
UC Berkeley
UC Berkeley Previously Published Works

Title
Performance characterization of scientific workflows for the optimal use of Burst Buffers

Permalink
https://escholarship.org/uc/item/3t75f0qg

Authors
Daley, CS
Ghoshal, D
Lockwood, GK
et al.

Publication Date
2020-09-01

DOI
10.1016/j.future.2017.12.022
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3t75f0qg
https://escholarship.org/uc/item/3t75f0qg#author
https://escholarship.org
http://www.cdlib.org/


Performance Characterization of Scientific Workflows
for the Optimal Use of Burst Buffers

C.S. Daleya,∗, D. Ghoshala, G.K. Lockwooda, S. Dosanjha, L. Ramakrishnana,
N.J. Wrighta

aLawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720

Abstract

Scientific discoveries are increasingly dependent upon the analysis of large vol-

umes of data from observations and simulations of complex phenomena. Scien-

tists compose the complex analyses as workflows and execute them on large-scale

HPC systems. The workflow structures are in contrast with monolithic single

simulations that have often been the primary use case on HPC systems. Simul-

taneously, new storage paradigms such as Burst Buffers are becoming available

on HPC platforms. In this paper, we analyze the performance characteristics

of a Burst Buffer and two representative scientific workflows with the aim of

optimizing the usage of a Burst Buffer, extending our previous analyses [1].

Our key contributions are a). developing a performance analysis methodology

pertinent to Burst Buffers, b). improving the use of a Burst Buffer in workflows

with bandwidth-sensitive and metadata-sensitive I/O workloads, c). highlight-

ing the key data management challenges when incorporating a Burst Buffer in

the studied scientific workflows.

Keywords: Burst Buffer, DataWarp, Workflow, HPC

∗Corresponding author
Email addresses: csdaley@lbl.gov (C.S. Daley), dghoshal@lbl.gov (D. Ghoshal),

glock@lbl.gov (G.K. Lockwood), sudip@lbl.gov (S. Dosanjh), lramakrishnan@lbl.gov
(L. Ramakrishnan), njwright@lbl.gov (N.J. Wright)

Preprint submitted to Future Generation Computer Systems November 5, 2019



1. Introduction

The science drivers for high-performance computing (HPC) are broadening

with the proliferation of high-resolution observational instruments and emer-

gence of completely new data-intensive scientific domains. Scientific workflows

that chain the processing and data are becoming critical to manage these on

HPC systems. Thus, while providers of supercomputing resources must continue

to support the extreme bandwidth requirements of traditional supercomputing

applications, centers must now also deploy resources that are capable of sup-

porting the requirements of these emerging data-intensive workflows. In sharp

contrast to the highly coherent, sequential, large-transaction reads and writes

that are characteristic of traditional HPC checkpoint-restart workloads [2], data-

intensive workflows have been shown to often utilize non-sequential, metadata-

intensive, and small-transaction reads and writes [3, 4]. However, parallel file

systems in today’s supercomputers have been optimized for more traditional

HPC workloads [5]. The rapid growth in I/O demands coming from data-

intensive workflows are demanding new performance and optimization require-

ments in the design of future HPC I/O subsystems [3]. It is essential to develop

methods to quantitatively characterize the I/O needs of data-intensive workflows

to ensure that resources can be deployed with the correct balance of performance

characteristics.

The emergence of data-intensive workflows has coincided with the emer-

gence of flash devices being integrated into the HPC I/O subsystem as a “Burst

Buffer” (BB), a performance-optimized storage tier that resides between com-

pute nodes and the high-capacity parallel file system (PFS). The BB was origi-

nally conceived for massive bandwidth requirements of checkpoint-restart work-

loads for extreme-scale simulations [6]. This is a workload characterized by dis-

tinct phases of application computation and I/O. The BB absorbs the I/O from

the application which allows the application to resume computation as soon

as possible. The data movement between the BB and PFS can then happen

concurrently with application computation. However, the flash-based storage

2



media underlying BBs are also substantially faster than spinning disk for the

non-sequential and small-transaction I/O workloads of data-intensive workflows.

This motivates using BBs to accelerate diverse I/O workloads and enable use

cases beyond buffering of I/O requests, such as providing a temporary scratch

space, coupling workflow stages, and processing data in-transit [7].

BBs provide a unique opportunity to optimize I/O access patterns in sci-

entific workflows executing on supercomputers. However, the design of a data

management strategy using BBs requires careful consideration. The complex

data access patterns and dependencies of data-intensive workflows can result

in high data access penalties. Today, there is limited understanding of perfor-

mance characteristics of BBs for data-intensive applications and the use of BBs

with workflow systems. Thus, there is a need to understand how current and

future workflow systems may use BBs effectively and efficiently when scheduling

tasks, capturing provenance and providing fault tolerance.

In this paper, we analyze the I/O requirements of scientific workflows with

the aim of being able to execute workflows more efficiently on supercomput-

ers with BBs. We consider two scientific workflows that uses resources at the

National Energy Research Scientific Computing Center (NERSC) at Lawrence

Berkeley National Laboratory. Specifically, in this paper we make the following

contributions:

• The development of a performance analysis methodology to analyze the

performance characteristics of workflows pertinent to BBs.

• Demonstration of the usage of this methodology for the performance op-

timization of two scientific workflows with diverse characteristics running

on a BB.

• Derived recommendations for future BB API capabilities to enable more

straightforward matching of workflow performance requirements with re-

quested resources for the two workflows.

Our paper provides a foundational framework in understanding the char-

3



acteristics of the BB and building workflow system support in the context of

the scientific applications in a workflow. This paper extends our previous work

[1] in the following ways: a). we include a performance characterization of a

single unit of the BB in NERSC’s Cori system using standard I/O benchmarks

to obtain upper-bound measurements for I/O bandwidth, I/O operations per

seconds (IOPS) and metadata rate, b). we analyze the I/O characteristics of

workflow tasks to identify what will be the performance limiter as the workflow

is scaled up, c). we show I/O scaling behavior for all workflow tasks and explain

the loss of scaling by direct reference to the measured I/O characteristics of the

workflow tasks and expectations about when the workflow tasks will saturate

the storage resource, d). we demonstrate how a capability in the NERSC BB

implementation can overcome metadata scaling bottlenecks in workflow tasks,

and e). we draw attention to the key data management challenges which exist

when trying to efficiently execute a workflow on a supercomputer with a BB.

We should note that the focus of our work is about making optimal usage of

the BB tier as opposed to improving scheduling decisions about when to move

data between tiers, which is managed by workflow and batch queue systems.

Nonetheless our detailed analysis of I/O characteristics allow us emphasize the

capabilities required from BB software and middleware needed to move data

and library files efficiently in an end-to-end workflow.

The paper is organized as follows. Section 2 presents an overview of BBs and

gives details about the NERSC BB architecture. Section 3 details our approach

to scalable I/O characterization for both workflows. Section 4 contains perfor-

mance results relevant to the execution of the workflows on a BB. In Section

5 we discuss key findings related to efficient use of BBs as well as implications

for the design of the next generation of BB storage architectures. We discuss

related work in Section 6 and provide conclusions in Section 7.

4



2. Background

2.1. Burst Buffers

A BB is an additional tier in the storage hierarchy designed to accelerate ap-

plication I/O. It is motivated by the high financial cost of deploying a single-tier

storage system consisting of Hard Disk Drives (HDDs) only. It is expensive to

use HDDs because there have only been minor performance improvements in the

underlying magnetic disk technology over time. The implication of this trend

is that supercomputer centers must add more HDDs to the storage system to

deliver the improved I/O performance expected in a new supercomputer. An al-

ternative to adding more HDDs is to use higher-performance Solid State Drives

(SSDs) consisting of NAND-Flash memory. At the current time, NAND-Flash

is the most widely produced Non Volatile Random Access Memory (NVRAM).

The performance of enterprise SSDs containing NAND-Flash are ∼ 2−3 GiB/s

of I/O bandwidth and ∼ 104 − 105 IOPS. This is more than an order of magni-

tude improvement in I/O bandwidth and 2−3 orders of magnitude improvement

in IOPS compared to HDDs. However, the current high cost of SSDs make it

impractical to deploy a high-capacity single-tier SSD storage system. Therefore,

an economically motivated storage system uses SSDs to meet the performance

requirements and HDDs to meet the capacity requirements of the storage sys-

tem. The SSD tier is used to create a BB.

BB Placement. Figure 1 is a high-level picture of a storage system in a su-

percomputing platform. The three main components are compute nodes, I/O

nodes and storage servers. The compute nodes are connected to the I/O nodes

by a High Speed Network (HSN), e.g. Cray Aries, and the I/O nodes are con-

nected to the storage servers by a Storage Area Network (SAN), e.g. Infiniband.

The I/O nodes therefore act as a bridge between the compute nodes and the

storage servers for the application I/O traffic. The figure considers different

placements of a BB, and specifically the NVRAM media, in a supercomputing

platform. The first placement involves co-locating the NVRAM media with

the compute nodes. This could be as a PCIe-attached SSD device or even on

5



the memory bus as a Non Volatile Dual Inline Memory Module (NVDIMM).

