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Abstract 
 
We propose a new method for statistical analysis of functional magnetic resonance imaging (fMRI) 

data. The discrete wavelet transformation is employed as a tool for efficient and robust signal 

representation. We use structural MRI and functional fMRI to empirically estimate the distribution of 

the wavelet coefficients of the data both across individuals and across spatial locations. An anatomical 

sub-volume probabilistic atlas is used to tessellate the structural and functional signals into smaller 

regions each of which is processed separately. A frequency-adaptive wavelet shrinkage scheme is 

employed to obtain essentially optimal estimations of the signals in the wavelet space. The empirical 

distributions of the signals are computed on all regions in compressed wavelet space. These are 

modeled by heavy-tail distributions because their histograms exhibit slower tail decay than the 

Gaussian. We discovered that Cauchy, Bessel K-Forms and Pareto distributions provide the most 

accurate asymptotic models for the distribution of the wavelet coefficients of the data. Finally, we 

propose a new model for statistical analysis of functional MRI data using this atlas-based wavelet-

space representation. In the second part of our investigation we will apply this technique to analyze a 

large fMRI data set involving repeated presentation of sensory-motor response stimuli in young, elderly 

and demented subjects. 
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Introduction 
 

This is part one of a two-part report. Here we justify the utilization of wavelets for representation of 

fMRI functional brain data. In addition, we study empirically the distributions of the wavelet 

coefficients, the corresponding leptokurtic distribution models and the atlas-based technique for 

statistical analysis of the fMRI timeseries. In the second part of this manuscript we will present an 

extended analysis of a complex fMRI dataset (Buckner R. 2000) representing the BOLD response to 

paired and isolated sensory-motor trials in Alzheimer’s disease subjects, age-matched normal controls 

and a similar number of young adults. 

 

Our basic idea is to perform the statistical analysis of fMRI data in the wavelet domain. The reason for 

that is a two-fold: First, there are only a few wavelet coefficients that survive the wavelet shrinkage 

preprocessing, which reduces the rate of type I errors, and; Second, we effectively assess the variations 

in the patterns of activation in different groups, as opposed to studying the differences in the fMRI 

BOLD signal intensities, across subjects, anchored at specific voxel locations. 

 

fMRI Imaging: Functional Magnetic Resonance Imaging (fMRI) uses blood oxygen level dependent 

(BOLD) signal to measure hemodynamic alterations of the volume and flow of the blood intravascular 

susceptibility (Ogawa 1990). There are still issues about the relation of the observed BOLD signal, 

glucose metabolism and neuronal activation. Various neuro-physiological studies have been undertaken 

to validate the direct association between the detected fMRI signal and cellular patterns of activation. 

Some of these use optical intrinsic signal imaging (Hess 2000), electroencephalography  (Krakow 

1999; Krakow 2000) or microelectrode recordings (Logothetis 2001).  

 

It is commonly accepted that there are 6-8 seconds of delay between stimulus onset and the peak of the 

observed BOLD fMRI signal (Bandettini 1993; Bandettini 1997). In addition, the percent modulation 

change in the data between rest and activation states is only in the order of 1-4%. Presence of noise, 

caused by normal physiological processes, the imaging equipment, between- and within-subject motion 

and habituation (Hajnal 1994), requires the use of robust statistical techniques for analyzing fMRI data. 

One successful approach in the process of enhancing the signal at the time of data acquisition is to 

choose certain on/off block design with specific time-length and stimulus conditions (Bandettini 1993; 

Bullmore 1996). However, this method makes a critical assumption that the BOLD effect remains 
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constant across epochs. Poor signal-to-noise ratio can also be addressed by designing better data 

acquisition protocols, including event related designs, pulse-sequences, novel radio-frequency coil 

models, different time, space and resolution strategies, etc. (Logothetis 2001). For example, power lost 

in the signal in event-related fMRI can be counter balanced by increasing the numbers of trials for 

event-related averaging. 

 

Analyses of fMRI data: Once the data is acquired there is only so much one can do to find significant 

signal temporal changes and their spatial locations. Various techniques have been proposed for post 

acquisition data analysis based on the general linear model (Friston 1995), mutual information (Tsai 

1999), fuzzy logic  (Golay 1998), neural networks (Chang and Chung 2000) and Bayesian statistics 

(Kershaw 1999). 

 

A number of other statistical approaches for analyzing fMRI data have been proposed in the literature, 

as well. These involve Student’s T test (Worsley 1994), χ2 and F tests (Cao 1999), Kolmogorov-

Smirnov test (Aguirre G. 1998), correlation analysis (Kuppusamy K. 1997) and non-parametric tests 

(Bullmore 1996). Most techniques, however, are applied in the spatial domain and either treat each 

voxel intensity as independent (an assumption oftentimes too artificial) or introduce a spatial 

smoothing by convolving the native data with a large (Gaussian) kernel. The latter scheme increases 

the statistical power, since it takes advantage of the fact that near-by voxels are highly correlated and 

decreases the noise by smoothing; however, it also lowers the already low fMRI signal gradient (Desco 

2001). 

 

What are Wavelets? Wavelets are scaled and shifted versions of a mother wavelet function, whose 

properties are discussed below. Wavelet analysis is similar to Fourier analysis (Xu and Chan 2002) in 

the sense that it decomposes a signal down into its basic constituent components. Whereas the Fourier 

transform represents the signal as a series of sine waves of different frequencies, the wavelet transform 

represents signals as linear combinations of wavelets. There are differences between the trigonometric 

and wavelet base signal representations. In comparison to the smooth and infinitely periodic sine wave 

decomposition, the wavelet representation is irregular (often fractal) in shape and uses compactly 

supported base functions. These properties of irregularity in shape and compact supportedness make 

wavelets a useful tool for analyzing non-stationary signals. Their irregular shape lends them to 
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analyzing signals with discontinuities or sharp changes, while their compactly supported nature enables 

temporal localization of signal features. 

