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ABSTRACI' 

Monte-Carlo simulations of a lattice model for incompressible monomer/r-mer mixtures are used to 

obtain accurate results for the configurational energy of mixing. Based on simulation results, the energy of 

mixing is correlated as a function of temperature and composition using an empirical expression. The 

configurational Helmholtz energy is obtained upon using the Gibbs-Helmholtz equation with Guggenheim's 

athermal entropy of mixing as boundary condition. Since Monte-Carlo simulations give essentially exact results 

for the lattice model, the effects of nonrandom mixing on the configurational thermodynamic properties of a 

binary mixture can be determined. The expression generated here produces coexistence curves that are more 

accurate than those from other mode.s, especially near the critical region. 

INTRODUCilON 

Lattice models provide a convenient starting point for a theoretical description of the thermodynamic 

properties of concentrated solutions. Historically, they have proven useful in the correlation of single-phase· 

mixture properties such as activity coefficients and heats of mixing, but they frequently give inadequate results 

when applied to liquid-liquid phase equilibria. Common models, such as the Flory-Huggins (FH) model 

(Flory, 1953) or the Quasi-Chemical (QC) model (Guggenheim, 1952), produce liquid~liquid coexistence curves 

which are too narrow or parabolic near the critical region when compared to experimental data. 

Previously reported failures of the lattice model for liquid-liquid coexistence curves is due, at least in 

part, to mathematical approximations for taking into account effl?Cts of nonrandom mixing to obtain an 

analytical solution to the lattice model. These failures are not primarily due to the use of a lattice to visualize 

the effects of nonrandom mixing on local composition. Some models, such as the FH model, do not take, 

nonrandom mixing into account at all; the FH model is only the Bragg-Williams Random Mixing (RM) model 

(Hill, 1956) extended to chain systems. The QC model attempts take nonrandom mixing into account, but it is 

only accurate for small deviations from random mixing. More recent is the Lattice Ouster (LC) model (Madden, 
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Pesci, & Freed, 1990; Dudowicz, Freed & Madden, 1990) which is a formal method for the exact solution of the 

lattice model. However, in practice (to date) the LC model remains deficient for the correlation of liquid­

liquid equilibria. 

The goal of this work is to evaluate the effects of nonrandom mixing on liquid-liquid equilibria using 

Monte-Carlo simulations of the same lattice used in earlier models. Results of the Monte-Carlo simulations are 

used to formulate a more accurate expression for the energy of mixing of monomer/r-mer mixtures; this 

expression is used to obtain an expression for the Helmholtz energy of mixing. The coexistence curves predicted 

using this expression are compared to those from other models and to Monte-Carlo simulations for finding the 

binodal. Finally, some comments are presented concerning the ability of the lattice model to correlate 

experimental liquid-liquid equilibria. 

DESCRIPTION OF MODEL 

The description of the lattice model starts with a simple cubic lattice (coordination number, z = 6) 

containing Nr sites. The lattice is filled completely by N1 molecules of type 1 and N2 molecules of type 2. 

Molecules of type 1 occupy only one lattice site (r1 = 1), whereas molecules of type 2 are flexible chain molecules 

(r-mers) which occupy r2 nearest-neighbor lattice sites. Consideration is restricted to nearest-neighbor 

interactions. The configurational partition function on mixing, Q(Nr,N1,T), is 

(1) 

where the sum is over all possible numbers of 1-2 nearest-neighbor pairs, N12. The combinatorial factor, g(Nu), 

is the degeneracy of configurational states which have N12 nearest-neighbor 1-2 pairs. Since the lattice is 

incompressible, the only relevant interaction energy is the interchange energy, £ = 2£12 - £11 -£221 where tij is the 

(non-bonded) i-j nearest-neighbor interaction energy. A dimensionless temperature is defined by T = kT/e, 

where Tis absolute temperature and k is Boltzmann's constant. The sum in equation (1) is replaced by its 

maximum term. As a result, concentration fluctuations, or fluctuations in N12, are not considered. The 

relationship between N12 and g(N12) to the configurational Helmholtz energy, AmixA, is given by: 

~mix A 
--= 
NrkT 

1n g(Nu> + N 12 e = _ ~mixs + ~u . 
Nrk 2NrkT Nrk NrkT (2) 

The logarithm of the combinatorial factor is proportional to the entropy of mixing, ~mixS, and N 12 is 

proportional to the en~rgy of mixing, ~ixU. Most models begin by proposing a form of g(N12) and then derive 

the average value of N12 by finding the maximum term in equation (1) using a variational technique (Kemeny, et 

al., 1990). It is in the choice of g(N12) where most of the severe mathematical simplifications are made to 

obtain an analytical solution for AmixA. 

