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ABSTRACT OF THE DISSERTATION

Non-Parametric Tests for Treatment Effect Heterogeneity in Randomized Experiments and
Observational Studies

by

Maozhu Dai

Doctor of Philosophy in Statistics

University of California, Irvine, 2021

Chancellor’s Professor Hal S. Stern , Chair

Comprehensively assessing the effect of a treatment usually includes two objectives, estimat-

ing the average treatment effect across the whole target population and evaluating variability

of the treatment effect across different subpopulations in an effort to provide more precise

treatment recommendations. A common way to identify treatment effect heterogeneity is

to split the sample into several strata based on one or more baseline covariates which may

be relevant to the effect of treatment, and then compare the localized or stratum-specific

treatment effects across those strata. Parametric approaches have been proposed to compare

average treatment effects across several strata. One approach is testing interactions between

treatment indicator and group indicators in linear regressions (Allison, 1977), and another

approach is the likelihood ratio test proposed by Gail and Simon (1985). Both of them re-

quire parametric assumptions of outcome distributions. When the parametric assumptions

fail, the test may be invalid or the power may be negatively impacted. Thus there is a need

for non-parametric tests that can better adapt to various outcome distributions.

Randomized experiments are considered to be the gold standard for assessing treatment ef-

fects, as all baseline covariates are expected to be well balanced in treatment groups after

randomization. However, randomized experiments are not always feasible due to various ob-

xi



stacles, e.g., ethical concerns and high expense. Therefore researchers turn to observational

studies. Not only can they avoid the obstacles faced by randomized experiments, but be-

cause there are often fewer exclusionary characteristics, the results of observational studies

may generalize better to the target population. A main challenge of observational studies is

controlling confounding variables. There is a considerable literature on causal inference in

observational studies that has been developed targeting this challenge. Many of the proposed

procedures balance the observed variables and then rely on the unconfoundedness assump-

tion, i.e., all confounding variables are observed. This assumption is not only strong but also

unverifiable. The violation of this assumption can invalidate causal conclusions. A variety of

approaches to assessing the sensitivity of causal conclusions to violations of the unconfound-

edness assumption have been proposed. By assessing the extent of the assumption violation

required to change the conclusion and evaluating the possibility of such a violation based on

domain knowledge, it is possible to provide more reliable conclusions.

In this dissertation, we describe three contributions we have made to the goal of com-

prehensively evaluating the effectiveness of treatments. The first two contributions are

non-parametric U-statistic-based tests examining the variability of treatment effects across

different subpopulations. The first procedure can be appropriately applied in cases, like

randomized experiments, where all baseline covariates are well balanced within each stra-

tum; the second procedure adjusts unbalanced confounding variables using propensity scores.

Compared to their parametric counterparts, likelihood ratio tests, our non-parametric tests

are more powerful when the distributions of study outcomes depart substantially from the

distributions assumed by likelihood ratio tests. The third contribution is a sensitivity anal-

ysis that addresses the concern of possible violation of the unconfoundedness assumption

for the adjusted Mann-Whitney test, a non-parametric test that evaluates the existence of

treatment effects in observational studies.
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Chapter 1

Introduction

Researchers from many scientific disciplines are interested in estimating the effects of treat-

ments. For example, biologists study whether a mutation in a gene causes a particular human

disease; economists investigate how a welfare policy would change household incomes; and

criminologists are interested in how a proposed punishment regime will affect criminals’ re-

cidivism rates. This is however a challenging task, as each subject can only be exposed to

at most one treatment, and subjects receiving different treatments may have very different

characteristics.

The causal inference literature usually focuses on estimating the average treatment effect

across a large population (e.g., Rubin, 1974; Rosenbaum and Rubin, 1983). With a large

number of subjects in the treatment and control groups, in order to isolate the effect of

treatment on the outcome of interest, we only need to balance the distributions of all baseline

covariates between the two treatment groups instead of looking for an exact one-to-one

match. Randomized experiments are an effective approach for achieving such balance. In

randomized experiments, the treatment assignments are completely independent of all other

factors, which makes the distributions of all covariates in both the treatment and control
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groups equal to their marginal distributions. For this reason randomized experiments are

considered to be the gold standard for average treatment effect estimation, and have been

commonly used in various cases, including effectiveness evaluation of drugs and vaccines in

human clinical trials, e.g, the vaccines for COVID-19 (Voysey et al., 2021).

1.1 Assessing treatment effect heterogeneity in ran-

domized experiments

Apart from average treatment effects, the variability of treatment effects across the popula-

tion is also of great importance. Though it is possible that a study will identify a treatment

that provides similar effect across the entire population of interest, it is often the case that

people with different characteristics can respond quite differently to the same treatment.

A treatment with positive effect on some people can have a negative effect on others. Fo-

cusing on the average treatment effect alone may neglect such important information. For

example, Pate and Hamilton (1992) found that in domestic violence cases, arrest of the sus-

pect did not have a significant average effect on subsequent spouse assault. However, when

they looked into subgroups of suspects, they found that arrest decreased the recidivism rate

among employed suspects whereas it increased the recidivism rate among unemployed sus-

pects. Therefore, quantifying localized or subpopulation effects is crucial. A popular method

to learn about localized treatment effects is subgroup analysis (Rothwell, 2005; Cook et al.,

2004). We can split the original sample into several strata based on covariates that are

expected to be relevant to the effect of the treatment, and then conduct analyses to ob-

tain average treatment effects for each stratum. Though commonly used, subgroup analysis

involves various problems, e.g., multiple testing and loss of statistical power (Cook et al.,

2004). Thus it is not always recommended. However when there is enough treatment effect

heterogeneity across strata, subgroup analysis can be beneficial. Therefore a test identifying

2



the existence of treatment effect heterogeneity can be valuable.

Lots of tests assessing treatment effect heterogeneity have been published. They focus on

different hypotheses to examine different aspects of heterogeneity. For instance, Delgado and

Escanciano (2013) and Hsu (2017) focus on testing conditional stochastic dominance; Gail

and Simon (1985) and Chang et al. (2015) are interested in checking whether treatment effects

in different subpopulations are of the same sign; Crump et al. (2008) and Chang et al. (2015)

focus on testing whether treatment effects are consistently equal to zero; Ding et al. (2016)

are interested in the sharp null hypothesis that all individuals have the same treatment

effects. In this dissertation, we focus on assessing whether average treatment effects are

the same across multiple strata. With respect to this goal, parametric approaches have

been proposed a long time ago. For instance, we can test interactions between treatment

indicators and subgroup indicators in linear regressions (Allison, 1977; Byar, 1985). Also

Gail and Simon (1985) proposed the likelihood ratio test (LRT). These approaches relies on

parametric assumptions of the outcome distributions, and failure of which may make the

tests invalid or impact the power. In some cases, a non-parametric test that does not rely

on parametric assumptions can be helpful.

U-statistics (Korolyuk and Borovskich, 2013) have been commonly used in various non-

parametric tests, e.g., the Mann-Whitney test (Mann and Whitney, 1947) and the signed

rank test (Van der Vaart, 2000). An overview of U-statistics can be found in Section 2.2.

We propose a non-parametric test for treatment effect heterogeneity based on U-statistics.

It does not rely on parametric assumptions for the distributions of study outcomes and

it also bypasses treatment effect estimation for each stratum. Compared to the LRT, the

proposed U-statistic-based test could be more powerful when outcome distributions deviate

substantially from normal distributions and it is more robust to outliers.
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1.2 Assessing treatment effect heterogeneity in obser-

vational studies

A major limitation of randomized experiments is that they are not always feasible. One

reason is that the expense may be too high if the treatment is expensive and the number of

participants required is large. More importantly, equipoise may not hold in some settings

and conducting randomized experiments in those situations is unethical. For instance, it

would be unethical to ask random subjects to smoke in order to investigate the effect of

smoking on lung cancer. Also we would never propose modifying subjects’ genes to study

the causal effect of a gene mutation on a disease of interest. This leads to a scientific need

for causal inferences to be derived from observational studies.

In observational studies, we observe and collect data from subjects in different treatment

groups without any manipulation by the experimenter. This procedure is often cheaper

and it avoids the ethical issues that randomized experiments can encounter. An additional

advantage is that with appropriate sampling, the inference results can be easily generalized

to the population of interest, whereas the results from randomized experiments can only be

generalized to individuals who are like the participants, which may be different from the

target population. Despite these advantages, estimating treatment effects in observational

studies involves many challenges, e.g., potential selection bias and existence of confounders

(Lu, 2009).

A large number of techniques have been proposed in the last several decades targeting on

balancing confounders in observational studies, ranging from exact matching, to regressions,

to various propensity-score-based approaches (e.g., Rosenbaum and Rubin, 1983; Dehejia

and Wahba, 1999; Rosenbaum, 2002b; Imai and Ratkovic, 2014; Imbens and Rubin, 2015;

Vegetabile et al., 2020). Propensity-score-based approaches are more and more commonly

used when there are a large number of baseline covariates. The propensity score is the

4



probability of receiving a particular treatment conditional on observed baseline covariates,

which can be estimated by any binary classification models that predict class probabilities.

Based on a theorem from Rosenbaum and Rubin (1983), we only need to balance the one-

dimensional propensity scores to adjust all observed baseline covaraites. Various approaches

can be used to adjust for propensity scores. For example, a multiple linear regression that

only adjusts for propensity scores can be used. Matching and subclassification on propensity

scores are also popular (Imbens and Rubin, 2015). Apart from them, some researchers also

use inverse probability weighting (IPW) (Horvitz and Thompson, 1952) to balance baseline

covariates. After weighting subjects by inverse of their group membership probabilities, the

distributions of baseline covariates in treatment and control groups would both be equal to

the marginal distributions of these covariates. Motivated by Satten et al. (2018), which uses

IPW to balance covariates for two-sample U-statistics, we apply IPW to extend our proposed

U-statistic-based test for treatment effect heterogeneity to be applicable in observational

studies. The adjusted non-parametric test inherits the advantages of the unadjusted version,

i.e., the adjusted non-parametric test could be more powerful than its parametric counterpart

when the parametric assumptions of the latter fail.

1.3 Sensitivity analysis for the unconfoundedness as-

sumption

The most challenging limitation of propensity-score-based approaches is that they can only

adjust for variables that have been observed; causal inferences rely on the unconfoundedness

assumption which assumes we have observed all confounders. Even in a carefully designed

study, the assumption can be violated and it is untestable with empirical data. There is

emerging literature on approaches for addressing this limitation (e.g., Cornfield et al., 1959;

Rosenbaum, 2002c; VanderWeele and Ding, 2017; Zhao et al., 2019). These authors propose
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various sensitivity analysis approaches to assess the degree of violation of the unconfounded-

ness assumption that would lead to a change in the conclusion. Different sensitivity frame-

works/approaches are implemented in different settings. For example, Rosenbaum (2002a)

targets on studies with matched cases, and the sensitivity framework sets threshold for ratios

of the probabilities of receiving treatment for the matched subjects. Hosman et al. (2010)

and Cinelli and Hazlett (2020) focus on linear regression models and their sensitivity frame-

works set thresholds for the associations between unobserved covariates with outcomes and

treatment assignments. Zhao et al. (2019) focuses on IPW-based estimators and adopts the

marginal sensitivity framework that sets thresholds for the odds ratios between the desired

propensity scores that are also conditional on unobserved confounders and the estimated

propensity scores.

We develop a sensitivity analysis approach for the adjusted Mann-Whitney test proposed

by Satten et al. (2018). The Mann-Whitney test is a popular non-parametric test used in

randomized two-treatment experiments to assess treatment effects. Satten et al. (2018) use

IPW based on propensity scores to extend this test to be applicable in observational studies.

We develop an approach for conducting a sensitivity analysis to assess the robustness of the

Satten et al. (2018) test to the violation of the unconfoundedness assumption. We use the

marginal sensitivity framework introduced by Tan (2006) and Zhao et al. (2019), which sets

a threshold for the absolute value of the log odds ratio between the desired propensity score

conditional on unobserved confounders and the estimated propensity score. Based on the

bootstrap idea proposed by Zhao et al. (2019), which focuses on sensitivity analysis for mean

estimation with missing data, we develop an approach that derives an interval that achieves

the nominal coverage probability for the expectation of the adjusted Mann-Whitney test

statistic as long as the true propensity scores are within the pre-specified sensitivity ranges.

We also extend this approach to more general adjusted multi-sample U-statistics, which

includes the test statistic comparing treatment effects between two strata of Chapter 3 and

mean estimation with missing data as special examples.
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1.4 Outline of this dissertation

This dissertation describes three contributions to the assessment of treatment effect hetero-

geneity. The first two contributions focus on testing treatment effect heterogeneity while

avoiding strong assumptions about the distribution of study outcomes or test statistics.

Chapter 2 introduces a nonparametric U-statistic-based test for treatment effect heterogene-

ity across pre-defined strata in randomized experiments. Chapter 3 extends this test to

be applicable in observational studies. The third contribution, described in Chapter 4, ad-

dresses an approach to sensitivity analysis for the adjusted Mann-Whitney test and other

more general adjusted U-statistics. In Chapter 5, we summarize our conclusions and discuss

potential future directions for research in this area.
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Chapter 2

A U-Statistic-Based Test of

Treatment Effect Heterogeneity

2.1 Introduction

Treatment effect heterogeneity is of great importance, as the average treatment effect across

the whole population may neglect important variability of the treatment effect across sub-

populations. In health care, the concept of personalized medicine is attracting a great deal of

attention (Ginsburg and Willard, 2009; Jain, 2009; Chan and Ginsburg, 2011), as it promises

a way to provide treatment recommendations with greater precision based on a patient’s

baseline characteristics. In social sciences, people are using similar approaches to assess lo-

calized effects in order to comprehensively evaluate a policy or a campaign strategy (Bitler

et al., 2006; Feller and Holmes, 2009). In one criminology study, arrest can result in effects of

opposite sign on recidivism rates for different kinds of criminals (Pate and Hamilton, 1992).

In all areas, subgroup analysis (Dixon and Simon, 1991) can be conducted to assess treat-

ment effects at the subpopulation level. Both randomized studies and observational studies
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can provide insight into defining relevant subpopulations. In randomized clinical trials, pa-

tients can be assigned to different subgroups based on one or several baseline factors. In

observational studies, one approach to identify subpopulation is through subclassification on

propensity scores (Xie et al., 2012). However, subgroup analysis is not always recommended

as it also involves some problems, e.g., multiple testing and loss of statistical power (Cook

et al., 2004). Subgroup analysis can be especially valuable when there is enough treatment

effect heterogeneity. Therefore, reliable inference about whether there is heterogeneity in

treatment effects across strata is usually needed.

There is a great deal of literature on exploring heterogeneity of treatment effects. The

published results focus on different aspects of heterogeneity in that they examine different

null hypotheses. Some focus on testing conditional stochastic dominance (Delgado and

Escanciano, 2013; Hsu, 2017). Other focus on testing whether the treatment effects in

subpopulations are of the same sign (Gail and Simon, 1985; Chang et al., 2015). Crump

et al. (2008) and Chang et al. (2015) are interested in tesing whether the treatment effects

are consistently equal to zero. Ding et al. (2016) focus on the null hypothesis that all

individuals have the same treatment effects. In this paper, we focus on testing whether the

average stratum-specific treatment effects are constant across different strata.

A common approach to identifying whether the stratum-specific average treatment effects

are equal across different strata is through parametric statistical tests. For example, we

can test the interaction term between treatment assignment and effect modifiers in multiple

linear regressions (Allison, 1977; Byar, 1985). We can also use the likelihood ratio test

(LRT) proposed by Gail and Simon (1985). These approaches are widely used but rely on

the parametric assumptions of outcome distributions being correct. When the assumptions

are not correct, the inference is invalid or the power of the test is impacted.

Non-parametric approaches exist as well. Crump et al. (2008) created a non-parametric

approach based on a particular series estimator for treatment effect introduced by Imbens
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et al. (2006). Sant’Anna (2020) generalized Crump et al. (2008) by allowing censored data

and endogenous treatment selections. In this paper, we propose a U-statistic-based approach

to test whether the stratum treatment effects are homogeneous without having to estimate

the stratum treatment effects. Our approach relies on an unconfoundedness assumption in

each stratum.

U-statistics have been widely used to create distribution-free tests. Examples include the

signed rank test and Mann-Whitney test (Van der Vaart, 2000). Compared to their paramet-

ric counterparts assuming normal distributions, U-statistic-based tests usually have higher

power when the distributions are far from normal. When the normality assumption is sat-

isfied, the parametric test has slightly higher power, but when the U-statistic-based test is

more powerful, the advantage can be significant (Hodges et al., 1956; Lehmann and D’Abrera,

1975; Zimmerman, 1998). The non-parametric heterogeneity test we propose here is also

based on U-statistics. We use U-statistics to compute a test statistic comparing treatment

effects across pairs of strata. The overall test statistic is a combination of the pairwise test

statistics. Its performance will be compared to the LRT proposed by Gail and Simon (1985).

The remainder of the paper is structured as follows. In Section 2.2, we provide a review

of U-statistics. In section 2.3, we introduce our proposed U-statistic-based non-parametric

test for treatment effect heterogeneity in detail. In section 2.4, some simulation studies

demonstrate the validity of the test and its comparison with the LRT under several different

circumstances. In section 2.5, we apply the proposed method to a randomized study of pro-

gram effectiveness in labor economics. Additional discussion of this approach can be found

in Section 2.6.
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2.2 Background: Review of U-Statistics

U-statistics are a class of statistics widely used to construct non-parametric unbiased estima-

tors of estimable parameters with minimum variance. The asymptotic normality property of

U-statistics (under some mild conditions) makes it very popular as a non-parametric testing

tool.

We start with a review of one-sample U-statistics (Van der Vaart, 2000). Let X1, · · · , Xn

be a random sample from F (x), and assume there is a symmetric function φ(x1, · · · , xm)

(m ≤ n) such that E[φ(X1, · · · , Xm)] = θ, where θ is the parameter of interest. Then the

U-statistic for the parameter θ created by kernel φ is

U(X1, · · · , Xn) =
1(
n
m

)∑
β∈B

φ(Xβ1 , · · · , Xβm), (2.1)

where B contains all
(
n
m

)
ordered subsets β = (β1, · · · , βm) of m integers chosen without

replacement from the set {1, · · · , n} with 1 ≤ β1 < · · · < βm ≤ n.

