local storage, and copy back the results

to the scratch space in a single tarball. While these transfers over the network will add some

overhead to each WE iteration, they will avoid the network bottleneck.

5.2 Data Management

A single WE simulation may generate multiple terabytes of data, presenting a challenge for

storage and retrieval of data. Moreover, using short trajectory segments in WE simulations

commonly results in a large numbers of small files, which are managed more slowly on

some file systems than a smaller number of large files with the same overall disk size. To

alleviate these potential issues, we recommend the following:

1. Perform an initial run to monitor data storage and retrieval. Note that the initial

number of trajectory segments may be a small fraction of the amount that would

be generated in the eventual production run.

2. Delete unnecessary files as each trajectory segment is simulated (see example

runseg.sh files in the Basic and Intermediate Tutorials 7.1–7.3). Unnecessary

files may include input files, log files from analysis tools, and raw text output

files from analysis tools. Often, useful data from log files (e.g., temperature from

an MD simulation) may be extracted from the log files and saved as auxiliary

data to the WESTPA data file (west.h5 file), which stores data more efficiently

than raw text.

3. Tar and optionally compress data from each WE iteration. This strikes a balance

between excessive file count and excessive file size, either of which is typically

sub-optimal for long term storage, especially on tape systems that may not

guarantee the integrity of large files.

4. Consider saving coordinates for only the solute atoms of your system to an H5

file.

5.3 Minimizing Network Traffic Across Multiple Computing Nodes

Given the large scale of a WESTPA simulation, it is advisable to limit the number and

frequency of network operations (e.g. I/O operations and file transfers from the local disk to

the global filesystem). We recommend the following strategies for reducing network traffic:

1. Perform a code scaling test to identify an appropriate τ value (see Section 4

above).

Bogetti et al. Page 15

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2. Set environment variables to the full pathnames of repeatedly used programs

(e.g. analysis tools used to calculate progress coordinates; see Basic Tutorial

7.1).

3. Copy repeatedly accessed files (e.g. reference structures and analysis scripts) to

local scratch space and temporarily write the output files to this scratch space.

After each trajectory segment of length τ completes, tar the output files, and

copy the tarred files to the globally accessible filesystem using rsync.

5.4 Advice when Using GPUs

If your WE simulation has extremely frequent starting up of simulation segments, your

simulation may overheat gaming GPUs and potentially damage the hardware. For example,

folding simulations of the NTL9 protein in implicit solvent with a τ value of 15 ps

resulted in such issues on gaming GPUs (i.e. NVIDIA GTX 1080Ti GPUs) while the

same simulations have no such issues on professional-graphics-programming GPUs. Coarse-

grained simulations (residue-level models and coarse-grained) with high I/O are also

problematic on gaming GPUs.

6 Uncertainty Quantification and Monitoring of Convergence

Although they can report on much longer timescales, WE calculations still have limitations

analogous to those of conventional MD simulations – namely, force field inaccuracy and

inadequate sampling. Assessing convergence requires care, as noted below. Even if sampling

is adequate, as with any simulation result, error bars are required to set the results in

context because there is always a finite range of results which are predicted in any stochastic

calculation [36]. Error analysis is particularly challenging because WE results ultimately

depend on a large number of trajectories which typically are significantly correlated with

one another due to repeated replication (“splitting”) events. Over the years, different error

analyses have been employed [28, 31, 37]. Here we give a brief overview of current practice.

The primary recommendation is to perform multiple, fully independent WE simulations

when possible. To understand the variation intrinsic to WE sampling, we suggest performing

these runs from identical starting states. The data from these runs will not go to waste,

as it can be combined for estimating observables, convergence, and error bars. When

multiple runs are not feasible for a large-scale application, a sufficiently large number

of trajectories/bin (at least 4 trajectories/bin) should be used to increase the chances of

obtaining a diverse ensemble of pathways. To further enhance the diversity of the pathways,

we recommend starting the simulation from multiple starting states when that is physically

appropriate such as in protein binding. We note that a single run with a large number of

trajectories/bin (4-50 trajectories/bin) has been shown to be more efficient in calculating rate

constants than multiple runs with a small number of trajectories/bin (i.e. < 4 trajectories/bin)

for molecular association/dissociation systems [41].

We focus here on understanding uncertainty in rate-constant estimation. First, there is the

issue of “convergence”: how much time is required to obtain a result without systematic

bias that is governed only by statistical noise? In a typical simulation started in a single

Bogetti et al. Page 16

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

state (A), the rate constant into a target state B is estimated by the steady-state probability

flux into B – i.e., the amount of probability arriving per unit time as sketched in Figure

3. However, there is a transient regime before the flux levels off to its steady value, and

it is unknown in advance how long the transient will last. Of course, one should examine

the time-dependence of the average flux (averaged over all WE runs) by eye, but this is

unlikely to be sufficient. In addition, one can plot the flux as a function of some continuous

coordinate which progresses from A to B: in steady state, the flux will be constant along

any such coordinate [18]. Finally, we recommend using a “history augmented” Markov state

model (haMSM) employing very fine bins/microstates, which can be built from the WE data

as a different means for estimating steady-state flux values which can be compared to those

measured directly in WE simulation [18]. Alternatively, the impact of transient effects on

rate-constant estimation can be reduced by incorporating the distribution of event durations

(excluding dwell time in the initial stable state) that correspond to pathways captured by

the simulation. This strategy has been shown to yield rate constants using a fraction of the

simulation time required by the original WE method [20].

Once the transient has completed, if multiple runs were performed, it is necessary to

estimate the uncertainty in the rate constant based on the group of independent WE runs.

The flux curves from the individual runs, plotted as a function of molecular time, may vary

significantly as sketched in Figure 3. This large variation invalidates typical uncertainty

estimation schemes based on the standard error of the mean, and we therefore recommend

employing a Bayesian bootstrapping procedure [28]. This approach appears to be better than

alternative approaches for handling estimates which vary over orders of magnitude, but we

emphasize that the nominal 95% “credibility regions” produced are overly optimistic and

only cover the true mean a much smaller percentage of the time [28].

7 Tutorials

7.1 Basic Tutorial: Na+/Cl− Association

7.1.1 Introduction—This tutorial involves carrying out a WE simulation of a molecular

association process: Na+/Cl− association. After completing this tutorial, a user should be

able to set up a simple WE simulation using the WESTPA software and develop an intuition

for how changes in the WE parameters will influence the efficiency of sampling a process of

interest, thus allowing the user to choose appropriate parameters for that process.

Learning Objectives.: Though we strive to make the WESTPA software as user-friendly

as possible, there are many system-specific parameters that must be carefully specified. The

purpose of this basic tutorial is to introduce a new user to WESTPA and have that user

become familiar with the flow of setting up and running a WE simulation. Specific learning

objectives are:

1. Become familiar with the main simulation directory layout

2. Choose a progress coordinate

3. Choose an appropriate binning scheme

4. Prepare input files

Bogetti et al. Page 17

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

5. Monitor a simulation

7.1.2 Prerequisites—Users should install the latest version of the WESTPA software

package through Conda. Installation instructions can be found on our Github wiki (https://

github.com/westpa/westpa/wiki/Installing-WESTPA). For analysis of simulation data, the

hdfview software greatly facilitates the visualization of large datasets. We will make use of

that program in the Analysis Tutorials (Section 7.4).

Users should have basic knowledge of command line usage and the Python programming

language. Since WESTPA is designed to conveniently interface with any external dynamics

engine, users will also need to have experience using an MD engine (Amber, Gromacs,

etc.). This tutorial will not provide instructions on how to use those engines; only how to

interface the engines with WESTPA. In addition, a knowledge of analysis programs (such

as Amber’s cpptraj program or the MDAnalysis software) is necessary and will not be

covered here. This tutorial will go over examples of the various input files that are necessary

for interfacing with WESTPA. This tutorial also assumes the user has some knowledge of

the WE strategy, as its basic theory is not discussed herein.

Computational Requirements.: A user should set aside at least 18 GB of disk space. This

simulation took ~50 hrs to complete using 1 Intel Xenon 3.50 GHz CPU core.

This tutorial uses OpenMM version 7.3 for dynamics propagation (http://openmm.org/)

and MDTraj 1.9.3 for progress coordinate calculations (http://mdtraj.org/1.9.3/index.html).

System setup and equilibration was performed separately in OpenMM. A minimum version

of 3.1.0 for HDFView is required for H5 file analysis.

7.1.3 Setting up a WE Simulation Using WESTPA

Overview.: WESTPA is run by calling the w_run program from the command line with

the appropriate options. This is normally done by running the run.sh script from the main

simulation directory. The simulation will then run until it has either completed the number

of iterations specified by the user or has run out of time. Both of these parameters can be

adjusted. Before a simulation can be run, however, the system must be initialized by calling

the w_init program from the command line with the appropriate options. This is normally

done by running the init.sh script from the main simulation directory.

Therefore, assuming the system is set up properly and all parameters have been properly

specified, the WESTPA simulation can be run with the following at the command line

(throughout our suite of tutorials, the command prompt is indicated with $, which itself is

not part of the commands that should be entered by the user):

$./init.sh

$./run.sh

Bogetti et al. Page 18

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/westpa/westpa/wiki/Installing-WESTPA
https://github.com/westpa/westpa/wiki/Installing-WESTPA
http://openmm.org/
http://mdtraj.org/1.9.3/index.html

Data from a WESTPA simulation will be stored in a file called west.h5, which is an H5

file that can be opened with Python’s h5py package or with a graphical interface such as

hdfview.

To monitor the simulation’s progress, we will use the w_pdist program of WESTPA. This

will generate probability distributions (histograms) as a function of the progress coordinate

and will enable the user to view those histograms with the plothist program.

A WESTPA simulation, even after the requested number of iterations, may not be

“complete.” Completion is assessed by whether some observable has converged to an

expected or steady value. The choice of this observable is up to the user. To obtain these

observables (such as the flux or rate constant), one will have to access the data in the H5 file

and plot it using Python’s matplotlib package (or another equivalent package).

Once a simulation is deemed complete, users can make use of the WESTPA analysis tools

suite of programs, specifically w_ipa in order to extract relevant data from the H5 file.

The System.: To obtain a basic understanding of WESTPA’s parameters and learn how

the software works, we will begin by studying the molecular association of Na+ and Cl−

ions. Our system will consist of a single Na+ cation along with a single Cl− anion modeled

with Joung and Cheatham parameters [42] and solvated in a box of TIP3P water molecules

[43]. These ions are initially dissociated at a separation distance of 12 Å. The system

was prepared using OpenMM and the appropriate input files are provided under “westpa/

tutorials” on GitHub, where you will also find a copy of this tutorial’s simulation directory

(basic_nacl). We will not cover how the input files were generated or the rationale behind

choices made when setting up the system (e.g. force field, water model etc.).

Choosing an Initial State.: In looking at the association of two entities, especially thinking

about how to extensively sample this process, there are some things we want to consider

before we begin WE. The first is how our initial state should look. If we choose to place

the ions too close together, we may only observe one “type” of binding pathway, since

the ions will not have as much time to orient themselves before binding. In reality, ions

are symmetrical and we will not need this consideration but this would be an issue when

determining how far apart to space, say, a drug and protein system or two protein binding

partners. We also do not want to space the ions too far apart, as that would unnecessarily

increase the time needed to observe binding events. We will therefore choose a generous

distance of 12 Å.

The coordinates (and velocities) of this starting structure, bstate.xml, are placed in the

bstates/directory. This is an OpenMM save-state file, which was saved after equilibration.

This is the file needed to directly resume dynamics. Depending on the dynamics engine

you are using, this file will be different but will have the same function (for instance, an

Amber restart file would be placed here if one were using sander to run dynamics). Also

in this directory is a file named bstates.txt. This file contains the name of our basis

state structure and the probability of it being chosen if we want to sample a variety of

initial structures (since we are preparing only one basis state, that probability is just 1). To

Bogetti et al. Page 19

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

more fully sample the configurational space of some process, it is often prudent to include

more than one initial structure. In that case, all of those structure files can be placed in this

directory with their file names and probabilities included in the bstates.txt file.

Files for Dynamic Propagation.: Also necessary for running an Amber simulation are the

topology and simulation input files. Those two files (bstate.pdb and nacl_prod.py) are

placed in the common_files/ directory. This is a catch-all folder for any files needed while

running dynamics. Notice that our τ value is defined in the nacl_prod.py file, which is a

Python script that runs OpenMM. This is the length of each WE iteration; so if the MD input

script will run dynamics for, say, 10 ps then your τ value is 10 ps. This number needs to be

carefully chosen depending on your system of interest. For this simulation, we will use a τ
value of 50 ps.

Preparing the System Environment.: Next, we will want to make sure that WESTPA

can properly access the MD engine we want to use and set up our simulation environment

properly. These variables are all defined in the env.sh file. You will need to open that

in vim or another text editor and make sure that your WESTPA environment is being

sourced correctly (only if you are not using the Conda environment) and that your dynamics

environment is being sourced correctly. It is also advised to set the runtime command

variables for more efficient system calls, if applicable.

Equilibrium vs Steady State WE.: Now, let’s examine the init.sh file, which initializes

the simulation. In this file, we can specify whether to run an equilibrium or steady state

simulation. The file in the tutorial directory is set up to run a steady state simulation. This

is specified with the definition of the $TSTATE_ARGS variable and its use in the w_init

command. To run an equilibrium simulation, simply delete those two lines.

The choice of whether to run an equilibrium vs steady state simulation will depend on

the research question being asked. Where do we want the system to go? Equilibrium

simulations can be efficient in exploring configurational space and sampling ensembles of

conformations. On the other hand, steady state simulations, where trajectories that reach

some target state are recycled back to the initial state (along with their trajectory weights),

can be more efficient in generating rate constants, and for exploring pathways towards some

known target state [41].

In our simulation, we do have a specific target state in mind and we know exactly what it

looks like: Na+ and Cl− interacting ionically at a close distance. We will therefore prepare to

run a steady state simulation.

Progress Coordinate, Binning Scheme and τ value.: For any WE simulation, we

recommend choosing a progress coordinate that monitors the slowest relevant motion(s)

such that faster motions will “go along for the ride.” The efficiency of generating pathways

is tightly coupled to the choice of progress coordinate, along with how you choose to divide

up that coordinate into bins. For the molecular association process involving the Na+ and

Cl− ions, a logical choice of progress coordinate would simply be the distance between the

two ions, assuming that the surrounding solvent molecules respond relatively quickly to the

Bogetti et al. Page 20

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

positions of the ions. In other words, we can measure the simulation’s “progress” by how

close the ions are to each other in a particular trajectory. This will turn out to be a good

choice for our system, but for systems in which the binding partners involve ensembles of

conformations, a pure distance-based progress coordinate will not be adequate and must be

combined with a second dimension of the progress coordinate that tracks some other motion

of the system.

Now that we have chosen a progress coordinate, we will need to consider our binning

scheme. Imagine a space that contains all of the possible values of our progress coordinate.

A good place to start is to perhaps define our progress coordinate as ranging from your

initial state (basis state) to a preliminary definition of your target state and divide up this

coordinate into 1 Å-wide bins. One way to obtain a preliminary definition of the target

state for the Na+/Cl− association process is to subject a model of the associated Na+ and

Cl− ions to energy minimization using the same force field that will be used during the

WE simulation and calculate the resulting distance between the ions using cpptraj. This

distance ended up being 2.6124 Å, so we will set 2.60 Å as our preliminary definition of

the target state. We recommend choosing the most strict definition possible for the target

state for the recycling of trajectories in a steady state WE simulation to enable the use

of more lenient definitions after the completion of the simulation. Make sure to add this

number to tstate.file in the main simulation directory, where your steady-state target

state definition should always be placed.

Back to our bin definitions. If we choose to space our bins by ones from 2.6 to 12 Å by

1 Å’s (or some similar increment), this can lead to your simulation stalling. If trajectories

cannot move to the next bin before a round of combination and replication occurs, the bins

may be too large with respect to the chosen τ value or progress coordinate. It is a good idea,

therefore, to run a short (10-20 iterations) WESTPA equilibrium simulation to see how your

trajectories are progressing with the WE parameters you have set. If necessary, adjust the

binning or include an additional dimension to your progress coordinate.

Here is the preliminary binning scheme we will employ, which is defined in the west.cfg

file:

[0.00, 2.60, 2.80, 3.00, 3.20, 3.40, 3.60, 3.80, 4.00, 4.50, 5.00, 5.50,

6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, ‘inf’]

Notice how we start at 15 Å (a little bit beyond our initial value of 12 Å) and increment

by ones, but as we get closer to our preliminary state of 2.60 Å, we start incrementing

more finely. This finer binning will help to collect probability closer to our target state and

promote more binding events.

Other WE Parameters.: The following WE parameters are discussed along with where

they are specified in the parameter files. First, make sure you have chosen an appropriate

τ value (see Section 4) and that it is properly specified in your dynamics input file. As

mentioned above, the τ value, along with the number of trajectories per bin, is coupled to

the choice of progress coordinate and binning scheme. We recommend starting with ~4-5

Bogetti et al. Page 21

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

trajectories/bin. This value is specified in the west.cfg file as bin_target_counts.

Make sure that the frequency at which conformations are saved in your trajectories

(as indicated in your dynamics input file, e.g. md.in for Amber) matches the number

of elements in the pcoord array of the west.cfg file. We recommend running the

simulation for a short time to test the effectiveness of the WE parameters, setting

max_total_iterations to 10 in the west.cfg file before letting the simulation run

to Å full 100 iterations.

Trajectory Imaging.: Since the replication and combination of trajectories in Å WE

simulation depends on the values of the progress coordinate, trajectories that are carried

out with periodic boundary conditions should be imaged before calculating the progress

coordinate (e.g., after completing each trajectory segment of length τ). Otherwise, erroneous

values of the progress coordinate may result from parts of the simulation system drifting

outside of the periodic box. MDTraj, which is used to calculate the distance in this tutorial,

is able to only calculate distances for nearest-image ion pairs (essentially what Amber does

with the autoimage command in AmberTools’ cpptraj program.)

7.1.4 Initializing the WE Simulation—To initialize the simulation, run the init.sh

script as mentioned before. You will see a body of text output indicating that the

initialization has completed successfully. We will briefly present the key features of this

script.

As mentioned before, init.sh calls the w_init program, which in turn, runs a script in

the westpa_scripts/directory called get_pcoord.sh. This script, in this tutorial, is very simple.

It prints the contents of a file, pcoord.init, and gives that to $west_pcoord_return.

The pcoord.init file contains the progress coordinate value of the basis state, and so this

operation essentially tells WESTPA which bin your basis state falls into. The pcoord.init

file is generated by running the get_distance.py script in common_files/on bstate.xml and

redirecting the output into a file named pcoord.init. Initializing your system this way is

often a good idea, as it allows you to test outyour particular method of progress coordinate

calculation. However, get_pcoord.sh can calculate the progress coordinate directly (see

Intermediate Tutorial 7.2), or run whatever script you need to do so. In fact, get_pcoord.sh

can include any additional commands; this built-in flexibility allows you to perform

operations on your basis states before beginning the WESTPA simulation.

7.1.5 Running the WE Simulation—To carry out the simulation, run the run.sh script

as mentioned before. Youwill not see any output. What run.sh does is call w_run which,

among other things, runs the runseg.sh script that is in the westpa_scripts/directory. This

scriptwill run dynamics each iteration, calculate a progress-coordinate value for the updated

structure and then return that value to $west_pcoord_return.

In this tutorial, OpenMM is used to run dynamics (by running the nacl_prod.py script) and

MDTraj is used to calculate the progress coordinate (by running the get_distance.py script).

If a user wishes to change either the dynamics or analysis programs, these are the two

locations where it will need to be done.

Bogetti et al. Page 22

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

For an example script for using Slurm to run a job on a computing cluster, see

runwe.slurm. You can adapt this template script to run WESTPA on your desired cluster.

7.1.6 Monitoring the WE Simulation—We recommend checkingthe progress

ofyourWE simulation every 10 iterations or so. This can be done with the w_pdist program.

To use this program, first stop the simulation (it can be started easily from the point it left off

by running run.sh again) and then call w_pdist:

$ w_pdist

This will produce a new H5 file called pdist.h5. To see how our progress coordinate is

evolving over time, we can use the plothist program with the evolution option:

$ plothist evolution pdist.h5

This will produce a pdf file called hist.pdf. Open this file, the contents of which are

displayed in Figure 4.

As expected, most of the probability at the start of our simulation is concentrated around

the progress coordinate value for our initial state (10 Å). As our simulation progresses,

the probabilities fan out in both directions, with most of the probabilities moving towards

larger values and some of the probabilities nearing our target value of 2.6 Å. To see if your

simulation has generated some successful binding events after only 10 iterations, run the

following:

$ w_succ

The example simulation had its first successful event after 14 iterations. The output will

show (if a successful event occured) the iteration and segment number in which the first

event occurred (e.g. iteration 14, segment 2).

You can trace this successful trajectory back to the basis state to obtain a complete trajectory

with the w_trace command. You will need to provide the iteration and segment of the

successful trajectory as options separated by a colon:

$ w_trace 14:2

The output will be written to the file traj_14_2_trace.txt. That file contains the parents of the

successful trajectory all the way back to the basis state.

7.1.7 Analyzing the WE Simulation—One way to assess the convergence of our

simulation is to determine when the primary observable of interest (i.e. the flux into the

target state) levels off. To monitor the flux, we will first need to prepare our west.cfg file

to analyze the simulation. This is normally done by adding an analysis module to the end,

which is already present in this tutorial’s files. Use this as a template for future analyses.

Bogetti et al. Page 23

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

You will see that we create an analysis instance called TEST and then define bins and states

for this scheme. These bins are strictly for analysis and have nothing to do with our progress

coordinate bins defined earlier. Since we only need to designate the bound and unbound

states here, we define three bins:

[0.0, 2.6, 10.0, ‘inf’]

The way that state definitions work is that you provide a progress coordinate in the

configurational space and whichever analysis bin that coordinate is in becomes that state.