 

Continuous and Discrete Wavelet Transforms: A wavelet basis is constructed using an oscillatory, 

compactly supported, (mother) wave function, usually Ck differentiable on the real line, which has 

rapidly decaying tails and satisfies an admissibility condition  

Equation (1) ensures the invertiblility of the wavelet transform. Regularity of the wave ψ is determined 

by the number of the continuously vanishing moments. Hence, Reg(ψ)=M, if and only if 

                          (2)          .0)(    and   10 ,0)( ∫ ≠≤≤∫ = dsssM-r dssrs Mψψ  

Figure 1 

 

Daubechies (Daubechies 1988) defined a class of mother wavelet functions, Figure 1, starting with a 

(father) wavelet, φ, such that integral translations of φ form an orthonormal basis for the space of the 

piecewise step-functions (characteristic functions on intervals of length one). Then, we obtain the 

following wavelet function 

                                        (3)          ).2(2)( 12

0∑ −

=
−=

M

k k ksgs φψ  

The basic problem is to find a non-trivial sequence of parameters K
kkg 1}{ = , such that ψ  has a compact 

support, proper regularity and vanishing moments of order M (K≤2M-2). The Daubechies wavelet basis 

(Daubechies 1993) has the fewest number of vanishing moments of any class of orthogonal wavelets.  

 

Generally, wavelet bases with higher-order non-trivial moments have larger supports. Daubechies 

wavelets, ψ, for example, are compactly supported on [-(M-1); M]. Therefore the dyadically-scaled and 

integrally-translated wavelets, ψj,k=2j/2 ψ (2-j - k), are supported on [(k+1-M) 2-j; (k+M) 2-j]. Mallat 

(Mallat 1989) proved that the set of the scaled and translated wavelets, induced by the mother wavelet, 

form an orthonormal basis for L2(R). This means that linear combinations of such wavelets may be 

used to represent any square integrable function. An important characteristic of this type of signal 

decomposition is that the signal representation is frequency and space localized. So, a domain-

restricted perturbation of the original signal only affects the wavelets whose supports intersect the 

(1)           .0)(∫ =dssψ
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region of change of the function. Then, for f(x) in L2(R), the wavelet transform (WT) is defined by the 

collection of inner-products:  

                                     { } (4)          . ,:)()(, ,,, ∫ ∈== Zkjdsssffw kjkjkj ψψ  

The discrete WT is analogous to its continuous counterpart described above, except that the signal is 

split into dyadic blocks (the shifting and scaling operators are based on powers of 2). The continuous 

wavelet transform still uses discretely sampled data, however the shifting operator smoothly varies 

across the length of the sampled data, and the scaling operator allows much finer encoding resolution 

as it is defined on a range, where the minimum is the original signal scale and the maximum is user 

specifiable. This improved resolution of the continuous WT comes at the expense of increase in time, 

memory and computational complexity required to calculate the continuous wavelet coefficients. In 

practice, the discrete WT is computed using Mallat’s pyramidal algorithm (Daubechies 1988; Mallat 

1989; Daubechies 1991; Daubechies 1993; Donoho, Johnstone et al. 1996; Xu and Chan 2002). For 

example, in the case of the Daubechies 4-coefficient basis the discrete WT matrix can be thought of as 

a mixture of a smooth (S) and a detail (D) filter (Mallat 1989). Figure 2 illustrates the matrix of the 

discrete wavelet transform using the Daubechies 4-coefficient filter bank, the forward and inverse 

discrete WTs for a phantom signal consisting of 8 time observations. Odd rows in the WT matrix 

correspond to convolutions of the coefficients and the data (moving average or smoothing). The even 

rows correspond to difference-convolutions, hence details. The algorithm proceeds iteratively by 

applying this transform to the discretized data. At each stage half the results of the S and D filters are 

discarded (decimation) and the signal (of size N) is represented by N/2 smooth components and N/2 

detail components. Hence, we have the necessity that the signal size is an exact power of two.  

 

Figure 2 

 
There exist straight forward extensions of the wavelet transformation in higher dimensions. Two 

ways in which this can be accomplished are either by tensor products (Chan 1999) or by carrying 

out one dimensional wavelet decompositions for each variable (index of dimensionality) 

separately (Bayoumi 2003). Examples of wavelet base functions in 2D and 3D are shown on 

Figure 3. This discrete version of the multidimensional wavelet transform (Dinov and Sumners 

2001) is implemented in C and freely available for download from 

http://www.loni.ucla.edu/~dinov/WAIR.html. 
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Figure 3 

 

Why Use Wavelets? The advantages of employing wavelet analysis over other conventional spatial-

domain approaches include efficient signal representation (Dinov, Mega et al. 2002), noise reduction 

and decorrelation (Donoho and Johnstone 1998) and time-frequency localization (Daubechies 1991).  

From an empirical point of view, thresholding the wavelet coefficients provides a way to extract the 

essence of the data content of a signal. In Figure 4, we have the HeavySine function, thin red curve, its 

wavelet transform (WT), thin blue curve, and a wavelet estimate of the original signal (thick green 

smooth curve). A couple of interesting phenomena quickly emerge from this 1D plot. First, it is clear 

that very few of the wavelet coefficients have magnitudes larger than 0.3, across the range of 

frequencies and locations. A natural question then is: If we set to zero all wavelet coefficients smaller 

than 0.3 and then synthesize the image back (by inverting the wavelet transform), will we get a 

reasonable representation of the original function?  

Figure 4 

 

Figure 4 illustrates heuristically the answer to that question – the original and the reconstructed curves 

are similar. The protocol for selecting a subset of all wavelet coefficients that yield a robust and 

efficient signal representation will be addressed in the methods section, where we present frequency-

adaptive wavelet shrinkage. In this example we used only the largest 2% of the wavelet coefficients to 

recover the HeavySine function. Even though the new estimate is not a perfect approximation of the 

original data it does capture the main trend of the signal, at 50:1 compression ratio. Another empirical 

observation worth pointing out now is the fact that the original signal is often times spatially correlated, 

whereas its WT is uncorrelated in the wavelet-space, see the blue curve [WT(HeavySine)] in Figure 4. 

 

Prior Studies of fMRI Using Wavelets: Bullmore and coworkers presented a wavelet-based 

methodology for characterizing the noise structure in short to medium length fMRI timeseries (Fadili 

2002). The same group also introduced wavelet-generalized least squares (WLS), which are used to 

obtain the best linear unbiased estimator of regression model parameters in the context of long-term 

memory errors. These theoretical developments were compared with results obtained by ordinary least 

squares and estimators based on auto regressive moving averages. The authors show superiority of the 

generalized WLS in terms of type I error control.  
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Wavelet-based analysis of fMRI data has been proposed as early as 1996, by Hilton and coworkers 

(Hilton 1996) who were the first to suggest signal denoising of fMRI data using a non-linear soft-

thresholding. The group of Ruttimann (Ruttimann, Unser et al. 1998) also employed a multiresolution 

approach for increasing the sensitivity without sacrificing the probability for committing a type I error. 