The signed rank statistic is an example of a one-sample U-statistic where θ = E(I(X1 +X2 >

0)). This can be used to test whether the location (median) of a symmetric distribution is

equal to 0 via testing whether θ = 1
2
. With the symmetric kernel φ(x1, x2) = I(x1 +x2 > 0),

the corresponding U-statistic estimator of θ is

U =
1(
n
2

) ∑
1≤i<j≤n

I(Xi +Xj > 0). (2.2)

A key property of the one-sample U-statistic is that it has an asymptotic normal distribution.

If Eφ2(X1, · · · , Xm) <∞, then

√
n(U − θ) D−→ N(0, σ2), (2.3)
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where σ2 is the asymptotic variance of
√
nU .

The multi-sample U-statistic is a natural extension of the one-sample U-statistic. Let

{X1α, α = 1, · · · , n1}, · · · , {Xcδ, δ = 1, · · · , nc} be c independent random samples from

distribution functions F1(x), · · · , Fc(x) respectively, and φ(x11, · · · , x1m1 ; · · · ;xc1, · · · , xcmc)

be a symmetric function within each set of variables {xj1, · · · , xjmj
} (j = 1, · · · , c) with E(φ)

equal to the parameter of interest θ, where m1 ≤ n1, · · · ,mc ≤ nc. Then the corresponding

c-sample U-statistic is

U = [
c∏
j=1

(
nj
mj

)
]−1
∑
α1

· · ·
∑
αc

φ(X1α1,1 , · · · , X1α1,m1
; · · · ;Xcαc,1 , · · · , Xcαc,mc

) (2.4)

where the summation is over all possible sets of subscripts αj = (αj,1, · · · , αj,mj
) such that

1 ≤ αj,1 < · · · < αj,mj
≤ nj for each of the c samples (i.e, j = 1, · · · , c).

The Mann-Whitney statistic is an example of two-sample U-statistic with m1 = m2 = 1.

The parameter of interest is θ = E(I(X11 < X21)). The U-statistic with respect to the

parameter of interest is

U =
1(

n1

1

)(
n2

1

) n1∑
i=1

n2∑
j=1

I(X1i < X2j). (2.5)

The Mann-Whitney statistic is the test statistic of Mann-Whitney test (Mann and Whitney,

1947), which is a consistent test for the null hypothesis that θ = 1
2

versus the alternative

hypothesis that θ 6= 1
2
.

There is also an asymptotic normality property for multi-sample U-statistics, even for a vec-

tor of several multi-sample U-statistics defined upon the same sets of mutually independent

samples with different kernel functions. Lehmann et al. (1963) showed that if there are r

multi-sample U-statistics U (1), · · · , U (r), each defined as in (4), with corresponding kernel

functions φ(1), · · · , φ(r) such that E[φ(k)] = θ(k) and E([φ(k)]2) < ∞ for k ∈ {1, · · · , r}, and
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if there also exists positive constants λj (0 < λj < 1) such that
nj

N
→ λj as N =

c∑
j=1

nj →∞

for j ∈ {1, · · · , c}, then

√
N



U (1) − θ(1)

U (2) − θ(2)

...

U (r) − θ(r)


D−→ N(0,Σ), (2.6)

where Σ is the asymptotic covariance matrix of
√
N(U (1), U (2), · · · , U (r)).

In order to apply (6) to hypothesis testing with regard to the parameter θ = (θ(1), · · · , θ(r)),

we need to identify the form of Σ. This can be addressed using Hájek projection principle

(Hájek, 1968) to derive the asymptotic normality property of the U-statistics.

For one c-sample U-statistic of degree (m1, · · · ,mc), if E(φ2) <∞, the Hájek projection of

U − θ onto the space V = {V |V =
n1∑
i=1

f1(X1i) + · · · +
nc∑
i=1

fc(Xci) where fj (j ∈ {1, · · · , c})

are some real-valued functions} is

Û =
m1

n1

n1∑
i=1

h1(X1i) + · · ·+ mc

nc

nc∑
i=1

hc(Xci), (2.7)

where the h functions are defined as

hj(x) = E[φ(X11, · · · , X1m1 ; · · · ;Xc1, · · · , Xcmc|Xj1 = x]− θ, j ∈ {1, .., c}. (2.8)

Then it can be proved (Korolyuk and Borovskich, 2013) that

√
N(U − θ − Û)

P−→ 0 as N →∞. (2.9)

This shows that U − θ and Û have the same asymptotic distribution. By the Central Limit
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Theorem,

√
NÛ

d−→ N(0,
m2

1

λ1

V ar(h1(X1)) + · · ·+ m2
c

λc
V ar(hc(Xc))) as N →∞, (2.10)

provided the variance terms are finite. Thus we have

√
N(U − θ) D−→ N(0,

m2
1

λ1

V ar(h1(X1)) + · · ·+ m2
c

λc
V ar(hc(Xc))) as N →∞. (2.11)

With the list of U-statistics (U (1), · · · , U (r)), there is a list of Hájek projection (Û (1), · · · , Û (r))

corresponding to each of them with

Û (k) =
m

(k)
1

n1

n1∑
i=1

h
(k)
1 (X1i) + · · ·+ m

(k)
c

nc

nc∑
i=1

h(k)
c (Xci) for k ∈ {1, · · · , r}, (2.12)

where h
(k)
j (x) = E[φ(k)(X11, · · · , X1n1 ; · · · ;Xc1, · · · , Xcnc |Xj1 = x]− θ(k) for j ∈ {1, · · · , c}.

By the multidimensional Central Limit Theorem, we know

√
N



Û (1)

Û (2)

...

Û (r)


D−→ N(0,

1

λ1

Σ1 + · · ·+ 1

λc
Σc) (2.13)

where Σj = Cov[m
(1)
j h

(1)
j (Xj), · · · ,m(r)

j h
(r)
j (Xj)] for j ∈ {1, · · · , c}. Since

√
N



U (1) − θ(1) − Û (1)

U (2) − θ(2) − Û (2)

...

U (r) − θ(r) − Û (r)


P−→ 0 as N −→∞, (2.14)
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we have

√
N



U (1) − θ(1)

U (2) − θ(2)

...

U (r) − θ(r)


D−→ N(0,

1

λ1

Σ1 + · · ·+ 1

λc
Σc). (2.15)

2.3 Testing for Treatment Effect Heterogeneity

Suppose we are focused on a study population comprised of S strata. For each stratum

s, s ∈ {1, · · · , S}, let Y t
s denote the outcomes of subjects in the treatment group where Y t

s =

{Y t
si, i = 1, · · · , nts}, and Y c

s denotes the outcomes in the control group where Y c
s = {Y c

si, i =

1, · · · , ncs}. Define Ns = nts + ncs as the total sample size in strata s, and N =
∑S

s=1Ns as

the overall sample size across all strata. We develop a non-parametric U-statistic-based test

(U test) for the null hypothesis of no treatment effect heterogeneity against the alternative

hypothesis that not all treatment effects are equal. In the derivation and in our studies, we

focus on an assumed additive treatment effect. Alternative methods of the treatment effect

can be considered, they would require alternative choices for the U-statistic kernel functions.

The technique to be discussed here relies on two assumptions: (1) Y t
1 , · · · , Y t

S , Y
c

1 , · · · , Y c
S

are mutually independent; (2)There exist constants λωs ∈ (0, 1) such that nω
s

N
→ λωs for all

s ∈ {1, · · · , S} and ω ∈ {t, c}.
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2.3.1 Comparing Treatment Effects Between the First Two Strata

We start by constructing a U-statistic comparing the treatment effects of the first two strata.

The hypotheses we focus on are

H0 : P (Y t
1 − Y c

1 < Y t
2 − Y c

2 ) +
1

2
P (Y t

1 − Y c
1 = Y t

2 − Y c
q 2) =

1

2

⇐⇒Ha : P (Y t
1 − Y c

1 < Y t
2 − Y c

2 ) +
1

2
P (Y t

1 − Y c
1 = Y t

2 − Y c
q 2) 6= 1

2
. (2.16)

The term 1
2
P (Y t

1−Y c
1 = Y t

2−Y c
2 ) is used to account for possible ties for discrete distributions.

Under the null hypothesis H0, E[I(Y t
1 − Y c

1 < Y t
2 − Y c

1 ) + 1
2
I(Y t

1 − Y c
1 = Y t

2 − Y c
2 )] will be

equal to 1
2
. Then the 4-sample U-statistic based on kernel function φ(1,2)(yt1; yc1; yt2; yc2) =

I(yt1 − yc1 < yt2 − yc2) + 1
2
I(yt1 − yc1 = yt2 − yc2) is

U (1,2) =
1

nt1n
c
1n

t
2n

c
2

nt
1∑

i=1

nc
1∑

j=1

nt
2∑

k=1

nc
2∑

l=1

I(Y t
1i−Y c

1j < Y t
2k−Y c

2l)+
1

2
I(Y t

1i−Y c
1j = Y t

2k−Y c
2l). (2.17)

Denoting θ(1,2) = E(U (1,2)) and using the background results about multi-sample U-statistics

with r = 1, with the assumption that nω
s

N
→ λωs (0 < λωs < 1) as N → ∞ and the fact that

E[(φ(1,2))2] ≤ 1 , we have

√
N(U (1,2) − θ(1,2))

D−→ N(0, σ2
1,2), (2.18)
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where

σ2
1,2 =

1

λt1
V ar(h

t,(1,2)
1 (Y t

1 )) +
1

λc1
V ar(h

c,(1,2)
1 (Y c

1 )) +
1

λt2
V ar(h

t,(1,2)
2 (Y t

2 ))+

1

λc2
V ar(h

c,(1,2)
2 (Y c

2 )) ∈ (0,∞),

hω,(1,2)
s (x) = E[φ(1,2)(Y t

1 ;Y c
1 ;Y t

2 ;Y c
2 )|Y ω

s = x]− θ(1,2),

and assuming V ar
(
hωs (Y ω

s )
)
> 0 for s ∈ {1, 2}, ω ∈ {t, c}.

The test based on this is consistent for hypotheses H0 vs H1 in (2.16).

To apply this method, we first estimate h
ω,(1,2)
s (x) (s ∈ {1, 2} and ω ∈ {t, c}), an ex-

pectation, by the method of moments. For instance, h
t,(1,2)
1 (x) is estimated by the sam-

ple mean ĥ
t,(1,2)
1 (x) = 1

nc
1n

t
2n

c
2

nc
1∑

j=1

nt
2∑

k=1

nc
2∑

l=1

I(x − Y c
1j < Y t

2k − Y c
2l). Note that this calculation

is repeated with each data value Y t
1i (i = 1, · · · , nt1) taking the place of x. Likewise for

other h terms. Then we estimate V ar(h
ω,(1,2)
s (Y ω

s )) by the sample variance of ĥ
ω,(1,2)
s (Y ω

s )

as 1
nω
s−1

nω
s∑

i=1

[ĥ
ω,(1,2)
s (Y ω

si ) − 1
nω
s

nω
s∑

j=1

ĥ
ω,(1,2)
s (Y ω

sj)]
2, for s ∈ {1, 2} and ω ∈ {t, c}, and take the

weighted sum of them to approximate σ2
1,2.

2.3.2 Testing Treatment Effect Heterogeneity Across Multiple Strata

With S strata, the hypotheses we focus on are

H0 : P (Y t
p − Y c

p < Y t
q − Y c

q ) +
1

2
P (Y t

p − Y c
p = Y t

q − Y c
q ) =

1

2
for any 1 ≤ p < q ≤ S

⇐⇒Ha : the equation does not hold for at least one pair of (p, q). (2.19)

For any pair of strata, we can construct a test statistic like (2.17). Denote U (p,q)(p < q)

as the U-statistic comparing strata p and q with kernel φ(p,q)(ytp; y
c
p; y

t
q; y

c
q) = I(ytp − ycp <

ytq − ycq) + 1
2
I(ytp − ycp = ytq − ycq) and expectation θ(p,q). By applying the Hájek projection
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principle to a vector of multi-sample U-statistics as in Section 2.2, we have

√
N



U (1,2) − θ(1,2)

U (1,3) − θ(1,3)

...

U (S−1,S) − θ(S−1,S)


D−→ N(0,Σ) (2.20)

where Σ = 1
λt1

Σt
1 + 1

λc1
Σc

1 + · · ·+ 1
λtS

Σt
S + 1

λcS
Σt
S and

Σω
s = Cov(h̃

ω,(1,2)
s (Y ω

s ), · · · , h̃ω,(1,S)
s (Y ω

s ), h̃
ω,(2,3)
s (Y ω

s ), · · · , h̃ω,(S−1,S)
s (Y ω

s )) for all s ∈ {1, · · · , S}

and ω ∈ {t, c}. Here

h̃ω,(p,q)s (x) =


h
ω,(p,q)
s (x) = E[φ(p,q)(Y t

p ;Y c
p ;Y t

q ;Y c
q )|Y ω

s = x]− θ(p,q) if s = p or s = q,

0 o.w.

for {(p, q)|1 ≤ p < q ≤ S}. Under the null hypothesis H0 in (2.19), all θ’s are equal to 1
2
.

Estimation of Σ is carried out using a similar approach as described for estimation of σ2
1,2

in Section 2.3.1. We first construct an empirical estimate for each h function (as in the

paragraph below (2.18)) and then use the sample covariance matrix of

[h̃
ω,(1,2)
s (Y ω

s ), · · · , h̃ω,(1,S)
s (Y ω

s ), h̃
ω,(2,3)
s (Y ω

s ), · · · , h̃ω,(S−1,S)
s (Y ω

s )] with h′s replaced by their cor-

responding estimates to get Σ̂ω
s . Then Σ̂, the estimate of Σ, is the sum of the Σ̂ω

s over

s ∈ {1, · · · , S} and ω ∈ {t, c} with each term weighted by 1
λωs

.

The vector of pairwise test statistics U = (U (1,2), U (1,3), · · · , U (S−1,S))T can be combined

into a single overall test statistic using any function of U . Here we focus on Uh = N ·∑
1≤p<q≤S

(U (p,q)− 1
2
)2. The asymptotic distribution of Uh is not available in analytic form, but

a simulation approach can be used to assess Uh. A large number of independent samples of
√
N(U − 1

2
) are generated from the null N(0, Σ̂) distribution, and Uh is computed for each
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sample to generate the empirical null distribution of Uh. For α level test, we reject H0 when

Uh is greater than or equal to the 100(1−α) percentile of the empirical null distribution. Note

that other test statistics are also possible, e.g.,
√
N · max

1≤p<q≤S
|U (p,q) − 1

2
|, and simulation is

always an option for deriving the reference distribution. In our simulation study, we use the

statistic Uh because it proved reliable. This test based on Uh is consistent for the hypotheses

in (2.19).

Another test statistic that might seem natural is T = N(U− 1
2
1)Σ̂−(U− 1

2
1)T whose reference

distribution is χ2
k, where k is the rank of Σ̂. Σ̂− =

k∑
i=1

1
αi
qiq

t
i is a generalized inverse of Σ̂,

where {αi, i = 1, · · · , k} are the non-zero eigenvalues of Σ̂ and {qi, i = 1, · · · , k} are the

corresponding orthogonal eigenvectors. However, as U is a vector of all of the pairwise U-

statistics, the determinant of its covariance matrix can be very close to 0. Then Σ̂ can have

an eigenvalue α very close to 0, for which a tiny rounding error would have a large impact

on Σ̂− and thus on T . So even though the reference distribution of the test statistic T has

known distribution, we prefer using Uh.

2.3.3 Three Particular Cases to Apply

The approach described above is non-parametric, it does not make any specific assumption

about the shapes of the distributions of Y t
1 , · · · , Y t

S , Y
c

1 , · · · , Y c
S or the relationship among

them other than independence. Our U-statistic is testing whether the probability P (Y t
p −

Y c
p < Y t

q − Y c
q ) + 1

2
P (Y t

p − Y c
p = Y t

q − Y c
q ) (p 6= q) is equal to one half for all p, q. This does

not however provide much insight into the feature of outcomes that is being tested. When

there is no further assumptions of the outcome distributions at all, confusion may arise. We

describe three cases here, with a set of semi-parametric assumptions for each of them, under

which the interpretation of the test is clear. Many real-life problems may fit into those cases.

Case A: We assume all outcomes in different strata and different treatment groups follow a
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common distribution F up to a location shift, which is comprised of the additive treatment

effects τs within each stratum and assumed additive stratum effects ∆s for s ∈ {1, · · · , S}.

In this case, P (Y t
p −Y c

p < Y t
q −Y c

q ) + 1
2
P (Y t

p −Y c
p = Y t

q −Y c
q ) is equal to a half if and only if

the within-stratum location shifts (τp and τq) are the same. It can then be easily shown that

our test is consistent with identifying whether τs is the same across all strata. Since the shift

can be considered as the difference in means or difference in any percentiles between two

different treatment groups, the test is consistent with respect to the alternative hypothesis

that the difference of means (or percentiles) are unequal for at least one pair of strata. This

case is equivalent to testing the interaction in a two-factor factorial design when one factor

has two levels; in our case, one factor is stratum and the other is treatment which takes

two levels. The ANOVA F-test can be used to address this scenario, and non-parametric

tests have been proposed as an alternative (Patel and Hoel, 1973; De Neve and Thas, 2017).

The De Neve and Thas (2017) approach is similar to our approach in that they use the

same basic U-statistic that we do. They use a different summary statistic to aggregate the

pairwise comparison. A limitation is that their approach applies only to this case (Case A)

and not to Case B or Case C that are described next.

Case B : We assume that all outcomes in the treatment groups follow a common distribution

F t up to a stratum-specific location shift ∆t
s and all outcomes in the control groups follow a

possibly different common distribution F c up to a stratum-specific location shift ∆c
s for all

s ∈ {1, · · · , S}. Then the within-stratum treatment effect can be depicted as the difference

of the location shift ∆t
s − ∆c

s plus the difference of F t and F c. No matter what metric is

used to describe the difference of F t and F c, it is consistent across all strata. So in this case,

P (Y t
p − Y c

p < Y t
q − Y c

q ) + 1
2
P (Y t

p − Y c
p = Y t

q − Y c
q ) is 1

2
if and only if ∆t

p − ∆c
p = ∆t

q − ∆c
q.

So our test is identifying whether the difference of location shifts ∆t
s − ∆c

s are consistent

across strata, which can also be considered as the consistency of the difference of means or

percentiles between different treatment groups. We can easily prove the test is consistent

with the alternative hypothesis that the difference of means (or percentiles) between the
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treatment and control groups are not all identical across strata.

Case C : We assume that the outcomes in the same strata s ∈ {1, · · · , S} follow the same

distribution Fs up to a stratum-specific location shift τs, the additive treatment effect. Sim-

ilarly, in this case, our method is a consistent test with respect to the alternative hypothesis

that there are at least two strata such that the difference of means (or percentiles) between

the treatment and control groups are different.