For instance, our bound state definition is given by [0], so whichever bin above that the

value 0 falls into will be our “bound” state. This is the bin from 0 to 2.6. The same goes for

the unbound state (10.0 to infinity). The intermediate state (2.6 to 10.0) does not need to be

defined.

With these states defined we can now analyze how much probability, in the form of

trajectory weight, is entering or leaving each state using the w_ipa program, which will

run two separate WESTPA tools, w_assign and w_direct. To generate the H5 files needed to

analyze the fluxes, run the following from the main simulation directory:

$ w_ipa-ao

You will see that a new directory titled ANALYSIS has been created, inside of which is a

subdirectory corresponding to our TEST analysis scheme that was defined in the west.cfg

file. Inside of this subdirectory are our assign.h5 and direct.h5 files. The direct.h5

file is where the fluxes are stored. We can open it up with hdfview and view all of the

datasets.

The target_flux_evolution dataset gives the flux over time (number of WE iterations) into

each state we defined earlier. To view this dataset, double click on it. The 0th column

corresponds to the flux into state 0, which we defined as our target state. The iter stop is at

the beginning of that iteration, so if you had a binding event by iteration 10, observe the flux

into our target state. Highlight the “expected” column and click the plotting button in the

upper-left hand corner to view the flux evolution as a function of 0-indexed iteration.

By iteration 10, the flux has most likely not levelled off, so our simulation cannot be

considered converged. Let’s continue the simulation for a total of 100 WE iterations and

analyze the resulting dataset. a completed H5 file is included in the for_analysis/directory

for your convenience. Your plot should look something similar to Figure 5, which was

generated in matplotlib.

While the flux into the target state has not completely levelled off, it is much more steady

than previously, so we can stop the simulation here and consider how much longer we

should extend the simulation. For other systems, you may want to run the simulation longer

for better convergence. You may also want to have additional criteria for convergence.

To visualize a trajectory, one must first identify a continuous series of trajectory segments

in each iteration from the basis state to the target state. This will be given in the w_succ

Bogetti et al. Page 24

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

output along with w_trace, as we have done previously. However, you will also need to

retrieve the trajectory file from each of those segments and combine them using cpptraj. To

automate this process, we have provided the amberTraj.sh script, which can be adapted for

other systems. This script uses the cpptraj program available in AmberTools to extract the

binding trajectory of a successful event. The resulting trajectory file can be loaded along

with the system topology into the VMD visualization software to generate a movie of the

association process.

7.1.8 Conclusion—Hopefully by this point you have gained a good idea of the

work flow required to set up, run, and analyze a WESTPA simulation using a simple

progress coordinate. If you desire more complex options for your simulations (e.g.

multidimensional progress coordinates) and further discussion of how to choose various

simulation parameters, we highly suggest going through the other tutorials to get a sense of

how that can be done.

7.2 Intermediate Tutorial: P53 Peptide Conformational Sampling

7.2.1 Introduction—Since the WE algorithm aims to fill empty bins in configurational

space, WE simulations can be effective in the enhancement of conformational sampling [1]

as well as the generation of pathways and rate constants for rare events. This tutorial will

focus on the conformational sampling of a peptide and instruct users on how to set up and

analyze a simulation involving a two-dimensional progress coordinate. In addition, we will

go over how the binning scheme can be chosen and adjusted in order to balance efficiency

and performance.

Learning Objectives.: This tutorial will help users develop a sense for which progress

coordinates may be effective for conformational sampling of a peptide and how to bin along

those progress coordinates.

Specific learning objectives include:

1. How to set up a two-dimensional progress coordinate

2. How to monitor this coordinate as the simulation progresses

3. How to evaluate whether the binning scheme is effective

4. Combining and creating bins “on-the-fly”

5. Storing and accessing auxiliary data

7.2.2 Prerequisites—Users should have completed the Basic Tutorial 7.1 and have a

potential progress coordinate in mind for their system of interest.

Computational Requirements.: This simulation required at least 10 GB of disk space and

~36 hours to complete (40 iterations) on a 12-core, 2.6 GHz Intel Xeon node. This tutorial

uses AmberTools19’s sander package for dynamics propagation and the cpptraj package

for progress coordinate calculations (http://ambermd.org/AmberTools.php). AmberTools is

available free of charge.

Bogetti et al. Page 25

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://ambermd.org/AmberTools.php

7.2.3 Adding Another Dimension to the Progress Coordinate—While a one-

dimensional progress coordinate can be effective for molecular association processes

(e.g. Na+/Cl− in the Basic Tutorial), a two-dimensional coordinate may be necessary

for more complex processes such as peptide/protein conformational transitions. To add

another dimension to the progress coordinate, we first specify the progress coordinate

dimensionality as “2” in the west.cfg file. Next, we calculate the values corresponding

to each dimension of the progress coordinate and pass the resulting two values at the

same time to $WEST_PCOORD_RETURN in both the get_pcoord.sh and runseg.sh

scripts. For example, if the first dimension of the progress coordinate has a value of 1

and the second dimension has a value of 5, (1 5) must be passed atthe same time to

$west_pcoord_return instead of sequentially as 1 and then 5. This can be done with the

paste command in bash (see example get_pcoord.sh and runseg.sh files). In addition,

the bins will need to be specified as two lists, one for each of the two dimensions. This is

done by adding dashed entries (one underneath the other) in the west.cfg section for bin

definitions. a user may alternatively choose to define a two-dimensional binning scheme in a

system.py file.

7.2.4 Preparing the WE System

The System.: We will focus on the conformational sampling of a 15-residue, N-terminal

peptide fragment of tumor suppressor p53 that has been thought to be disordered in its

unbound state and adopts an α-helical conformation upon binding the MDM2 protein.

Simulations were run at 275 K using the Amber ff14SBonlysc force field [44] and

generalized Born implicit solvent [45]. As in the BasicTutorial, we will not go into detail

about how the files were generated in Amber or the decisions made in setting up the system

with Amber.

Choosing an Initial State.: Our WE simulation will be started from the MDM2-bound

conformation of the p53 peptide. In particular, coordinates for the peptide conformation

will be extracted from the crystal structure of the MDM2-p53 peptide complex [46]. This

α-helical conformation of the peptide will then be energy-minimized and equilibrated before

subjecting the resulting, solvated system to a WE simulation.

Files for Dynamics.: The topology file (P53.MDM2.prmtop) and dynamics input file

(md.in) can be found in the common_files/directory. In the md.in file, it should be

specified that the trajectory segment will be run for a length that corresponds to a τ value of

50 ps.

Preparing the Simulation Environment.: See the corresponding subsection in the Basic

Tutorial 7.1.

Equilibrium vs Steady State WE.: In the init.sh file, observe that all lines mentioning

TSTATE_ARGS have been removed. This signals WESTPA to run an equilibrium WE

simulation in which we do not have a set target state. This is a good option when the goal

of your process is to generate as many configurations as possible and you have no set target

state in mind.

Bogetti et al. Page 26

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Progress Coordinate, Binning Scheme and τ Value.: To extensively sample the

conformations of the peptide, we might define a progress coordinate that monitors the extent

of “unfoldedness” in the peptide using the RMSD of a given conformation from the initial

structure. However, RMSD cannot differentiate among conformations that have the same

large RMSD values. To further differentiate between such conformations, we can include

another orthogonal measure of unfoldedness such as the end-to-end distance of the peptide.

To determine a suitable binning scheme, we will start with an upper limit of 10 Å for

the heavy-atom RMSD dimension of the progress coordinate. Spacing the bins along this

dimension by 1’s may be too large for any transitions to occur between bins so we opt for a

finer bin spacing:

[0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.4, 1.8, 2.2, 2.6, 3.0, 3.5, 4.0, 5.0, 6.0,

7.0, 8.0, 9.0, 10.0, ‘inf’]

We will see how the trajectories progress and adjust accordingly. Notice that a bin spacing

of 0.2 is not maintained for the entire length, as 50 bins even along one dimension would

result in a very large number of total trajectories (4 trajectories per bin would yield a total of

200 trajectories if all of the bins are occupied). Furthermore, care must be exercised in the

addition of bins along a second dimension as the total number of trajectories can “blow up”

to an enormous number of trajectory segments (e.g. 10,000).

To get a feel for how the end-to-end distance evolves in the simulation, let’s expand out from

the initial distance of 28.5 Å with 0.5-Å wide bins in either direction:

[0, 20, 20.5, 21, 21.5, 22, 22.5, 23, 23.5, 24, 24.5, 25, 25.5, 26, 26.5,

27, 27.5, 28, 28.5, 29, 29.5, 30, 30.5, 31, 31.5, 32, 32.5, 33, 33.5, 34,

34.5, 35, 35.5, 36, ‘inf’]

Our τ value should allow for successful transitions between bins of this spacing.

Other WE Parameters.: Let’s run our WE simulation with 4 trajectories/bin for 40

iterations. Since the goal here is the conformational sampling of a peptide and we are

running an equilibrium WE simulation, we do not need to define a target state.

7.2.5 Tracking the Auxiliary Data—While it is possible to go back after a simulation

has run and calculate some value you wish you had kept track of, it can be tricky to do

so (though possible with a tool called w_crawl which is not discussed in this guide). We

strongly recommend conducting all relevant analysis during the simulation and storing the

resulting data as auxdata in the H5 file. In our case, we will calculate and store the φ/ψ
backbone dihedral angles of the peptide as auxdata for each of the sampled conformations.

To signal for WESTPA to collect auxdata, you will need to add an auxiliary dataset into the

west.cfg file and make sure it is enabled. See the west.cfg file in the tutorial directory

for an example of how this might look. You can name the dataset whatever you would like.

Bogetti et al. Page 27

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Once you have specified the datasets and named them, you will need to add in commands

to runseg.sh that calculate those values and pass them to WESTPA system variables.

The variables will be named $WEST_XYZ_RETURN where “xyz” is the name given to the

dataset in the west.cfg file. This can be treated analogously to the pcoord value and

$WEST_PCORD_RETURN.

7.2.6 Initializing and Running the WE Simulation—Make sure that your

get_pcoord.sh and runseg.sh files are calculating the RMSD and end-to-end distance

and returning these values to $WEST_PCOORD_RETURN. The get_pcoord.sh script will

calculate the initial progress coordinates using AmberTools’ cpptraj program from within

the script, as opposed to reading the value from an external file as in the Basic Tutorial 7.1.

The runseg.sh uses AmberTools’ sander program for dynamics propagation and does so

within the script.

7.2.7 Monitoring the WE Simulation (10 Iterations)—Once the simulation has run

for about 10-20 iterations, copy the H5 file and run w_pdist with the copied file. You can

then use plothist to view each dimension of the progress coordinates separately as the

values evolve over the course of those few iterations:

$ plothist evolution pdist.h5 0 -o hist_dim0.pdf

$ plothist evolution pdist.h5 1 -o hist_dim1.pdf

Where the “0” or “1” after the plothist command is the progress coordinate dimension (zero

indexed). Observe the two probability distributions in Figure 6.

7.2.8 Adjusting Bin Spacings “On the Fly”—The RMSD has reached a value of 4-5

Å and the end-to-end distance has reached ~10 Å, which is encouraging progress for only 10

iterations. Note that most of the probability (and therefore most of the computation) is still

stalled in the initial states of 1-2 Å RMSD and 20-25 Å end-to-end distance. We can help

focus the computing power on the more interesting “edge” conformations by modifying the

binning scheme before continuing the simulation.

In WESTPA, the binning scheme can be updated at any time since the trajectory weights

are independent of the bins (and progress coordinate). To do so, first stop the simulation and

then adjust the bins in your west.cfg file. Re-start your simulation by running the run.sh

script again and the simulation will continue from where it left off. At the start of the next

iteration, the new bins will have been implemented.

In our case, I would like to focus sampling on higher RMSD values (3-4 Å) instead of those

~1-2 Å. To do this, I will collapse the bins from 0 to 1.8 Å and define some more bins past

10 Å:

[0.0, 1.8, 2.2, 2.6, 3.0, 3.5, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11, 12,

14, 16, 18, 20, ‘inf’]

Bogetti et al. Page 28

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

For the end-to-end distance, I will add more bins for the lower distances and collapse bins

over 26 Å. We would normally want to keep these bins over 26 Å but having fewer will

shorten the runtime of this tutorial.

[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 22, 23, 24, 25, 26, ‘inf’]

The reason we eliminated the initial 0.5 Å spacings is that this degree of freedom is readily

explored in the system.

7.2.9 Monitoring the WE Simulation (40 Iterations)—After running the simulation

for another 30 iterations (for a total of 40), we obtained the following updated probability

distributions displayed in Figure 7. The completed H5 file is included in for_analysis/for

your convenience.

The effects of the bin-modifications can clearly be seen in the case of the end-to-end

distribution. No more trajectories with an end-to-end distance >30 Å can be seen after

iteration 10, a result of the choice not to bin over 26 Å in that dimension.

The end-to-end distance seems to have reached 2-3 Å around iteration 20. The RMSD

plateaued a bit from iterations 20-30 but then proceeded to values around 7 Å. Two lessons

can be learned from these observations. First, if you do not have bins in a particular

direction, you may not see sampling in that direction. Second, even though the RMSD

coordinate appeared to have stalled around iteration 20-30, it eventually was able to

surmount whatever barrier existed and attain some higher RMSD values. Patience is key,

as a single trajectory may replicate to become many trajectories if it crosses into a new bin.

7.2.10 Accessing Auxiliary Data—To access the auxdata from the H5 file, you can

open west.h5 in hdfview but this will not allow you really use the data. To plot all of the

dihedrals as a Ramachandran plot in matplotlib as shown in Figure 8 (actually, we just

did so for the second dihedral, but you could extend it to all if you so desire), you will need

to utilize the h5py package in Python to extract the auxdata values from the west.h5 file

and then plot them. The plotting script is included in the tutorial directory.

7.2.11 Conclusion—Users should now be familiar with setting up a two-dimensional

progress coordinate and working with auxiliary data. These two “tools” will help to expand

your repertoire of WESTPA simulation techniques and give you access to more complex

and informative simulations. Users should also now be familiar with changing bin spacings

“on-the-fly” as well.

7.3 Intermediate Tutorial: Folding of Chignolin Mini-Protein

7.3.1 Introduction—Protein folding processes have been challenging to simulate due to

the relatively long time scales involved. In this tutorial, we will use WESTPA to simulate

the folding and unfolding of the chignolin mini-protein and to calculate the corresponding

rate constants. We will run steady-state WE simulations of chignolin folding and unfolding

processes separately. We will also compare the results of these simulations with those from

Bogetti et al. Page 29

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

brute force MD simulations, demonstrating the correctness and potential usefulness of the

WE strategy.

Learning Objectives.: This tutorial demonstrates how steady state WE simulations can

be used to generate pathways and rate constants for both protein folding and unfolding

processes.

Specific learning objectives include:

1. How to use brute force simulations to identify appropriate initial and/or a target

states

2. How to obtain the probability flux into the target state of a WESTPA simulation,

how to convert it to a mean rate constant, and how to interpret the results

Prerequisites.: Users should have completed the Basic Tutorial 7.1.

Computational Requirements.: We note that significantly more computing time is required

for the folding simulations to yield converged rate constants and hence we suggest the

user should start with the unfolding simulations. In particular, the WE unfolding simulation

required ~53 hours for 1000 iterations on 32 CPU cores of 2.6 GHz Intel Xeon processors

(~5 GB of disk space) while the WE folding simulation required ~8 days for 10,000

iterations (200 ns of molecular time) using the same resource (~50 GB of disk space).

To become familiar with setting up and running the WE simulations, the users can carry

out several iterations. Also, the brute-force simulation described below can be performed

for tens of ns, as we benchmarked this system to produce ~150 ns per day on one of

the above-mentioned CPUs. Output files for 1000 iterations of the WE unfolding and

10000 iterations of the WE folding simulations (as well as for 4 us of the brute-force

simulation) can be found in the corresponding subdirectories. These files should be used for

the analysis procedures outlined below. This tutorial uses AmberTools19’s sander package

for dynamics propagation and the cpptraj package for progress coordinate calculations

(http://ambermd.org/AmberTools.php). AmberTools is available free of charge.

The System.: The chignolin mini-protein with the sequence GYDPETGTWG forms a β-

hairpin and folds/unfolds on a timescale that is accessible to brute force simulations, which

provide a reference data set for comparison with WESTPA results. The folded chignolin

structure (PDB code: 1UAO, [47]), serves as the starting structure for both the brute-force

and WE unfolding simulations. Both dynamics propagation and simulation analysis are

carried out using the Amber software package. Simulations were run at 275 K using the

Amber ff14SBonlysc force field [44] and generalized Born implicit solvent [45].

7.3.2 Brute Force Simulations

Overview.: As mentioned in Section 1.3, it is important to run multiple, short, brute force

simulations prior to using WESTPA. In the case of chignolin, which both folds and unfolds

on timescales accessible to brute force simulation, brute force simulations can provide

information on defining the unfolded and folded states.

Bogetti et al. Page 30

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://ambermd.org/AmberTools.php

Running and Analyzing the Brute Force Simulation.: We perform a 4-μs brute force

simulation of chignolin and write out coordinates every 20 ps. All files can be found in

the brute_force/ directory. The user can change these parameters in the MD config file

md.in. The simulation can be submitted with the following command:

$./run.sh

This submission script may have to be adjusted to the user’s computing platform.

The chignolin Cα RMSD can be computed in the following way:

$ cpptraj chignolin.prmtop < get_rmsd.in

This command assumes the brute force simulation trajectory as well as the chignolin

parameter topology and folded structure pdb files are all in the current directory.

The output RMSD data file, rmsd.dat, lists the time evolution of the chignolin Cα RMSD

over the course of the simulation (each line corresponds to a frame).

Figure 9 shows the Cα RMSD over simulation time for a brute-force simulation that started

from the folded β-hairpin, revealing several unfolding and refolding events within 4 μs. The

unfolded and folded states are defined by visual inspection of the RMSD plot and simulated

conformations, which show a fully formed β-sheet and native hydrogen bonds at RMSD <

0.5 Å and a disrupted β-sheet with broken native hydrogen bonds at RMSD > 4 Å (this

pair of RMSD values will also be used later to define target states in WESTPA simulations).

Note that the (un)folding rate constants will be sensitive to the state definitions, and defining

states is a challenging process beyond the scope of this tutorial. Our state definitions are

designed to avoid potential recrossing artifacts in rate calculations: once a trajectory reaches

a state it should tend to remain there, rather than immediately returning to the previous state.

According to the Hill relation [48], the rate constant is exactly the inverse mean first-passage

time (MFPT) of the underlying process, where, for instance, the FPT for unfolding is the

time required to reach the unfolded state (RMSD > 4 Å) after first folding (RMSD < 0.5

Å). The user can run the following to obtain the MFPTs for both the folding and unfolding

processes:

$ python get_mfpt.py rmsd.dat 20e–12 0.5 4.0

The command-line arguments are the RMSD data file, time interval at which the RMSD

values are calculated in seconds, and threshold RMSD values for the folded and unfolded

states in Angstroms. The rate constant of unfolding is estimated to be 0.13 x 108 s−1

(confidence interval: 0.09 x 108 s−1 – 0.18 x 108 s−1) and that of folding is estimated to be

0.71 x 107 s−1 (confidence interval: 0.44 x 107 s−1 – 1.24 x 107 s−1). Confidence intervals

are derived from a Bayesian bootstrapping procedure [28].

Bogetti et al. Page 31

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

7.3.3 Using WESTPA

Overview.: We will carry out separate steady-state WE simulations for the unfolding and

folding processes. This strategy is not only more efficient than equilibrium WE simulations

in estimating rate constants (see Section 7.1.3), but enables us to set WE parameters for each

process (e.g. bin spacing) in a more process-specific way if needed. The target state of the

folding simulation will be used as the initial state of the unfolding simulation and vice versa.

Choosing an Initial State.: As done for the brute force simulations, WE simulations of the

unfolding process will be started from the NMR structure of chignolin. WE simulations of

the folding process will be started from an unfolded conformation of chignolin (RMSD > 4

Å) that has been generated by the above brute force simulations.

Files for Dynamics.: All files are in the common_files/ subdirectory of either the

WE_folding/ or the WE_unfolding/ directory.

Preparing the Simulation Environment.: See the corresponding subsection in Basic

Tutorial 7.1.

Equilibrium vs Steady State WE.: Here we will run separate steady state WE simulations

of the folding and unfolding processes, defining a target state (TSTATE_ARGS) in the

init.sh files.

Progress Coordinate, Binning Scheme and τ value.: As mentioned above, we will use a

one-dimensional progress coordinate consisting of the Cα RMSD from the folded structure

of chignolin. Although the RMSD with respect to a single reference structure may not be

an ideal coordinate for distinguishing between various conformation, it proves sufficient

for our example. Folded and unfolded states are defined based on maximum and minimum

RMSD values, respectively, that have been sampled by the above brute force simulations.

We will use a bin spacing of 0.2 Å and a τ value of 20 ps. However, the very first bin for

the unfolding simulations is larger than the regular bin width with RMSD = [0 Å, 0.5 Å]

because any structure with RMSD < 0.5 Å is considered to be in the folded initial state.

Analogously, for the folding simulations, the very last bin is larger than the regular bin width

of 0.2 Å.

Other WE Parameters.: As done in the previous tutorials, our WE simulations were

carried out using 4 trajectories/bin. The unfolding and folding simulations were run for 1000

and 10,000 WE iterations, respectively, in order to reach a steady value ofthe corresponding

rate constants.

Initializing and Running the WE simulations.: The init.sh and run.sh files can be

found in the corresponding directories for both WESTPA simulations. The RMSD progress

coordinate is calculated and its values returned to $WEST_PCOORD_RETURN.