They utilized a uniform thresholding in the wavelet domain followed by a Z-test, Bonferroni corrected 

for multiple comparisons. Yet another study, by Melke and coworkers (Mekle 2000) used multi-scale 

singularity detection in the temporal domain. Their data analysis is based on the constructed maxima 

lines, using wavelet expansions at integral scales to trace the wavelet modulus maxima. From the 

maxima lines the signal singularities are then localized by the beginning and ending of the stimulus. 

 

Another method for detection of activation in fMRI data using wavelet analysis was introduced by 

Feilner’s group (Feilner 2000). The extension proposed in this work was to incorporate non-stationary 

Gaussian noise and the subsequent T-testing, required by the assumption of unstable variances at 

different locales. No wavelet-space shrinkage is applied in their analysis, however, they use of a post-

inverse wavelet transform signal thresholding, based on the residual noise-level. The same study 

investigated the effects of the choice of a WT relying on various information measures (e.g., Kullback-

Leibler information, which measures the similarity between a statistical model and the true 

distribution). 

 

Desco and coworkers investigated the performance of the wavelet analysis of fMRI data on a phantom 

functional volume by making use of different wavelet decomposition schemes, location, size and level 

of activation and the presence of smoothness (Desco, Hernandez et al. 2001). When measuring 

sensitivity (percentage of true activation areas detected) and specificity (percentage of locations 

correctly detected as non-activated), the authors clearly identified dependences in the results of the 

fMRI wavelet analysis, based on the statistical tests, the shape of the model-activation and the wavelet-

family used. More recently, Meyer (Meyer 2003) introduced a new wavelet-based method for analysis 

of fMRI timeseries based on correlation of the observed BOLD signal and the stimulus temporal 

patterns. Bullmore’s group proposed a Bayesian framework for multiresolution hypothesis testing on 

spatially extended statistic maps (Bullmore 2003; Bullmore 2004). 
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Methods 
 

In this section we describe a frequency adaptive wavelet shrinkage strategy, which may be employed 

prior to statistical analysis. This scheme induces almost theoretically optimal signal estimators. Then 

we present the basics of stable and heavy-tail distributions. The latter ones we choose to use as models 

for the distributions of the wavelet coefficients of the functional MRI data in 3D and 4D. Finally, we 

introduce the framework for statistical analysis of fMRI timeseries utilizing a functional and 

anatomical sub-volume probabilistic atlas (F&A SVPA atlas) of the brain. 

 

Frequency-Adaptive Wavelet Shrinkage: The process of wavelet shrinkage begins with a collection of 

observations {yk}, 1≤k≤N, obtained by adding noise to some unknown signal f(tk), for each time point 

tk. We assume that yk = f(tk)+εk , where εk ~N(0,σ2) are independent identically distributed Gaussian 

random variables. To recover the unknown function f(t), having the data yk  alone, we construct function 

estimators f̂ . The Risk function 

                        (5)         )(ˆ)(1ˆ1)ˆ,( 1

0

22

⎟
⎠
⎞⎜

⎝
⎛ −=⎟

⎠
⎞⎜

⎝
⎛ −= ∑ −

=

N

k KK tftfENffENffR   

measures the performance of the estimator f̂  by the average quadratic loss at the sample points where 

E is the expectation of the misfit between the function and its estimator. Notice the similarity between 

this Risk function (5) and the variance of unbiased estimators. Preference will be given to estimators 

having small Risk measures (i.e., small “variances”).  

 

If W represents the matrix of the discrete wavelet transform (Donoho and Johnstone 1995; Dinov and 

Sumners 2001), like in Figure 2, the time-domain model y=f+ε  becomes w=θ + z in wavelet space, 

where w = W y, θ = W f and z = Wε. Suppose U is a subset of the set of all wavelet coefficients {w} of 

the data, one defines selective-wavelet (SW) reconstruction estimators by  

                                                       (6)                    ˆ
, ,,∑ ∈

=
Ukj kjkj Wwf  

where w={wn}= {wj,k |   0≤ j≤J-1; 0≤k≤2j-1}, U is an index subspace,  j codes for the frequency and k 

indexes the location of the corresponding wavelet coefficients, Wj,k  represents the (j, k)th  row of the 

orthogonal wavelet transform matrix W and N=2J-1 is the sample size of the data (Dinov, Mega et al. 

2002). The ideal Risk for a function estimate using the SW reconstruction scheme is defined by 
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                                                 (7)          )ˆ,(inf) ,(
ˆ, ffRSWf
f

N =σR  

Suppose now f(t) is the true 4D BOLD signal and y(t) = f(t)+ε  be the observed fMRI timeseries. 

Wavelet shrinkage is applied by filtering the wavelet transform w = W(y), through the soft thresholding 

filter  

ηλj(wj,k) = sign(wj,k) x max{ (|wj,k| - λj),  0 }    (8). 

The major challenge is to determine a meaningful threshold level λj, which will induce function 

estimators that are optimal and efficient across the space of functions of interest (these spaces include 

L2, Besov spaces, Sobolev spaces, Hilbert spaces, etc.) (Donoho, Johnstone et al. 1996). One very 

promising example is  
                                                                (9) , )42ln(2                                 += jnj σλ  

where nj is the number of wavelet coefficients at the j-frequency band (Dinov, Mega et al. 2002). This 

particular thresholding scheme is appealing because noise is most likely to be present in the high-

frequency bands of the signal; hence the steadily increasing (with the frequency index j) shrinkage 

imposed in this case. From the theoretical point of view this scheme also induces an almost-optimal 

estimator ( ))(  ˆ 1 yWWf jλη−=  in L2 of the unknown signal f(t). First, we have the following upper bound 

on the risk measure              

                            ( ) (10)           ) ,(,
ln2)4ln(21)ˆ,( ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+×++≤ SWfNN

NNffR σ
σ R  

indicating that this estimator is within ln2(N)/N of the ideal risk (7), where N is the size of the signal, σ 

is the signal noise level and SW is selective wavelet reconstruction scheme indicating a few of the 

wavelet parameters are used to synthesize the estimator. Secondly, we have a lower bound of any 

function estimator, again in terms of the ideal risk: 

( ) ( ){ } ( )11           ln2~),(1
2

ln)||ˆ(||1 supinf
1

,
22

ˆ
NSWfNN

NEN N

−
+×− σ

θ
σθθ

θ

R  

In other words, no estimator can be closer to the ideal risk than ln2(N)/N across all possible fMRI 

signals. Therefore, the threshold strategy (9) that naturally increases with the increase of the frequency 

index of the wavelets yields a robust and optimal wavelet shrinkage representation.  