Because no statistical mechanical method is available for determining g(N12) exactly, an alternative 

method is used here for determining the Helmholtz energy of mixing. This method focuses on knowledge of N12 

as obtained from Monte-Carlo simulation. The energy of mixing is related to the number of nearest-neighbor 

pairs by 

• 
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.1mixU _ 1 Nt2 -----. 
Nr£ 2 Nr 

(3) 

If N 12 is known as a function of composition· and (dimensionless) temperature, then the contribution to the 

Helmholtz energy due to nonrandom rirlxing can be calculated by integrating the Gibbs-Helmholtz ~uation: 

.1mixA -(- .1mix5·)= (¥ .1mixU c{b) . 
NrkT Nrk )0 Nr£ lT (4) 

The lower limit of integration is the athermal reference state designated by •. Therefore, we must know the 

athermal entropy of mixing [or equivalently g(N12.), where N12 is the number of nearest-neighbor 1-2 pairs in a 

random or athermal mixture]. There are several choices: Flory's (1953) expression, Guggenheim's (1952) 

expression, or the LC expression. Guggenheim's athermal entropy of mixing is chosen here because it includes 

chain connectivity, which Flory's expression does not. For athermal systems, Guggenheim's expression produces 

results essentially identical to those of the LC model. Guggenheim's athermal entropy of mixing is 

(5) 

where 4li is the volume fraction of component i, ei = N1q1/(N1q1 + N~2) is the surface fraction of component i, and 

qi is the surface area parameter; zqi = ri(z - 2) + 2. 

MONTE-cARLO SIMULATIONS 

Monte-Carlo simulations were performed using a simple cubic lattice with L sites on each box edge and 

with periodic boundary conditions. The lattice is completely filled with a fixed composition of monomer and r­

mer. Standard Metropolis Monte-Carlo sampling (Allen & Tildesley, 1987; Chandler, 1987) was used to accept 

or reject generated configurations. For the case where r1 = r2 = 1 (Ising Lattice), new configurations were sampled 

by randomly picking two different types of molecules and switching their identities. 

For cases where r1 = 1 and r2 > 1, r-mer confo~tions are sampled by reptation (Wall & Mandel, 1975). 

A brief description of the reptation algorithm is as follows: 1) A chain is picked at random. 2) A segment at one 

end of the picked chain is chosen also at random. 3) A nearest-neighbor site of the segment at the other end is 

· chosen. 4) If this site is occupied by another r-mer segment then the move is rejected. If occupied by a monomer, 

then the end segment is switched with the monomer and made the head of the chain generating a new 

configuration. 

Only the linear combination of interaction energies, £, is important. { Therefore, the simulation is 

simplified by setting £11 and £22 to zero and only setting e12• The dimensionless temperature of the simulation is 

fixed by specifying kT /2£12. The energy of the system (in units of kD is given by N12<v> /2T, where N12<v> is the 

number of nearest-neighbor 1-2 pairs of configuration v. Consequently, determination of the number of nearest­

neighbor 1-2 pairs appears naturally in the simulation. Simulations were only performed at temperatures in 

the single-phase region. 

The lattice size varied with the length of the polymer chains simulated. As a rule of thumb, lattice 

sizes L > 2-{f; + 5 were used (Rodriguez & Freire, 1991). Table 1lists the box size and number of (equilibrated) 

attempted moves ~veraged for each chain length simulated. For a specific chain length, no change in the 
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results was observed when the box size was increased to a value larger than that listed in Table 1. Figure 1 

shows typical results for the energy of mixing for monomer/20-mer mixtures as a function of r-mer volume 

fraction for different dimensionless temperatures. Since the reptation algorithm is not efficient for long 

polymer chains at high polymer volume fractions, results could not be obtained at volume fractions of r-mer > 

0.8 for r2 > 50 . 