In this placement, each compute node has access to the full bandwidth of the

NVRAM media without any interference from the I/O happening in other com-

pute nodes. However, it may impose an additional data management burden

on the user because the files will likely be local to each compute node, i.e. in

a private namespace. It is possible that some node-local BB implementations

will provide support for multiple compute nodes reading/writing the same file,

i.e. shared file I/O. However, it is unlikely to be POSIX-compliant and may

be restricted to the case where compute nodes can only read/write to unique

subsets of the same file. The second placement is to have NVRAM media in

separate I/O nodes between the compute nodes and the storage servers. The

advantage of this placement is that it becomes easier to support a shared names-

pace in which multiple compute nodes can access and consistently update the

same files. This design can achieve high performance because the NVRAM is

on the HSN and can allow I/O intensive applications to use more than an equal

share of the total I/O performance. This is attractive from a system utiliza-

tion perspective, but has the disadvantage that other applications may have

lower peak I/O performance and be subject to I/O interference. Finally, the

NVRAM can be placed in the storage servers as a high-speed cache. This has

the advantage that the user does not need to make any application or job script

modifications to use the NVRAM. However, application I/O performance will

be limited by the extra latency of this design and the performance of the SAN.

It is also a shared resource and so application data may be evicted from the

NVRAM cache because of I/O from other applications. A detailed discussion

of the architectural placements is given in [8].

BB Software. The capabilities provided by the BB software differ widely

between BB implementations. At a minimum the BB software must provide a

mechanism to make the BB storage accessible to user compute jobs. The current

generation of BBs do this by creating a POSIX file system over the BB storage.

This allows user applications to access storage through the standard POSIX I/O

API. The BB software must also provide a mechanism to move data between

6



Figure 1: Possible Burst Buffer placements in a supercomputer

the BB tier and the PFS tier. This could be done through an API and/or could

be transparent to the user by treating the BB as a cache for the PFS. An API is

attractive because data movement costs between tiers can be hidden by moving

files at optimal times, however, it imposes an additional burden on the user. A

cache is attractive because no code modifications are needed, however, the value

of a cache depends on the reuse of file data and read/write mix. At the current

time, there is no standard API for BBs. This further increases the burden on

users choosing to use an API because different BB implementations will require

a different set of API calls. There are ongoing efforts and discussions to develop

appropriate standard APIs.

The BB software may be integrated with the site workload manager to en-

able creation of the file system on the BB at job start up and deletion at job

completion. In a shared BB architecture, the underlying BB resource may even

be exposed to the site workload manager as a schedulable resource. This allows

user compute jobs to request a custom amount of the BB resource. In this sce-

nario, it is desirable for users to request the minimum required BB allocation

to minimize queue wait time. The high relative cost of storage is encouraging

computing centers to charge for resources other than CPU hours, which further

motivates optimizing the BB allocation in jobs.

7



2.2. The NERSC Burst Buffer Architecture

The NERSC Cori system features a BB based on Cray DataWarp [9]. This

is a shared BB design described by placement #2 in Figure 1. There are two

flavors of I/O node in the Cori architecture: Lustre network (LNET) nodes to

route Lustre I/O traffic and Cray DataWarp nodes (BB nodes) to implement

the BB. This design allows users to completely bypass the BB nodes and directly

access the PFS through the LNET nodes. The Cray DataWarp nodes contain

two Intel P3608 SSDs that deliver 6.4 TiB of usable capacity and 5.7 GiB/s of

bandwidth as well as 64 GB of DDR3 DRAM which can be used as page cache.

Cori has a total of 288 BB nodes, over 1.8 PiB of usable capacity, and over 1.7

TiB/s of peak performance.

Cray’s DataWarp middleware provides user jobs with a dynamically provi-

sioned private PFS over the storage in the BB nodes. Users request a certain

capacity of BB in 200 GiB increments (which we call fragments) when sub-

mitting jobs. The capacity request is then satisfied by placing each 200 GiB

fragment on a different BB node so that BB performance scales with the re-

quested capacity. DataWarp designates one of the BB nodes in the allocation

as a metadata server. The metadata server manages the file system namespace

and stores information about how files are striped over BB nodes. The dynam-

ically provisioned PFS is mounted on the job nodes when the job is launched,

and it is typically torn down upon job completion. However, users may also

request a persistent mode allocation, which allows a BB allocation to persist

across multiple jobs.

DataWarp also offers private mode reservations where each compute node

gets its own metadata server within the BB allocation and, by extension, its

own private namespace. This enables higher aggregate metadata performance

since each compute node’s metadata is serviced by a unique BB node.

DataWarp storage reservations can be configured in scratch mode (type-

=scratch) or cache mode (type=cache) [10]. In scratch mode the user is re-

sponsible for explicitly moving files between the PFS and DataWarp storage.

This can be achieved using job script directives, namely stage-in (from PFS to

8



BB) and stage-out (from BB to PFS), or through a DataWarp library named

libdatawarp.a. The cache mode is designed to abstract away the BB and

implicitly move files between BB and PFS when they are accessed. The cache

mode capability was not available at the time of our study.

3. Methodology

In this section, we detail our performance analysis methodology and describe

the workloads, resources, performance tools and workload configuration used in

our experiments.

The objective of our work is to optimize the use of a BB I/O accelerator

in a scientific workflow. For this work, we consider a workflow to be a set of

applications that have dependencies as represented by a Directed Acyclic Graph.

We study the I/O workload, i.e. the data read/write operations and metadata

open/close/stat operations, occurring at each stage of the workflow. We describe

observed I/O workloads as bandwidth-bound, IOPS-bound and metadata-bound

depending on whether I/O time is dominated by large read/write operations,

small read/write operations or file open/close/stat operations. We compare the

observed I/O workloads against I/O microbenchmarks because we already have

a detailed understanding of how to run I/O microbenchmarks optimally on a

supercomputer with a BB. We also monitor the reuse of file data and mixture of

read/write operations to assess whether different BB software and middleware

capabilities can help with the data movement requirements of the workflows.

3.1. Workloads

Our evaluation uses a combination of two scientific workflows and I/O bench-

marks to understand the performance characteristics of the workflows and peak

I/O performance of the BB.

3.1.1. I/O Benchmarks

Interleaved Or Random (IOR). The IOR [11] I/O benchmark is widely

used in HPC to measure peak storage system performance. IOR is an MPI

9



application which measures read / write performance when using POSIX, MPI-

IO and other interfaces. Many aspects of the I/O can be varied including the

access pattern, transaction size and whether to use a shared file or file per

MPI rank. In this paper we select two IOR configurations to demonstrate the

peak data transfer bandwidth and IOPS of the BB. The IOR configurations

use the POSIX I/O interface, one file per MPI rank and a sequential access

pattern because structured I/O patterns tend to appear more often in HPC. We

define a structured access pattern as a regular access pattern, e.g. sequential

or strided. These patterns occur when reading contiguous (i.e. sequential) and

non-contiguous (i.e. strided) slices of a multi-dimensional array.

MDTest. The MDTest [12] I/O benchmark is an MPI application which mea-

sures the performance of storage system metadata operations. The benchmark

creates empty files, runs stat on the files and then removes the files. In this

paper we use MDTest to obtain the peak metadata rate for create, open, stat,

and unlink metadata operations.

3.1.2. Workflows

The two workflows studied in the paper are selected because they stress the

I/O subsystem in different ways: CAMP is limited by metadata performance

and SWarp is limited by data transfer performance. In addition, CAMP has

different data usage and movement pattern as compared to SWarp. This allows

us to evaluate different performance characteristics of the workflows on the BB.

When discussing the workflows, we use the term “workflow pipeline” to refer to

a single unit of the larger workflow.

CAMP. The CAMP (Community Access MODIS Pipeline) workflow processes

Earth’s land and atmospheric data obtained from MODIS satellite data [13, 14,

15]. It transforms the MODIS data from a swath space and time coordinate

system (latitude and longitude) into a sinusoidal tiling system (tiles using sinu-

soidal projection). The MODIS data for CAMP consists of small geometa files

in plain text format and swath products as Hierarchical Data Format (HDF)

files. Each geometa file is only a few KBs and is used by all the swath prod-

10



(a) CAMP (b) SWarp

Figure 2: Science workflows. a) CAMP has data staging operations to move the data from

the parallel file system to the BB and vice-versa, and has two compute stages, builddb and

reproject, to transform the swath products to a sinusoidal tiling system. b) SWarp has

data staging, resample and combine stages to produce high quality reference images. Both

workflows have different data usage and access patterns.

ucts from a particular satellite. Each swath product has several files per day,

each of which is approximately 1.1 MB in size and contains the product data

in swath space and time coordinate system. The conversion of a product from

swath coordinate to a sinusoidal tile requires several of these swath product files,

along with the mapping information derived from the geometa files. Hence, the

CAMP workflow consists of two processing steps – a) builddb, that assem-

bles and maps swaths to their corresponding sinusoidal tiles and b) reproject,

that converts the MODIS products from a swath coordinate system to a sinu-

soidal tiling system. Figure 2a shows the high-level representation of the CAMP

workflow that includes the data staging operations to and from the BB.

CAMP is written in Python and uses an SQLite database to store the swath

to sinusoidal tile mapping. For our analysis, we use each task in the CAMP

workflow to transform one MODIS product’s swath coordinates for one day into

one specific tile. Hence, the builddb step generates one SQLite database per task

and the reproject step uses the mapping stored in the database to transform the

swath coordinates into a sinusoidal tile. The final outputs of the reproject step

are HDF files for each product and each tile for a selected day. Each output

11



file is a few MBs in size. For our experiments, we run identical tasks (for the

same product, day and tile) across multiple compute nodes with one task per

node. The steps of the workflow are run one at a time to understand the I/O

characteristics of the workflow for each step. We use Conda, which uses the

Anaconda Python distribution, to install CAMP on DataWarp.