 

Heavy-Tail Distributions: There is a volume of work on heavy-tail distributions in the field of signal 

processing. We consider some of the most popular and practically useful leptokurtic distributions 
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(distributions with tails heavier as compared to a Normal (Gaussian) curve with similar variance) 

(Gourieroux 1992). 

 

As described earlier, we carry our statistical analyses in the compressed wavelet space (on wavelet 

coefficients that survive the frequency-adaptive shrinkage). Because these wavelet coefficients are 

large in magnitude it is extremely important to have a distribution model that is asymptotically 

accurate. In the results section we provide evidence that the empirical distributions of the wavelet 

coefficients of the MRI and fMRI data appear to be leptokurtic1. This motivates our interests in 

utilizing various heavy-tail distributions as proper models for the distribution of these wavelet 

parameters.  The double-exponential distribution is defined by the following probability density 

function 

                                                   (12)        . exp
2
1)( ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−×=

β
μ

β
xxf  

It is one of the most commonly used leptokurtic distributions with tails decaying at the rate of exp(-|x|). 

The density function for the double-Pareto distribution with a tail-size parameter α and a scale 

parameter c is defined by  

                                                       (13)         , )( 1 α

α

μ
α

−−
=

x
cxf  

for |x-μ|>c. The only problem with the double-Pareto distribution is that it has a singularity at μ. This 

is not a serious issue when one does statistics of extremes, as these are far away from μ. Another 

theoretically important heavy tail distribution is the Cauchy distribution with density function  

                                                      (14)        . 
)(

1)( 22 μγπ
γ

−+
×=

x
xf  

Cauchy distribution is frequently used to provide counterexamples to various phenomena, which 

appear quite natural for light-tail distributions. One transition between light- and heavy-tail 

distributions is provided by the T distribution which serves as a one-parameter homotopy family 

connecting the heavy-tailed Cauchy (Tdf=1) and the standard normal distribution (Tdf= ∞ ). The density 

function for a T distribution with df=n is given by 

                    
( )

( ) ( ) (15)       . )exp()(   where,  1
2

)1(2
1

)(
 

0 

1
)1(2

12

∫
∞ −

+−

×−=Γ+×
Γ×

+Γ
= dyyyn

x
nn

n
xf

n
αα

π
 

                                                 
1 In fact, the distribution of the wavelet coefficients of the 3D structural, 3D and 4D functional MRI data appears to be 
leptokurtic both across subjects at fixed location-scale indices, and within subjects across location-scale indices. 
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The last large class of leptokurtic distributions we consider as possible models for the wavelet 

coefficient distribution of the fMRI functional data is referred to as Bessel K forms (Grenander 2001). 

There exists an asymptotic analytic approximation of the density of Bessel K forms, which can be 

written by  

                              (16)        .  2exp2
)(

1),;(ˆ 12

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−⎟

⎠
⎞

⎜
⎝
⎛

Γ
= − μμ x

c
x

cp
cpxf p

p

 

The parameters p and c can be estimated from the data by 

                                    (17)        ,  
ˆ

ˆ
ˆ     and     

3))((
3ˆ

2
)(

p
c

fWTskewness
p fWTσ

=
−

=  

where the skewness and the sample variance of the wavelet transformation of the data (WT(f)) can be 

empirically obtained. It is known that this approximation is sub-optimal near the mean, μ. However, the 

asymptotic behavior of ),;(ˆ cpxf  is very similar to that of the corresponding Bessel K form. 

 
Atlas-based Statistical Analysis of fMRI data: The first step in the construction of an anatomical sub-

volume probabilistic atlas (ASVPA) is to obtain a deterministic structural representation of the brain 

anatomy across the population (Thompson, Mega et al. 2000; Mega 2005). This was achieved by 

elastically warping the T-1 weighted fast SPGR MRI volumes of 26 subjects diagnosed with mild to 

moderate Alzheimer’s disease, to an average template. This average template represents the collection 

of the averages of 36 gyral curves, manually drawn on all 26 subjects following rigid body alignment. 

A fully stereotactic fiducial-based warp was employed to register all 26 MRI volumes to the pseudo-

average template, by requiring that the individual models for the 36 gyri were perfectly matched onto 

the corresponding average gyral curves. This way we minimized the global deformation needed to 

align all 26 subjects into a "common" space. The voxel-by-voxel mean of these elastically-warped 

volumes represents the deterministic brain atlas of the elderly. This rigid atlas framework is then used 

as a template for the construction of the induced anatomical sub-volume probabilistic atlas. The 

stereotactic magnetic resonance imaging data of 10 elderly AD and 10 age-matched normal control 

subjects were acquired on a 1.5 Tesla Siemens scanner. The T1-weighted MRI's were manually 

segmented into 2 hemispheres, with 30 regions of interest (ROI's) each composed of 3 different tissue 

types (white matter, WM, gray matter, GM, and cerebro-spinal fluid, CSF), for a total of 180 sub-

volumes of interest (Mega, Cummings et al. 2001). All the data were aligned into the space of the 

deterministic elastic-warp template, described above using a 12 parameter polynomial warp. The 
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warped tissue segmented maps were then used to construct the anatomical sub-volume probabilistic 

atlases (ASVPA) in the following manner: Every probabilistic sub-volume of interest is represented as 

a cloud-like region with domain consisting of all voxels labeled part of this region across subjects, 

Figure 5. The intensity at a given voxel location represents the likelihood (probability) that this voxel is 

part of the region, based on the subject data. In other words, the intensities of the structural sub-volume 

probabilistic atlas reflect the chance (proportion) that each voxel-location belongs to the region of 

interest for that population. 

