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Planning Online Advertising Using Gini Indices

December 14, 2018

Miguel A. Lejeune
Department of Decision Sciences, George Washington University, Washington, DC 20052, mlejeune@gwu.edu

John Turner
The Paul Merage School of Business, University of California at Irvine, Irvine, CA 92697, john.turner@uci.edu

We study an online display advertising planning problem in which advertisers’ demands for ad exposures (impressions) of

various types compete for slices of shared resources, and advertisers prefer to receive impressions that are evenly-spread

across the audience segments they target. We use the Gini coefficient measure and formulate an optimization problem

that maximizes spreading of impressions across targeted audience segments while limiting demand shortfalls. First, we

show how Gini-based metrics can be used to measure spreading that publishers of online advertising care about, and

how Lorenz curves can be used to visualize Gini-based spread so that managers can effectively monitor the performance

of a publisher’s ad delivery system. Second, we adapt an existing ad planning model to measure Gini-based spread

across audience segments, and compare and contrast our model to this baseline with respect to key properties and the

structure of the solutions they produce. Third, we introduce a novel optimization-based decomposition scheme which

efficiently solves our instances of the Gini-based problem up to 60 times faster than the commercial solver CPLEX solves

a basic formulation directly. Finally, we present a number of model and algorithmic extensions, including (1) an online

algorithm which mirrors the structure of our decomposition method to serve well-spread ads in real-time, (2) a model

extension which allows an aggregator buying impressions in an external market to allocate them to advertisers in a well-

spread manner, and (3) a multi-period model and decomposition method which spreads impressions across both audience

segments and time.

Key words: Online Advertising, Gini Index, Lorenz Curve, Decomposition Method, Spreading Impressions

1. Introduction

Online advertising continues to be a fast-growing market in the United States, having grown 21.64% in 2016

to reach $72.5 billion annually (c.f., Internet Advertising Bureau 2017). Forty-four percent ($31.7B) of this

market is classified as display advertising, a category that includes banner ads, digital video ads, rich media, and

sponsorships; moreover, one-third of all online advertising ($25B) is impression-based, the majority of which

is display advertising. Publishers (e.g., Google, Yahoo, Facebook) must choose, at each point in time, which ad

to show to which arriving viewer – a challenging problem in which advertisers’ demands for impressions (ad

exposures) of specific types compete for slices of shared resources (the supply of impression opportunities from

viewers of specific types). In many cases, advertisers prefer to receive impressions that are evenly-spread across

the audience segments they target, as well as evenly-spread across time. Gini coefficients and their distributional
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2 Lejeune and Turner: Planning Online Advertising Using Gini Indices

analogs, Lorenz curves, are well-studied in the field of economics for the purpose of measuring how well-

spread resources, such as wealth and income, are across individuals in a population; however, to the best of

our knowledge, there is no study that uses Gini-based metrics to measure the performance of online advertising

campaigns. Our goal is to (1) propose that Gini-based metrics can be used to measure spreading that publishers

of online advertising care about; (2) show how a popular model for spreading impressions across audience

segments from the ad planning literature can be adapted to measure Gini-based performance; (3) compare and

contrast our model to this baseline with respect to key properties and the structure of the solutions they produce,

including how well revenue can be traded off to receive better spreading; and (4) introduce a novel optimization-

based decomposition scheme based on Dantzig-Wolfe decomposition and subgradient optimization to efficiently

exploit the nonlinear structure of our Gini objective to solve our proposed formulation on average 60 times faster

than solving a simpler linear programming reformulation directly. By using Gini-based performance metrics and

Lorenz curves, we argue that managers can better visualize and understand the performance of a publisher’s ad

delivery system.

Our paper is organized as follows. We begin by providing the requisite background in online advertising

and economics, and review the relevant literature. Then, we discuss how Gini coefficients and Lorenz curves

can be used by both publishers and advertisers. Next, we develop Gini-based metrics for measuring impression

spread across audience segments, and formulate a single-period ad planning problem which maximally spreads

impressions across targeted audience segments while minimizing demand shortfalls. We then define five key

properties and show that our Gini-based model satisfies each. Using numerical experiments, we compare and

contrast the solutions from our Gini-based model with a baseline model developed at Yahoo, and show that our

Gini-based model is generally better at trading off revenue (i.e., incurring some demand shortfalls) to achieve

better spread. Then, we introduce our novel decomposition method, evaluate its computational performance, and

describe the structure of the solutions that it produces. Finally, we extend our model and solution method so it can

be used (1) to solve the multi-period case which spreads impressions across both audience segments and time,

(2) to help an aggregator decide which impressions to buy from the market to allocate to advertisers, and (3) to

serve well-spread ads in real-time, using an online algorithm that works in conjunction with our decomposition

method.
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2. Background

2.1. Advertising Background

There are many forms of targeted display advertising, from banner ads on websites, to digital video ads, dynamic

in-game ads placed in video games, ads in social networks, and promotional ads in mobile apps. Despite this, it

is usually possible to classify an ad campaign as either impression-based, click-based, or conversion-based; and,

orthogonally, guaranteed or non-guaranteed. Our focus in this paper is on guaranteed impression-based ads.

Impression-based ads, such as banner, dynamic in-game, and digital video ads, incur a cost to the advertiser

whenever the publisher places the ad on some viewer’s screen. In contrast, click-based and conversion-based

ads only charge the advertiser for clicks and conversions (installing an app, or buying a product), respectively.

Although our focus is impression-based ads, in many cases the models we describe can be adapted for click and

conversion-based advertising (e.g., by introducing scaling factors to convert from impressions to clicks).

Guaranteed ads are purchased by advertisers from publishers in advance, and involve a promise to deliver a

given number of impressions over a particular time window; see Bharadwaj et al. (2010, 2012), Chen et al.

(2012), Turner et al. (2011), Turner (2012), Hojjat et al. (2017). In contrast, non-guaranteed ads are more

opportunistic, and can use complex strategies to decide if, when, where, and to whom they are shown; see

Muthukrishnan (2009), Chakraborty (2010), Dütting et al. (2011), Yuan et al. (2013), Balseiro et al. (2015a),

Golrezaei et al. (2017). Many publishers manage both guaranteed and non-guaranteed ads, and researchers have

studied how to optimally apportion exposures across these two main channels; see Araman and Popescu (2010),

Chen (2013), Balseiro et al. (2014). We focus on guaranteed ads because they are commonly used for branding

initiatives where spreading impressions across audience segments and time are important, and because in this

context it is natural for publishers to use math programs to explicitly allocate a number of impressions of each

audience segment to each advertiser. Nevertheless, it is worth pointing out that although non-guaranteed ads lack

explicit impression goals and are typically allocated via real-time auctions, advertisers increasingly enlist the

help of intermediaries to manage their bidding strategies (Balseiro et al. 2015b, Allouah et al. 2017), and some

of these intermediaries use mathematical programming techniques to manage their clients’ (the advertisers’)

budgets over time. Thus, Gini-based metrics could be used to serve non-guaranteed ads as well.

Multiple papers have studied the operational question of how to generate well-spread ad allocation plans for

multiple advertisers. In one research stream, the focus is on producing so-called representative allocations, i.e.,

the goal is to spread each advertiser’s impressions across targeted audience segments such that all opportunities

for the advertiser’s ad to be displayed have the same probability of showing the ad. This is the strategy used

by major websites historically (c.f., McAfee et al. 2013), and provides quality impressions to advertisers who
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implicitly want a broad swath of their targeted audience, otherwise they would have chosen narrower targeting

criteria. That is, if an advertiser asks for his ad to be shown nationwide across the U.S.A., he would not be happy

to get all his impressions from women in Florida. Receiving a narrower level of targeting than requested could be

undesirable by the advertiser, for at least three reasons. First, the advertiser may have stocked product in stores

across the country; in this case, limiting ads to one state has high mismatch costs and is operationally ineffective.

Second, the advertiser may worry that the publisher could choose to satisfy its campaign in the cheapest way

possible, i.e., by showing its ad to the least-sought-after (thus cheapest) subset of American women; in this

case, the advertiser’s request to evenly-spread impressions over its full target audience keeps any potentially

misaligned publisher incentives in check. Finally, when traffic is stochastic and the allocation plan is used to serve

impressions over a single period without re-solving the plan, Turner (2012) showed that representative solutions

can minimize the variance of the number of impressions delivered while maximizing the number of unique

individuals that see the advertiser’s ad.1 Note that while representative allocations spread impressions within a

target market chosen by the advertiser, this is very different from mass marketing, which does not restrict ads

to targeted audience segments. As well, representative allocations do not give each audience segment the same

number of impressions; rather, larger segments are awarded proportionally more impressions than smaller ones.

In general, the conflicting impression demands of advertisers make achieving perfectly-representative solu-

tions nearly impossible. In practice, maximally representative solutions are typically produced by minimizing a

quadratic function that penalizes the L2-distance from the perfectly-representative solution, while satisfying sup-

ply constraints. In this line of research, Yang et al. (2010) propose a multi-objective goal programming model to

incorporate guaranteed and non-guaranteed campaign contracts into the same planning problem. Bharadwaj et al.

(2012) consider only guaranteed campaigns, but develop a fast scalable algorithm called SHALE which produces

well-spread impression allocations. Ghosh et al. (2009) show how representative impression allocations can

be purchased for guaranteed campaigns by randomly bidding for supply in the spot market of non-guaranteed

impressions. Finally, McAfee et al. (2013) provide results which cross-cut these papers, and additionally con-

sider minimizing an objective based on Kullback-Leibler divergence rather than L2-distance. Like these papers,

we focus on spreading impressions across audience segments. However, our Gini-based approach is fundamen-

tally different and provides an intuitive and appealing graphical representation of spread (i.e., Lorenz curves), as

well as a model which satisfies important properties, and a tailored efficient algorithm that exploits Gini structure.
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2.2. Economics Background

The Gini coefficient (Gini 1912) and Lorenz curve (Lorenz 1905) are commonly-used in economics to measure

the dispersion of an endowment of resources; for example, to measure income inequality (see, e.g., Atkinson

1975, Campano and Salvatore 2006). While the Lorenz curve provides in some sense a distribution of the

endowment of resources, the Gini coefficient is a summary statistic that summarizes the shape of the Lorenz

curve and ranges from 0 (complete equality) to 1 (complete inequality).

Given an n-dimensional endowment vector x that describes an assignment of resources to individuals i =

1, . . . , n, the Gini coefficient is computed by taking the average absolute difference of the endowments across all

pairs of individuals, and normalizing by twice the mean endowment. That is, the Gini coefficient is defined as:

G=

n∑
i=1

n∑
j=1

|xi−xj|

2n2µ
, (1)

where µ= 1
n

∑n

i=1 xi is the mean endowment.

The Gini Mean Difference (GMD) is a closely-related measure of dispersion defined as the average absolute

difference in endowments across all pairs of individuals, and is written (Yitzhaki 1982) as:

GMD=
1

n2

n∑
i=1

n∑
j=1

|xi−xj| =
2

n2

n−1∑
i=1

n∑
j=i+1

|xi−xj| = 2µG. (2)

The above definition (2) highlights that Gini’s Mean Difference is dependent on the spread of the values of the

variable of interest, but not on deviations from some central value (e.g., the mean). Note that there are other

variants of GMD; for these, we refer the reader to an extended review (Yitzhaki and Schechtman 2013) that

discusses how to compute GMD under different assumptions (e.g., non-negativity of the variables of interest).

The Gini coefficient has been used in various fields and for multiple purposes, including to measure income

distribution (Campano and Salvatore 2006), asset allocation and investment (Ogryczak and Ruszczyński 2002a,

Shalit and Yitzhaki 1984, 2005), service equity (Drezner et al. 2009), and health inequality measurement (Lai

et al. 2008), to name a few. The Gini measure and its derivatives, such as the Gini Mean Difference (GMD) risk

measure (Shalit and Yitzhaki 2005, Yitzhaki 1982), have appealing features. The GMD metric is a coherent risk

measure and is consistent with utility maximization theory and provides necessary conditions for second degree

stochastic dominance (Ogryczak and Ruszczyński 2002a). Gini measures do not require the utility function to

be quadratic or the distribution of the uncertain variables to be normally distributed. The GMD measure has also

been extended to include decision-makers’ preferences toward risk (Ogryczak and Ruszczyński 1999, 2002a)–

see, for example, the use of the extended Gini (Yitzhaki 1983) as a measure of risk in the Mean-Extended

Gini model (Shalit and Yitzhaki 1984, Yitzhaki and Schechtman 2013). As indicated in the above literature
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review, Gini-based metrics are usually used in finance to model risk and analyzed with respect to risk axioms

and properties. The motivation for using Gini metrics in this paper is quite different, as the primary objective

is to provide spreading and diversification in the display of online advertising and the properties that it should

exhibit and that are used to analyze its suitability are thus different (see Table 1 in Section 4 for a summary).

We now illustrate the connection between Lorenz curve and Gini coefficient, and their practical interpreta-

tions. A Lorenz curve of a country’s income distribution can be produced by sorting the citizens from poorest

to richest, computing the cumulative income of the n-poorest citizens, and finally normalizing both the popula-

tion on the x-axis and the total accumulated income from all citizens on the y-axis to 1. Such a Lorenz curve

plots the cumulative percentage share of income recipients, ranked from poorest to richest, against the cumula-

tive percentage share of total income. In an online advertising context, we are interested in the distribution of

the number of impressions that an ad campaign gets from each audience segment that it targets (i.e., desires).

Consequently, a Lorenz curve can be used to plot the cumulative percentage share of the desired impressions,

ranked from least-allocated to most-allocated, against the cumulative percentage share of allocated impressions.

More specifically, this Lorenz curve is produced by sorting the targeted audience segments from least-allocated

to most-allocated, computing the cumulative allocation of the n-least-allocated targeted impressions, and finally

normalizing both the targeted impression supply on the x-axis and total impression allocation on the y-axis to 1.

Figure 1 depicts two Lorenz curves for two distinct impression allocations. The blue curve represents a well-

spread (i.e., low inequality) allocation where 36% of the impressions allocated to this ad campaign are assigned

to the least-allocated 50% of the targeted impression supply. Meanwhile, the red curve represents a poorly-spread

(i.e., high inequality) allocation where only 17% of the impressions allocated to this ad campaign are assigned

to the least-allocated 50% of the targeted impression supply. The straight dotted diagonal line represents perfect

equality (i.e., a perfectly-spread allocation), and the farther a Lorenz curve is below the line of perfect equal-

ity, the more unequal is the corresponding impression distribution. Formally, the Gini coefficient of a Lorenz

curve measures the extent of this inequality, and is computed by taking the area between the line of equal dis-

tribution and the Lorenz curve, and dividing it by the entire area below the line of equal distribution. In our

example, the blue curve has a Gini coefficient of 0.20=A/(A+B+C), and the red curve has a Gini coefficient of

0.50=(A+B)/(A+B+C).

For more context, assume a campaign targets only 3 audience segments, e.g., Washington, Nevada, and Ore-

gon, and receives 19%, 30%, and 40% of the corresponding impression traffic of 5M, 3M, and 2M, yielding

0.95M, 0.9M, and 0.8M allocated impressions, respectively. Although normalized, the x-axis represents the 10M

impressions this campaign targets (i.e., desires). With audience segments sorted from least-to-most allocated,
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the cumulative share of desired impressions on the x-axis corresponds to Washington between 0% and 50%,

to Nevada between 50% and 80%, and to Oregon between 80% and 100%. Moreover, of the 2.65M impres-

sions allocated, 36% come from Washington, and 70% come from Washington and Nevada. Hence, the resulting

Lorenz curve is similar to the blue one in Figure 1 in that it also passes through (0.5,0.36) and (0.8,0.7). How-

ever, since in this case there are only three audience segments, it would be piecewise-linear with three segments.
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Figure 1 Lorenz curve.

A Lorenz curve provides both an order-independent and a scaling-independent graphical representation of

an advertising plan’s spread, and is superior to a bar graph for these two reasons. Indeed, bar graphs can look

different depending on how audience segments, which typically have no natural ordering (e.g., demographic

groups or geographic regions), are arbitrarily ordered. Moreover, audience segments can represent different-sized

groups in a population, and a bar graph which plots total impressions allocated does not properly normalize for

heterogeneity in audience segment sizes. For details, see Figure EC.1 and associated description in Appendix B.1.

A Lorenz curve also provides a systematic way to graphically compare impression spread across different

dimensions and campaigns. We envision that a publisher managing multiple advertisers’ campaigns would pro-

duce a report like Figure 2, where each row depicts how well impressions have been spread for each advertiser,

and each column depicts how well impressions have been spread across various orthogonal dimensions such

as demographic, geography, and time. Each advertiser would be able to view only the rows corresponding to
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their own campaigns, while the publisher would be able to view all rows to troubleshoot and view allocations

across campaigns. Since Lorenz curves are by definition suitably normalized with both axes ranging from 0 to

1, an advertiser can quickly and easily see which dimension (e.g., demographic, geographic, time) is the best or

worst-spread, and compare the relative amount of spreading across these dimensions. As well, the publisher can

also compare the quality of the spread across advertisers for the same or across different spread dimensions.
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Figure 2 Impression spread by demographic, time, and geography, visually represented using Lorenz curves.

Our Gini-based model provides solutions with optimized Lorenz curves, in the sense that the Gini coefficients,

i.e., the areas above the Lorenz curves, are minimized.

3. Model

We begin by stating the most popular model in the literature for spreading impressions across targeted audience

segments in a single-period context. This model, which we use as our baseline for comparison, was developed

at Yahoo and is described in the stream of literature by Ghosh et al. (2009), Yang et al. (2010), Bharadwaj

et al. (2012), and McAfee et al. (2013). The primary objective in this model is to spread impressions as evenly

as possible across targeted audience segments, to the extent that supply allows. After introducing this baseline

model, we derive an appropriate Gini metric and a related Gini-based model.
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3.1. Baseline Model

The baseline model (c.f., Bharadwaj et al. 2012) can be represented by a bipartite graph with supply nodes on

one side representing audience segments, and demand nodes on the other representing ad campaigns (see Fig-

ure 3). Note that an audience segment can be defined in a way that it subsumes the demographic and geography

dimensions (e.g., 35-45 years old in Florida) mentioned earlier and depicted in Figure 2. For clarity of presenta-

tion, we do not explicitly model the time dimension in the body of this paper; however, we provide an extensive

formal treatment of the multi-period extension of our Gini model in Appendix E.
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Figure 3 Bipartite graph.

Supply node i is connected to demand node j with an edge (i, j) whenever audience segment i is targeted

(desired, or eligible for display) by campaign j. We denote the full set of edges as Γ, the set of audience segments

targeted by campaign j as Γ(j), and the set of campaigns that target audience segment i as Γ(i). The impression

goal (demand) of campaign j is denoted dj , and the number of impressions generated (supply) from audience

segment i is denoted si. Both demand and supply are assumed to be deterministic. The principal decision vari-

ables are denoted xij , and measure the proportion of audience segment i that is assigned to campaign j. Demand

shortfalls are possible if there is insufficient supply to meet all campaigns’ impression demands. We use yj to

measure the planned demand shortfall for campaign j, and penalize shortfalls in the objective function. The con-

stant pj is the penalty incurred per unit of shortfall, and in practice is either equal to the price per impression paid

by the advertiser (i.e., a full refund is given for any impressions not delivered as planned), or slightly larger (i.e.,

to additionally compensate the advertiser for the loss of goodwill). This single-period baseline model, which we
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will refer to as (SB), is formulated2 as follows (Table EC.1 in the Appendix provides a reference to the notation):

(SB) min
∑

(i,j)∈Γ

Vj
2θj

si(xij − θj)2 +
∑
j∈J

pjyj (3a)

s.t.
∑
i∈Γ(j)

sixij + yj = dj ∀j ∈ J (demand) (3b)∑
j∈Γ(i)

xij ≤ 1 ∀i∈ I (supply) (3c)

xij, yj ≥ 0 ∀(i, j)∈ Γ (non-negativity) (3d)

The objective function has two terms. The first term is the so-called non-representativeness term, which min-

imizes the L2 distance from the perfectly representative solution in which each campaign receives an equal

proportion of each targeted audience segment. The second term minimizes the cost of demand shortfalls. The

parameter Vj > 0 allows the modeler to apply more or less weight to the quadratic terms, to control how much

effort is placed on spreading relative to attaining low demand shortfalls.

In the special case where supply exceeds demand causing the supply constraints to be nonbinding, the perfectly

representative solution can be obtained by solving (SB). Given ŝj =
∑

i∈Γ(j) si as the number of impressions

eligible for campaign j, and the demand intensity θj = dj/ŝj , it is easy to show that the perfectly representa-

tive solution assigns campaign j a θj-proportion of the impressions from each audience segment i ∈ Γ(j) that

campaign j targets. In general, of course, supply constraints may bind, and the objective of (SB) finds a maxi-

mally representative allocation which is as close as possible to the perfectly representative allocation (for further

details, see either Ghosh et al. (2009) or McAfee et al. (2013)).

Note that the decision variables xij are expressed as proportions, rather than absolute impressions. This is

convenient, as it provides a natural way to operationalize the solution to this allocation plan within a real-time

ad-serving system. When a user from audience segment i arrives (i.e., views a webpage that requires an ad to

be chosen), we can assign this user ad j with probability xij . This equivalence between a proportional allocation

and a probabilistic assignment is common in the advertising allocation literature3.

3.2. Gini-Based Model

3.2.1. Gini-Based Metric. We now derive a Gini-based metric to measure, for each campaign j, how well-

spread impressions are allocated across the audience segments i ∈ Γ(j) that campaign j targets. For notational

convenience, we order the audience segments and define Γ0(j) = {(h, i) ∈ Γ(j)2 : h < i}, which indexes all

distinct audience segment pairs targeted by campaign j. Recall from (2) that to compute the GMD of endowments

across individuals, we take the average absolute difference in endowments across all pairs of individuals. In
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our context, audience segments take the place of individuals, and for each campaign j we have an endowment

vector made up of the proportions xij of each audience segment i∈ Γ(j) targeted by campaign j. Consequently,

we define the GMD for campaign j as the average absolute difference in proportional impression endowments

across all pairs of audience segments, with the added twist that since audience segments differ in their size si,

some additional audience-size factors enter into the expression. Formally, the GMD of a campaign is generalized

from (2) as:

GMDj =
2

ŝ2
j

∑
(h,i)∈Γ0(j)

shsi|xhj −xij|. (4)

The shsi factor enters into this expression since the number of ways we can pick a pair of impressions such that

one is from audience segment h and the other is from audience segment i is precisely sh times si. Note that one

can also derive the above expression by directly computing the average absolute difference in endowments across

the individual impressions which comprise the mutually exclusive audience segments, and then aggregating the

impression-level quantities into audience segment sizes si and ŝj (see Appendix A.3 for details).

Next, we define wj =
∑

i∈Γ(j) sixij as the total number of impressions planned for campaign j, and µj =

wj/ŝj as the ratio of the number of impressions allocated for campaign j to the number of impressions targeted

by campaign j. Note that µj corresponds to the mean endowment for campaign j, and generalizes the unweighted

average of (1) to a weighted average of endowments xij , where again the weights are the sizes si of the targeted

audience segments.

Finally, following (2) the Gini coefficient for campaign j, which measures how well-spread impressions of

campaign j are across the audience segments campaign j targets, is:

Gj =
GMDj

2µj
=
ŝjGMDj

2wj
=

(
1

ŝj

) ∑
(h,i)∈Γ0(j)

shsi|xhj −xij|∑
i∈Γ(j)

sixij
. (5)

3.2.2. Gini-Based Model. Given the scalar α> 0, we propose the objective function

min α
∑
j∈J

wjGj +
∑
j∈J

pjyj, (6)

which has the nice property to be linear in GMD, since wjGj =
ŝjGMDj

2
. Moreover, GMDj as defined by (4)

can be linearized in terms of the xij variables by introducing auxiliary variables x+
hij for all (h, i) ∈ Γ0(j), and

simplifying GMDj to:

GMDj =
2

ŝ2
j

∑
(h,i)∈Γ0(j)

shsix
+
hij, (7)

where we introduce the constraints:

x+
hij ≥ xhj −xij ∀j ∈ J, ∀(h, i)∈ Γ0(j) (8a)
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x+
hij ≥ xij −xhj ∀j ∈ J, ∀(h, i)∈ Γ0(j) (8b)

to model the absolute value terms that were present in the original definition of GMD.

Making the substitution wjGj =
ŝjGMDj

2
in (6) yields the following Gini-based formulation:

(SG) min α
∑
j∈J

1

ŝj

∑
(h,i)∈Γ0(j)

shsix
+
hij +

∑
j∈J

pjyj (9)

s.t. (3b), (3c), (3d), (8a), (8b).

This is a linear program, which can be solved directly by a linear programming solver. However, the linearization

step introduces many auxiliary variables and constraints. Later, in §6, we develop a decomposition method that

sidesteps this large set of auxiliary variables and constraints while simultaneously illuminating problem structure.

There are two typical use cases for such a deterministic optimization model, which assumes point forecasts of

impression supply are readily available. The first helps managers decide which contracts to accept and which to

reject, and to perform what-if analysis while measuring the displacement effects of accepting particular contracts.

The second deploys the model within a rolling-horizon decision-support system which re-optimizes periodically

and provides guidance to a real-time ad-serving system that selects which ad to show to each viewer. A number of

papers have discussed how deterministic planning models such as ours can be operationalized when ad requests

arrive stochastically over a fixed time horizon (Chen et al. 2012, Yang et al. 2010, Turner et al. 2011, Hojjat

et al. 2017). Our primary focus in this paper is to define the key properties that we believe a Gini-based model

for online advertising should satisfy, understand the structure of the solutions that the Gini model produces, and

introduce a novel decomposition method for solving our Gini-based optimization problem.

It is worth pointing out that our Gini model is quite different than Gini portfolio optimization models used

in finance, despite the fact that both encourage allocations to be spread across numerous buckets. First, because

Gini portfolio optimization models are typically used by one investor at a time, the corresponding bipartite

graph (c.f., Figure 3) has only one demand node, in contrast to the multiple demand nodes (one per advertiser)

that we have. Second, all Gini-based financial models we are aware of implicitly assume assets are liquid and

consequently supply constraints may be ignored; however, in our context audience segments are commonly

modeled as scarce resources, and indeed supplies of popular audience segments can be binding in practice, which

presents additional challenges. Third, the form of the Gini metrics differ. Whereas Gini-based financial models

promote stability and smoothness of portfolio returns under any foreseeable scenario, our advertising-related

Gini metrics are not scenario-based and instead focus on diversification of allocation across audience segments.