SWarp. The SWarp workflow combines overlapping raw images of the night sky

into high quality reference images. It is used in the Dark Energy Camera Legacy

Survey (DECaLS) to produce high quality images of 14,000 deg2 of northern

hemisphere sky. In this survey, each SWarp workflow pipeline produces an image

for a 0.25 deg2 “brick” of sky. The average input to each workflow pipeline is

16 × 32 MiB input images and 16 × 16 MiB input weight maps. The entire

workflow consists of nearly one hundred thousand SWarp workflow pipelines,

which are embarrassingly parallel. However, even though the computation is

trivially parallelizable, the same input image often overlaps with multiple bricks.

The SWarp workflow pipeline consists of a data resampling stage and a

data combination stage as shown in Figure 2b. The data resampling stage

interpolates the raw images so that the images can be trivially stacked. A

resampled image is created for each raw image. The data combination stage

reads back the resampled images and then performs a reduction over the pixels

to produce a single stacked image. The raw, resampled and stacked images are

all in Flexible Image Transport System (FITS) file format. The DAG when

using a BB is similar to CAMP: input images and weight map files are staged-

in prior to the data resampling stage and the combined image is staged-out

after the data combination stage. A single executable named swarp implements

both stages. The stages can be launched independently or run as part of an

automated workflow. In this paper, we run the stages one at a time so that

we can collect I/O characteristics and scaling data per workflow stage. SWarp

is written in C and multithreaded with POSIX threads. The multithreading

strategy involves different threads operating on different regions of the same

image. All threads are used in the resampling stage and then all threads are

used in the co-addition stage.

12



3.2. Machine Setup

The experiments were performed on the Cori supercomputer at NERSC. Cori

is a Cray XC40 with two partitions: Cori Phase 1 consists of Intel Xeon R©E5-

2698 v3 (”Haswell”) processors and Cori Phase 2 consists of Intel Xeon PhiTM 72-

50 (”Knights Landing”) processors. The BB described in Section 2.2 is con-

nected via the Cray Aries network and is accessible to both partitions. We only

used the Cori Phase 1 partition because it was the only partition available at

the time of result collection. Cori Phase 1 consists of 2388 nodes with 128 GiB

DRAM memory per node. Each node consists of two 16-core Haswell processors

nominally clocked at 2.3 GHz (turbo up to 3.6 GHz).

3.3. Performance Tools

The performance tools used to collect workflow characteristics and timing

information are Strace-4.12 [16] and IPM-2.0.3 (revision 16c494310b) [17].

Strace. Strace intercepts system calls from a compiled application or script. It

is able to provide detailed information about each system call including argu-

ments, return values and duration of system calls. We use it to get an accurate

picture of the I/O performed at each stage of a workflow. Intercepting at the

application level can be misleading because streaming, character and format-

ted I/O are all buffered by the C library (libc). For example, an application

reading data with many sequential fread operations of size 1 KiB may actually

read the data with a smaller number of read system calls of size 8 MiB. Since

our work is concerned with application interaction with storage, we are more

interested in the kernel issued I/O calls. The information we collect with Strace

are I/O system call counts, read and write transfer sizes, amount of I/O and

estimates of file sizes.

IPM. The Integrated Performance Monitoring (IPM) profiling tool [17] pro-

vides performance information about application computation, memory usage,

communication and I/O. The I/O monitoring infrastructure in IPM works by

providing a collection of functions which wrap libc I/O calls, e.g. fread and

read, at link or run time. The wrapper functions record the time to execute the

13



underlying libc I/O function as well as function specific information such as

bytes requested, bytes transferred and file offsets. Darshan [18] also wraps libc

I/O calls and is installed at many supercomputing centers. It is not appropriate

for our work because it is limited to MPI applications and does not measure

child processes’ I/O. We need support for serial applications to evaluate the two

workflows.

It is important to note that wrapping libc I/O functions does not catch

all application I/O because system I/O calls can be made directly without first

going through libc. For example the dynamic loader ld-2.19.so loads many

shared libraries at program start-up in this way. Despite IPM missing some I/O,

a comparison of IPM and Strace measurements shows that we are capturing all

of the significant I/O from these workflows.

3.4. Workload Configuration

The workflow pipelines are run on Cori with the production configuration

thread count. We stage the input data into the BB by placing stage-in direc-

tives in the job script before running the workflow pipelines. All I/O is directed

to the DataWarp mount points and no data is staged out from the BB to the

PFS. The DataWarp reservation is configured to use a single fragment of capac-

ity. We use a job reservation for SWarp and a persistent reservation for CAMP.

We choose to use a persistent reservation for CAMP so that multiple CAMP

jobs can reuse the Python software environment in the BB. The alternative

would have been to install the Python environment for every single CAMP job

but this is computationally expensive.

The workflow pipelines are run on a single compute node with Strace mon-

itoring. This allows us to collect I/O characteristics, e.g. amount of I/O, I/O

transaction size and I/O call count, describing the kernel issued I/O requests.

We are able to derive the average reuse of data and percentage of I/O to user

data files from the Strace data. We then repeat the same run with IPM moni-

toring to measure the time in different I/O operations. We do not use the two

types of monitoring at the same time because Strace has high overhead and

14



would significantly increase the time spent in I/O. This approach allows us to

derive bandwidth, IOPS and metadata rates delivered by the storage system

without being affected by the buffering happening within libc.

The scaling performance of the workflows is then investigated to find out

at what point workflow runtime is affected by saturation of I/O. The workflow

pipeline is replicated on 1 to 64 compute nodes and I/O is directed to a fixed

storage reservation of 1 DataWarp fragment. We place a single process per node

because we strive for constant compute time per node: adding more processes

per node would share network injection bandwidth and potentially memory

bandwidth and last level cache resources on each socket. The batch script

which runs the workflow pipeline(s) consists of an srun launch line per compute

node. Each srun executes a thin wrapper script on each compute node which

delays execution of the actual workflow pipeline until a control file is detected

in the PFS. This is necessary because the processes may otherwise begin several

seconds apart. The wrapper script polls for the control file every 0.01 seconds

which is eventually created by the batch script 10 seconds after all srun launches.

The performance is measured with IPM. Strace is not needed because the I/O

characteristics of replicated workflow pipelines are the same.

4. Results

In this section we show performance results relevant to the execution of the

workflows on a BB. Section 4.1 outlines the baseline performance of Cori’s BB

to provide context for workflow performance results. Section 4.2 shows the per-

formance of the workflows using Cori’s BB in both single pipeline and multiple

pipeline configurations. Section 4.3 outlines a strategy to optimize metadata-

bound workloads on DataWarp BBs. Section 4.4 considers the workflows’ data

movement and the capabilities needed from BB software. Finally, Section 4.5

summarizes the key results.

15



4.1. Cori Burst Buffer Performance

Figure 3 shows how the bandwidth of the storage allocation changes with

I/O concurrency. The results were obtained by running the IOR benchmark

with a large transaction size of 8 MiB against a single fragment of DataWarp.

The benchmark is run in a strong scaling configuration with 1 MPI rank per

node and a fixed aggregate file size. The aggregate file size is chosen to be 128

GiB in order to exceed the BB node memory capacity and avoid server-side

caching. There is no possibility of data being cached by the compute node

because the client-side caching feature of DataWarp (client cache=yes [10])

was not available at the time of the study. The results show that a single

I/O thread achieves 2 GiB/s read bandwidth and 1.5 GiB/s write bandwidth.

The highest performance of 6.5 GiB/s read bandwidth and 5.3 GiB/s write

bandwidth is only achieved when using at least 8 I/O threads. There is no

benefit to using more than 8 I/O threads in this configuration because the SSDs

on the BB node are saturated.

Figure 3: IOR bandwidth at 8 MiB transaction size

Figure 4 shows how the IOPS performance of the storage allocation changes

with I/O concurrency. The IOPS metric is chosen rather than bandwidth to

emphasize the peak throughput of small I/O transfers. The same IOR config-

uration is used as before except that the transaction size is 4 KiB (2,048 times

16



smaller than the first configuration). We use a smaller aggregate file size of

1 GiB because an IOPS-bound configuration takes much longer to run. We

additionally run IOR with the fsyncPerWrite option which performs a fsync

operation after each write transaction. This flushes data from DRAM to the

SSDs and ensures we measure storage performance. It is helpful because the

aggregate file size is smaller than the capacity of BB node DRAM and can po-

tentially benefit from server-side caching. The results in Figure 4 show that 16

I/O streams with no synchronization achieves approximately 94K read IOPS

and 85K write IOPS. For comparison with the earlier plot, 94K IOPS at 4

KiB transaction size is 0.36 GiB/s. The write IOPS are approximately halved

when using synchronization because there is overhead associated with every I/O

request and the data is guaranteed to be flushed to the SSDs.

Figure 4: IOR IOPS at 4 KiB transaction size

Figure 5 shows how the metadata performance of the storage allocation

changes with concurrency. The results are obtained by running the MDTest

benchmark with 1 MPI rank per node against a single DataWarp fragment. We

run the benchmark in a strong scaling configuration in which the total count of

files is kept constant. The file count is chosen to be 65,536 files so that the bench-

mark runs long enough to collect reliable data. The figure shows throughput

for the Stat and Remove operations and pairs of Open/Close and Create/Close

17



operations. The operation throughput versus concurrency is similar for Stat,

Remove and Open/Close, and peaks at approximately 25K operations per sec-

ond at 32 MPI ranks. The Create/Close operation throughput is less, indicating

that file creates are a more expensive metadata operation.

Figure 5: MDTest operation throughput

The BB performance plots have only considered I/O originating from the

Intel Xeon R©CPUs in Cori Phase 1. We consider the work of Liu et al. [19]

to explain how I/O performance will be different when I/O originates from the

Intel Xeon PhiTM CPUs in Cori Phase 2. Firstly, single-stream I/O bandwidth

will be up to 3.5x lower than Xeon R© . This is because of lower clock speed and

increased overhead of managing the kernel page cache. Secondly, up to 48 I/O

streams will be needed to reach the peak I/O performance of a single fragment

of the BB. The implications of this are considered in Section 5.1.