The semi-parametric assumption in Case A is considered to be reasonable in practice when

the factor we use to stratify subjects, as well as the treatment, only shifts the location of

the outcome distributions but cannot change the shape. This is a common assumption. The

assumption in Case B is considered to be reasonable when the treatment changes the shape

of the outcome distributions, whereas the factor used to stratify subjects would only shift the

location. Suppose we are studying whether the effect of a welfare reform policy on household

income differs across several different geographic regions. Usually a welfare reform plan has

different magnitude of impact on families who are on different economic levels. Thus we may

expect the distribution of income after the reform to differ from the control condition. If

the shape of income distribution is similar across geographic regions or just differs by scale

among different regions, then this scenario could fit in our Case B. The assumption in Case C

is considered to be reasonable when the treatment effects are constant within each stratum,

but the distribution of outcomes differs across strata. Back to the welfare reform example.

If we stratify subjects according to their economic levels, then income distributions would

be expected to vary among different strata, but it is possible that treatment effects could be

constant.
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2.4 Simulation Study

We demonstrate the U-statistic test of treatment effect heterogeneity via a simulation study.

There are some computational challenges that are addressed first, then the simulation study

is described and results are provided. Simulations compare the U test to the LRT in a range

of scenarios, some of which match the assumptions in the parametric test and others do

not. Additionally, we show the relationship among power, sample size and effect size in two

scenarios.

2.4.1 Computational Issues

When the sample sizes are large, the computation of the U-statistic is computationally

expensive. Let’s take U (1,2) as an example. We need to compute the average over all the

combinations of I(Y t
1i−Y c

1j < Y t
2k−Y c

2l)+ 1
2
I(Y t

1i−Y c
1j = Y t

2k−Y c
2l), denoted by φ(1,2)(i, j, k, l),

which includes nt1 × nc1 × nt2 × nc2 terms. As this computation can be done in parallel

for different (i, j, k, l), it should not be a big problem when applying the method for a

single data set. In simulations, we need to generate thousands of data sets and compute

U-statistics for each of them. So in the simulation study, instead of computing the average

through exhaustive enumeration, we generate approximate U-statistics by randomly selecting

some of the combinations with replacement and use this average to approximate the U-

statistic. We randomly selected M = 103N samples with replacement from each treatment

subgroup as {yt1i, yc1i, yt2i, yc2i, i = 1, · · · ,M} to approximate U (1,2), here N is the total sample

size of the two strata. The sampling size M was determined by considering a range of

scenarios and estimating the variance of the test statistic Uh = N ·
∑

1≤i<j≤S
(U (i,j) − 1

2
)2

constructed by approximate U-statistics within each scenario via simulation. The variance

increases as N increases. In the simulation, as N ranged from 60 to 3000, the maximum

estimated variances for this choice of M ranged from 0.0058 to 0.104, which was judged to
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provide sufficient precision. One requirement of this sampling is that all subjects have to be

selected at least once, because we also used the sampled indicators to estimate h
ω,(1,2)
s (Y ω

si )

(s ∈ {1, 2}, ω ∈ {t, c}, i ∈ {1, · · · , nωs }). For instance, the estimate of h
t,(1,2)
1 (Y t

11) is computed

as the average of all selected φ(1,2)(i, j, k, l) with Y t
1i equal to Y t

11. Though this requirement is

not a challenge due to the large sampling size M , in the rare events that it occurs we would

need to redo the sampling procedure. As for the empirical reference distribution of the test

statistic Uh, we generated 105 random samples ri = (r
(1,2)
i , · · · , r(S−1,S)

i ) (i = 1, · · · , 105) from

the multivariate normal distribution N(0, Σ̂) for each simulation, and got the distribution

of ||ri||2 as the empirical reference distribution under H0. The empirical p-value is the

percentage of generated ||ri||2 greater than Uh. Fixing the type I error as α = 0.05, we reject

H0 when the p-value is smaller than α. We determined the sample size 105 by considering

a range of scenarios and estimating the variance associated with a simulation-based 95th

percentile. The sample size of 105 in the various cases makes the variance less than 0.01.

2.4.2 Review of the Likelihood Ratio Test for Treatment Effect

Heterogeneity

The likelihood ratio test for treatment effect heterogeneity was developed by Gail and Simon

(1985). Let τs denote the treatment effect in subgroup s (s ∈ {1, · · · , S}). The test assesses

the null hypotheses H0 : τ1 = · · · = τS versus the alternative that at least two of the

subgroup treatment effects are unequal. Under the assumption that τ̂s(s ∈ {1, · · · , S})

follows a normal distribution with

τ̂s
indep∼ N(τs, σ

2
s), s ∈ {1, · · · , S}, (2.21)
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we have heterogeneity test statistic

H =
S∑
s=1

(τ̂s − ¯̂τ)2/s2
s
H0∼ χ2

S−1 (2.22)

where ¯̂τ = (
S∑
s=1

τ̂s/s
2
s)/(

S∑
s=1

1/s2
s), and s2

s is a consistent estimator of σ2
s .

With fixed type I error α, we reject the null hypotheses H0 when the test statistic H is

greater than or equal to the 100(1− α)th percentile of χ2
S−1.

For additive treatment effects, the treatment effect estimates τ̂s can be the difference between

the sample means of the two treatment groups within strata s. When the subgroup sample

sizes are large, according to the Central Limit Theorem, τ̂s will approximate to a normal

distribution. However, when the distributions of the outcomes differ from normality and the

validity of the test relies on large sample sizes, the power of the test will be impacted as with

other parametric tests (Lehmann, 2004).

2.4.3 Simulation Study Design

Assuming we have three strata, we generated nωs random samples from treatment subgroup

ω within strata s from a distribution F ω
s (s ∈ 1, 2, 3;ω ∈ {t, c}). The choices of nωs and F ω

s

are described below. The hypothesis of no heterogeneity was tested via our non-parametric

U test and the LRT reviewed in the previous section. For each simulation scenario (choices

of nωs and F ω
s ), we generate L = 2000 data sets and carry out the tests on each. This yields

rejection rates and the empirical distribution of p-values.

We developed 17 different scenarios for the choice of the distributions F ω
s . These scenarios

are listed in Table 2.1. They are organized according to the three application cases outlined

in Section 2.3.3. For each scenario, the true treatment effects were varied to provide the null
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and alternative instances. The upper half of Table 2.1 lists the null cases and the lower half

lists the alternative cases.

For Case A, outcomes in the three strata and two treatment groups follow a common dis-

tribution F up to location shifts. The first scenario (A1) is that F = N(0, 1). For the next

two scenarios (A2 and A3), F are still symmetric distributions, but with tails lighter (A2)

or heavier (A3) than normal distribution. Next we consider three skewed distributions χ2
1,

Exp(1) and χ2
4 (labeled as A4 − A6) with their skewnesses decreasing in that order. The

support of these distributions are all positive. We are generally more interested in comparing

the scales of the treatment and control groups instead of location shifts in these scenarios.

So we suppose there are constants cωs such that Y ω
s

cωs
∼ F (s ∈ 1, 2, 3;ω ∈ {t, c}). Here we

use the logarithm of those outcomes in our test statistic Uh instead of using the original

outcomes directly. Now the problem of testing the consistency of ratio of scales is changed

into a problem of testing the consistency of the location shift log(cts)− log(ccs) (s = 1, · · · , S).

The final Case A example is a bimodal distribution 0.5N(−5, 1)+0.5N(5, 1) (labeled as A7).

In Case B, all outcomes in the treatment groups follow a common distribution F t up to a

location shift and all outcomes in the control group follow a different common distribution

F c up to a location shift. To create examples here, we choose two of the distributions used in

Case A whose supports are the whole real line (A1−A3, A7) and randomly assign them to

the treatment and control group. We try all
(

4
2

)
combinations, they are labeled as B1−B6.

In Case C where all outcomes in the same stratum follow a common distribution Fs (s =

1, · · · , S) up to a location shift, we select three distribution from Case A with support on the

whole real line and randomly assign them to the three strata. So we have
(

4
3

)
combinations

and they are labeled as scenarios C1− C4.

For each scenario described above, we vary the true treatment effects to get the null and

alternative cases, and also consider a range of different sample sizes. In each scenario, there
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are stratum-specific location shifts (∆1 = 0,∆2 = 1,∆3 = 2 for scenarios in Case A and

Case B). For all null cases, the stratum treatment effects are the same across the three

strata. For alternative cases, the treatment effects (τ1, τ2, τ3) form an arithmetic series with

τ2 = τ1 + Γ and τ3 = τ1 + 2Γ, where Γ > 0. Simulations were carried out for a range of

values of Γ. If Γ is too large, then both tests always reject the null hypothesis for almost

any sample size. Results are presented for a representative choice of Γ where this does not

occur. All simulation scenarios were investigated with six assumptions regarding sample

sizes. First, all subgroup sample sizes are the same (nωs = n) with n equal to 10, 50, 100 and

500. Second, the sample sizes of treatment and control within each stratum are the same,

but sample size varies across strata. We tried (nω1 , n
ω
2 , n

ω
3 ) (ω ∈ {t, c}) equal to (50, 100, 150)

and (150, 100, 50). The former corresponds to the case that the strata with higher effect

sizes have larger sample sizes. The latter is the opposite case.

2.4.4 Simulation Study Results

The rejection rates of both the U test and the LRT assuming α = 0.05 for all null cases of

the different scenarios are provided in Table 2.2. The first column of Table 2.2 shows the

labels of all scenarios. Each of the remaining columns corresponds to one sample size setting

for all scenarios. As expected all rejection rates are close to the 0.05 level. Since empirical

type I errors were computed by generating data for L = 2000 times, the standard error for

each is approximately 0.005. The table shows that when nωs = 10 (s ∈ {1, 2, 3};ω ∈ {t, w}),

the type I errors of both tests are a bit too high in all scenarios except for A4 and C4. For

scenario C3, when (n1, n2, n3) is equal to (50, 50, 50) or (150, 100, 50), type I errors of both

tests are a bit too high. In all other settings, the type I errors are well controlled for both

tests.

We then compare the power of the two tests by comparing their rejection rates for the alter-
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(nω1 = n1, n
ω
2 = n2, n

ω
2 = n3) (10,10,10) (50,50,50) (100,100,100) (500,500,500) (50,100,150) (150,100,50)

Test U test LRT U test LRT U test LRT U test LRT U test LRT U test LRT
Scenario
A1 0.075 0.068 0.048 0.045 0.048 0.044 0.053 0.052 0.054 0.048 0.054 0.051
A2 0.071 0.07 0.048 0.046 0.055 0.054 0.051 0.051 0.054 0.06 0.049 0.049
A3 0.078 0.065 0.056 0.059 0.056 0.051 0.051 0.056 0.064 0.055 0.052 0.046
A4 0.058 0.052 0.044 0.045 0.051 0.047 0.049 0.05 0.052 0.051 0.053 0.056
A5 0.067 0.064 0.06 0.056 0.056 0.056 0.052 0.053 0.052 0.051 0.054 0.054
A6 0.07 0.064 0.045 0.044 0.057 0.054 0.046 0.044 0.052 0.054 0.048 0.046
A7 0.074 0.073 0.049 0.052 0.047 0.051 0.06 0.056 0.055 0.052 0.048 0.048
B1 0.082 0.076 0.05 0.052 0.051 0.049 0.052 0.055 0.057 0.053 0.061 0.062
B2 0.069 0.066 0.049 0.048 0.046 0.044 0.044 0.049 0.058 0.05 0.053 0.046
B3 0.07 0.089 0.042 0.052 0.044 0.044 0.04 0.046 0.057 0.06 0.053 0.048
B4 0.082 0.074 0.054 0.051 0.057 0.056 0.059 0.058 0.052 0.048 0.05 0.054
B5 0.079 0.09 0.056 0.052 0.049 0.052 0.06 0.053 0.052 0.052 0.054 0.047
B6 0.066 0.079 0.056 0.056 0.044 0.048 0.043 0.048 0.052 0.054 0.053 0.059
C1 0.076 0.07 0.06 0.06 0.046 0.044 0.052 0.055 0.052 0.046 0.054 0.052
C2 0.072 0.073 0.062 0.062 0.051 0.05 0.054 0.054 0.05 0.048 0.052 0.05
C3 0.066 0.073 0.066 0.067 0.05 0.053 0.051 0.045 0.052 0.049 0.072 0.066
C4 0.064 0.06 0.044 0.05 0.052 0.052 0.054 0.054 0.059 0.059 0.052 0.055

Table 2.2: Rejection rates of null cases under various settings

native cases in all sample size settings. Figure 2.1, 2.2 and 2.3 show the results for scenarios

in Case A, Case B and Case C separately. Each figure is comprised of two subfigures (a)

and (b). Subfigure (a) shows rejection rates for all cases where sample sizes nωs (s ∈ {1, 2, 3})

are equal. Subfigure (b) focuses on the three cases whose stratum-specific sample sizes can

vary. Within each subfigure, there is a set of panes, each of which corresponds to a scenario.

Within each pane, the vertical axis indicates the rejection rate and the horizon axis indicates

the sample size setting. For each type of test, we plot a point showing the empirical rejection

rate and a line showing the corresponding 95% confidence interval. The red ones are for our

proposed U test, and the blue ones are for the LRT.

For Case A, Figure 2.1(a) shows that when stratum-specific sample sizes are equal, the

powers of both tests increase as n increases. When the common distribution F is normal

(A1) or F is symmetric with tails lighter than normal (A2), the power of the LRT is a bit

higher than the U test. When F is symmetric with tails heavier than normal (A3), or F is

skewed (A4 - A6) or bimodal (A7), the U test is more powerful than the LRT. Also as F

departs more from the Gaussian distribution, the advantage of the U test over the LRT is

more substantial. Figure 2.1(b) shows the cases when subgroup sample sizes average 100 but
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(a) Cases where sample sizes are consistent across strata

(b) Cases where sample sizes can change across strata

Figure 2.1: Rejection rates and their 95% confidence intervals of alternative cases in Case A
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(a) Cases where sample sizes are consistent across strata

(b) Cases where sample sizes can change across strata

Figure 2.2: Rejection rates and their 95% confidence intervals of alternative cases in Case B
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(a) Cases where sample sizes are consistent across strata

(b) Cases where sample sizes can change across strata

Figure 2.3: Rejection rates and their 95% confidence intervals of alternative cases in Case C
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vary across the strata. Compared to the cases with equal sample sizes, the power of both

the U test and the LRT drop, and the U test power drops a bit more than the LRT.

Figure 2.2 shows the rejection rates of the U test and the LRT for Case B. The results

of cases with equal sample sizes across strata are in Figure 2.2(a). As the sample size

increases, the powers of both tests increase in all scenarios. When the distributions in both

treatment groups are close to normal (B1), the LRT is more powerful, otherwise the U

test is more powerful. When one of the distributions is very far from normal (B3, B5 and

B6), the advantage of the U test over the LRT is large. Next we compare the cases with

average subgroup sample sizes all equal to 100 but where sample sizes can vary across strata

(Figure 2.2(b)). As with Case A, the results with different stratum-specific sample sizes

indicate less power than the case with equal stratum-specific sample sizes for both the U

test and the LRT.

The empirical power of the two tests for Case C are displayed in Figure 2.3. When the

stratum-specific sample sizes are equal (Figure 2.3(a)), the power of both tests increase as

sample size increases. In all scenarios, the U test outperforms the LRT, and when there is a

bimodal distribution (C2, C3, C4), the advantage of the U test is substantial. Figure 2.3(b)

shows the effect of varying sample sizes across strata. When the distributions of the data

in the three strata have similar variances and none of them are too far from normal (C1),

the comparison result is similar to that in Case A and Case B. The setting with consistent

stratum-specific sample sizes has largest power for both the U test and the LRT, and the

difference of powers between balanced sample size setting and unbalanced sample size setting

is larger for the U test than the LRT. When one of the strata follows a distribution that is

mixture normal (0.5N(−5, 1) + 0.5N(5, 1)) which has a lot larger variance than the other

two distributions and also departs more from the normal, the performances of the two tests

are very different. For the U test, if the stratum with large-variance distribution has the

smallest sample size, it is least powerful. For the LRT, when the stratum with distribution
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very far from normal has the largest sample size, it is least powerful.

2.4.5 Investigating the Power of the Tests

The results in Section 2.4.4 focus on only a single non-null example for each scenario. This

section investigate the power as a function of sample size for different treatment effects. We

use the scenarios A3 and A4, and carried out simulations as described in the previous section.

For scenario A3, we generated three strata with nωs = n (s ∈ {1, 2, 3}, ω ∈ {t, c}), and

generated random samples from t4 distribution with location shifts comprised of strata effects

∆1 = 0,∆2 = 1,∆3 = 2 and additive treatment effects τ1 = 1, τ2 = 1 + Γ and τ3 = 1 + 2Γ.

Here the sequence of the treatment effects {τ1, τ2, τ3} is arithmetic and we treat Γ as the

effect size. For each fixed effect size, we explore the relationship between the sample size n

and the rejection rates for both tests, and the results are shown in Figure 2.4 with Γ ranging

from 0 to 0.5, and n ranging from 10 to 1000. In alternative cases when Γ > 0, with each

fixed Γ, as n increases, the rejection rates of both tests increase, and the power of the U test

is always higher than the LRT for each n.

For scenario A4, again we generated three strata with nωs = n (s ∈ {1, 2, 3}, ω ∈ {t, c}).

With Y ω
s

cωs
∼ χ2

1, we took the logarithm of Y ω
s as the outcome. So the treatment effect is

defined as τs = log(cts)− log(ccs). We focus on the case where the sequence of the treatment

effects {τ1, τ2, τ3} are arithmetic with τ2 = τ1 + Γ and τ3 = τ1 + 2Γ, and Γ is the effect size.

By fixing log(cc1) = 0, log(cc2) = 1, log(cc3) = 2 and log(ct1) = 1, we have τ1 = 1. Then we can

get different values of Γ by changing the values of ct2 and ct3. Then for each Γ, we can explore

the relationship between the rejection rates of our U test and the LRT as the sample size n

varies. Figure 2.5 shows the rejection rates with n ranging from 10 to 1000 when Γ ranging

from 0 to 1. As we would expect, with fixed n, larger effect size leads to larger rejection

rates. The rejection rates of the U test is always larger than the LRT for each fixed n and
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Figure 2.4: Relationship between rejection rates and sample sizes for t4 distribution

Γ.