Finally, our Gini metrics incorporate particular weights which explicitly account for heterogeneity in the sizes of
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audience segments and the volume of ad campaigns, both of which are specific to online advertising. For these

reasons, ours is also a substantially more challenging problem to solve computationally.

3.3. Model Comparison

Both the baseline and Gini models have objectives that induce good spreading, yet are different. To understand

the structural similarities between these objectives, we can focus on a single campaign’s spread term and compare

the interpretations of their functional forms. To derive our first comparison, we begin by defining a random

variable to capture the variation in campaign j’s allocation; specifically, let Xj = xij with probability si/ŝj for

all i ∈ Γ(j). Here, Xj selects a targeted audience segment at random, proportional to the size of each audience

segment, and returns the allocation xij of the chosen audience segment. We can compute the variance of Xj

as Var(Xj) = (1/ŝj)
∑

i∈Γ(j) si(xij − µj)2, which is very similar to the spread terms in the baseline objective.

Indeed, ignoring campaign-specific weighting factors, the baseline objective’s spread terms can be written as

(1/ŝj)
∑

i∈Γ(j) si(xij − θj)2. The interpretation is when there is no shortfall (wj = dj), the baseline objective’s

spread terms are essentially variance terms; this follows since no shortfall implies θj = dj/ŝj =wj/ŝj = µj .

To compare this to the spread term in our Gini objective, we need to also consider a second random vari-

able X̃j , defined exactly the same way as Xj , so that Xj and X̃j represent two independent draws from the

same distribution. Yitzhaki (2003) defines the GMD of a random variable as the expectation of the absolute

difference of two i.i.d. such random variables, i.e., GMD(Xj) = E[|Xj − X̃j|]. It is straightforward to show

that GMD(Xj) = GMDj , where GMDj is the GMD measure we defined in (4). Ignoring campaign-specific

weighting factors, this is exactly the spread term in our Gini objective. Finally, it is interesting to note (c.f.,

Yitzhaki 2003) that the variance of a random variable can also be written as the expectation of the squared

difference of two i.i.d. random draws from that random variable’s distribution; therefore, the baseline objective’s

spread terms (when there is no shortfall) can be expressed as Var(Xj) = (1/2)E[(Xj − X̃j)
2], which is similar

in spirit to our Gini objective’s spread terms, GMDj =E[|Xj − X̃j|].

In some contexts, it is helpful to express the deviations from the mean allocation as residuals, defined for each

(i, j) pair as rij = xij−µj . Moreover, if we define a randomly-chosen residual for campaign j as Rj =Xj−µj ,

then it is straightforward to show that Var(Rj) = Var(Xj) and GMD(Rj) = GMD(Xj). Consequently, we may

also think of the baseline objective (in the case of no shortfall) as a sum of squared residuals, (1/ŝj)
∑

i∈Γ(j) sir
2
ij ,

and the Gini objective as a GMD of residuals, GMDj = 2
ŝ2j

∑
(h,i)∈Γ0(j)

shsi|rhj − rij|. Stated another way, the

baseline objective’s spread terms (when there is no shortfall) have the form Var(Rj) = (1/2)E[(Rj − R̃j)2],

which is similar in spirit to our Gini objective’s spread terms, GMDj = E[|Rj − R̃j|]. This connection to



14 Lejeune and Turner: Planning Online Advertising Using Gini Indices

residuals is important for two reasons. First, in Section 5 we will empirically compare solutions from the baseline

and Gini models by plotting their corresponding residual distributions. Second, this observation connects our

Gini model to the existing literature on R-regression. Developed by Hettmansperger (1984) and mentioned

in Yitzhaki and Schechtman (2013), R-regression is used to solve robust parameter estimation problems by

minimizing the GMD of residuals in a similar spirit to how an ordinary linear regression model is estimated by

minimizing squared residuals. Although there are some structural differences between an R-regression model

and our Gini model, one could view our model as a special case of an R-regression model which additionally has

supply and demand constraints, and treats xij’s as variables rather than input data. Finally, it may also be worth

pointing out that there is a link between the Gini measure and L-moments (see, e.g., Hosking 1990), which are

specific linear combinations of order statistics. In particular, the second-order L-moment, also called the sample

L-scale, is defined as half of Gini’s mean difference. Further examination of these connections is beyond the

scope of this paper, and are left to future research.

4. Model Properties

In this section, we introduce five key properties which we believe an online advertising optimization model that

balances shortfalls with spreading should possess, and show when and how the baseline (SB) and Gini (SG)

models satisfy these properties. Table 1 summarizes our results, which we demonstrate in the remainder of this

section. Three of these properties are shared among both the baseline and Gini model; this is to be expected,

since the baseline model was developed with some of these properties in mind (c.f., Bharadwaj et al. 2012,

McAfee et al. 2013 in particular). This section verifies that our Gini model also satisfies these properties, and

shows that our model additionally satisfies two more.

Property Baseline Model Gini Model
1 - Efficient Solvability Yes Yes (via algorithm of §6)

2 - Ideal Allocation when Possible No Yes, when pj = p ∀ j ∈ J
3 - Sufficient Orthogonality No Yes

4 - Split-and-Merge Invariance Yes, as long as Vj’s are cho-
sen independently of dj’s

Yes, always

5 - Weight by Campaign Size
Yes, size is impressions
demanded (dj)

Yes, size is impressions
allocated (wj)

Table 1 Summary of Key Properties

Property 1 The optimization model should be efficiently solvable.
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The baseline model (SB) is a (convex) quadratic program, and our Gini model (SG) can be formulated as a

linear program, albeit with a large number of variables and constraints. Consequently, both the baseline and Gini

models are efficiently solvable, and in particular for the Gini model we develop a specialized solution method in

§6 to intelligently sidestep the large number of variables and constraints.

Property 2 When possible, the optimal solution should be an ideal allocation, which we define as an allocation

that (i) provides perfect spreading, and (ii) all impression shortfall is unavoidable.

We formally define perfect spreading and unavoidable impression shortfall below. Intuitively, if an ideal

allocation is feasible, it is clear that we cannot improve either spread or impression shortfall, which are the two

objectives of (SB) and (SG).

DEFINITION 1. Perfect Spreading. A solution x = {xij ∀(i, j) ∈ Γ} is perfectly spread if for each campaign

j ∈ J , the proportional allocations of each targeted audience segment are equal, i.e., xij = xj for all i∈ Γ(j).

DEFINITION 2. Unavoidable Impression Shortfall. Without loss of generality, let I =
⋃
j∈J

Γ(j) be the set of

audience segments targeted by at least one campaign (audience segments not targeted by any campaign can be

safely deleted). The unavoidable impression shortfall is the constant

Y =

[∑
j∈J

dj −
∑
i∈I

si

]+

, (10)

which is the positive part of the difference between the total demand and total supply of impressions.

The following proposition provides us with a sufficient condition for the existence of an ideal allocation.

PROPOSITION 1. If the system of linear inequalities∑
i∈Γ(j)

sixj + yj = dj ∀j ∈ J (link shortfall to allocation) (11a)∑
j∈J

yj = Y (all shortfalls are unavoidable) (11b)∑
j∈Γ(j)

xj ≤ 1 ∀j ∈ J (supply constraints) (11c)

yj, xj ≥ 0 ∀j ∈ J (non-negativity) (11d)

admits a feasible solution, then x is an ideal allocation.

Proposition 1 ensures perfect spreading by using only one allocation variable xj per campaign j, which we

can expand to a full solution to (SB) or (SG) by taking xij = xj for all (i, j) ∈ Γ. Constraint (11a) defines the

impression shortfalls yj , j ∈ J , while Constraint (11b), along with the non-negativity of yj in Constraint (11d),

ensures shortfall is at its minimum, i.e., equal to the level of unavoidable shortfall Y .
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PROPOSITION 2. Let pj = p, j ∈ J . If the system (11a)-(11d) is feasible,

1. The optimal solution of the Gini model (SG) is always an ideal allocation. This statement is valid regardless

of the emphasis placed on spreading determined by the parameter α> 0.

2. There is no guarantee that the optimal solution of the baseline model (SB) is an ideal allocation.

See Appendix A.4 for the proof. We illustrate the above property using the following toy problem with three

audience segments I = {1,2,3} and four ad campaigns J = {A,B,C,D}, in which dA = 20, dB = 400, dC =

200, dD = 350, s1 = s2 = 200, s3 = 300, pA = pB = pC = pD = 0.01, VA = VB = VC = VD = 1, Γ(A) = Γ(B) =

{1,2,3}, Γ(C) = {1,2}, and Γ(D) = {3}. Unavoidable shortfall Y is equal to 270. The optimal solution of

the Gini model provides perfect spreading (x1A = x2A = x3A = 0.0079, x1B = x2B = x3B = 0.5554, x1C =

x2C = 0.4367, and x3D = 0.4367) with minimal shortfall of 270 units (yA = 14.45, yB = 11.25, yC = 25.31, and

yD = 218.98). While the baseline model’s optimal solution also provides minimal shortfall (yA = 4.76, yB =

95.17, yC = 18.18, and yD = 151.89), it does not provide perfect spreading (x1A = x2A = 0.0260, x3A =

0.0162, x1B = x2B = 0.5195, x3B = 0.3235, x1C = x2C = 0.4545, and x3D = 0.6604).

Property 3 The measures of spread and shortfall should be sufficiently orthogonal (defined formally below).

Intuitively, this property says that the two objectives that we minimize, the cost of (poor) spreading and the

cost of impression shortfall, should be independent; or, if a dependency exists, this dependency should not run in

the “wrong” direction. More specifically, if we start from a feasible solution and seek one with better spread, it

is natural to expect that we may need to give up some revenue (i.e., incur additional shortfall). Conversely, if we

start from a feasible solution and move to a lower-revenue (i.e., higher shortfall) solution, we would not expect

spread to worsen. Although the interplay between spread and shortfall can be quite complex in a constrained

optimization problem such as this, we can nevertheless prefer what we call sufficiently orthogonal measures, i.e.,

for each campaign, the spread cost should not increase when we increase shortfall cost.

Formally, let xj = {xij}i∈Γ(j) denote campaign j’s allocation vector. Then the baseline (3a) and Gini (6) objec-

tives, which minimize the cost of (poor) spreading plus the cost of shortfalls can be written in the general form∑
j∈J

(
fSPREADj (xj) + fSHORTFALLj (xj)

)
. In particular, fSPREADj (xj) =

∑
i∈Γ(j)

Vj
2θj
si(xij−θj)2 for the base-

line objective, fSPREADj (xj) = αwjGj for the Gini objective, and fSHORTFALLj (xj) = pjyj for both. Recall that

wj , Gj , and yj are all functions of xj, since wj =
∑

i∈Γ(j) sixij; yj = dj −wj; and Gj is defined by (5). Finally,

define fSPREAD∗j (c) =
{

minxj
fSPREADj (xj) : fSHORTFALLj (xj) = c

}
as the minimum spread cost achievable

when the shortfall cost is exactly c.
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DEFINITION 3. Sufficiently Orthogonal. We say that spread measure fSPREADj (xj) is sufficiently orthogonal

to shortfall measure fSHORTFALLj (xj) if fSPREAD∗j (c) is nonincreasing in c for all c > 0.

PROPOSITION 3. The Gini objective (6) has sufficiently orthogonal spread and shortfall measures, while the

baseline objective (3a) does not.

See Appendix A.5 for the proof, which shows that the Gini objective has fSPREAD∗j (c) = 0 for all c≥ 0, while

the baseline objective has fSPREAD∗j (c) strictly increasing in c for all c > 0.

We illustrate the importance of the sufficient orthogonality property with the following example, which has

three audience segments I = {1,2,3} and two ad campaigns J = {A,B}, such that dA = 13000, dB = 6000,

s1 = 1000, s2 = 60000, s3 = 15000, pA = pB = 0.1, VA = VB = 1, Γ(A) = {1,2,3}, and Γ(B) = {1,2}. There

is no unavoidable shortfall (Y = 0). We observe the following with the:

• Gini model. If we prioritize minimizing shortfall by setting the parameter α to a low value (i.e., < 0.1), the

optimal solution has no shortfall, provides perfect spreading for campaign 2 (xB1 = xB2 = 0.857), and imperfect

spreading for campaign 3 (xA1 = xA2 = 0.143, xA3 = 0.8). On the other hand, if we give higher priority to

spreading by setting α≥ 0.1, the optimal solution has 3136 units of shortfall exclusively supported by campaign

2 and provides perfect spreading for both campaigns (xB1 = xB2 = 0.409 and xA1 = xA2 = xA3 = 0.591).

• Baseline model. If we prioritize minimizing shortfall by setting all Vj parameters to a low value (in this

case, any value between 0 and 0.0895) the optimal solution of the baseline model has no shortfall, provides

perfect spreading for campaign 2 (xB1 = xB2 = 0.857), and imperfect spreading for campaign 3 (xA1 = xA2 =

0.143, xA3 = 0.8). However, if we increase the importance of spreading by setting Vj ≥ 0.09, j ∈ J , the optimal

solution of the baseline model involves some shortfall whose magnitude increases as the value of Vj increases.

Increasing the Vj parameters beyond 50 has minimal effect; i.e., spreading no longer improves and shortfall does

not increase much either (shortfall stays between 2131 and 2132 for values of Vj between 50 and 100000). The

baseline model does not produce a perfectly-spread solution.

The inability of the baseline model to produce a perfectly-spread solution despite a high importance placed

on spreading is due to the fact that the baseline objective is not sufficiently orthogonal. Because the baseline

objective’s spread term minimizes a distance from the nominal solution θj , j ∈ J , it not only strives to achieve

good spread but also serves to minimize shortfall. Consequently, the baseline objective is limited in its ability

to trade revenue (i.e., incur shortfall) to get better spread. On the other hand, our Gini objective is sufficiently

orthogonal. Each demanded impression is either allocated, or not. If allocated, an impression incurs the servicing

cost αGj , and if not it incurs the shortfall cost pj . Such a cost breakdown is not possible for the baseline objective.



18 Lejeune and Turner: Planning Online Advertising Using Gini Indices

Property 4 The objective function value should be invariant to campaigns being arbitrarily split or merged.

This property says that if we take two campaigns with the same targeting and merge them together (adding

together their demands), that the objective value does not change. Similarly, if we take a campaign and split it

into two campaigns so that each have the same targeting and the total demand remains the same as before the

split, then the objective value does not change. This property is important for several reasons. First, it ensures

that campaigns do not get better or worse service (i.e., quality of spread) simply because they have large or small

demands. Second, it eliminates the perverse incentive that advertisers may have to book many small campaigns

instead of one large one. Indeed, if advertisers could increase their contribution to the objective function and

therefore get better spread by splitting a large campaign into many small ones, they would be tempted to do

that. Clearly, this behavior is not only unfair to advertisers who do not game the system, it also places a burden

on the publisher who would end up managing many small campaigns instead of a few large ones. Third, for

computational tractability, a publisher may wish to merge all campaigns that share the same targeting together as

a pre-processing step before optimizing its ad allocation (undoing this aggregation after solving the optimization

problem). But, if the objective is not invariant to arbitrary merges, some campaigns will inadvertently contribute

more or less to the objective as a result. For these reasons, it is important for the objective function to be invari-

ant to arbitrary splits and merges. Formally, we define an arbitrary split as follows (an arbitrary merge of two

campaigns sharing the same targeting is the reverse operation):

DEFINITION 4. Arbitrary Split. Given a campaign C, we say that C is arbitrarily split into the two smaller

campaigns A and B if (i) campaign C is replaced by campaigns A and B; (ii) campaigns A and B inherit

campaign C’s targeting, i.e., Γ(A) = Γ(B) = Γ(C); and (iii) the sum of the demands from campaigns A and B

equal the demand of campaign C, i.e., dC = dA + dB .

PROPOSITION 4. (1) If the parameters Vj in the baseline objective are chosen independently of campaign

demands dj , then the baseline model’s optimal solution is not affected by arbitrary campaign splits or merges.

(2) Our Gini model’s optimal solution is not affected by arbitrary campaign splits or merges.

The proof of Proposition 4, provided in Appendix A.6, is constructive. For the Gini model, it shows that when

campaign C is arbitrarily split into campaigns A and B, we always have GMDC = GMDA +GMDB , and

consequently wCGC =wAGA +wBGB . The situation is not as straightforward for the baseline model. Indeed,

McAfee et al. (2013), who identified the importance of making the objective invariant to arbitrary splits and

merges, showed that the coefficients in the baseline objective must be carefully chosen for this invariance to

occur. Indeed, the campaign-specific scaling factor of 1/θj in the baseline objective (3a) is motivated by the
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desire to satisfy this invariance property. More specifically, in the spread term each campaign is scaled by the

constant Wj = Vj/(2θj), which can be written as Wj = Qj/dj with Qj = Vj ŝj/2. Our proof of Proposition 4

shows that so long as the Qj values are chosen independently of the demands dj , split-and-merge invariance

holds. The insight here is that, for the baseline model, the scaling factors Wj should be linear in 1/dj .

Property 5 Larger campaigns should be given proportionally larger weight than smaller campaigns.

Because our models minimize the sum total of spread and shortfall costs for multiple ad campaigns, and

because different campaigns have different sizes, it is desirable to weight each campaign by its size in the

objective, so that the needs of small campaigns do not disproportionately affect the quality of the solution for

large campaigns. Both the Gini and baseline objectives weight campaigns by their size, but use different metrics

for size. The Gini model considers impressions planned as the campaign size, whereas the baseline model counts

both planned and unplanned impressions (i.e., the total demand) in its measure of campaign size.

PROPOSITION 5. (1) Assuming Vj = 1 for all campaigns j ∈ J , the baseline objective weights campaigns by

their size (i.e., impressions demanded dj), and penalizes the average squared percentage deviation from the

target allocation (xij = θj ∀i∈ Γ(j)). (2) Our Gini objective weights campaigns by their size (i.e., impressions

allocated wj), and minimizes wjGj , i.e., a weight times the Gini coefficient for campaign j.

The proof of part 1 of the above proposition is in Appendix A.7 (this interpretation is not at all obvious from

looking at the baseline objective). Part 2 follows by definition of our Gini objective (6).

Alternative Models. When constructing a model, there are often many decisions to be made, and having

such a list of important properties directs this process and makes it less arbitrary. Indeed, ours is not the only

possible Gini model that one could propose; but, it is one that satisfies our five properties. While (SB) is the most

popular single-period spreading model in the literature, alternative baseline models could also be considered.

In Appendix B.2, we discuss several alternative spreading objectives, and show how seemingly small structural

modifications affect the ability of the corresponding model to satisfy the five key properties listed in Table 1.

5. Numerical Comparison

We now run some numerical experiments to compare the solutions of the baseline (SB) and Gini (SG) mod-

els. We focus on illustrating the impacts of Properties 2 and 3 (Ideal Allocation when Possible and Sufficient

Orthogonality), which are satisfied by the Gini model but not the baseline. Our principal goal is to understand

how the baseline and Gini model differ in the way that they trade off revenue (i.e., incur shortfall) to achieve

good spreading. We begin by illustrating the impact of Property 2, and show that instances which admit ideal
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solutions can produce poor solutions when using the baseline model. Next, we illustrate the impact of Property

3, which is applicable to all instances although its effect may not always be obvious due to the fact that we solve

constrained optimization problems which involve tradeoffs in multidimensional space (i.e., tradeoffs that involve

multiple campaigns, and for each a tradeoff between spread and shortfall). We have defined Property 3 in such

a way that the effect of a single campaign’s tradeoff between spread and shortfall can be isolated within this

multidimensional space. Finally, we plot residual distributions as a function of revenue to understand the full

impact of how each model trades off revenue (i.e., incurs shortfall) to achieve good spreading.

For all experiments in this section, we vary the magnitude of effort applied to spreading (the α parameter in

the Gini model, and ν in the expression Vj = ν for the baseline model), and compute optimal solutions for each

model at different levels of effort applied to spreading. When α and ν are both set to zero, the objective functions

of both models coincide, no effort is applied to spreading, and both models simply minimize impression shortfall.

At the other extreme, when α and ν are large, spread is maximized while little effort is applied to minimizing

shortfall. Since the two models define spread differently, their solutions differ most when α and ν are large.

However, even when α and ν are very small (e.g., set to ε= 10−6) the solutions to the two models, which are both

shortfall-minimizing, can be quite different. This is because there are typically many solutions with the same

shortfall, and each model optimizes its own spread function within the set of shortfall-minimizing solutions.

5.1. Data Instances

We generate three families of instances which correspond to the presence of different structures in the underlying

bipartite graph (c.f., Figure 3):

1. Loose instances have low sell-through (the ratio of aggregate demand to aggregate supply) and high tar-

geting percentage (the average proportion of viewer types targeted by a campaign, which corresponds to the link

density of the bipartite graph). Because loose instances have both a high volume of aggregate slack as well as

high link density, they commonly admit solutions that are both well-spread and low-shortfall.

2. Globally tight instances have high sell-through and high targeting percentage. Despite having little aggre-

gate slack, the high link density in this family of instances provides some flexibility with regard to how impres-

sions are distributed across audience segments.

3. Locally tight instances have high sell-through and low targeting percentage. The combination of a low

volume of aggregate slack with low link density makes this family of instances the most constrained.

We used the following scheme to generate 10 instances from each of the 3 families above, each having 20

campaigns and 100 viewer types. First, we randomly assign each campaign and each viewer type a link intensity,
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and with probability (campaign link intensity) × (viewer type link intensity), create a link between campaign

and viewer type in the underlying bipartite graph. Next, we randomly generate the supply for each viewer type

by multiplying 4 impressions per arrival by a random Normal(1000,10002) number of arrivals4, and merge

viewer types that target the same set of campaigns (summing together supplies). Finally, we generate demands by

constructing an allocation that is only used for this purpose. We begin with no impressions allocated, and produce

an allocation by sequentially allocating campaigns to the available supply. When the process is complete, we

consider the total number of impressions allocated to a campaign as its demand. More specifically, to construct

this allocation, we iterate through the list of campaigns, and for each campaign we attempt to book the same

proportion r of supply si from each viewer type i that it targets (we call r its “reservation proportion”). For some

viewer types, remaining supply may be less than rsi, and in those cases the campaign settles for less by booking

the remaining supply. Figure 4 lists the three families of test cases along with the uniform distributions used to

generate their link intensities and the reservation proportions used to generate their demands. These datasets may

be downloaded from the author’s website5.

Test Case
Family

Sell-
through

Targeting
%

Campaign
Link

Intensity

Viewer Type
Link

Intensity

Reservation
Proportion

Loose 71.4% 19.3% U[0.1, 0.4] U[0.5, 1] 20%
Globally Tight 94.6% 19.6% U[0.1, 0.4] U[0.5, 1] 48%
Locally Tight 90.7% 7.8% U[0.05, 0.2] U[0.25, 0.5] ∗

Figure 4 The three families of test cases, with average sell-through and targeting percentages. In cases marked ∗, reservation propor-
tions for each campaign were drawn from {80%, 90%, and 100%} with probabilities 0.6, 0.3, and 0.1, respectively.

In what follows, we illustrate concepts which broadly apply to all three families of test cases using instances

from a single representative family (usually, the family in which the concept is most clearly demonstrated). When

there are differences in the structure of the solutions across families, we also comment on these differences.

5.2. Perfect Spreading at the Cost of Avoidable Shortfall in the Baseline Model

Recall from Property 2 that while the Gini model produces an ideal allocation when one is feasible, the baseline

model may not. We now experimentally measure the extent to which the baseline model’s solution deviates from

the ideal allocation when one exists. For this purpose, we minimally modify the 10 globally tight instances so that

an ideal allocation is always feasible. We then solve each instance with the Gini model and record the amount

of unavoidable shortfall Y (recall from Proposition 2 that for any value of the spread importance parameter α,

the Gini model provides perfect spreading with minimal, i.e., unavoidable, shortfall). Next, we use the baseline
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model to solve each instance ten times with spread importance parameters Vj = ν ranging from 0.2 to 2 in

increments of 0.2 (larger ν means a higher importance is placed on spreading relative to shortfall minimization).

Over the 100 solutions we obtain from the baseline model, on average 21.2% of campaigns do not receive

perfect spreading across their targeted segments. Moreover, the baseline model provides perfect spreading with

all shortfall unavoidable in only 8 cases (4%) with low Vj values. For 96% of the cases, we may modify the

solution to obtain perfect spreading at the cost of incurring higher shortfall than necessary (i.e., higher than

Y , which the Gini model provides). Specifically, we additionally constrain the baseline model to produce only

perfectly-spread solutions and re-optimize each of the 100 cases, recording for each case the shortfall amount sB

and the relative magnitude of avoidable shortfall %S = (sB−Y )/Y (if all shortfall is unavoidable, then sB = Y

implies %S = 0).

Figure 5 displays the average, minimum, and maximum value of %S over the 10 instances for each of

the 10 values taken by the parameters Vj . The average magnitude of avoidable shortfall %S ranges from

10.01% (Vj = 0.2) to 48.07% (Vj = 2), and is equal to 35.59% over all 100 cases. The maximum magnitude

of avoidable shortfall over all 100 cases is 172.01%. Figure 5 shows that requiring perfect spreading with the

baseline model produces solutions with significantly larger shortfall than those obtained with the Gini model.
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Figure 5 Avoidable Shortfall with Perfectly-Spread Solution using Baseline Model. Note: Gini Model has %S = 0.

5.3. Characterizing the Tradeoff Between Revenue and Spread

The tradeoff between shortfall and spread can also be measured in a way that does not require an ideal allocation

to be feasible. The question we seek to answer is, ‘Using each model, how much revenue would the publisher

need to sacrifice (by incurring shortfall) to produce solutions with a given level of spread?’ To answer this
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question, we define the revenue of a solution as R =
∑

j pj(dj − yj); i.e., we treat pj as both the price per

impression and the shortfall penalty, so that given demand dj and shortfall yj , the publisher collects
∑

j pjdj

from the advertiser, minus
∑

j pjyj refunded for shortfalls.6 We can illustrate this tradeoff for a single instance by

computing the optimal solutions for each model at different levels of effort applied to spreading (the α parameter

in the Gini model, and ν in the expression Vj = νpj for the baseline model). For example, Figure 6 plots the

scaled spread cost as a function of revenue for one loose instance (for reporting, spread costs are normalized by

dividing the spread term from the baseline objective by ν, and the spread term from the Gini objective by α).
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Figure 6 The tradeoff between revenue and spread cost for a single instance.