4.2. Workflow Performance

4.2.1. Performance of a Single Workflow Pipeline

Table 1 shows the resource requirements of the individual workflow stages.

The names of the workflow stages are abbreviated to save space: SWarp-

resample, SWarp-coadd, CAMP-builddb, CAMP-reproject map to SWarp rsmpl,

Swarp coadd, CAMP db, CAMP reprj, respectively. The memory footprint is

18



approximately 100 MiB for all workflow stages except for SWarp-coadd which

has a memory footprint of approximately 1 GiB. Although our experiments only

ever use 1 process per compute node, this indicates it is possible to run many

concurrent workflow pipelines on a single compute node of Cori Phase 1 (which

has 128 GiB of memory). The table also shows the total size of all files accessed

during each workflow stage. We add together the totals to give an upper-bound

estimate of the end-to-end workflow pipeline storage requirements. The results

indicate that a single workflow pipeline requires significantly less storage than is

provided by a 200 GiB fragment of DataWarp. For example, CAMP only has a

storage requirement of 151.6 MiB. This means that up to 1350 CAMP pipelines

could run concurrently against the same unit of DataWarp storage.

SWarp

rsmpl

SWarp

coadd

CAMP

db

CAMP

reprj

Compute threads 16 16 1 1

I/O threads 1 1 1 1

Peak memory footprint (MiB) 108.8 1064.7 96.1 93.0

Total file size (MiB) 1686.5 1016.8 74.1 77.5

Total file size per pipeline (MiB) 2703.3 151.6

Max pipelines per DataWarp fragment 75 1350

Table 1: Resource requirements of a single workflow pipeline

Table 2 shows the performance of the individual workflow stages. The table

consists of three result groups: time measurements, I/O characteristics, and

derived performance metrics. The workflow stages spend between 10% and 30%

of time in I/O. The time consists of time spent in data operations and metadata

operations. The results show that SWarp workflow stages spend longer in data

operations and that CAMP workflow stages spend longer in metadata opera-

tions. The I/O is significantly different between the two workflow pipelines.

SWarp performs several GiBs of I/O with relatively large average transfers of

more than 3 MiB. Large transfers are needed to reach the bandwidth perfor-

mance peak of the underlying storage hardware. CAMP performs less than 100

19



MiB of I/O with relatively small transfers of 20 KiB or less. The average transfer

size in CAMP-builddb is only 3 KiB because the SQLite library performs many

small updates to the database file and journal. Small transfers stress the storage

hardware differently and the peak IOPS value becomes more relevant than peak

bandwidth. The total count of metadata operations are almost two orders of

magnitude higher in CAMP than SWarp. The large number of metadata oper-

ations arise from Python module imports and frequent file system interactions

by SQLite.

SWarp

rsmpl

SWarp

coadd

CAMP

db

CAMP

reprj

Wall time (s) 10.7 4.7 15.3 9.2

I/O time (%) 20.3 26.0 13.5 16.6

I/O time in data operations (s) 1.87 0.97 0.78 0.57

I/O time in metadata operations (s) 0.30 0.26 1.28 0.95

I/O (MiB) 2711.5 1422.8 25.3 34.7

Read/write operations 784 430 7413 1735

Mean read/write transaction size (KiB) 3542 3388 3 20

Metadata operations 413 318 11963 7820

Bandwidth (MiB/s) 1452 1465 32 61

% of peak bandwidth 23.6 23.8 0.5 1.0

Read/write rate (operations/s) 420 443 9467 3060

% of peak IOPS 0.5 0.5 10.5 3.4

Metadata rate (operations/s) 1381 1237 9324 8240

% of peak metadata rate 5.5 4.9 37.3 33.0

Pipelines to saturate data performance 5 5 10 30

Pipelines to saturate metadata performance 19 21 3 4

Table 2: Performance of a single workflow pipeline using DataWarp. The table also estimates

the percentage of peak I/O performance and the number of workflow pipelines to saturate

storage

The final group of values in the table show the attained performance relative

to the storage performance peak. We estimate the peak values from the I/O

benchmarks to be 6 GiB/s bandwidth, 90K IOPS, and 25K metadata operations

per second. The results show that no workflow stage gets close to the peak per-

20



formance of the BB allocation in any performance dimension. SWarp transfers

data at over 1 GiB/s/pipeline which is over 20% of the storage configuration

peak performance. CAMP transfers data at less than 1% of peak bandwidth,

however, the small transfer size makes peak IOPS the more relevant performance

upper-bound. CAMP-builddb is found to transfer data at more than 10% of

the peak IOPS for this storage configuration. The CAMP workflow stages are

also much more metadata intensive and are driving the storage configuration

at more than 30% of peak. Finally, we use the percentage of peak to estimate

the number of concurrent workflow pipelines to saturate the data and metadata

performance of this storage configuration. The data peak is obtained by taking

the maximum of the bandwidth and IOPS percentage of peak. The results show

that both SWarp workflow stages are expected to saturate the data component

of I/O when using only 5 concurrent workflow pipelines. CAMP is expected to

saturate the metadata component of I/O when using only 3 (CAMP-builddb)

or 4 (CAMP-reproject) workflow pipelines. The number of concurrent workflow

pipelines to saturate performance are significantly less than the number needed

to saturate storage capacity, indicating that reducing the system fragment size

may be a beneficial optimization for these workflows.

4.2.2. Performance of Concurrent Workflow Pipelines

The time in I/O for a single workflow pipeline represents the best achievable

time and can only get worse as more workflow pipelines contend for the same

storage resource. We show how the workflow stages scale when increasing the

number of workflow pipelines. Ideal scaling will only happen if the single Data-

Warp fragment can sustain the aggregate I/O requests. We show a plot of time

per workflow pipeline versus concurrency for each workflow stage. The time

quantities of interest are wall clock time, I/O time, I/O time in data operations

and I/O time in metadata operations. The experiments are repeated three times

at each node count and the plots show the mean time per workflow pipeline

stage. The error bars show the minimum and maximum time in the three trials

and are helpful for capturing the performance variability when using the Cori

21



(a) SWarp-resample (b) SWarp-coadd

Figure 6: Scaling of SWarp workflow with number of workflow pipelines

supercomputer.

Figure 6 shows the scaling of the SWarp workflow. The scaling of SWarp-

resample is similar to SWarp-coadd because both stages use the same I/O kernel

to transfer image data. The results show that wall clock time remains relatively

constant until approximately 16 concurrent workflow tasks, which is a greater

degree of scaling than the earlier bandwidth-bound IOR benchmark configu-

ration (see Figure 3). It happens because the individual SWarp-resample and

SWarp-coadd workflow tasks are only synchronized at launch time and so in-

dependent I/O requests from concurrent tasks are not necessarily happening at

the same time. The scaling loss is more significant for SWarp-coadd at higher

concurrencies because a single SWarp-coadd task spends a greater fraction of

time in I/O. The I/O time is dominated by data rather than metadata opera-

tions in both workflow stages. Metadata time increases slightly at 64 pipelines

for SWarp-resample because SWarp-resample operates on more data files than

SWarp-coadd.

Figure 7 shows the scaling of the CAMP workflow. Both CAMP workflow

stages spend most of the I/O time servicing metadata operations. One source of

these metadata operations is from starting Python applications. This metadata

load happens because Python searches for files providing a package in every

directory in the Python path. It is known to be a scalability issue in Python

22



(a) CAMP-builddb (b) CAMP-reproject

Figure 7: Scaling of CAMP workflow with number of workflow pipelines

HPC applications [20]. Interestingly, the metadata time increases by 7-8 sec-

onds in CAMP-builddb when increasing the concurrency from 1 to 64 workflow

pipelines, but only increases by 1 second in CAMP-reproject. This cannot be

explained by differing Python metadata cost because the Python path is the

same and the Python dependencies are nearly identical in both workflow stages.

The source of the additional metadata operations in CAMP-builddb are from

saving data to an SQLite database. This saturates the metadata server when

using 64 workflow pipelines, as indicated by the metadata time increasing by

more than a factor of two when increasing from 32 to 64 workflow pipelines.

The time in data operations is relatively constant for both workflow stages at

all tested concurrencies.

Figure 8 shows the cost of running the workflow stages at different concur-

rencies. We calculate relative wall clock time by dividing average wall clock

time for multiple workflow pipelines by wall clock time for 1 workflow pipeline.

The relative wall clock time remains close to 1.0 up until 16 workflow pipelines.

There is a greater degree of performance loss for SWarp than CAMP beyond 16

workflow pipelines because the impact of saturation is more pronounced when

applications spend a greater fraction of time in I/O.

23



Figure 8: Relative wall clock time per workflow pipeline

4.3. Optimization of CAMP-builddb

The CAMP-builddb workflow stage is interesting because the metadata time

increases rapidly with concurrency. This bottleneck cannot be overcome by

simply adding DataWarp fragments because this would only address the data

component of I/O. The high I/O overhead exists because each SQLite database

transaction involves many POSIX I/O operations [21]. One way to reduce I/O

overhead is to place multiple database operations within a larger transaction

[22], however, this optimization may be out of reach for most end users. An-

other approach is to relax data consistency for the application as a whole by set-

ting certain SQLite pragmas [23]. This includes synchronous=OFF to eliminate

synchronizations to the database file. It also includes journal mode=MEMORY to

use in-memory journaling which removes many metadata operations, including

creating, stating, closing and removing the journal file every transaction.