2.5 Case Study

In this section, we apply our proposed U test to a randomized data set from a program

evaluation study in labor economics, an evaluation of the National Supported Work (NSW)

Demonstration. The NSW is a labor training program conducted in the mid-1970s aiming

at providing work experience to people with economic difficulties. Please refer to LaLonde

(1986) and Dehejia and Wahba (1999) for details about the program. We use a subset of

the LaLonde (1986) data that was created and used by Dehejia and Wahba (1999). The

data are available at https://users.nber.org/~rdehejia/data/.nswdata2.html. These

data described results from male participants with earnings information available for 1974.

Earnings in 1978 were treated as outcome, and several pretreatment variables were recorded.

There are 185 subjects in treatment group and 260 subjects in control group.

In this randomized study, pretreatment variables should have the same distribution between
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Figure 2.5: Relationship between rejection rates and sample sizes for χ2
1 distribution

the treatment and control groups. So we can directly compare the distributions of the

outcome, 1978 earnings, for the treatment and control groups to get the treatment effect.

The outcome distributions of the treatment and control groups are shown in Figure 2.6. Both

of them are heavily right-skewed and have an excess of 0 values. Because the distributions are

far from a normal distribution, a non-parametric test is more appropriate than parametric

test assuming normality. The p-value of Mann-Whitney test is 0.01, and the test statistic

is 0.43. Here the expectation of the test statistic is the probability that a random outcome

in the treatment group is smaller than a random outcome in the control group. The result

indicates that there is a positive treatment effect.

Next we construct strata based on two important pretreatment variables, age and 1974 earn-

ings, separately, and then apply our proposed U test to identify whether there is treatment

effect heterogeneity across the strata. We first split all subjects by quartiles of age. The

subgroup sample sizes are in Table 2.3, and the pairwise U-statistics are in Table 2.4. Here

the expectation of U (p,q) is the probability that the difference between treatment and control

outcomes in stratum p are smaller than the difference in stratum q. As the U values are
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Figure 2.6: Distribution of 1978 earnings in the treatment and control groups

36



Stratum 1 2 3 4
Age [17, 20] (20,24] (24,28] (28, 55]

Treatment 47 41 49 48
Control 83 56 60 61

Table 2.3: Sample sizes in different treatment and age groups

U (1,2) U (1,3) U (1,4) U (2,3) U (2,4) U (3,4)

0.52 0.55 0.57 0.53 0.55 0.51

Table 2.4: Pairwise U-statistics comparing treatment effects between age groups

greater then 0.5, the treatment effects in younger strata are generally smaller than those in

older strata. However, the p-value of our proposed heterogeneity test is 0.58, so the observed

heterogeneity is not statistically significant.

Then we explore whether the treatment effect differs between participants with and without

positive incomes in 1974. The first stratum is for participants without income in 1974 and

the second stratum is for those with positive income. The subgroup sample sizes are shown

in Table 2.5. The U-statistic comparing their treatment effects U (1,2) is 0.409, and the p-

value of our heterogeneity test is 0.032, which indicates this program has greater impact for

participants who did not have any income in 1974 than those who had some income.

2.6 Discussion

Identifying the existence of treatment effect heterogeneity is a key element of attempts to

provide more precise treatment recommendations for individuals. We have described a U-

Stratum 1 2
1974 Income 1974 Income = 0 1974 Income > 0

Treatment 131 54
Control 195 65

Table 2.5: Sample sizes of different treatment and income groups

37



statistic-based approach to formally test the hypothesis of homogeneous treatment effects

without assuming a particular parametric form of the outcome distributions, and compared

its performance with the LRT when both of these tests consistent with testing whether

the differences of outcome averages between treatment and control groups are the same

across different strata. The LRT requires the distribution of treatment effect estimates to

be normal, which can be satisfied if the outcomes are normal or the sample sizes are large

(by the Central Limit Theorem). Our results show that, as expected, when the outcome

distributions are close to normal, the power of the LRT is a little better than the U test.

However when at least one of the outcome distributions departs substantially from the normal

distribution, the power of our non-parametric test can be significantly larger than the LRT.

As the departure increases, the advantage of the U test increases. And obviously, the U test

is more robust to outliers and the LRT. These observations are similar to the comparison

between Mann-Whitney test and t-test (Lehmann, 2004).

A major problem of our non-parametric approach is that it is a consistent test assessing

whether the probability P (Y t
p − Y c

p < Y t
q − Y c

q ) + 1
2
P (Y t

p − Y c
p = Y t

q − Y c
q ) (p 6= q) is equal

to one half for all p, q, which however does not provide much insight in practice. Besides,

the test is non-transitive, a significant result cannot help us identify the strata with largest

or smallest treatment effects. With a result showing there is treatment effect heterogeneity,

pairwise test statistics can be used to investigate pairwise comparisons of treatment effects.

Other approaches, like summary statistics, linear regression can also be used to explore

treatment effects within each stratum and their relationships across different strata. In the

cases where the semi-parametric assumptions in Section 2.3 are considered to be satisfied,

the U test is most easily interpreted. Under those assumptions, the test is consistent with

respect to the null hypothesis that the difference of outcome means or percentiles between

treatment and control groups are the same across all strata versus the alternative hypothesis

that not all of them are identical.
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One limitation of this method is that it requires the distributions of all confounding variables

are the same between the treatment group and the control group within stratum, which is

true in randomized experiments. However, in observational studies, we will need to adjust for

confounding variables. Even if the strata are created based on estimated propensity scores

in an effort to balance the baseline covariates (Xie et al., 2012), some further adjustments

for remained imbalance may be needed.
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Chapter 3

Nonparametric Tests for Treatment

Effect Heterogeneity in Observational

Studies

3.1 Introduction

Understanding treatment effect heterogeneity has attracted a great deal of attention in var-

ious research areas, including social sciences (Bitler et al., 2006; Feller and Holmes, 2009),

health care (Kent et al., 2016; Ginsburg and Willard, 2009) and criminology (Na et al., 2015;

Pate and Hamilton, 1992). It is well recognized that “one size does not fit all” in disease

studies since subjects with different characteristics could respond quite differently to the

same treatment. To better account for patient heterogeneity while evaluating the treatment

effect and providing accurate personalized treatment recommendation, subgroup analysis

(Cook et al., 2004) has been commonly used to identify subpopulations among subjects and

examine the localized treatment effects within subpopulations. In some studies, subjects
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may be divided into several strata based on baseline characteristics that are expected to be

associated with treatment effects, and recommendations are made based on inference con-

ducted within each stratum. However, subgroup analysis involves some problems including

multiple testing and loss of statistical power (Cook et al., 2004). Thus it is not always rec-

ommended. In the cases where there is enough evidence showing the existence of treatment

effect heterogeneity across those strata, subgroup analysis can be especially valuable. Thus

before conducting stratum-specific analysis, a test examining existence of treatment effect

heterogeneity is often needed.

There has been a large amount of literature on developing hypothesis testing approaches for

examining treatment effect heterogeneity (e.g., Chang et al., 2015; Ding et al., 2016; Hsu,

2017) under different definitions of heterogeneity and different modeling assumptions. In this

paper we focus on testing whether the average treatment effects across multiple pre-specified

subpopulations are identical to each other. Parametric approaches towards this goal were

proposed a long time ago. Regression methods have been considered (e.g., Allison, 1977;

Byar, 1985), where the heterogeneity of treatment effects is tested by examining interaction

terms between treatment assignment and potential effect modifiers. The likelihood ratio test

(LRT) was also developed by Gail and Simon (1985) under normality assumptions for the

stratum-specific treatment effect estimates. More recently, several nonparametric approaches

have been proposed in the literature. Crump et al. (2008) proposed a test based on sieve

estimation for treatment effects. This method was later generalized by Sant’Anna (2020)

to test for heterogeneity in duration outcomes under endogenous treatment assignment.

More recently, Dai and Stern (2020) proposed a U-statistic-based test (U test) which does

not require estimating stratum-specific treatment effects. Compared to the LRT and other

parametric tests, the nonparametric tests in general require weaker modeling assumptions

on the outcome distributions. However, they still either require specifying a model for

estimating the treatment effects (Crump et al., 2008; Sant’Anna, 2020), or only consider

situations where baseline covariates are well balanced within each stratum (Dai and Stern,
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2020). Motivated by these observations, we propose a nonparametric test that bypasses the

need for estimating treatment effects while still being applicable to observational studies

where there exist confounding variables that need to be addressed.

In this paper, we focus on testing the equality of the average treatment effects across mul-

tiple strata while adjusting for potential confounding variables in observational studies. We

propose a new testing procedure based on an adjusted four-sample U-statistic that can be

viewed as a weighted version of the original U-statistic developed by Dai and Stern (2020).

Assuming the strata are mutually independent, the main idea is to first construct an adjusted

U-statistic for comparing the treatment effects between two strata, and then formulate an

overall test statistic as a function of those pairwise adjusted U-statistics. For each stratum,

the weights in the adjusted U-statistic are carefully chosen by covariate matching and propen-

sity score estimation (Li et al., 2018) such that the baseline covariate distributions for both

the treatment and control groups are the same as the marginal distribution for the target

population. To derive the asymptotic distribution for the proposed test, we find the main

challenge is that our adjusted U-statistic no longer belongs to the generalized U-statistic

family, therefore classical projection theory is not directly applicable. To solve this problem,

we use the idea in Satten et al. (2018), which studies adjusted two-sample U-statistics, to

obtain an asymptotic normality result. Based on the derived asymptotic theory, we then

conduct several numerical studies to compare the performance of our proposed test with that

of the LRT (Gail and Simon, 1985) and the unadjusted U test (Dai and Stern, 2020). Nu-

merical results confirm the excellent operating characteristics for the proposed method even

under propensity score model misspecification, and also clearly demonstrate the advantage

of our method over the LRT and the unadjusted U test when the data is generated from a

non-Gaussian distribution or the baseline covariates are not well balanced.

The remainder of the paper is structured as follows. In Section 3.2, we provide a review of

the U test that assesses treatment effect heterogeneity across strata with balanced baseline
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covariates. In Section 3.3, we introduce our adjusted U test for treatment effect heterogeneity

that allows for the existence of confounding variables. In Section 3.4, we conduct simulation

studies to demonstrate the asymptotic validity and efficiency of the adjusted U test, and

also explore the impact of model misspecification. In Section 3.5, we further demonstrate

the use of our method by two case studies, including an employment program evaluation

study in labor economics, and another study on the evaluation of China’s one-child policy

on children’s mental health. We conclude with some remarks in Section 3.6.

3.2 Review of Unadjusted U-Statistic-Based Test for

Treatment Effect Heterogeneity

Dai and Stern (2020) (hereafter DS) proposed a U-statistic-based test (U test) to assess the

consistency of average treatment effects in several independent strata, assuming there are no

confounding variables. Compared to its parametric counterpart, the Likelihood Ratio Test

(LRT) introduced by Gail and Simon (1985), their proposed U test can have a significant

improvement in power especially when the outcomes are deviating far away from a normal

distribution. Since the method we propose in this paper is based on their U test, we start

with a review of their method.

Assume there are S strata. Within each stratum s (s ∈ {1, ..., S}), let τs be the additive

treatment effect, Y t
s = {Y t

si, i = 1, ..., nts} be the outcomes of subjects in the treatment group,

and Y c
s = {Y c

si, i = 1, ..., ncs} be the outcomes of subjects in the control group. The total

sample size across all strata is denoted as N =
S∑
s=1

(nts + ncs). Two assumptions are made

in DS: (1) the outcomes (Y t
1 , · · · , Y t

S , Y
c

1 , · · · , Y c
S ) are mutually independent; and (2) there

exist positive constants 0 < λωs < 1 for every s ∈ {1, ..., S} and ω ∈ {t, c} such that nω
s

N
→ λωs

as N →∞.
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To test for treatment effect heterogeneity across all strata, DS considers the null hypothesis

H0: (Y t
p − Y c

p < Y t
q − Y c

q ) + 1
2
P (Y t

p − Y c
p = Y t

q − Y c
q ) = 1

2
for any p 6= q (p, q ∈ {1, · · · , S})

versus the alternative hypothesis Ha: there is at least one pair of (p, q) such that the equation

does not hold. Their U test is consistent for this pair of hypotheses. Under the three sets of

semi-parametric assumptions discussed in Section 2.3.3, e.g., Y t
s − Y c

s (s = 1, · · · , S) follow

a common distribution up to a location shift, the U test is also a consistent test for the

null hypothesis τ1 = ... = τS versus the alternative hypothesis that at least two of them

are unequal, where τs = E(Y t
s ) − E(Y c

s ). The test statistic is constructed by combining all

pairwise U-statistics that compare treatment effects in two strata. To compare the treatment

effects in the first two strata, a four-sample U-statistic is constructed as

U (1,2) =
1

nt1n
c
1n

t
2n

c
2

nt
1∑

i=1

nc
1∑

j=1

nt
2∑

k=1

nc
2∑

l=1

φ(1,2)(i, j, k, l), (3.1)

where the kernel function φ(1,2)(i, j, k, l) = I(Y t
1i−Y c

1j < Y t
2k−Y c

2l)+ 1
2
I(Y t

1i−Y c
1j = Y t

2k−Y c
2l).

The latter term is used to account for possible ties for discrete distributions. Although DS

focuses on additive treatment effect, other forms of treatment effects, such as the ratio of

outcomes between different treatment groups, can also be incorporated. DS shows that

√
N(U (1,2) − θ(1,2))

D−→ N (0, σ2
1,2), when N →∞, (3.2)

where σ2
1,2 = 1

λt1
Var(h

t,(1,2)
1 (Y t

1 ))+ 1
λc1

Var(h
c,(1,2)
1 (Y c

1 ))+ 1
λt2

Var(h
t,(1,2)
2 (Y t

2 ))+ 1
λc2

Var(h
c,(1,2)
2 (Y c

2 ))

is the asymptotic variance of
√
NU (1,2), and h

ω,(1,2)
s (x) = E[φ(1,2)(1, 1, 1, 1)|Y ω

s1 = x] − θ(1,2)

for s ∈ {1, 2} and ω ∈ {t, c}. Under the null hypothesis that the difference of potential

outcomes are identically distributed across strata, the expectation of φ(1,2)(i, j, k, l) is 1
2
,

thus θ(1,2) ∆
= E(U (1,2)) is also 1

2
.

With S strata, all pairwise U-statistics U (p,q) (1 ≤ p < q ≤ S) can be constructed in the

exactly same way. Specifically, for every pair of (p, q), we can define U (p,q), θ(p,q) and h
ω,(p,q)
s
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(ω ∈ {t, w}, s ∈ {p, q}) similarly with U (1,2), θ(1,2) and h
ω,(1,2)
s by replacing (1, 2) with (p, q).

Under the assumption that nω
s

N
→ λωs (0 < λωs < 1) as N → ∞ for s ∈ {1, · · · , S} and

ω ∈ {t, c}, DS shows that

√
N(U (1,2)−θ(1,2), U (1,3)−θ(1,3), · · · , U (S−1,S)−θ(S−1,S))T

D−→ N (0,Σ), when N →∞, (3.3)

where Σ = 1
λt1

Σt
1 + 1

λc1
Σc

1 + · · ·+ 1
λtS

Σt
S + 1

λcS
Σc
S and Σω

s is the covariance matrix of(
h̃
ω,(1,2)
s (Y ω

s ), h̃
ω,(1,3)
s (Y ω

s ), · · · , h̃ω,(S−1,S)
s (Y ω

s )
)

for all s ∈ {1, · · · , S} and ω ∈ {t, c}. Here

h̃
ω,(p,q)
s (x) = h

ω,(p,q)
s (x)I(s = p or s = q).

To apply this method, Σ is estimated by a weighted average of Σω
s (s ∈ {1, ..., S}, ω ∈ {t, c}),

and Σω
s can be estimated by the corresponding sample covariance matrix. As h̃ terms are

unknown, they need to be estimated as well. Though h
ω,(p,q)
s (x) = E[φ(p,q)(i, j, k, l)|Y ω

s =

x]−θ(p,q), the constant term θ(p,q) can be ignored when calculating the covariance matrices. So

they take the method-of-moment estimator for the expectation term E[φ(p,q)(i, j, k, l)|Y ω
s =

x] as the estimator of h
ω,(p,q)
s (x). For instance, the estimator of h

t,(1,2)
1 (x) is ĥ

t,(1,2)
1 (x) =

1
nc
1n

t
2n

c
2

nc
1∑

j=1

nt
2∑

k=1

nc
2∑

l=1

I(x−Y c
1j < Y t

2k−Y c
2l). Similar calculation is repeated for all other h functions,

and then used for computing the sample covariance Σ̂ω
s (s ∈ {1, · · · , S}, ω ∈ {t, c}), which

leads to the final estimator of Σ as Σ̂ = 1
λt1

Σ̂t
1 + 1

λc1
Σ̂c

1 + · · ·+ 1
λtS

Σ̂t
S + 1

λcS
Σ̂c
S.

To test the null hypothesis H0 : θ = 1
2
1S(S−1)/2, where θ = (θ(1,2), θ(1,3), ..., θ(S−1,S))T , DS

focuses on a one-dimensional overall test statistic Uh = N ·
∑

1≤p<q≤S
(U (p,q) − 1

2
)2. Though

the asymptotic reference distribution of Uh does not have an analytic form, it can be ap-

proximated by simulation, that is, after generating a large number of independent samples

{r1, · · · , rL} from N (0, Σ̂), the empirical distribution of {||r1||2, · · · , ||rL||2} approximates

the asymptotic reference distribution of Uh.
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3.3 Adjusted U Test of Treatment Effect Heterogene-

ity

The test described in Section 3.2 can only be used in situations where all baseline covariates

are well balanced between different treatment groups in each stratum, e.g., stratified ran-

domized experiments. In observational studies, directly applying that method may lead to

misleading conclusions due to the existence of potential confounding variables. Even in the

situations where the strata are constructed based on propensity scores, which is the prob-

ability of getting treatment (Rosenbaum and Rubin, 1983), in hope of balancing baseline

covariates (Xie et al., 2012), there may remain imbalance that needs to be adjusted. So in

this paper, we propose an approach that extends the U test reviewed in Section 3.2 to be

applicable to situations with unbalanced baseline covariates.