Figure 5 

 

 

Developing an atlas of functional brain data has been challenging due to image registration, intensity 

normalization, physiological brain variation and other unresolved signal localization issues. We have 

previously developed a functional brain atlas for Alzheimer’s Disease (AD) in the frequency space 

using the wavelet signal representation. This atlas, AD functional and anatomical sub-volume 

probabilistic atlas (F&A SVPA) (Dinov, Mega et al. 2001), was based on rest-state PET data and 

employed in conjunction with our probabilistic anatomical atlas for the AD population (Crabtree EC 

2000; Mega, Dinov et al. 2000; Mega, Cummings et al. 2001). Analogously, one can design a 

framework for construction of paradigm- and population-specific stochastic atlases of brain activation 

using fMRI data. 

 

Figure 6 illustrates schematically the protocol for the construction of a new fMRI functional atlas, in 

general. The structural MRI and functional fMRI data are first anatomically tessellated to obtain the 

individuals’ regions of interest. This involves delineating a number of regions of interest, which can be 

done manually, semi-manually or completely automatically (Mega, Thompson et al. 2000; Mega 2005). 

The next step involves applying the 4D WT to the fMRI data over each anatomical region separately. 

In the wavelet domain, we then threshold the wavelet coefficients to get the denoised and decorrelated 

representation of the timeseries in compressed wavelet space. Next, we calculate the joint cross-

subject-and-time distribution of the 4D functional data. Finally, the induced functional and anatomical 

atlas (which is population and paradigm specific) is employed to statistically analyze new fMRI data. 

Note that the frequency-adaptive wavelet shrinkage is applied in the atlas-construction stage of the 

analysis.  
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Figure 6 

 

The development of the F&A SVPA is directly coupled to the construction of an anatomical SVPA 

atlas; however, it is accomplished in the wavelet-space. We are interested in quantifying the paradigm-

specific variability in functional data (fMRI) for diverse populations. More precisely, quantify 

functional variability, as measured by differences in the observed BOLD signal between subjects, at 

different spatial locations. Suppose we have N subjects scanned in an on/off block-design paradigm 

using fMRI. To simplify the presentation assume we are using our anatomical AD SVPA atlas, which 

contains 60 regions of interest. Every individual’s fMRI timeseries over an ROI is analyzed separately 

by transforming it into frequency-space using the discrete WT. For each ROI, the mean and variance of 

the transformed wavelet coefficients, across subjects, will be computed at each location-frequency 

index, w=(j,k).  

 

Together with the probability maps encoded in the anatomical SVPA atlas, these distribution maps of 

functional variability in frequency space represent the desired functional and anatomical F&A SVPA 

atlas. If Pn(v,t) is the intensity of subject n, at voxel location v and time t, 1≤n≤N, and Ak is the 

indicator function  

                                                              ( ) (18)              
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of the kth ROI of the ASVPA, then Pn,k (v, t) = Pn(v, t) x Ak(v)  represents the value of the BOLD fMRI 

signal at location v and time t, for subject n over the ROIk, 1≤k≤60, 1≤n≤N. Denoting by 

( ))(ˆ
, , knjkn PWTP λη=  the frequency-adaptively shrunk WT of the regional 4D fMRI signal we obtain an 

estimate of the sample mean and standard deviation of the intensities in frequency-space, over ROIk: 
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Finally, the collection of volumes {μ k} and {σk}, 1≤ k≤60, represents the functional component of the 

F&A SVPA atlas, for each scale-shift wavelet-space index w. 

 

Suppose P is a new fMRI timeseries, with Pk (v,t) = P(v,t) x Ak(v) being the restriction of P over ROIk. 

Then ( ))(ˆ
, , knjkn PWTP λη=  is the shrunk WT of Pk, using (8), and we employ the following secondary 

wavelet shrinkage strategy, T̂ :  
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where P  is the probability and dα,k is the critical value for a chosen heavy-tail model distribution Dα,k. 

The sub-indices α and k represent the desired test significance level and the ROI, respectively. In 

particular, if one chooses a Tdf distribution from the family of heavy-tail distribution models then the 

equation (20) becomes: 
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where μk and σk are the mean and standard deviation of the distribution encoded in the F&A SVPA at 

location-frequency index w, and tα is the T-score at significance level α. In our experiments we will 

investigate thresholds corresponding to α ={0.05, 0.001, 0.0001}.  In general, one needs to use a 

heavy-tail model distribution of the data that has mean and variance approximately equal to the sample 

mean and variance, 
kμ  and 2ˆkσ .                 

 

The operator T̂  in equation (20) either shrinks a wavelet coefficient or leaves it unchanged, depending 

on whether it is significantly different from the corresponding F&A SVPA atlas mean at w. Note that 

(20) acts only on the wavelet coefficients that survive the frequency-adaptive shrinkage (9). Thus, 

minimizing the number of statistical tests performed in the wavelet domain. This will be the first step 

of the statistical assessment.  

                                    

The second step will involve inverting the WT and constraining the resulting wave patterns to the 

corresponding ROI's in space and time. This procedure is followed by applying another thresholding, 

which selects only the highest intensities (0.01-0.0001%, precise assignment will have to be closely 

studied) within each separate ROI. Finally, we reconstitute the statistical image in anatomical 3D space 

from the collage of regional statistical maps representing the spatial-domain thresholded differences, 

which were significant in the wavelet-space. This volume can be expressed symbolically as  

( )( )( )( ) ( ) (22) 
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In this expression, α is a significance level, βα
(κ) is the threshold separating the highest α x 100 % from 

the lowest (1- α)x100% image intensities (uniform threshold over ROIk) and WT -1 is the inverse 

wavelet transform operator. This methodology, is clearly directly extendible to, and applicable for, 

various anatomical tessellation schemes, disease populations and fMRI acquisition protocol. One needs 

to exercise caution when employing an F&A SVPA atlas constructed for one population to study 

another unrelated fMRI timeseries. This is because the empirical distributions of the wavelet 

coefficients may be significantly different across populations or study paradigms. 

 

 

Results 
 

We now present the empirical evidence that the distributions of the fMRI and MRI data in the wavelet 

domain have heavy tails. This fact is used in determining a robust method for statistical analysis of the 

wavelet coefficients trying to identify significantly different patterns of activation across the 4D fMRI 

volume, instead of mapping statistical differences at individual votixels (volume-time-elements). 