The impact of Property 3 (Sufficient Orthogonality) is evident in Figure 6. For the Gini model (blue line),

as we increase the effort applied to spreading α, revenue decreases (moving from right to left), and spread cost

monotonically decreases until we get to a point (at revenue = 4650) where the spread cost is zero. Initially, the

baseline model (solid red line) behaves similarly, and as we increase the effort applied to spreading ν, the spread

cost monotonically decreases as revenue decreases (again, moving from right to left). However, once we get to

a revenue of 5275, further increases in ν will not budge the solution. Constraining the revenue with an equality

constraint to values below 5275 produces lower-revenue solutions (dashed red line), but these solutions are not

helpful since they do not lower the spread cost below 1500. Because the baseline objective is not sufficiently

orthogonal, there is a limit to the amount that revenue can be sacrificed to produce well-spread solutions. This

observation is robust, as we observe qualitatively similar behavior in globally tight and locally tight instances.

Although Figure 6 is helpful to visualize the comparative statics when we change the effort applied to spread-

ing, one must be careful not to compare the absolute magnitudes between the baseline and Gini spread costs.

These are on different scales, and are represented on different vertical axes. Indeed, there is no meaning to the
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crossing point between the baseline and Gini curves. To compare the structure of the Gini and baseline solutions,

we instead plot how the residual distributions change as we vary the effort applied to spreading.

5.4. Comparing Residual Distributions

Recall from §3.3 that we may define residuals rij = xij−µj for each audience segment and campaign pair (i, j),

where µj = 1
ŝj

∑
i∈Γ(j) sixij is the mean allocation across audience segments campaign j targets. Notice that

if all residuals are zero, i.e., rij = 0 ∀i ∈ Γ(j), we have a perfectly-spread solution, i.e., xij = µj ∀i ∈ Γ(j).

Moreover, since xij ∈ [0,1], it follows that µj ∈ [0,1], and therefore all residuals rij are in the range [−1,1].

For each of the three instance families (loose, globally tight, and locally tight), we proceed as follows. We

repeatedly solve all ten instances to produce optimal solutions for the baseline and Gini models at different levels

of effort applied to spreading α and ν. Defining the maximum revenue attainable Rmax as the total revenue

attained over all 10 instances when α= ν = 0, we normalize the total revenue R achieved at a particular value of

α or ν to %R=R/Rmax, which we call the proportion of maximum revenue attained. We compute residuals for

each instance from their respective optimal solutions7, and combine residuals from all ten instances to produce

a residual distribution for each model (baseline and Gini) at each level of revenue (%R).

Figure 7 provides a residual distribution comparison for the family of locally tight instances. The main plot,

top left, shows how the residual distributions from the baseline (red) and Gini (blue) models change as a function

of revenue (%R). Each line (different dashed pattern) corresponds to a different percentile of the distribution, as

defined by the legend at the bottom right. The legend also applies to the plot at the bottom left, which provides

a zoomed-in section of the main plot for %R between 0.95 and 1 and residual values between −0.1 and 0.1.

Finally, at the top right we use three histograms to plot the residual distributions at %R= 1, 0.95, and 0.9; each

histogram corresponds to one of the cross-sections in the main plot highlighted by grey vertical bars.

From Figure 7 we observe that for any given revenue level %R, the residual distribution under the Gini model

is narrower in the middle and slightly wider in the tails, relative to the baseline. Indeed, Gini solutions have

significantly more near-zero residuals, especially when revenue is low (i.e., when the emphasis on spreading is

high). Although the residual distributions differ the most for the locally tight instances, structurally this observ-

tion is robust, with the globally tight and loose instances also producing Gini solutions with more near-zero

residuals than the baseline; this result is summarized by Figure 8. Note that property 3 (Sufficient Orthogonality)

is also evident in Figure 7, as we observe the baseline model cannot produce better-spread solutions by lowering
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Figure 7 Residual Distribution Comparison (Locally Tight Instances). Top left: Percentiles of the residual distributions from the

baseline (red) and Gini (blue) models, as a function of revenue (%R). Bottom right: The legend represents each percentile

by a different dashed pattern, and applies to both plots at left. Bottom Left: Zoomed-in section of the main (top left) plot

for %R between 0.95 and 1, and residual values between −0.1 and 0.1. Top right: Histograms depict residual distributions

at %R= 1, 0.95, and 0.9; each histogram corresponds to one of the cross-sections in the main (top left) plot highlighted by

grey vertical bars. Histograms for the Gini (blue) and baseline (red) distributions are overlayed, with purple bars indicating

where the blue and red bars overlap.

revenue beyond %R = 0.87, while the Gini model can. For a more detailed description of Figure 7 along with

plots for the globally tight and loose instances, see Appendix B.4.

5.5. Practical Implications

There are several practical reasons why a publisher may prefer solutions from our Gini model to the base-

line. First, a publisher may win contracts with advertisers or other ad partners based on its ability to deliver

impressions in a precise manner. In a related example, the supply-side network Chitika was asked by a large ad

aggregator to show that it could deliver ads with a click-through rate (CTR) of exactly 1.5%; it achieved 1.51%

and won a large contract as a result (c.f., Mookerjee et al. 2016). Relative to the baseline, our Gini model pro-
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Instance
Family

Revenue
(%R) Baseline Gini

Improvement
(Gini - Baseline)

Locally 1 16.4% 24.1% 7.7%
Tight 0.95 21.6% 38.2% 16.6%

0.90 23.9% 51.9% 28.0%

Globally 1 30.5% 35.6% 5.1%
Tight 0.95 37.9% 42.7% 4.8%

0.90 45.3% 54.7% 9.4%

Loose 1 29.8% 53.8% 24%
0.95 52.3% 71.9% 19.6%
0.90 N/A 87.5% N/A

Figure 8 Proportion of Near-Zero Residuals. For the locally tight and globally tight cases, near-zero residuals are those in the range

[−0.035,0.035] (i.e., corresponding to the middle bar in Figure 7’s histograms). For the loose case, nearly all residuals are

in the range [−0.035,0.035], so we report the number of near-zero residuals in the range [−0.010,0.010] instead. Moreover,

because the baseline model violates Property 3 (Sufficient Orthogonality), no solutions at %R= 0.9 exist in the loose case.

duces solutions with more audience segments that get exactly the mean allocation (i.e., residuals are zero), which

some advertisers and ad partners may view as an important precision metric. Second, the Gini model is more

efficient in the way it allocates impressions from audience segments to campaigns, in the sense that it is much

more likely than the baseline model to cede priority to a high-revenue campaign (i.e., one with a high shortfall

penalty pj) when an audience segment is in high demand. Indeed, the baseline model’s quadratic objective all

but assures most campaigns get some amount of each audience segment, even when the opportunity costs of

allocating impressions from some audience segments are very high.

To compare the efficiency of the Gini and baseline models, we modify our test cases (c.f., Figure 4) by

introducing an outside option (i.e., secondary channel) where the publisher may sell impressions of each audience

segment i at the price β̃i, which we generate uniformly at random from the interval [0,0.03]. By construction,

because the prices pj for satisfying existing contracts are uniformly distributed in [0.01,0.02], in expectation half

the impressions are more profitable to assign to the outside option than to a randomly-chosen campaign, at least

one-quarter of the impressions are more profitable to assign to the outside option than to any campaign, and at

least one-quarter of the impressions are more profitable to assign to any campaign than to the outside option.

We repeat our residual analysis, but with revenue now coming from both guaranteed campaigns as well as

from slack impressions sold to the outside option8, i.e.,R=
∑

j pj(dj−yj)+
∑

i β̃isi

(
1−

∑
j∈Γ(i) xij

)
. For the

locally tight family of instances, whose solutions differ the most across the two models, Figure 9 shows that the

Gini distribution is significantly narrower and more concentrated than the baseline at nearly all revenue levels.

Indeed, the mass of residuals in the near-zero [−0.035,0.035]-range is much higher for the Gini model than for

the baseline (72.0% versus 16.4% at %R = 0.95, and 94.7% versus 21.6% at %R = 0.9). This demonstrates
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that when slack impressions have value, the Gini model is more efficient at producing well-spread solutions. For

completeness, we provide plots for the globally tight and loose cases in Appendix B.4.
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Figure 9 Residual Distribution Comparison with Outside Option (Locally Tight Instances). Left: Values of residuals at set percentiles

as a function of revenue %R (see legend in Figure 7). Right: Histograms of the residual distributions at %R= 1, 0.95, and

0.9; each histogram corresponds to a cross-section in the main (left) plot highlighted by vertical grey bars. Values from the

Gini-based model are blue, values from the baseline model red, and the purple bars in the histogram plots indicate areas

where the blue (Gini) and red (baseline) histograms overlap.

6. Decomposition Method

In this section, we introduce a novel decomposition method that leverages the structure of our Gini model to

solve large instances quickly and efficiently. This is particularly important for practice, where publishers and ad

aggregators manage thousands of ad campaigns simultaneously. In our numerical experiments, our decomposi-

tion method is able to solve instances on average 60 times faster than CPLEX. Moreover, it uses significantly less

memory and subproblems are paralellizable; these are highly-desirable properties for handling large instances.

We begin this section by describing the key algorithmic ideas behind our decomposition method. We then

sketch our algorithm, and describe the structure of the solutions that it produces.

6.1. Key Algorithmic Ideas

A key Gini structure our algorithm exploits is the fact that we may compute a Gini coefficient in two separate

ways. Recall from §2.2 that we may either (1) suitably normalize the average absolute difference of endowments

across all pairs of “individuals” (in our case, audience segments), or (2) calculate the area under the Lorenz

curve. Only the first approach yields a formula for the Gini coefficient that can be directly embedded into a math

program, and thus far, we followed the first approach by defining the Gini coefficient Gj as in Equation 5.
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Producing a campaign’s Lorenz curve to employ the second approach would require us to first sort the audience

segments from least allocated to most allocated. But herein lies the difficulty, since prior to solving the allocation

problem we do not know the allocations, and so cannot sort audience segments by their allocations! Although this

argument would seem to rule out using the second approach, it turns out that if we relax the supply constraints so

each campaign can buy any amount of impressions from each audience segment i at the fixed price β̂i, then for

this relaxed problem we can infer how the audience segments should be ordered. With this ordering in hand, we

may express each Gini coefficient as the area under a Lorenz curve, or equivalently we may dramatically simplify

our original definition ofGj from Equation 5 (the ordering of the allocation vector’s components tells us the sign

of each term inside the absolute value, which allows us to drop absolute values and collect like terms). Moreover,

this alternative view of how to mathematically express the Gini coefficient Gj also permits a useful change of

variables into what we call the “increment space”, allowing us to define our supply-relaxed problem in terms

of the rate that the Lorenz curve increases from one ordered audience segment to the next. This is particularly

useful, since in the increment space the supply-relaxed problem may be reformulated into a set of continuous

knapsack problems (one per campaign). We then leverage the fact that the continuous knapsack problem has a

closed-form solution, derive this solution in the increment space, and transform it back into the original space.

This process is described formally immediately following Theorem 1, which characterizes the optimal solution

to the supply-relaxed problem.

Except for the special case where supply constraints truly are non-binding and impressions of all types can

be acquired on the open market at the fixed prices β̂i, i ∈ I , solving the original supply-constrained Gini ad

allocation problem (SG) requires a more sophisticated approach. However, we can embed the supply-relaxed

problem as a subproblem within a decomposition scheme that proposes at each iteration a new vector of prices

β̂ ≡ {β̂i}i∈I , and combines the supply-relaxed solutions {xnij}(i,j)∈Γ from past iterations n = 1..N to produce

a near-optimal (and feasible) solution for the full Gini ad allocation problem (SG). We do this by treating the

supply constraints as so-called coupling constraints, and employ Dantzig-Wolfe decomposition (Dantzig and

Wolfe 1960). Moreover, since our subproblem is extremely fast to solve (computationally, its bottleneck is

sorting the price vector β̂), we also use subgradient optimization (Fisher 2004, Held et al. 1974, Anstreicher and

Wolsey 2009, Gustavsson et al. 2015) to produce several cheaply-computed proposed solutions each time we

solve the Dantzig-Wolfe master problem. Due to space considerations, we present only our main results without

proof in the body of this manuscript; see Appendix C for full derivations and proofs.
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6.2. The Supply-Relaxed Subproblem

We now formally derive our supply-relaxed subproblem, and introduce Theorem 1 which characterizes its solu-

tion. Defining ψj = α/ŝj , our single-period Gini ad allocation problem (SG) is equivalently formulated as:

(P-ORIG) z∗ = min
∑
j∈J

ψj
∑

(h,i)∈Γ0(j)

shsi|xhj −xij|+
∑
j∈J

pjyj

s.t.
∑
i∈Γ(j)

sixij + yj = dj ∀j ∈ J (demand)∑
j∈Γ(i)

sixij ≤ si ∀i∈ I (supply)

xij ≥ 0 ∀(i, j)∈ Γ; yj ≥ 0 ∀j ∈ J

Notice that in (P-ORIG) we have scaled both sides of the supply constraint by si so that the marginal value of

increasing the right-hand side of the ith supply constraint is naturally expressed as a per-impression price.

For every given vector of per-impression prices β̂ ≡ {β̂i}i∈I , we can solve the following supply-relaxed sub-

problem to produce a lower bound for (P-ORIG):

(PS) zLB(β̂) = min
∑
j∈J

ψj
∑

(h,i)∈Γ0(j)

shsi|xhj −xij|+
∑
j∈J

pjyj +
∑
i∈I

β̂i

∑
j∈Γ(i)

sixij − si


s.t.

∑
i∈Γ(j)

sixij + yj = dj ∀j ∈ J (demand)

xij ≥ 0 ∀(i, j)∈ Γ; yj ≥ 0 ∀j ∈ J

The supply-relaxed subproblem (PS) decomposes by campaign, allowing us to solve a sequence of smaller

subproblems, one for each campaign j ∈ J , rather than solving (PS) directly. Using zLBj (β̂) to represent the opti-

mal value of the jth supply-relaxed subproblem, we have the following relationship: zLB(β̂) =−
∑

i∈I siβ̂i +∑
j∈J z

LB
j (β̂), where each subproblem looks like:

(PS-j) zLBj (β̂) = min ψj
∑

(h,i)∈Γ0(j)

shsi|xhj −xij|+ pjyj +
∑
i∈Γ(j)

β̂isixij

s.t.
∑
i∈Γ(j)

sixij + yj = dj (demand)

xij ≥ 0 ∀i∈ Γ(j); yj ≥ 0

Each campaign-j supply-relaxed subproblem can be solved analytically after sorting the viewer types in increas-

ing order of β̂i value, computing some important quantities, and then reading off the optimal solution. The

following theorem characterizes the structure of the campaign-j subproblem’s optimal solution.

THEOREM 1. Assume that viewer types i∈ Γ(j) are ordered according to the prices β̂1 ≤ β̂2 ≤ · · · ≤ β̂mj
, where

mj = |Γ(j)|. Define the following important quantities:
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• Let sbji =
∑

i′=1..i−1 si′ and saji =
∑

i′=i+1..mj
si′ be the number of impressions that are rank ordered before

and after viewer type i’s impressions, respectively.

• Let cij =ψjsi(s
aj
i −s

bj
i )+siβ̂i represent the “cost” of assigning viewer type i to campaign j in its entirety.

• Let c̃ij =
∑

i′=1..i ci′j and s̃ij =
∑

i′=1..i si′ represent cost and supply usage “increments” that apply to the

ith increment of campaign j in a transformed space where the subproblem is easier to solve.

• Let πij = c̃ij/s̃ij represent the cost of assigning one unit of the ith increment to campaign j, in the trans-

formed space.

• Let i∗ = arg mini∈{1..mj} πij be a lowest-cost increment in the transformed space.

Then, the optimal solution to (PS-j), represented as (x∗j , y
∗
j ) with x∗j ≡ {x∗ij}i=1..mj

, takes the following form. If

πi∗j > pj , then y∗j = dj , x∗ij = 0 ∀i= 1..mj , and the corresponding optimal value is pjdj . Otherwise, the optimal

value is πi∗jdj with corresponding optimal solution y∗j = 0, and

x∗ij =

{
dj/s̃i∗j for i≤ i∗

0 for i > i∗
.

The proof of Theorem 1 proceeds in several steps, which are described in full in Appendix C. At a high level,

we (1) define an impression-based version of (P-ORIG) which allows us to omit the sizes of the viewer types

(si) from several stages of our proof; (2) prove that, in the impression space, if the targeted impressions r ∈Λ(j)

are ordered without loss of generality according to the prices βr for each impression (i.e., β1 ≤ β2 ≤ · · · ≤ βŝj ),

then optimal solutions of the campaign-j subproblem in the impression space, represented as (x∗j , y
∗
j ) where

x∗j ≡ {x∗rj}r=1..ŝj , must satisfy the constraints x∗1j ≥ x∗2j ≥ · · · ≥ x∗ŝjj; (3) prove that, in the impression space, if

βq = βq′ for two impressions (q, q′), then the optimal solutions for those impressions must also coincide (x∗qj =

x∗q′j); (4) impose x1j ≥ x2j ≥ · · · ≥ xŝjj as an optimality cut, allowing us to remove the absolute values in the

Gini-based objective, which then allows us to linearize and simplify our subproblem’s objective so that it contains

O(ŝj) terms rather than O(ŝ2
j) terms; (5) use the fact that βq = βq′ =⇒ x∗qj = x∗q′j to aggregate this simplified

impression-based formulation with O(ŝj) objective terms into a simplified viewer-type-based formulation with

O(|Γ(j)|) objective terms; (6) transform the resulting viewer-type-based formulation into one that has variables

in so-called “increment space” by instead considering decision variables that model the increments δij = xij −

xi+1,j for i= 1..|Γ(j)| − 1 rather than the xij variables directly; (7) read off the solution in the increment space,

and translate it back into the viewer-type space.

Theorem 1 characterizes the solution to the supply-relaxed campaign-j subproblem (PS-j). If shortfall costs

are relatively low (pj <πi∗j), then it is optimal to allocate no impressions to campaign j, and incur full shortfall

(y∗j = dj). On the other hand, if shortfall costs are relatively high (pj ≥ πi∗j), then it is optimal to have no



Lejeune and Turner: Planning Online Advertising Using Gini Indices 31

shortfall (y∗j = 0) and to spread impressions proportionally across the viewer types {1, . . . , i∗}. Since viewer

types i ∈ Γ(j) are ordered according to the per-impression prices β̂1 ≤ β̂2 ≤ · · · ≤ β̂mj
, where mj = |Γ(j)|, we

can interpret the solution as one that proportionally spreads impressions across the cheapest set of viewer types

{1, . . . , i∗}, where the costs of the viewer types are nontrivial and computed using Theorem 1. The viewer type

i∗ is at the threshold of affordability, given the values for {β̂i}i=1..mj
.

6.3. Algorithm

Our decomposition method leverages the analytical result of Theorem 1 to solve our original Gini ad allocation

problem (P-ORIG). It additionally provides (1) a method to choose “good” price vectors β̂; and (2) a method to

convert one or more solutions from supply-relaxed campaign-j subproblems into a solution {xij}(i,j)∈Γ that is

near-optimal for (P-ORIG) and satisfies all supply constraints i∈ I of the form
∑

j∈Γ(i) xij ≤ 1.

To get an initial feasible solution, we first run a two-stage heuristic. In stage one, our heuristic iterates through

the list of campaigns j = 1..|J |, and attempts to assign siθj impressions of each viewer type i∈ Γ(j) to campaign

j. Such allocations are processed in sequence, and at some point the remaining supply of viewer type i may be

less than the siθj impressions campaign j is requesting. At such a point, campaign j gets the remaining supply

of viewer type i, and subsequent campaigns do not get any impressions from this viewer type. When stage one

is completed, some viewer types may be completely allocated, and yet some campaigns may still have demand

that has not been allocated. This can happen whenever a campaign cannot grab all siθj impressions from each

viewer type i ∈ Γ(j) that it wants. Stage two then iterates through the list of campaigns once again, but this

time each campaign j checks to see how many impressions in each matching viewer type i ∈ Γ(j) are still

available, and grabs the same proportion of slack from each matching viewer type. Ideally, after booking this

proportion of slack, the demand for campaign j is fully allocated. However, it could be that the proportion of

slack needed to satisfy demand would exceed one; in that case, the campaign grabs all remaining slack from

each matching viewer type, and remains partially unallocated. We denote the solution computed by this heuristic

as
{
{x0

ij}(i,j)∈Γ,{y0
j}j∈J

}
, and compute the values corresponding to each j-component {v0

j}j∈J using the terms

corresponding to campaign j in the Gini objective (6); i.e., for n= 0 we compute:

vnj :=ψj
∑

(h,i)∈Γ0(j)

shsi|xnhj −xnij|+ pjy
n
j . (12)

We then use this heuristic solution to initialize the first set of columns, corresponding to n= 0, in the following

Dantzig-Wolfe master problem, which has parameters xnij , v
n
j , n= 0..N , j ∈ J , i∈ Γ(j), and decision variables
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λjn, n= 0..N , j ∈ J :

(PM) zUB = min
∑

j∈J,n=0..N

vnj λjn

s.t.
∑

n=0..N,j∈Γ(i)

xnijλjn ≤ 1 ∀i∈ I (supply)∑
n=0..N

λjn = 1 ∀j ∈ J (convexity)

λjn ≥ 0 ∀j ∈ J, ∀n= 0..N

A naïve version of our decomposition method can be described as follows. Starting with N = 0, we solve the

master problem (PM). Then, we set the price vector β̂ ≡ {β̂i}i∈I to be equal to the dual values of the supply

constraints for each viewer type i ∈ I , and solve the supply-relaxed subproblems (PS-j) for all campaigns j ∈ J

analytically, using β̂ and Theorem 1. We increment the iteration counter N :=N + 1, and record the solutions

to the supply-relaxed subproblems as
{
{xNij}(i,j)∈Γ,{yNj }j∈J

}
. We then compute the values {vNj }j∈J of these

solutions using Equation (12), and add the columns (variables and associated terms) corresponding to iteration

N for all campaigns j ∈ J to the master problem, and iterate. At each iteration, we solve the master problem

(PM) and subproblems (PS-j) for all campaigns j = 1..|J | in this fashion until we satisfy a termination criterion.

The master problem (PM) encodes a solution to our original problem (P-ORIG) that is a convex combination

of all subproblem-j solutions produced in past iterations n= 0..N , i.e., xij =
∑

n=0..N λjnx
n
ij , for all (i, j) ∈ Γ

(the λjn variables determine the weight to apply to the solution produced by subproblem j in iteration n). This

solution is feasible in (P-ORIG), since the demand and non-negativity constraints are satisfied by all subproblem

solutions and by construction the master problem ensures that the convex combination additionally satisfies the

supply constraints that were relaxed in the subproblems. Moreover, the initial solution
{
{x0

ij}(i,j)∈Γ,{y0
j}j∈J

}
is feasible in (P-ORIG), which guarantees (PM) always has a feasible solution.

The master problem (PM) yields an upper bound and the subproblems collectively yield the lower bound

zLB(β̂). Therefore, at each iteration, we compute the optimality gap (zUB − zLB)/zLB , and terminate when

it is below a desired threshold. In general, Dantzig-Wolfe decomposition is known to converge to optimality;

however, its rate of convergence depends on the problem being solved. In our case, because the subproblems

are analytically solvable, the master problem is the computational bottleneck. Therefore, it makes sense to either

avoid solving the master problem at each iteration, or to reduce the size of the master problem by limiting the

number of solutions N that we take a convex combination of. It turns out that a good way to speed up our

Dantzig-Wolfe-based decomposition method is to solve the master problem (PM) only every fifth iteration, and

to employ subgradient optimization to update the prices β̂i, i∈ I , for four out of every five iterations.
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To use subgradient optimization, we note that the ith component of the subgradient is simply the negative

slack of the ith supply constraint; i.e., it is gi :=
∑

j∈Γ(i) xij − 1. Using the step size σn at iteration n, we update

β̂ as follows: β̂i := β̂i + σngi. We use step sizes σn = 2(zUB − zLB(β̂))/(
∑

i∈I sig
2
i ), which have been shown

(c.f., Fisher 2004) to make steady progress toward the optimal β̂. After updating β̂, we solve subproblems (PS-j)

for all campaigns j ∈ J just as before, and add columns (solutions proposed by the subproblems) to the master

problem. Note that, for an iteration that we use subgradient optimization, even though we do not solve the master

problem it still grows in size. We now have all the ingredients to state our algorithm for solving (P-ORIG).

Gini-Based Decomposition Method. Starting at iteration N = 0, we (1) initialize the master problem (PM)

with a feasible heuristic solution, and then (2) increment the iteration counter (N :=N+1). Every fifth iteration,

we (3a) solve the master problem (PM) to get a new price vector β̂, a near-optimal feasible solution, and the

value of this solution which serves as an upper bound zUB for (P-ORIG). For four out of every five iterations, we

instead (3b) employ subgradient optimization to update the values of β̂i, i∈ I , computed in the past iteration. We

then (4) use Theorem 1, which leverages the Gini structure of our problem, to solve all campaign-j subproblems

analytically. We record the proposed solutions (xnj , y
n
j ) for each campaign j as well as the lower bound zLB ,

and then (5) update either the lower bound or the upper bound, or both, if they are tighter than in the previous

iteration. We (6) compute the optimality gap (zUB − zLB)/zLB , and stop if we have attained the termination

criterion (e.g., optimality gap < 1%), or continue to iterate (go to step 2) otherwise. Our decomposition method

terminates with the feasible solution xij =
∑

n=0..N λjnx
n
ij , (i, j)∈ Γ, which is near-optimal.

6.4. Solution Structure

Not only is our decomposition method an efficient algorithm for finding near-optimal solutions to the Gini ad

allocation problem (SG), but it also characterizes the structure of the optimal solution, as we will now show.

Let (x∗, y∗) with x∗ ≡ {x∗ij}(i,j)∈Γ and y∗ ≡ {y∗j }j∈J be an optimal solution of (SG), and denote the campaign-j

component of the optimal solution as (x∗j , y
∗
j ), where x∗j ≡ {x∗ij}i∈Γ(j). We begin with the following definition.