Bogetti et al. Page 32

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Monitoring and Analyzing the WE Simulations.: To compute the rate constant for the

folding or unfolding process, we first calculate the mean probability flux into the target state

by running the following WESTPA analysis tool:

$ w_fluxanl

The output is the H5 file fluxanl.h5, which contains the instantaneous probability flux

into the target state for each iteration. The following Python script calculates, for any WE

iteration, the average rate constant based on the corresponding probability flux arriving in

the target state over a preceding window of molecular simulation times (e.g., over 1 ns):

$ python get_mean_rate.py 20e–12 1e–9

The command-line arguments are the τ value and the time width for window-averaging.

Both arguments are in units of seconds.

Figure 10 shows the evolution of the average unfolding rate constant of chignolin as

a function of molecular time for three independent WE simulations. After a few ns,

the average rate constants for all of these simulations have leveled off and are roughly

comparable to that derived from brute force simulations. One difference between the WE

and brute force simulations is that the former estimates the MFPT based on the chosen

initial structure(s) which may not correspond precisely to the ensemble of starting structures

implicit in extracting first-passage events from brute force simulations. Note that a three-fold

difference in the rate constants among the three WE simulations amounts to only ~0.6

kcal/mol difference in the effective free energy barrier to unfolding (at the simulation

temperature of 275 K).

Figure 11 shows the evolution of the average folding rate constant for chignolin as a

function of molecular time for three independent WE simulations. Compared with unfolding

simulations, the folding simulations require much longer to reach a converged average rate

constant that is in rough agreement with that from the brute force simulations; we note

that the average rate constant is dominated by the largest flux. In addition, the folding

rate constant exhibits significantly larger fluctuations, even after the apparent transient

period of the first ~100 ns, indicating that the chosen bins are less suited for the folding

process. During the folding process, distinct hydrogen bonds must be formed between the

neighboring anti-parallel strands, and possibly in a specific order, to eventually reach an

RMSD < 0.5 Å. In contrast, the unfolding process results in faster convergence of the

corresponding rate constant and likely involves the simultaneous breaking of hydrogen

bonds in order to reach an RMSD > 4 Å.

The resulting WE simulations consist of multiple continuous unfolding or folding pathways

that may cover different regions of configurational space at any given time. To select for

particular pathways (trajectories), we can run the following:

$ python get_target_trajs.py 1 10000

Bogetti et al. Page 33

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The command-line arguments indicate the first and last iteration number to be considered.

The output file target_trajs.dat has two columns: one with the iteration number and

one with the segment number of the trajectory that has reached the target state at that

iteration. Thus, the number of rows indicates the total number of generated events. The

iteration and segment numbers can be used by w_trace to obtain the full path of a particular

folding or unfolding event (see Section 7.1.6).

7.3.4 Conclusion—In this tutorial, you have learned how to apply the WE strategy to

simulate a protein folding process under steady state conditions. The recycling of trajectories

at a target state allows the generation of a non-equilibrium steady state, to which the

trajectory ensemble converges faster compared to an equilibrium ensemble of trajectories.

Such steady states trajectories enable the direct computation of rate constants as described in

this tutorial.

7.4 Analysis Tutorials

In this tutorial, we will go over how to calculate progress coordinates using external analysis

suites, automate analysis of a WE simulation using the WESTPA w_ipa tool and visualize

the evolution of WE datasets with time. We focus on the p53 peptide system described above

in the Intermediate Tutorial 7.2 in which the progress coordinate is the Cα RMSD of the

peptide from its folded, α-helical conformation.

7.4.1 Calculating Progress Coordinates Using External Analysis Suites

Introduction.: Here we will demonstrate how to write scripts for calculating custom

progress coordinates for WESTPA simulations using the external analysis suites

MDAnalysis and MDTraj [49–51]. A prerequisite to this tutorial is completion of the Basic

Tutorial 7.1. You will also need to install the MDAnalysis or MDTraj analysis suites. Other

required files are provided on GitHub.

Learning Objectives.: The specific learning objective of this tutorial is to calculate progress

coordinates using an external analysis suite (MDAnalysis or MDTraj).

Explanation of Files and Scripts.: The master configuration file for the simulation,

west.cfg, specifies the dimensionality of the progress coordinate (pcoord_ndim), as

well as how many progress coordinate data points should be returned from each segment

(pcoord_len) (it specifies many other things but these are of primary interest for this

tutorial as they specify the shape of the progress coordinate).

The script rmsd.py is responsible for using MDTraj or MDAnalysis to calculate the RMSD

values during the simulation. Read the comments in the script to understand its setup for

each package (there is a unique version for both).

Two scripts are responsible for calling rmsd.py at different points in the simulation (both

found in westpa_scripts/):

• get_pcoord.sh calculates the progress coordinate during the initialization of

the system. Because dynamics have not been run yet, WESTPA only needs

Bogetti et al. Page 34

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

a single point progress coordinate, rather than an array. This difference is

controlled by the FORM argument, explained in the rmsd.py script.

• runseg.sh calculates the progress coordinate during dynamics propagation. It

passes each segment’s trajectory file as input to the custom progress coordinate

loader, rmsd.py.

There are slight differences in these files for the MDAnalysis and MDTraj setups, explained

in the comments of each script.

Files in amber_config/ directory:

• P53.MDM2.prmtop - The topology file.

• md.in - The input file which specifies conditions for dynamics propagation.

The other files needed for the simulation are found in the bstates folder, and are explained in

the MDAnalysis/MDTraj specific sections below.

Running the Simulation.: Before running the simulation, you may want to change the

binning scheme, the number of iterations, or other parameters, which can be found in

west.cfg.

To run the simulation, only two scripts must be executed.

To initialize the system:

$./init.sh

To run the simulation in the background:

$./run.sh &

To monitor the progress of the simulation:

$ tail –f west.log

The rest of the tutorial is specific to the software package used. See below for specifics

involving the MDAnalysis and MDTraj analysis suites.

Using the MDAnalysis Analysis Suite: Files in bstates/ directory:

• P53.MDM2.ncrst - Used as initial crystal structure to compare to the trajectory

when calculating the RMSD and to start new trajectories in runseg.sh.

• bstates.txt - specify restart file P53.MDM2.ncrst.

Using the MDTraj Analysis Suite: Files in bstates/ directory:

• P53.MDM2.nc - because MDTraj does not support restart files, this file is used

in get_pcoord.sh to calculate the initial progress coordinate. It is also used

Bogetti et al. Page 35

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

by runseg.sh as an initial crystal structure to compare to the trajectory when

calculating the RMSD.

• P53.MDM2.ncrst - Used to start new trajectories in runseg.sh.

• bstates.txt - specify restart file P53.MDM2.ncrst.

Conclusion.: You have learned in this tutorial the basic structure of a Python script to

calculate progress coordinates for WESTPA using the MDAnalysis and MDTraj analysis

suites. There are two scripts run by WESTPA which call pcoord_loader.py, triggering

the calculation of progress coordinates. The bash script, get_pcoord.sh, triggers the

calculation of only a single progress coordinate, while runseg.sh triggers the calculation

of the progress coordinate at multiple points in a trajectory, as defined in west.cfg. It is

important to include the last line of the Python scripts, setting segment.pcoord equal to

the progress coordinate array, so that the progress coordinate may be used to further the

simulation.

7.4.2 The w_ipa Analysis Tool

Introduction.: The w_ipa analysis tool is designed to facilitate analysis of WESTPA

simulation datasets through a single interface (Jupyter Notebooks or the command line).

In particular, w_ipa automates analysis routines, ensures data consistency through the use

of automatically updated “analysis schemes”, enables a user to easily view a particular

dataset or trajectory segment in the H5 file, and monitors the progress of the simulation (e.g.

trajectory weights, progress coordinates, and other properties of interest).

Learning Objectives. The specific learning objectives of this tutorial are to use the w_ipa

analysis tool to:

1. Calculate rate constants

2. Trace and analyze trajectory segments (weight, pcoord, auxdata)

3. Plot datasets

Setting Up.: Using w_ipa is straightforward. The west.cfg file, which specifies most of

the simulation parameters, also specifies the analysis parameters under the Analysis heading.

The general format of the analysis section can be seen in the included west.cfg file. More

detailed examples are available in the Basic and Intermediate Tutorials (Sections 7.1–7.3).

In order to run w_ipa, there must be at least a single analysis scheme specified. This scheme

does not have to consist of the bins and/or state definitions used during the simulation.

Less physically relevant schemes may be employed. Any changes made to analysis schemes

in the west.cfg file will be actualized the next time w_ipa is run. The user is therefore

guaranteed to never wonder whether the analysis files are up to date.

The assign.h5, reweight.h5, and direct.h5 files are stored under ANALYSIS/

SCHEME_NAME. The optional arguments that can be passed to w_assign, w_direct, and

Bogetti et al. Page 36

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

w_reweight can be specified by creating a section with the tool name and using the value

pairs argument.

The Interface.: To run w_ipa from the command line, enter the command w_ipa after

having sourced westpa.sh (if not already sourced). To run w_ipa in a Jupyter notebook

enter the command w_jupyter from the command line. When you create a new Jupyter

notebook, there are some basic Python commands that must be executed:

import w_ipa

w = w_ipa.WIPI()

At startup, it will load or run the analysis schemes specified in the

configuration file (typically west.cfg)

w.main()

w.interface = ‘matplotlib’

The Python kernel must be launched with the use of w_jupyter, or otherwise, the

$PYTHON_PATH variable must be set to include the WESTPA directories. The command

w_env, which ships with WESTPA, is responsible for setting environment variables and can

be used with the Jupyter notebook command to ensure w_ipa is importable.

All commands are applicable from both the command line and Jupyter notebook interface;

if plotting functions are called from the command line, the plot will appear within the

console (it can be configured to use matplotlib if desired; this requires an active, available X

session).

All of the variables are now accessible from the w object.

Changing Schemes and Accessing Datasets.: A typical analysis routine begins by

selecting an appropriate analysis scheme that may consist of multiple state definitions,

averaging options, or reweighting parameters that are appropriate for the simulation. Most of

the datasets are presented from the current, “active” state, although access to other datasets

is conveniently available. All numerical datasets are given as NumPy arrays, allowing for

easy analysis of data.

To see what schemes are available, run the following command:

$ w.list_schemes

To change schemes, you may set the w.scheme variable to a string or integer value

(corresponding to the index of the scheme). For instance, suppose you have the following

two schemes: “EXAMPLE”, and “ALTERNATE”, and the current scheme is “EXAMPLE”. To

access the properties of the current iteration in the current scheme (explained in more detail

below), you would type the following:

Bogetti et al. Page 37

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

$ w.current

However, to access the alternate scheme, you would run the following command:

$ w.schemes.ALTERNATE.current

Where “ALTERNATE” corresponds to the scheme name written in the west.cfg file.

The w_ipa tool works by presenting an iteration and all its data as a single object. Each

iteration object contains numerous datasets and helper functions designed to ease analysis.

After loading, w_ipa defaults to the final iteration. You can change the iteration by using the

following command:

$ w.iteration = 39

At any time, we have three iteration objects available in the object w: current, past, future.

The past and future datasets are keyed to the parents and children of the segments in the

current dataset. For instance, if you are analyzing segment 200 in the current iteration and

wish to analyze the parent segment it came from, you could access the two datasets using the

following iteration objects:

$ w.current [200]

$ w.past [200]

Even though it is very unlikely that the actual segment ID of the parent of segment 200 is

200, it is mapped correctly to enable convenient analysis. To obtain the actual segment ID,

just run:

$ w.past[200] .seg_id

OR

w.past [200][‘seg_id’]

As indicated above, objects in w_ipa can be called either as Python dictionaries or as

attributes on the object. These can be listed by calling the print method on the parent object.

In addition, as w_ipa is using iPython under the hood, tab completion works as when using

the command-line interface (CLI).

To access the main datasets of interest, pcoord and auxdata, type the following:

$ w.current.pcoord

$ w.current.auxdata

Bogetti et al. Page 38

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

These commands will output the full datasets, which can be useful for calculating properties

on all trajectory segments at once. But what if we are only interested in looking at the

properties of particular segments?

You could manually find a segment of interest, but w_ipa includes a few convenient

properties that return certain segments. In particular, w.current provides the following:

maxweight

minweight

successful_trajectories

The maxweight and minweight properties return objects which contain data about the

segments that carry the highest and lowest weights in the current iteration, respectively. The

successful_trajectories property returns the IDs of the segments that successfully

transitioned between states (the states are defined in your west.cfg). Calling these

functions on an iteration object yields all datasets pertaining to the segment with the

desired property. In this WE simulation, each trajectory contains 101 timepoints. Therefore,

the maxweight segment (seg_id 177) in iteration 49 has (101,2) pcoord values, 101

auxdata values, and it can switch bins and states 101 times. You can see this by running

w.current.maxweight.

The auxdata dataset is unique in that the simulations can contain any number of auxiliary

datasets with any unique name. Here, they are returned as a dictionary where the key is the

dataset name defined in west.cfg and the value is a NumPy array containing the actual

dataset.

Segment 177 above was in state 1 during the entire iteration. But what is state 1? It is

defined in west.cfg, but we do not have to go back to west.cfg to look it up. Simply run:

$ w.state_labels

It is also in bin 0 the entire time (note that these are the bins defined in west.cfg for this

analysis scheme and not the bins used in the simulation). What is the pcoord value of that

bin? Run:

$ w.bin_labels

To track the immediate parent and children of a segment, we can use w.past and

w.future. These iteration objects are similar to w.current, but keyed to give information

about the segments in w.current. For instance, to look up the weight of segment 177’s

parent, run the following:

$ w.past[177].weights

Likewise, to see whether the same segment had any children, run:

Bogetti et al. Page 39

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

$ w.future[177]

Segments always have a past, but do not always have a future. They may also produce

multiple children, so the values returned by w.future[seg_id] are usually more

complicated. Rather than being given the datasets directly, w.future returns a list of the

datasets.

To determine the properties of a complete trajectory (that is, the string of segments going

back to the first iteration), w_ipa includes a fast trace function. To trace segment 177 in

iteration 39 (current iteration), run the following:

$ s = w.trace(177)

It returns an object similar to w.current[177], except that it also contains all historical

information. The auxdata, bins, pcoord, and states datasets are all going to be very

large; their shape should be the product of the number of time-points per iteration and the

trajectory length. As we are at iteration 39, and have 101 time points per τ value, we should

have 3939 values in each dataset!

Plotting.: Rather than visually inspecting each value, let us just plot it. Run the following:

$ clear

$ s.weights.plot()

$ clear

$ s.pcoord.plot()

$ clear

Many datasets, such as weight, default to a logscale; others, such as pcoord, use a linear

scale. By default, the 0th dimension of pcoord is plotted. When the plotting function is

called via the CLI, a rough estimate of how the trajectory’s pcoord has evolved is plotted in

the terminal.

The w.current iteration object contains information about the rate constants that were

calculated in the active analysis scheme. To view an array containing the rate constants

along with the upper and lower confidence intervals, run the following (do not forget about

tab completion):

$ w.current.direct.rate_evolution

OR

$ w.current.rate_evolution.direct

Bogetti et al. Page 40

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

To view a plot of their evolution, run the following:

$ w.current.direct.rate_evolution.plot()

The w_ipa tool displays the upper and lower confidence intervals on the plot as well.

7.4.3 Visualization of WE Datasets—In addition to generating probability

distributions as a function of the progress coordinate (or other observables of interest), it

can be helpful to examine movies of how the distributions evolve with time. Such movies

can be used to determine the optimal number of trajectories per bin in a particular region of

the progress coordinate by tracking how the probability distribution evolves with the number

of trajectories that region.

Learning Objectives.: The specific learning objectives of this tutorial are:

1. Create a movie of how a probability distribution evolves with time.

2. Trace representative trajectories over this probability distribution.

Here, we will create a movie of how a two-dimensional probability distribution (Figure 12)

evolves with time. This movie-making feature is currently carried out using a bash script

(pdist_evol.sh) and will eventually be added to the WESTPA plothist tool.

The bash script involves the following three steps: (1) run the w_pdist tool on the west.h5

file to generate probability distributions in a specified folder that will also contain the

eventual movie of how the distributions evolve with time, (2) generate a plot of a two-

dimensional probability distribution for each iteration as a cumulative moving average from

iteration 1 to 40 and (3) create the movie from the 40 generated frames of the probability

distributions. The most important part of this script is the --postprocess-function

option of plothist that is defined in postprocess.py. This function requires a basic

knowledge of Python and matpiotlib, and can be used to modify features of the plot (e.g.

adjustment of axis labels, tick marks, titles, and lines) via the matpiotlib interface. In

addition, external files from various analyses can be uploaded and overlaid on the plot as

demonstrated in this example.

Here, we will select two trajectories from the last WE iteration and overlay their pathways

on the probability distribution of the overall simulation as a function of progress coordinate.

First, we will use the trace_walker function to determine the segment number of the

selected trajectories in each WE iteration going all the way back to the corresponding

conformation of the initial state ensemble. This process of tracing can also be accomplished

by using WESTPA tools w_ipa and w_trace. After the segment numbers are obtained,

the get_pcoords function loads in 10 progress coordinate values per iteration for the

trajectories. Finally, a movie-making tool (here, we use mencoder) creates a movie from the

40 frames of probability distributions.

Bogetti et al. Page 41

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

7.5 Advanced Tutorial: Creating “Binless” Resampling Schemes: Na+/Cl− Association
Simulations

7.5.1 Introduction—The non-linearity of certain progress coordinates (e.g., those

identified by machine learning tools) requires the creation of “binless” rather than binned

resampling schemes for rare-event sampling (Figure 13). In addition, binless schemes can

be useful in grouping trajectories by a feature of interest for resampling. For example,

trajectories could be grouped by history (sharing the same parent structure) to improve the

diversity of trajectories that successfully reach the target state, or by a simple k-means

clustering. This tutorial builds upon the Basic Tutorial (Na+/Cl− association simulations,

Section 7.1) by introducing users to running and analyzing a WESTPA simulation that

employs “binless” resampling schemes. This tutorial is a prerequisite for Advanced Tutorials

7.6–7.8.

Learning Objectives.: This tutorial introduces users to the generalized resampler module in

the WESTPA 2.0 software package that allows for the creation of either binned or binless

resampling schemes.

The tutorial also instructs users on how to initiate a WE simulation from multiple

representative conformations of the starting state and how to apply two key post-simulation

analysis tools. Specific learning objectives are:

1. How to create a binless scheme for splitting and merging trajectories based on

k-means clustering using the BinlessMapper resampler module;

2. How to initiate a WE simulation from multiple starting conformations;

3. How to combine multiple WE simulations for analysis using the w_muiti_west

tool;

4. How to perform post-simulation analysis using the w_crawl tool.

7.5.2 Prerequisites

Computational Requirements.: This simulation can be completed in 5 hrs using 8 Intel

Xeon W3550 3.07 GHz CPU cores, generating 1 GB of data using the HDF5 framework

of the WESTPA 2.0 software package. Two independent west.h5 files, each containing

100 WE iterations of simulation data, are provided for the analysis portions of this tutorial

in the for_anaiysis/ directory. This tutorial uses the OpenMM 7.6 software package

for dynamics propagation (https://openmm.org) and the MDTraj 1.9.5 analysis suite (https://

www.mdtraj.org/1.9.5/index.html) for calculations of the WE progress coordinate. The

scikit-learn 1.1.0 package (https://scikit-learn.org) is used to identify the “binless” groups.

Jupyter Notebook.: Sample code for running and analyzing a WESTPA simulation

according to “best practices” is made available in a Jupyter notebook. For the visualization

portions of the notebook, nglview, matplotlib, and ipympl are required.

Bogetti et al. Page 42

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://openmm.org/
https://www.mdtraj.org/1.9.5/index.html
https://www.mdtraj.org/1.9.5/index.html
https://scikit-learn.org/

Quick Start for this Tutorial.: Users can run the following command within the

tutorial7.5-hdf5/ directory to install all the software dependencies for this tutorial to an

existing conda environment:

$ conda env update --name <your WESTPA conda env> --file environment.yml

7.5.3 Setting up the WE Simulation—This simulation uses the same WE parameters

(τ, number of trajectories per bin, etc.) as the Basic Tutorial (Na+/Cl− association

simulations, Section 7.1). The following are major differences from the Basic Tutorial that

highlight more advanced features of WESTPA simulation setup.

Binless Resampler Module.: The binless resampler module can be accessed from the

west.cfg file in the system_options section where binned and binless schemes are all

defined. If the BinlessMapper is used by itself, the entirety of configurational space will

be binless. To recycle trajectories while using a binless framework, we will need to place a

BinlessMapper inside of a RecursiveBinMapper bin and demarcate the target state in

a separate RecursiveBinMapper bin. This framework is identical to the one used for the

MAB scheme with recycling.

The BinlessMapper takes three mandatory arguments. The first, ngroups, specifies the

total number of groups to assign trajectory walkers in the binless space. The second, ndims,

specifies the dimensionality of the progress coordinate and is limited to either 1 or 2

at this time. The ndims parameter specifies the dimensionality of clustering, e.g., 2 for

generating clusters in two-dimensional space (each dimension will not be grouped separately

as is typically the case for binned resampling schemes). The clustering of trajectories

enables sampling of high-dimensional space without an exponential increase in the number

of walkers. The final argument is group_function, which specifies the function for

grouping trajectories in an external file (here, group.py) and will take as input the progress

coordinates and the ngroups values. We provide a general example of using this function

for a one-dimensional progress coordinate using k-means clustering. Additional keyword

options can be specified under group_arguments in the west.cfg file. An example of

using a recursive binless scheme is shown in the west.cfg snippet below:

west:

 system:

 system_options:

 bins:

 type: RecursiveBinMapper

 base:

 type: RectilinearBinMapper

Bogetti et al. Page 43

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

 boundaries: # Under base:

 – [0, 2.60, ‘inf’]

 mappers:

 – type: BinlessMapper

 ngroups: [5] # Number of groups

 ndims: [1] # Number of grouping

 # dimensions

 group_function: group.kmeans

 at: [5] # Location of binless mapper

 # relative to base mapper

Initiating a WE Simulation from Multiple Structures.: Ideally, a WE simulation is

initiated from multiple pre-equilibrated structures that are representative of the initial state

for the rare-event process of interest, e.g. using a conventional simulation or a separate WE

simulation of the initial state. Within the WESTPA framework, we refer to these structures

as “basis states”. If the simulation is run under non-equilibrium steady-state conditions,

trajectories that reach the target state are “recycled” by terminating that trajectory and

initiating a new trajectory with the same statistical weight from one of the basis states.