CORRElATION OF SIMULATION DATA 

The algebraic form to correlate energy of mixing data from Monte-Carlo simulations is a Redlich-Kister 

expansion truncated after the third term: 

(6) 

where cp1 and «P2 are monomer and r-mer volume fractions, respectively. Parameters A' and C' depend on 

dimensionless temperature and r-mer chain length only. To a good approximation, B' is independent of 

dimensionleSs temperature and depends only on r-mer chain length. The temperature dependence of A' and C' is 

correlated by 

(7) 

Parameters ao, a1, B', eo. and c1 depend only on r-mer chain length. The function of temperature, exp(1/f> -1, 

arises in Guggenheim's Quasi-Chemical model. It was found that the temperature dependence of A' and C' 

behaved linearly (to within the relative error of the fit) with this temperature function. 

Figure 2 shows the chain-length dependence of ao, a1, and B'. The parameters appear to reach 

asymptotic values as r2 increases. Parameters Co and c1 do not behave as smoothly as a function of r2 as ao, a1, 

and B'. Fortunately, these two parameters pr~vide only very small contributions to the energy of mixing. 

Fixing co = 0 and c1 = 1.20 does not affect the quality of the fits of the simulation data nor the resulting 

coexistence curves. The following equations represent the r-mer dependence of ao, a1, and B': 

( ) 6 
0.9864 (r2- 1) ao r2 = ____ __;__::___.:...__ 

1 + 0.8272 <n -1) 
(8) ( ) 1.2374 0.09616 <n -1) 

a1 r2 =- -------
1 + 0.1458 <n- 1) 

B'(r
2

) = 0.8186 (r2 -1) 

1 + 0.76494 (n- 1) 

These equations allow smooth extrapolation to larger values of r2 not simulated. 

Substitution of equation (6) into equation (4) yields 

t.mixA t.mixs· 1 [ ( ) ( )21 
--=---+-«Pl~ A+B «Pl-«Pl +C «Pl-«Pl J 
NrkT Nrk 2 

where A, B, and Care the integrated fonns of A', B', and C': 

(9) 

(10) 

(11) 

(12) 

Equations (11) and (12), together with Guggenheim's athermal entropy of mixing [equation (5)], give an 

expression for the Helmholtz energy of mixing of a monomer(1)/r-mer(2) mixture. Equation (11) provides a 

, 

j 
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simple and accurate lattice model expression for predicting liquid-liquid equilibria. It must emphasized that 

parameters ao, a1, a·, eo and c1 are not adjustable parameters. They are known functions of r2as determined fr<;>m 

Monte-Carlo simulation results. The equation for .t\mxA derived here has the same two inputs as those for all 

previous lattice models: r-mer chain length, r2, and interchange energy e/k. 

RESULTS AND DISCUSSION 

Comparison with MC calculation of binodal and other models 

Figure 3 presents a comparison of coexistence curves for a monomer /monomer Qsing lattice) mixture. The 

points in Figure 3 are results of a lattice Gibbs-ensemble Monte-Carlo simulation {Panagiotopolous, et al, 1988) 

used explicitly to find the binodal. Agreement between the Monte-Carlo points and the result calculated using 

equation (11) is excellent. Note the deficiency of the LC model for this mixture, which gives results poorer than 

those from both this model and the QC model. As expected, the RM model gives the poorest agreement. Figure 

3 is analogous to the result when models, such as the RM or QC models, are used to correlate experimental 

liquid-liquid equilibria. If a tie line is used to determine model parameters, the calculated coexistence curves 

overshoot the critical point. If the critical point is fit, the models produce coexistence curves which are much 

too narrow relative to experiment. The dimensionless critical temperature, Tc = 1.129, for the model presented 

here, comes close to the most accurate theoretical value Tc = 1.128 <Fisher, 1967>. 

Figure 4 compares coexistence curves for a highly asymmetric monomer/100-mer mixture. Monte-Carlo 

simulation points are from Madden, et al. (1990). Here equation (11) siightly under-predicts the simulation 

results. Here the LC model appears to do a better job, but this result is deceiving. If the LC coexistence curve 

near the critical point is examined closely, an anomalous curvature can be seen which is not realistic. If 

coexistence curves for higher values of r2 are calculated, tbe anomalous curvature persists at low r-mer 

concentrations. Also, as demonstrated in Figure 3, the LC model produces inaccurate coexistence curves for 

mixtures where r2 is small, i.e. 1 S r2 S 20. 

Figure 5 compares the scaling behavior of the critical point with r-mer chain length for this model to 

those of other models. Note the difference in critical dimensionless temperature between this model and the 

FH and QC models. A difference also exists between the calculated values of the critical r-mer volume fraction. 