DEFINITION 5. Basic Solution. An allocation (xj, yj) to campaign j is considered basic if either

(i) No demand is met, i.e., yj = dj and xij = 0 ∀i∈ Γ(j), or

(ii) All demand is met, and the demand is spread evenly over a subset of the audience segments that campaign

j targets. Formally, this means yj = 0 and there exists a subset Bj ⊆ Γ(j) of the audience segments such that

xij = dj/s̃j for all i ∈Bj and xij = 0 for all i /∈Bj . Moreover, we have used s̃j =
∑

i∈Bj
si to denote the total

supply coming from all audience segments in the set Bj .
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Our decomposition method may be used to express the optimal allocation for each campaign j, i.e., (x∗j , y
∗
j ),

as a convex combination of one or more basic solutions. This follows directly from the structure of our decom-

position method because (1) Theorem 1 tells us that each supply-relaxed campaign-j subproblem produces a

basic solution, (2) at each iteration, the Dantzig-Wolfe master problem (PM) produces a feasible solution which

is a convex combination of (possibly) a heuristic solution (which may be chosen basic) and some subproblem

solutions (which are themselves basic), and (3) given sufficiently many iterations, the Dantzig-Wolfe method

converges to optimality. Note that using the heuristic solution described in §6.3 yields good convergence but is

not basic. Although the heuristic solution is often no longer part of the convex combination when our algorithm

terminates, strictly speaking if one wants to ensure convergence to a solution that is a convex combination of

basic solutions, one can instead initialize the Dantzig-Wolfe master problem with the trivially basic solution

xij = 0 for all (i, j)∈ Γ, yj = dj for all j ∈ J .

Assuming we initialize our algorithm with a basic solution and converge to optimality after N iterations, our

algorithm produces (i) prices β̂ni for all viewer types i and all iterations n, (ii) weights λjn for all campaigns j

and iterations n, and (iii) basic solutions (xnj , y
n
j ) for all campaigns j and iterations n. Denoting the set Nj as the

subset of iterations n= 0..N for which the weight λjn is strictly positive, we can express the optimal allocation

for campaign j as:

x∗ij =
∑
n∈Nj

λjnx
n
ij for all i∈ I, and (13)

y∗j =
∑
n∈Nj

λjny
n
j . (14)

The above characterization allows us to view the optimal solution as being generated by randomizing over a

set of prices. Specifically, with probability λjn, campaign j is subject to internal prices β̂ni for audience segments

i∈ I , and must “pay” these prices for the impressions it gets from each audience segment. These internal prices

correspond to the dual variables for the supply constraints, and one vector of internal prices is computed in each

iteration of the Dantzig-Wolfe procedure. Given a vector of internal prices β̂ ≡ {β̂i}i∈I , we can identify, using

Theorem 1, the audience segments that are relatively cheap for campaign j (this becomes the set Bj), and the

audience segments that are relatively expensive for campaign j (these remain in the set Γ(j) \Bj). In Appendix

D we provide an online algorithm that exploits this interpretation to serve well-spread ads in real-time.

The following simple example provides an illustration. We are given 2 campaigns (A, B) and 2 audience seg-

ments (1, 2), demands are dA = 60 and dB = 800, supplies are s1 = 80 and s2 = 800, campaignA targets segment

1 only, and campaignB targets segments 1 and 2. Per-impression shortfall penalties pA and pB are both 0.01, and

we fix α = 0.009. For campaign A, our algorithm produces one basic solution, {x1
A = (3/4,0), y1

A = 0}, with
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corresponding weight λA1 = 1. The optimal solution (x∗A, y
∗
A) is precisely this basic solution (i.e., it is a degen-

erate convex combination of one basic solution). For campaign B, our algorithm produces two basic solutions,

x1
B = (10/11,10/11), x2

B = (0,1), y1
B = y2

B = 0, with weights λB1 = 11/40 and λB2 = 29/40. The optimal

solution is a convex combination of these basic solutions, i.e., x∗B = (11/40)(10/11,10/11) + (29/40)(0,1) =

(1/4,39/40), and y∗B = (11/40)(0) + (29/40)(0) = 0. That is, with probability λB1 = 11/40, campaign B is

subject to low internal prices in both audience segments (β̂1
1 = β̂1

2 = 0), making both audience segments afford-

able. And with probability λB2 = 29/40, campaign B is subject to a high internal price in segment 1 (β̂2
1 = 0.1)

as well as a low internal price in segment 2 (β̂2
2 = 0), making only segment 2 affordable.

6.5. Computational Results

We now evaluate the computational performance of our decomposition method. For this, we generate a number

of test problems using the method described in detail in §5.1. Our test cases here have three sizes: small (100

campaigns × 100 viewer types), medium (100 campaigns × 200 viewer types), and large (100 campaigns ×

500 viewer types). As before, we have three categories of test case: loose, globally tight, and locally tight. We

represent these three categories notationally as Lx, GTx, and LTx, where the x represents the extent to which

demand is inflated, and is either x = 0 or x = 20 percent. When x = 20, we inflate demands so that they are

20% higher than what they would ordinarily be for such an instance, leading to demand shortfalls of up to 20%.

Figure 10 lists the properties of this set of instances.

Test Case
Sell-

through
Targeting

%

Campaign
Link

Intensity

Viewer Type
Link

Intensity

Reservation
Proportion

Loose (L0) 67.1% 19.6% U[0.1, 0.4] U[0.5, 1] 3.75%
Globally Tight (GT0) 95.4% 19.0% U[0.1, 0.4] U[0.5, 1] 6.6%
Locally Tight (LT0) 92.4% 3.4% U[0.05, 0.2] U[0.1, 0.4] ∗
Loose (L20) 73.2% 19.5% U[0.1, 0.4] U[0.5, 1] 3.75%
Globally Tight (GT20) 106.7% 18.4% U[0.1, 0.4] U[0.5, 1] 6.6%
Locally Tight (LT20) 108.0% 3.5% U[0.05, 0.2] U[0.1, 0.4] ∗

Figure 10 Six batches of test cases used to evaluate our decomposition method. In cases marked ∗, reservation proportions for each
campaign were drawn from {40%, 70%, and 100%} with probabilities 0.6, 0.3, and 0.1, respectively. Globally tight cases
have high sell-through, while locally tight cases have both high sell-through and low targeting percentage.

As seen in Table 2, our decomposition method is very effective. Solution times are on average 60 times faster

than when CPLEX is used to solve (SG) directly. Furthermore, we note that our decomposition algorithm can

solve all instances in at most 11 minutes, while 22% of the instances cannot be solved by CPLEX in under 2

hours. All tests were run on a 64-bit desktop with Intel(R) Core(TM) i7-2600 processor, running at 3.4GHz CPU
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and with 16GB RAM, using CPLEX 12.6 and AMPL 2016.03.10. For all tests, we used a single processor core

and terminated the decomposition method when the optimality gap was less than 1%.

Instance Small (100x100) Medium (100x200) Large (100x500)
Instance Regular Decomposition Regular Decomposition Regular Decomposition

L0 8 1 78 3 7200+ 20
GT0 26 1 922 10 7200+ 152
LT0 1 1 1 1 28 4
L20 4 1 82 3 7200+ 36

GT20 73 1 2132 11 7200+ 396
LT20 1 1 1 1 52 5

Table 2 Comparison of solution times (in CPU seconds) with and without the decomposition method. Solution times marked 7200+

indicate cases where CPLEX did not find a solution within 2 hours and was aborted.

7. Extensions

We have also derived several model and algorithmic extensions. In Appendix §B.5, we show how the supply-

relaxed subproblem defined in §6.2 can be used directly to solve a market-based variant of our problem, where

an ad aggregator does not own any impression traffic itself and must purchase the entire supply of each audience

segment from the market, at fixed (estimated) prices. In Appendix §D, we introduce an online algorithm that

can be used in conjunction with our decomposition method to serve well-spread ads in real-time. It operates by

reconstructing, as-needed on-the-fly, all iterations’ solutions xnij , n = 0..N , according to the probabilities λjn,

and randomizing over these solutions as the Dantzig-Wolfe master problem dictates. Finally, in Appendix §E,

we develop a multi-dimensional (i.e., multi-period) Gini model as well as a nested decomposition method that

repeatedly invokes Theorem 1 to spread impressions across both audience segments and time.

8. Conclusions

Online advertising is a $72.5 billion market, forty-four percent of which is display advertising, which can be

further subdivided into impression-based, click-based, or conversion-based advertising, and orthogonally into

guaranteed or non-guaranteed advertising. This paper’s focus is on planning guaranteed impression-based ads, in

which advertisers’ demands for impressions of various types compete for shared resources and advertisers prefer

to receive impressions that are evenly-spread across targeted audience segments and across time. We employ the

Gini coefficient measure to quantify what is meant by “good spreading”, and derive specific Gini-based metrics

to measure several dimensions of spreading that advertisers and publishers care about.

We propose a new single-period optimization planning problem that maximizes the spreading of impressions

across targeted audience segments while limiting demand shortfalls. We identify five key properties which are
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essential in the online display advertising context and have shown that our Gini-based model satisfies all of

them. We design a decomposition method that allows for the exact and efficient solution of the Gini formulations

that are, to the best of our knowledge, of a size not precedently handled in the literature. Our decomposition

scheme incorporates ingredients from the Dantzig-Wolfe decomposition and subgradient optimization methods,

and exploits the special structure of the Gini-based ad planning problems. Crucially, we are able to show that

after a suitable problem transformation, the subproblems can be solved analytically, which leads to a substantial

speedup. Numerical tests on our single-period model show that our decomposition method is on average 60

times faster than solving the Gini-based formulation directly with CPLEX. Finally, we extend our main result,

which allows us to solve single-period subproblems analytically, to a multi-period model using a Lagrangian

Decomposition scheme. We also discuss how our decomposition framework can be used by an aggregator that

buys impressions in the market and allocates them to advertisers, sketch an online algorithm which can be

used with our decomposition method to serve well-spread ads in real-time, and suggest that our decomposition

method, which is versatile enough to be used for the solution of other Gini-related optimization problems, may

be employed as the foundation for large-scale parallelized implementations.

The analysis of the results provided by our model and their comparison with results derived from a popular

ad planning model developed at Yahoo allow us to draw insights about the usefulness of the Gini coefficient and

to quantify the potential benefits of using Gini-based metrics for planning online advertising. Using numerical

experiments, we compare and contrast the solutions from our Gini-based model with this baseline model, and

show that our Gini model is generally better at trading off revenue to achieve better spreading. As we have

shown, the extent to which a campaign’s impressions are well-spread can be easily visualized using a Lorenz

curve. By minimizing Gini coefficients, we effectively minimize the area above the Lorenz curves. We interpret

these Lorenz curves, and discuss how they can be used in practice, both by the publisher, to monitor ad delivery

performance, and by the advertiser, to review past ad delivery performance.
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Endnotes

1. Advertisers often prefer if 2 individuals each receive 1 impression rather than for 1 individual to receive

2 impressions. Although display advertising is commonly planned using impressions, the number of unique

individuals that see an ad, called reach, is another metric that is also important to advertisers.

2. Although Bharadwaj et al. (2012) define the demand constraint as
∑

i∈Γ(j) sixij + yj ≥ dj for convenience

when deriving the dual, it is easily proven that it is never optimal to over-deliver; hence, we can equivalently

represent the demand constraint with an equality, which is a clearer representation for our purposes.

3. Strictly speaking, this assumes each arriving user sees exactly one impression. Generalizing the model to

multiple impressions per arrival is possible (e.g., see Turner 2012), but we ignore that possibility to keep the

model accessible.

4. If we draw a negative realization we discard it, and continue drawing until we get a positive one.

5. For datasets, please visit https://faculty.sites.uci.edu/turnerjg/datasets/gini/.

6. To model loss of goodwill inherent in issuing partial refunds for less-than-contracted service, we may gen-

eralize the revenue metric to R=
∑

j pjdj − η
∑

j pjyj by using η > 1.

7. Since both audience segments and campaigns have different sizes, we count each residual rij exactly si×wj
times. This normalization is equivalent to splitting each supply node of size si into si supply nodes of size 1, and

each demand node with size wj into wj demand nodes of size 1.

8. Note that the minimization objectives of both models (Equations 3a, 6) now include an additional term that

subtracts off the revenue from the outside option,
∑

i β̃isi

(
1−

∑
j∈Γ(i) xij

)
.
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Appendices

Appendix A: Notation, Derivations, and Proofs

A.1. Notation for Audience-Level Models & Expressions

Table EC.1 is a reference for the main notation used in the paper, which concerns models that plan blocks of

impressions known as ‘audience segments’ or ‘viewer types.’

Index Description
h, i Audience segment
j Ad campaign
t, τ Time period

Parameter
(Single-Period Models) Description

I Set of audience segments
J Set of ad campaigns

Γ(i) Set of campaigns that target audience segment i
Γ(j) Set of audience segments targeted by campaign j

Γ Set of (audience segment, campaign) (i, j) pairs
that define all campaigns’ targeting requirements

dj Demand (in impressions) of ad campaign j
pj Penalty assessed for each impression of demand shortfall

for campaign j
si Supply (in impressions) of audience segment i
ŝj Supply (in impressions) eligible for campaign j
θj Demand intensity of campaign j

Decision Variable
(Single-Period Models) Description

xij Proportion of the impressions of audience segment i
to assign to campaign j

yj Demand shortfall (in impressions) for campaign j
Table EC.1 Notation

A.2. Notation for Impression-Level Models & Expressions

Table EC.2 is a reference to additional notation used in parts of this Appendix, where audience segments are

treated as collections of individual impressions to express impression-level quantities for the proofs.

A.3. Full Derivation of Gini-Based Metric

We now derive our Gini-based metric (5), which measures the degree to which impressions are spread across

audience segments, from first principles. We begin in the disaggregated impression-level space, where xrj is

the proportion of impression (arrival) r to assign to campaign j, and can be alternatively interpreted as the

probability of assigning impression r to campaign j. With Λ(j) defined as the set of impressions that match the
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Index Description
q, r Impression (arrival)

Parameter
(Single-Period Models) Description

R Set of impressions (arrivals)
Ri Set of impressions that comprise audience segment i

Λ(r) Set of campaigns that target impression r
Λ(j) Set of impressions targeted by campaign j

Λ Set of (impression, campaign) (r, j) pairs
that define all campaigns’ targeting requirements

Decision Variable
(Single-Period Models) Description

xrj Proportion of impression r to assign to campaign j
(can be interpreted as the probability of assigning
impression r to campaign j)

yj Demand shortfall (in impressions) for campaign j
Table EC.2 Notation for Impression-Level Expressions

targeting of campaign j, the following GMD metric, which measures how evenly-spread a campaign’s ads are

across impressions in a campaign’s target audience, follows directly from the definition of GMD (2):

GMDj =
1

|Λ(j)|2
∑
q∈Λ(j)

∑
r∈Λ(j)

|xqj −xrj|. (EC.1)

By aggregating impressions into mutually exclusive audience segments, and using xij as the proportion of

audience segment i to assign to campaign j, we simplify equation (EC.1) as follows. For notational convenience,

we order the audience segments and define Γ0(j) = {(h, i) ∈ Γ(j)2 : h< i}, which indexes all distinct audience

segment pairs.

PROPOSITION EC.1. In the aggregated audience-level space, the GMD metric corresponding to (EC.1) is:

GMDj =
2

ŝ2
j

∑
(h,i)∈Γ0(j)

shsi|xhj −xij|. (EC.2)

Proof. Let Ri be the set of impressions represented by the audience segment i. Then we have (i) si = |Ri|,

(ii) Λ(j) = ∪i∈Γ(j)Ri, (iii) ŝj = |Λ(j)| =
∑

i∈Γ(j) |Ri| =
∑

i∈Γ(j) si, and (iv) xrj = xij ∀r ∈ Ri, allowing us to

simplify equation (EC.1) as follows:

GMDj =
1

|Λ(j)|2
∑
q∈Λ(j)

∑
r∈Λ(j)

|xqj −xrj|=
1

|Λ(j)|2
∑

q∈{∪h∈Γ(j)Rh}

∑
r∈{∪i∈Γ(j)Ri}

|xqj −xrj|

=
1

|Λ(j)|2
∑
h∈Γ(j)

∑
i∈Γ(j)

(∑
q∈Rh

∑
r∈Ri

|xqj −xrj|

)
=

1

|Λ(j)|2
∑
h∈Γ(j)

∑
i∈Γ(j)

(∑
q∈Rh

∑
r∈Ri

|xhj −xij|

)

=
1

ŝ2
j

∑
h∈Γ(j)

∑
i∈Γ(j)

shsi|xhj −xij|=
2

ŝ2
j

∑
(h,i)∈Γ0(j)

shsi|xhj −xij|. �

The shsi factor enters into this expression since the number of ways we can pick a pair of impressions such that

one is from audience segment h and the other is from audience segment i is precisely sh times si.
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Moreover, in a similar manner we can also derive the average proportion µj of an impression assigned to

campaign j from impression-level quantities as follows:

µj =
1

|Λ(j)|
∑
r∈Λ(j)

xrj =
1

|Λ(j)|
∑
i∈Γ(j)

∑
r∈Ri

xrj =
1

|Λ(j)|
∑
i∈Γ(j)

∑
r∈Ri

xij =
1

ŝj

∑
i∈Γ(j)

sixij. (EC.3)

Finally, from (2), our Gini-based metric is Gj =GMDj/(2µj).

A.4. Proof of Proposition 2: Existence of Ideal Impression Allocations

Proposition 2: Let pj = p, j ∈ J . If the system (11a)-(11d) is feasible,

1. The optimal solution of the Gini model (SG) is always an ideal allocation. This statement is valid regardless

of the emphasis placed on spreading determined by the parameter α> 0.

2. There is no guarantee that the optimal solution of the baseline model (SB) is an ideal allocation.

Proof. Part 1) Regardless of whether perfect spreading is possible or not, the quantity pY is a valid lower

bound on the optimal value of the objective function (9) of the Gini model. Any solution x feasible for (11a)-

(11d) gives a value of (9) equal to pY and is therefore optimal. Additionally, any solution x′ not feasible for

(11a)-(11d) will either: 1) violate the minimum shortfall constraint (11b), thereby increasing the shortfall cost

component in (9) without reducing the spreading cost component (i.e., since any feasible x has perfect spreading

and minimal spreading cost equal to 0); or 2) violate the perfect spreading condition, thereby increasing the

spreading cost component in (9) without reducing the shortfall cost component (i.e., since any feasible x has

minimal spreading cost).

Part 2) Any solution x feasible for (11a)-(11d) minimizes the shortfall cost component in the objective function

(3) of the baseline model. However, there is no guarantee that the spreading term in (3) is minimized by x. A

numerical counterexample is provided after Proposition 2. �

A.5. Proof of Proposition 3: Existence of Sufficient Orthogonality

Proposition 3:

1. The Gini objective (6) has sufficiently orthogonal spread and shortfall measures.

2. The baseline objective (3a) doesn’t have sufficiently orthogonal spread and shortfall measures.

Proof. Part 1) To solve for a minimizer x∗j of fSPREAD∗j (c), we begin by noting that the feasibility condition

fSHORTFALLj (xj) = c can be phrased as a restriction on the mean allocation µj =
∑

i∈Γ(j) sixij/ŝj , since:

fSHORTFALLj (xj) = c =⇒ pjyj = c =⇒ pj(dj −wj) = c

=⇒ (dj −wj)/ŝj = c/(pj ŝj) =⇒ (dj/ŝj)− (wj/ŝj) = c/(pj ŝj)

=⇒ θj −µj = c/(pj ŝj) =⇒ µj = θj − c/(pj ŝj).

Next, we claim that the solution x∗ij = θj − c/(pj ŝj) for all i ∈ Γ(j) is a minimizer of fSPREAD∗j (c). By defini-

tion, the mean allocation µ∗j under the solution x∗ij is:

µ∗j =
∑
i∈Γ(j)

six
∗
ij/ŝj =

∑
i∈Γ(j)

si (θj − c/(pj ŝj))/ŝj = θj − c/(pj ŝj),
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which clearly satisfies fSHORTFALLj (xj) = c. As well, fSPREAD∗j (c) = αw∗jG
∗
j = αŝjGMD∗j/2 = 0, where the

last equality follows becauseGMD∗j = 0 whenever x∗ij takes the same value for all i∈ Γ(j) (see Eq. 4). Because

GMDj ≥ 0, we must always have fSPREAD∗j (c)≥ 0. Consequently, the solution {x∗ij = θj− c/(pj ŝj) for all i∈

Γ(j)} minimizes fSPREAD∗j (c) with the value of fSPREAD∗j (c) = 0.

Part 2) To solve for the minimizer xj in the definition of fSPREAD∗j (c), we use the fact that yj = dj −∑
i∈Γ(j) sixij to define the Lagrangian L(xj, ζj) =

∑
i∈Γ(j)

Vj
2θj
si(xij − θj)2 + ζj(pj(dj −

∑
i∈Γ(j) sixij)− c).

From the stationarity condition ∂L(x∗j , ζ
∗
j )/∂xij = 0, we have Vj

θj
si(x

∗
ij − θj) − ζ∗j pjsi = 0; thus, x∗ij = θj +

ζ∗j
θjpj
Vj

for all i ∈ Γ(j). Substituting this x∗ij into the feasibility condition fSHORTFALLj (xj) = c, which in this

case is pj(dj −
∑

i∈Γ(j) six
∗
ij) = c, yields ζ∗j =−cVj/(djp2

j). Since x∗ij = θj + ζ∗j
θjpj
Vj

for all i ∈ Γ(j), we have

x∗ij − θj = ζ∗j
θjpj
Vj

=−c/(pj ŝj), and therefore fSPREAD∗j (c) =
∑

i∈Γ(j)

Vj
2θj
si(x

∗
ij − θj)2 =

Vj
2θj
ŝj(−c/(pj ŝj))2 =

c2Vj/(2djp
2
j). Finally, ∂fSPREAD∗j (c)/∂c= cVj/(djp

2
j)> 0 for all c > 0. Since fSPREAD∗j (c) is an increasing

function of c for all c > 0, we have a contradiction which proves the proposition. �

A.6. Proof of Proposition 4: Existence of Split-and-Merge Invariance

Proposition 4:

1. If the parameters Vj in the baseline objective function (3a) are chosen independently of campaign demands

dj , then the optimal solution to the baseline model (SB) is not affected by arbitrary campaign splits or merges.

2. The optimal solution to the Gini model (SG) is not affected by arbitrarily splitting or merging campaigns.

Preliminaries: The following proofs use the following setup. Consider a publisher that minimizes the cost of

spreading impressions over audience segments, defined as the sum of campaign-specific terms Fj := Wjfj ,

where Wj is a campaign-specific scaling factor and fj is either
∑

i∈Γ(j) si(xij − θj)2 for the baseline model or

GMDj for the Gini model. We have a large campaign C which we are considering splitting into two smaller

campaigns A and B so that (i) campaigns A and B inherit the targeting of campaign C, i.e., Γ(A) = Γ(B) =

Γ(C), implying ŝA = ŝB = ŝC ; and (ii) the demand of campaign C is equal to the total demand of campaigns

A and B, i.e., dC = dA + dB . Therefore, by definition θA = (dA/dC)θC and θB = (dB/dC)θC . Furthermore,

assume the allocation xiC given to campaign C is proportionally split across campaigns A and B; i.e., xiA =

(dA/dC)xiC and xiB = (dB/dC)xiC , for all audience segments i. Since xiA + xiB = xiC , an advertiser should

be indifferent between purchasing both campaigns A and B, or just campaign C. We will now show when the

objective function
∑

j Fj exhibits this indifference.

Proof of Part 1 (Baseline Model): We begin with a technical lemma, then present the main proposition, and

finally communicate our result using a corollary.

LEMMA EC.1.
∑

i∈Γ(C) si(xiC − θC)2 =
(
dC
dA

)∑
i∈Γ(A) si(xiA− θA)2 +

(
dC
dB

)∑
i∈Γ(B) si(xiB − θB)2.

Proof. We simplify the left-hand-side expression as follows:

∑
i∈Γ(C)

si(xiC − θC)2
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=

(
dA
dC

) ∑
i∈Γ(C)

si(xiC − θC)2 +

(
dB
dC

) ∑
i∈Γ(C)

si(xiC − θC)2, since dA + dB = dC

=

(
dA
dC

) ∑
i∈Γ(A)

si

((
dC
dA

)
xiA−

(
dC
dA

)
θA

)2

+

(
dB
dC

) ∑
i∈Γ(B)

si

((
dC
dB

)
xiB −

(
dC
dB

)
θB

)2

=

(
dC
dA

) ∑
i∈Γ(A)

si (xiA− θA)
2

+

(
dC
dB

) ∑
i∈Γ(B)

si (xiB − θB)
2
,

which concludes the proof of this lemma. �

PROPOSITION EC.2. IfWA >WC

(
dC
dA

)
andWB >WC

(
dC
dB

)
, then FC <FA+FB; thus, an advertiser prefers

to have both campaigns A and B over having only campaign C. Similarly, if WA < WC

(
dC
dA

)
and WB <

WC

(
dC
dB

)
, then FC >FA+FB; thus, an advertiser prefers to have only campaign C over having both A and B.

Moreover, ifWA =WC

(
dC
dA

)
andWB =WC

(
dC
dB

)
, then FC = FA+FB; in this case, an advertiser is indifferent

to having only C versus having both A and B.

Proof. We prove only the first case, as all three cases are similar. Assume WA > WC

(
dC
dA

)
and WB >

WC

(
dC
dB

)
. Then:

FC =WC

∑
i∈Γ(C)

si(xiC − θC)2

=WC

(
dC
dA

) ∑
i∈Γ(A)

si (xiA− θA)
2

+WC

(
dC
dB

) ∑
i∈Γ(B)

si (xiB − θB)
2
, by Lemma EC.1

<WA

∑
i∈Γ(A)

si (xiA− θA)
2

+WB

∑
i∈Γ(B)

si (xiB − θB)
2

= FA +FB,

which concludes the proof of this proposition. �

COROLLARY EC.1. If Wj = Qj/dj where the given Qj values do not change when campaigns are split (i.e.,

QC =QA =QB), advertisers are indifferent toward buying small or large campaigns.

Proof. We have WAdA =QA =QC =WCdC , and similarly WBdB =WCdC . Therefore, WA =WC

(
dC
dA

)
and WB =WC

(
dC
dB

)
. Invoking Proposition EC.2 concludes the proof of this corollary. �

Finally, we note that as long as the weights Vj in the baseline objective (3a) are chosen independently of campaign

demands dj , then Wj = Vj/2θj satisfies the assumption of Corollary EC.1 with Qj = Vj ŝj/2. Therefore, so long

as Vj’s are chosen independently of dj’s, the baseline objective is invariant to arbitrary splits and merges.

Proof of Part 2 (Gini Model): Recall from Section 3.2.2 that the spread term in our Gini objective is

α
∑

j wjGj , which is equivalent to
∑

j

αŝj
2
GMDj . With Wj =

αŝj
2

, fj = GMDj , and Fj = Wjfj , we aim to

show that FC = FA +FB .