 

Data: The large structural MRI database (Mazziotta, Toga et al. 2001), part of the International 

Consortium for Brain Mapping (ICBM), was utilized to obtain 578 anatomical volumes for testing the 

characteristics of the distribution of the wavelet coefficients within and between subjects. These data 

represents young healthy adult MRI brains drawn from diverse ethnic, gender and socio-economic 

populations. The functional fMRI data used in our experiments consisted of randomly selected subjects 

from the pool of 41 participants (14 young adults, 14 non-demented older adults and 13 demented older 

adults), Buckner et al., 2000. In that study the task paradigm consisted of presentation of a 1.5 second 

visual stimulus. Subjects were required to press a key with their right index fingers upon stimulus onset. 

The visual stimulus was an 8-Hz counterphase flickering checkerboard subtending approximately 12ο 

of the visual angle. Runs were structured so that for every eight-image acquisition, one of two kinds of 

trial condition was presented (15 trials per run for a total of 60 trials per subject). The trials either 

involved stimuli presented in isolation or in pairs with and inter-trial interval of 5.36 seconds. One trial 

and two-trial conditions were pseudo-randomly intermixed so that eight trials of one type and seven 

trials of the other appeared in each run. All subjects were English speaking, normal visual acuity right-
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handers. 

 

Wavelet coefficient distribution of the MRI data: Figure 7 indicates the frequency histogram of the 

average magnitude, across all 578 MRI volumes part of the ICBM database (Mazziotta, Toga et al. 

1995), of the wavelet coefficients at 1,000 randomly selected locations in the wavelet domain (random 

indices of wj,k). On the horizontal axis is the magnitude of the average wavelet coefficient between [-4; 

4] and on the vertical axis (range [0; 578]) are the frequencies of these average magnitudes2. Clearly 

one observes an empirical distribution with heavy tails.  

Figure 7 

 

Would the average histogram on Figure 7 significantly change if we focus on a single subject and plot 

the histogram of the wavelet coefficients across 1,000 randomly selected locations in the wavelet 

domain (random indices of wj,k)? Figure 8, shows these frequency distributions for three separate MRI 

scans (randomly selected from the pool of 578). There is little variation between these three 

individuals, and the overall shape of the distribution of the wavelet coefficients for one individual 

across 1,000 random locations is more regular, still heavy-tailed, than the averaged distribution in the 

previous Figure 7. 

 

Figure 8 

The 2D image in Figure 9 illustrates a small portion of all of the individual distributions. The horizontal 

axis again represents the magnitude of the wavelet coefficients in the range [-4; 4], vertical axis labels 

the random voxel indices and the color map on each row indicates the frequencies of occurrence of a 

wavelet coefficient of certain magnitude across all subjects MRIs. Bright colors indicate high, and dark 

colors represent low, frequencies. Note that Figure 8 effectively represents the across-subjects (row) 

average of these individual frequency histograms shown in Figure 9. 

 

Figure 9 

 

 

                                                 
2 There is nothing special with the range [-4 ; 4] which we have chosen to work with. The same phenomena were observed 
as we extended the range on which we calculate the distribution of the wavelet coefficients – the distribution remains heavy-
tailed. 
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Wavelet coefficient distribution of the functional MRI data: Similar results are obtained if one studies 

functional fMRI instead of the structural MRI volumes. Figure 10 indicates the frequency histogram of 

the average wavelet coefficient magnitude, across all 128 fMRI 3D time-volumes, part of the fMRI 

study of Buckner and colleagues (Buckner R. 2000), at 1,000 randomly selected locations in the 

wavelet domain (random indices of wj,k). 

 

Figure 10 

 

And the 2D image in Figure 11 shows all of the individual distributions for all 128 time points (one 

run, six trials). Horizontal axis represents the magnitude of the wavelet coefficients in the range [-4; 4], 

the vertical axis labels the random voxel indices and the color map on each row indicates the 

frequencies of occurrence of a wavelet coefficient of certain magnitude across all time point of the 

fMRI epochs. Bright colors again indicate high, and dark colors represent low, frequencies. Figure 10 

effectively represents the across row average of these individual frequency histograms shown in Figure 

11. 

 

Figure 11 

 

In both cases, MRI and fMRI data, we have strong evidence that heavy-tail distributions should be used 

as models to account for the slow decay of the probability mass functions at the tails. We also 

investigated the empirical distribution of the wavelet coefficients of the 4D fMRI volume consisting of 

128 time points. The 4D WT was applied to the complete timeseries volume and Figure 12 illustrates 

the frequency distribution of the wavelet coefficients of this large volume. Once again, one observes 

the slow asymptotic decay of the tails of this distribution, indicating heavy-tail distribution models are 

necessary to study these data (data-size: 64x64y16z128t, floating point). Here the x-axis represents the 

range [-10; 10] for the histogram of the wavelet coefficients. Sporadic behavior of the large-magnitude 

wavelet coefficients is clearly visible at the tails of this empirical distribution. 

 

Figure 12 
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We fitted several heavy-tail distribution models to this frequency histogram of 4D wavelet coefficients. 

The results are shown on Figure 13. Figure 14 depicts the extreme left trail of the data distribution 

(note that the data is symmetric). The double-exponential distribution and the T distribution models 

appear to be asymptotically underestimating the tails of the data, but provide good fits around the 

mean. Cauchy, Bessel K forms and double-Pareto distribution models, in that order, provide 

increasingly heavier tails with Cauchy being the most likely candidate for the best fit to the observed 

wavelet coefficients across the entire range. The double-Pareto and the Bessel K forms densities 

provide the heaviest tails, however, they are inadequate in the central range [-3; 3] and undefined near 

the mean. 

 

Figure 13 

The parameters for these models are estimated using maximum likelihood. Here are the estimates for 

the models shown on Figures 13 and 14, see equations (12) through (17): Double-Exponential(μ = 0, 

β  = 15), Double-Pareto(α = 0.001, c = 8, μ = 0), Cauchy(γ  = 13, μ = 0), T(df = 2), Bessel K Form(p 

=0.0001, c = 3×106,  μ =0). 