At larger values of r2 , the critical r•mer volume fraction is about twice that calculated by the FH model. This 

is consistent with comparisons to experiment (Shultz & Flory, 1952). Note, however, that at larger r2 values, 

both this model and the FH model give the same slope of -1. The strange curvature exhibited by the LC model 

is indicative of the anomalous shapes. of the coexistence curves indicated above. 

Comparison with experiment 

To correlate experimental liquid-liquid equilibria, it is necessary to fix lattice-model parameters, r2 
and £/k. The simplest choice for the determination of t:/k is to use the experimental upper-<:onsolute critical 

temperature. For r21 there are two simple choices. One is make the ratio r2/r1 equal to a ratio of characteristic 

volumes, such as the molar volumes at a specified temperature. A second choice is to adjust r2 to give agreement 

with the experimental critical composition. The energy parameter, t:/k, has no effect on the shape of the 

coexistence curve for a specified value of r2. Therefore, r2 is the most important parameter to determine the 

shape of calculated coexistence curves. Unless otherwise noted, the first method for the estimation of r2 was 
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used. The four examples used are binary systems consisting of nearly non-polar molecules, consistent with the 

assumptions of the lattice model. Two of the systems contain large molecules (polymers) in a solvent. The other 

systems contain smaller molecules of roughly equal size. 

Figure 6 compares calculated and experimental coexistence curves for poly(isobutylene)/diisobutyl 

ketone mixtures (Shultz & Flory, 1952). For the two larger molecular weights of polymer, r2 was determined by 

the ratios of molar volumes. For the lowest molecular weight, r2 was adjusted to agree with the experimental 

critical volume fraction. Agreement between the model and experiment is good. The calculated values of t/k 

depend weakly on molecular weight; they are (from highest to lowest molecular weight) 97.4 , 97.0 , and 93.0 K. 

Figure 6 also shows results obtained from the FH model. 

Figure 7 compares calculated and experimental coexistence curves for poly(styrene)/cyclohexane 

mixtures (Bae, et al., 1991). The nearly equal energy parameters are (from highest to lowest molecular weight) 

90.5 , 90.6 , and 90.9 K. For this case the agreement between experiment and the model is not good. While the 

model does a reasonable job in predicting the critical volume frctctions, the shapes of the coexistence curves are 

not accurately represented. 

Figure 8 compares calculated and experimental coexistence curves for carbon tetrachloride(l) and 

perfluoromethylcyclohexane(2) (Hildebrand & Cochran, 1949). At 20°C the ratio of molar volume for these 

component is 2.00. The calculated energy parameter is 197.8 K. Again the coexistence curve calculated using the 

model developed here does not accurately represent the experimental coexistence curve. It is also slightly off in 

the prediction of the critical composition. The model does, however, produce a coexistence curve wider than 
. -

those from the RM model or the QC model. 

Figure 9 compares calculated and experimental coexistence curves for methane(l) and 

perfluoromethane(2). Here the value r2 = 1.20 was adjusted to give good agreement with experiment. The 

calculated coexistence curve does not quite match experiment, but it significantly better than that obtained from 

the RM model and the QC model. 

Comparison with experiment shows that the much-improved lattice model derived here is not, in 

general, reliable for representing binary liquid-liquid equilibria with an upper consolute temperature. While 

representation with the improved model is much better than with the Random-Mixing or Quasi-Chemical 

models, some deficiency remains. Possible sources for this deficiency are: 

1) Density (equation-of-state) effects which relax the assumption of close packing. Much previous 

work (Sanchez & Lacombe, 1978; Patterson, 1969) has shown that density effects are essential for explaining 

lower critical solution temperatures that lie above the upper critical solution temperature. The work presented 

here has considered only liquid-liquid equilibria with an upper critical solution temperature where neither 

component is appreciably expanded. Nevertheless, even small density effects may have a nontrivial effect on 

liquid-liquid equilibria below the upper critical solution temperature. 

2) Fluctuations in N12 near the critical point. The derivation presented here neglects contributions of 

such fluctuations to the Helmholtz energy because the summation in the partition function is replaced by its 

maximum term. These fluctuations are important only very close (less than 0.1 °C) to the critical point and it is 

therefore not likely that they have a significant influence on the liquid-liquid coexistence curves of 

\~ 

, 

~I 



7 

temperatures more than say, 1 °C below the critical temperature. Nevertheless, it may be useful to study the 

effect of fluctuations using modem theory of critical phenomena (McMahon & Glandt, 1988). 