Proof. Since ŝA = ŝB = ŝC , it is clear that WA = WB = WC . Therefore, it remains to show that fC =

fA + fB .
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fC =GMDC =
2

ŝ2
C

∑
(h,i)∈Γ0(C)

shsi |xhC −xiC |

=

(
dA
dC

)
2

ŝ2
C

∑
(h,i)∈Γ0(C)

shsi |xhC −xiC |+
(
dB
dC

)
2

ŝ2
C

∑
(h,i)∈Γ0(C)

shsi |xhC −xiC |

=

(
dA
dC

)
2

ŝ2
A

∑
(h,i)∈Γ0(A)

shsi

∣∣∣∣(dCdA
)

(xhA−xiA)

∣∣∣∣+(dBdC
)

2

ŝ2
B

∑
(h,i)∈Γ0(B)

shsi

∣∣∣∣(dCdB
)

(xhB −xiB)

∣∣∣∣
=

2

ŝ2
A

∑
(h,i)∈Γ0(A)

shsi |xhA−xiA|+
2

ŝ2
B

∑
(h,i)∈Γ0(B)

shsi |xhB −xiB|

=GMDA +GMDB = fA + fB,

which concludes the proof. �

Moreover, if the spread term α
∑

j∈J wjGj in our Gini objective is generalized to
∑

j∈J αjwjGj , then the

above proposition holds so long as αA = αB = αC , i.e., the campaign-specific priority weighting factors αj do

not change when campaigns are arbitrarily split or merged.

A.7. Proof of Proposition 5, Part 1: Interpretation of Weights in Baseline Objective

Proposition 5, Part 1: Assuming Vj = 1 for all campaigns j ∈ J , the baseline objective (3a) weights campaigns

by their size (i.e., impressions demanded dj), and penalizes the average squared percentage deviation from the

target allocation (xij = θj ∀i∈ Γ(j)).

Proof. Since 1
θj

=
(

1
θj

)2

· θj =
(

1
θj

)2

· dj
ŝj

, we have:

1

θj

∑
i∈Γ(j)

si(xij − θj)2 =

(
1

θj

)2

· dj
ŝj

∑
i∈Γ(j)

si(xij − θj)2 = dj ·

∑
i∈Γ(j)

si
ŝj

(
xij
θj
− 1

)2
 .

Notice that, for campaign j, the expression
(
xij
θj
− 1
)2

is the squared percentage deviation from the target allo-

cation of audience segment i. We average this over all audience segments i ∈ Γ(j) by appropriately weighting

larger segments more than smaller segments (note that
∑

i∈Γ(j)
si
ŝj

= 1). �

Appendix B: Additional Material: Background, Plots, Descriptions, and Extended Analysis

B.1. Bar Graph Visualization of Impression Spread

Consider an advertiser who wants to visualize how well-spread the impressions she got are over some dimension

of interest, for example, geography. Her ad campaign targeted only the three western states and received a total of

10 million impressions, with the breakdown being 7, 1, and 2 million from California, Oregon, and Washington,

respectively. Although we can visualize this data using a bar graph, as it could be done by using the results

of the baseline model, this is problematic for at least two reasons. First, the geographic dimension does not

have a natural order, and thus, there are six different permutations of the bars (see Figure EC.1), all of which

are equally valid. Second, a typical bar graph is not normalized for differing population sizes across audience

segments. Indeed, in our example California, Oregon, and Washington have populations of 39, 4, and 7 million
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people, respectively; this corresponds to 78%, 8% and 14% of the western region’s population of 50 million.

An evenly-spread ad campaign of 10 million impressions would assign 7.8, 0.8, and 1.4 million impressions,

respectively, to California, Oregon, and Washington. Meanwhile, our original allocation of 7, 1, and 2 million

impressions is 10.3% below, 25% above, and 42.9% above the equal-proportion solution. In essence, the bar

graph is misleading since it incorrectly compares the 7 million impressions in California with the 2 million in

Washington, without accounting for the fact that California and Washington’s audience sizes are on different

scales (indeed – California’s allocation is in fact below average, not above average!). A Lorenz curve, on the

other hand, visually represents the spread of a categorical distribution in such a way that, unlike the more widely

used (and abused) bar graph, does not suffer from (a) multiple possible visual representations due to arbitrary

ordering of categories, and (b) poor scaling.
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Figure EC.1 Impression spread by geographic region, visually represented using bar graphs.

Note that the practical importance of visualizing spread using a Lorenz curve instead of a bar graph is com-

pounded when comparing spread across multiple ad campaigns. This is because while it may be possible for

users to agree on a particular ordering of categories (e.g., listing all geographic regions alphabetically by name

from left-to-right), different campaigns target different subsets of categories along a dimension. For example,

in a bar graph, the third bar from the left could represent California for one campaign, and Kansas for another.

Indeed, a bar graph would only properly represent spread of impressions when (a) all campaigns target all audi-

ence segments, (b) users can agree on a single arbitrary ordering of the segments within a bar graph, and (c)
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all audience segments represent audiences of the same size. Clearly, this special case is quite rare in practice,

which motivates the Lorenz curve as a means of visually representing the spread of impressions across audience

segments.

B.2. Alternative Models

In this section, we discuss several alternative spreading objectives, and show how seemingly small structural

modifications affect the ability of the corresponding model to satisfy the five key properties listed in Table 1.

Campaign-specific scaling factors, i.e., the wj’s in the Gini objective α
∑

j∈J wjGj and Wj’s in the baseline

objective
∑

(i,j)∈ΓWjsi(xij − θj)2, must be chosen appropriately for several key properties to hold. Consider

the following model variants with modified scaling factors, and the resulting effects:

• Alternative Gini Objective, α
∑

j∈J djGj: If we weight the Gini coefficients by the demands dj instead of

by impressions allocatedwj = dj−yj , the Gini term in the objective would be equivalent to α
∑

j∈J(yj+wj)Gj .

Consequently, demand shortfalls yj would be penalized by the spread metric αGj , violating Property 3 (Suffi-

cient Orthogonality). Moreover, whereas
∑

j∈J wjGj is linearizeable via the formulation (7)-(9), the expression∑
j∈J djGj is non-convex in the primary decision variables xij , causing this model variant to additionally violate

Property 1 (Efficient Solvability).

• Alternative Baseline Objective,
∑

(i,j)∈Γ Vjθjsi(xij − θj)2: In this model variant, the scaling factor is

Wj = Vjθj rather than Wj = Vj/(2θj), and as before we assume Vj is independent of demand dj . This objective

has a nice interpretation, since with Vj = 1 it simplifies to
∑

(i,j)∈Γ dj(si/ŝj)(xij − θj)2, which is a weighted

average of the squared deviations (xij − θj), computed using the audience segment sizes si as weights, and then

scaling by the size of the campaign dj (recall that by definition,
∑

i∈Γ(j)(si/ŝj) = 1). Unfortunately, this objective

violates Property 4 (Split-and-Merge Invariance), which can be verified by tracing the proof of Proposition 4.

In this case, merged campaigns receive improved performance, and to avoid this distortion the publisher would

need to refrain from merging campaigns together to make the planning problem more efficient to solve.

• Alternative Baseline Objective,
∑

(i,j)∈Γ Vj/(djθj)si(xij − θj)2: In this model variant, the scaling fac-

tor is Wj = Vj/(djθj) rather than Wj = Vj/(2θj), and as before we assume Vj is independent of demand dj .

Again, Property 4 (Split-and-Merge Invariance) is violated. But this time, split campaigns receive improved

performance. In Appendix B.3 we show that the incentive that advertisers have to split a large campaign into

many smaller ones can be significant. Indeed, splitting one campaign into 10 smaller copies can yield 12% lower

spread cost and 69% lower shortfall, while splitting it into 100 smaller copies yields 87% lower spread cost and

96% lower shortfall, all at the expense of other campaigns.

Other spreading objectives could also be considered, but many have similar issues. For example:

• Alternative Baseline Objective,
∑

(i,j)∈Γ Vj/(2µj)si(xij − µj)2: This is the same as our original base-

line objective, except we have replaced the nominal target θj (a constant) with the mean allocation µj =

(1/ŝj)
∑

i∈Γ(j) xij (a dependent variable). Unlike the original, because this objective measures spread as a dis-

tance from the mean allocation rather than an a priori-defined target, it satisfies both Properties 2 and 3 (Ideal

Allocation when Possible and Sufficient Orthogonality). However, because the associated model is no longer a
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quadratic program, Property 1 (Efficient Solvability) is violated. Although the model is technically still convex,

the (1/µj) factors lead to some numerical difficulties, especially when one or more µj’s are small. On the other

hand, the (1/µj) factors are required for Property 4 (Split-and-Merge Invariance). Consequently, there does

not exist a quadratic spreading objective that simultaneously (i) penalizes deviations from µj , (ii) is efficiently

solvable, and (iii) is split-and-merge invariant.

Finally, we mention two spread objectives that involve a sum of absolute values like our Gini objective but are

structurally more similar to our baseline, in that they minimize absolute rather than squared deviations:

• Alternative Absolute Deviation Objective,
∑

(i,j)∈Γ Vjsi|xij − θj|: Because this objective, like our base-

line, measures spread as a distance from an a priori-defined target, it violates Properties 2 and 3 (Ideal Allocation

when Possible and Sufficient Orthogonality). However, the other three properties are satisfied. The correspond-

ing model is representable as a linear program, and therefore efficiently solvable. The scaling factor Vj satisfies

split-and-merge invariance, and although not immediately obvious, a rearrangement like that in the proof of

Proposition 5 part 1 shows that this objective can be interpreted as weighting each campaign by its size, dj .

• Alternative Absolute Deviation Objective,
∑

(i,j)∈Γ Vjsi|xij − µj|: Because this objective measures

spread as a distance from the mean allocation, it satisfies Properties 2 and 3 (Ideal Allocation when Possible and

Sufficient Orthogonality). Moreover, the other three properties are satisfied as well.

Note that, in the existing literature, there are no single-period ad allocation models that we are aware of which

spread impressions using either of the two objectives above. Some multi-period models minimize expressions

similar to |xij − θj|, and for this reason we use such a baseline in our multi-period extension in Appendix E. We

are not aware of any ad planning models that have previously explored the use of the second objective, which

minimizes absolute distances to mean allocations, µj . We leave a full analysis of this new model to future work,

and focus here on comparing our Gini model to the most commonly-used single-period baseline, (SB), as well as

deriving computational results which are specific to deploying the Gini model (i.e., our decomposition method

and related structural results). One particular point of departure between the absolute deviation models above and

our Gini model that could be important in practice is that the absolute deviation models do not produce unique

solutions (it is easy to construct examples with multiple optimal solutions). On the other hand, we conjecture

that our Gini model produces unique solutions (as it has in all examples that we tested).

B.3. Quantifying the Importance of Split-and-Merge Invariance

We now introduce an alternative baseline model to estimate the inefficiency associated with a model that is

not merge-and-split invariant (recall that both the baseline and Gini models are merge-and-split invariant). The

objective function, which induces an incentive for advertisers to split their campaigns to get better performance,

is:

min
∑

(i,j)∈Γ

Vj/(djθj)si(xij − θj)2 +
∑
j∈J

pjyj (EC.4)

Note that in this model variant, the scaling factor Wj in the spread term
∑

(i,j)∈ΓWjsi(xij − θj)2 of the

baseline objective has been set toWj = Vj/(djθj) rather thanWj = Vj/(2θj). Furthermore, we fix Vj to be equal
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to 16887 (the average campaign demand (1/|J |)
∑

j′∈J dj′ for all campaigns, j ∈ J , of the original non-split

instance), which produces solutions that balance both shortfall and spread.

Using this alternative baseline model, we first solve a simulated instance with 20 campaigns and 100 viewer

types (this is one of the locally tight instances described in Section 5.1). Then, we split campaign #1 into 10

campaigns that each have 1/10th the demand of the original, and re-solve. Finally, we split campaign #1 into

100 campaigns that each have 1/100th the demand of the original, and re-solve. We then look at the combined

contribution from all copies of campaign #1 to the alternative baseline’s optimal value, and compare this to the

contribution from all other campaigns. The results are in Table EC.3 below.

Optimal Value of the Alternative Baseline Objective
Original (No Splitting) After 10 Splits After 100 Splits

Contribution of All
Copies of Campaign #1 102.3 (21.5%) 44.7 (8.3%) 6.0 (1.1%)

Contribution of All
Other Campaigns 372.9 (78.5%) 493.2 (91.7%) 554.4 (98.9%)

Total 475.3 (100%) 537.9 (100%) 560.4 (100%)
Table EC.3 Contribution of campaign #1 to the alternative baseline’s optimal value. Numerical values are optimal values of (SB)

using the alternative objective function (EC.4).

Recall that the baseline objective minimizes spread cost and shortfall cost. Therefore, when campaign #1

contributes less to the optimal value, it means that it receives better spread and/or lower shortfall. We can also

repeat the above analysis, isolating the effect on the spread cost and shortfall cost components of the objective.

Doing so, we find that both spreading and shortfall are improved for campaign #1, at the expense of the other

campaigns, and the magnitude of this improvement increases as a function of the number of times that campaign

#1 is split. Details are in Tables EC.4 and EC.5 below.

Spread Cost Component of the Alternative Baseline Objective
Original (No Splitting) After 10 Splits After 100 Splits

Contribution of All
Copies of Campaign #1 23.2 (8.6%) 20.5 (5.8%) 3.0 (0.8%)

Contribution of All
Other Campaigns 247.3 (91.4%) 333.8 (94.2%) 371.0 (99.2%)

Total 270.5 (100%) 354.3 (100%) 374.0 (100%)
Table EC.4 Contribution of campaign #1 to the spread cost component of the alternative baseline’s optimal value. Numerical values

are spread costs as defined in the first term of the alternative objective function (EC.4).

If advertisers are fully rational, one can imagine that they could split each campaign into tens or hundreds of

thousands of tiny campaigns to get even better service from a publisher that uses an objective function that is not

invariant to arbitrary splits (i.e., if they wrote code on their end to perform this splitting, and then recombine the
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Shortfall Cost Component of the Alternative Baseline Objective
Original (No Splitting) After 10 Splits After 100 Splits

Contribution of All
Copies of Campaign #1 79.1 (38.6%) 24.2 (13.2%) 2.9 (1.6%)

Contribution of All
Other Campaigns 125.6 (61.4%) 159.4 (86.8%) 183.4 (98.4%)

Total 204.8 (100%) 183.6 (100%) 186.4 (100%)
Table EC.5 Contribution of campaign #1 to the shortfall cost component of the alternative baseline’s optimal value. Numerical

values are shortfall costs as defined in the second term of the alternative objective function (EC.4).

results for reporting). This is why we suggest that publishers should use objectives that are invariant to arbitrary

splits and merges.

B.4. Detailed Description of Residual Distribution Comparison

In this section, we describe the residuals of the baseline and Gini models in detail, and additionally include plots

for the Globally Tight and Loose instances, which were omitted from the main body of the paper to save space.

We begin with an in-depth description of Figure 7, which illustrates, for the family of Locally Tight instances,

how the residual distributions of the Gini and baseline models change as a function of revenue (%R). From

the top-left of Figure 7, we see that although the Gini model (blue) produces solutions that correspond to all

revenue levels %R ∈ [0.8,1], the baseline model (red) only produces solutions in the range %R ∈ [0.868,1]. The

baseline model’s revenue range is more limited than the Gini’s because the baseline objective is not sufficiently

orthogonal (c.f., Property 3). Indeed, starting from ν = ε, where ε is a very small positive quantity, yields minimal

shortfall and consequently maximal revenue (%R = 1) for the baseline model. Increasing ν exerts more effort

on spreading and so, up to a point, shortfall increases and consequently revenue decreases. However, after some

point it is not possible to get better spreading by reducing revenue further, and as ν grows large we converge to

a solution with %R= 0.868. On the other hand, the Gini objective is separable in shortfall and spread; thus, it is

always possible to achieve better spreading by increasing shortfall. For the Gini model, as we increase α above ε

we can always reach a point where all residuals shrink down to zero, yielding perfect spreading. This point may

be very low-revenue, but it is always attainable, and often such a point exists well before %R drops to zero (for

the loose family of instances, the Gini model attains perfect spreading at approximately %R= 0.85).

Continuing to describe the solution structure in the locally tight case, we observe that in the top-left of Figure

7 the top-most blue line (95th-percentile of Gini) is above the top-most red line (95th percentile of baseline).

As well, the bottom-most blue line (5th percentile of Gini) is below the bottom-most red line (5th percentile

of baseline). This relationship holds for all revenue levels over which both models provide solutions (%R ∈

[0.868,1]). Thus, for all revenue levels, the residual distribution is wider under the Gini model than under the

baseline model. That said, although the Gini’s distribution has wider tails, it also has more mass in its midsection.

Compare the third pair of lines from the bottom (25th percentiles, dotted) and notice that the blue Gini line is

above the red baseline, with the Gini line approaching the zero-level faster than the baseline as revenue decreases.

The second pair of lines from the top (90th percentiles, dashed) exhibit the same pattern, with the blue Gini line

below (i.e., closer to the zero-level) than the baseline. The midsection of the distribution is quite concentrated, as
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can be seen more clearly by zooming in on the portion of the plot where %R ∈ [0.95,1] and residuals are in the

range [−0.1,0.1], presented in the bottom-left panel of Figure 7. Notice that the 40th percentile of Gini (blue,

dashed) starts (at %R = 1) just above the 40th percentile of baseline (red, dashed), at a value of −0.0669. As

revenue decreases, we see that the 40th percentile of Gini converges to the zero-level at %R= 0.95, whereas the

40th percentile of baseline actually drops a little from −0.0729 at %R= 1 to −0.0749 at %R= 0.95. Notably,

the median (50th percentile) of Gini (thin solid blue line) is always at the zero-level for all revenue levels, whereas

the median of baseline (thin solid red line) is always slightly below the zero-level. The 60th percentile of Gini

(dashed blue line) is also horizontal, at the zero-level for all revenue levels, compared to the 60th percentile of

baseline (dashed red line) which runs from 0.0110 at %R= 1 to 0.0090 at %R= 0.95.

Another way to compare the residual distributions is by overlaying histograms of their density functions. Con-

tinuing to describe the locally tight instance, we observe that the top-right of Figure 7 has three such overlayed

histograms, with blue (Gini) histograms overlayed onto red (baseline) histograms, and areas of agreement show-

ing in purple. The first overlayed histogram compares the residual distributions at %R= 1, and corresponds to

the cross-section in the top-left plot indicated by the right-most vertical grey bar. From the tallest bar at the center

of the histogram, we can see that 24.1% of Gini’s residuals are in the range [−0.035,0.035], compared to 16.4%

from the baseline model. The second overlayed histogram compares the residual distributions at %R = 0.95,

and corresponds to the cross-section in the top-left plot indicated by the middle vertical grey bar. Here, we can

see that 38.2% of Gini’s residuals are in the range [−0.035,0.035], compared to 21.6% from the baseline model.

Finally, the third overlayed histogram compares the residual distributions at %R= 0.9, and corresponds to the

cross-section in the top-left plot indicated by the left-most grey bar. Here, we can see that 51.9% of Gini’s

residuals are in the range [−0.035,0.035], compared to 23.9% from the baseline model.

In summary, the Gini’s residual distribution is significantly more concentrated in the middle near zero, and

slightly fatter in the tails than the baseline. This difference is the most striking for the locally tight family of

instances; however, this structural result is robust and holds for the globally tight and loose families of instances

as well (see Figure 8). For completeness, Figure EC.2 plots the residual distributions for the globally tight and

loose families of instances.

Finally, in Section 5.5 we investigated the residual distribution under the case of having an outside option that

we can also sell impressions to. Figure 9 plotted the residual distribution for the locally tight family of instances.

To save space in the main body of the manuscript, we omitted the globally tight and loose cases; these are plotted

in Figure EC.3.

B.5. The Supply-Relaxed Subproblem as a Market-Based Model

Small to medium ad aggregators, who do not operate their own websites but instead purchase all of their impres-

sion traffic from other publishers and sell it to advertisers, may also use our Gini-based model (SG) to plan

and allocate impressions to advertisers who have purchased guaranteed contracts and expect to receive well-

spread impressions. In this context, we assume the aggregator has estimates for the market prices β̂i and market
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Figure EC.2 Residual Distribution Comparison (Globally Tight and Loose Instances). Top Row: Results for the globally tight

instances. Bottom Row: Results for the loose instances. Left Column: Percentiles of the residual distributions from

the baseline (red) and Gini (blue) models, as a function of revenue (%R); refer to the legend in Figure 7 of §5.4, which

represents each percentile by a different dashed pattern. Right Column: Histograms depict residual distributions at

%R= 1, 0.95, and 0.9; each histogram corresponds to a cross-section in the left column highlighted by a vertical grey

bar. Histograms for the Gini (blue) and baseline (red) distributions are overlayed, with purple bars indicating where the

blue and red bars overlap.

supplies si of each audience segment. In addition, we assume the volume of impression traffic the aggregator

handles is small relative to the size of the market, so that all supply constraints (3c) are nonbinding. The resulting

Gini-based model is precisely (SG) with the objective minα
∑

j∈J
1
ŝj

∑
(h,i)∈Γ0(j) shsi|xhj−xij|+

∑
j∈J pjyj +∑

(i,j)∈Γ β̂isixij and the supply constraints dropped.

It is important to note that this market-based model’s optimal solution can be obtained by solving (PS) with

ψj = α/ŝj . Indeed, (PS) is exactly this market-based model with additional constant terms −
∑

i∈I β̂isi in the

objective, and the presence of these constant terms does not affect the optimal solution. Moreover, since (PS)

decomposes by campaign, Theorem 1 tells us the optimal allocation for each campaign j in this market-based

model. Indeed, since in this case prices β̂i are exogenously given and supply constraints are nonbinding, there

is no need to iterate through Dantzig-Wolfe decomposition, and the solution is immediate. Using the optimal
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Figure EC.3 Residual Distribution Comparison with Outside Option (Globally Tight and Loose Instances). Top Row: Results for

the globally tight instances. Bottom Row: Results for the loose instances. Left Column: Percentiles of the residual

distributions from the baseline (red) and Gini (blue) models, as a function of revenue (%R); refer to the legend in Figure

7 of §5.4, which represents each percentile by a different dashed pattern. Right Column: Histograms depict residual

distributions at %R = 1, 0.95, and 0.9; each histogram corresponds to a cross-section in the left column highlighted

by a vertical grey bar. Histograms for the Gini (blue) and baseline (red) distributions are overlayed, with purple bars

indicating where the blue and red bars overlap.

solution x∗ij , the aggregator can then establish impression targets w∗ij = six
∗
ij for each audience segment and

campaign pair, which it would attempt to achieve by acquiring impressions at or near predicted market prices.

We believe this model provides a salient first-order characterization of an aggregator’s optimal policy, and

that suitable data exists to estimate the model’s parameters. Although market prices may fluctuate over time,

we expect that historical data could be used to estimate the prices that other market participants will charge

in expectation for impressions from popular audience segments. As well, estimates of audience sizes can be

obtained from third-party audience measurement firms such as ComScore or Nielsen. Note that since there are

no supply constraints in this variant of our model, audience size estimates are used exclusively in the objective

function to measure the quality of spread.

There are of course many nuanced complications concerning intermediation in online advertising. For more

details, see Balseiro et al. (2015b) and Allouah et al. (2017).
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Appendix C: Decomposition Method

We now derive in detail our decomposition scheme for our Gini ad allocation problem (SG). We begin by re-

stating the general formulation of this single-period problem, which we presented in §6:

(P-ORIG) z∗ = min
∑

j∈J,(h,i)∈Γ0(j)

ψjshsi|xhj −xij|+
∑
j

pjyj

s.t.
∑
i∈Γ(j)

sixij + yj = dj ∀j ∈ J (demand)∑
j∈Γ(i)

sixij ≤ si ∀i∈ I (supply)

xij ≥ 0 ∀(i, j)∈ Γ; yj ≥ 0 ∀j ∈ J

First, in Section C.1, we describe how to disaggregate the audience segments of (P-ORIG) into agglomerations

of individual impressions. Then, in the subsequent subsection, we use this impression-based formulation to

formally derive our decomposition method.

C.1. Translation to Disaggregate Impression-Level Space

Because some of our proofs are clearer when the quantities of interest are impressions rather than buckets of

impressions aggregated into audience segments, we first translate (P-ORIG) into an equivalent impression-level

optimization problem. Let R be the set of all impressions, Ri be the set of impressions that comprise audience

segment i, Λ be the set of (impression, campaign) pairs that define the targeted instance, Λ(r) be the set of

campaigns that are targeted by impression r, Λ(j) be the set of impressions targeted by campaign j, and Λ0(j) =

{(q, r)∈Λ(j)2 : q < r} index all pairs of impressions targeted by campaign j. Note that by definition, (i) |Ri|=

si, (ii) |Λ(j)| = ŝj , and (iii) Λ(r) = Γ(i) when impression r is in audience segment i. Our impression-level

formulation is as follows (Table EC.2 provides a quick reference to all impression-level notation):

(P2) min
∑

j∈J,(q,r)∈Λ0(j)

ψj|xqj −xrj|+
∑
j

pjyj

s.t.
∑
r∈Λ(j)

xrj + yj = dj ∀j ∈ J (demand)∑
j∈Λ(r)

xrj ≤ 1 ∀r ∈R (supply)

xrj ≥ 0 ∀(r, j)∈Λ; yj ≥ 0 ∀j ∈ J

The following proposition formalizes the connection between the audience-level formulation (P-ORIG) and

the impression-level formulation (P2).

PROPOSITION EC.3. Problem (P2) with (i) additional variables xij, (i, j) ∈ Γ, and (ii) additional constraints

xrj = xij ∀r ∈Ri,∀j ∈ J , which force all impression allocations within the same audience segment to have the

same value, is equivalent to (P-ORIG).
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Proof. We have previously shown (c.f., Appendix A.3) that the objective functions of (P2) and (P-ORIG) are

equivalent when xrj = xij ∀r ∈ Ri, j ∈ J . In a similar manner, the left-hand-side of (P2)’s demand constraint

aggregates into an audience-level expression as follows:

∑
r∈Λ(j)

xrj =
∑
i∈Γ(j)

∑
r∈Ri

xrj =
∑
i∈Γ(j)

∑
r∈Ri

xij =
∑
i∈Γ(j)

|Ri|xij =
∑
i∈Γ(j)

sixij,

and the left-hand-side of (P2)’s supply constraint aggregates into an audience-level expression as follows:

∑
j∈Λ(r)

xrj =
∑
j∈Λ(r)

xij =
∑
j∈Γ(i)

xij.