Figure 9 shows time in I/O for several permutations of CAMP-builddb run

on 64 compute nodes. Each box in the plot shows the interquartile range (IQR)

of the data and the box whiskers show the most extreme data points within

1.5 × IQR from the lower and upper quartiles. A horizontal line within each

box, a square marker, and plus markers indicate the median, mean and outlier

data points, respectively. ”Default #1” and ”Default #2” indicate the origi-

24



nal configuration of CAMP-builddb. ”No sync.” indicates a modified version

of CAMP-builddb with the pragma synchronous=OFF. ”No sync. and mem.

journal” is the same as ”No sync.” with the addition of the pragma journal-

mode=MEMORY. Finally, ”Private mode” indicates the original configuration of

CAMP-builddb run against a private namespace storage allocation. The allo-

cation is configured with a capacity of 12,800 GiB (200 GiB × 64) so that the

number of metadata servers is equal to the number of compute nodes.

Figure 9: Box plot of time in I/O for various configurations of CAMP-builddb on 64 compute

nodes

The results show that ”Default #1” and ”Default #2” spend approximately

10 seconds in I/O. The time does not change noticeably for the ”No sync.”

version because only a small amount of time is spent in the fdatasync synchro-

nization operation. This reinforces our earlier observation that CAMP-builddb

is metadata-bound. We mention this configuration because it would improve

performance significantly on a storage system with spinning disk. The ”No sync

and mem. journal” configuration reduces I/O time by approximately 1.5x indi-

cating that it is possible to reduce I/O time by sacrificing data safety in SQLite.

Finally, ”Private mode” reduces I/O time significantly by approximately a factor

of 5. This indicates that users have a way to run unmodified metadata-bound

applications on DataWarp at scale without suffering performance penalties.

25



4.4. Data Movement Characteristics

Table 3 shows the data movement characteristics of the workflow pipelines.

The first row in the table shows the percentage of I/O to files which are relevant

to the user’s scientific investigation, e.g. images, databases and HDF5 files.

Comparison of total I/O to scientifically meaningful I/O (User I/O) shows that

100% of SWarp I/O is associated with scientific data files (at least to 1 decimal

place of precision). This is in contrast to CAMP-builddb and CAMP-reproject

which have values of only 23.3% and 41.3%. The source of the missing I/O is

the reading of Python packages. This is only a modest amount of I/O but is

much larger than the I/O to the small scientific data files. The next two rows

in the table give information about the average reuse of data for each workflow

stage. They are calculated by dividing the amount of I/O by the file size. The

average reuse of data is extremely low for both SWarp workflow stages because

the input files are read a maximum of two times and output files are only written

once. A trivial optimization of avoiding the repeated read (possible because the

input files are completely read into memory) would further reduce the average

reuse of data. The average reuse of data is less than 1.0 for CAMP because only

2 KiB of data is read from Intel Math Kernel Library (MKL) files of size 10 to

25 MiB. If MKL is excluded then the average reuse is close to unity. CAMP-

builddb has a high value of user data reuse because of the repeated updates

to the SQLite database file and journal file. The final two rows of the table

show the read to write ratio of the workflow stages. SWarp-coadd is dominated

by reads because multiple resampled images are combined into a single high

quality image. The reading of Python packages by CAMP contributes to higher

read to write ratios of 2.9 and 12.7 for CAMP-builddb and CAMP-reproject,

respectively. CAMP-reproject is more dominated by reads than CAMP-builddb

because the user HDF5 files are read multiple times.

4.5. Summary

• The I/O characteristics of the SWarp and CAMP workflows are very dif-

ferent. SWarp is more likely to be limited by peak storage bandwidth

26



SWarp

rsmpl

SWarp

coadd

CAMP

db

CAMP

reprj

User I/O (% total) 100.0 100.0 23.3 41.3

Data reuse 1.6 1.4 0.3 0.4

User data reuse 1.6 1.4 13.9 2.7

Read:write I/O 2.0 13.4 2.9 12.7

Read:write user I/O 2.0 13.4 0.6 9.9

Table 3: Data movement requirements of a single workflow pipeline

because of large transactions of mean size 3-4 MiB, where as CAMP is

more likely to be limited by peak IOPS because of small transactions of

mean size 3-20 KiB. CAMP also performs many more metadata operations

than SWarp [Section 4.2.1].

• The I/O load of multiple workflow pipelines saturate different aspects of

the storage system. SWarp saturates data transfer performance at higher

concurrencies. CAMP does not saturate data transfer performance even

at high concurrency indicating that the BB storage is able to sustain the

aggregate IOPS. CAMP-builddb (and to a lesser extent CAMP-reproject)

saturates metadata performance at higher concurrencies [Section 4.2.2].

• The results indicate that configuring and allocating the BB as per the

needs of the individual stages of the workflow may yield better perfor-

mance than having a single storage allocation and configuration for the

entire workflow (e.g. private mode configuration for CAMP-builddb) [Sec-

tion 4.3].

• The workflows are generally dominated by reads of both application data

files and Python modules. This indicates that the checkpoint-restart use

case is not a good proxy for the I/O in data analytics workflows. It also

highlights the value of explicitly staging both types of data into the BB

by workflow systems before running the applications [Section 4.4].

27



5. Discussion

In this section, a) we discuss the key characteristics of the workflows analyzed

and use the information to highlight the effective use of BBs, b) we apply this

knowledge and explain how to achieve optimum performance with the DataWarp

implementation of a BB and, c) we discuss limitations with the DataWarp APIs

in context of the storage needs of the workflows.

5.1. Efficient Use of Burst Buffers

The key findings from our experimental analyses are:

• A single workflow pipeline does not provide the I/O parallelism

needed to make efficient use of BBs. The data analytics workflows

studied in this paper consist of single-process applications which perform

I/O with a single thread of execution. This is poorly matched with the

need to have multiple I/O streams to obtain the peak performance from

BB flash storage. Unfortunately, single I/O stream workflow pipelines

are a common feature of high throughput data analytics workflows. We

show that better utilization of BB resources is possible by executing mul-

tiple concurrent workflow pipelines against the same unit of BB stor-

age. Our results indicate that a single unit of DataWarp storage on Cori

can sustain the I/O requests from approximately 16 concurrent workflow

pipelines before there is any slow down. The performance of single I/O

stream workflow pipelines are worse when using Xeon PhiTM rather than

Xeon R©CPUs. Therefore, it becomes even more important to provide

sufficient I/O parallelism when using Xeon PhiTM CPUs.

• The I/O performance limiter at scale can be determined by an-

alyzing the I/O from a single workflow pipeline. The peak band-

width, IOPS and metadata performance of any BB system can be obtained

by using our I/O microbenchmark configurations. The I/O workload of

the workflows can then be compared against the appropriate microbench-

mark configuration to estimate the number of workflow pipelines needed

28



to saturate storage. We predicted that SWarp would saturate data per-

formance at five workflow pipelines and CAMP would saturate metadata

performance at three or four workflow pipelines. The analysis correctly

identified whether data or metadata bottlenecks are more significant at

scale. However, the predicted values were less than the empirical values

of around 16 for two reasons. First, the workflows spend less than 30% of

time in I/O and so I/O saturation has less effect on overall run time at

relatively low concurrencies. Second, the workflow pipelines are loosely-

coupled and so the I/O requests from independent workflow pipelines do

not necessarily happen at the same time. This is in contrast to the I/O

microbenchmarks which are tightly-coupled MPI applications.

• A scaled out workflow pipeline is often limited by metadata per-

formance. Our analysis has found significant metadata costs originat-

ing from database transactions, Python initialization and opening many

small files. The aggregated metadata operations from multiple workflow

pipelines can easily saturate a single metadata server, as shown in the

CAMP-builddb workflow stage. We have demonstrated that CAMP-build-

db metadata overhead can be reduced significantly by relaxing data con-

sistency and restricting file visibility via private DataWarp namespaces

per compute node.

5.2. Efficient Use of DataWarp

DataWarp storage reservations consist of multiple storage fragments of a

fixed size. The fragment size is configured to be 200 GiB on Cori. The optimal

amount of storage to reserve depends on the capacity and performance needs

of the workflow. In this paper, we have found that both SWarp and CAMP

are limited by DataWarp performance rather than capacity. SWarp and CAMP

have an aggregate capacity requirement of up to 2.6 GiB and 150 MiB per work-

flow pipeline, respectively (Table 1). However, the performance saturates before

fully utilizing the 200 GiB of capacity at approximately 16 workflow pipelines

per DataWarp fragment (Figure 8). This means that excess capacity must be

29



reserved for both workflows to sustain performance on Cori, and reducing this

fragment size would allow similar workflows to make better overall utilization

of the BB.

The SWarp workflow is characterized by sequential reads and writes consist-

ing of transactions with a mean payload of a few Megabytes. Workflows limited

by data transfer performance will scale out by simply reserving more DataWarp

fragments (assuming the fragments are on different DataWarp server nodes).

A scientist running SWarp should reserve one DataWarp fragment for every 16

workflow pipelines. CAMP has a larger number of data and metadata oper-

ations, and is ultimately limited by metadata performance. Metadata perfor-

mance can be improved by using a private namespace configuration because this

provides a metadata server for each DataWarp node in the storage reservation.

The I/O characterization and time measurements of a single workflow pipeline

in Section 4.2.1 are a predictor of aggregate I/O load. This is sufficient to under-

stand whether the scaled out workflow pipeline is going to be bandwidth-bound,

IOPS-bound or metadata-bound, and helps us choose the optimum DataWarp

storage reservation.