Structural files (XML files in this tutorial) for basis states contain the coordinates and

velocities, and are placed in separate, numbered folders within the bstates/ directory.

Accompanying each XML file is a pcoord.init text file which contains the progress

coordinate value of that basis state. These progress coordinates are saved to the HDF5

file during the initialization process. The bstates/ directory also contains a reference

file (bstates.txt) that lists all of the available basis states. The bstates.txt file

is formatted with three columns, corresponding to the basis states’ names, associated

probabilities, and folder name, respectively. Additional basis states can be added as separate,

additional lines at the end of the bstates.txt file. The probability over all basis states

must sum to one, and will be normalized by WESTPA during the initialization process to

sum to one if the condition is not met. Compared to the Basic tutorial 7.1 involving Na+/Cl−

association [38], the get_pcoord.sh and runseg.sh files are also modified such that

$WEST_DATA_STRUCT_REF now corresponds to the directory for each basis state and not

the xml file itself.

7.5.4 Running the WE Simulation—As with previous versions of WESTPA, the

simulation can be initialized using ./init.sh and run using ./run.sh. Alternatively, both

steps could be executed consecutively using the new Python API by running the following

command:

Bogetti et al. Page 44

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

$ python init_and_run.py

The init_and_run.py script will print out simulation updates to the console in real-time.

An example runwe.slurm file with commands for both methods of execution is provided

for use with SLURM-like workload managers. We also provide a Jupyter notebook that

demonstrates the steps for cleaning up, initializing, and running the WE simulation.

Note that this tutorial is using the new HDF5 trajectory storage framework, which will

be explained further in Advanced Tutorial 7.6. To enable the use of the HDF5 framework

in your own simulation, you may use the current tutorials directory as an example. The

location of the trajectory h5 files will need to be specified in the west.cfg file, and the

appropriate restart and topology files will need to be copied to the locations specified in

the get_pcoord.sh and runseg.sh files. You will also need to make sure that the file

extensions for any trajectory files are readable by mdtraj.load(), (e.g., Amber restart files

must end in .ncrst) which simply requires renaming. To save disk space, trajectory files

outputted by the dynamics engine can be deleted after every iteration in the post_iter.sh

file, which is located in the westpa_scripts/ directory.

7.5.5 Monitoring and Analyzing the WE Simulation

Combining Multiple WE Simulations for Analysis.: To combine multiple WE simulations

into a single aggregate simulation file for analysis, we can use the w_multi_west tool,

which creates a single multi.h5 file that contains the data from all of the west.h5

files of each WE simulation. Each WE iteration in the multi.h5 file contains all of the

trajectory segments from the corresponding iterations of the individual WE simulations, all

normalized to the total weight for that iteration. For backwards compatibility, a version of

w_multi_west for use with previously run WESTPA 1.0 simulations (v2020.XX) has been

available since version 2020.04.

To apply the multitool to a combination of west.h5 files, place the west.h5 file for each

simulation in a numbered directory starting with 01/. If all of the simulations used a custom

grouping function (such as in group.py), you must also include that file in the top-level

analysis directory.

The files will be organized as follows:

01/

 west.h5

02/

 west.h5

group.py [if used in simulation]

Next, in this directory, run the following to merge the west.h5 files:

Bogetti et al. Page 45

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

$ w_multi_west –m . –n 2

The –m flag specifies the path to your directories and the –n flag specifies the number of WE

simulations to combine for analysis. To combine auxiliary datasets, one can add either an

--aux=NAME_OF_DATASET flag for a specific dataset or an --auxall flag for all auxiliary

datasets; note that the inclusion of auxiliary datasets will substantially extend the time

needed to combine the simulation data. The above w_multi_west --auxall command

will generate a list of WE simulation datasets to combine based on the datasets listed in

01/west.h5 and generate a multi.h5 file with the combined simulation datasets. The

--ibstates flag will merge the initial and basis states if the bstates dataset is identical

across all the simulations. You may want to rename this file to west.h5 in order to apply

the w_pdist tool to the combined simulation dataset. Note that the w_multi_west tool

will only merge up to the N-1 WE iteration, ignoring the last WE iteration. The resulting

multi.h5 file will not link to the individual iteration HDF5 files generated using the HDF5

framework.

Post-Simulation Analysis.: As mentioned above, WESTPA 2.0 enables efficient post-

simulation analysis of trajectory data by storing trajectory data in highly compressed

HDF5 files. The w_crawl tool can then be used to “crawl” through the trajectory data

in single HDF5 files per WE iteration rather than millions of trajectory files. Results from

the analysis are written to a dataset in a new HDF5 file. Before crawling through an

entire simulation dataset, we recommend that users first test their analysis scheme in the

wcrawl_functions.py file to ensure that the scheme works as expected. For this tutorial,

we will only be using a single CPU core for these w_crawl calculations but also include

a sample script as an example of how to use w_crawl on multiple CPU cores in parallel.

The wcrawl_functions.py file contains the main analysis code. This script first identifies

the final frame of a segment’s parent trajectory file from the previous WE iteration and

makes sure this is eventually combined with the trajectory segment from the current WE

iteration. The inclusion of the parent structure at the beginning of the current iteration

trajectory is necessary for using the crawled dataset with WESTPA’s kinetics analysis

tools. In this example, trajectory coordinates of only Na+ and Cl− are extracted using the

MDTraj analysis suite and multiplied by 10 to convert from nm to Å. Resulting per-iteration

coordinate values are then saved to an array, which is subsequently saved to a coord.h5

file. The coord.h5 file is formatted similarly to a west.h5 file, where the new per-iteration

values are stored under iterations/iter_{n_iter:08d}/coord. To ease analysis, a

copy_h5_dataset.py script is provided to copy coord.h5’s contents into a west.h5 file

as an auxiliary dataset. Note that if you store a WESTPA simulation’s trajectory HDF5 files

in a separate directory from what is used in this tutorial, you need to specify the directory

where the iter_XXXXXX.h5 files are located in the wcrawl_functions.py file.

The run_w_crawl.sh shell script runs the w_crawl tool at the command line and provides

options for running the tool in serial or parallel modes. In this tutorial example, we will run

the w_crawl tool in the serial mode using the --serial flag, analyzing one WE iteration

at a time on a single CPU core. While the serial mode is sufficient for “crawling” relatively

small datasets, the parallel mode using the --parallel flag is desirable for datasets with

Bogetti et al. Page 46

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

over 100 trajectory segments per WE iteration and/or hundreds of WE iterations. In the

parallel mode, each CPU core of a single compute node analyzes a different WE iteration at

the same time. To run the w_crawl tool across multiple nodes, one can use the ZMQ work

manager. Once satisfied with the wcrawl_functions.py and run_w_crawl.sh files, run

the w_crawl tool locally:

$./run_w_crawl.sh

or on a multi-node cluster using the Slurm workload manager:

$ sbatch run_w_crawl.sh

To monitor the progress of the analysis, we examine the w_crawl.log file, which contains

analysis results for each WE iteration and each trajectory segment. Finally, to copy the

coord.h5 file to the west.h5 file, run the copy_h5_dataset.py script.

7.5.6 Conclusion—After completing this tutorial, users will gain an understanding of

how to configure the upgraded resampler module for using a binless scheme, initiate a WE

simulation from multiple structures using the new HDF5 trajectory storage framework, and

apply the w_multi_west and w_crawl post-simulation analysis tools.

7.6 Advanced Tutorial: Simulations of Membrane Permeation by 1-Butanol

7.6.1 Introduction—The ability of a drug-like molecule to cross (or permeate) a lipid

bilayer has been of great interest to drug discovery [52], but is challenging to simulate due to

the long timescales involved. In this tutorial, we will use WESTPA 2.0 to simulate pathways

for membrane permeation by a small molecule (1-butanol) and calculate the permeability

coefficient. Our WE protocol employs and explains two new features in WESTPA 2.0 [2]:

(i) the Minimal Adaptive Binning (MAB) scheme [19], and (ii) the HDF5 framework for

efficient restarting, storage, and analysis of a WE simulation.

Learning Objectives.: This tutorial demonstrates how steady state WE simulations can be

used to generate pathways and permeability coefficients for membrane permeation by a

small molecule. Specific learning objectives include:

1. How to set up a double membrane bilayer system for permeability studies;

2. How to use the highly scalable HDF5 framework for more efficient restarting,

storage, and analysis of simulations;

3. How to apply the minimal adaptive binning (MAB) scheme.

7.6.2 Prerequisites—In addition to completing the Basic and Intermediate WESTPA

Tutorials [38], a prerequisite to this advanced tutorial is completion of the above Advanced

Tutorial 7.6. Also required is a working knowledge of the CHARMM-GUI membrane

builder, PACKMOL, OpenEye Scientific’s OEChem and Omega toolkits (for system

preparation only), MDTraj analysis suite, and the OpenMM 7.6 dynamics engine (for

running WE).

Bogetti et al. Page 47

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Computational Requirements.: The membrane permeability tutorial simulation runs best

using, at minimum, a dual-GPU workstation. For this tutorial, simulations were tested with a

compute node containing both a NVIDIA Titan X (Pascal) GPU and a NVIDIA GTX 1080

GPU, as well as a 16-core Intel Xeon X5550 CPU running at 2.67 GHz with a total of 100

GB of system memory. In the case a user does not have a GPU and only CPUs, switch

between OpenMM’s GPU and CPU platforms by changing the platform name in line 22 of

memb_prod.py to CPU instead of CUDA. The complete tutorial simulation run length (37

iterations) required ~4 days of continuous wall clock time on both GPUs, as well as ~30 GB

of hard disk space with the HDF5 framework and MAB options turned on.

This tutorial uses the OpenMM 7.6 dynamics engine [33] and MDTraj 1.9.5 analysis suite

(https://www.mdtraj.org/1.9.5/index.html) for progress coordinate calculations. Force fields

used in this tutorial can be installed via openmmforcefields (https://github.com/openmm/

openmmforcefields). System setup and equilibration were performed separately using

OpenMM. In order to run the companion Jupyter notebook, nglview, matplotlib are required

for visualization purposes. Other dependencies, including NumPy and MDTraj, are installed

with WESTPA 2.0 itself.

Quick Start for this Tutorial.: Users can run the following command within the tutorial

7.6-membrane/directory to install all the software dependencies to an existing conda

environment:

$ conda env update --name <your WESTPA conda env> --file environment.yml

7.6.3 Preparing the simulation—The following preparation steps have already been

completed and are presented to instruct the reader on how to prepare similar systems for WE

simulation.

Our system consists of a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC)

membrane bilayer. The 1-butanol-double POPC membrane bilayer system was prepared by

piecing together several smaller molecular systems in the following way. First, a single

POPC membrane bilayer was generated using CHARMM-GUI’s membrane builder with 50

lipids per leaflet and zero salt concentration. This membrane was then equilibrated using

a single GPU with the OpenMM dynamics engine using the standard CHARMM-GUI

procedure. The membrane plus the outer aqueous layer to the membrane, once combined,

(see Figure 14) was equilibrated for an additional 500 ns. A 2D representation of 1-butanol

was generated from an input SMILES string (CCCCO) using OEChem, and converted to a

3D structure using the Omega TK toolkit. The 3D structure of 1-butanol was then solvated

with a 2 nm slab of water molecules at a density of 1 gm/cm3 using PACKMOL along with

the OEChem TK and Omega TK toolkits from OpenEye. Finally, the full double-membrane

bilayer system was assembled by placing the butanol-embedded slab of water at the origin,

with a single-membrane system at each z-edge of the water slab. The resulting system was

then subjected to energy minimization and equilibrated before the initiated WE simulations

of butanol permeating the membrane bilayer were initialized.

Bogetti et al. Page 48

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.mdtraj.org/1.9.5/index.html
https://github.com/openmm/openmmforcefields
https://github.com/openmm/openmmforcefields

The System.: In this tutorial, we will run a WE simulation of 1-butanol crossing

one membrane of a double POPC membrane bilayer system. To run the WESTPA 2.0

simulation, the AMBER LIPID17 force field is applied to all POPC lipids, explicit water

molecules are represented by the TIP3P model, while the parameters for 1-butanol were

taken from the GAFF 2.11 force field. All force field parameters were applied using the

openmmforcefields Python package.

Progress Coordinate.: The progress coordinate (z) is defined as the (signed) distance from

the center of mass (COM) of the butanol molecule to that of the closest membrane. The

width of a single leaflet of the membrane is roughly 2 nm, so a z < −2 nm, between −2

nm and 2 nm, or >2 nm indicates that the butanol molecule has not yet crossed, is currently

crossing, or has crossed the membrane, respectively. A target state of z ≥3.5 nm is used to

recycle trajectory walkers. The actual computation is performed by measuring the signed

distances between the COMs of butanol and each of the two membranes, z1 and z2, using the

MDTraj analysis suite and then taking the larger value of the two, z=max(z1, z2).

Preparing the Simulation Environment.: Once we have constructed and equilibrated the

1-butanol membrane system, we will prepare the WESTPA system environment. First, we

will analyze the equilibrated double membrane bilayer system to define an initial progress

coordinate. The progress coordinate, equilibrated coordinate file (e.g. XML file), and

bstates.txt file describing the initial basis states are placed in the bstates/ directory.

Second, we will edit the west.cfg file with options for using the MAB scheme and

HDF5 framework. To initialize the WESTPA 2.0 environment, we will run ./init.sh.

This command will source the WESTPA 2.0 environment, construct the seg_logs/,

traj_segs/, and istates/directories, and will run the w_init command with the correct

settings for the target state (z = 3.5 nm) and the basis states constructed above.

Adaptive Binning using the MAB Scheme.: By default, this tutorial uses a manual,

fixed binning scheme, but can be modified to use the Minimal Adaptive Binning (MAB)

module, which adaptively positions bins along the progress coordinate. To enable this

adaptive binning scheme, uncomment the MAB-related lines in the west.cfg file, which

specify the MABBinMapper as the primary bin mapper type, and comment the lines related

to the inner RectilinearBinMapper. Next, define n_bins (the number of MAB bins

placed per progress coordinate dimension) in the same section of the west.cfg (e.g.,

if a two-dimensional progress coordinate is being used, [20, 20] indicates 20 bins in

each dimension). It is important to note that if the recycling of trajectories at a target

state is desired within the MAB framework, recursive bins must be specified by adding a

MABBinMapper inside of a RecursiveBinMapper outer bin and defining the target state in

terms of the recursive outer bins. An example of a MAB recursive binning scheme is shown

below:

west:

 system:

Bogetti et al. Page 49

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

 system_options:

 bins:

 type: RecursiveBinMapper

 base:

 type: RectilinearBinMapper

 boundaries:

 – [-inf, -44, 34, inf]

 mappers:

 – type: MABBinMapper

 nbins: [20] # Number of bins

 direction: [0] # Split both directions

 skip: [0] # Bin along this dimension

 at: [0] # Location of MAB mapper

 relative to base mapper

In the above example, the at option in the last line specifies which outer bin to place

the MAB scheme inside of range [−44, 34]. For a two-dimensional progress coordinate,

this option will require a list with two values, one for each dimension. The nbins option

specifies the number of MAB linear bins that will be used inside the bin, plus two more

bins for extrema and bottleneck trajectories, respectively. Optional direction, skip and

mab_log parameters can also be specified for the MAB scheme. The direction parameter

(0, −1, or 1) can be used to specify the direction along the progress coordinate for splitting

of trajectories, where 0 indicates both directions, −1 indicates the direction of decreasing

values along the progress coordinate, and 1 indicates the direction of increasing values

along the progress coordinate. The skip parameter (1 or 0) designates whether a particular

dimension along the progress coordinate will be binned during the simulation, but will be

used to define the target state (1 indicates that the dimension will be skipped for binning

and 0 indicates that the dimension will not be skipped for binning). The mab_log parameter,

when enabled with true, will print MAB-related statistics such as the progress coordinate

values of extrema walkers to the west. log file. Multiple MAB schemes can be added to a

recursive binning setup, but only one MAB scheme may be used per each outer bin.

If users choose to combine the application of the MAB scheme with the weighted ensemble

steady-state (WESS) plugin [22], which reweights trajectories towards a non-equilibrium

Bogetti et al. Page 50

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

steady state, they must provide fixed bins for the reweighting procedure. The positions of

these fixed bins can be specified in the WESS plugin section of the west.cfg file:

plugins:

 – plugin: westpa.westext.wess.WESSDriver

 enabled: true

 do_reweighting: true

 window_size: 0.75

 bins:

 type: RectilinearBinMapper

 boundaries:

 – [‘-inf’, 0.5, 1.0, 1.5, 2.0, 2.5, ‘inf’]

HDF5 Framework.: The setup for a WESTPA simulation with the HDF5 framework is

similar to a vanilla one with the addition of the following procedures, which are a more

detailed list of the same steps discussed briefly in Advanced Tutorial 7.5 above:

1. An iteration entry was provided in west.cfg under

west.data.data_refs to specify where and how the per-iteration HDF5 files

should be saved and named.

2. All the necessary files needed for propagating the next segment, such as state/

restart and topology files, are passed on to WESTPA through the environment

variable, $WEST_RESTART_RETURN, after initialization and propagation of

each iteration (Figure 15A). This information is typically placed in the

get_pcoord.sh and runseg.sh files.

3. All the trajectory files, and topology files if the topology is not stored as

part of the trajectory file, are provided to WESTPA through the environment

variable, $WEST_TRAJECTORY_RETURN, after the propagation of each iteration.

This, again, is typically placed in the get_pcoord.sh and runseg.sh files.

The coordinates of the basis states can be provided through the environment

variable during initialization to be stored as the “trajectories” of the zero-th

iteration. Note that the procedures described in step 2 and 3 are similar to how

the progress coordinates are returned through $WEST_PCOORD_RETURN in the

vanilla WESTPA simulation. The trajectory and restart files will be saved as part

of the per-iteration HDF5 files. In turn, these files do not need to be located

and copied over to the directory for propagating the next segment, and they will

be automatically extracted and put into the segment folder by WESTPA instead

(Figure 15B).

Bogetti et al. Page 51

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

These additional procedures simplify the data management on the user’s end for two

reasons. First, all the trajectories are stored in a standard way which enables fast and easy

access to these trajectories with their associated WE-related data using the newly added

analysis module (see Section 7.5.4). Second, the restart/state files are much easier to locate

as when they are generated than when they are needed in the next iteration, so letting the

users pass trajectory and restart files to WESTPA for it to manage frees users from tracking

those files themselves which would require the critical knowledge of how two WESTPA-

assigned environment variables work (namely, $WEST_CURRENT_SEG_INITPOINT_TYPE

and $WEST_PARENT_DATA_REF).

For this membrane permeation example, the per-iteration HDF5 files are saved in a folder

named traj_segs/ and named following the pattern iter_XXXXXX.h5. The basis states

are returned to WESTPA in get_pcoord.sh as both the “trajectories” of the zero-th

iteration and the restart files for propagating the first iteration and recycled walkers. The

dynamics is propagated using OpenMM for 100 ps for each iteration, and the output

trajectory files and state XML files are returned to WESTPA in runseg.sh. These files

are deleted once they are returned in order to save disk space. See the sample project setup

files for detail.

7.6.4 Running the WE Simulation—Similar to other examples, the simulation can be

run using ./run.sh from the top-level permeability tutorial directory.

7.6.5 Analyzing the WE Simulation—The analysis of the membrane permeation

simulation can be found in the accompanying Jupyter notebook titled Membrane

Permeability Tutorial (Analysis). In this tutorial notebook, we demonstrate how to extract

a complete, continuous pathway of a membrane-crossing event and calculate the incoming

flux to the target state from the WE membrane permeation simulation. Note that this tutorial

assumes that you already have a completed simulation using the HDF5 framework with at

least one crossing event (~40 iterations).

7.6.6 Conclusion—In this tutorial, we have illustrated the relative ease in which one

may use the WESTPA 2.0 software package to perform advanced WE path sampling

simulations of membrane permeation for a small molecule (butanol). Using a single

workstation with two GPUs, our WE simulation can generate membrane permeation events

within a few days of wall-clock time. WE simulations, when using the WESTPA 2.0 HDF5

framework and MAB binning scheme, are relatively cost effective, both in terms of total

computing time and disk storage.

7.7 Advanced Tutorial: Analysis and restarting with haMSMs: NTL9 Protein Folding

7.7.1 Introduction—Although the WE strategy provides an efficient framework for

unbiased rare-event sampling, slow relaxation to steady state and impractically large

variance in rate constant estimates may still be limiting factors for complex systems.

History-augmented Markov state models (haMSMs) have been demonstrated to provide

estimates of steady state from transient, relaxation-phase WE data, which can be used to

start new WE simulations [18]. As shown in Figure 16, the haMSM plugin for the WESTPA

Bogetti et al. Page 52

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2.0 software package automatically constructs an haMSM from one or more independent

WE simulations to estimate steady-state observables and then can automatically initiate

new simulations from those estimates and iteratively repeat this procedure when those

simulations complete. The underlying haMSM analysis library, msm_we, can also be used to

perform stand-alone haMSM analysis of existing WESTPA data.