Since the objective function and all constraints are logically equivalent, the result follows. �

Technically, (P2) is a relaxation of (P-ORIG), and is equivalent to (P-ORIG) only when we additionally impose

the constraints xrj = xij ∀r ∈ Ri, j ∈ J . However, it turns out that we can impose these constraints in (P2)

without loss of optimality. That is, there always exists an optimal solution to (P2) where, for each campaign

j ∈ J , the allocation xrj is equal across all impressions r ∈Ri within each audience segment i∈ I . Consequently,

(P2) and (P-ORIG) can be treated as essentially equivalent. To prove this result, we first prove the following

technical lemma, which shows that if an unequal solution is made more equal, then the value of the Gini term in

the objective function of (P2) improves (reduces). The proof requires several steps to be rigorously shown, and

formalizes how we may incrementally improve a solution by making it more equal.

LEMMA EC.2. Assume we are given an impression-level allocation vector xj ≡ {xrj}r∈Λ(j) for some campaign

j ∈ J whose components are not all equal, i.e., there exists a pair of impressions (q, q′) such that xqj <xq′j . Let

∆∈ (0, 1
2
(xq′j−xqj)] and construct an alternative impression-level allocation vector xj ≡ {xrj}r∈Λ(j) such that

xq′j = xq′j −∆, xqj = xqj + ∆, and xrj = xrj ∀r /∈ {q, q′}. Then
∑

(r,r′)∈Λ0(j) |xrj −xr′j|<
∑

(r,r′)∈Λ0(j) |xrj −

xr′j|, i.e., the GMD value of xj is strictly lower (better) than the GMD value of xj .

Proof. Without loss of generality, assume the impressions are ordered by increasing value of xrj; that is,

x1j ≤ x2j ≤ · · · ≤ xŝjj . Partition the impressions r ∈Λ(j) \ {q, q′} into five sets:

A= {r ∈Λ(j) : xrj ≤ xqj, r 6= q} ,

B = {r ∈Λ(j) : xqj <xrj ≤ xqj} ,

C = {r ∈Λ(j) : xqj <xrj ≤ xq′j} ,

D= {r ∈Λ(j) : xq′j <xrj ≤ xq′j, r 6= q′} , and

E = {r ∈Λ(j) : xq′j <xrj} .

By construction, these sets are mutually exclusive, none of them contain the impressions q or q′, and A ∪B ∪

C ∪D ∪E ∪ {q, q′}= {1, . . . , ŝj}= Λ(j). Moreover, impressions are ordered according to A≺ q ≺B ≺ C ≺
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D ≺ q′ ≺ E, where A ≺ B means that all impressions in A precede all impressions in B with respect to the

established ordering. Using these definitions, we can simplify the GMD value of xj as follows:∑
(r,r′)∈Λ0(j)

|xrj −xr′j|=
∑

(r,r′)∈Λ0(j):r 6=q,r′ 6=q′
|xrj −xr′j|+

∑
r∈A,r′=q

|xrj −xr′j|

+
∑

r=q,r′∈B

|xrj −xr′j|+
∑

r=q,r′∈C∪D∪E

|xrj −xr′j|+
∑

r∈A∪B∪C,r′=q′
|xrj −xr′j|

+
∑

r∈D,r′=q′
|xrj −xr′j|+

∑
r=q′,r′∈E

|xrj −xr′j|+
∑

r=q,r′=q′

|xrj −xr′j|

=
∑

(r,r′)∈Λ0(j):r 6=q,r′ 6=q′
|xrj −xr′j|+

∑
r∈A

|xrj −xqj|

+
∑
r′∈B

|xqj −xr′j|+
∑

r′∈C∪D∪E

|xqj −xr′j|+
∑

r∈A∪B∪C

|xrj −xq′j|

+
∑
r∈D

|xrj −xq′j|+
∑
r′∈E

|xq′j −xr′j|+ |xqj −xq′j|

=
∑

(r,r′)∈Λ0(j):r 6=q,r′ 6=q′
|xrj −xr′j|+

∑
r∈A

(xqj −xrj)

+
∑
r′∈B

(xqj −xr′j) +
∑

r′∈C∪D∪E

(xr′j −xqj) +
∑

r∈A∪B∪C

(xq′j −xrj)

+
∑
r∈D

(xrj −xq′j) +
∑
r′∈E

(xr′j −xq′j) + (xq′j −xqj)

=
∑

(r,r′)∈Λ0(j):r 6=q,r′ 6=q′
|xrj −xr′j|+

∑
r∈A

(xqj + ∆−xrj)

+
∑
r′∈B

(xqj + ∆−xr′j) +
∑

r′∈C∪D∪E

(xr′j −xqj −∆) +
∑

r∈A∪B∪C

(xq′j −∆−xrj)

+
∑
r∈D

(xrj −xq′j + ∆) +
∑
r′∈E

(xr′j −xq′j + ∆) + ((xq′j −∆)− (xqj + ∆))

=
∑

(r,r′)∈Λ0(j):r 6=q,r′ 6=q′
|xrj −xr′j|+

∑
r∈A

(xqj −xrj)

+
∑
r′∈B

(xqj −xr′j) +
∑

r′∈C∪D∪E

(xr′j −xqj) +
∑

r∈A∪B∪C

(xq′j −xrj)

+
∑
r∈D

(xrj −xq′j) +
∑
r′∈E

(xr′j −xq′j) + (xq′j −xqj)− 2∆(|C|+ 1)

=
∑

(r,r′)∈Λ0(j):r 6=q,r′ 6=q′
|xrj −xr′j|+

∑
r∈A

|xqj −xrj|

−
∑
r′∈B

|xqj −xr′j|+
∑

r′∈C∪D∪E

|xr′j −xqj|+
∑

r∈A∪B∪C

|xq′j −xrj|

−
∑
r∈D

|xrj −xq′j|+
∑
r′∈E

|xr′j −xq′j|+ |xq′j −xqj| − 2∆(|C|+ 1)

<
∑

(r,r′)∈Λ0(j):r 6=q,r′ 6=q′
|xrj −xr′j|+

∑
r∈A

|xqj −xrj|

+
∑
r′∈B

|xqj −xr′j|+
∑

r′∈C∪D∪E

|xr′j −xqj|+
∑

r∈A∪B∪C

|xq′j −xrj|

+
∑
r∈D

|xrj −xq′j|+
∑
r′∈E

|xr′j −xq′j|+ |xq′j −xqj|
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=
∑

(r,r′)∈Λ0(j)

|xrj −xr′j|,

which is the GMD value of xj . The first equality expands
∑

(r,r′)∈Λ0(j) |xrj −xr′j| into eight terms, allowing us

to treat pairs of impressions (r, r′) differently based on their membership in the sets {A,B,C,D,E}. The second

equality follows since xrj = xrj for all r ∈A∪B ∪C ∪D ∪E. The third equality follows from the definitions

of the sets {A,B,C,D,E}, and the fourth is by substitution. The fifth equality follows by collecting all ∆

terms and simplifying. The sixth equality re-establishes absolute values, and follows by the defined ordering

A≺ q ≺B ≺ C ≺D ≺ q′ ≺ E. The inequality in the second-last line must be strict since by definition ∆> 0.

Finally, the last equality undoes the earlier expansion and collects all eight terms which are, by definition, equal

to
∑

(r,r′)∈Λ0(j) |xrj −xr′j|. �

With this technical lemma in hand, we are now ready to show that the restriction that all impression allocations

within the same audience segment are the same, i.e., xrj = xij ∀r ∈ Ri, j ∈ J , can be applied to (P2) without

loss of optimality.

PROPOSITION EC.4. All optimal solutions (x∗,y∗) to (P2) satisfy the condition x∗rj = x∗r′j ∀(r, r′) ∈

R2
i ,∀(i, j)∈ Γ, i.e., all impressions within the same audience segment have the same allocation.

Proof. Assume there exists an optimal solution (x,y) to (P2) that does not satisfy the stated condition. We

will construct an alternative solution (x̂, ŷ) which (i) satisfies the stated condition, (ii) is feasible in (P2), and

(iii) has a strictly lower (better) objective value, thereby contradicting our original assumption that (x,y) was

optimal. We construct the alternative solution (x̂, ŷ) as follows, which involves one or more invocations of the

following improvement step.

(Improvement Step) Select an audience segment i and a campaign j for which there exists a pair of impressions

(r1, r2) within audience segment i that have unequal allocations, i.e., xr1j <xr2j . Let µij = (1/|Ri|)
∑

r∈Ri
xrj

be the average allocation to campaign j from impressions of audience segment i. Since not all impressions r ∈Ri
have the same campaign-j allocation xrj , there must exist at least one impression q with a below-average allo-

cation, and another impression q′ with an above-average allocation; i.e., xqj < µij < xq′j . Let ∆ = min{xq′j −

µij, µij −xqj}, and modify the values of the allocation x such that xq′j← xq′j −∆, and xqj← xqj + ∆.

(Termination Criterion) Repeatedly invoke the Improvement Step until xrj = xr′j ∀(r, r′) ∈ R2
i ,∀(i, j) ∈ Γ,

i.e., all impressions within the same audience segment have the same allocation. Upon termination, denote the

resulting allocation as x̂. By construction, this allocation satisfies x̂rj = µij ∀r ∈Ri, ∀j ∈ J .

(Finite Convergence) Termination in a finite number of steps is assured, since (i) at each Improvement Step, at

least one impression has its allocation xrj updated to a corresponding mean µij , (ii) there are a finite number of

impressions and campaigns, and (iii) the means µij do not change throughout this procedure.

(Feasibility) We now show that the solution (x̂,y) is feasible in (P2). First, x̂rj ≥ 0 ∀(r, j)∈Λ is assured, since

the original solution (x,y) satisfied xrj ≥ 0 ∀(r, j) ∈ Λ, and whenever xrj was decreased, its new level was
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never set to below µij , a non-negative quantity. Next, the left-hand side of the demand constraint has the same

value under both solutions (x,y) and (x̂,y), since, for each campaign j ∈ J ,∑
r∈Λ(j)

x̂rj =
∑
i∈Γ(j)

(∑
r∈Ri

x̂rj

)
=
∑
i∈Γ(j)

(∑
r∈Ri

xrj

)
=
∑
r∈Λ(j)

xrj.

The middle equality holds because
∑

r∈Ri
xrj remains unchanged after each Improvement Step (although two

xrj values are updated, the net change to the sum is ∆−∆ = 0). Since the demand constraint was satisfied by

(x,y), it is also satisfied by (x̂,y). Finally, since the supply constraint is satisfied by the solution (x,y), the

following simplifications show it must also be satisfied by (x̂,y):∑
j∈Λ(r)

xrj ≤ 1 ∀r ∈R =⇒
∑
j∈Λ(r)

xrj ≤ 1 ∀r ∈Ri,∀i∈ I =⇒
∑
r∈Ri

∑
j∈Λ(r)

xrj ≤ |Ri| ∀i∈ I

=⇒
∑
j∈Γ(i)

(1/|Ri|)
∑
r∈Ri

xrj ≤ 1 ∀i∈ I =⇒
∑
j∈Γ(i)

µij ≤ 1 ∀i∈ I =⇒
∑
j∈Γ(i)

x̂ij ≤ 1 ∀i∈ I.

(Improved Solution) Lemma EC.2 shows that each Improvement Step strictly lowers (improves) the value of

the Gini term in the objective of (P2). Since we perform at least one Improvement Step, the solution (x̂,y)

has a strictly lower (better) value for its Gini term than (x,y). Moreover, both these solutions share the same

y, and thus have the same shortfall cost. Therefore, (x,y) is clearly suboptimal, which contradicts our initial

assumption. This completes our proof. �

C.2. Derivation of Decomposition Method

Having just established that (P2) is the impression-level analog to the audience-segment-based (P-ORIG), we

now derive our decomposition method by relaxing (P2) and making a number of observations about the resulting

relaxation.

Using βr as the dual value for impression r’s supply constraint, after dualizing the supply constraints, (P2)

becomes:

(P3) zLB = min
∑

j∈J,(q,r)∈Λ0(j)

ψj|xqj −xrj|+
∑
j∈J

pjyj +
∑
r∈R

βr(
∑
j∈Λ(r)

xrj − 1)

s.t.
∑
r∈Λ(j)

xrj + yj = dj ∀j ∈ J (demand)

xrj ≥ 0 ∀(r, j)∈Λ; yj ≥ 0 ∀j ∈ J

Since (P3) is a relaxation of (P2), its optimal value is a lower bound for the optimal value of (P-ORIG), i.e., zLB ≤
z∗. Moreover, (P3) decomposes by campaign and its optimal value can be written as zLB =−

∑
r∈R βr + zLBj ,

where each campaign-j subproblem has optimal value zLBj and takes the following form:

(P3-j) zLBj = min ψj
∑

(q,r)∈Λ0(j)

|xqj −xrj|+ pjyj +
∑
r∈Λ(j)

βrxrj

s.t.
∑
r∈Λ(j)

xrj + yj = dj (demand)

xrj ≥ 0 ∀r ∈Λ(j); yj ≥ 0
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Although it is somewhat difficult to characterize the optimal solution to (P3-j) in general, the following propo-

sition characterizes the optimal solution to (P3-j) for the special case where all dual values βr are zero.

PROPOSITION EC.5. If βr = 0 for all r ∈Λ(j), then the optimal solution to (P3-j) is xrj = θj for all r ∈Λ(j),

and yj = 0. That is, when all supply constraints of (P2) are non-binding (i.e., βr = 0), the optimal solution to

(P3-j) is to spread the campaign’s impression allocation proportionally across its targeted supply of impressions,

and to have no shortfall.

Proof. The proposed solution is feasible, since the demand constraint holds, i.e.,
∑

r∈Λ(j) θj+0 = |Λ(j)|θj =

ŝj(dj/ŝj) = dj . Moreover, this solution has objective value 0, which must be optimal since solutions of negative

value are not possible. �

The remainder of this section derives a number of transformations of (P3-j), the last of which allows us to

fully characterize the optimal solution of (P3-j). The following theorem and corollary establish a partial charac-

terization for the optimal solution of (P3-j), and are an important step towards fully characterizing the optimal

solution of (P3-j).

THEOREM EC.1. Without loss of generality, order the impressions of Λ(j) by βr such that β1 ≤ β2 ≤ · · · ≤ βŝj ,

where ŝj = |Λ(j)|. If the solution (x∗j , y
∗
j ) where x∗j ≡ {x∗rj}r=1..ŝj is optimal for (P3-j), then we must have

x∗1j ≥ x∗2j ≥ · · · ≥ x∗ŝjj .

Proof. Assume for a contradiction that (x∗j , y
∗
j ) with x∗j ≡ {x∗rj}r=1..ŝj is optimal for (P3-j) yet for some

pair of impressions (q, q′) we have βq ≤ βq′ and x∗qj < x∗q′j . Let ∆ = 1
2
(x∗q′j − x∗qj) and construct the solution

(xj, y
∗
j ), where xj ≡ {xrj}r=1..ŝj , by taking xq′j = x∗q′j −∆, xqj = x∗qj + ∆, and xrj = x∗rj ∀r /∈ {q, q′}. Note

that by construction, ∆> 0 and xq′j = xqj . We will now show that (xj, y
∗
j ) has a lower value than (x∗j , y

∗
j ) when

evaluated in the objective of (P3-j), contradicting our assumption that (x∗j , y
∗
j ) was optimal. First, it is clear that∑

r∈Λ(j) βrxrj ≤
∑

r∈Λ(j) βrx
∗
rj , since:

∑
r∈Λ(j)

βrxrj =
∑

r∈Λ(j):r/∈{q,q′}

βrxrj +βqxqj +βq′xq′j

=
∑

r∈Λ(j):r/∈{q,q′}

βrx
∗
rj +βq(x

∗
qj + ∆) +βq′(x

∗
q′j −∆)

=
∑
r∈Λ(j)

βrx
∗
rj + ∆(βq −βq′)

≤
∑
r∈Λ(j)

βrx
∗
rj.

Moreover,
∑

(r,r′)∈Λ0(j) |xrj − xr′j| <
∑

(r,r′)∈Λ0(j) |x∗rj − x∗r′j|, by Lemma EC.2. Thus, ψj
∑

(r,r′)∈Λ0(j) |xrj −

xr′j|+
∑

j pjy
∗
j +

∑
r∈Λ(j) βrxrj < ψj

∑
(r,r′)∈Λ0(j) |x∗rj − x∗r′j|+

∑
j pjy

∗
j +

∑
r∈Λ(j) βrx

∗
rj , contradicting our

assumption that (x∗j , y
∗
j ) was optimal. It follows that if the impressions are ordered as β1 ≤ β2 ≤ · · · ≤ βŝj , then

any optimal solution (x∗j , y
∗
j ) to (P3-j) must satisfy x∗1j ≥ x∗2j ≥ · · · ≥ x∗ŝjj . �
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COROLLARY EC.2. Without loss of generality, order the impressions of Λ(j) by βr such that β1 ≤ β2 ≤ · · · ≤

βŝj , where ŝj = |Λ(j)|. Given any two impressions (q, q′) with equal dual values βq = βq′ , the optimal allocations

for these impressions in (P3-j) are also equal, i.e., x∗qj = x∗q′j .

Proof. Without loss of generality, assume q′ < q in the impression ordering. By Theorem EC.1, x∗q′j ≥ x∗qj .

Assume for a contradiction that x∗q′j > x∗qj , let ∆ = 1
2
(x∗q′j − x∗qj), and construct the solution (xj, y

∗
j ), where

xj ≡ {xrj}r=1..m, by taking xq′j = x∗q′j −∆, xqj = x∗qj + ∆, and xrj = x∗rj ∀r /∈ {q, q′}. First, it is clear that∑
r∈Λ(j) βrxrj =

∑
r∈Λ(j) βrx

∗
rj , since:∑

r∈Λ(j)

βrxrj =
∑

r∈Λ(j):r/∈{q,q′}

βrxrj +βqxqj +βq′xq′j

=
∑

r∈Λ(j):r/∈{q,q′}

βrx
∗
rj +βq(x

∗
qj + ∆) +βq′(x

∗
q′j −∆)

=
∑
r∈Λ(j)

βrx
∗
rj + ∆(βq −βq′)

=
∑
r∈Λ(j)

βrx
∗
rj,

where the last line follows since βq = βq′ . Moreover, Lemma EC.2 provides
∑

(r,r′)∈Λ0(j) |xrj − xr′j| <∑
(r,r′)∈Λ0(j) |x∗rj−x∗r′j|. Thus, ψj

∑
(r,r′)∈Λ0(j) |xrj−xr′j|+

∑
j pjy

∗
j +
∑

r∈Λ(j) βrxrj <ψj
∑

(r,r′)∈Λ0(j) |x∗rj−

x∗r′j|+
∑

j pjy
∗
j +

∑
r∈Λ(j) βrx

∗
rj , implying (x∗j , y

∗
j ) is not optimal. This is a contradiction; hence, we conclude

that x∗q′j = x∗qj . �

Corollary EC.2 is important for two reasons. First, if we restrict ourselves to considering βr values that

are homogenous across all impressions in each viewer type, i.e., βr = β̂i ∀r ∈ Ri, then any optimal solution

{x∗rj}r∈Λ(j) to (P3-j) satisfies x∗rj = x∗r′j ∀(r, r′) ∈ R2
i and can be represented in the viewer type space using

variables {x∗ij}i∈Γ(j) such that x∗rj = x∗ij ∀r ∈ Ri. Second, we can further exploit this property by aggregating

viewer types by dual value β̂i, since any viewer types that have the same dual values (β̂i = β̂i′) must also have

equal solutions x∗ij = x∗i′j . Finally, we note that we can assume without loss of optimality that βr values are

homogenous across all impressions in each viewer type, since (i) Proposition EC.4 shows that without loss of

optimality we can restrict consideration to solutions that satisfy xrj = xr′j ∀(r, r′)∈R2
i , (ii) under this restriction

the objective term
∑

r∈R βr

(∑
j∈Λ(r) xrj − 1

)
of (P3-j) simplifies to

∑
i∈I

(∑
r∈Ri

βr

)(∑
j∈Γ(i) xij − 1

)
, and

(iii) in this form, it is clear that the individual values of βr do not matter, just the sum
∑

r∈Ri
βr, and thus without

loss of generality we can assume βr = β̂i ∀r ∈Ri.

Theorem EC.1 is important, as it allows us to simplify (P3-j) in the manner defined by the following proposi-

tion.

PROPOSITION EC.6. Defining crj = ψj(ŝj − 2r + 1) + βr for all impressions r ∈ Λ(j) ordered according to

β1 ≤ β2 ≤ · · · ≤ βŝj , where ŝj = |Λ(j)|, we can write subproblem (P3-j) as follows:

(P4-j) zLBj = min
∑

r=1..ŝj

crjxrj + pjyj
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s.t.
∑

r=1..ŝj

xrj + yj = dj (demand)

x1j ≥ x2j ≥ · · · ≥ xŝjj ≥ 0; yj ≥ 0

Proof. Theorem EC.1 allows us to impose the optimality cut x1j ≥ x2j ≥ · · · ≥ xŝjj ≥ 0. These constraints

on the variables then allow us to simplify the objective of (P3-j) by removing the absolute values as follows:

ψj
∑

(q,r)∈Λ0(j)

|xqj −xrj|+ pjyj +
∑
r∈Λ(j)

βrxrj =ψj
∑

q= 1..ŝj − 1
r= q+ 1..ŝj

(xqj −xrj) + pjyj +
∑

r=1..ŝj

βrxrj

=ψj


∑

q= 1..ŝj − 1
r= q+ 1..ŝj

xqj −
∑

r= 2..ŝj
q= 1..r− 1

xrj

+ pjyj +
∑

r=1..ŝj

βrxrj

=ψj

 ∑
q= 1..ŝj − 1

(ŝj − q)xqj −
∑

r= 2..ŝj

(r− 1)xrj

+ pjyj +
∑

r=1..ŝj

βrxrj

=ψj

ŝj ∑
q= 1..ŝj − 1

xqj −
∑

q= 1..ŝj − 1

qxqj −
∑

r= 2..ŝj

rxrj +
∑

r= 2..ŝj

xrj

+ pjyj +
∑

r=1..ŝj

βrxrj

=ψj

ŝj ∑
r= 1..ŝj − 1

xrj −
∑

r= 1..ŝj − 1

rxrj −
∑

r= 2..ŝj

rxrj +
∑

r= 2..ŝj

xrj

+ pjyj +
∑

r=1..ŝj

βrxrj

=ψj

ŝj
x1j +

∑
r= 2..ŝj − 1

xrj

−
x1j +

∑
r= 2..ŝj − 1

rxrj


−

 ∑
r= 2..ŝj − 1

rxrj + ŝjxŝjj

+

 ∑
r= 2..ŝj − 1

xrj +xŝjj


+ pjyj +

∑
r=1..ŝj

βrxrj

=ψj

(ŝj − 1)x1j +
∑

r= 2..ŝj − 1

(ŝj − 2r+ 1)xrj + (−ŝj + 1)xŝjj

+ pjyj +
∑

r=1..ŝj

βrxrj

=ψj

 ∑
r= 1..ŝj

(ŝj − 2r+ 1)xrj

+ pjyj +
∑

r=1..ŝj

βrxrj =
∑

r=1..ŝj

crjxrj + pjyj,

as required. �

Next, the following proposition describes how to aggregate (P4-j) to the viewer type space. Further simplifi-

cations of (P4-j) will be presented in the viewer type space, allowing us to read off our final result in the viewer

type space.
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PROPOSITION EC.7. Without loss of generality, order all viewer types i ∈ Γ(j) according to β̂1 ≤ β̂2 ≤ · · · ≤

β̂mj
, wheremj = |Γ(j)|. Define cij =ψjsi(s

aj
i −s

bj
i )+siβ̂i, where sbji =

∑
i′=1..i−1 si′ and saji =

∑
i′=i+1..mj

si′

are the number of impressions that are rank ordered before and after viewer type i’s impressions, respectively

(thus, ŝj = sbji + si + saji ). Taking βr = β̂i ∀r ∈Ri, we represent subproblem (P4-j) in the viewer type space by

aggregating all impressions of each viewer type together. The resulting formulation is:

(P5-j) zLBj = min
∑

i=1..mj

cijxij + pjyj

s.t.
∑

i=1..mj

sixij + yj = dj (demand)

x1j ≥ x2j ≥ · · · ≥ xmjj ≥ 0; yj ≥ 0

Proof. By Corollary EC.2, since βr = β̂i ∀r ∈Ri, we must have xrj = xij ∀r ∈Ri. The left-hand-side of the

demand constraint aggregates as follows:

∑
r∈Λ(j)

xrj =
∑
i∈Γ(j)

∑
r∈Ri

xrj =
∑
i∈Γ(j)

∑
r∈Ri

xij =
∑
i∈Γ(j)

|Ri|xij =
∑

i=1..mj

sixij.

Moreover, for each viewer type i we have one term in the objective which was aggregated from the impression

space as follows. Let us assume that viewer type i corresponds to the impressions {q, . . . , q′}. Therefore, by

construction, si = q′− q+ 1 is the size of viewer type i created by aggregating impressions {q, . . . , q′} together.

By definition, we have:

∑
r=q..q′

crjxrj =
∑
r=q..q′

(ψj(ŝj − 2r+ 1) +βr)xrj

=

ψj ∑
r=q..q′

(ŝj − 2r+ 1) +
∑
r=q..q′

βr

xij

=

ψj
 ∑
r=q..q′

(ŝj + 1)− 2
∑
r=q..q′

r

+
∑
r=q..q′

β̂i

xij

=
(
ψj (si(ŝj + 1)− 2 (si(q+ q′)/2)) + siβ̂i

)
xij

=
(
ψjsi (ŝj + 1− q− q′) + siβ̂i

)
xij

=
(
ψjsi ((ŝj − q′)− (q− 1)) + siβ̂i

)
xij

=
(
ψjsi

(
saji − s

bj
i

)
+ siβ̂i

)
xij = cijxij,

as required. �

Next, we reformulate (P5-j) using the following variable transformation, which will make it easier to read off

the optimal solution.
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PROPOSITION EC.8. Given viewer types i ∈ Γ(j) ordered according to β̂1 ≤ β̂2 ≤ · · · ≤ β̂mj
, where mj =

|Γ(j)|, define c̃ij =
∑

i′=1..i ci′j and s̃ij =
∑

i′=1..i si′ . Let δmjj = xmjj , and δij = xij−xi+1,j for all i= 1..mj−

1. We can reformulate (P5-j) using the decision variables {δij}i=1..mj
as follows:

(P6-j) zLBj = min
∑

i=1..mj

c̃ijδij + pjyj

s.t.
∑

i=1..mj

s̃ijδij + yj = dj (demand)

δij ≥ 0 ∀i= 1..mj; yj ≥ 0

Proof. By definition, xij =
∑

i′=i..mj
δi′j . The left-hand side of the demand constraint from (P5-j) transforms

via substitution as follows:

∑
i=1..mj

sixij =
∑

i=1..mj

si

 ∑
i′=i..mj

δi′j

=
∑

i′=1..mj

δi′j

(∑
i=1..i′

si

)
=

∑
i′=1..mj

s̃i′jδi′j.