5.3. Improving Burst Buffer APIs

The workflows in this paper are bound by performance rather than capacity

of DataWarp fragments. In our experiments, we showed the capacity that needs

to be reserved to meet the performance needs of the workflow pipelines. This

indirect way of reaching a performance target indicates that the DataWarp

API is using the wrong basic building block. The right building block should

be performance targets for bandwidth, IOPS and metadata performance. For

example, SWarp needs a bandwidth building block and CAMP needs a metadata

building block. (Although not covered in this work, a near real-time workflow

would probably also request a performance guarantee.)

The private namespace feature of DataWarp enabled us to overcome a meta-

data scaling bottleneck in CAMP-builddb. However, it is not, as it stands today,

the optimal solution because it made it tricky to benefit from improved meta-

30



data performance for the Python initialization. We did not find a way to create

a relocatable Conda Python environment. Thus, we installed the software en-

vironment in 64 separate namespaces before running the workflow. Ideally, the

DataWarp API should allow us to install the software environment into a per-

sistent reservation once and be able to choose a flexible number of metadata

servers.

5.4. Data Management Strategies

Our results show that different workflows have different I/O requirements,

and hence, different usage patterns of the BB. The data management solu-

tions need to consider various trade-offs between I/O performance, data and

metadata operation overheads and usage patterns of the workflows to provide

algorithms and strategies for efficiently managing the data on and across the

BB. The strategies also need to consider the structure of the workflows in order

to optimize the data reuse and distribution strategies. Some of the key findings

of our analysis are:

• It is valuable to explicitly control the data in the BB tier. The

individual workflow stages are found to have a read to write ratio of 2.0

to 13.4 and an average data reuse of 0.3 to 1.6. The dominance of reads

and low average data reuse implies that input files should be ready to

read when the workflow pipeline starts. Therefore, we do not expect

automatic file movement between the BB and the PFS to benefit these

two data analytics workflows. This is because the one-time cost of staging

the data at access time cannot be hidden by significant data reuse. In

addition, the workflow pipelines consists of a number of intermediate files

which can be discarded once there are final results. For example, the

resampled images in SWarp and the SQLite database in CAMP are not

needed by the scientist. Automatic file movement would cause these files

to be transferred to the PFS unnecessarily.

• It is valuable to leave data in the BB tier for longer than a single

31



batch job. We have found that input files and software environments are

reused across workflow pipelines.

– The input data for data analytics workflows are generally Write Once

Read Many times (WORM). In the SWarp workflow a single input

image often contributes to multiple regions of the sky. Therefore it

is wasteful to re-stage the same input file multiple times for each

workflow pipeline.

– The software environment is reused in every single workflow pipeline.

In the CAMP workflow the Python environment is responsible for

more than half the total I/O. The role of “support I/O” (e.g. Python

packages) is rarely mentioned in the context of BBs. It is useful to

stage the software environment once to avoid the overhead and wear

of repeatedly staging the software environment.

Long-term data residency is not a good fit for today’s BBs because they do

not provide data redundancy. This imposes a data management burden

upon the developer.

6. Related Work

Scientific Workflows. Data-intensive scientific workflows have been shown to

process large amounts of data with varied I/O characteristics [15, 24, 25, 26].

Deelman et al. [27] highlights several challenges in data management for data-

intensive scientific workflows, including data storage, movement and metadata

management. Several strategies have been proposed to optimize data manage-

ment for scientific workflows in HPC environments that include just-in-time

staging and heuristics to minimize data movement [28, 29, 30]. However, BBs

add another layer in the storage hierarchy, adding to the data management

challenges for scientific workflows. Ghoshal et al. [31] propose data manage-

ment strategies on tiered storage with BBs, based on the data usage and access

patterns in scientific workflows. In this paper, we evaluate two workflows with

32



different I/O characteristics and find both workflows are read-dominated with

low data reuse. They would therefore benefit from early staging of both data

and software libraries on architectures with a BB. This capability would ideally

be provided by next-generation workflow systems which would support staging

of this data asynchronously and would also optimize task scheduling based on

data already resident in the BB.

Burst Buffers. Several uses of BBs have been shown in order to mitigate the

I/O bottlenecks of data-intensive workloads [6, 32, 33, 34]. Most studies sur-

rounding the design and use of BBs have so far focused on the I/O characteristics

of individual applications [35] or small components within workflows [4]. How-

ever, research into optimizing scientific workflows with diverse I/O and storage

requirements for BBs is still in its infancy, and a limited body of work presently

exists [3, 36]. Beyond single applications and workflows, researchers are in-

vestigating I/O-aware scheduling on systems with a BB. Herbein et al. [37]

demonstrate that system utilization can be improved by using application drain

bandwidth between the BB and PFS as a scheduling constraint. Thapaliya et

al. [38] et al. investigate interference issues on a system with a shared BB. They

find that runtime scheduling is valuable when independent applications concur-

rently access the same storage resource. Our work provides the guidelines to

improve utilization of a BB. If the guidelines are widely followed by many users

this can help reduce interference issues in supercomputer architectures with a

shared BB.

DataWarp. DataWarp is Cray’s implementation of a BB, and few guidelines

exist for how to use it optimally for scientific workflows. Bhimji et. al show

performance results for a collection of applications selected as part of NERSC’s

Early User Program [39]. The results focus on application I/O bandwidth on

DataWarp and the PFS. The NERSC website provides a list of known issues

and overall guidelines for achieving high performance, such as requesting suf-

ficiently large storage allocations so that data is striped over many BB nodes

[40]. However, it does not show when, why and how to use DataWarp for spe-

cific workflow use cases. Our work has analyzed two data analytics workflows

33



and identified I/O signatures along with the specific workflow requirements to

advise how to use DataWarp. Ovsyannikov et. al implement in-transit pro-

cessing on the NERSC BB to analyze data generated by a simulation science

application [41]. We did not experiment with in-transit processing because the

applications implementing the different stages of SWarp and CAMP workflow

pipelines cannot execute in parallel because of file dependencies. We do explain

that DataWarp persistent reservations are a useful feature when the same data

files and Python modules are read by multiple workflow pipelines.

7. Conclusions

In this paper, we have evaluated two important scientific workflows run at

NERSC to understand their performance characteristics. We have determined

their I/O characteristics, the I/O characteristics of the BB, and measured their

performance when running on the BB.

Our results show that it is essential to understand the limiting performance

characteristic of the scientific workflow being considered in order to achieve

good performance on a BB. In this case, the applications in the two different

workflows were limited by two different performance parameters: bandwidth

(SWarp) and metadata (CAMP). This understanding had to be coupled with

careful matching of the demands of the applications in the workflow with the

BB characteristics to achieve optimal performance. Our work showed that an

I/O speed-up of approximately 5× could be achieved for the CAMP workflow

with proper consideration of the BB configuration requested.

These results point to the need for a richer way of enabling workflows and

HPC resource allocation management software to interact in the future. En-

abling a workflow to communicate its performance limiting characteristic, band-

width, IOPS or metadata will be essential to ensure overall throughput is not

decreased by inefficient usage of resources.

34



Acknowledgments

This work was supported by Laboratory Directed Research and Development

(LDRD) funding from Berkeley Lab, provided by the Director, Office of Science

and Office of Science, Office of Advanced Scientific Computing Research (ASCR)

of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

This research used resources of the National Energy Research Scientific Com-

puting Center, a DOE Office of Science User Facility supported by the Office

of Science of the U.S. Department of Energy under Contract No. DE-AC02-

05CH11231. The authors would also like to thank Rollin Thomas for help with

installing the CAMP Python software environment on DataWarp.

References

[1] C. S. Daley, D. Ghoshal, G. K. Lockwood, S. Dosanjh, L. Ramakrishnan,

N. J. Wright, Performance characterization of scientific workflows for the

optimal use of burst buffers, in: Workflows in Support of Large-Scale Sci-

ence (WORKS-2016), Vol. 1800, CEUR-WS.org, 2016, pp. 69–73.

[2] S. Byna, A. Uselton, D. Knaak, Y. H. He, Lessons Learned from a Hero

I/O Run on Hopper, in: 2013 Cray User Group Meeting, Napa, CA, 2013.

[3] C. S. Daley, L. Ramakrishnan, S. Dosanjh, N. J. Wright, Analyses of Scien-

tific Workflows for Effective Use of Future Architectures, in: Proceedings

of the 6th International Workshop on Big Data Analytics: Challenges, and

Opportunities (BDAC-15), Austin, TX, 2015.

[4] K. A. Standish, T. M. Carland, G. K. Lockwood, W. Pfeiffer, M. Tatineni,

C. C. Huang, S. Lamberth, Y. Cherkas, C. Brodmerkel, E. Jaeger,

L. Smith, G. Rajagopal, M. E. Curran, N. J. Schork, Group-based

variant calling leveraging next-generation supercomputing for large-scale

whole-genome sequencing studies, BMC Bioinformatics 16 (1) (2015) 304.

doi:10.1186/s12859-015-0736-4.

35

CEUR-WS.org
http://dx.doi.org/10.1186/s12859-015-0736-4 http://www.biomedcentral.com/1471-2105/16/304
http://dx.doi.org/10.1186/s12859-015-0736-4 http://www.biomedcentral.com/1471-2105/16/304
http://dx.doi.org/10.1186/s12859-015-0736-4 http://www.biomedcentral.com/1471-2105/16/304
http://dx.doi.org/10.1186/s12859-015-0736-4


URL http://dx.doi.org/10.1186/s12859-015-0736-4http:

//www.biomedcentral.com/1471-2105/16/304

[5] P. Carns, S. Lang, R. Ross, M. Vilayannur, J. Kunkel, T. Ludwig,

Small-file access in parallel file systems, in: 2009 IEEE International

Symposium on Parallel & Distributed Processing, IEEE, 2009, pp. 1–11.

doi:10.1109/IPDPS.2009.5161029.