Learning Objectives.: This tutorial demonstrates the use of an haMSM restarting workflow

in WE simulations of the ms-timescale folding process of the NTL9 protein. Specific

objectives are:

1. How to apply the haMSM plugin for periodic restarting of simulations;

2. How to use the msm_we package to build an haMSM from WE data;

3. How to estimate the distribution of first passage times from the haMSM, using

msm_we.

7.7.2 Prerequisites—The Basic and Intermediate WESTPA Tutorials [38] should be

completed before running this tutorial.

Computational Requirements.: This tutorial can be completed on a computer with a single

NVIDIA GTX 1080 GPU and a 2.4GHz Intel Xeon E5-2620 in 90 min. The WE simulation

will generate ~5 GB of data, though on a typical cluster filesystem, overhead associated with

data redundancy may increase this to ~15 GB. Aversion of the Amber software package

compatible with Amber 16 restart and topology files must be installed to propagate the

dynamics and calculate the WE progress coordinate.

The msm_we Python package must also be installed, which can be done by first cloning

the repository and then installing it into your existing conda environment (with WESTPA

already installed) by running:

$ git clone https://github.com/westpa/msm_we

$ cd msm_we

$ conda env update --name <your WESTPA conda env> --file environment.yml

7.7.3 Plugin functionality—Once we initiate a WESTPA run with the haMSM plugin

enabled, the plugin will execute a series of independent WE simulations (runs) from the

same starting configuration for the number of WE iterations specified in west.cfg. For this

tutorial, the runs will not use the HDF5 trajectory-saving framework.

If none of the WE runs have reached the target state, the haMSM plugin will sequentially

extend each run for a number of iterations specified in west.cfg. This extension procedure

will be repeated until at least one run has reached the target state. For consistency, all of

the other runs in the set will be extended to match the length of this run. As a result of this

extension procedure, runs used for the first restart may be longer than runs in subsequent

restarts.

Bogetti et al. Page 53

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/westpa/msm_we

After completing the extension procedure, the plugin will construct an haMSM from these

runs, and estimate the steady-state distribution and flux into the target state. All structures

sampled by the set of runs are used to build this haMSM, and are then weighted according to

a steady state. Note that this haMSM uses only the first and last frame of each WE iteration,

which effectively sets the lag-time equal to the WE resampling time. A number of plots are

automatically generated from the model. The flux profile, shown in Figure 17, provides an

important metric of convergence, and should be examined carefully. A flatter flux profile

indicates more converged weighted ensemble.

A new set of runs from the resulting weighted structured are initialized. These runs are

correlated but independent from this point onward. As a technical note, when initializing

the new WE simulations, these structures are used as “start states”. Within the WESTPA

2.0 framework, start states are a third category of state, in addition to basis states and target

states. Like basis states, start states are used for seeding trajectory walkers when initializing

a simulation with w_init; however, unlike basis states, start states are not used after this

point and walkers reaching the target state will not be recycled into start states but rather

only to the basis states. The new WE runs are executed for the number of WE iterations

specified in west.cfg, in series. At this point, the model is saved, a new restart is prepared,

and the process repeats from that point onward.

Please see [2, 18] for more theoretical background on the models used by this plugin.

7.7.4 Preparing the system

The system.: For our simulation of the NTL9 protein folding process, we use a stochastic

Langevin thermostat with low-friction (collision frequency γ = 5 ps−1) and a generalized

Born implicit solvent model. The system consists of ~600 atoms. We will use the haMSM

restart plugin to automatically perform three independent WESTPA runs serially before

constructing an haMSM. A single restart will be performed from the haMSM steady state

estimate, and then WE simulation will be continued for another 106 WE iterations for each

of the three runs.

To reduce runtime for this tutorial, we provide a partially completed set of three independent

WE simulations. In this set of simulations, the first two runs have completed, and the third is

nearing completion. None of these simulations have yet reached the target state.

After continuing this set of WE simulations, the third simulation will finish and reach its

maximum number of WE iterations. With very high probability, none will have reached

the target folded state, and pre-restart extensions will be triggered. The initialized runs

were chosen such that it is unlikely that the third run will reach the target state before

the next restart. However, it is possible that in the remaining few WE iterations of the

third simulation, this simulation will reach the target state, in which case we will skip the

extension procedure.

After a single round of extensions, the target state should be reached in run 2, though not

necessarily runs 1 or 3. We will construct the haMSM from the three extended runs, and

restart a new set of three runs from the steady-state estimates.

Bogetti et al. Page 54

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Structure of Plugin-Specific Files.: A list of important files used and generated in

$WEST_SIM_ROOT by the haMSM plugin is shown in Table 3.

The following files contain more adjustable parameters or are more tightly integrated in the

workflow and therefore warrant a more in-depth explanation.

west.cfg: The haMSM restarting plugin requires a number of parameters

to be set in the appropriate section of west.cfg. Details regarding

these parameters are listed at https://westpa.readthedocs.io/en/latest/documentation/ext/

westpa.westext.hamsm_restarting.html#west-cfg.

restart_initialization.json: When initializing each run, the plugin needs to know

what configuration it should be launched with. After the first restart, this is automatically

generated. However, before the first restart (i.e. in producing the initial set of runs in

Workflow Step 1), there is no way for the plugin to determine how the first run was

initialized. So, the parameters initially passed to w_init must be manually entered into

restart_initialization.json.

westpa_scripts/restart_overrides.py: When building the haMSM, some

dimensionality reduction is typically necessary as it’s generally neither practical nor useful

to analyze the model on the full set of coordinates. This dimensionality reduction is

highly system-specific, so no general procedure is distributed with the plugin. Instead,

the user is required to define a function which takes in an array of full-atomic

coordinates of shape (n_segments, n_atoms, 3), perform the desired dimensionality

reduction, and then return the reduced coordinates in an array of shape (n_segments,

n_features). This functions are then loaded by the haMSM analysis code at run-time,

and used throughout. More details are available at https://westpa.readthedocs.io/en/latest/

documentation/ext/westpa.westext.hamsm_restarting.html#featurization-overrides.

Preparing the WE Simulation Environment.: To prepare the system for using the haMSM

restarting plugin, first clone the tutorial repository. In env.sh, change $TEMPDIR_ROOT to

point to a directory on your filesystem where temporary files will be created (on a cluster,

this should ideally be some node-local scratch/temp space that supports I/O, but on a local

workstation can be a new folder such as $WEST_SIM_ROOT/temp). This temp space will

be used for temporary files created during progress coordinate calculation. In the same file,

change AMBER_EXEC and CPPTRAJ to point to your AMBER and CPPTRAJ executables.

In west.cfg, change ray_tempdir to point to the same directory as TEMPDIR_ROOT.

Then examine haMSM plugin-specific configuration files above to familiarize yourself with

them, though for this tutorial, no further changes are required. To download and extract the

prepared files for the in-progress simulation this tutorial uses, run the following command

from within the main simulation directory.

$ bash pull_sample_data.sh

7.7.5 Running the WE simulation—Now, we are ready to (re)start the WE simulation.

The haMSM plugin will automatically perform the restarting and analysis. Typically, we

Bogetti et al. Page 55

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://westpa.readthedocs.io/en/latest/documentation/ext/westpa.westext.hamsm_restarting.html#west-cfg
https://westpa.readthedocs.io/en/latest/documentation/ext/westpa.westext.hamsm_restarting.html#west-cfg
https://westpa.readthedocs.io/en/latest/documentation/ext/westpa.westext.hamsm_restarting.html#featurization-overrides
https://westpa.readthedocs.io/en/latest/documentation/ext/westpa.westext.hamsm_restarting.html#featurization-overrides

would initialize the system using w_init as we do for all WE simulations using the

WESTPA 2.0 software package. However, to reduce the runtime for this tutorial, we

have provided a pre-prepared system, and running w_init is not required. Once we have

configured the haMSM plugin through west.cfg, we can restart the WE simulation and run

the simulation for a few iterations, by simply executing the following command.

$./run.sh

If the target state has not been reached after running for the specified number of iterations,

additional rounds of restarting/extending the WE simulation will automatically be launched.

Once the target state has been reached, the plugin will build an haMSM, update statistical

weights for each sampled structure, and restart a new set of WE trajectories initialized from

those structures with updated weights. This will all be done automatically.

Start States.: After performing a restart, we will find under the restart0/ directory a

startstates.txt reference file that lists all the structures used for the restart (start states)

and their associated weights for initializing new WE simulations from the first round of

restarting. As noted, these are distinct from the basis states. The startstates.txt text

file is formatted with three columns, which define the names (e.g., “b21s0”), associated

probabilities, and name of the directory containing the structure files of the start states

(relative to the path defined under west.data_refs.basis_states in west.cfg).

Structure files corresponding to these start states are in restart0/structs/ and are

named according to the structure’s haMSM bin and the structure’s index within that bin.

Start states can be added to the pool of potential structures for WE initialization by adding

the --sstates-from or --sstates option to the w_init command. Similar to the

--bstates options for basis states in the above Intermediate Tutorial 7.3, the --sstates-

from option is used to indicate a text file with a list of start states and the --sstates

option is used to append additional start states through the command line.

7.7.6 Analyzing the WE simulation—After the plugin finishes running, you will find

the associated west.h5 for each run and the associated haMSM pickled hamsm.obj objects

for each marathon in the restart*/ directories. Although the plugin will automatically

build the haMSMs and perform some of the analysis based on the configuration files,

haMSM analysis can also be manually performed post-simulation on WESTPA data with the

msm_we library (as used internally by the plugin).

For this tutorial, you can use either the data generated by the steps above, or the pre-

prepared west.h5 files containing data generated from a similar simulation configuration.

This analysis largely follows the msm_we usage instructions provided in the msm_we

documentation (https://msm-we.readthedocs.io/en/latest/usage.html).

For detailed instructions on how to analyze your simulation results, please refer to the

Jupyter notebook distributed along with this tutorial.

7.7.7 Conclusion—Complex systems may exhibit relaxation slow enough to prevent

direct measurement of rate constants using probability flux in WE. This tutorial

Bogetti et al. Page 56

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://msm-we.readthedocs.io/en/latest/usage.html

therefore presents the haMSM plugin for leveraging relaxation-phase WE simulations

by automatically (i) building a haMSM; (ii) generating an estimate of the steady-state

probability distribution and the corresponding steady flux; and (iii) if desired, restarting a

new WE simulation or set of simulations from the estimated steady state. Each haMSM

yields an estimate for the MFPT and FPT distribution using msm_we.

7.8 Advanced Tutorial: Creating Custom Analysis Routines and Calculating Rate
Constants

7.8.1 Introduction—In this tutorial, we will go over how to create custom analysis

routines using the westpa.analysis Python API and how to calculate rate constants

using the Rate from Event Durations (RED) analysis scheme, which enables rate-constant

estimates from transient, pre- steady-state data and therefore shares the same motivation

as the haMSM analysis scheme [2, 18] used in the above Advanced Tutorial 7.7. For

the creation of custom analysis routines, we will focus on the membrane permeability

simulations completed in Advanced Tutorial 7.6. For the calculation of rate constants,

we will focus on previously published protein-protein binding simulations involving the

barnase/barstar system [6].

Learning objectives.: Specific learning objectives for this tutorial include:

1. How to access simulation data in a west.h5 file using the high-level Run

interface of the westpa.analysis Python API and how to retrieve trajectory

data using the BasicMDTrajectory and HDF5MDTrajectory readers;

2. How to access steady-state populations and fluxes from the assign.h5 and

direct.h5 data files, convert fluxes to rate constants, and plot the rate constants

using an appropriate averaging scheme;

3. How to apply the RED analysis scheme to estimate rate constants from shorter

trajectories.

7.8.2 Prerequisites—In addition to completing the Basic and Intermediate Tutorials

7.1–7.4 [38], a prerequisite to this tutorial is completion of the above Advanced Tutorials 7.5

and 7.6.

Computational requirements.: Users should have access to at least 1 CPU core for

running the analysis tools. For larger datasets, one may want to parallelize some of the

tools (especially w_direct). The size of a dataset is mainly determined by the number of

iterations. For a dataset of greater than 1000 iterations, it may be best to use at least 4 CPU

cores at a time.

7.8.3. Creating custom analysis routines—For this part of the tutorial, we will

create custom analysis routines using the westpa.analysis API for the membrane

permeability simulations completed in Advanced Tutorial 7.6.

The main abstraction of the westpa.analysis API is the Run class, which provides a

read-only view of the data in the main WESTPA output file (west.h5). We will start

Bogetti et al. Page 57

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

by opening the west.h5 file from the permeability run. We assume that the current

working directory is the simulation root directory you are interested in analyzing, though

the resulting west.h5 file from Advanced Tutorial 7.6 is linked to the main directory of this

tutorial for convenience. Open a Python interpreter and run the following commands:

>>> from westpa.analysis import Run

>>> run = Run.open(‘west.h5’)

>>> run

<WESTPA Run with 500 iterations at 0×7fcaf8f0d5b0>

We now have convenient access to a wealth of information about the permeability

simulation, including all trajectory segments at each WE iteration and any data associated

with those segments, including values of the progress coordinate and other auxiliary data.

Iterating over a run yields a sequence of Iteration objects, each of which is a collection of

Walker objects. For example, the following loop iterates over all trajectory walkers in a run,

but does nothing with each trajectory walker:

>>> for iteration in run:

… for walker in iteration:

… pass

We can access a walker by providing its (1-based) iteration number and (0-based) segment

ID:

>>> walker = run.iteration(10).walker(4)

>>> walker

Walker(4, Iteration(10, <WESTPA Run with 500 iterations at 0×7fcaf8f0d5b0>))

To access the progress coordinates of a certain trajectory walker, we use the pcoords

attribute:

>>> pcoords = walker.pcoords

Other properties available through this Python API include the weight, parent and children

of a trajectory walker. We can access auxiliary data by looking up the dataset of interest in

the auxiliary_data dictionary attribute (note that the following auxiliary dataset is not

actually present, and the command is provided as an example):

>>> auxdata = walker.auxiliary_data[‘test_data’]

Bogetti et al. Page 58

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

We can also view a list of all recycled (successful) trajectory walkers and choose one walker

to trace its pathway through the membrane:

>>> walkers = run.recycled_walkers

>>> walker = max(walkers,

… key=lambda walker: walker.weight)

The history of a trajectory walker can be traced by using the trace() method, which returns

a Trace object:

>>> trace = walker.trace()

Using the WE iteration and IDs of the trajectory segments obtained from this trace, we

can plot the data of our traced trajectory to see how that property is changing. Remember

that the test_data auxiliary dataset does not actually exist, but can be replaced with an

auxiliary dataset of your choice.

>>> xs = [walker.iteration.number

… for walker in trace]

>>> ys = [walker.auxiliary_data[‘test_data’]

… for walker in trace]

>>> import matplotlib.pyplot as plt

>>> plt.plot(xs, ys)

One goal of the westpa.analysis API is to simplify the retrieval of trajectory

coordinates. Two built-in readers are provided for retrieving MD trajectory coordinates: (1)

BasicMDTrajectory, which handles trajectory files outputted by the dynamics engine; or

(2) HDF5MDTrajectory, which handles trajectories stored using the new HDF5 framework,

as is done in the above Tutorials 7.5 and 7.6. For users requiring greater flexibility, custom

trajectory readers can be implemented using the more general Trajectory class. Here we

provide a brief overview of both the BasicMDTrajectory and the HDF5MDTrajectory

readers. The following is included only as an example, since the trajectory files required are

not provided. MD trajectories stored in the traditional manner may be retrieved using the

BasicMDTrajectory reader with its default settings:

>>> from westpa.analysis import BasicMDTrajectory

>>> trajectory = BasicMDTrajectory()

Bogetti et al. Page 59

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Here, trajectory is a callable object that takes either a walker() or a trace() object as

input and returns an mdtraj.Trajectory() object (https://mdtraj.org/1.9.5/api/generated/

mdtraj.Trajectory.html). To retrieve the trajectory of the trace obtained above, then save the

coordinates to a DCD file (e.g., for visualization using the VMD program), we can run the

following:

>>> traj = trajectory(trace)

>>> traj.save(‘trace-coords.dcd’)

Note that in the code above, we have relied on the fact that the traj_segs/ directory

of interest is contained in the current working directory. In the general case, the name

of the simulation root directory may be provided to the trajectory reader via the

optional sim_root parameter. Minor variations of the “basic” trajectory storage protocol

(e.g., use of different file formats) can be handled by changing the parameters of the

BasicMDTrajectory reader:

>>> trajectory = BasicMDTrajectory(traj_ext=‘.nc’, state_ext=‘.ncrst’,

top=None)

However, suppose that instead of storing the coordinate and topology data for trajectory

segments in separate files (seg.dcd and bstate.pdb), we store them together in

an HDF5 trajectory file (such as iter_XXXXXX.h5) using the new HDF5 restarting

framework available in WESTPA 2.0. This change can be accommodated by using the

HDF5MDTrajectory reader:

>>> trajectory = HDF5MDTrajectory()

The examples above highlight the flexibility and convenience provided by the

westpa.analysis package and provide the building blocks available to a user wanting

to explore the west.h5 file and create custom analysis routines using data in the west.h5

file.

7.8.4. Calculating rate constants using the original WE scheme—For the two

remaining sections of this tutorial, we will focus on applying the RED analysis scheme [20]

to calculate the association rate constant from previously published protein-protein binding

simulations involving the barnase/barstar system [6]. The RED scheme involves three steps:

1. Calculate State Populations and the Flux into the Target State.: The target state can

be defined using either the WE progress coordinate or auxiliary coordinates. The analysis

bins and state definitions are placed in the analysis section of the west.cfg file.

west:

 analysis:

Bogetti et al. Page 60

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://mdtraj.org/1.9.5/api/generated/mdtraj.Trajectory.html
https://mdtraj.org/1.9.5/api/generated/mdtraj.Trajectory.html

 kinetics:

 evolution: cumulative

 analysis_schemes:

 OVERALL:

 enabled: True

 bins:

 - type: RectilinearBinMapper

 boundaries:

 – [0, 3.5, ‘inf’]

 – [0, 3, 15, ‘inf’]

 states:

 – label: unbound

 coords:

 – [0.5, 50.0]

 – [50.0, 50.0]

 – label: bound

 coords:

 – [0.5, 0.5]

To calculate the flux into a state defined by the progress coordinate, we can use the w_ipa

program. Flux calculation with w_ipa involves two steps: (1) assigning trajectory segments

to states using the w_assign command-line tool, and (2) calculating the probability flux

between each pair of defined states using the w_direct command-line tool. Given the large

size of the barnase-barstar simulation HDF5 file, we have provided the resulting assign.h5

and direct.h5 files for the remainder of the tutorial. To use w_ipa for flux analysis, one

would run the following at the command line:

$ w_ipa -ao

Bogetti et al. Page 61

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

This command will analyze the pcoord data from west.h5 using the scheme for bins and

states defined in west.cfg and not drop the user into an IPython environment (to make

use of that functionality, remove the -ao options from the above command). The resulting

assign.h5 and direct.h5 files, the latter containing the fluxes, will be outputted to a

newly created directory that is named for the relevant scheme (in this case that will be in ./

ANALYSIS/OVERALL/. The evolution:cumulative option (which is the default option)

ensures that all evolution datasets are calculated with a rolling average, a requirement for

using the RED scheme (see below).

To calculate the flux into a state defined by auxiliary coordinates, we still use the scheme for

bins and states defined in the west.cfg file. However, instead of using the w_ipa program,

we use the command-line tools, w_assign and w_direct. Before using these tools, we

need to copy module.py to your current directory first (by default, module.py is located

in the ./scripts/ directory). Then, we can assign trajectory segments to specified states

using the w_assign tool:

$ w_assign --config-from-file --scheme OVERALL --construct-dataset

module.load_auxdata --serial

The--config-from-file option tells the program to read analysis parameters from the

west.cfg file’s analysis section and the --scheme option specifies the relevant scheme for

bins and states. The--construct-dataset option provides a function to w_assign for

loading in the auxiliary data which is located in the file module.py. The--serial option

tells w_assign to run the assignment in serial mode. Running w_assign will generate an

ANALYSIS/ directory and place an assign.h5 file in a scheme-specific folder there. Next,

we apply the w_direct tool to the assign.h5 file.

$ w_direct all -a ./ANALYSIS/OVERALL/assign.h5

This command will generate a direct.h5 file in the same directory where we ran the

w_direct command. Move this file to the analysis/ folder that was generated by

w_assign and proceed with the analysis. Note that the above is not part of the following

tutorial and is only included to provide an example to users of how to perform an analysis on

auxiliary data.

2. Correct the Fluxes using the RED Scheme.: To correct the calculated fluxes

using the RED scheme, we apply the w_red command-line tool, which will read in

the rate_evolution and durations datasets in your direct.h5 file and calculates a

correction factor for the flux value at each iteration. To use this tool, add the following to the

analysis section of your west.cfg file:

red:

 scheme: OVERALL

 istate_label: unbound

Bogetti et al. Page 62

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

 fstate_label: bound

 nstiter: 21

 nstrep: 1

For the scheme option, specify the desired scheme for bins and states to use from your

west.cfg analysis section and for the istate_label and fstate_label options, specify

the initial and target states, respectively. The nstiter parameter is the number of frames

per WE iteration that were saved during the WESTPA simulation and nstrep is the

frequency of outputting progress of the RED calculation. After setting all parameters, run

the w_red tool from the command line:

$ w_red

A new dataset containing the corrected fluxes, named red_flux_evolution, will be

added to your direct.h5 file. If that dataset already exists, the w_red tool will ask if you

want to overwrite the existing dataset.