Moreover, the constraints xij ≥ xi+1,j for i = 1..mj − 1 in (P5-j) imply xij − xi+1,j ≥ 0, i.e., δij ≥ 0 for

i = 1..mj − 1. And the constraint xmjj ≥ 0 implies δmjj ≥ 0. Finally, the objective of (P5-j) transforms via

substitution as follows:

∑
i=1..mj

cijxij =
∑

i=1..mj

cij

 ∑
i′=i..mj

δi′j

=
∑

i′=1..mj

δi′j

(∑
i=1..i′

cij

)
=

∑
i′=1..mj

c̃i′jδi′j. �

We can now read off the optimal solution of (P6-j) in the “increment space” defined by the δij variables.

PROPOSITION EC.9. Assume viewer types i ∈ Γ(j) are ordered according to the supply duals β̂1 ≤ β̂2 ≤ · · · ≤

β̂mj
, where mj = |Γ(j)|. Let πij = c̃ij/s̃ij ∀i = 1..mj and define i∗ = arg mini∈{1..mj} πij . Then, the optimal

solution and value to (P6-j) take the following form. If πi∗j > pj , then y∗j = dj , δ∗ij = 0 ∀i= 1..mj , with corre-

sponding optimal value pjdj . Otherwise, the optimal value is πi∗jdj with corresponding optimal solution y∗j = 0,

and

δ∗ij =

{
dj/s̃ij for i= i∗

0 for i 6= i∗

Proof. The δij variable with the lowest cost per unit of demand satisfied is indexed by i∗. If this cheapest

variable is too expensive (πi∗j > pj), we prefer not to satisfy this campaign at all, and set shortfall equal to

demand, i.e., y∗j = dj . On the other hand, if using this cheapest variable is no more expensive than incurring

shortfall (πi∗j ≤ pj), we satisfy demand fully with this variable by using the solution {δ∗ij}i=1..mj
as defined. In

the former case, the optimal value is pjy∗j = pjdj . In the latter case, the optimal value is c̃i∗jδ∗i∗j = c̃i∗j(dj/s̃i∗j) =

(c̃i∗j/s̃i∗j)dj = πi∗jdj . �

Finally, we can translate the solution represented by the δ-variables in the so-called “increment space” back

to the original space represented by x-variables. The following theorem summarizes our main structural result.
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THEOREM EC.2. Assume viewer types i∈ Γ(j) are ordered according to the supply duals β̂1 ≤ β̂2 ≤ · · · ≤ β̂mj
,

where mj = |Γ(j)|. Let πij = c̃ij/s̃ij ∀i= 1..mj and define i∗ = arg mini∈{1..mj} πij . Then, the optimal solution

to (P5-j) takes the following form. If πi∗j > pj , then y∗j = dj and x∗ij = 0 ∀i= 1..mj . Otherwise, y∗j = 0 and

x∗ij =

{
dj/s̃i∗j for i≤ i∗

0 for i > i∗

Proof. From Proposition EC.8, we know that x∗ij =
∑

i′=i..mj
δ∗i′j . Combining this fact with the optimal

solution {δ∗ij}i=1..mj
from Proposition EC.9 yields the desired result. �

Theorem EC.2 fully characterizes the solution to (P5-j), and equivalently to (P3-j). If shortfall costs are rel-

atively low (pj < πi∗j), then it is optimal to allocate no impressions to campaign j, and incur full shortfall

(y∗j = dj). If shortfall costs are relatively high (pj ≥ πi∗j), then it is optimal to have no shortfall (y∗j = 0) and to

spread impressions proportionally across the viewer types {1, . . . , i∗}. Recall that since viewer types i∈ Γ(j) are

ordered according to the supply duals β̂1 ≤ β̂2 ≤ · · · ≤ β̂mj
, where mj = |Γ(j)|, and so it is possible to interpret

the solution as one that proportionally spreads impressions across the cheapest set of viewer types {1, . . . , i∗}.

The viewer type i∗ is at the threshold of affordability, given the values for {β̂i}i=1..mj
.

We can now solve (P3-j) efficiently by sorting the viewer types in order of β̂i, and then invoking Theorem

EC.2 to compute the optimal solution to (P3-j) analytically. Notice that Theorem 1 of §6 is essentially Theorem

EC.2 with a number of parameters which we formally defined in previous propositions now written out in the

statement of the theorem. The full decomposition method, which involves a way to choose β̂i’s as well as a way

to produce a near-feasible solution to (P-ORIG) from one or more optimal solutions of (P3-j) computed from

different {β̂i}i∈I values, is described in §6.

Appendix D: Online Algorithm

While the solution to our Gini-based model (SG) can be used directly to serve ads in real-time by periodically re-

solving (SG) over a rolling horizon as supply forecasts are updated, and for each arriving user of type i serving ad

j ∈ Γ(i) with probability xij , we can also use information generated by our decomposition method to construct

an online algorithm that adapts the ad to show based on the types of impressions which actually materialize.

This approach is in line with that of Devanur and Hayes (2009), Feldman et al. (2010), Vee et al. (2010),

Mehta (2012), and Agrawal et al. (2014), who have developed online algorithms for a variety of different (non-

Gini-based) ad allocation problems. In what follows, we provide a sketch of an online algorithm whose structure

is in line with our Gini-based model and associated decomposition method. Since a full formal analysis of the

behavior of an online algorithm can be quite lengthy, we leave this to future work. Nevertheless, the following

description is useful to draw structural parallels between our decomposition method and the online algorithm it

suggests.

Recall that our decomposition method (Section 6) produces the following outputs:

• A vector λj = {λj0, λj1, . . . , λjN} for each campaign j whose elements λjn, n= 0..N , are all non-negative

and satisfy
∑

n=0..N λjn = 1. That is, λj is a probability vector.
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• A vector β̂n = {β̂n1 , β̂n2 , . . . , β̂nm} for each iteration n = 0..N whose elements β̂ni , i ∈ I ≡ {1..m}, are the

dual prices computed in iteration n for each audience segment i. That is, β̂n is a price vector.

We propose the following online algorithm that decides, on-the-fly, what ad to show to each arriving user.

(Initialization) Set xSij := 0 for all (i, j) ∈ Γ. We will use xSij to keep track of any surplus allocation from one

arrival to the next (the ‘S’ superscript denotes “surplus”).

(Repeat) For each arriving user,

1. Identify the user as a member of a particular audience segment i, and loop through all campaigns j ∈ Γ(i)

which target this audience segment, performing the following:

(a) Randomly draw n′ := n with probability λjn, and let β̂ := β̂n
′

be the price vector that campaign j

faces. That is, campaign j faces the price vector β̂n with probability λjn.

(b) Invoke Theorem 1 using price vector β̂ to compute xij .

2. At this stage, we have a proposed allocation xij , j ∈ Γ(i). Augment this allocation with the surplus alloca-

tion from previous arrivals of the same type, i.e., compute xAij := xij +xSij for all j ∈ Γ(i).

3. Compute ξ := 1/max(1,
∑

j∈Γ(i) x
A
ij). Then for all j ∈ Γ(i), let xPij := ξxAij and xSij := (1− ξ)xAij . Notice

that, by construction, ξ ∈ [0,1] and
∑

j∈Γ(i) x
P
ij ≤ 1.

4. Show ad j ∈ Γ(i) with probability xPij , and show no ad with probability 1 −
∑

j∈Γ(i) x
P
ij . Any surplus

allocation xSij is carried forward to the next user arrival of type i.

By design, this online algorithm over-serves excess impressions to a campaign if the supply matching a cam-

paign exceeds the forecasted traffic volume. On the other hand, if we wish to avoid over-serving, then we can

keep track of the total number of impressions delivered to each campaign and modify step 1b so that Theorem 1

is invoked to compute xij when fewer than the demanded dj impressions have been served to campaign j, and

xij := 0 once the campaign’s demand dj is satisfied.

The structure of our online algorithm follows directly from the Dantzig-Wolfe master problem (PM). Indeed,

we are reconstructing, on-the-fly, all solutions xnij , n= 0..N , according to the probabilities λjn, and randomizing

over these solutions as the Dantzig-Wolfe master problem dictates. By construction, if our online algorithm is

given a sufficiently large number of user arrivals of type i, then by the law of large numbers the actual propor-

tion of arrivals of type i which see the solution xnij converges to λjn, and thus with probability 1 the resulting

allocation is feasible (i.e., satisfies the supply constraint in (PM)). Moreover, if we get exactly si arrivals of each

type i, then by a similar asymptotic argument the value achieved by our online algorithm as measured by our

Gini objective (6) converges to the master problem’s optimal value. It follows that if our decomposition method

is run to optimality, and its inputs are used by our online algorithm, then our online algorithm is asymptotically

optimal when the number of arrivals of each type are equal to their forecasted quantities. More generally, if our

decomposition method is terminated early with a measurable optimality gap, i.e., with N smaller than it would

be if the decomposition was run to completion, and/or our forecasts for the supplies si have some error, then our

online algorithm produces a robust yet near-optimal solution.
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Appendix E: Multi-Period Model

In this section, we extend our single-period Gini-based ad planning model (SG) to a multi-period (and thus,

multi-dimensional) model. We begin in §E.1 with a short literature review of models that spread impressions

across time, as well as those that spread across both audience segments and time. We then introduce a multi-

period baseline model (§E.2), define relevant Gini-based metrics (§E.3), use these metrics to formulate a multi-

period Gini model (§E.4), and illustrate the Lorenz curves produced by our multi-period model (§E.5). We

then introduce a novel decomposition method for our multi-period Gini problem that nests the single-period

decomposition method of §6 into a Lagrangian Decomposition scheme (§E.6), and conclude by demonstrating

tail Gini metrics that may be used to soften the penalties for deviating from impression targets (§E.7).

E.1. Multi-Period Spreading Literature

As we have described in §2.1, advertisers prefer for the impressions that they get to be well-spread across

audience segments. But, this is not the only dimension on which advertisers care to have their impressions spread.

In practice, advertisers also often want their campaigns to be well-paced, i.e., with impressions delivered evenly

across time. Pacing ensures ads reach a wide audience, have a sustained impact, and support complementary ads

that are being run in other media (e.g., television). Bhalgat et al. (2012) use several nested packing constraints to

develop a tight (1− 1/e)-competitive online algorithm for pacing impressions over time. Meanwhile, Lee et al.

(2013) and Xu et al. (2015) employ control-based heuristics to throttle the rate impressions are purchased from

a spot market to satisfy guaranteed campaigns, with Lee et al. (2013) adjusting the value of bids over time and

Xu et al. (2015) keeping bids constant but instead throttling the auction participation rate (both have been tested

with real data, and the latter describes a real implementation). Araman and Fridgeirsdottir (2015) use a queuing

model and fluid analysis to determine asymptotically optimal prices and display frequencies for well-paced ads.

Finally, Bollapragada et al. (2002) and Turner et al. (2011) have studied the problem of spreading impressions

across both audience segments and time, for television and dynamic in-game advertising, respectively. Method-

ologically, all of these papers are different than ours, since they do not consider Gini metrics. To the best of our

knowledge, ours is the first paper to propose using Gini metrics to spread online ad impressions.

E.2. Multi-Period Baseline Model

We use the model of Turner et al. (2011), developed for Microsoft (then Massive, Inc.) to plan and schedule

dynamic in-game advertising, as our baseline multi-period online ad planning model. In this model, each adver-

tiser defines, in its contract with the publisher, a set of goals that should be met, along with weights that capture

the relative importance of each goal. The primary goal is always the end-of-campaign impression goal, which,

as in (SB) and (SG), states that each campaign j should get a total of dj impressions by its end date, otherwise

the shortfall yj is penalized linearly in the objective. In addition, there are a number of secondary goals that

ensure impressions are also well-spread (i) over targeted audience segments, (ii) over time, and (iii) over targeted

audience segments at each point in time. Note that because (iii) is the most difficult to achieve, criteria (i) and

(ii) are given more weight, and thus prioritized ahead of (iii). Consequently, (i) and (ii) are not subsumed by (iii).
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Formally, spreading goals (i), (ii), and (iii) are modeled in the following general way. First, each goal is

expressed as an impression target d. Then, lower and upper bounds (`, u) are defined which bracket the impres-

sion target d; i.e., ` ≤ d ≤ u. Oftentimes, the bounds are defined in a symmetric manner, e.g., ` = αd and

u= (1/α)d, for α ∈ [0,1]; however, that need not be the case. As long as the number of allocated impressions

w falls within the bounds, this is perceived as “good enough spreading”, and the publisher is not penalized.

However, if w is above or below the bounds, then the extent to which the allocation falls outside of the bounds

is penalized linearly. Formally, the objective function minimizes a sum of terms of the form py, where y is the

extent to which the bounds are violated and is a decision variable. The impression allocation w = sx is equal

to the supply of impressions s multiplied by the proportion of impressions allocated x. Constraints of the form

`− y ≤ w ≤ u+ y; w ≥ 0; y ≥ 0 link w with y. We use various forms of x and y as decision variables, and

only implicitly model w ≡ sx. Indexing time periods with t ∈ T , we get a model with the essential structure of

Turner et al. (2011), that captures the primary impression goals (modeled by the demand constraints) as well as

the secondary spreading goals of types (i), (ii), and (iii). The full model, which uses variables x and y, as well as

parameters p, d, s, `, and u with different subscripts as appropriate from the context, is as follows:

(MB) min
∑
j∈J

pjyj +
∑

(i,j)∈Γ

pijyij +
∑

j∈J,t∈Tj

pjtyjt +
∑

(i,j)∈Γ,t∈Tj

pijtyijt (EC.5a)

s.t.
∑

i∈Γ(j),t∈Tj

sitxijt + yj = dj ∀j ∈ J (demand) (EC.5b)

∑
j∈Γ(i)∩Jt

xijt ≤ 1 ∀i∈ I, t∈ T (supply) (EC.5c)

`ij − yij ≤
∑
t∈Tj

sitxijt ≤ uij + yij ∀(i, j)∈ Γ (spreading type (i)) (EC.5d)

`jt− yjt ≤
∑
i∈Γ(j)

sitxijt ≤ ujt + yjt ∀j ∈ J, t∈ Tj (spreading type (ii)) (EC.5e)

`ijt− yijt ≤ sitxijt ≤ uijt + yijt ∀(i, j)∈ Γ, t∈ Tj (spreading type (iii)) (EC.5f)

xijt, yj, yij, yjt, yijt ≥ 0 ∀(i, j)∈ Γ, t∈ Tj (non-negativity) (EC.5g)

The impression targets, i.e., sub-demands, for the three spread constraints are defined as (i) dij = siθj = si
ŝj
dj ,

(ii) djt = (1/|Tj|)dj , and (iii) dijt = sit
ŝjt
dj , respectively, where Tj represents the set of time periods which cam-

paign j spans, Jt represents the campaigns active in period t, and ŝjt =
∑

i∈Γ(j) sit is the number of impressions

eligible for campaign j at time t. Thus, reasonable choices for bounds are `ij = 0.9dij , uij = 1.1dij , `jt = 0.9djt,

ujt = 1.1djt, `ijt = 0.9dijt, and uijt = 1.1dijt, assuming we allow a deviation from all impression targets of ten

percent.

E.3. Multi-Period Gini-Based Metrics

We now define Gini-based metrics for the three spread dimensions. In practice, spreading over audience segments

is defined proportionally, whereas spreading over time is defined using absolute impressions; therefore, the Gini

metric for spread type (ii) takes a different form than (i) and (iii). In what follows, Tj is the set of time periods
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campaign j spans; Jt is the set of campaigns active in period t; sit is the impression supply of audience segment

i in time period t; and ŝjt =
∑

i∈Γ(j) sit is the number of impressions eligible for campaign j at time t. Our

primary decision variables are xijt, the proportion of audience segment i to assign campaign j in time period t.

The Gini-based metric for dimension (i), which spreads impressions proportionally across audience segments,

is the same as in the single-period model (c.f., Eq. (5)). Analogously, the Gini-based metric for dimension (iii),

which spreads impressions proportionally across audience segments within a single time period, is:

Gjt =
GMDjt

2µjt
=

2
ŝ2jt

∑
(h,i)∈Γ0(j)

shtsit|xhjt−xijt|

2
(

1
ŝjt

∑
i∈Γ(j) sitxijt

) =

(
1

ŝjt

) ∑
(h,i)∈Γ0(j)

shtsit|xhjt−xijt|∑
i∈Γ(j) sitxijt

. (EC.6)

In contrast, the Gini metric for constraint (ii) that spreads impressions across time follows from (1) and, using

T0(j) = {(t, τ)∈ T 2
j : t < τ}, is defined as:

GT
j =

GMDT
j

2µTj
=

2
|Tj |2

∑
(t,τ)∈T0(j)

|wjt−wjτ |

2
(

1
|Tj |

wj

) =

(
1

|Tj|wj

) ∑
(t,τ)∈T0(j)

|wjt−wjτ |, (EC.7)

wherewjt =
∑

i∈Γ(j) sitxijt andwj =
∑

t∈Tj
wjt are the number of impressions allocated to campaign j in period

t and over the planning horizon, respectively. This Gini metric strives for solutions that have the same absolute

impression allocation each time period, e.g., 100,000 impressions each week, regardless of whether impression

supply {ŝjt, t∈ Tj} is uniform across time. In contrast, we could define the alternate Gini metric:

GALT
j =

GMDALT
j

2µALTj

=

2
ŝ2j

∑
(t,τ)∈T0(j)

ŝjtŝjτ |xjt−xjτ |

2
(

1
ŝj
wj

) =
1

ŝjwj

∑
(t,τ)∈T0(j)

ŝjtŝjτ |xjt−xjτ |, (EC.8)

where xjt = wjt/ŝjt is the proportion of eligible impressions in time period t allocated to campaign j. If ŝj2 is

twice that of ŝj1, this alternate Gini metric will strive to allocate twice as many impressions to the second period

as the first. This alternate metric is akin to the proportional spreading that we have defined for constraints (i) and

(iii); however, in practice advertisers care more about the absolute spread over time and so we use (EC.7).

E.4. Multi-Period Gini-Based Model

We now introduce our multi-period Gini-based model. Following the spirit of our single-period Gini model (SG),

we propose the following objective function:

min α1

∑
j∈J

wjGj +α2

∑
j∈J

wjG
T
j +α3

∑
j∈J,t∈Tj

wjtGjt +
∑
j∈J

pjyj, (EC.9)

which, defining the total Gini penalty GTOTAL
jt = α1Gj +α2G

T
j +α3Gjt, may be expressed as:

min
∑

j∈J,t∈Tj

GTOTAL
jt wjt +

∑
j∈J

pjyj.

This objective again has the useful interpretation (c.f., Property 3) of assigning a cost to each impression

demanded by each campaign j, since
∑

t∈Tj
wjt+yj = dj . Unallocated impressions (corresponding to a demand
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shortfall) incur the cost pj , while impressions allocated to time period t incur the cost GTOTAL
jt , which can be

viewed as a charge for less-than-perfect service (spreading). Putting all the pieces together yields the following

Gini-based linear program9 over the variables xij , xijt, x+
hij , x

+
hijt, wjt, w

+
jtτ , and yj:

(MG) min α1

∑
j∈J

1

ŝj

∑
(h,i)∈Γ0(j)

shsix
+
hij +α2

∑
j∈J

1

|Tj|
∑

(t,τ)∈T0(j)

w+
jtτ

+α3

∑
j∈J,t∈Tj

1

ŝjt

∑
(h,i)∈Γ0(j)

shtsitx
+
hijt +

∑
j∈J

pjyj (EC.10a)

s.t. (8a), (8b) (linking)∑
i∈Γ(j),t∈Tj

sitxijt + yj = dj ∀j ∈ J (demand) (EC.10b)

∑
j∈Γ(i)∩Jt

xijt ≤ 1 ∀i∈ I, t∈ T (supply) (EC.10c)

sixij =
∑
t∈Tj

sitxijt ∀(i, j)∈ Γ (linking) (EC.10d)

wjt =
∑
i∈Γ(j)

sitxijt ∀j ∈ J,∀t∈ Tj (linking) (EC.10e)

x+
hijt ≥ xhjt−xijt ∀j ∈ J,∀t∈ Tj,∀(h, i)∈ Γ0(j) (linking) (EC.10f)

x+
hijt ≥ xijt−xhjt ∀j ∈ J,∀t∈ Tj,∀(h, i)∈ Γ0(j) (linking) (EC.10g)

w+
jtτ ≥wjt−wjτ ∀j ∈ J,∀(t, τ)∈ T0(j) (linking) (EC.10h)

w+
jtτ ≥wjτ −wjt ∀j ∈ J,∀(t, τ)∈ T0(j) (linking) (EC.10i)

xijt, yj ≥ 0 ∀j ∈ J,∀t∈ Tj,∀(h, i)∈ Γ0(j) (non-negativity) (EC.10j)

Constraint (EC.10d) links the proportions of supply allocated in each period with the proportions of supply used

across all periods, and makes use of the fact that si =
∑

t∈Tj
sit. Constraint (EC.10e) links the auxiliary wjt

variables to xijt variables; we note that it is possible to eliminate this constraint as well as the wjt variables by

substituting it into (EC.10h) and (EC.10i).

We also point out that (MB) is somewhat less restrictive than (MG), since for each impression target in (MB)

there was always a range around the target over which no penalty was incurred. If one would prefer to mimic

a similar logic in a Gini-based model, one can generalize the Gini-based metrics defined here to their tail-Gini

equivalents, as we illustrate in Appendix E.7.

E.5. Lorenz Curves of Multi-Period Model

Figure EC.4 plots three campaigns (one per row) as well as six Lorenz curves per campaign (one per column),

to illustrate the output from our multi-period model (MG). Each Lorenz curve corresponds to a single Gini

metric. The first column corresponds to Gj , the Gini metric which measures spreading of impressions across

audience segments for the entire time horizon; columns 2-5 correspond to Gjt for the time periods t = 1..4,

which measure the spreading of impressions across audience segments for each time period t= 1..4; and the last
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Campaign 1 dj 75344
wj 74387

yj /dj 1.27%
θj 48.00%

Gini Coefficients:
G j 12.56%
G j1 13.55%
G j2 11.86%
G j3 14.03%
G j4 11.47%
G T

j 0.00%

Campaign 2 dj 33343
wj 25124

yj /dj 24.65%
θj 37.87%

Gini Coefficients:
G j 8.81%
G j1 7.68%
G j2 8.01%
G j3 7.42%
G j4 11.26%
G T

j 0.00%

Campaign 3 dj 12858
wj 12858

yj /dj 0.00%
θj 18.44%

Gini Coefficients:
G j 10.84%
G j1 0.00%
G j2 11.39%
G j3 20.04%
G j4 4.40%
G T

j 0.00%
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Figure EC.4 Lorenz curves for three campaigns and six Gini metrics.

column corresponds to GT
j , which measures the spreading of impressions across time. Each advertiser would be

able to see only its own Lorenz curves, i.e., a single row of Figure EC.4.

Each panel of our figure illustrates a single Lorenz curve, corresponding to a single Gini metric for a single

campaign. The Lorenz curve itself is the dotted blue line, while the orange 45◦ line represents what the Lorenz

curve would look like if impressions were perfectly spread. As we can see, in this instance, we are able to achieve

perfect spreading across time (see column 6), as well as perfect spreading across audience segments for campaign

3 in week 1. The worst spreading occurs for campaign 3 in week 3, which is reflected by the highest Gjt value.

The area between the Lorenz curve and its nominal 45◦ line is, by definition, the Gini metric corresponding with

that Lorenz curve. Therefore, by minimizing our Gini metrics, we are equivalently minimizing the areas between

each Lorenz curve and its nominal 45◦ line.

E.6. Multi-Period Decomposition Method

Our multi-period ad allocation problem (MG) can be decomposed and solved using repeated invocation of The-

orem 1. Here we provide one particular way to achieve a decomposition in this general vein. Computational per-

formance of this particular multi-period decomposition scheme compares favorably with using CPLEX directly.

For example, an instance with 4 time periods, 100 campaigns, and 100 viewer types is solved to within 1% of

optimality in 12093 seconds using our decomposition method, versus 22483 seconds using CPLEX directly.

Structurally, our proposed multi-period decomposition scheme uses Lagrangian Decomposition to split the

problem into a number of single-period-type problems with different definitions for β̂ and ψj , for which we
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use Theorem 1 to analytically solve all resulting subproblems. To summarize, we break each campaign-j sub-

problem into two dimensions, a viewer-type dimension and a time dimension. Then, we further decompose the

time-dimension subproblem into a series of “viewer-type and time” subproblems. The viewer-type subproblem

handles spreading of type (i), the time subproblem handles spreading of type (ii), and the “viewer-type and

time” subproblem handles spreading of type (iii). To coordinate the solutions across these subproblems, we use

a Dantzig-Wolfe master problem, which now takes convex combinations over both the time-dimension solu-

tions produced at each iteration, and the viewer-type-dimension solutions produced at each iteration. There are

additional equality constraints in the Dantzig-Wolfe master problem that ensure that the solutions produced in

the time dimension are consistent with those produced in the viewer type dimension; these require additional

dual variables and form the basis of the so-called Lagrangian Decomposition. A key structural result is that the

“viewer-type and time” subproblem is nested within the time-dimension subproblem; consequently, the solution

method uses back-substitution, which turns out to be quite elegant and allows the optimal value of the lower-level

“viewer-type and time” subproblem to be analytically embedded into the objective function of the higher-level

time-dimension subproblem.

We now describe the details of our decomposition method for our multi-period ad allocation problem (MG).