3.3.1 Notation and setup

We introduce some additional notations here. For each stratum s, where s ∈ {1, ..., S}, we

use X t
s = {X t

si, i = 1, ..., nts} to denote the collection of baseline covariates for subjects in the

treatment group where the first element of each vector X t
si is 1, corresponding to an intercept

term. Similarly Xc
s = {Xc

si, i = 1, ..., ncs} is used to denote the covariates for subjects in the

control group. Let Xs = X t
s∪Xc

s be the collection of covariates for all subjects in stratum s,

where we assume the first nts subjects are from the treatment group, and the rest are from the

control. We use Ts = {Tsi, i = 1, ..., ns} to denote the indicators of treatment, i.e., the first nts

elements are 1’s and the rest are 0’s. The within-stratum propensity score, P (Ts = 1|Xs), is

denoted by e(Xs) = {e(Xsi), i = 1, ..., ns}. Similarly, e(X t
s) = {e(X t

si), i = 1, ..., nts} denotes

the first nts elements in e(Xs) and e(Xc
s) = {e(Xc

si), i = 1, ..., ncs} denotes the rest. We assume

0 < e(Xs) < 1 for all s ∈ {1, · · · , S}.
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3.3.2 Balancing baseline covariates within one stratum

To balance confounding variables, one way is to weight the subjects such that within each

stratum all baseline covariates from the two treatment groups have the same distributions.

As we assume the strata are mutually independent, here we only focus on how to balance the

covariates in one stratum, and the same process can be applied to the others. For simplicity,

here we omit the stratum indicator s in the subscript. In one stratum, for baseline covariate

X, let its marginal density function (or probability mass function if X is discrete) be f(x),

and its conditional density functions (or probability mass functions) in the treatment and

control groups be f t(x) and f c(x), respectively. Our goal is to find weight functions, wt(x)

and wc(x), in the treatment and control group such that f t(x)wt(x) = f c(x)wc(x). As

discussed in Li et al. (2018), different choices of weight functions will lead to different target

populations of interest. They propose to use a general function h(x) to define the population

of interest with h(x)f(x) as its marginal distribution. For example, when h(x) = 1, the target

population has a marginal distribution of f(x), which corresponds to the distribution of X

in the combined population of treatment and control groups. When h(x) is e(x) or 1− e(x),

the target population refers to the subjects in the treatment or control groups. And when

h(x) = e(x)(1 − e(x)), the target population is the so-called overlap population (Li et al.,

2018).

For a given h(x), the weight functions wt(x) and wc(x) should satisfy

wt(x)f t(x) ∝ wc(x)f c(x) ∝ f(x)h(x). (3.4)

Since f t(x) ∝ f(x)e(x) and f c(x) ∝ f(x)(1− e(x)), (3.4) implies

wt(x) ∝ h(x)

e(x)
, and wc(x) ∝ h(x)

1− e(x)
. (3.5)
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When h(x) = 1, the induced weight functions yield the classical inverse probability weighting

(Horvitz and Thompson, 1952).

The aforementioned weighting method can be incorporated in U-statistics as well. For exam-

ple, Satten et al. (2018) adopted it to adjust two-sample U-statistics with the goal of testing

for the existence of treatment effect in observational studies. For our study, we also use

this method to adjust the pairwise U-statistics introduced in Section 3.2 in order to test for

treatment effect heterogeneity in observational studies. We take U (1,2) in equation (3.1) as an

example, which is the average of several kernel functions. Each kernel function φ(1,2)(i, j, k, l)

is constructed by the outcomes of four independent subjects, and each subject needs to be

weighted. Since the outcomes are mutually independent, φ(1,2)(i, j, k, l) should be weighted

by the product of the weights for the four subjects, i.e., wt(X1i) ·wc(X1j) ·wt(X2k) ·wc(X2l).

The choice of the weight functions depends on h(x), which in principle can be chosen as any

positive function. However, we further require h(x) to be a constant or a function of e(x), and

we require it to be differentiable with respect to e(x). These requirements will later greatly

help with the efficient estimation of the asymptotic reference distribution for the adjusted U-

statistics without requiring approximation/sampling methods such as bootstrap. In general,

the choice of h(x) is flexible. For example, in our simulation study in Section 3.4 and the

application study on only children’s mental health in Section 3.5.2 , we focus on h(x) = 1.

In the employment program evaluation study in Section 3.5.1, we choose h(x) = e(x).

In practice, the propensity scores are unknown, and it is common to use a logistic regression

model between treatment indicators and associated covariates Xs for their estimation. For-

mally, within stratum s (s ∈ {1, · · · , S}), we consider the following model with parameter

βs,

log

(
e(Xsi)

1− e(Xsi)

)
= βTs Xsi, i = 1, ..., ns. (3.6)
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Note the model specification here is flexible and can be extended to include quadratic (or

nonlinear) functions of Xs and interaction terms as needed. The model does not impose

any assumptions on the response variable, and in practice it is convenient to conduct model

diagnostics for (3.6) based on Austin (2008). The estimate of βs, denoted by β̂s, can be

obtained by solving the estimating equation of logistic regression, denoted as
∑ns

j=1 Ssj(β̂s) =

0.

As the propensity scores are functions of βs, for simplicity, we denote the weights for subjects

in the treatment and control groups by wtsi(βs) (i = 1, ..., nts) and wcsi(βs) (i = 1, ..., ncs),

respectively for s ∈ {1, · · · , S}. In practice, these weights can be estimated by their plug-in

estimates.

3.3.3 Testing treatment effect heterogeneity between two strata

We start with constructing a test statistic that compares the treatment effects between the

first two strata. After weighting, the U-statistic in (3.1) becomes

U (1,2)
a =

∑nt
1
i=1

∑nc
1
j=1

∑nt
2
k=1

∑nc
2
l=1 w

t
1i(β̂1)wc1j(β̂1)wt2k(β̂2)wc2l(β̂2)φ(1,2)(i, j, k, l)∑nt

1
i=1w

t
1i(β̂1) ·

∑nc
1
j=1 w

c
1j(β̂1) ·

∑nt
2
k=1 w

t
2k(β̂2) ·

∑nc
2
l=1w

c
2l(β̂2)

=
1

nt1n
c
1n

t
2n

c
2

nt
1∑

i=1

nc
1∑

j=1

nt
2∑

k=1

nc
2∑

l=1

wt1i(β̂2)wc1j(β̂1)wt2k(β̂2)wc2l(β̂1)φ(1,2)(i, j, k, l)

w̄t1(β̂1)w̄c1(β̂1)w̄t2(β̂2)w̄c2(β̂2)
, (3.7)

where w̄ωs (β̂s) = 1
nω
s

nω
s∑

i=1

wωsi(β̂s) for s ∈ {1, · · · , S} and ω ∈ {t, c}.

Though U
(1,2)
a looks like a generalized U-statistic (Korolyuk and Borovskich, 2013), unfortu-

nately it is not, because β̂1 and β̂2 are functions of all outcomes in the corresponding strata.

Therefore the classical projection theorem cannot be directly applied to U
(1,2)
a . The key

observation is that, if we replace β̂1 and β̂2 by their estimands, β1 and β2, then we obtain a

generalized U-statistic. Moreover, if β̂1 and β̂2 are consistent estimates, we would expect the
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asymptotic properties (e.g., normality) of the generalized U-statistics will still hold for our

adjusted U-statistic. This is indeed the case by the following theorem. The proof is based

on the idea in Satten et al. (2018) where they derived the asymptotic normality for adjusted

two-sample U-statistics.

Theorem 3.1. Suppose that β̂1 and β̂2 are consistent estimators for β1 and β2 and assume

that (1) the outcomes (Y t
1 , Y

t
2 , Y

c
1 , Y

c
2 ) are mutually independent; (2) there exist positive con-

stants 0 < λωs < 1 for every s ∈ {1, 2} and ω ∈ {t, c} such that nω
s

n1+n2
→ λωs as n1 + n2 →∞

and (3) 0 < e(Xs) < 1 for all s ∈ {1, 2} where e(Xs) is defined in Section 3.3.1 . Then as

n1 + n2 →∞, we have

√
(n1 + n2)(U (1,2)

a − θ(1,2)
a )

D−→ N (0, σ2
1,2), (3.8)

where θ
(1,2)
a = limn1+n2→∞E[U

(1,2)
a ] and

σ2
1,2 = limn1+n2→∞

{
nt1Var[η

t,(1,2)
1 (Y t

1 )] + nc1Var[η
c,(1,2)
1 (Y c

1 )] + nt2Var[η
t,(1,2)
2 (Y t

2 )] + nc2Var[η
c,(1,2)
2 (Y c

2 )]
}

is the asymptotic variance of
√

(n1 + n2)U
(1,2)
a , and the η functions are defined in the proof

which can be found in Appendix A. Also we assume Var[η
ω,(1,2)
s (Y ω

s )] > 0 for s ∈ {1, 2} and

ω ∈ {t, c}.

Theorem 3.1 establishes the asymptotic distribution for our proposed adjusted U-statistic.

Assumptions (1)–(3) are mild and commonly used in the literature. For example, Assumption

(2) requires that within stratum, the proportion of treatment/group is not negligible, which

is satisfied in most applications. Assumption (3) requires the propensity score to be bounded

away from 0 and 1, which is called probabilistic assignment and is commonly used in the

causal inference literature (Imbens and Rubin, 2015).

To estimate the asymptotic variance σ2
1,2, we first estimate the η values, denoted by {η̂ω,(1,2)

s (Y ω
si ), i =

1, · · · , nωs } for s ∈ {1, 2}, by replacing all β’s by their consistent estimates and replac-

ing functions by their method-of-moment estimators in the same way as discussed in
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Section 3.2. Then we use the sample variance of each set {η̂ω,(1,2)
s (Y ω

si ), i = 1, · · · , nωs }

to estimate Var[η̂
ω,(1,2)
s (Y ω

s )], i.e., V̂ar[η̂
ω,(1,2)
s (Y ω

s )] = 1
nω
s−1

nω
s∑

i=1

(η̂
ω,(1,2)
s (Y ω

si ) − ¯̂η
ω,(1,2)
s (Y ω

s ))2,

where ¯̂η
ω,(1,2)
s (Y ω

s ) is the average of {η̂ω,(1,2)
s (Y ω

si ), i = 1, · · · , nωs }. Then σ2
1,2 can be con-

sistently estimated by σ̂2
1,2 = nt1V̂ar[η̂

t,(1,2)
1 (Y t

1 )] + nc1V̂ar[η̂
c,(1,2)
1 (Y c

1 )] + nt2V̂ar[η̂
t,(1,2)
2 (Y t

2 )] +

nc2V̂ar[η̂
c,(1,2)
2 (Y c

2 )].

3.3.4 Testing treatment effect heterogeneity in multiple strata

Next we consider testing for treatment effect heterogeneity in multiple strata, i.e., 1, 2, · · · , S,

with S > 2, by extending the adjusted U-statistic in the previous section. For every pair of

strata p and q satisfying 1 ≤ p < q ≤ S, we can define an adjusted U-statistic U
(p,q)
a in the

same way as U
(1,2)
a . Then it is natural to consider a vector of all pairwise adjusted U-statistics

Ua = (U
(1,2)
a , U

(1,3)
a , ..., U

(S−1,S)
a )T . In the next theorem, we derive its joint asymptotic distri-

bution.

Theorem 3.2. Suppose that Assumptions (1)–(3) in Theorem 3.1 are satisfied for every

stratum. Then as the total sample size N →∞,

√
N(Ua − θa)

D−→ N (0,Σa), (3.9)

where θa = limN→∞E(Ua) and Σa = 1
λt1

Σt
1 + 1

λc1
Σc

1 + ... + 1
λtS

Σt
S + 1

λcS
Σc
S is the asymptotic

covariance matrix of
√
NUa, Σω

s is the covariance matrix of (η̃
ω,(1,2)
s , ..., η̃

ω,(S−1,S)
s ) for s ∈

{1, · · · , S} and ω ∈ {t, c}, where η̃
ω,(p,q)
s = η

ω,(p,q)
s I(s = p or s = q), assuming Var(η

ω,(p,q)
s ) >

0.

The proof of this theorem can be found in Appendix A. The asymptotic covariance matrix

Σa in Theorem 3.2 can be conveniently estimated in a similar way as for the univariate case

in Theorem 3.1. That is, we first estimate the η terms and η̃ functions, and then use the
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sample covariance matrix of estimated η̃
ω,(p,q)
s to estimate Σω

s for s ∈ {1, ..., S} and ω ∈ {t, c}.

Given the estimated covariance Σ̂a, we can construct a global test statistic by consider-

ing a transformation on Ua. For instance, under H0 : Y t
s − Y c

s are identically distributed

for s ∈ {1, · · · , S}, we have θa = 1
2
1; therefore a one-dimensional test statistic can be con-

structed as Ta = N(Ua− 1
2
1)T (Ua− 1

2
1). Though the analytic form of its reference distribution

is not available, we can still approximate it via simulations. This can be done by drawing

a large number of samples {r1, · · · , rL} from N (0, Σ̂a), and then use {||r1||2, · · · , ||rL||2} as

the empirical reference distribution. Other functions of Ua, e.g.,
√
N max

1≤p<q≤S
|U (p,q) − 1

2
|,

can also be used as the global test statistic, whose reference distribution can be approx-

imated by simulations. In the numerical studies, we focus on using Ta, and propose to

reject the null hypothesis when Ta is greater than or equal to the 100(1− α)th percentile of

{||r1||2, · · · , ||rL||2}, where α is the significance level.

3.3.5 Trimming Sample

In the causal inference literature, it is common to exclude subjects with estimated propensity

scores too close to 0 or 1 (Dehejia and Wahba, 1999; Crump et al., 2009; Imbens and Rubin,

2015). This trimming procedure has been shown to effectively improve the covariate balance

between different treatment groups for several reasons. One is that those subjects whose true

propensity scores that are equal to 0 or 1 should not be used since there are no counterparts in

the alternative group. Another reason is that for those subjects whose estimated propensity

scores are very close to 0 or 1, their counterparts will be associated with extremely large

weights, which will then lead to a large variance for the estimated treatment effects.

There are two popular trimming rules. One is to set a hard threshold for propensity scores

to be included in treatment effect estimates, e.g., [γ, 1 − γ] (0 < γ < 1
2
) (Crump et al.,

2009), i.e., subjects with propensity scores outside this range should be removed. The
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other is that we only use the subjects whose propensity scores are within the overlap region

(Dehejia and Wahba, 1999). Specifically, we remove all subjects in the control group whose

propensity scores are smaller than the minimum propensity score in the treatment group,

and remove all subjects in the treatment group whose propensity scores are larger than the

maximum propensity score in the control group. In practice, those two rules can be applied

simultaneously.

It is worth mentioning that although the trimming procedure in general improves the treat-

ment effect estimation accuracy, the reference population has changed. Hence there is a

trade-off. Under this trade-off, people usually still prefer trimming because a reliable es-

timate for a subpopulation is generally considered more valuable than an estimate for the

original population based on extrapolation or with large variance. In the numerical studies,

we present both results with and without trimming to demonstrate the effect of trimming.

More specifically, when implementing trimming, we first remove subjects outside of the

propensity score overlap region, and then re-run the same propensity score model for the

remaining subjects to obtain the weights for our adjusted U tests. We have conducted sev-

eral numerical experiments and found that the type I error is better controlled with the

new propensity scores. Therefore we choose to implement this trimming procedure for all

numerical studies in this paper.

3.4 Simulation

We conduct simulation studies to evaluate the empirical performance of the proposed ad-

justed U-statistic test and compare it with the likelihood ratio test (LRT) and the U test

developed in Dai and Stern (2020). Here, we focus on the case where the target population

is the combination of the treatment and control groups, i.e., h(x) = 1. We consider the

adjusted U tests with and without the trimming procedure, and denote them as AUT-T and
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AUT, respectively.

3.4.1 Implementation Details

We first discuss the computational implementation of both our proposed U tests and the

LRT. The U test statistic in (3.9) is a function of S(S − 1)/2 pairwise adjusted U-statistics,

and the computation of each adjusted U-statistic can be expensive in simulation studies.

Therefore instead of calculating the complete adjusted U-statistics, we randomly sample

some of the φ functions in each of the adjusted U-statistics. Take U
(1,2)
a in (3.7) as an

example, for each stratum s ∈ {1, 2} and treatment group ω ∈ {t, c}, we randomly choose

M = 1000N (N is the total sample size over all strata) subjects with replacement, denoted

by {(yt1i, yc1i, yt2i, yc2i), i = 1, · · · ,M}. Then we calculate the kernel function φi based on

(yt1i, y
c
1i, y

t
2i, y

c
2i) and use the weighted average of {φi, i = 1, · · · ,M} to approximate U

(1,2)
a . As

we also use the weighted kernel functions to estimate h̃ωs (Y ω
si ) for i ∈ {1, · · · , nωs }, s ∈ {1, 2}

and ω ∈ {t, c}, which are required to obtain Σ̂a, we need to make sure that each subject is

sampled at least once. This is usually satisfied given a large sampling size M , and we redo the

sampling process on the rare occasion that this requirement is not met. The sampling size

M = 1000N was selected by running a series of different simulation scenarios with 3 strata

and N ranging from 60 to 3000; this choice of M ensured the variance of the approximated

test statistic Ta
N

=
∑

1≤p<q≤S
(U (p,q) − 1

2
)2 to be smaller than 0.003. In order to approximate

the reference distribution of Ta
N

, 105 samples {ri, i = 1, · · · , 105} are generated independently

from the estimated reference distribution N (0, 1
N

Σ̂a). Then {||ri||2, i = 1, · · · , 105} are used

to obtain the empirical reference distribution Ta
N

. The sample size of 105 is chosen to ensure

that the variance of the 95th percentile of {||ri||2, i = 1, · · · , 105} is below 0.0001.

Next we give a brief review of the competitive approach for testing the treatment effect

homogeneity, i.e., the LRT proposed by Gail and Simon (1985). With S strata, they test the
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null hypothesis that the average treatment effects τs (s ∈ {1, · · · , S}) are the same across

all of the strata versus the alternative that at least two of them are unequal. Assuming

the treatment effect estimates τ̂s (s ∈ {1, · · · , S}) follow normal distributions as τ̂s
indep∼

N (τs, σ
2
s), then a test statistic is constructed as

H =
S∑
s=1

(τ̂s − ¯̂τ)2/s2
s
H0∼ χ2

S−1, (3.10)

where ¯̂τ =
∑S

s=1 τ̂s/s
2
s∑S

s=1 1/s2s
, and s2

s is a consistent estimator of σ2
s for s ∈ {1, · · · , S}. For an α

level test, we reject the null hypothesis when H is greater than or equal to the 100(1− α)th

percentile of χ2
S−1.

In randomized experiments where we can directly compare the outcomes of different treat-

ment groups to estimate the treatment effect, τ̂s can be the difference of the outcome averages.