The new red_flux_evolution dataset is created by adjusting the rate_evolution

dataset by the correction factor determined by the RED scheme. The rate_evolution

dataset, in turn, is composed of the relevant conditional_flux_evolution

dataset (from direct.h5) normalized by the steady state populations from

labeled_populations (from assign.h5). Therefore, when using the RED scheme (or

the original rate_evolution dataset), no explicit normalization of the fluxes by the steady

state populations is necessary.

3. Convert the Flux to a Rate Constant.: The fluxes that we just calculated are already

rate constants in units of inverse τ (the resampling interval used for your WE simulation).

For a unimolecular process, the final units of the rate constant should be inverse time (e.g.,

s−1) and can be obtained by converting from units of per τ for the extracted flux array to the

desired time unit. Note that the τ value needs to be provided by the user and is not currently

recorded in the west.h5 file.

For a bimolecular process, which is the case for our OVERALL scheme, the rate constant

should be in units of inverse time and inverse concentration (e.g., M−1s−1) and can be

obtained by first converting to the desired time unit, as done for unimolecular processes,

and dividing the resulting flux values by the effective concentration of the solutes involved

in the bimolecular process given the volume of the simulation box. In the case of our

barnase-barstar system, the τ value was 20 ps and the effective concentration for the barstar

ligand was 1.7 mM. We will therefore divide all of the conditional_flux values by 20 ×

10−12 s and 0.0017 M to obtain per iteration rate constants in units of M−1 s−1.

7.8.5. Monitoring Convergence of the Rate Constant—To monitor the

convergence of the rate-constant estimate, we can plot the time-evolution of the rate constant

Bogetti et al. Page 63

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

using both the original and RED schemes and assess how close our original estimate is to

the RED estimate. If the two schemes are converging to the same value, that can be one

indication that the simulation has begun to converge.

To obtain the rate constant using the original scheme [3], simply convert the

rate_evolution dataset to the appropriate units as discussed above. The time-evolution of

this rate-constant estimate can then be compared with the RED-scheme estimate to assess

convergence of the simulation to a steady state (Figure 18A).

A note on averaging schemes.: There are three main types of averaging schemes that can

be used to monitor convergence when plotting the rate constant evolution using the original

scheme. It may be useful to plot different schemes depending on the behavior of your

specific system. A few examples are shown here with instructions on how to generate the

plots.

The first averaging scheme is the default which is a rolling average (Figure 18B), which can

be achieved by specifying evolution: cumulative in the analysis section of west.cfg

and setting step_iter: 1. This method of visualizing the rate constant evolution offers the

smoothest curve and is recommended as the most stringent way of assessing convergence,

as it incorporates information from the entire simulation. A rolling average is also implicitly

incorporated into the RED scheme, which by design never excludes data from the start of a

simulation. When analyzing rate constant estimates generated by the RED scheme, specify

evolution: cumulative to ensure that only the implicit rolling average is performed.

The second averaging scheme is a window average, which can be achieved in w_ipa by

specifying evolution: cumulative and step_iter: 10, or whatever your desired

averaging window is. A recommended starting averaging window size is 10% of the length

of your simulation, but the most robust would be the lag time of your simulation as

determined from an autocorrelation of the flux plot. A windowed average is not as smooth as

the rolling average but can give a better indication of convergence at different stages of your

simulation relative to other stages.

The third and final averaging scheme is a block average. This will require setting

evolution: blocked and step_iter: 10. The rationale behind choosing the block

size here is the same as the window size discussed above. The block average will appear like

a step function where each block an average of the preceding block is plotted. This method

of plotting is the least smooth, but can be best for obtaining a final value of the rate constant

that is not influenced by earlier, lower values.

7.8.6 Conclusion—Among the upgrades introduced in the WESTPA 2.0 software

package are ones that enable the creation and execution of more streamlined analysis

of simulations and more efficient estimation of rate constants. The westpa.analysis

subpackage can be utilized to more carefully inspect WESTPA trajectory data and to create

custom analysis routines. The RED analysis scheme for correcting rate constants based on

the “ramp-up” time in the fluxes is implemented in the w_red command-line tool. The files

Bogetti et al. Page 64

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

contained in this tutorial for utilizing the RED scheme are intended to provide useful starting

points for analyzing the kinetics of WESTPA simulations.

7.9 Advanced Tutorial: M-WEM Simulations of Alanine Dipeptide

7.9.1. Introduction—The Markovian Weighted Ensemble Milestoning(M-WEM)

approach [11] is a modified version of the Weighted Ensemble Milestoning (WEM) [53, 54]

approach. Both approaches are designed to use the WE strategy to enhance the efficiency of

the milestoning method in calculating equilibrium and non-equilibrium properties (e.g., free

energy landscape and rate constants, respectively).

In the milestoning method [12, 13] the reaction coordinate is stratified using multiple

high-dimensional interfaces— or milestones. Short trajectories are propagated between the

interfaces and using the principles of continuous time Markov chains, the properties of a

long timescale process can be calculated. But the milestones need to be placed significantly

far from each other to lose memory of the previous milestone. But converging the transition

statistics between distant milestones can be expensive depending on the underlying free

energy landscape and the complexity of the system. Because of the use of shorter trajectories

that do not require trajectories to transit from the initial to final states, the WEM and

M-WEM calculations are computationally less expensive than a WE simulation. On the

downside, however, one cannot obtain continuous pathways due to the lack of continuous

trajectories between the starting and the final state.

In the M-WEM approach, regions between the milestones are referred to as “cells”. WE

simulation is performed within the cell with half-harmonic walls present at the milestone

interfaces to prevent trajectory escape [11, 55, 56]. In this tutorial, we will use M-WEM to

calculate the mean first passage time (MFPT), free energy landscape and committor function

for the conformational transition in the alanine dipeptide system.

Learning objectives.: This tutorial covers the installation of and use of the Markovian

Weighted Ensemble Milestoning (M-WEM) software in combination with WESTPA to

compute the kinetics and the free energy landscape of an alanine dipeptide. Specific learning

objectives include:

1. How to install the M-WEM software and perform an M-WEM simulation;

2. How to create milestones to define the M-WEM progress coordinate;

3. How to analyze an M-WEM simulation to compute the mean first passage time,

committor, and free energy landscape.

7.9.2. Prerequisites—The users should have a basic understanding of running WE

simulations using the Minimal Adaptive Binning (MAB) scheme, and should have

completed Advanced Tutorial 7.6 before commencing the M-WEM tutorial. Also, a basic

idea of the Markovian Milestoning framework is necessary. For that purpose, the users

should refer to the following manuscripts [11, 55, 56].

Bogetti et al. Page 65

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Computational requirements.: In terms of software, this tutorial requires several Python

modules (NumPy, SciPy, and Matplotlib) in addition to the WESTPA 2.0 software and

NAMD 2.14 simulation package.

Note: M-WEM is implemented using the Colvars module in NAMD. Please check out the

NAMD tutorial (http://www.ks.uiuc.edu/Training/Tutorials/namd-index.html) and colvars

tutorial (https://colvars.github.io/colvars-refman-namd/colvars-refman-namd.html).

In terms of computer hardware, this tutorial will require approximately 4 GB of disk space.

Running the simulation 100 WE iterations for each milestone takes ~85 min on an Intel Core

i5-8250U CPU @ 1.60GHz processor with 4 CPU cores. For 8 milestones that amounts to

about 11-12 hr if the calculation is performed serially with 4 CPU cores used at a time.

But if a computer cluster is available, each milestone should be run in parallel which will

significantly reduce the wall clock time. The analysis for each milestone takes ~5 min for

each milestone with the same computing hardware but with 1 CPU core. For 8 milestone

cells that would be ~40 min, but similar to the simulation, the analysis for each milestone

can be done in parallel.

7.9.3. Installation of the M-WEM software package—The M-WEM software package

can be downloaded from https://github.com/dhimanray/MWEM. To install the package go to

the main directory that contains the setup.py file and run the following command:

$ python -m pip install .

The M-WEM software should be installed in the same conda environment in which

WESTPA 2.0 is installed.

7.9.4. Setting up a M-WEM environment

Overview.: For performing the M-WEM simulation, we need to first create the milestone

anchors along the transition pathway. This is a typical prerequisite for milestoning

simulation. It is typically done using steered MD simulation [57] which is a common

technique in MD simulation. To avoid spending extra time and possible variability in the

results, we have generated the milestone anchors and provided them in the anchors directory.

The system.: We will be studying the conformational change of gas phase alanine dipeptide

using the M-WEM scheme. The details of this example are provided in [11].

The free energy landscape for the system is shown in Figure 19. To simulate the transition

from state A to state B, 9 milestones are placed at φ = −80°, −60°, −40°, −20°, 0°, 20°, 40°,

60°, 80°. This created 8 cells bound by the milestones. The anchors are chosen in a way that

they are located approximately in the middle of each cell.

Preparing the simulation environment.: The tutoriai 7.9-mwem/ directory contains all

simulation and analysis files and will be referred to as the simulation home directory for

the rest of the tutorial. The milestone anchors for all cells generated from the steered MD

simulation are provided as pdb files in the anchors/ directory.

Bogetti et al. Page 66

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.ks.uiuc.edu/Training/Tutorials/namd-index.html
https://colvars.github.io/colvars-refman-namd/colvars-refman-namd.html
https://github.com/dhimanray/MWEM

The build.py script is a python script which will set up all the milestones for the

simulation. Each milestone cell will be simulated in a different directory, numbered from

0 to 7.

The template/ directory is a generic template for M-WEM simulation for any one cell. It

contains all necessary files except for the pdb files which are specific to each cell (which are

in the anchors/ directory). Also, the colvars.in files have replaceable strings which are

used by the build.py script to create cell specific files. For example, there are terms like

“CENTER”, “HIGH”, and “LOW”. These are places where the position of the center and

the two milestones are written by the build.py code. Make sure to edit the env.sh file to

include the path to your NAMD installation.

In the common_files/ directory the topology (.psf), the parameter (.prm) and the NAMD

configuration files are provided. The structure file (.pdb) in this directory and in the

equilibration/ directory are prepared by the build.py script, and are different for

each milestone cell.

Once you have your M-WEM setup ready, prepare the cell-specific folders by running the

following command:

$ python build.py

7.9.5. Running the M-WEM simulation—In the equilibration/ directory

of each cell, a constrained equilibration of the anchor will need to be

performed to keep the anchor approximately in the middle of the cell. The

milestone_equilibration.colvars.traj file contains the collective variable

information, which, in this case, are the Phi and Psi torsion angles of the alanine

dipeptide. The milestone_equilibration.xsc, milestone_equilibration.coor

and milestone_equilibration.vel files are NAMD restart files that will be used to

start WE trajectories from the endpoint of the equilibration simulation.

The running of the M-WEM simulation for each individual cell is done separately, for

the convenience of parallelizing it in a computing cluster. The run.sh script performs the

simulation via the command ./run.sh. Unlike typical WESTPA setups, the initialization

setup code is included in the run.sh script here. Although it does not make a significant

difference for a small system like this, we found it is more convenient to submit multiple

milestone jobs to a computer cluster by using a single run.sh script. Both the equilibration

and running of each cell is performed by executing the following command from within

each cell-specific folder:

$./run.sh

In the first part of the script, equilibration is performed. Then relevant files are copied to

the bstates/ directory, from which they are read by the westpa_scripts/runseg.sh.

Then the WE simulation is initialized and propagated as usual by the w_init and w_run

commands. In this example script, only one trajectory is propagated at a time. But this can

Bogetti et al. Page 67

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

be parallelized based on the computing resources available. Alternative Slurm scripts for

running and restarting the simulation are also provided in the same directory.

The total number of iterations performed per milestone is 100. The user may choose to

change this number according to their preference. The results reported in this work are from

100 iterations. The convergence is achieved after 40 iterations in our calculation. But it may

slightly vary for independent calculations.

7.9.6 Analyzing the M-WEM simulations—After the M-WEM simulations are

completed, it is important to properly analyze the results. Please refer to the M-WEM

publication for the theoretical details of the analysis [11]. We perform the analysis in two

steps:

Step 1.: Move into the analysis/ directory and execute the following command:

$ python analysis_build.py

The analysis_build.py script will produce directories cell_0/ through cell_7/ and

copy the corresponding west.h5 files (WESTPA output files) from the propagation/

directory into each cell. It will also copy the west.cfg files (different from the west.cfg

files for propagation), and the analysis.py files from westpa_analysis_files/

directory to each cell. The analysis.py file also has strings like “LOW” and “HIGH”,

which will be replaced by floating point numbers corresponding to the left and right

milestones.

Running the analysis.py script from within a specific cell directory will produce the

trajectories.pkl, crossings.pkl and weights.txt files. The files generated by

analysis.py contain information on the trajectory traces (history of the segments in

the final iteration), the time and location (which milestone right or left) of the milestone

crossings, and the weights of each traced trajectory respectively.

Perform analysis in all cells by running the following command from within the analysis/

directory:

$./analyze_all_convergence.sh

This script will execute python analysis.py from within each cell-specifc directory

to produce the .pkl and .txt outputs for the final iteration. But, for the sake of checking

convergence of our results, it will also produce similar files for some subsequent iterations.

To do that, the script will copy the analysis.py to analysis_x.py (where x = iteration

number) and replace the w.niters inside each analysis.py to the corresponding

iteration number. Then, it will produce trajectories_x.pkl, crossings_x.pkl and

the weights_x.txt files for each x. This step can take several minutes to a few hours

depending on the computing hardware. If you have access to a computing cluster, you may

choose to submit this as a job. Note that the analyze_all_convergence.sh script is

customizable. For example, if you want to run all cells in parallel on a cluster you can create

Bogetti et al. Page 68

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

separate bash scripts for each cell. Also, analysis_build.py will produce the following

directories for milestoning analysis in Step 2: cell_probability/, N_i_j_files/,

R_i_files/, and committor/.

Step 2.: After the analysis of the WESTPA output files are done, we will proceed to

analyze our results using the Markovian milestoning framework in two Jupyter notebooks:

kinetics.ipynb and free-energy-landscape.ipynb.

First, run the kinetics.ipynb notebook to obtain the mean first passage time and the

committors. This will also produce the probability distribution file in the milestone space.

Details can be found inside the notebook. The MFPT convergence plots and the committor

functions should look like Figures 20 and 21.

Next, run the free-energy-landscape.ipynb to reconstruct the free energy landscape

along Phi and Psi coordinates from the M-WEM data. It will first produce the unscaled

probability distribution, rescale it and then compute the rescaled free energy landscape. The

final free energy landscape should look like Figure 22.

Note that before executing any notebook, you will need to set the kernel to the environment

in which you installed the M-WEM software. If the kernel is not available, activate the

Jupyter notebook for that environment by executing:

$ python -m ipykernel install --user --name=westpa2

Replace westpa2 with the environment in which you installed M-WEM.

7.9.7 Conclusion—This tutorial presents the Markovian Weighted Ensemble

Milestoning (M-WEM) Python package for use with the WESTPA 2.0 software package

to estimate equilibrium and non-equilibrium observables for the alanine dipeptide. In the

M-WEM approach, the WE strategy is applied to enhance the efficiency of the Markovian

milestoning approach to accelerate the convergence between milestones. While it is not

possible to use this approach to generate continuous pathways between the initial and

final states of a rare-event process, the M-WEM approach can be highly efficient in the

calculation of “end-point properties” such as the MFPT and free energy differences between

the two states. Beyond the alanine dipeptide, the M-WEM approach has been applied to

more complex processes such as receptor-ligand binding, yielding the kon, koff, and binding

free energy for the trypsin benzamidine complex [11].

7.10 Advanced Tutorial: Systems Biology Simulations using the WESTPA/BNG Plugin

7.10.1 Introduction—This tutorial focuses on a scenario in systems biology in which

the WE strategy can be useful: enhanced sampling of rare events in a non-spatial model.

Here we focus on a BioNetGen language (BNGL) rule-based model for a biological

signaling network that consists of a set of structured molecule types and a set of rules

that define the interactions between the molecule types. While the average steady-state

behavior of the model can be obtained using ordinary differential equations, the full kinetics

of the model can only be obtained from stochastic simulations. However, adequate sampling

Bogetti et al. Page 69

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

of any rare events in the model can be a challenge for stochastic simulations. In this

tutorial, we will use WESTPA to orchestrate BNGL simulations that are propagated by the

BNG software package. As mentioned above, WESTPA is interoperable with any stochastic

dynamics engine, including the BNG software.

Learning objectives.: We will simulate a BNGL rule-based model of a two-gene switch

motif that exhibits mutually exclusive activation and inhibition. Specific learning objectives

include:

1. How to install the WESTPA/BNG plugin and set up a WESTPA/BNG

simulation;

2. How to apply adaptive Voronoi binning, which can be used for both non-spatial

and molecular systems;

3. How to run basic analyses tailored for high-dimensional WESTPA/BNG

simulations.

7.10.2 Prerequisites—Users should have a working knowledge of BNGL models

(http://bionetgen.org) and the WESTPA 2.0 software package. This tutorial will make use of

the WEBNG Python package, which facilitates the integration of WESTPA with the BNG

software and requires Python 3.8 or later versions. To install the WEBNG package:

$ git clone https://github.com/ASinanSaglam/webng.git

$ python -m pip install -e .

For common installation issues, see https://webng.readthedocs.io/en/latest/

quickstart.html#installation. Alternatively the user can use a Docker container where the

environment is already prepared correctly using the command:

$ docker pull ghcr.io/westpa/westpa2_tutorials:webng

Note that this requires a Docker installation, for more information see Docker

documentation (https://docs.docker.com/get-docker). Once the docker image is downloaded,

you can run the image with:

$ docker run -it --entrypoint /bin/bashghcr.io/westpa/westpa2_tutorials:webng

Computational requirements.: This tutorial requires ~500 MB disk space. The simulation

takes at most 1 hour of wall-clock time using a single CPU core of a 3.2GHz Intel Core i7

processor. We recommend using the WEBNG package on a Unix system. While the package

has not been tested on Windows systems, one can try using the Windows subsystem for

Linux (WSL; https://docs.microsoft.com/en-us/windows/wsl/install).

7.10.3 Setting up the simulation

The model.: Our BNGL model consists of two genes, gene A and gene B, that are

transcribed to produce proteins A and B, respectively (Figure 23). Protein A binds to the

Bogetti et al. Page 70

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://bionetgen.org/
https://github.com/ASinanSaglam/webng.git
https://webng.readthedocs.io/en/latest/quickstart.html#installation
https://webng.readthedocs.io/en/latest/quickstart.html#installation
https://docs.docker.com/get-docker
https://docs.microsoft.com/en-us/windows/wsl/install

gene A promoter site to activate protein A production and to the gene B promoter site to

repress B production. Likewise, protein B activates gene B and represses gene A. The two

most populated states therefore consist of either (1) high quantities of protein A and low

quantities of protein B, or (2) high quantities of protein B and low quantities of protein A.

Transitions between these two states are rare events.

Preparing the simulation environment.: For this portion of the tutorial, you can use

either your own BNGL model or the ExMISA model described above, which is the default

WEBNG example. WEBNG uses a YAML configuration file to set up a WESTPA folder.

The WEBNG template subcommand gives you a YAML config file with the same defaults

which you can then edit and use to generate the WESTPA simulation folder.

If you are using the default example, the command to generate the template is the following:

$ webng template -o mysim.yaml

If you are using your own model file called exmisa.bngl, the command is:

$ webng template -i exmisa.bngl -o mysim.yaml

This command will generate the YAML file, mysim.yaml. For the full set of configuration

options, see https://webng.readthedocs.io/en/latest/config.html. Path options are specified

automatically using the libraries that are already installed. Propagator options will also

be automatically populated according to the BNGL model. By default, this simulation

setup will use an adaptive Voronoi binning scheme [16] due to the fact that rectilinear

binning is not feasible for high-dimensional BNG models. The center_freq option sets

the frequency of Voronoi bin addition, in units of WE iterations, max_centers is the

maximum number of Voronoi bins that will be added, traj_per_bin is the number of

trajectory walkers per Voronoi bin, and max_iter option sets the maximum number of WE

iterations. All of these options can be modified after the simulation folder is set up (see

https://github.com/westpa/westpa/wiki/User-Guide#Setting_Up_a_WESTPA_Simulation).

By default, the stochastic simulator is set to libroadrunner (http://libroadrunner.org). To use

this simulator, we must first convert the BNGL model to a systems biology markup language

(SBML) model. Next, we use the WEBNG software to compile the SBML model into a

Python object, which allows for efficient simulation of the model. WEBNG also supports the

use of the BNG simulation package. However, the use of this package will result in higher

file I/O operations. Any other stochastic simulator will require the use of a custom WESTPA

propagator.

7.10.4 Running the WE simulation—To run the simulation, we first need to generate

a WESTPA folder using the YAML configuration file generated in the previous step:

$ webng setup --opts mysim.yaml

Bogetti et al. Page 71

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://webng.readthedocs.io/en/latest/config.html
https://github.com/westpa/westpa/wiki/User-Guide#Setting_Up_a_WESTPA_Simulation
http://libroadrunner.org/

The above command will use the path option sim_name as the WESTPA folder, which is

automatically set to the model name in the folder you ran the template command. Next, we

initialize the simulation and run the model in a serial mode using a single CPU:

$ cd exmias

$./init.sh

$ w_run --serial

To run the model in a parallel mode using multiple CPU cores, please refer to WESTPA

documentation for options available with the w_run command-line tool. The resulting

simulation can be found in the exmisa/ folder directory.

7.10.5 Analyzing the WE simulation—To analyze the simulation, we will

use the WEBNG package. To begin, we edit the YAML file under the

folder that contains the configuration file mysim.yaml, setting analyses.enable,

analyses.average.enable, and analyses.evolution.enable to True; and

analyses.average.first-iter to the simulation half point (default: 50). To run the

analysis, we use the following command:

$ webng analysis --opts mysim.yaml

The above command will generate an analysis/ folder in the simulation folder, run the

analyses, and generate associated figures.