3) Oriented intermolecular forces. For the systems shown in Figures 6-9, it is unlikely that oriented 

forces play a significant role. Nevertheless, it is likely that a better fit of the data can be obtained by using a 

secondary lattice (Hu, et al., 1991). This likely better fit, however, requires at least one more binary 

c, parameter. 

'·1, 

4) In the model used here, no allowance is made for variable flexibility of the chain molecules. · The 

model impiicitly assumes that poly(isobutylene) (Figure 6) has the same flexibility as polystyrene (Figure 7). 

Further, the solvent molecule (diisobutyl ketone in Figure 6 and cyclohexane in Figure 7) is considered to be a 

monomer where the concept of flexibility does not apply. It is likely that this deficiency is primarily 

responsible for lack of consistent agreement between lattice-model and experimental results. 

CONCLUSION 

Because statistical mechanics cannot provide a reliable expression for the combinatorial factor of a 

binary mixture represented by a Flory-Huggins lattice, Monte-Carlo simulations have been obtained for the 

number of monomer/r-mer nearest neighbors for a large number of representative binary systems. The Monte­

Carlo results were fit empirically to yield an expression for the Helmholtz energy of mixing. This expression 

permits calculation of liquid-liquid equilibria without using restrictive approximations for the effect of 

nonrandom mixing present in other models. 
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TABLE 1. 
Monte-Carlo simulation parameters. 

r-mer chain 
length, 

r2 

1 
2 
3 
4 
5 
10 
20 
50 

100 

Box edge length, 
L 
20 
20 
20 
20 
20 
20 
30 
30 
40 

Dimensionless temperatures 
simulated, kT /£ 

oo, 50, 20, 10, 8, 6, 4, 3, 2, 1.5 
oo, 10, 8, 6, 4, 3, 2 
oo, 10, 8, 6, 4, 3, 2 
oo, 10, 8, 6, 4, 3, 2 

oo, 10, 8, 6, 4, 3 
oo, 10, 8, 6, 4, 3 
oo, 10, 8, 6, 4, 3 
oo, 10, 8, 6, 4, 3 
oo,10,8,6,4 

= .. 
0 

.:. 
I 

i 

3 

2 

Number of (equilibrated) 
moves attempted at each T 

(x 1()-6) 

24 
24 
81 
24 
24 
24 
24 
81 
96 

0 .. ...... 
x a· 

-Eqn.a 
····Eqn.O 
- • Ean.1o 

___ ._. _ __..,_ ... 

8 

___ ...... --------
~---x---~----~---~---

x-.x- . 
, .. '' 

01~~*2~-.~~.~.~~~2~~.~.~.~-*~2~~.~.~. 
10 100 1000 

f 2, Volume Fraction Component 2 r-mer chain length, r2 
Figure 1. Normalized energy of mixing for monomcr(l)/20-mcr(2) 
mixtures. The symbols arc Monte Carlo simulation results. The solid lines 
are the fit given by Equation (6). 

Figure 2. Depcndcnoc of paramctcn 11oo a1, and B ·on r·mer chain 
length. (Note log scale on horizontal axis.) 

Corralnon from oingle-pMie MC aimuiGCin data 
- • QJaK:hemical Model 
• • • Lattce Cluster Model 
-··RandomMICingMoclel 
o Gita-Erwamllla Moru c.to Simulation 

x1 or x2 
Figure 3. Comparison of monomer/monomer (Ising Lattice) coaistcncc 
curves calculated by various models and by Gibbs-Ensemble Monte-Carlo 
simulation. 

·--. ............. · . .. , ..... 
"""' ...... 

. .---------..... ..._ . ···· ... 
4 

·-·--···-···-·--·-···--.-=·· .......... 3 -............ ' 
·-:::~ .... ' ...... , 

2 

Corr-on from lingle-.,.,_ MC aimuiOiion data --Roty-
-- - ()ali-Chemical -
- -- Llftce CUt• Modol 

• Monto Carlo SirrtjMaddan, at II. 1000} 

0.2 0.4 0.8 

fz 

1.0 

Figure 4. Calculated coexistence curves for monomcr(l)/l00-mer(2) 
mixtures. The Lattice Cluster model appears to give better results; 
however, that model gives (enoncous) points of inflection on the 
coexistence curve ncar the critical point. 
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Figure 5. Critical dimensionless temperatures and critical r-mer 
volume fractions as a function of reciprocal r-mer chain length. 
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Figure 9. Coexistence curves for CH4(1 )/CF i2) mixtures. 
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