In observational studies, a method for estimating τ̂s that adjusts for confounding variables

should be used. Any methods that can provide normally distributed τ̂s and consistent esti-

mator for σ2
s in stratum s for s ∈ {1, · · · , S} can be used. For instance, when the outcome

follows a continuous distribution, a linear regression model between the outcome and the

treatment indicator and other confounding variables can be fitted within each stratum. Un-

der the assumption that the outcomes are mutually independent, the normality assumption

for τ̂s will be satisfied when the stratum sample size ns goes to infinity. In this simulation,

we fit a linear regression in each stratum s (s ∈ {1, · · · , S}) to obtain τ̂s and σ̂2
s . We focus

on the case that Y t
s −Y c

s (s ∈ {1, · · · , S}) follow the same distribution up to a location shift.

Thus the hypotheses of the adjusted U tests are equivalent to those of the LRT; hence those

two tests are directly comparable.

55



3.4.2 Simulation Design

We consider three strata (S = 3), where each stratum has the same sample size, i.e., n1 =

n2 = n3 = n. For each stratum s, we generate the data from an outcome model Ys =

1 + βs,tTs + Zs + εs for s ∈ {1, 2, 3}, where the treatment indicator Ts ∼ Bern(ps), and

the residual terms εs follow a common distribution Fε across all strata. The probability of

being assigned to the treatment group ps is also a function of the confounding variable Zs,

for which we assume logit(ps) = γsZs. In the following simulations, we fix Z1 ∼ N (0, 1),

Z2 ∼ N (0, 1), Z3 ∼ Unif(−0.5, 0.5), and choose γ1 = 1, γ2 = −1, γ3 = 1, such that the

confounding variables either follow different distributions or satisfy different relationships

with the treatment assignment among the three strata. Also, the treatment effects are set as

β1,t = 1, β2,t = 1 + ∆, β3,t = 1 + 2∆, where the constant ∆ is treated as the effect size. Note

that when ∆ = 0, there still exists a treatment effect within each stratum although there is

no treatment effect heterogeneity, i.e., the null hypothesis is true. For all of the simulation

scenarios, we fix the significance level at 0.05, and repeat the data generating mechanism for

L = 2000 times to obtain the empirical rejection rates.

In addition to the simulation design described above, we also consider several other designs

with unequal sample size and different error distributions across the three strata. The

simulation designs and results are very similar to those in Dai and Stern (2020), so we

choose not to present them in this chapter.

3.4.3 Simulation results

We first check the type I error of our proposed adjusted U-test with and without trimming

(AUT-T and AUT) when ∆ = 0, n = 200, Fε = N (0, 1), and compare them to the unad-

justed U test reviewed in Section 3.2. Based on 2000 Monte-Carlo replications, the type I

error rates for the AUT-T and AUT are 0.051 and 0.058, both are very close to the nominal
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Figure 3.1: Density plots for the unadjusted outcomes in the treatment and control groups.

Stratum 1 Stratum 2 Stratum 3
Treatment Control Treatment Control Treatment Control

7.11 7.09 7.30 7.14 1.64 1.62

Table 3.1: Validity: average number of removed subjects in each subgroup for trimmed U
test.

level of 0.05, whereas the unadjusted U test has a rejection rate of 1.000. The invalidity

of the unadjusted U test is not surprising, because the unweighted outcome distributions

are quite different between treatment and control groups in each stratum, as shown in Fig-

ure 3.1. This finding clearly demonstrates the need for confounder adjustment when testing

for treatment effect heterogeneity. In Figure 3.2, we plot the empirical p-values with the ex-

pected uniformly distributed p-values for both the AUT-T and AUT methods. We find that

the empirical distribution for the p-values is very close to the uniform distribution under the

null hypothesis, which confirms both the validity of the asymptotic null distribution derived

in Theorem 3.2 and the accuracy of random sampling when calculating the test statistics.

Compared to AUT, the results for AUT-T is less perfect due to the fact that the population

has changed after trimming the propensity score. To demonstrate the effect of trimming, we

present the average number of removed subjects for each strata in Table 3.1, and find that

the effect of trimming is minor since less than 8% of the subjects are removed from each

stratum.
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Figure 3.2: Empirical and expected p-values for proposed U tests under the null hypothesis.

Next we investigate the power for the proposed adjusted U tests under different values for

the sample size n, effect size ∆ and error distributions Fε. We also use the results from the

regression-based LRT as a benchmark for power comparison.

We choose four distributions for Fε: N (0, 1), Unif(−2, 2), t4 and 0.5N (−5, 1) + 0.5N (5, 1).

For each of them, we consider four effect sizes (including 0), and then present the empirical

rejection rates for the adjusted U tests and the LRT in Figure 3.4. We first note that under

all four scenarios, the type I error rates are very close to the nominal level 0.05. There

is a minor discrepancy for the trimmed U test, especially when the sample size is small.

This is expected because trimming changes the reference population, although the number

of trimmed subjects (see Figure 3.3) is quite small (between 2% and 15%). Therefore it is

fair to compare the power of those three tests given that their type I errors are at the same

level.

When ∆ > 0, we first notice that the power increases quickly to one as either the sample

size n or the effect size ∆ increases. By comparing the power between the two adjusted

U tests (AUT-T and AUT), we find that overall ATU-T has a larger power although the

advantage is not significant. This is expected because we only remove a minor percentage

of subjects by trimming. We then compare the power of the AUT and LRT, and find that
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Figure 3.3: Power analysis: average number of trimmed subjects for four error distributions
based on 2000 Monte-Carlo replications.

LRT is more powerful than AUT if the error distribution Fε is normal or having lighter

tails than normal distribution (e.g., uniform distribution). On the other hand, our proposed

AUT is more powerful than LRT when Fε has heavy tails (e.g., t4) or deviates far away

from a normal distribution (e.g., a bimodal distribution as 0.5N (−5, 1)+0.5N (5, 1)). Those

findings confirm that the LRT is still the most powerful test under the normality assumption.

However, our proposed method will gain efficiency in testing against the null hypothesis as

the true error distribution starts to move away from a normal distribution, with a more

significant improvement in power over LRT when the error distribution is bimodal.

3.4.4 Sensitivity Analysis

Because our proposed adjusted U test is based on a propensity score model, in this section,

we conduct a sensitivity analysis to evaluate the performance of our method under misspeci-

fication of the propensity score model. It is worth mentioning that despite recent advances in

propensity score model diagnosis (Imbens and Rubin, 2015; Vegetabile et al., 2020) that rely

on measuring the degree of covariance balance from the weighted samples in the treatment

and control groups, measuring covariate balance still remains challenging especially when the

number of covariates is large. Therefore it remains important to explore the sensitivity of the
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Figure 3.4: Power analysis: empirical rejection rates for three tests under various error
distributions, sample sizes, and effect sizes, based on 2000 Monte-Carlo replications.
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proposed test to misspecification. We consider several different null cases where there is no

treatment effect heterogeneity, and explore the sensitivity of the adjusted U tests with and

without trimming by checking the distributions of empirical p-values when the propensity

score models are misspecified.

For data generation, we consider three strata (S = 3), each with a sample size of 200,

and a confounding variable Zs (s = 1, 2, 3) in each stratum satisfying Z1 ∼ N (0, 0.52),

Z2 ∼ N (0, 0.52), Z3 ∼ Unif(−0.5, 0.5). We add a quadratic term of Zs to both the outcome

model and propensity score model Ys = Ts+Zs+βs,2Z
2
s +εs and logit(ps) = γs,0 +Zs+γs,2Z

2
s

with Ts ∼ Bern(ps) and εs ∼ Fε for s ∈ {1, 2, 3}. Note that there is no treatment effect

heterogeneity in this scenario, i.e., the null hypothesis is true. Furthermore, we set β1,2 =

γ1,2 = 2, β2,2 = γ2,2 = −2, β3,2 = γ3,2 = 2, γ1,0 = −0.5, γ2,0 = 0.5, γ3,0 = −1/6 to make the

coefficients for Z and Z2 the same in both outcome and propensity score models in every

stratum. Values of γs,0 (s = 1, 2, 3) are chosen to avoid propensity scores being too close to

0 or 1. Here we explore the extent to which the empirical distributions of p-values for the

adjusted U tests deviate from the expected uniform distribution when the propensity model

is fitted without the quadratic term. As with earlier simulations, we consider four choices

for the error distribution Fε as N (0, 1), Unif(−2, 2), t4 and 0.5N (−2, 1) + 0.5N (2, 1).

Figure 3.5 shows the relationship between the empirical p-values versus the expected uniform

p-values for the adjusted U tests with and without trimming under each of the four error

distributions. AUT-T is always more robust to model misspecification than AUT. This

finding suggests subject trimming based on propensity scores may improve model robustness.

We also show the average number of trimmed subjects for each stratum in Table 3.2, and

find that proportion to be reasonably small (< 5%).

A possible explanation for the advantage of trimming in this simulation scenario is that after

removing subjects with extreme propensity scores, a linear function can better approximate

the relationship between the log odds of the propensity scores and the confounders for the
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Figure 3.5: Empirical p-values of misspecified adjusted U test, trimmed U test and LRT vs
expected p-values.

Stratum 1 Stratum 2 Stratum 3
Treatment Control Treatment Control Treatment Control

N (0, 1) 9.00 0.21 0.23 9.12 2.21 1.18
U(−2, 2) 8.95 0.23 0.20 8.95 2.16 1.17

t4 8.85 0.22 0.23 9.33 2.18 1.20
0.5N (−5, 1) + 0.5N (5, 1) 9.03 0.19 0.21 8.99 2.20 1.19

Table 3.2: Sensitivity analysis: average number of trimmed subjects for each stratum by
trimmed U test based on 2000 Monte-Carlo replications.
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Stratum 1 Stratum 2 Stratum 3
Untrimmed Trimmed Untrimmed Trimmed Untrimmed Trimmed

0.88 0.79 0.88 0.79 0.97 0.88

Table 3.3: Sensitivity analysis: average R2 of linear regression logit(ps) ∼ Zs for untrimmed
and trimmed samples within each stratum based on 2000 Monte-Carlo replications.

remaining subjects. To examine this conjecture, we consider a different scenario where the

R2 of the linear regression logit(ps) ∼ Zs drops after trimming subjects. For data generation,

again we consider three strata and the sample size for each strata is 200. The confounder

Zs within each stratum satisfies Z1 ∼ N (0, 1), Z2 ∼ N (0, 1) and Z3 ∼ Unif(−3, 3). The

outcome and propensity score models are Ys = Ts + αsW + εs and logit(ps) = αsW , where

W = (−1.875 + Zs)I(Zs ≤ −1.5) + (1.875 + Zs)I(Zs ≥ 1.5) + Z3
s I(−1.5 < Zs < 1.5),

Ts ∼ Bern(ps) and εs ∼ Fε for s ∈ {1, 2, 3}. We set α1 = α3 = 1 and α2 = −1 to make the

confounders either follow different distributions or have different relationships with outcomes

and treatment assignments across the three strata. For the misspecified propensity score

model, we fit logistic regressions regressing Ts only on Zs for s ∈ {1, 2, 3}. We consider four

choices for Fε, N (0, 1), Unif(−2, 2), t4 and 0.5N (−2, 1) + 0.5N (2, 1).

Table 3.3 shows the average R2 of linear regression logit(ps) ∼ Zs for the original and

trimmed samples within each stratum over 2000 Monte-Carlo replications. The values are

the same for the four scenarios. It clearly shows that trimming decreases R2 in all strata.

Figure 3.6 shows the relationships between the empirical p-values of the AUT and AUT-T

with misspecifed propensity score models and the expected uniform p-values when the tests

are valid. It indicates AUT is pretty sensitive, but trimming again minimizes the effect in

all scenarios.

For the two simulation studies the test with trimming was less sensitive to misspecification.

There is no guarantee that this will always be true, however our attempt to find a counter-

example was not successful.
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Figure 3.6: Empirical p-values of misspecified adjusted U test, trimmed U test and LRT vs
expected p-values.
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3.5 Case Study

3.5.1 Comparing effects of an employment program on people

with different ages

We apply the proposed method to an employment program evaluation study in labor eco-

nomics, which evaluates the effect of the National Support Work (NSW) Demonstration

on trainee earnings. The NSW was conducted in the mid-1970s with the goal of helping

disadvantaged workers gain working experience. More details about this program can be

found in LaLonde (1986) and Dehejia and Wahba (1999). In this program, applicants were

randomly assigned to the treatment and control groups; and the treatment effect can be

easily assessed by directly comparing the outcomes between those two groups. In order to

evaluate whether observational studies can replicate results from randomized experiments,

LaLonde (1986) compared the treated subjects in the experiment to two nonexperimental

comparison groups, namely, the Panel Study of Income Dynamics (PSID-1) and Current

Population Survey-Social Security Administration File (CPS-1), as well as several subsets of

them. The collected pretreatment covariates include age, education, marital status, indica-

tor of “no degree”, race indicators, earnings in 1974 (RE74) and 1975 (RE75). The outcome

of interest is earnings in 1978.

We focus on the data set constructed by Dehejia and Wahba (1999), which is a subset of

the original data set in LaLonde (1986) that includes data collected from male participants

who have earnings information in 1974. The data is available at https://users.nber.

org/~rdehejia/data/.nswdata2.html. It has been shown by Dehejia and Wahba (1999)

that there is a positive treatment effect. Our goal here is to investigate whether there is

treatment effect heterogeneity across different age groups for the treated subjects. Two

strata are created based on the median age (25 years old) of the treatment group, that is,
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Figure 3.7: Distribution of earnings in 1978 for participants in the treatment group.

stratum 1 for subjects with age ≤ 25 and stratum 2 for age > 25. Figure 3.7 shows the

outcome distributions of the treated subjects in the two strata, and it is clear that both

distributions are highly right-skewed, which suggests that nonparametric U tests should be

preferred to the LRT.

We compare the NSW treatment group to the NSW control group and CPS-1 separately. The

first three columns of Table 3.4 shows the summary statistics of baseline covariates in both

strata for the three groups. To compare the NSW treatment group with its control, we notice

that the baseline covariates between groups are similarly distributed, so the unadjusted U

test can be applied to assess the treatment effect heterogeneity between the two strata. We

obtain an estimated unadjusted U-statistic of 0.554 with a p-value of 0.181, which suggests

that the treatment effect in the younger group (stratum 1) is smaller than that in the elder

group (stratum 2), although this difference is not statistically significant (note that a U-

statistic value of 0.5 means no heterogeneity between those two strata, and a value larger

than 0.5 means stratum 1 has a smaller treatment effect than that of stratum 2).

We then study the comparison between the NSW treatment group and CPS-1 group. Ta-
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NSW Treated NSW Control CPS-1 Weighted and Trimmed CPS-1
Stratum 1
Sample size 106 161 4676 2169
Age 21.09 (2.76) 20.75 (2.75) 20.82 (2.82) 20.97 (2.51)
Education 10.29 (1.77) 9.93 (1.43) 11.91 (2.14) 10.2 (1.54)
Black 0.82 (0.39) 0.8 (0.4) 0.08 (0.28) 0.85 (0.36)
Hispanic 0.08 (0.26) 0.13 (0.33) 0.07 (0.26) 0.06 (0.24)
Married 0.11 (0.32) 0.09 (0.28) 0.36 (0.48) 0.1 (0.3)
Nodegree 0.72 (0.45) 0.89 (0.3) 0.34 (0.47) 0.78 (0.41)
RE74 2129.02 (4809.7) 2195.81 (6240.8) 7044.39 (7156.6) 1845.71 (4032.9)
RE75 1215.97 (2140.9) 1125.32 (3037.3) 7665.79 (7251.4) 1068.04 (2379.4)
Stratum 2
Sample size 79 99 11316 1668
Age 32.15 (6.24) 32.05 (6.24) 38.35 (8.9) 32.25 (5.97)
Education 10.42 (2.28) 10.35 (1.84) 12.07 (3.12) 10.47 (2.1)
Black 0.87 (0.33) 0.87 (0.33) 0.07 (0.26) 0.89 (0.32)
Hispanic 0.04 (0.2) 0.07 (0.26) 0.07 (0.26) 0.03 (0.17)
Married 0.29 (0.46) 0.26 (0.44) 0.86 (0.35) 0.24 (0.42)
Nodegree 0.7 (0.46) 0.74 (0.44) 0.28 (0.45) 0.67 (0.47)
RE74 2050.7 (4957.2) 1962.64 (4611.6) 16897.94 (8936.6) 1993.3 (4772.0)
RE75 1956.17 (4204.0) 1497.18 (3178.3) 16123.93 (8876.9) 1909.62 (4093.3)

Table 3.4: Sample means (standard deviations) of baseline characteristics for NSW and
CPS-1 data in two age strata.

ble 3.4 suggests that the baseline covariate distributions in those two groups seem to differ

quite a lot. Therefore we apply the proposed adjusted U test with trimming. In both

strata, we use logistic regressions to estimate propensity scores. For stratum 1 we use

the following covariates: age, age2, age3, education, education2, I(married), I(no degree),

I(black), I(Hispanic), RE74, RE75, I(RE74 = 0), I(RE75 = 0), RE74 ∗ I(married) and

RE74 ∗ I(no degree). In stratum 2, we consider age, age2, age3, education, education2,

I(married) +I(no degree), I(black), I(Hispanic), RE74, RE75, I(RE74 = 0), I(RE75 = 0)

and education ∗ RE74. Most of those covariates are also included in the study of Dehejia

and Wahba (1999). Subjects are weighted according to (3.5) with h(x) = e(x). We present

summary statistics for the baseline covariates after trimming and weighting as in the fourth

column of Table 3.4. The weighted distributions of baseline covariates in CPS-1 are very

similar to the NSW treatment group. Due to the large sample size, we randomly sample

M = 1000N (N = 4022 is the total sample size) weighted kernel functions to approximate

the adjusted U-statistics as illustrated in Section 3.4.1. The estimated adjusted U-statistic

comparing the treatment effects in the two strata is 0.541 with a p-value of 0.508, which
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leads to the same conclusion as the randomized data comparison (NSW treatment versus

its control). Meanwhile, if an unadjusted U test is applied to conduct the same comparison,

then the estimated U-statistic would be 0.426 with a p-value of 0.004, which will lead to

an opposite conclusion. This finding confirms the benefit of our proposed methodology and

also highlights the necessity of appropriately adjusting for covariate balance between groups

when testing for a treatment heterogeneity effect.