Figure 14 

 

Table 1 illustrates different quantitative measures of goodness-of-fit to the histogram of the 

wavelet coefficients of the 4D fMRI data of a Gaussian and the five models shown on Figures 

13 and 14. A smaller numeric value in this table indicates a better fit. It is important to point out 

that these numeric measures can not be used as a single decision making tool because the 

models are fit globally, where as their utilization is usually limited to the extreme tails. Hence, 

the ranking of the quality of fit reported in this table may be misleading. For example, 

according to the (KL2) Kullback-Leibler measure (Kullback 1951; Kullback 1959), the 

Gaussian model is a better (global) fit to the data than the heavy-tail models of Double-Pareto 

and Bessel K Forms. The same results are obtained by using the Bhattacharyya resistor-average 

distance (Bhattacharyya 1943; Kailath 1967), which is a symmetric alternative to the Kullback-

Leibler divergence. To avoid the singularities for the Double-Pareto and the Bessel K Forms 

families at the origin these measures are computed on |x|>0.1. There is no best threshold value 

one can use to resolve these singularities, as this will depend on the type I error rate, in general. 

We have used 0.1 as a means to simply resolve the singularities, not to obtain a best tail 



 

 

20

distribution model fit. Based on these results we have used the Cauchy and T distributions as 

heavy-tail models in practice. 

  

Table 1 

 

 

Discussion and Conclusions 
 

Atlas-based studies: The main advantage in using a frequency-spatial F&A SVPA atlas is that small 

across-subjects spatial intensity variations, within each ROI, will have less of an effect on the statistical 

maps, as compared to other time-domain approaches (Friston 1995; Dinov, Mega et al. 2000). Note that 

for any two subjects the bumps and valleys of the signal may have similar frequency-distributional 

characteristics but be slightly offset in the spatial-domain. This approach also avoids the low-pass 

filtering of the data required by other such techniques (Friston 1995). The process of our frequency-

spatial analysis begins by employing the N-dimensional discrete wavelet transform provided in the 

wavelet analysis of image registration package (Dinov and Sumners 2001). Then an appropriate 

distribution model is selected in a data-driven manner. And finally, the regional distribution of the 

wavelet parameters of the data is compared against the distribution of the across subject wavelet 

coefficients saved in the F&A SVPA atlas. One can perform both individual vs. atlas and 

group/population comparisons in this atlas-based framework. 

 

Heavy-tailness: In general, heavy tail signals are more likely to exhibit large observations and 

oftentimes may have an impulsive nature. Our empirical results indicate that 3D MRI/fMRI and 4D 

fMRI data have leptokurtic sporadic nature. The term heavy tail refers to the fact that the probability 

density functions (histograms) of the signals have relative large mass in the extreme tails. Because, the 

tails of leptokurtic distributions decay much slower than the Gaussian density many of the commonly 

used statistical tests are not appropriate for analyzing such data. Notably, in Figure 13 we see that the 

P-values corresponding to a statistical score of say –10.0 for the T and Cauchy distributions will be 

different by several orders of magnitude. This means that one is bound to commit type I error by not 

using the correct heavy-tail distribution model. 
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The quantitative assessment of the model fits presented in Table 1 may be augmented by looking at the 

quantile-quantile plots for the data vs. the model distributions. Quantile-quantile (QQ) plots (Evans 

2000) are used to graphically depict the closeness of distributions. In our case we show in Figure 15 the 

similarity between the 4D sample wavelet coefficient distribution (vertical axes) and four of the heavy-

tail distribution models used in the results section (horizontal axes). Cauchy, double-exponential, 

Gaussian and T distribution models are only shown as the double-Pareto and Bessel K Forms have 

singularities at their centers. These plots illustrate that, when studying the statistical properties of 

wavelet coefficients derived from MRI and fMRI data, heavy-tail distributions are better alternatives to 

Gaussian models, but still not perfect. One possible alternative approach will be to attempt fitting a 

mixture model of two or more components, some Gaussian and some heavy-tail.  

 

fMRI Data Analysis Plan: In the second part of this investigation we will apply this methodology to 

analyze the fMRI data acquired and processed by (Buckner R. 2000). This dataset consisted of 41 right-

handed, English-speaking gender-matched volunteers separated in 3 groups: 14 young participants (5 

males mean age 21.1± 3 years); 14 old subjects (five males) were non-demented with (mean age of 

74.9± 9 years) and; 13 old demented patients (six males) were demented (mean age of 77.2± 8 years). 

Older adults were excluded if they had neurologic, psychiatric, or medical illnesses that could 

manifestate as dementia. All older adults had normal (corrected) visual acuity. The Buckner’s group 

employed the T and F statistics to assess for group effects (young adults, normal elderly and normal 

demented). These investigators found a significant difference between the groups of old demented and 

young adult subjects using Mann–Whitney nonparametric test. The individual subject and group 

analyses were performed in an event-related fashion using selective-averaging methods. To determine 

the added contribution of the second event in the two-trial conditions, the one-trial conditions were 

simply subtracted from the two-trial conditions. Secondly, Buckner and coworkers extracted the evoked 

hemodynamic responses for each subject from a priori defined regions and compared these using a 

random-effects statistical model. Peak activations in visual and motor cortex were then derived from 

this composite activation map. The hemodynamic response and variance were obtained for each region 

and each subject and entered into subsequent analyses based on analysis of variance. 

 

In the atlas-based method we are proposing, an F&A SVPA atlas of one population will be generated 

and the individual fMRI data from the remaining two groups will be tested against the distributions of 

the wavelet coefficients of the atlas. The statistical test we employ will be quite distinct from the 
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general linear model used by others, because first our statistics will be computed on the data in 

compressed wavelet space. And secondly, our statistical tests will involve one (or several) heavy-tail 

distribution models as discussed in the Methods and Results sections. 
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Figure 2: These three panels show the discrete WT matrix (left), the forward discrete WT (analysis) algorithm  applied on a signal of size 
23 (middle) and the inverse discrete WT (synthesis) used to obtain a reconstructed signal. The smoothing (S) and detail (D) factors are 
expressed as rows in the wavelet matrix (C). The iterative application of the matrix C, in the forward transform, produces the smoothing 
and detail coefficients si and di. 

 
Figure 1. Shown here are three instances of Daubechies 4 wavelets. The differences in 
frequencies, spatial locations (domain) and range are clearly visible. The compact support, 
fast decaying and oscillatory properties of wavelets are common to all. 
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Figure 4. The three curves on this graph represent the original signal (HeavySine
function, thin red curve), its wavelet transform (thin blue curve) and the reconstructed
function estimator using only the largest 2% of the wavelet parameters (thick green 
curve). Note the space-frequency decorrelation of the original data in the wavelet-space 
(thin blue curve). 