By default, average.png provides an N×N matrix of plots of the average two-dimensional

probability distributions of each observable (dimension) of the WE progress coordinate

(Figure 24) and each of the other observables. The evolution.png file gives the time-

evolution (number of WE iterations) of probability distributions for each observable (Figure

25) and can be used to assess the convergence of simulation, making modifications to the

binning scheme if necessary.

The average two-dimensional probability distributions reveal a total of four states: a low

A/low B state, the symmetric low A/high B state and high A/low B states, and a high A/high

B state (Figure 24). The fourth state is the least probable while the first three states are

all highly probable. Transitions from low A/high B to high A/low B states are difficult to

sample and transitions from low A/high B to high A/high B states are even more difficult

to sample. The WE algorithm allows the user to sample these states and transitions between

the states. All analyses should be based on the portion of the simulation that is done

evolving. If the simulation is still evolving, we recommend extending the simulation until

the observables of interest are reasonably converged.

7.10.6 Conclusion—As demonstrated by this tutorial, the WEBNG Python package

provides a framework for applying the WESTPA 2.0 software package to BNGL models

with minimal user input and simplified installation. The adaptive Voronoi binning scheme

Bogetti et al. Page 72

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

enables efficient application of high-dimensional progress coordinates for both molecular

and non-spatial systems. Voronoi bins can be effective for exploratory simulations, placing

bins as far away as possible from previous bins to inform the creation of a custom

binning scheme for sampling the rare-event process of interest. However, such bins may

not be as effective for surmounting barriers (e.g., compared to the MAB scheme [19]), as

demonstrated by the probability distribution as a function of the WE progress coordinate

where many bins near the edges of the configurational space are occupied, but are not of

interest. Future work with WEBNG will include more detailed analysis options such as

automated clustering, generation of networks from bins and clusters, and the estimation of

rate constants for transitions between the clusters.

Funding Information

This work was supported by NIH R01 GM1151805 to LT Chong, DM Zuckerman, JR Faeder, and MC Zwier;
NSF grants CHE-1807301 and MCB-2112871, and NIH R01 GM1115762 to LT Chong; a University of Pittsburgh
Dietrich School of Arts and Sciences Graduate Fellowship to AT Bogetti; NIH T32-DK061296 to JL Adelman;
a University of Pittsburgh Brackenridge Summer Undergraduate Fellowship to PA Torrillo; a University of
Pittsburgh Andrew Mellon Predoctoral Fellowship to AT Bogetti; and a MolSSI Software Fellowship to JD Russo.
Computational resources were provided by the University of Pittsburgh Center for Research Computing under NSF
MRI 2117681.

11 Other Contributions

We thank the many users of the WESTPA software who have provided important feedback for improving our
tutorials and documentation over the years. We thank Michael Shirts for assistance in generating this article.

References

[1]. Zwier MC, Adelman JL, Kaus JW, Pratt AJ, Wong KF, Rego NB, Suárez E, Lettieri S, Wang DW,
Grabe M, Zuckerman DM, Chong LT. WESTPA: An Interoperable, Highly Scalable Software
Package for Weighted Ensemble Simulation and Analysis. Journal of Chemical Theory and
Computation. 2015; 11(2):800–809. 10.1021/ct5010615. [PubMed: 26392815]

[2]. Russo JD, Zhang S, Leung JMG, Bogetti AT, Thompson JP, DeGrave AJ, Torrillo PA, Pratt
AJ, Wong KF, Xia J, Copperman J, Adelman JL, Zwier MC, LeBard DN, Zuckerman DM,
Chong LT. WESTPA 2.0: High-Performance Upgrades for Weighted Ensemble Simulations and
Analysis of Longer-Timescale Applications. Journal of Chemical Theory and Computation.
2022; 18(2):638–649. 10.1021/acs.jctc.1c01154. [PubMed: 35043623]

[3]. Huber GA, Kim S. Weighted-ensemble Brownian dynamics simulations for protein association
reactions. Biophysical Journal. 1996; 70(1):97–110. 10.1016/S0006-3495(96)79552-8. [PubMed:
8770190]

[4]. Zuckerman DM, Chong LT. Weighted Ensemble Simulation: Review of Methodology,
Applications, and Software. Annual review of biophysics. 2017; 46:43–57. 10.1146/annurev-
biophys-070816-033834.

[5]. Adhikari U, Mostofian B, Copperman J, Subramanian SR, Petersen AA, Zuckerman DM.
Computational Estimation of Microsecond to Second Atomistic Folding Times. Journal of
the American Chemical Society. 2019; 141(16):6519–6526. 10.1021/jacs.8b10735. [PubMed:
30892023]

[6]. Saglam AS, Chong LT. Protein-protein binding pathways and calculations of rate constants
using fully-continuous, explicit-solvent simulations. Chemical Science. 2019; 10(8):2360–2372.
10.1039/C8SC04811H. [PubMed: 30881664]

[7]. Lotz SD, Dickson A. Unbiased Molecular Dynamics of 11 min Timescale Drug Unbinding
Reveals Transition State Stabilizing Interactions. Journal of the American Chemical Society.
2018;140(2):618–628. 10.1021/jacs.7b08572. [PubMed: 29303257]

Bogetti et al. Page 73

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[8]. Sztain T, Ahn SH, Bogetti AT, Casalino L, Goldsmith JA, Seitz E, McCool RS, Kearns FL,
Acosta-Reyes F, Maji S, Mashayekhi G, McCammon JA, Ourmazd A, Frank J, McLellan JS,
Chong LT, Amaro RE. A glycan gate controls opening of the SARS-CoV-2 spike protein. Nature
Chemistry. 2021; p. 1–6. 10.1038/s41557-021-00758-3. [PubMed: 37118105]

[9]. Donovan RM, Sedgewick AJ, Faeder JR, Zuckerman DM. Efficient stochastic simulation of
chemical kinetics networks using a weighted ensemble of trajectories. The Journal of Chemical
Physics. 2013; 139(11):115105. 10.1063/1.4821167. [PubMed: 24070313]

[10]. Donovan RM, Tapia JJ, Sullivan DP, Faeder JR, Murphy RF, Dittrich M, Zuckerman
DM. Unbiased Rare Event Sampling in Spatial Stochastic Systems Biology Models Using
a Weighted Ensemble of Trajectories. PLOS Computational Biology. 2016;12(2):e1004611.
10.1371/journal.pcbi.1004611. [PubMed: 26845334]

[11]. Ray D, Stone SE, Andricioaei I. Markovian Weighted Ensemble Milestoning (M-WEM): Long-
Time Kinetics from Short Trajectories. Journal of Chemical Theory and Computation. 2022;
18(1):79–95. 10.1021/acs.jctc.1c00803. [PubMed: 34910499]

[12]. Faradjian AK, Elber R. Computing time scales from reaction coordinates by milestoning.
The Journal of Chemical Physics. 2004; 120(23):10880–10889. 10.1063/1.1738640. [PubMed:
15268118]

[13]. West AMA, Elber R, Shalloway D. Extending molecular dynamics time scales with milestoning:
Example of complex kinetics in a solvated peptide. The Journal of Chemical Physics. 2007;
126(14):145104. 10.1063/1.2716389. [PubMed: 17444753]

[14]. Harris LA, Hogg JS, Tapia JJ, Sekar JAP, Gupta S, Korsunsky I, Arora A, Barua D,
Sheehan RP, Faeder JR. BioNetGen 2.2: advances in rule-based modeling. Bioinformatics. 2016;
32(21):3366–3368. 10.1093/bioinformatics/btw469. [PubMed: 27402907]

[15]. Tapia JJ, Saglam AS, Czech J, Kuczewski R, Bartol TM, Sejnowski TJ, Faeder JR. MCell-R:
A particle-resolution network-free spatial modeling framework. Methods in molecular biology
(Clifton, NJ). 2019; 1945:203–229. 10.1007/978-1-4939-9102-0_9.

[16]. Zhang BW, Jasnow D, Zuckerman DM. The “weighted ensemble” path sampling method is
statistically exact for a broad class of stochastic processes and binning procedures. The Journal of
Chemical Physics. 2010; 132(5):054107. 10.1063/1.3306345. [PubMed: 20136305]

[17]. Donyapour N, Roussey NM, Dickson A. REVO: Resampling of ensembles by variation
optimization. The Journal of Chemical Physics. 2019; 150(24):244112. 10.1063/1.5100521.
[PubMed: 31255090]

[18]. Copperman J, Zuckerman DM. Accelerated Estimation of Long-Timescale Kinetics from
Weighted Ensemble Simulation via Non-Markovian “Microbin” Analysis. Journal of Chemical
Theory and Computation. 2020; 16(11):6763–6775. 10.1021/acs.jctc.0c00273. [PubMed:
32990438]

[19]. Torrillo PA, Bogetti AT, Chong LT. A Minimal, Adaptive Binning Scheme for Weighted
Ensemble Simulations. The Journal of Physical Chemistry A. 2021; 125(7):1642–1649. 10.1021/
acs.jpca.0c10724. [PubMed: 33577732]

[20]. DeGrave AJ, Bogetti AT, Chong LT. The RED scheme: Rate-constant estimation from pre-steady
state weighted ensemble simulations. The Journal of Chemical Physics. 2021; 154(11):114111.
10.1063/5.0041278. [PubMed: 33752378]

[21]. Aristoff D, Zuckerman DM. Optimizing Weighted Ensemble Sampling of Steady States.
Multiscale Modeling & Simulation. 2020; 18(2):646–673. 10.1137/18M1212100. [PubMed:
34421402]

[22]. Bhatt D, Zhang BW, Zuckerman DM. Steady-state simulations using weighted ensemble
path sampling. The Journal of Chemical Physics. 2010; 133(1):014110. 10.1063/1.3456985.
[PubMed: 20614962]

[23]. Zwier MC, Kaus JW, Chong LT. Efficient Explicit-Solvent Molecular Dynamics Simulations
of Molecular Association Kinetics: Methane/Methane, Na+/Cl−, Methane/Benzene, and K+/18−
Crown-6 Ether. Journal of Chemical Theory and Computation. 2011; 7(4):1189–1197. 10.1021/
ct100626x. [PubMed: 26606365]

Bogetti et al. Page 74

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[24]. Zheng W, Andrec M, Gallicchio E, Levy RM. Simulating replica exchange simulations of protein
folding with a kinetic network model. Proceedings of the National Academy of Sciences. 2007;
104(39):15340–15345. 10.1073/pnas.0704418104.

[25]. Copperman J, Aristoff D, Makarov DE, Simpson G, Zuckerman DM. Transient probability
currents provide upper and lower bounds on non-equilibrium steady-state currents in
the Smoluchowski picture. The Journal of Chemical Physics. 2019; 151(17):174108.
10.1063/1.5120511. [PubMed: 31703496]

[26]. Zuckerman DM, Discrete-state kinetics and Markov models; http://physicallensonthecell.org/
discrete-state-kinetics-and-markov-models.

[27]. Chong LT, Saglam AS, Zuckerman DM. Path-sampling strategies for simulating rare events
in biomolecular systems. Current Opinion in Structural Biology. 2017; 43:88–94. 10.1016/
j.sbi.2016.11.019. [PubMed: 27984811]

[28]. Mostofian B, Zuckerman DM. Statistical Uncertainty Analysis for Small-Sample, High Log-
Variance Data: Cautions for Bootstrapping and Bayesian Bootstrapping. Journal of Chemical
Theory and Computation. 2019; 15(6):3499–3509. 10.1021/acs.jctc.9b00015. [PubMed:
31002504]

[29]. Aristoff D. Analysis and optimization of weighted ensemble sampling. ESAIM: Mathematical
Modelling and Numerical Analysis. 2018; 52(4):1219–1238. 10.1051/m2an/2017046.

[30]. Zuckerman DM, Woolf TB. Transition events in butane simulations: Similarities across models.
The Journal of Chemical Physics. 2002; 116(6):2586–2591. 10.1063/1.1433501.

[31]. Zhang BW, Jasnow D, Zuckerman DM. Efficient and verified simulation of a path ensemble
for conformational change in a united-residue model of calmodulin. Proceedings of the National
Academy of Sciences. 2007; 104(46):18043–18048. 10.1073/pnas.0706349104.

[32]. Case DA, Aktulga HM, Belfon K, Ben-Shalom IY, Berryman JT, Brozell SR, Cerutti DS, III
TEC, Cisneros GA, Cruzeiro VWD, Darden TA, Duke RE, Giambasu G, Gilson MK, Gohlke
H, Goetz AW, Harris R, Izadi S, Izmailov SA, Kasavajhala K, et al., Amber 2022. University of
California, San Francisco; 2022.

[33]. Eastman P, Swails J, Chodera JD, McGibbon RT, Zhao Y, Beauchamp KA, Wang LP, Simmonett
AC, Harrigan MP, Stern CD, Wiewiora RP, Brooks BR, Pande VS. OpenMM 7: Rapid
development of high performance algorithms for molecular dynamics. PLOS Computational
Biology. 2017; 13(7):e1005659. 10.1371/journal.pcbi.1005659. [PubMed: 28746339]

[34]. Braun E, Gilmer J, Mayes HB, Mobley DL, Monroe JI, Prasad S, Zuckerman DM. Best Practices
for Foundations in Molecular Simulations [Article v1.0]. Living Journal of Computational
Molecular Science. 2019; 1(1):5957–5957. 10.33011/livecoms.1.1.5957. [PubMed: 31788666]

[35]. Zuckerman DM, Russo JD. A gentle introduction to the non-equilibrium physics of trajectories:
Theory, algorithms, and biomolecular applications. American Journal of Physics. 2021;
89(11):1048–1061. 10.1119/10.0005603. [PubMed: 35530173]

[36]. Grossfield A, Patrone PN, Roe DR, Schultz AJ, Siderius D, Zuckerman DM. Best Practices
for Quantification of Uncertainty and Sampling Quality in Molecular Simulations [Article v1.0].
Living Journal of Computational Molecular Science. 2019; 1(1). 10.33011/livecoms.1.1.5067.

[37]. Zwier MC, Pratt AJ, Adelman JL, Kaus JW, Zuckerman DM, Chong LT. Efficient Atomistic
Simulation of Pathways and Calculation of Rate Constants for a Protein–Peptide Binding
Process: Application to the MDM2 Protein and an Intrinsically Disordered p53 Peptide. The
Journal of Physical Chemistry Letters. 2016; 7(17):3440–3445. 10.1021/acs.jpclett.6b01502.
[PubMed: 27532687]

[38]. Bogetti AT, Mostofian B, Dickson A, Pratt AJ, Saglam AS, Harrison PO, Dudek M,
Torrillo PA, DeGrave AJ, Adhikari U, Zweir MC, Zuckerman DM, Chong LT. A Suite of
Tutorials for the WESTPA Rare-Events Sampling Software [Article v1.0]. Living Journal
of Computational Molecular Science. 2019; 1(2):10607–10607. 10.33011/livecoms.1.2.10607.
[PubMed: 32395705]

[39]. Casalino L, Dommer AC, Gaieb Z, Barros EP, Sztain T, Ahn SH, Trifan A, Brace A, Bogetti
AT, Clyde A, Ma H, Lee H, Turilli M, Khalid S, Chong LT, Simmerling C, Hardy DJ, Maia
JD, Phillips JC, Kurth T, et al. Al-driven multiscale simulations illuminate mechanisms of SARS-
CoV-2 spike dynamics. The International Journal of High Performance Computing Applications.
2021; 35(5):432–451. 10.1177/10943420211006452.

Bogetti et al. Page 75

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://physicallensonthecell.org/discrete-state-kinetics-and-markov-models
http://physicallensonthecell.org/discrete-state-kinetics-and-markov-models

[40]. Cerutti DS, Duke R, Freddolino PL, Fan H, Lybrand TP. A Vulnerability in Popular Molecular
Dynamics Packages Concerning Langevin and Andersen Dynamics. Journal of Chemical Theory
and Computation. 2008; 4(10):1669–1680. 10.1021/ct8002173. [PubMed: 19180249]

[41]. Pratt A, Suarez E, Zuckerman D, Chong L. Extensive Evaluation of Weighted Ensemble
Strategies for Calculating Rate Constants and Binding Affinities of Molecular Association/
Dissociation Processes. bioRxiv. 2019; 10.1101/671172.

[42]. Joung IS, Cheatham TE. Molecular Dynamics Simulations of the Dynamic and Energetic
Properties of Alkali and Halide Ions Using Water-Model-Specific Ion Parameters. The Journal of
Physical Chemistry B. 2009; 113(40):13279–13290. 10.1021/jp902584c. [PubMed: 19757835]

[43]. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple
potential functions for simulating liquid water. The Journal of Chemical Physics. 1983;
79(2):926–935. 10.1063/1.445869.

[44]. Nguyen H, Maier J, Huang H, Perrone V, Simmerling C. Folding Simulations for Proteins with
Diverse Topologies Are Accessible in Days with a Physics-Based Force Field and Implicit
Solvent. Journal of the American Chemical Society. 2014; 136(40):13959–13962. 10.1021/
ja5032776. [PubMed: 25255057]

[45]. Nguyen H, Roe DR, Simmerling C. Improved Generalized Born Solvent Model Parameters
for Protein Simulations. Journal of Chemical Theory and Computation. 2013; 9(4):2020–2034.
10.1021/ct3010485. [PubMed: 25788871]

[46]. Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ, Pavletich NP. Structure of
the MDM2 Oncoprotein Bound to the p53 Tumor Suppressor Transactivation Domain. Science.
1996; 274(5289):948–953. 10.1126/science.274.5289.948. [PubMed: 8875929]

[47]. Honda S, Yamasaki K, Sawada Y, Morii H. 10 Residue Folded Peptide Designed by Segment
Statistics. Structure. 2004; 12(8):1507–1518. 10.1016/j.str.2004.05.022. [PubMed: 15296744]

[48]. Hill TL. In: State Probabilities and Fluxes in Terms of the Rate Constants of the Diagram
Springer New York; 1989. p. 39–88. 10.1007/978-1-4612-3558-3_2.

[49]. Michaud-Agrawal N, Denning EJ, Woolf TB, Beckstein O. MDAnalysis: A toolkit for
the analysis of molecular dynamics simulations. Journal of Computational Chemistry. 2011;
32(10):2319–2327. 10.1002/jcc.21787. [PubMed: 21500218]

[50]. Gowers R, Linke M, Barnoud J, Reddy T, Melo M, Seyler S, Domański J, Dotson D,
Buchoux S, Kenney I, Beckstein O. MDAnalysis: A Python Package for the Rapid Analysis of
Molecular Dynamics Simulations. In: Python in Science Conference; 2016. p. 98–105. 10.25080/
Majora-629e541a-00e.

[51]. McGibbon RT, Beauchamp KA, Harrigan MP, Klein C, Swails JM, Hernández CX, Schwantes
CR, Wang LP, Lane TJ, Pande VS. MDTraj: A Modern Open Library for the Analysis
of Molecular Dynamics Trajectories. Biophysical Journal. 2015; 109(8):1528–1532. 10.1016/
j.bpj.2015.08.015. [PubMed: 26488642]

[52]. Zhang S, Thompson JP, Xia J, Bogetti AT, York F, Skillman AG, Chong LT, LeBard DN.
Mechanistic Insights into Passive Membrane Permeability of Drug-like Molecules from a
Weighted Ensemble of Trajectories. Journal of Chemical Information and Modeling. 2022; p.
acs.jcim.1c01540. 10.1021/acs.jcim.1c01540.

[53]. Ray D, Gokey T, Mobley DL, Andricioaei I. Kinetics and free energy of ligand dissociation
using weighted ensemble milestoning. The Journal of Chemical Physics. 2020; 153(15):154117.
10.1063/5.0021953. [PubMed: 33092382]

[54]. Ray D, Andricioaei I. Weighted ensemble milestoning (WEM): A combined approach for rare
event simulations. The Journal of Chemical Physics. 2020; 152(23):234114. 10.1063/5.0008028.
[PubMed: 32571033]

[55]. Vanden-Eijnden E, Venturoli M. Markovian milestoning with Voronoi tessellations. The Journal
of Chemical Physics. 2009; 130(19):194101. 10.1063/1.3129843. [PubMed: 19466815]

[56]. Maragliano L, Vanden-Eijnden E, Roux B. Free Energy and Kinetics of Conformational
Transitions from Voronoi Tessellated Milestoning with Restraining Potentials. Journal of
Chemical Theory and Computation. 2009; 5(10):2589–2594. 10.1021/ct900279z. [PubMed:
20354583]

Bogetti et al. Page 76

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[57]. Izrailev S, Stepaniants S, Isralewitz B, Kosztin D, Lu H, Molnar F, Wriggers W, Schulten K.
Steered Molecular Dynamics. In: Griebel M, Keyes DE, Nieminen RM, Roose D, Schlick T,
Deuflhard P, Hermans J, Leimkuhler B, Mark AE, Reich S, Skeel RD, editors. Computational
Molecular Dynamics: Challenges, Methods, Ideas, vol. 4 Berlin, Heidelberg: Springer Berlin
Heidelberg; 1999.p. 39–65. 10.1007/978-3-642-58360-5_2.

Bogetti et al. Page 77

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1.
Overview of the weighted ensemble (WE) strategy [10]. WE typically employs bins,

demarcated here by dashed vertical lines, to guide a set of trajectories to sample throughout

configuration space. Using only ordinary dynamics–without biasing forces–WE replicates

(“splits”) trajectories in unoccupied or under-occupied regions of space and prunes

(“merges”) trajectories in over-occupied regions, according to the user-specified allocation

scheme which here is a target of two trajectories per bin. Throughout the process, weights

(partially filled circles) are tracked by statistical rules of inheritance that ensure that the

overall ensemble dynamics are consistent with non-equilibrium statistical mechanics [16].