3.5.2 Assessing heterogeneity of the effect of being an only child

on mental health

From 1979 to 2015, China’s one-child policy was implemented to slow down the rapid growth

of the nation’s population. Though the policy has led to economic benefits for China, it has

been criticized for introducing a series of social problems, e.g., forced abortions, female

infanticide, and a heavy burden of elderly support (Hesketh and Zhu, 1997). Apart from

these problems, the psychological wellbeing of the massive number of only children resulting

from the policy has been a great concern because it has been widely recognized that siblings

have a large impact on children’s social behavior and mental health (e.g., Dunn, 1988; McHale

et al., 2012). Only children in China are generally perceived to be more self-centered and

less trustworthy. However the difference between only and non-only children may vary

with geographic area and gender for two reasons. First, parents living in urban and rural

areas differ in many aspects including education level, family income and lifestyle. Second,

a preference for male children was prevalent at that time, especially in rural areas. For

these reasons, the literature assessing the effects of being an only child are typically carried

out in different strata that are determined by the type of region (urban/rural) and gender

(male/female). For example, Wu (2014) found that only children have worse mental health

than children with siblings on average in China, but this negative effect mainly came from

rural males, whereas Zeng et al. (2020) found that the negative effects were more significant
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in urban areas. It is hence of interest to apply the adjusted U test to study whether there

is significant treatment effect heterogeneity among the four subpopulations: urban males,

urban females, rural males and rural females.

The data we use is obtained from the Chinese Family Panel Studies (CFPS) (Xie and Hu,

2014), which is a longitudinal survey aiming at documenting changes in various aspects of

Chinese society. The baseline survey was conducted in 2010. It covers 25

provinces/municipalities/autonomous regions that represent 95% of the Chinese population.

The data set we focus on is a subset of the CFPS baseline sample constructed by Zeng

et al. (2020). It consists of children born after 1979 with ages between 20 and 31. The data

set is available a https://rss.onlinelibrary.wiley.com/pb-assets/hub-assets/rss/

Datasets/RSSA%20183.4/A1595Zeng-1600084584507.zip. For families with more than one

child, only the oldest child is included in the data set. Baseline covariates include age, ethnic-

ity (Han or not), parents’ education level (in years), family income in 2010, parents’ marital

status (divorced or not), parents’ ages when the child was born, region type (urban/rural)

and gender. The responses include three self-rated psychological measures: confidence, anx-

iety and desperation. All measures take integer values from 1 to 5, with a higher value

indicating better mental health. We treat the only children as the treatment group and

the other children as the control group. We also remove subjects with obviously erroneous

information, e.g., a parent’s age below 14 at the time of the child’s birth or any response

measure outside the range of the scale. Three children with family annual incomes higher

than two million Chinese Yuan are removed because these are dramatically larger than the

remainder. The final data set has 4187 subjects, with 971 in the treatment group (only

children). The distributions of baseline coavariates and outcomes are summarized in the

left-hand side of Table 3.5. We find that parents with only one child have higher average

education level and family income. Among only children, there are large proportions of male

or urban subjects compared to children with siblings. With respect to the three responses,

their summary statistics are very similar between the two treatment groups. Figure 3.8
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Figure 3.8: Distributions of confidence, anxiety and desperation measures in the treatment
and control groups.

shows the distributions of the three responses in each treatment group. Apart from the fact

that every outcome is similarly distributed in the treatment and control groups, they are all

heavily left-skewed.

We first apply the weighted version of the Mann-Whitney test introduced by Satten et al.

(2018) to assess overall average treatment effects with respect to the three outcomes. We

standardize all baseline covariates and then fit a logistic regression to estimate propensity

scores. After trimming subjects whose estimated propensity scores are outside of the overlap

region, we fit the same logistic regression again with the remaining subjects and use the newly

estimated propensity scores for weighting. The weights are based on formulas in (3.5). As

we focus on estimating the average treatment effects, we use h(x) = 1. Summary statistics

for the baseline and response variables after trimming and weighting are presented in the

right-hand side of Table 3.5. There is a clear improvement in covariate balance, though
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Unweighted Trimmed and Weighted
Only children Children with siblings Only children Children with siblings

Alla

Sample size 971 3216 968 3216
Baseline covariates
Maternal education (yrs) 7.95 (4.28) 4.19 (4.29) 4.44 (4.64) 4.98 (4.49)
Paternal education (yrs) 8.72 (3.98) 6.41 (4.36) 6.21 (4.56) 6.88 (4.36)
Age (yrs) 24.99 (3.38) 25.19 (3.51) 25.38 (3.65) 25.17 (3.50)
Han ethnicity 0.96 (0.20) 0.89 (0.32) 0.88 (0.32) 0.91 (0.30)
Family anuual income (Chinese Yuan) 56957.5 (58152.7) 37403.1 (44133.1) 41324.5 (51470.2) 42793.1 (54362.3)
Parental age at birth (yrs) 26.83 (3.81) 27.66 (5.11) 27.92 (5.68) 27.45 (4.99)
Maternal age at birth (yrs) 25.09 (3.44) 25.7 (4.54) 25.9 (4.67) 25.55 (4.44)
Divorce 0.03 (0.17) 0.01 (0.10) 0.01 (0.10) 0.01 (0.10)
Urban area 0.78 (0.41) 0.39 (0.49) 0.43 (0.50) 0.48 (0.50)
Male 0.59 (0.49) 0.47 (0.50) 0.49 (0.50) 0.50 (0.50)
Outcomes
Confidence 3.96 (0.92) 4.02 (0.95) 3.95 (0.95) 4.02 (0.94)
Anxiety 4.62 (0.67) 4.60 (0.69) 4.63 (0.69) 4.61 (0.68)
Desperation 4.68 (0.62) 4.72 (0.61) 4.69 (0.62) 4.73 (0.61)

Table 3.5: Unweighted and weighted sample means (standard deviations) of baseline char-
acteristics and responses in treatment and control groups of the overall sample

a P(only child) is modeled by a logistic regression with all baseline covariates, (maternal age at birth)3, (paternal age at birth)3,
and (family income)3.

the summary statistics of the responses do not change much. The adjusted U-statistics and

corresponding 95% confidence intervals are given in the first row of Table 3.7. Here the

expectation of the adjusted U-statistic is the probability that outcome in treatment group

is smaller than that in control group. Thus a value larger than 0.5 indicates a negative

treatment effect, i.e., worse outcomes for only children. The U-statistics show that only

children are less confident, less anxious and more desperate than children with siblings, with

the 95% confidence intervals showing that none of these findings are statistically significant.

We then split the data into four strata based on gender and region type. The sample sizes

and distributions of baseline and response variables in the treatment and control groups are

summarized in the left-hand sides of Table 3.6. It shows that the baseline characteristics

vary among strata. For instance, urban parents have higher education levels and incomes

than rural parents. The proportion of males are higher among only children than children

with siblings, especially in rural areas. With respect to the response variables, there is no

obvious difference among these subgroups. Adjusted Mann-Whitney tests are implemented

in each strata separately based on the same weighting procedure described above. The
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Unweighted Trimmed and Weighted
Only children Children with siblings Only children Children with siblings

Urban malesa

Sample size 430 580 423 558
Baseline covariates
Maternal education (yrs) 8.66 (4.05) 5.15 (4.37) 6.58 (4.70) 6.63 (4.43)
Paternal education (yrs) 9.44 (3.76) 7.29 (4.37) 8.05 (4.14) 8.20 (4.25)
Age (yrs) 25.38 (3.33) 25.66 (3.53) 25.62 (3.46) 25.71 (3.50)
Han ethnicity 0.98 (0.14) 0.93 (0.24) 0.96 (0.20) 0.96 (0.20)
Family anuual income (Chinese Yuan) 59449.4 (60477.7) 45266.9 (45263.7) 51219.8 (56528.3) 54606.3 (64632.9)
Paternal age at birth (yrs) 26.94 (3.48) 27.90 (4.90) 27.24 (4.35) 27.36 (4.52)
Maternal age at birth (yrs) 25.16 (3.23) 26.29 (4.32) 25.61 (4.00) 25.69 (3.76)
Divorce 0.03 (0.17) 0.01 (0.10) 0.02 (0.14) 0.02 (0.14)
Outcomes
Confidence 4.00 (0.92) 3.96 (0.98) 3.98 (0.94) 3.97 (0.93)
Anxiety 4.61 (0.7) 4.64 (0.62) 4.63 (0.67) 4.65 (0.58)
Desperation 4.67 (0.62) 4.74 (0.58) 4.67 (0.61) 4.75 (0.56)

Urban femalesb

Sample size 331 690 330 634
Baseline covariates
Maternal education (yrs) 9.05 (3.74) 5.83 (4.28) 7.03 (4.41) 7.2 (4.21)
Paternal education (yrs) 9.54 (3.39) 7.43 (4.13) 8.35 (3.74) 8.42 (3.91)
Age (yrs) 25.01 (3.37) 25.69 (3.55) 25.43 (3.47) 25.44 (3.46)
Han ethnicity 0.95 (0.22) 0.93 (0.24) 0.93 (0.26) 0.93 (0.24)
Family anuual income (Chinese Yuan) 64914.3 (59182.4) 50261.4 (61045.9) 55548.9 (51572.5) 55414.0 (53315.4)
Paternal age at birth (yrs) 27.07 (3.41) 27.86 (4.99) 27.03 (3.74) 27.21 (3.78)
Maternal age at birth (yrs) 25.47 (3.04) 25.91 (4.19) 25.33 (3.34) 25.54 (3.44)
Divorce 0.03 (0.17) 0.01 (0.10) 0.02 (0.14) 0.02 (0.14)
Outcomes
Confidence 3.89 (0.87) 3.94 (0.92) 3.87 (0.87) 3.99 (0.91)
Anxiety 4.67 (0.57) 4.62 (0.67) 4.69 (0.55) 4.61 (0.67)
Desperation 4.68 (0.60) 4.73 (0.59) 4.69 (0.57) 4.73 (0.60)

Rural malesc

Sample size 146 942 146 927
Baseline covariates
Maternal education (yrs) 4.92 (4.00) 2.92 (3.96) 3.54 (3.82) 3.24 (4.10)
Paternal education (yrs) 5.94 (3.90) 5.7 (4.30) 5.79 (4.00) 5.73 (4.28)
Age (yrs) 24.13 (3.37) 24.97 (3.44) 24.85 (3.56) 24.83 (3.42)
Han ethnicity 0.92 (0.28) 0.87 (0.35) 0.91 (0.28) 0.88 (0.32)
Family anuual income (Chinese Yuan) 37539.9 (39878.4) 31437.3 (38706.5) 34498.6 (32817.1) 31936.8 (31243.0)
Paternal age at birth (yrs) 25.66 (4.59) 27.66 (5.28) 27.02 (5.20) 27.27 (5.11)
Maternal age at birth (yrs) 24.08 (4.13) 25.7 (4.79) 24.93 (4.43) 25.39 (4.68)
Divorce 0.01 (0.10) 0.01 (0.10) 0.01 (0.10) 0.01 (0.10)
Outcomes
Confidence 4.07 (0.96) 4.11 (0.93) 4.06 (0.92) 4.12 (0.94)
Anxiety 4.57 (0.75) 4.57 (0.73) 4.59 (0.77) 4.58 (0.73)
Desperation 4.73 (0.59) 4.72 (0.63) 4.71 (0.59) 4.72 (0.63)

Rural Femalesd

Sample size 64 1004 62 950
Baseline covariates
Maternal education (yrs) 4.48 (4.11) 3.68 (4.05) 3.55 (3.99) 3.76 (4.07)
Paternal education (yrs) 6.05 (4.41) 5.88 (4.34) 5.83 (4.46) 5.95 (4.29)
Age (yrs) 24.23 (3.27) 24.77 (3.48) 25.18 (3.63) 24.9 (3.47)
Han ethnicity 0.92 (0.26) 0.87 (0.33) 0.91 (0.28) 0.92 (0.26)
Family anuual income (Chinese Yuan) 43360.5 (59802.2) 29620.9 (29073.6) 28334.0 (25023.5) 30437.5 (29195.6)
Paternal age at birth (yrs) 27.47 (5.22) 27.40 (5.14) 27.71 (5.40) 27.39 (5.15)
Maternal age at birth (yrs) 24.97 (4.41) 25.23 (4.60) 25.35 (4.63) 25.14 (4.54)
Divorce 0.03 (0.17) 0.01 (0.10) 0.01 (0.10) 0.01 (0.10)
Outcomes
Confidence 3.86 (0.95) 4.03 (0.95) 3.77 (0.97) 4.04 (0.95)
Anxiety 4.56 (0.68) 4.6 (0.69) 4.55 (0.65) 4.60 (0.71)
Desperation 4.61 (0.68) 4.71 (0.62) 4.64 (0.64) 4.71 (0.62)

Table 3.6: Unweighted and weighted sample means (standard deviations) of baseline char-
acteristics and responses in treatment and control groups of four strata

a P(only child) is modeled by a logistic regression with all baseline covariates, (maternal age at birth)2, and (family income)2.
b P(only child) is modeled by a logistic regression with all baseline covariates, (maternal age at birth)2, (paternal age at birth)2,

and (family income)2.
c P(only child) is modeled by a logistic regression with all baseline covariates, (maternal age at birth)2, (family income)2,

and divorce * family income.
d P(only child) is modeled by a logistic regression with all baseline covariates, (maternal age at birth)2, (family income)2, and Han * age.
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Population confidence anxiety desperation
All 0.523 (0.486, 0.559) 0.489 (0.464, 0.515) 0.519 (0.495, 0.542)
Urban Males 0.497 (0.457, 0.538) 0.500 (0.465, 0.535) 0.537 (0.505, 0.569)
Urban Females 0.542 (0.503, 0.582) 0.480 (0.446, 0.514) 0.526 (0.494, 0.559)
Rural Males 0.523 (0.471, 0.575) 0.492 (0.447, 0.537) 0.507 (0.466, 0.549)
Rural Females 0.581 (0.511, 0.651) 0.536 (0.472, 0.599) 0.540 (0.481, 0.600)

Table 3.7: Adjusted Mann-Whitney test statistics (95% CI) for different populations with
respect to different response measures

baseline covariates are clearly better balanced in all strata. The adjusted Mann-Whitney

test statistics and corresponding 95% confidence intervals are listed in the second to fifth

rows of Table 3.7. Most tests show insignificant results except for testing desperation among

urban males, and confidence among urban females and rural females. All these significant

results suggest that only children’s mental health is worse than children with siblings. Even

these should be interpreted with caution given the large number of tests being carried out.

The findings here are related but not exactly the same as those reported in Zeng et al.

(2020), which found significantly negative treatment effects among both urban female and

male strata for almost all responses (except for anxiety of urban females). It is worth noting

that the statistical significant findings in both papers are close to the boundary of statistical

insignificance, e.g., the confidence intervals of our significant tests and the credible intervals

in Zeng et al. (2020) are very close to including the null value, 1/2, in the intervals.

Interpretation of the results here is challenging due to the number of strata and outcomes.

A further challenge is that the results in Table 3.7 suggest similar results across strata

in each column but with some attaining significance and others not. It is natural to ask

whether these are significant differences across strata (see, e.g.,Gelman and Stern (2006)).

The question can be addressed by assessing treatment effect heterogeneity among the four

strata. We implement our proposed adjusted U test and calculate the test statistic by

randomly selecting M = 1000N (N = 4030) kernel terms with replacement as described

in Section 3.4.1. The obtained p-values are respectively 0.142, 0.411 and 0.738, for the
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response variables confidence, anxiety, and desperation, which indicates that there is no

significant treatment effect heterogeneity among the four subpopulations for each of the three

outcomes. Pairwise tests among the four strata to examine treatment effect heterogeneity

regarding the three response variables are also conducted, and the p-values of the 18 tests

are almost uniformly distributed, which further demonstrates that there does not appear to

be treatment effect heterogeneity across gender and region types.

3.6 Discussion

In this paper, we propose a new nonparametric U test for heterogeneity of treatment effects

in observational studies. Our method extends the U test in Dai and Stern (2020) for random-

ized experiments to observational studies by adjusting for the confounding variables using

propensity score modeling. Our approach is adaptive to various choices of target population,

as long as the general function h(x) used to define the target population is a constant or

a differentiable function of propensity score. Many target populations of interest in prac-

tice satisfy this requirement, including subjects in treatment and control groups combined,

treated subjects and subjects under control.

Compared to its parametric counterpart, the LRT, the proposed adjusted U test inher-

its the advantages of nonparametric tests: it requires weaker modeling assumptions about

the distribution of the outcome and provide a significant improvement in power for non-

normally distributed data. Several simulation scenarios suggest that subject trimming based

on propensity scores may improve robustness of the adjusted U test to model misspecifica-

tion. There is no analytic proof of this latter result; more exploration needs to be done.

Several future working directions remain open. Firstly, we assume that for our method,

all confounding variables are observed, which is untestable and may be subject to violation
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in practice. It will be of interest to conduct a sensitivity analysis to address this issue.

Secondly, we assume there are no missing values of the confounding variables. Multiple

imputation (Schafer, 1997) can be used to resolve the issue if the values are missing at

random. If they are missing not at random, it will be of interest to extend our work based

on ideas from Yang et al. (2019). Thirdly, the calculation of U-statistics is based on a random

sampling procedure over all pairwise comparison between strata for our method. Developing

a more efficient sampling method for faster U-statistic computation will be an interesting

future working direction. Fourthly, it will be of interest to extend our test statistic for

high-dimensional covariates based on the results in He et al. (2021).
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Chapter 4

Sensitivity Analysis for the Adjusted

Mann-Whitney Test with

Observational Studies

4.1 Introduction

In randomized experiments, the Mann-Whitney test (Mann and Whitney, 1947) is a popular

U-statistic-based nonparametric test to assess the significance of treatment effect. Compared

to its parametric counterpart, the two-sample t-test, the Mann-Whitney test is preferred es-

pecially when the outcome distributions deviate far from normal distributions (Zimmerman,

1998; Lehmann, 2004). Recently, Satten et al. (2018) proposed an adjusted Mann-Whitney

test for testing the existence of treatment effects in observational studies. Their test statistic

is based on using inverse probability weighting (IPW) to control for confounding variables.

Similar to many other approaches (e.g., propensity score matching) that seek to extract

causation from observational studies (e.g., Rosenbaum and Rubin, 1983; Vegetabile et al.,
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2020; Imbens and Rubin, 2015; Imai and Ratkovic, 2014; Li and Li, 2019), the adjusted

Mann-Whitney test relies heavily on the unconfoundedness assumption (Rubin, 1990), which

assumes that all confounding variables are observed.