HeavySine Function 
Reconstructed signal (top 2%) 

Wavelet Transform of HeavySine function 

   
Figure 3. Examples of 2D (left panel) and 3D (right) renders of Daubechies wavelets illustrating the compact support, fast 
decaying and oscillatory properties of wavelets in general. The right panel shows a render of an iso-surface of the 3D wavelet 
with two cross-sections (axial and sagittal) shown on the side. 
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Figure 6. Design protocol for the wavelet-based construction and utilization of the fMRI 
functional atlas (F&A SVPA). The construction of the anatomical probabilistic atlas is
augmented by including the regional distributions of the wavelet coefficients of the functional 
signals for one population. Statistical analysis of functional variability between a new fMRI
volume and the F&A SVPA atlas is assessed following wavelet-space shrinkage. 
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Figure 7. Displayed is the frequency histogram of the wavelet coefficients at 1,000 randomly 
selected locations (random indices of wj,k), averaged across all 578 MRI volumes part of the 
ICBM database [Mazziotta et al., 1995]. Notably, most of the wavelet coefficients are near the 
origin, with some having sporadic, but large magnitudes. Heavy-tail distributions models will 
be appropriate for these data. 

 
Figure 5. Construction of the anatomical sub-volume probabilistic atlas (ASVPA) for Alzheimer’s disease. Following a
co-registration of all data into a common space manual delineations are used to obtain subject-specific region labels. 
These individual labels are then combined to obtain the probability maps indicating likelihoods that voxels belong to any
region of interest. Three left panels illustrate axial, sagittal and coronal slices through a one delineated brain and the right
panel shows the probabilistic models in the anatomical SVPA for the main lobes, thalamus and hippocampus (hot colors
indicate high probability and therefore larger chance that voxels belong to the corresponding region of interest. 
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Figure 9. This image illustrates a portion of all of the individual distributions of 
the wavelet parameters for the 578 ICBM MRI volumes. The horizontal axis 
represents the magnitude of the wavelet coefficients in the range [-4 ; 4]. The 
vertical axis labels the voxel index and the row color map indicates the 
frequencies of occurrence of a wavelet coefficient of certain magnitude across 
all MRIs. Bright colors indicate high, and dark colors represent low, frequencies 
across subjects. 
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Figure 8. Shown here are the frequency distributions of the wavelet coefficients for three
separate MRI volumes (randomly selected from the pool of 578). There is little variation 
between these three individuals, however the overall shape of the distribution of the
magnitudes of the wavelet coefficients of each individual across the 1,000 random locations is
more regular than the averaged distribution across subjects depicted in the previous Figure 6,
still heavy-tailed. 
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Figure 10. This diagram depicts the frequency histogram of the average magnitude of a
wavelet coefficient, across all 128 fMRI 3D time-volumes of one subject fMRI run (part of
the fMRI study of Buckner and colleagues [Buckner et al., 2000]) at 1,000 randomly
selected locations (random indices of wj,k). Again, we observe heavy-tailness of the data. 
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Figure 11. A 2D image displaying all of the individual distributions for 
each 128 3D time points (one run, six trials) of an fMRI timeseries. On the 
horizontal axis is the magnitude of the wavelet and the vertical axis labels 
the 1,000 voxel indices. Colors indicate the frequencies of occurrence of a 
wavelet coefficient of certain magnitude across all time point of the fMRI 
epochs. The across row average is effectively shown on Figure 9. 
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Figure 12. This graph shows the frequency distribution of the wavelet coefficients of the 
complete 4D WT of the fMRI timeseries. Note the slow asymptotic decay of the tails of this 
distribution (data-size: 64x64y16z128t, floating point). Here the x-axis represents the 
magnitude of the wavelet coefficients and the vertical axis indicates the frequency of 
occurrence of a wavelet coefficient of the given magnitude within the 4D dataset. Sporadic 
behavior of the large-magnitude wavelet coefficients is clearly visible at the tails of this 
empirical distribution. 

WT of 4D fMRI data
Gaussian

-10                   0                 10
Figure 13. Several heavy-tail distribution models are fitted to the frequency histogram of 4D fMRI wavelet
coefficients. These include double-exponential, Cauchy, T, double-Pareto and Bessel K form models. Because our 
statistical tests will be applied on the coefficients that survive wavelet shrinkage it is important to utilize a distribution
model that provides accurate asymptotic approximation to the real data in the tail regions. 

Data  
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Table 1: Quantitative assessment of the fit of five distributions models (and a Gaussian) to the histogram of the wavelet 
coefficients of the 4D fMRI data for one subject. Five different classifying functional are applied – Standard norms (L1 and L2), 
Kullback-Leibler (KL1 and KL2) divergence measures and Bhattacharyya resistor-average distance (BAT). A smaller numeric 
value indicates a better fit. 
 
 

      Models 
Measure 

Double 
Exponential Cauchy T Double 

Pareto 
Bessel K 

Form Gaussian 

L1 1.3731 1.0619 2.2774 6.0515 5.0481 1.9669 
L2 0.1838 0.1133 0.2504 1.4800 0.7390 0.1941 
KL1 0.0109 0.0187 0.0407 0.2579 0.2573 0.2957 
KL2 0.0101 0.0217 0.0390 0.2980 0.2972 0.0729 
BAT 0.0026 0.0050 0.0100 0.0703 0.0702 0.0283 

-10             -7 
Figure 14. Shows the extreme left trail of the data distribution (data is symmetric). The double-exponential and the 
T distribution models underestimate the tails of the data asymptotically, but provide good fits around the mean. 
Cauchy, Bessel K forms and double-Pareto distribution models, in that order, provide increasingly heavier tails 
with Cauchy being the most likely candidate for the best fit to the observed wavelet coefficients across the entire 
range. The double-Pareto and the Bessel K form densities provide the heaviest tails, however, they are inadequate 
in the central range [-3 : 3] and undefined near the mean of zero. 

Data  
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Figure 15: Quantile-quantile (QQ) plots illustrating graphically the quality of fit between the distribution
models (horizontal axes) and the sample distribution of the 4D wavelet coefficient (vertical axes). Top row 
shows Cauchy and Double-Exponential and the bottom row shows the QQ plots for a Gaussian and T 
distribution models. None of these models yields a perfectly linear quantile relation indicating a mixture
distribution may be another alternative for representing the wavelet coefficients of fMRI timeseries. 