URL http://ieeexplore.ieee.org/lpdocs/epic03/

wrapper.htm?arnumber=5161029

[6] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume,

C. Maltzahn, On the role of burst buffers in leadership-class storage sys-

tems, in: IEEE 28th Symposium on Mass Storage Systems and Technolo-

gies (MSST), 2012, pp. 1–11. doi:10.1109/MSST.2012.6232369.

[7] Trinity / NERSC-8 Use Case Scenarios, Tech. Rep. SAND 2013-

2941 P, Los Alamos National Laboratory, Sandia National Laborato-

ries, NERSC, https://www.nersc.gov/assets/Trinity--NERSC-8-RFP/

Documents/trinity-NERSC8-use-case-v1.2a.pdf; accessed 4 October

2016 (Apr. 2013).

[8] K. Harms, H. S. Oral, S. Atchley, S. S. Vazhkudai, Impact of burst buffer

architectures on application portability, Tech. rep., Oak Ridge National

Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leader-

ship Computing Facility (OLCF) (2016).

[9] D. Henseler, B. Landsteiner, D. Petesch, C. Wright, N. Wright, Architec-

ture and Design of Cray DataWarp, in: Cray User Group CUG, 2016.

URL https://cug.org/proceedings/cug2016 proceedings/includes/

files/pap105.pdf

[10] XC Series DataWarp User Guide, Tech. Rep. S-2558-5204, Cray, http:

//docs.cray.com/PDF/XC Series DataWarp User Guide CLE 60UP03 S-

2558.pdf; accessed 23 June 2017 (Sep. 2015).

36

http://dx.doi.org/10.1186/s12859-015-0736-4 http://www.biomedcentral.com/1471-2105/16/304
http://dx.doi.org/10.1186/s12859-015-0736-4 http://www.biomedcentral.com/1471-2105/16/304
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5161029
http://dx.doi.org/10.1109/IPDPS.2009.5161029
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5161029
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5161029
http://dx.doi.org/10.1109/MSST.2012.6232369
https://www.nersc.gov/assets/Trinity--NERSC-8-RFP/Documents/trinity-NERSC8-use-case-v1.2a.pdf
https://www.nersc.gov/assets/Trinity--NERSC-8-RFP/Documents/trinity-NERSC8-use-case-v1.2a.pdf
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap105.pdf
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap105.pdf
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap105.pdf
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap105.pdf
http://docs.cray.com/PDF/XC_Series_DataWarp_User_Guide_CLE_60UP03_S-2558.pdf
http://docs.cray.com/PDF/XC_Series_DataWarp_User_Guide_CLE_60UP03_S-2558.pdf
http://docs.cray.com/PDF/XC_Series_DataWarp_User_Guide_CLE_60UP03_S-2558.pdf


[11] IOR, https://github.com/LLNL/ior; accessed 5 September 2016.

[12] MDTest, https://github.com/MDTEST-LANL/mdtest; accessed 5 Septem-

ber 2016.

[13] NASA MODIS Website, http://modis.gsfc.nasa.gov/.

[14] R. E. Wolfe, D. P. Roy, E. Vermote, Modis land data storage, gridding, and

compositing methodology: Level 2 grid, IEEE Transactions on Geoscience

and Remote Sensing 36 (4) (1998) 1324–1338. doi:10.1109/36.701082.

[15] V. Hendrix, L. Ramakrishnan, Y. Ryu, C. van Ingen, K. R. Jack-

son, D. Agarwal, CAMP: Community Access MODIS Pipeline,

Future Generation Computer Systems 36 (2014) 418 – 429.

doi:http://dx.doi.org/10.1016/j.future.2013.09.023.

URL http://www.sciencedirect.com/science/article/pii/

S0167739X13002021

[16] Strace, http://sourceforge.net/projects/strace; accessed 13 July

2016.

[17] IPM, https://github.com/nerscadmin/IPM; accessed 13 July 2016.

[18] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, K. Riley, 24/7 Charac-

terization of petascale I/O workloads, in: 2009 IEEE International Con-

ference on Cluster Computing and Workshops, 2009, pp. 1–10. doi:

10.1109/CLUSTR.2009.5289150.

[19] J. Liu, Q. Koziol, H. Tang, F. Tessier, W. Bhimji, B. Cook, B. Austin,

S. Byna, B. Thakur, G. Lockwood, J. Deslippe, Prabhat, Understanding

the IO Performance Gap Between Cori KNL and Haswell, in: Cray User

Group CUG, 2017.

URL https://cug.org/proceedings/protected/cug2017 proceedings/

includes/files/pap154s2-file1.pdf

37

https://github.com/LLNL/ior
https://github.com/MDTEST-LANL/mdtest
http://modis.gsfc.nasa.gov/
http://dx.doi.org/10.1109/36.701082
http://www.sciencedirect.com/science/article/pii/S0167739X13002021
http://dx.doi.org/http://dx.doi.org/10.1016/j.future.2013.09.023
http://www.sciencedirect.com/science/article/pii/S0167739X13002021
http://www.sciencedirect.com/science/article/pii/S0167739X13002021
http://sourceforge.net/projects/strace
https://github.com/nerscadmin/IPM
http://dx.doi.org/10.1109/CLUSTR.2009.5289150
http://dx.doi.org/10.1109/CLUSTR.2009.5289150
https://cug.org/proceedings/protected/cug2017_proceedings/includes/files/pap154s2-file1.pdf
https://cug.org/proceedings/protected/cug2017_proceedings/includes/files/pap154s2-file1.pdf
https://cug.org/proceedings/protected/cug2017_proceedings/includes/files/pap154s2-file1.pdf
https://cug.org/proceedings/protected/cug2017_proceedings/includes/files/pap154s2-file1.pdf


[20] J. Enkovaara, N. A. Romero, S. Shende, J. J. Mortensen, Gpaw

- massively parallel electronic structure calculations with python-

based software, Procedia Computer Science 4 (2011) 17 – 25.

doi:http://dx.doi.org/10.1016/j.procs.2011.04.003.

URL http://www.sciencedirect.com/science/article/pii/

S1877050911000615

[21] Atomic commit in sqlite, https://www.sqlite.org/atomiccommit.html;

accessed 4 September 2016.

[22] Database speed comparison, https://www.sqlite.org/speed.html; ac-

cessed 4 September 2016.

[23] Pragma statements, https://www.sqlite.org/pragma.html; accessed 5

September 2016.

[24] L. Ramakrishnan, B. Plale, A multi-dimensional classification model for

scientific workflow characteristics, in: Proceedings of the 1st Interna-

tional Workshop on Workflow Approaches to New Data-centric Science,

Wands ’10, ACM, New York, NY, USA, 2010, pp. 4:1–4:12. doi:10.1145/

1833398.1833402.

URL http://doi.acm.org/10.1145/1833398.1833402

[25] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M. H. Su, K. Vahi,

Characterization of scientific workflows, in: 2008 Third Workshop on Work-

flows in Support of Large-Scale Science, 2008, pp. 1–10. doi:10.1109/

WORKS.2008.4723958.

[26] G. B. Berriman, E. Deelman, J. C. Good, J. C. Jacob, D. S. Katz, C. Kessel-

man, A. C. Laity, T. A. Prince, G. Singh, M.-H. Su, Montage: a grid-

enabled engine for delivering custom science-grade mosaics on demand

(2004). doi:10.1117/12.550551.

URL http://dx.doi.org/10.1117/12.550551

38

http://www.sciencedirect.com/science/article/pii/S1877050911000615
http://www.sciencedirect.com/science/article/pii/S1877050911000615
http://www.sciencedirect.com/science/article/pii/S1877050911000615
http://dx.doi.org/http://dx.doi.org/10.1016/j.procs.2011.04.003
http://www.sciencedirect.com/science/article/pii/S1877050911000615
http://www.sciencedirect.com/science/article/pii/S1877050911000615
https://www.sqlite.org/atomiccommit.html
https://www.sqlite.org/speed.html
https://www.sqlite.org/pragma.html
http://doi.acm.org/10.1145/1833398.1833402
http://doi.acm.org/10.1145/1833398.1833402
http://dx.doi.org/10.1145/1833398.1833402
http://dx.doi.org/10.1145/1833398.1833402
http://doi.acm.org/10.1145/1833398.1833402
http://dx.doi.org/10.1109/WORKS.2008.4723958
http://dx.doi.org/10.1109/WORKS.2008.4723958
http://dx.doi.org/10.1117/12.550551
http://dx.doi.org/10.1117/12.550551
http://dx.doi.org/10.1117/12.550551
http://dx.doi.org/10.1117/12.550551


[27] E. Deelman, A. Chervenak, Data management challenges of data-intensive

scientific workflows, in: Cluster Computing and the Grid, 2008. CC-

GRID ’08. 8th IEEE International Symposium on, 2008, pp. 687–692.

doi:10.1109/CCGRID.2008.24.

[28] Z. Zhang, C. Wang, S. S. Vazhkudai, X. Ma, G. G. Pike, J. W. Cobb,

F. Mueller, Optimizing center performance through coordinated data stag-

ing, scheduling and recovery, in: Proceedings of the 2007 ACM/IEEE Con-

ference on Supercomputing, SC ’07, ACM, New York, NY, USA, 2007, pp.

55:1–55:11. doi:10.1145/1362622.1362696.

URL http://doi.acm.org/10.1145/1362622.1362696

[29] H. M. Monti, A. R. Butt, S. S. Vazhkudai, On timely staging of hpc job

input data, IEEE Transactions on Parallel and Distributed Systems 24 (9)

(2013) 1841–1851. doi:http://doi.ieeecomputersociety.org/10.1109/

TPDS.2012.279.