We begin by casting our multi-period ad planning problem (MG) as the following equivalent formulation:

(P-MULT-ORIG) min α1

∑
j∈J

1

ŝj

∑
(h,i)∈Γ0(j)

shsi|xhj −xij|+α2

∑
j∈J

1

|Tj|
∑

(t,τ)∈T0(j)

|wjt−wjτ |

+α3

∑
j∈J,t∈Tj

1

ŝjt

∑
(h,i)∈Γ0(j)

shtsit|xhjt−xijt|+
∑
j∈J

pjyj

s.t.
∑

j∈Γ(i)∩Jt

sitxijt ≤ sit ∀i∈ I, ∀t∈ T (supply)∑
i∈Γ(j),t∈Tj

sitxijt + yj = dj ∀j ∈ J (demand)

wjt =
∑
i∈Γ(j)

sitxijt ∀j ∈ J, ∀t∈ Tj (linking (i))

sixij =
∑
t∈Tj

sitxijt ∀(i, j)∈ Γ (linking (ii))

xij ≥ 0 ∀(i, j)∈ Γ; xijt ≥ 0 ∀j ∈ J,∀i∈ Γ(j),∀t∈ Tj

wjt ≥ 0 ∀j ∈ J, ∀t∈ Tj; yj ≥ 0 ∀j ∈ J

Noticing that there are two dimensions to the planning problem, the viewer-type dimension and the time

dimension, we exploit this structure by not only designing a decomposition scheme that decomposes the problem

by campaign, but also producing a scheme that further decomposes each campaign’s subproblem into a viewer-

type subproblem and a time subproblem. Additionally, since we want to leverage the results provided by Theorem

1, we need both the viewer-type subproblem for campaign j and the time subproblem for campaign j to each

have its own set of decision variables and its own demand constraint. Therefore, we introduce the decision

variables yTj , j ∈ J , which we initially fix to be equal to their respective yj , j ∈ J , counterparts. The yj variables
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will measure demand shortfalls in the viewer-type subproblems, while yTj will measure demand shortfalls in

the time subproblems (the T superscript denotes the time dimension). While it is the case that yj = yTj for all

campaigns j ∈ J must hold for any feasible plan, it could be the case that at any iteration, the subproblems

produce solutions that have yj 6= yTj . This can and often does happen because the viewer-type subproblems are

solved independently from the time subproblems. We will describe later how we use Lagrangian Decomposition

to produce solutions that get close to satisfying yj = yTj ∀j ∈ J ; for now, it is sufficient to understand that while

we would like yj and yTj to take on the same values, we model these variables separately so that we can decouple

the campaign-j subproblems into viewer-type and time dimensions. Thus, we produce two logically equivalent

sets of demand constraints, one using the yj variables which will end up in the viewer-type subproblems, and the

other using the yTj variables which will end up in the time subproblems. With these additions to our formulation,

(P-MULT-ORIG) can be equivalently represented as:

(P-MULT-ORIG2) min α1

∑
j∈J

1

ŝj

∑
(h,i)∈Γ0(j)

shsi|xhj −xij|+α2

∑
j∈J

1

|Tj|
∑

(t,τ)∈T0(j)

|wjt−wjτ |

+α3

∑
j∈J,t∈Tj

1

ŝjt

∑
(h,i)∈Γ0(j)

shtsit|xhjt−xijt|+
1

2

∑
j∈J

pj(yj + yTj )

s.t.
∑

j∈Γ(i)∩Jt

sitxijt ≤ sit ∀i∈ I, ∀t∈ T (supply)∑
t∈Tj

wjt + yTj = dj ∀j ∈ J (demand (i))

∑
i∈Γ(j)

sixij + yj = dj ∀j ∈ J (demand (ii))

wjt =
∑
i∈Γ(j)

sitxijt ∀j, ∀t∈ Tj (linking (i))

sixij =
∑
t∈Tj

sitxijt ∀(i, j)∈ Γ (linking (ii))

yj = yTj ∀j ∈ J (linking (iii))

xij ≥ 0 ∀(i, j)∈ Γ; xijt ≥ 0 ∀j ∈ J,∀i∈ Γ(j),∀t∈ Tj

wjt ≥ 0 ∀j ∈ J, ∀t∈ Tj; yj ≥ 0 ∀j ∈ J ; yTj ≥ 0 ∀j ∈ J

We now produce a relaxation of (P-MULT-ORIG2) which dualizes the supply constraint, as well as linking

constraints (ii) and (iii). We use dual variables β̂it for the supply constraints, as well as dual variables ηij and

γj for linking constraints (ii) and (iii), respectively. Note that γj and ηij can take negative or positive values,

whereas β̂it ≥ 0. The relaxed problem is:

(PS-MULT) zLB = min α1

∑
j∈J

1

ŝj

∑
(h,i)∈Γ0(j)

shsi|xhj −xij|+α2

∑
j∈J

1

|Tj|
∑

(t,τ)∈T0(j)

|wjt−wjτ |

+α3

∑
j∈J,t∈Tj

1

ŝjt

∑
(h,i)∈Γ0(j)

shtsit|xhjt−xijt|+
1

2

∑
j∈J

pj(yj + yTj ) +
∑
j∈J

γj(yj − yTj )
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+
∑

(i,j)∈Γ

ηij

sixij −∑
t∈Tj

sitxijt

+
∑

i∈I,t∈T

β̂it

 ∑
j∈Γ(i)∩Jt

sitxijt− sit


s.t.
∑
t∈Tj

wjt + yTj = dj ∀j ∈ J (demand (i))

∑
i∈Γ(j)

sixij + yj = dj ∀j ∈ J (demand (ii))

wjt =
∑
i∈Γ(j)

sitxijt ∀j, ∀t∈ Tj (linking (i))

xij ≥ 0 ∀(i, j)∈ Γ; xijt ≥ 0 ∀j ∈ J,∀i∈ Γ(j),∀t∈ Tj

wjt ≥ 0 ∀j ∈ J, ∀t∈ Tj; yj ≥ 0 ∀j ∈ J ; yTj ≥ 0 ∀j ∈ J

We can also simplify the objective function further, to get:

min α1

∑
j∈J

1

ŝj

∑
(h,i)∈Γ0(j)

shsi|xhj −xij|+α2

∑
j∈J

1

|Tj|
∑

(t,τ)∈T0(j)

|wjt−wjτ |

+α3

∑
j∈J,t∈Tj

1

ŝjt

∑
(h,i)∈Γ0(j)

shtsit|xhjt−xijt|+
∑
j∈J

(
1

2
pj + γj

)
yj

+
∑
j∈J

(
1

2
pj − γj)yTj +

∑
j∈J,i∈Γ(j)

ηijsixij +
∑

j∈J,i∈Γ(j),t∈Tj

(β̂it− ηij)sitxijt−
∑

i∈I,t∈T

β̂itsit

With supply, linking (ii), and linking (iii) constraints dualized, we can see that the relaxed problem (PS-MULT)

decomposes into one viewer-type subproblem and one time subproblem for each campaign. The viewer-type

subproblem for campaign j has decision variables {xij}(i,j)∈Γ and yj , has optimal value zV LBj (β̂, η, γ), and is

defined as:

(PS-V-j) zV LBj (β̂, η, γ) = min α1

1

ŝj

∑
(h,i)∈Γ0(j)

shsi|xhj −xij|+
(

1

2
pj + γj

)
yj +

∑
i∈Γ(j)

ηijsixij

s.t.
∑
i∈Γ(j)

sixij + yj = dj (demand (ii))

xij ≥ 0 ∀i∈ Γ(j); yj ≥ 0

Similarly, the time subproblem for campaign j has decision variables {xijt}i∈Γ(j),∀t∈Tj , {wjt}t∈Tj , and yTj , has

optimal value zTLBj (β̂, η, γ), and is defined as:

(PS-T-j) zTLBj (β̂, η, γ) = min α2

1

|Tj|
∑

(t,τ)∈T0(j)

|wjt−wjτ |+α3

∑
t∈Tj

1

ŝjt

∑
(h,i)∈Γ0(j)

shtsit|xhjt−xijt|

+

(
1

2
pj − γj

)
yTj +

∑
i∈Γ(j),t∈Tj

(β̂it− ηij)sitxijt

s.t.
∑
t∈Tj

wjt + yTj = dj (demand (i))

wjt =
∑
i∈Γ(j)

sitxijt ∀t∈ Tj (linking (i))

xijt ≥ 0 ∀i∈ Γ(j), ∀t∈ Tj; wjt ≥ 0 ∀t∈ Tj; yTj ≥ 0
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The relaxed problem (PS-MULT) is related to the set of |J | subproblems (PS-V-j) and (PS-T-j) via the follow-

ing formula, which expresses the optimal value of (PS-MULT) in terms of the optimal values of (PS-V-j) and

(PS-T-j):

zLB =−
∑

i∈I,t∈T

β̂itsit +
∑
j∈J

zV LBj +
∑
j∈J

zTLBj

Theorem 1 tells us how to solve (PS-V-j), the viewer-type subproblem for campaign j. We take ψVj = α1/ŝj ,

treat pVj = ( 1
2
pj + γj) as the pj defined in the theorem, and treat β̂V ji = ηij as the β̂i defined in the theorem.

Invoking the theorem yields the following. Assuming without loss of generality that all i ∈ Γ(j) viewer types

are sorted by β̂V ji , i.e., β̂V j1 ≤ β̂
V j
2 ≤ · · · ≤ β̂V jmj

, where mj = |Γ(j)|, we define sV bji =
∑

i′=1..i−1 si′ ; s
V aj
i =∑

i′=i+1..mj
si′ ; cVij = ψVj si(s

V aj
i − sV bji ) + siβ̂

V j
i ; c̃Vij =

∑
i′=1..i c

V
i′j; s̃

V
ij =

∑
i′=1..i si′ ; π

V
ij = c̃Vij/s̃

V
ij; and i∗ =

arg mini∈{1..mj} π
V
ij . If πVi∗j > p

V
j , then y∗j = dj , x∗ij = 0 ∀i= 1..mj , and the corresponding optimal value is pVj dj .

Otherwise, the optimal value is πVi∗jdj with corresponding optimal solution y∗j = 0, and

x∗ij =

{
dj/s̃

V
i∗j for i≤ i∗

0 for i > i∗

Solving (PS-T-j), the time subproblem for campaign j, is more involved. For this, we make use of a very

nice further decomposition. Indeed, we break (PS-T-j) into a number of “viewer-type and time” subproblems,

each of which is responsible for spreading impressions across viewer types for a single time period. Each such

“viewer-type and time” subproblem has the required structure to invoke Theorem 1, and thus can be solved

analytically. Moreover, via backwards substitution, we can encode the optimal values from these “viewer-type

and time” subproblems into the objective function of the time subproblem, finally solve the time subproblem via

another invocation of Theorem 1, and then analytically compute the optimal solution to each “viewer-type and

time” subproblem given the optimal solution to the time subproblem. To derive this construction, we first define

(PS-VT-jt), the campaign-j subproblem which spreads impressions across viewer types within a single time

period t. The subproblem (PS-VT-jt) has decision variables {xijt}i∈Γ(j)∩Tj , has optimal value zV TLBjt (β̂, η,wjt),

and is defined as:

(PS-VT-jt) zV TLBjt (β̂, η,wjt) = min α3

∑
t∈Tj

1

ŝjt

∑
(h,i)∈Γ0(j)

shtsit|xhjt−xijt|+
∑

i∈Γ(j),t∈Tj

(β̂it− ηij)sitxijt

s.t.
∑
i∈Γ(j)

sitxijt =wjt (linking (i))

xijt ≥ 0 ∀i∈ Γ(j)∩Tj

Using the optimal value from (PS-VT-jt), we can write the campaign-j time subproblem (PS-T-j) equivalently

as:

(PS-T2-j) zTLBj (β̂, η, γ) = min α2

1

|Tj|
∑

(t,τ)∈T0(j)

|wjt−wjτ |+ (
1

2
pj − γj)yTj +

∑
t∈Tj

zV TLBjt (β̂, η,wjt)

s.t.
∑
t∈Tj

wjt + yTj = dj (demand (i))

wjt ≥ 0 ∀t∈ Tj; yTj ≥ 0
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With this representation, (PS-T2-j) encodes |Tj| inner optimization problems of the form (PS-VT-jt) into its

objective function.

Theorem 1 tells us how to solve (PS-VT-jt), the campaign-j subproblem for spreading impressions across

viewer types within time period t. We take ψtj = α3/ŝjt, treat β̂tji = (β̂it− ηij) as the β̂i defined by the theorem,

and treat wjt as dj . Moreover, since no shortfall is allowed for the “demand” constraint
∑

i∈Γ(j) sitxijt =wjt, we

treat pj as defined by the theorem as if it is +∞ so that no shortfall occurs in the solution. Invoking the theorem

yields the following. Assuming without loss of generality that all i∈ Γ(j)∩Tj viewer types are sorted by β̂tji , i.e.,

β̂tj1 ≤ β̂
tj
2 ≤ · · · ≤ β̂tjmj

, where mj = |Γ(j) ∩ Tj|, we define stbji =
∑

i′=1..i−1 si′t; s
taj
i =

∑
i′=i+1..mj

si′t; ctij =

ψtjsit(s
taj
i − s

tbj
i ) + sitβ̂

tj
i ; c̃tij =

∑
i′=1..i c

t
i′j; s̃

t
ij =

∑
i′=1..i si′t; π

t
ij = c̃tij/s̃

t
ij; and i∗ = arg mini∈{1..mj} π

t
ij .

Then, the optimal value of (PS-VT-jt) corresponding to campaign-j and time period t is πti∗jwjt, with corre-

sponding optimal solution:

x∗ijt =

{
wjt/s̃

t
i∗j for i≤ i∗

0 for i > i∗
(EC.11)

Moreover, denoting π∗jt ≡ πti∗j , we have zV TLBjt (β̂, η,wjt) = π∗jtwjt, where Theorem 1 gives us π∗jt as a function

of β̂ and η. Thus, the campaign-j time subproblem (PS-T2-j) can be simplified to:

(PS-T3-j) zTLBj (β̂, η, γ) = min α2

1

|Tj|
∑

(t,τ)∈T0(j)

|wjt−wjτ |+
(

1

2
pj − γj

)
yTj +

∑
t∈Tj

π∗jtwjt

s.t.
∑
t∈Tj

wjt + yTj = dj (demand (i))

wjt ≥ 0 ∀t∈ Tj; yTj ≥ 0

Now we notice that the time subproblem (PS-T3-j) is in the form required to also solve it using Theorem 1. We

take ψTj = α2/|Tj|, treat pTj = ( 1
2
pj − γj) as the pj defined in the theorem, and treat β̂Tjt = π∗jt as the β̂i defined

in the theorem. Moreover, wjt takes the place of xij and correspondingly we assume si = 1 for all viewer types

i∈ I . Invoking the theorem yields the following. Assuming without loss of generality that all t∈ Tj time periods

are sorted by β̂Tjt , i.e., β̂Tj1 ≤ β̂
Tj
2 ≤ · · · ≤ β̂Tjmj

, where mj = |Tj|, we define sTbjt =
∑

t′=1..t−1 1 = t− 1; sTajt =∑
t′=t+1..mj

1 =mj − t; cTtj =ψTj (sTajt − sTbjt ) + β̂Tjt ; c̃Ttj =
∑

t′=1..t c
T
t′j; s̃

T
tj =

∑
t′=1..t 1 = t; πTtj = c̃Ttj/s̃

T
tj; and

t∗ = arg mint∈{1..mj} π
T
tj . If πTt∗j > pTj , then yT∗j = dj , w∗jt = 0 ∀t= 1..mj , and the corresponding optimal value

is pTj dj . Otherwise, the optimal value is πTt∗jdj with corresponding optimal solution yT∗j = 0, and

w∗jt =

{
dj/t

∗ for t≤ t∗

0 for t > t∗
(EC.12)

Finally, once we have solution (EC.12) for (PS-T-j), we can substitute it into (EC.11) to yield the solutions for

(PS-VT-jt) corresponding to all t∈ Tj .

We have now shown how to completely solve all subproblems analytically, which can be summed up as, for

each campaign j, (1) solving (PS-V-j) analytically using Theorem 1; (2) solving (PS-VT-jt) analytically using

Theorem 1 for all time periods t∈ Tj; (3) using the optimal values π∗jt computed for (PS-VT-jt), t∈ Tj , to solve
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(PS-T-j) analytically using Theorem 1; and then finally (4) numerically computing the solutions to (PS-VT-jt),

t ∈ Tj , using the optimal solution from (PS-T-j) by substituting (EC.12) into (EC.11). Equivalently, we are able

to solve (PS-MULT) analytically.

There are two major elements of our decomposition method that still need to be developed before we can solve

the original problem, (P-MULT-ORIG). As in the single-period decomposition scheme discussed in Section 6 and

Appendix C, we additionally need (1) a method for choosing a “good” price vector (β̂, η, γ); and (2) a method

to convert one or more solutions to (PS-MULT) into a near-optimal solution for (P-MULT-ORIG) that satisfies

all of the constraints that were dualized when relaxing (P-MULT-ORIG) to produce (PS-MULT) (i.e., the supply

constraints, as well as linking constraints (ii) and (iii)). We proceed as in the single-period case, and develop

a Dantzig-Wolfe decomposition scheme that we modify for performance reasons to solve the Dantzig-Wolfe

master problem only once every five iterations, instead updating the price vector (β̂, η, γ) using subgradient

optimization in the intervening four of five iterations.

Our solution method begins by first solving a heuristic to get an initial feasible solution. Our heuristic has

two stages. In stage one, the heuristic iterates through the list of campaigns j = 1..|J |, and attempts to assign

sitθj impressions of each viewer type i ∈ Γ(j) in each time period t ∈ Tj to campaign j. Such allocations are

processed in sequence, and at some point the remaining supply of viewer type i for time period t may be less

than the sitθj impressions campaign j is requesting. At such point, the campaign j gets the remaining supply

of sit, and subsequent campaigns do not get any impressions from viewer type i at time t. When stage one

is completed, some viewer types in some time periods may be completely allocated, and yet some campaigns

may still have demand that has not been allocated. This can happen whenever a campaign cannot grab all sitθj

impressions from each viewer type i∈ Γ(j) and time period t∈ Tj that it wants. Stage two then iterates through

the list of campaigns once again, but this time each campaign j checks to see how many impressions in each

matching viewer type i ∈ Γ(j) and time period t ∈ Tj are still available, and grabs the same proportion of slack

from each matching viewer type in each time period. Ideally, after booking this proportion of slack, the demand

for campaign j is fully allocated. However, it could be that the proportion of slack needed to satisfy demand

would exceed one; in that case, the campaign grabs all remaining slack from each matching viewer type in

each matching time period, and remains partially unallocated. We denote the solution computed by this heuristic

as
{
{xijt0}(i,j)∈Γ,{yj0}j∈J

}
, and compute the values corresponding to each j-component {vj0}j∈J using the

terms corresponding to campaign j in the Gini-based objective (EC.9). In other words, for n= 0, we use linking

constraints (i), (ii), and (iii) to first compute xijn = (1/si)
∑

t∈Tj
sitxijtn;wjtn =

∑
i∈Γ(j) sitxijtn; and yTjn = yjn;

and then we substitute those values into the following formulas:

vVjn :=α1

1

ŝj

∑
(h,i)∈Γ0(j)

shsi|xhjn−xijn|+
1

2
pjyjn, and (EC.13)

vTjn :=α2

1

|Tj|
∑

(t,τ)∈T0(j)

|wjtn−wjτn|+α3

∑
t∈Tj

1

ŝjt

∑
(h,i)∈Γ0(j)

shtsit|xhjtn−xijtn|+
1

2
pjy

T
jn. (EC.14)
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We then use this heuristic solution to initialize the first set of columns, corresponding to n= 0, in the Dantzig-

Wolfe master problem. The Dantzig-Wolfe master problem, which has parameters xijtn, xijn, yjn, yTjn, vTjn, and

vVjn, n= 0..N , j ∈ J , i∈ Γ(j), t∈ Tj , and decision variables λVjn, λTjn, n= 0..N , j ∈ J , is formulated as follows:

(PM-MULT) zUB = min
∑

j∈J,n=0..N

(vVjnλ
V
jn + vTjnλ

T
jn)

s.t.
∑

n=0..N.j∈Γ(it)

xijtnλ
T
jn ≤ 1 ∀i∈ I, ∀t∈ T (supply)∑

n=0..N

sixijnλ
V
jn =

∑
n=0..N

∑
t∈Tj

sitxijtnλ
T
jn ∀(i, j)∈ Γ (linking (ii))

∑
n=0..N

yjnλ
V
jn =

∑
n=0..N

yTjnλ
T
jn ∀j ∈ J (linking (iii))∑

n=0..N

λVjn = 1 ∀j ∈ J (convexity)∑
n=0..N

λTjn = 1 ∀j ∈ J (convexity)

λVjn ≥ 0, λTjn ≥ 0 ∀j ∈ J, ∀n= 0..N

In a classical Dantzig-Wolfe decomposition, we would begin with N = 0; solve the master problem

(PM-MULT); take β̂it to be the dual values of the supply constraints for each viewer type i ∈ I at each time

period t ∈ T ; take ηij to be the dual values of the “linking (ii)” constraints for each (i, j) ∈ Γ; take γj to be

the dual values of the “linking (iii)” constraints for each j ∈ J ; re-solve the subproblems (PS-V-j), (PS-VT-jt),

and (PS-T-j) for all campaigns j ∈ J and time periods t ∈ Tj (analytically, via repeated use of Theorem 1,

as we have described); increment the iteration counter N := N + 1 and record the subproblem solutions as

{xijtN}j∈J,i∈Γ(j),t∈Tj , {xijN}j∈J,i∈Γ(j), {yjN}j∈J , {yTjN}j∈J , with values {vVjN}j∈J and {vTjN}j∈J , computed

again using (EC.13) and (EC.14); add the subproblem solutions as a new set of columns to the master problem;

and then iterate, repeatedly solving the master problem (PM-MULT) and subproblems (PS-V-j), (PS-VT-jt), and

(PS-T-j) for all j = 1..|J |, t∈ Tj , in this fashion until a termination criterion is attained.

We use the master problem (PM-MULT) to produce a near-optimal (and feasible) solution to

(P-MULT-ORIG), where the variables λVjn and λTjn determine the weights to apply to the solutions produced

by the viewer-type and time subproblems for campaign j in iteration n, respectively. The master problem

(PM-MULT) yields an upper bound and the subproblems collectively yield the lower bound zLB(β̂, η, γ). There-

fore, at each iteration, we can compute the optimality gap (zUB − zLB)/zLB , and terminate when it is below a

desired threshold.

As in the single-period case, we solve the master problem (PM) only every fifth iteration, and employ sub-

gradient optimization to update the prices β̂it, i ∈ I , t ∈ T ; ηij , (i, j) ∈ Γ; γj , j ∈ J for four out of every five

iterations. After we update the price vector using subgradient optimization, we solve the subproblems (PS-V-j),

(PS-VT-jt), and (PS-T-j) for all campaigns j ∈ J and time periods t ∈ Tj , just as before, and update the master

problem’s columns using the subproblem solutions.
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To use subgradient optimization, we note that the (i, t)th component of the subgradient corresponding to the

(i, t)th relaxed supply constraint is git :=
∑

j∈Γ(i)∩Jt sitxijt− sit; the (i, j)th component of the subgradient cor-

responding to the (i, j)th relaxed “linking (ii)” constraint is gij := sixij −
∑

t∈Tj
sitxijt; and the jth component

of the subgradient corresponding to the jth relaxed “linking (iii)” constraint is gj := yj − yTj . Using the step size

σn at iteration n, we update the price vector (β̂, η, γ) using subgradient optimization as follows:

β̂it := max(0, β̂it +σngit);

ηij := ηij +σngij;

γj := γj +σngj.

We use step sizes

σn =
2(zUB − zLB(β̂, η, γ))∑

i∈I,t∈T g
2
i +
∑

(i,j)∈Γ g
2
ij +

∑
j∈J g

2
j

,

which have been shown in the literature (e.g., Fisher 2004) to make steady progress toward the optimal dual

prices.

To summarize, we solve (P-MULT-ORIG) to near-optimality by (1) initializing the master problem

(PM-MULT) at iteration n = 0 using a heuristic solution; (2) incrementing the iteration counter (N := N +

1); (3a) solving the master problem (PM-MULT) every fifth iteration to get a new price vector (β̂, η, γ),

a near-optimal feasible solution, and the value of this solution which serves as an upper bound zUB for

(P-MULT-ORIG); (3b) employing subgradient optimization for four out of every five iterations to update the

values of (β̂, η, γ), from the past iteration; (4) solving all campaign-j subproblems for the viewer-type, time, and

“viewer-type and time” dimensions analytically using Theorem 1 to get new columns to be placed into the master

problem (PM-MULT) as well as a new lower bound zLB; (5) updating either the lower bound or the upper bound,

or both, if they are tighter than they were last iteration; (6) computing the optimality gap (zUB − zLB)/zLB and

terminating if the termination criterion has been attained (e.g., optimality gap < 1%); or continuing to iterate by

going to step 2, otherwise.

E.7. Tail Gini

In the baseline multi-period Gini model (MB) from §E.4, penalties are incurred if the impression allocation does

not fall within the impression target intervals [lij, uij], [ljt, ujt], and [lijt, uijt] defined by the constraints (EC.5d),

(EC.5e), and (EC.5f). To formulate Gini-based models that incorporate the idea of impression target ranges,

where no penalty is incurred when the impression allocation is within the target range, we use the tail-Gini

concept (see the related studies of Mansini et al. 2007; Ogryczak and Ruszczyński 2002a,b). Consider an n-

dimensional vector x. The tail-Gini coefficient of x is the conditional average of the absolute differences between

the components xi and xj of each pair (xi, xj), i, j = 1, . . . , n divided by twice the mean value µ= 1
n

∑n

i=1 xi:

TG=

n∑
i=1

n∑
j=1

(|xi−xj| − r)+

2n2µ
,
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where r is a user-defined threshold value. The above formula shows that the tail-Gini measure is based on the

idea of conditional deviation and is equal to the standard Gini (1) if r is equal to 0. A pair (xi, xj) has an impact

on the value of TG if and only if the absolute value of the difference between xi and xj is strictly larger than r.

Using the above definition, we may formulate tail-Gini metrics corresponding to (5), (EC.6), and (EC.7) as:

TGj =

(
1

ŝj

) ∑
(h,i)∈Γ0(j)

shsi (|xhj −xij| − rhi)+

∑
i∈Γ(j)

sixij
,

TGjt =

(
1

ŝjt

) ∑
(h,i)∈Γ0(j)

shtsit (|xhjt−xijt| − rhit)+

∑
i∈Γ(j) sitxijt

,

and

TGT
j =

(
1

|Tj|wj

) ∑
(t,τ)∈T0(j)

(|wjt−wjτ | − rt)+
,

where rhi, rhit, and rt are fixed parameters.

Using the tail-Gini metric, we obtain the following objective function:

min α1

∑
j∈J

wjTGj +α2

∑
j∈J

wjTG
T
j +α3

∑
j∈J,t∈Tj

wjtTGjt +
∑
j∈J

pjyj .