Figure adapted with permission from [9].

Bogetti et al. Page 78

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
Recommended simulation workflow that makes use of major upgrades in the WESTPA 2.0

software.

Bogetti et al. Page 79

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3.
Convergence assessment and error analysis in the face of large run-to-run variation. The

flux of probability into the target state B computed as a function of continuous molecular

time, tmol, is shown for several independent WE runs (grey). The large variation among

individual runs makes it challenging both to assess whether the transient period has ended

and to construct reliable error bars (see text). The history augmented Markov State Model

(haMSM) analysis (green lines) provides an estimate of the long-time behavior, and the

Bayesian bootstrap credibility region (red lines) estimates the average transient behavior.

Bogetti et al. Page 80

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4.
Probabiity evolution of Na+/Cl− association as a function of interatomic distance and WE

iteration. The distribution from your particular simulation may look slightly different.

Observe that at the beginning of the simulation, the probability is centered around 12 Å

(the initial distance).

Bogetti et al. Page 81

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5.
Mean flux evolution of Na+/Cl− association as a function of WE iteration. The mean

flux alternatively rises sharply and then relaxes. These “peaks” correspond to probability

crossing into the target state. Your plot may still not be completely converged after 100 WE

iterations.

Bogetti et al. Page 82

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6.
Probability distributions for each of the two progress coordinate dimensions versus WE

iteration for the p53 system. The simulation was analyzed after 10 WE iterations.

Bogetti et al. Page 83

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 7.
Probability distributions for each of the two progress coordinate dimensions versus WE

iteration for the p53 system. The simulation was re-analyzed after 40 WE iterations

Bogetti et al. Page 84

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 8.
Ramachandran plot showing the occurance of φ/ψ angles of the second peptide bond of the

p53 peptide, for each WE segment throughout the course of the simiulation.

Bogetti et al. Page 85

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 9.
Cα RMSD vs simulation time for the brute force simulation of chignolin.

Bogetti et al. Page 86

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 10.
Estimating the unfolding rate constant of chignolin. The 1 ns window-averaged unfolding

rate constant is shown in a semi-logarithmic plot for three independent WE simulations

(black, red, and green) that were started from the same folded starting structure (see lower

left). The corresponding unfolding rate constant from the brute force simulation is indicated

by the horizontal blue line and its confidence interval by the shaded region. The molecular

time is the time elapsed, Nτ where N is the number of WE iterations that each have a length

of τ. The aggregate simulation time was on average, ~1.3 μs for each simulation.

Bogetti et al. Page 87

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 11.
Estimating the folding rate constant of chignolin. The 20-ns window-averaged folding rate

constant is shown in a semi-logarithmic plot for three independent WESTPA simulations

(black, red, and green profiles) with the same unfolded starting structure (see lower left).

Note the significantly longer molecular and aggregate simulation times for each simulation

to obtain converged rate constants of folding compared to unfolding (see Figure 10). The

corresponding rate constant from the brute force simulation is indicated by the horizontal

blue line and its confidence interval by the shaded region.

Bogetti et al. Page 88

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 12.
Two-dimensional probability distribution as a function of the progress coordinate. Two

representative, continuous trajectories that originate from distinct initial states are traced in

cyan and white, respectively.

Bogetti et al. Page 89

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 13.
Flow chart for simulating Na+/Cl− association using the new binless resampler module.

After dynamics propagation in step 1, trajectories in each bin are grouped with the user-

specified group.py function. In this example, trajectory walkers are grouped using k-means

clustering.

Bogetti et al. Page 90

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 14.
The equilibrated double-membrane bilayer system used for initiating WE simulations of

membrane permeation by 1-butanol in this tutorial. Both the POPC membrane bilayers

(gray; hydrogens removed for clarity) and 1-butanol (black) are represented in van der Waals

representation, while layers of explicit water molecules are shown as a transparent blue

surface.

Bogetti et al. Page 91

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 15.
Diagrams showing the differences in the propagation procedure between a vanilla WESTPA

run and a run with the HDF5 framework. A) Procedures for propagating one WE iteration

using the original WESTPA 1.0 framework (blue text) and WESTPA 2.0 HDF5 framework

(red text). Using the WESTPA 2.0 HDF5 framework, the WESTPA software prepares the

input files while the user is responsible for returning the progress coordinate (pcoord),

restart, trajectory, and optional log files. B) Workflow for using the WESTPA 2.0 HDF5

framework. Blue: Steps and files from the original WESTPA 1.0 procedure. Red: Files

generated or prepared by the WESTPA 2.0 HDF5 framework.

Bogetti et al. Page 92

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 16.
Schematic of haMSM restarting procedure. Trajectories from one or more WE runs are used

together to build an haMSM. An estimate of steady-state is obtained from the haMSM, and

is used to assign weights to all sampled structures. New WE runs are initiated from these

steady-state weighted structures, and the procedure repeats. Figure reprinted with permission

from [2]. Further permission related to the source material should be requested from ACS.

Bogetti et al. Page 93

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 17.
Sample flux profile generated by haMSM restarting plugin after a restart. The x-axis

is labeled “pseudocommittor”, since these are committor values generated from a

unidirectional path ensemble. This plot should flatten in successive restarts until steady

state is reached. The color scale indicates the progress coordinate associated with each

pseudocommittor—notably, most of the dynamic range in committor-space is restricted

to a small range of progress coordinate values. This image can be found in restart0/plots/

psuedocomm-flux_plot_pcoordcolor.pdf after restart is performed.

Bogetti et al. Page 94

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 18.
A) A comparison of the RED and original schemes for estimating the rate constant for

protein-protein association involving the barnase/barstar system from previously published

WE simulations [6]. In this case, the simulation has not converged to a steady state, as

indicated by different rate-constant estimates using the original and RED schemes. B)

A comparison of different averaging schemes using the same dataset. While the RED

scheme is, in principle, only compatible with rolling averages, the use of block and window

averaging can still be informative for monitoring convergence of the simulation. C-E)

Schematic illustrations of rolling, window, and block averaging schemes, indicating points

where averages are calculated (blue) and the extent of data used for the averages (red).

Bogetti et al. Page 95

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 19.
Free energy landscape of alanine dipeptide in the gas phase. Milestone positions are shown

as vertical lines. Our aim is to simulate the MFPT of the transition from state A to state B.

Bogetti et al. Page 96

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 20.
Convergence of the mean first passage time (MFPT) as a function of M-WEM iterations.

Bogetti et al. Page 97

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 21.
Committor function along the φ coordinate from M-WEM simulation.

Bogetti et al. Page 98

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 22.
Free energy landscape reconstructed from an M-WEM simulation.

Bogetti et al. Page 99

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 23.
Two-gene network of exclusive mutual inhibition and self activation. Blue squares represent

genes and orange circles represent proteins.

Bogetti et al. Page 100

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 24.
Probability distributions as a function of the two-dimensional progress coordinate (off-

diagonal) and each dimension of the progress coordinate (diagonal). Axes A and B show

the quantity of each protein in the two-gene model. Grey lines in each off-diagonal plot

delineate adaptive Voronoi bins used during the WE simulation.

Bogetti et al. Page 101

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 25.
Probability distributions of each observable (A or B) of the two-dimensional progress

coordinate as a function of WE iteration. The striped nature of the distributions is due

to the fact that A and B are discrete as opposed to continuous observables.

Bogetti et al. Page 102

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bogetti et al. Page 103

Ta
b

le
 1

.

W
E

 p
ar

am
et

er
s

us
ed

 f
or

 n
ot

ab
le

 a
pp

lic
at

io
ns

 in
 th

e
lit

er
at

ur
e.

R
ar

e-
ev

en
t

pr
oc

es
s

Sy
st

em
 a

nd
 s

iz
e

W
E

 P
ar

am
et

er
s

Su
it

ab
le

 c
om

pu
ti

ng
 r

es
ou

rc
es

m
ill

is
ec

on
d

pr
ot

ei
n

fo
ld

in
g

[2
8]

N
T

L
9

pr
ot

ei
n

in
 g

en
er

al
iz

ed

B
or

n
(G

B
)

im
pl

ic
it

so
lv

en
t w

ith

lo
w

 a
nd

 h
ig

h
so

lv
en

t v
is

co
si

ty

(c
ol

lis
io

n
fr

eq
ue

nc
y

of
 5

 p
s−

1

an
d

80
 p

s−
1 ,

 r
es

pe
ct

iv
el

y)
: 6

27

at
om

s

1D
 p

ro
gr

es
s

co
or

di
na

te
: C

α
R

M
SD

 f
ro

m
 th

e
fo

ld
ed

 s
tr

uc
tu

re
.

B
in

ni
ng

: 5
3

bi
ns

, t
ha

t a
re

 f
in

el
y

sp
ac

ed
 f

or
 n

ea
r-

fo
ld

ed
 s

tr
uc

tu
re

s
(3

5
bi

ns
 f

or
 1

.0
 Å

 <
 R

M
SD

 <
 4

.4
 Å

)
an

d
m

or
e

co
ar

se
ly

 s
pa

ce
d

fo
r

m
or

e
un

fo
ld

ed
 s

tr
uc

tu
re

s:
(1

2
bi

ns
 f

or
 4

.4
 Å

 <
 R

M
SD

 <
 6

.6
 Å

 a
nd

 5
 b

in
s

fo
r

6.
6

Å
 <

 R
M

SD
 <

 1
0.

2
Å

).
 τ

 =
 1

0
ps

; 1
20

0
W

E

ite
ra

tio
ns

; 4
 tr

aj
ec

to
ri

es
/b

in

Pr
of

es
si

on
al

-g
ra

ph
ic

s-

pr
og

ra
m

m
in

g
G

PU
s*

 (
e.

g.

N
V

ID
IA

 Q
ua

dr
o

R
T

X
 5

00
0)

pe
pt

id
e-

pr
ot

ei
n

as
so

ci
at

io
n

[3
7]

p5
3

pe
pt

id
e/

M
D

M
2

pr
ot

ei
n

in

G
B

/S
A

 im
pl

ic
it

so
lv

en
t:

16
85

at

om
s

2D
 p

ro
gr

es
s

co
or

di
na

te
: h

ea
vy

-a
to

m
 R

M
SD

 o
f

p5
3

pe
pt

id
e

re
la

tiv
e

to
 it

s
M

D
M

2-
bo

un
d

co
nf

or
m

at
io

n
fo

llo
w

in
g

al
ig

nm
en

t o
n

(i
)

M
D

M
2

an
d

(i
i)

 it
se

lf
.

B
in

ni
ng

: 1
6

bi
ns

 w
ith

 0
.5

 Å
 w

id
th

s
al

on
g

th
e

p5
3-

al
ig

ne
d

R
M

SD
 a

nd
 w

id
th

s
ra

ng
in

g
fr

om
 0

.2
 to

 2
 A

 f
or

th

e
M

D
M

2-
al

ig
ne

d
R

M
SD

. τ
 =

 5
0

ps
; 3

96
 W

E
 it

er
at

io
ns

; 8
 tr

aj
ec

to
ri

es
/b

in

16
00

 C
PU

 c
or

es
 o

n
a

su
pe

rc
om

pu
te

r
(e

.g
. P

SC
’s

B

ri
dg

es
-2

)
or

 1
6

G
PU

s
(e

.g
.

N
V

ID
IA

 A
10

0
G

PU
s)

pr
ot

ei
n-

pr
ot

ei
n

as
so

ci
at

io
n

[6
]

ba
rn

as
e/

ba
rs

ta
r

pr
ot

ei
ns

 in

ex
pl

ic
it

so
lv

en
t:

>
10

0,
00

0
at

om
s

2D
 p

ro
gr

es
s

co
or

di
na

te
: (

i)
 h

ea
vy

-a
to

m
 R

M
SD

 o
f

ba
rs

ta
r

re
si

du
es

 D
35

 a
nd

 D
39

 a
ft

er
 a

lig
nm

en
t o

n
ba

rn
as

e,
 a

nd
 (

ii)
 m

in
im

um
 p

ro
te

in
-p

ro
te

in
 s

ep
ar

at
io

n
di

st
an

ce
. D

35
 a

nd
 D

39
 a

re
 th

e
ba

rs
ta

r
re

si
du

es
 th

at

be
co

m
e

th
e

m
os

t b
ur

ie
d

up
on

 b
in

di
ng

 b
ar

na
se

. τ
 =

 2
0

ps
; 6

50
 W

E
 it

er
at

io
ns

B
in

ni
ng

: 7
2

bi
ns

 w
ith

 c
oa

rs
el

y
sp

ac
ed

 b
in

s
ev

er
y

1
Å

 f
ro

m
 1

0
to

 6
0

Å
 a

nd
 m

or
e

fi
ne

ly
 s

pa
ce

d
bi

ns
 e

ve
ry

0.

5
Å

 f
ro

m
 0

 to
 1

0
Å

 a
lo

ng
 th

e
R

M
SD

 c
oo

rd
in

at
e;

 tw
o

bi
ns

 a
lo

ng
 th

e
di

st
an

ce
 c

oo
rd

in
at

e
se

pa
ra

te
d

by
 a

bi

n
bo

un
da

ry
 a

t 5
 Å

; f
ix

ed
 to

ta
l n

um
be

r
of

 tr
aj

ec
to

ri
es

 (
16

00
)

16
00

 C
PU

 c
or

es
 o

n
a

su
pe

rc
om

pu
te

r
(e

.g
. P

SC
’s

B

ri
dg

es
-2

)
or

 1
6

G
PU

s
(e

.g
.

N
V

ID
IA

 A
10

0
G

PU
s)

T
he

 a
st

er
is

k
(*

)
in

di
ca

te
s

an
 a

pp
lic

at
io

n
w

ith
 I

/O
 o

pe
ra

tio
ns

 th
at

 is
 to

o
fr

eq
ue

nt
 f

or
 s

up
er

co
m

pu
te

rs
 a

nd
 g

am
in

g
G

PU
s.

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bogetti et al. Page 104

Table 2.

$WEST_SIM_ROOT organization and file explanations

bstates/ directory containing basis states

env.sh set environment variables

init.sh initialize the WESTPA simulation

common_files/ directory containing files for dynamics (i.e. topologies)

run.sh run the WESTPA simulation

tstate.file define the target state (for steady state simulations only)

west.cfg specify main WE simulation parameters

westpa_scripts/ directory containing essential scripts

system.py a separate script to define functions or parameters (optional)

reference/ directory containing reference files for calculations (optional)

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bogetti et al. Page 105

Table 3.

haMSM plugin organization and file explanations

restart.dat Tracks current restart/run

restart_initialization.json User provided on start, modified by plugin during run

west.h5 Generated by WESTPA for the currently active run

restart0// Stores data from the first restart. 0-indexed.

 /JtargetSS.txt haMSM target steady-state flux estimate

 /pSS.txt haMSM steady-state distribution estimate

 /hamsm.obj Pickled msm_we.ModelWE object

 /startstates.txt Used for next restart, holds all weighted structures

 /basisstates.txt The initial set of basis states supplied to w_init

 /targetstates.txt The initial set of target states supplied to w_init

 /struct/ Complete set of structure files for all structures in startstates/

 /run*/ Backed up traj_segs/, seg_logs/, and west.h5 from each run in this
marathon. 1-indexed.

 /plots/*.pdf Various auto-generated plots

restart*/ Other restarts

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 May 17.

	Abstract
	Introduction and Scope of Tutorials
	Learning objectives
	The Weighted Ensemble Strategy
	The Basic WE Procedure.
	WE is Resampling, and Hence Unbiased.
	Observables and Ensembles Sampled by WE.
	Resampling Introduces Correlations, which Increase Variance.
	Ongiong Efforts at Optimization and Variance Reduction.
	WE Cannot Solve Every Problem.

	Prerequisites and Computing Requirements
	Background Knowledge and Experience.
	Software Requirements.
	Hardware Requirements.

	Workflow of Running a WE Simulation
	Overall Flow
	Ready:
	Set:
	Go:
	Analyze:

	Additional Simulation Workflow with WESTPA 2.0 Upgrades
	Random Seeds for Simulations.
	Extremely Low Trajectory Weights.

	General Guidelines for Choosing WE Parameters
	Cluster-Specific Considerations
	Minimizing the Number of Output Files
	Data Management
	Minimizing Network Traffic Across Multiple Computing Nodes
	Advice when Using GPUs

	Uncertainty Quantification and Monitoring of Convergence
	Tutorials
	Basic Tutorial: Na+/Cl− Association
	Introduction
	Learning Objectives.

	Prerequisites
	Computational Requirements.

	Setting up a WE Simulation Using WESTPA
	Overview.
	The System.
	Choosing an Initial State.
	Files for Dynamic Propagation.
	Preparing the System Environment.
	Equilibrium vs Steady State WE.
	Progress Coordinate, Binning Scheme and τ value.
	Other WE Parameters.
	Trajectory Imaging.

	Initializing the WE Simulation
	Running the WE Simulation
	Monitoring the WE Simulation
	Analyzing the WE Simulation
	Conclusion

	Intermediate Tutorial: P53 Peptide Conformational Sampling
	Introduction
	Learning Objectives.

	Prerequisites
	Computational Requirements.

	Adding Another Dimension to the Progress Coordinate
	Preparing the WE System
	The System.
	Choosing an Initial State.
	Files for Dynamics.
	Preparing the Simulation Environment.
	Equilibrium vs Steady State WE.
	Progress Coordinate, Binning Scheme and τ Value.
	Other WE Parameters.

	Tracking the Auxiliary Data
	Initializing and Running the WE Simulation
	Monitoring the WE Simulation (10 Iterations)
	Adjusting Bin Spacings “On the Fly”
	Monitoring the WE Simulation (40 Iterations)
	Accessing Auxiliary Data
	Conclusion

	Intermediate Tutorial: Folding of Chignolin Mini-Protein
	Introduction
	Learning Objectives.
	Prerequisites.
	Computational Requirements.
	The System.

	Brute Force Simulations
	Overview.
	Running and Analyzing the Brute Force Simulation.

	Using WESTPA
	Overview.
	Choosing an Initial State.
	Files for Dynamics.
	Preparing the Simulation Environment.
	Equilibrium vs Steady State WE.
	Progress Coordinate, Binning Scheme and τ value.
	Other WE Parameters.
	Initializing and Running the WE simulations.
	Monitoring and Analyzing the WE Simulations.

	Conclusion

	Analysis Tutorials
	Calculating Progress Coordinates Using External Analysis Suites
	Introduction.
	Learning Objectives.
	Explanation of Files and Scripts.
	Files in amber_config/ directory:
	Running the Simulation.
	Using the MDAnalysis Analysis Suite
	Using the MDTraj Analysis Suite
	Conclusion.

	The w_ipa Analysis Tool
	Introduction.
	Setting Up.
	The Interface.
	Changing Schemes and Accessing Datasets.
	Plotting.

	Visualization of WE Datasets
	Learning Objectives.

	Advanced Tutorial: Creating “Binless” Resampling Schemes: Na+/Cl− Association Simulations
	Introduction
	Learning Objectives.

	Prerequisites
	Computational Requirements.
	Jupyter Notebook.
	Quick Start for this Tutorial.

	Setting up the WE Simulation
	Binless Resampler Module.
	Initiating a WE Simulation from Multiple Structures.

	Running the WE Simulation
	Monitoring and Analyzing the WE Simulation
	Combining Multiple WE Simulations for Analysis.
	Post-Simulation Analysis.

	Conclusion

	Advanced Tutorial: Simulations of Membrane Permeation by 1-Butanol
	Introduction
	Learning Objectives.

	Prerequisites
	Computational Requirements.
	Quick Start for this Tutorial.

	Preparing the simulation
	The System.
	Progress Coordinate.
	Preparing the Simulation Environment.
	Adaptive Binning using the MAB Scheme.
	HDF5 Framework.

	Running the WE Simulation
	Analyzing the WE Simulation
	Conclusion

	Advanced Tutorial: Analysis and restarting with haMSMs: NTL9 Protein Folding
	Introduction
	Learning Objectives.

	Prerequisites
	Computational Requirements.

	Plugin functionality
	Preparing the system
	The system.
	Structure of Plugin-Specific Files.
	Preparing the WE Simulation Environment.

	Running the WE simulation
	Start States.

	Analyzing the WE simulation
	Conclusion

	Advanced Tutorial: Creating Custom Analysis Routines and Calculating Rate Constants
	Introduction
	Learning objectives.

	Prerequisites
	Computational requirements.

	Creating custom analysis routines
	Calculating rate constants using the original WE scheme
	Calculate State Populations and the Flux into the Target State.
	Correct the Fluxes using the RED Scheme.
	Convert the Flux to a Rate Constant.

	Monitoring Convergence of the Rate Constant
	A note on averaging schemes.

	Conclusion

	Advanced Tutorial: M-WEM Simulations of Alanine Dipeptide
	Introduction
	Learning objectives.

	Prerequisites
	Computational requirements.

	Installation of the M-WEM software package
	Setting up a M-WEM environment
	Overview.
	The system.
	Preparing the simulation environment.

	Running the M-WEM simulation
	Analyzing the M-WEM simulations
	Step 1.
	Step 2.

	Conclusion

	Advanced Tutorial: Systems Biology Simulations using the WESTPA/BNG Plugin
	Introduction
	Learning objectives.

	Prerequisites
	Computational requirements.

	Setting up the simulation
	The model.
	Preparing the simulation environment.

	Running the WE simulation
	Analyzing the WE simulation
	Conclusion

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Figure 8.
	Figure 9.
	Figure 10.
	Figure 11.
	Figure 12.
	Figure 13.
	Figure 14.
	Figure 15.
	Figure 16.
	Figure 17.
	Figure 18.
	Figure 19.
	Figure 20.
	Figure 21.
	Figure 22.
	Figure 23.
	Figure 24.
	Figure 25.
	Table 1.
	Table 2.
	Table 3.