[30] S. Bharathi, A. Chervenak, Scheduling data-intensive workflows on storage

constrained resources, in: Proceedings of the 4th Workshop on Workflows

in Support of Large-Scale Science, WORKS ’09, ACM, New York, NY,

USA, 2009, pp. 3:1–3:10. doi:10.1145/1645164.1645167.

URL http://doi.acm.org/10.1145/1645164.1645167

[31] D. Ghoshal, L. Ramakrishnan, MaDaTS: Managing Data on Tiered Stor-

age for Scientific Workflows, in: Proceedings of the 26th International

Symposium on High-Performance Parallel and Distributed Computing,

HPDC ’17, ACM, New York, NY, USA, 2017, pp. 41–52. doi:10.1145/

3078597.3078611.

URL http://doi.acm.org/10.1145/3078597.3078611

[32] J. Bent, G. Grider, B. Kettering, A. Manzanares, M. McClelland, A. Torres,

A. Torrez, Storage challenges at los alamos national lab, in: IEEE 28th

Symposium on Mass Storage Systems and Technologies (MSST), 2012, pp.

1–5. doi:10.1109/MSST.2012.6232376.

39

http://dx.doi.org/10.1109/CCGRID.2008.24
http://doi.acm.org/10.1145/1362622.1362696
http://doi.acm.org/10.1145/1362622.1362696
http://dx.doi.org/10.1145/1362622.1362696
http://doi.acm.org/10.1145/1362622.1362696
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TPDS.2012.279
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TPDS.2012.279
http://doi.acm.org/10.1145/1645164.1645167
http://doi.acm.org/10.1145/1645164.1645167
http://dx.doi.org/10.1145/1645164.1645167
http://doi.acm.org/10.1145/1645164.1645167
http://doi.acm.org/10.1145/3078597.3078611
http://doi.acm.org/10.1145/3078597.3078611
http://dx.doi.org/10.1145/3078597.3078611
http://dx.doi.org/10.1145/3078597.3078611
http://doi.acm.org/10.1145/3078597.3078611
http://dx.doi.org/10.1109/MSST.2012.6232376


[33] K. Sato, K. Mohror, A. Moody, T. Gamblin, B. R. d. Supinski,

N. Maruyama, S. Matsuoka, A user-level infiniband-based file system and

checkpoint strategy for burst buffers, in: Cluster, Cloud and Grid Comput-

ing (CCGrid), 2014 14th IEEE/ACM International Symposium on, 2014,

pp. 21–30. doi:10.1109/CCGrid.2014.24.

[34] B. Van Essen, R. Pearce, S. Ames, M. Gokhale, On the Role of NVRAM

in Data-intensive Architectures: An Evaluation, in: 2012 IEEE 26th

International Parallel and Distributed Processing Symposium, IEEE,

2012, pp. 703–714. doi:10.1109/IPDPS.2012.69.

URL http://ieeexplore.ieee.org/lpdocs/epic03/

wrapper.htm?arnumber=6267871

[35] T. Wang, S. Oral, M. Pritchard, K. Vasko, W. Yu, Development of a burst

buffer system for data-intensive applications, CoRR abs/1505.01765.

URL http://arxiv.org/abs/1505.01765

[36] APEX Workflows, Tech. rep., Los Alamos National Laboratory, NERSC,

and Sandia National Laboratories, Los Alamos, NM (2016).

[37] S. Herbein, D. H. Ahn, D. Lipari, T. R. Scogland, M. Stearman, M. Gron-

dona, J. Garlick, B. Springmeyer, M. Taufer, Scalable I/O-Aware Job

Scheduling for Burst Buffer Enabled HPC Clusters, in: Proceedings of

the 25th ACM International Symposium on High-Performance Parallel and

Distributed Computing, HPDC ’16, ACM, New York, NY, USA, 2016, pp.

69–80. doi:10.1145/2907294.2907316.

URL http://doi.acm.org/10.1145/2907294.2907316

[38] S. Thapaliya, P. Bangalore, J. Lofstead, K. Mohror, A. Moody, Manag-

ing I/O Interference in a Shared Burst Buffer System, in: 2016 45th In-

ternational Conference on Parallel Processing (ICPP), 2016, pp. 416–425.

doi:10.1109/ICPP.2016.54.

[39] W. Bhimji, et al., Accelerating Science with the NERSC Burst Buffer Early

User Program, in: Cray User Group CUG, 2016.

40

http://dx.doi.org/10.1109/CCGrid.2014.24
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6267871
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6267871
http://dx.doi.org/10.1109/IPDPS.2012.69
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6267871
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6267871
http://arxiv.org/abs/1505.01765
http://arxiv.org/abs/1505.01765
http://arxiv.org/abs/1505.01765
http://doi.acm.org/10.1145/2907294.2907316
http://doi.acm.org/10.1145/2907294.2907316
http://dx.doi.org/10.1145/2907294.2907316
http://doi.acm.org/10.1145/2907294.2907316
http://dx.doi.org/10.1109/ICPP.2016.54
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap162.pdf
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap162.pdf


URL https://cug.org/proceedings/cug2016 proceedings/includes/

files/pap162.pdf

[40] Burst Buffer, NERSC website: http://www.nersc.gov/users/

computational-systems/cori/burst-buffer/; accessed 31 August

2016.

[41] A. Ovsyannikov, M. Romanus, B. V. Straalen, G. H. Weber, D. Trebotich,

Scientific workflows at datawarp-speed: Accelerated data-intensive science

using nersc’s burst buffer, in: 2016 1st Joint International Workshop on

Parallel Data Storage and data Intensive Scalable Computing Systems

(PDSW-DISCS), 2016, pp. 1–6. doi:10.1109/PDSW-DISCS.2016.005.

41

https://cug.org/proceedings/cug2016_proceedings/includes/files/pap162.pdf
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap162.pdf
http://www.nersc.gov/users/computational-systems/cori/burst-buffer/
http://www.nersc.gov/users/computational-systems/cori/burst-buffer/
http://dx.doi.org/10.1109/PDSW-DISCS.2016.005


Christopher S. Daley is a performance engineer in the

National Energy Research Scientific Computing (NERSC)

center at Lawrence Berkeley National Laboratory (LBNL).

Before joining NERSC, Christopher was a Scientific Program-

mer at the Flash Center for Computational Science at the

University of Chicago. His current research involves perfor-

mance analysis of HPC and data analytics applications to gather architectural

requirements and identify code optimization opportunities. He has a M.Sc. in

High Performance Computing from the University of Edinburgh and a B.Sc. in

Physics from the University of Surrey.

Devarshi Ghoshal is a Research Scientist at LBNL. He

received his Ph.D. in Computer Science from Indiana Univer-

sity, Bloomington in 2014. His current research interests in-

clude high performance computing, large scale data manage-

ment in distributed systems, I/O performance benchmarking

and performance optimizations in scientific workflows.

Glenn K. Lockwood is a performance engineer in the

NERSC center at LBNL. He specializes in I/O performance

analysis, extreme-scale storage architectures, and emerging

I/O technologies and APIs. His research interests revolve

around understanding I/O performance by correlating per-

formance analysis across all levels of the I/O subsystem, from

node-local page cache to back-end storage devices. To this end, he is actively

involved in the performance analysis of the burst buffer incorporated in Cori,

NERSC’s 12,000-node Cray XC-40 system, as well as the Lustre file systems

deployed at the center.

42



Sudip Dosanjh is the director of the NERSC center at

LBNL. Previously, Dr. Dosanjh headed extreme-scale com-

puting at Sandia National Laboratories. He was co-director

of the Los Alamos/Sandia Alliance for Computing at the

Extreme-Scale from 2008-2012. He also served on the U.S.

Department of Energy’s Exascale Initiative Steering Com-

mittee for several years. Dr. Dosanjh had a key role in establishing co-design as

a methodology for reaching exascale computing. He earned his bachelors degree

in engineering physics in 1982, his masters degree (1984) and Ph.D. (1986) in

mechanical engineering, all from the University of California, Berkeley.

Lavanya Ramakrishnan is a staff scientist at LBNL.

Her research interests are in software tools for computational

and data-intensive science. Ramakrishnan has previously

worked as a research staff member at Renaissance Comput-

ing Institute and MCNC in North Carolina. She has masters

and doctoral degrees in Computer Science from Indiana Uni-

versity and a bachelor degree in computer engineering from

VJTI, University of Mumbai. She joined LBNL as an Alvarez Postdoctoral Fel-

low in 2009.

Nicholas J. Wright focuses on evaluating future tech-

nologies for potential application in scientific computing. He

also works on performance measurement and optimization

and is particularly involved in investigating performance op-

timization for the multicore-era. Before moving to NERSC,

he was a member of the Performance Modeling and Charac-

terization (PMaC) group at the San Diego Supercomputing

Center. He earned both his undergraduate and doctoral degrees in chemistry

at the University of Durham in England.

43


	Introduction
	Background
	Burst Buffers
	The NERSC Burst Buffer Architecture

	Methodology
	Workloads
	I/O Benchmarks
	Workflows

	Machine Setup
	Performance Tools
	Workload Configuration

	Results
	Cori Burst Buffer Performance
	Workflow Performance
	Performance of a Single Workflow Pipeline
	Performance of Concurrent Workflow Pipelines

	Optimization of CAMP-builddb
	Data Movement Characteristics
	Summary

	Discussion
	Efficient Use of Burst Buffers
	Efficient Use of DataWarp
	Improving Burst Buffer APIs
	Data Management Strategies

	Related Work
	Conclusions