The possible violation of the unconfoundedness assumption has led to lots of criticism and

debates about the aforementioned approaches in the past few decades, since this assump-

tion is not testable by empirical data and is unlikely to be satisfied in all applications. In

practice, one may naturally worry that an unobserved confounder could possibly overturn

the conclusion of a test or analysis. Some early discussion on this topic dates back to Fisher

(1958), where Fisher raises the question that the observed “causation” between lung cancer

and tobacco smoking may come from another agent, such as a genetic component, which

contributes to both smoking behaviour and lung cancer. In a follow-up publication, Corn-

field et al. (1959) presented a sensitivity analysis solution to Fisher’s questions by showing

that if there exists an agent that can explain away the causal relationship between smoking

and lung cancer, that agent has to be nine-fold more prevalent in smokers than non-smokers.

In the absence of such important agent, the casual relationship between smoking and lung

cancer stands. And of course subsequent research has confirmed that relationship.

Since the pioneering work by Cornfield et al. (1959), there is a vast literature on devel-

oping sensitivity analysis approaches for mean estimation problems with missing data and

treatment effect estimation in observational studies (e.g., Rosenbaum, 2002c; Imbens, 2003;

Rosenbaum, 2002a; VanderWeele and Ding, 2017; Yang and Lok, 2018; Cinelli and Hazlett,

2020; Zhao et al., 2019). Different sensitivity parameters are often chosen for different stud-

ies. For instance, Rosenbaum (2002a) focuses on studies with matched cases and chooses the

sensitivity parameter as the threshold for ratios of the probabilities of receiving treatment

for each pair of matched subjects from different treatment groups. Hosman et al. (2010) and

Cinelli and Hazlett (2020) study linear regression models and consider sensitivity param-

eters as thresholds for the associations between unobserved covariates with the treatment
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assignments and outcomes. Zhao et al. (2019) focuses on IPW-based estimators and choose

sensitivity parameters as thresholds of odds ratios between estimated propensity scores and

the desired probabilities, which are the probabilities of receiving a certain treatment condi-

tional on covariates and outcomes.

The main goal of this paper is to extend the ongoing methodological development of sen-

sitivity analysis for the adjusted Mann-Whitney test. The results can hence be helpful in

quantifying and understanding the impact of violation of the unconfoundedness assumption

on results of the test. We utilize Zhao et al. (2019)’s sensitivity framework, which was

also considered by Tan (2006). Under this framework, there is no need to specify/model

the exact relationships between the unobserved confounders with the treatment assignment

and the outcome. Instead, we consider a set of sensitivity models by setting thresholds for

the odds ratio between the propensity scores obtained with and without unobserved con-

founders. Then we develop a bootstrap approach that efficiently generates the range of

point estimates for the parameter underlying the test over all sensitivity models, and ob-

tain a sensitivity interval that covers the true parameter with a desired nominal coverage

probability, as long as the data generating mechanism is included in the set of pre-specified

sensitivity models. This framework can naturally apply to cases where there exist more

than one unobserved confounder. Compared to the bootstrap approach used in Zhao et al.

(2019), the optimization problem involved in our work is quite different and challenging due

to a large number of variables and conditions involved. Based on the characteristics of the

adjusted Mann-Whitney test statistic, we derive several theorems that can help solve the

optimization problem in an efficient way. Furthermore, we generalize our approach to han-

dle a broad class of propensity-score-based adjusted U-statistics, which includes the missing

data problem considered in Zhao et al. (2019) as a special example.

The remainder of the paper is structured as follows. Section 4.2 provides a brief review

of the adjusted Mann-Whitney test. Section 4.3 describes our method that assesses the
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robustness of the adjusted Mann-Whitney test to the violation of the unconfoundedness

assumption. Section 4.4 extends this approach to more general propensity-score-based ad-

justed U-statistics. A simulation study is conducted in Section 4.5. In Section 4.6, we apply

our approach to two case studies, a labor program effectiveness evaluation and a mental

health evaluation of China’s one-child policy. We conclude with a discussion of future work

in Section 4.7.

4.2 Review of the adjusted Mann-Whitney Test

We adopt Neyman and Rubin’s potential outcome framework (Rubin, 1974) and review

the adjusted Mann-Whitney Test in this section. Suppose there are n independent study

subjects, and consider
(
T, Y (1), Y (0), X

)
= {

(
Ti, Yi(1), Yi(0), Xi

)
; i = 1, · · · , n}, where

T ∈ {0, 1} denotes the treatment indicator, X ∈ X denotes the observed pre-treatment

covariates, and (Y (1), Y (0)) ∈ R2 denotes the potential outcomes of units under treatment

and control. The observed outcome is Y = Y (1)T + Y (0)(1 − T ). We use (Y t, X t) =

{(Y t
i , X

t
i ); i = 1, · · · , nt} and (Y c, Xc) = {(Y c

i , X
c
i ); i = 1, · · · , nc} to denote the observed

outcomes and pre-treatment covariates of subjects in the treatment and control groups,

respectively, where nt and nc are the number of subjects in treatment and control groups,

and we assume there exist constants λω ∈ (0, 1) such that nω

n
→ λω as n→∞ for ω ∈ {t, c}.

In order to measure the treatment effect, we compare the marginal distributions of Y (1) and

Y (0). This can be done conveniently for randomized experiments, where T is independent

of (Y (1), Y (0)) and hence the distribution of (Y |T = a) is equal to the marginal distribution

of Y (a) for a ∈ {0, 1}. When the outcome distributions deviate from normal distributions,

the Mann-Whitney test is usually preferred compared to its parametric counterpart, the

79



two-sample t-test. The test statistic of the Mann-Whitney test is a two-sample U-statistic

U =
1

ntnc

nt∑
i=1

nc∑
j=1

φ(Y t
i ;Y c

j ), (4.1)

with kernel function of φ(yt; yc) = I(yt < yc) + 1
2
I(yt = yc), and the second term is used

to account for possible ties from discrete distributions. Under the null hypothesis that Y (1)

and Y (0) follow the same distribution, the test statistic U has an expectation of 0.5 and

approximately follows a normal distribution as n goes to infinity.

In observational studies with confounding variables, the independence assumption between

T and (Y (1), Y (0)) does not hold anymore. As a result, the distributions of the observed

outcomes in the treatment and control groups, (Y |T = 1) and (Y |T = 0), are different from

the marginal distributions of Y (1) and Y (0). Directly applying the Mann-Whitney test

can be misleading. One solution is to utilize the inverse probability weighting mechanism

(Horvitz and Thompson, 1952), that is, each subject is weighted by the inverse of their group

membership probability, and then the weighted distributions of (Y,X)|T = 1 and (Y,X)|T =

0 become the same as the marginal distributions of (Y (1), X) and (Y (0), X). Specifically,

we weight subjects in the treatment group by 1
e1(X,Y (1))

and those in the control group by

1
1−e0(X,Y (0))

, where 0 < ea(X, Y (a)) = P (T = 1|Y (a), X) < 1 for a ∈ {1, 0}. To ensure the

identifiability of ea(X, Y (a)), the unconfoundedness assumption, that is, T |= (Y (1), Y (0))|X,

is usually imposed (Rubin, 1990). Under this assumption, we have ea(X, Y (a)) = P (T =

1|Y (a), X) = P (T = 1|X) := e(X) for a ∈ {0, 1}. The conditional probability e(X) is called

the propensity score in the observational studies literature (Rosenbaum and Rubin, 1983)

and is identifiable with the available data.

Under the unconfoundedness assumption, Satten et al. (2018) applied the inverse probability

weighting method to study a general family of two-sample U-statistics, which includes the

Mann-Whitney test statistic as a special example. They proposed to use a logistic regression
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model to obtain estimators of e(X), denoted by ê(X). The weights for treated subjects are

wti = 1
ê(Xt

i )
, and the weights for subjects under control are wcj = 1

1−ê(Xc
j )

. Due to the mutual

independence among the subjects, each item φ(Y t
i ;Y c

j ) in the U-statistic is then weighted by

the product of the weights for subjects i and j. The adjusted U-statistic is

UA =
1

(
∑nt

i=1w
t
i)(
∑nc

j=1w
c
j)

nt∑
i=1

nc∑
j=1

wtiw
c
jφ(Y t

i ;Y c
j ). (4.2)

Under the unconfoundedness assumption, Satten et al. (2018) showed that if Y (0) and Y (1)

follow the same distribution (i.e., no treatment effect) and ê(X) is a consistent estimator of

e(X), then UA would converge in distribution to a normal distribution with an expectation

of 1
2

as the sample size n goes to infinity.

4.3 Sensitivity analysis for the adjusted Mann-Whitney

test

In practice, a major concern for the adjusted Mann-Whitney test described above is the

possible violation of the unconfoundedness assumption, which is not testable by the available

data due to the unobserved potential outcomes. The main goal of this paper is to address this

concern by conducting a formal sensitivity analysis to assess the reliability of the adjusted

Mann-Whitney test under the violation of the unconfoundedness assumption. In particular,

we adopt the marginal sensitivity framework introduced by Zhao et al. (2019) and Tan (2006)

to measure the robustness of the adjusted Mann-Whitney test.
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4.3.1 Asymptotic sensitivity interval for the adjusted Mann-Whitney

test

The violation of the unconfoundedness assumption can be depicted as the difference between

ea(x, y) = P (T = 1|Y (a) = y,X = x) and e(x) = P (T = 1|X = x) for each a ∈ {0, 1}.

As the true value of e(x) is unknown and we can only estimate it, we instead focus on

the difference between ea(x, y) and the estimate of e(x), denoted by ê(x). This difference

captures the degree of violation of the unconfoundedness assumption as well as the estimation

bias of e(x). Let ĝ(x) = log
(

ê(x)
1−ê(x)

)
and ga(x, y) = log

(
ea(x,y)

1−ea(x,y)

)
be the log odds of ê(x)

and ea(x, y), and let ha(x, y) = ĝ(x) − ga(x, y) be the log odds ratio. By assigning bounds

to |ha(x, y)|, we can control the deviation of ê(x) from ea(x, y). In the literature, ha(x, y)

is called a sensitivity model and we define e
(ha)
a (x, y) = 1

1+exp {ha(x,y)−ĝ(x)} for a ∈ {0, 1}.

Then for each a ∈ {0, 1}, we consider a set of sensitivity models for ea(x, y) with sensitivity

parameter λa (λa ≥ 0) defined as

Ha(λa) = {ha(x, y) : |ha(x, y)| ≤ λa for all x ∈ X , y ∈ R}. (4.3)

These notations are set to be consistent with Zhao et al. (2019). When λa = 0, there

is only one sensitivity model in Ha, that is, ha(x, y) = 0, and e
(ha)
a (x, y) = ê(x). As λa

becomes larger, more models are included in Ha(λa), that is, Ha(λa,1) ⊆ Ha(λa,2) for any

0 ≤ λa,1 ≤ λa,2 ≤ ∞.

For each pair of sensitivity models (h1, h0), we weight each subject in the treatment group

by w
t,(h1)
i = 1

e
(h1)
1 (xti,y

t
i)

= 1+exp {h1(xti, y
t
i)− ĝ(xti)} for i = 1, · · · , nt, and each subject in the

control group by w
c,(h0)
j = 1

1−e(h0)0 (xcj ,y
c
j )

= 1 + exp {ĝ(xcj)− h0(xcj, y
c
j)} for j = 1, · · · , nc. Then
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the adjusted Mann-Whitney test statistic with a given pair of sensitivity models (h1, h0) is

U
(h1,h0)
A =

1(∑nt

i=1 w
t,(h1)
i

)(∑nc

j=1w
c,(h0)
j

) nt∑
i=1

nc∑
j=1

w
t,(h1)
i w

c,(h0)
j φ(Y t

i ;Y c
j )

=
1∑nt

i=1[1 + zti exp {−ĝ(xti)}]
∑nc

j=1[1 + zcj exp {ĝ(xcj)}]
·

nt∑
i=1

nc∑
j=1

[1 + zti exp {−ĝ(xti)}][1 + zcj exp {ĝ(xcj)}]φ(Y t
i ;Y c

j ), (4.4)

where zti = exp{h1(xti, y
t
i)} for i ∈ {1, · · · , nt} and zcj = exp{−h0(xcj, y

c
j)} for j ∈ {1, · · · , nc}.

By restricting h1(xti, y
t
i) ∈ H1(λ1) and h0(xcj, y

c
j) ∈ H0(λ0), we have zti ∈ [Λ−1

1 ,Λ1] for i ∈

{1, ..., nt}, and zcj ∈ [Λ−1
0 ,Λ0] for j ∈ {1, ..., nc}, where Λa = exp(λa) ∈ [1,∞] for a ∈ {0, 1}.

For a set of chosen sensitivity parameters λ1 and λ0, our sensitivity analysis seeks to find a

(1− α)-level sensitivity interval [Lo, Up] such that for any data-generating mechanism with

h1 ∈ H1(λ1) and h0 ∈ H0(λ0), we have P
(
E[U

(h1,h0)
A ] ∈ [Lo, Up]

)
≥ 1−α, i.e., the sensitivity

interval is guaranteed to have a desired coverage under the model misspecification allowed

for by the choice of λ1 and λ0. Moreover, if [Lo, Up] satisfies lim infn→∞ P (E[U
(h1,h0)
A ] ∈

[Lo, Up]) ≥ 1 − α, we call it a (1 − α)-level asymptotic sensitivity interval. The sensitiv-

ity interval and the asymptotic sensitivity interval have been studied and found useful for

sensitivity analysis in the literature (e.g., Rosenbaum, 2002c; Zhao et al., 2019).

One obvious way to construct a (1 − α)-level asymptotic sensitivity interval for the ex-

pected value of the adjusted Mann-Whitney test statistic is by taking the union of all

[Lo(h1,h0), Up(h1,h0)] over (h1, h0) ∈ (H1(λ1),H0(λ0)), where [Lo(h1,h0), Up(h1,h0)] is a (1 − α)-

level asymptotic confidence interval for the parameter µ(h1,h0) = E(U
(h1,h0)
A ). For each fixed

pair of (h1, h0), [Lo(h1,h0), Up(h1,h0)] can be obtained by bootstrap. As both H1(λ1) and

H0(λ0) are continuous sets and U
(h1,h0)
A is a continuous function of h1 and h0, the (1 − α)-
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level asymptotic sensitivity interval [L̃o, Ũp] can be obtained by choosing

L̃o = inf
(h1,h0)∈(H1(λ1),H0(λ0))

Lo(h1,h0), Ũp = sup
(h1,h0)∈(H1(λ1),H0(λ0))

Up(h1,h0). (4.5)

However, obtaining [L̃o, Ũp] based on (4.5) is computationally infeasible, as we are not able

to enumerate all values of (h1, h0) in (H1(λ1),H0(λ0)).

Motivated by the method used to construct sensitivity intervals for the mean response

with missing data in Zhao et al. (2019), we propose the following approach based on

bootstrap sample quantiles. We first generate B bootstrap samples for the treatment

and control groups separately as {(Y t
i,b, X

t
i,b)

nt
i=1; b = 1, · · · , B} and {(Y c

j,b, X
c
j,b)

nc
j=1; b =

1, · · · , B}, and then combine them to obtain bootstrap samples for the overall data set as

{[(Y t
i,b, X

t
i,b)

nt
i=1, (Y

c
j,b, X

c
j,b)

nc
j=1]; b = 1, · · · , B}. For each bootstrap sample b, we further take

the infimum and supremum values of U
(h1,h0)
A with (h1, h0) ranging over (H1(λ1),H0(λ0)), and

denote them by Inf(UA,b) and Sup(UA,b). Our approach to finding these values is described

below. Given these values, we then define Lo as the 100α/2-percentile of {Inf(UA,b); b =

1, · · · , B}, and Up as the 100(1 − α/2) percentile of {Sup(UA,b); b = 1, · · · , B}. By the

max-min inequality, we have Lo ≤ L̃o and Up ≥ Ũp. Therefore [Lo, Up] is indeed a valid

(1− α)-level asymptotic sensitivity interval for E[UA], and hence can be used for sensitivity

analysis.

4.3.2 Computing the optimums of test statistics over sensitivity

models

To obtain the asymptotic sensitivity interval [Lo, Up], a key step is to obtain Inf(UA,b) and

Sup(UA,b) for each bootstrap sample b (b ∈ {1, · · · , B}). This optimization problem is

challenging because it involves a large number (nt + nc) of variables, i.e., {zti , i = 1, · · · , nt}
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and {zci , i = 1, · · · , nc}. With pre-selected sensitivity parameters λ1 and λ0, every zti takes

values in [Λ−1
1 ,Λ1] and every zcj takes values in [Λ−1

0 ,Λ0], where Λa = exp(λa) for a ∈

{1, 0}. To alleviate the computational burden due to the large number of variables, we

identify properties of the adjusted U-statistic that will greatly simplify the optimization.

The following theorems are stated for the original sample, but also apply to the bootstrap

samples.

Theorem 4.1. Consider minimizing or maximizing U
(h1,h0)
A in (4.4) with h0 ∈ H0(λ0) and

h1 ∈ H1(λ1). There exists a solution {(zti)nt
i=1, (z

c
j)
nc
j=1} that satisfies zti ∈ {Λ1,Λ

−1
1 } and

zcj ∈ {Λ0,Λ
−1
0 } for every i ∈ {1, · · · , nt} and j ∈ {1, · · · , nc}.

Theorem 4.2. Let φ̃(Y ω
iω) be the collection of all kernel terms φ in (4.4) with Y ω

iω included

for iω ∈ {1, · · · , nω} and ω ∈ {t, c}. To maximize U
(h1,h0)
A in (4.4) with h1 ∈ H1(λ1) and

h0 ∈ H0(λ0), there exists a solution {(zti)nt
i=1, (z

c
j)
nc
j=1} such that for every pair of kω, lω ∈

{1, · · · , nω}, ω ∈ {t, c}, the following results hold: (i) zωkω = zωlω if φ̃(Y ω
kω

) = φ̃(Y ω
lω

); and (ii)

zωkω ≥ zωlω if φ̃(Y ω
kω

) � φ̃(Y ω
lω

). Here � is defined as (a1, . . . , ak) � (b1, . . . , bk) if ai ≥ bi for

every i = 1, . . . , k and at least one of the inequalities strictly holds.

Proofs of these two theorems are given in the Appendix B. Theorem 4.1 can be obtained by

directly taking the partial derivative of U
(h1,h0)
A with respect to each of the z terms. Theorem

4.2 can be proved in a similar way to that used in Section A.3. in Zhao et al. (2019).

Theorem 4.1 implies that we only need to search over the endpoints of the feasible region

for each of the zti and zci variables. Theorem 4.2 further provides an efficient algorithm for

maximizing U
(h1,h0)
A with (h1, h0) ∈ (H1(λ1),H0(λ0)). First, in the treatment and control

groups, we separately sort all unique outcome values as Ỹ ω
1 > · · · > Ỹ ω

αω
for ω ∈ {t, c},

where αt and αc are the numbers of unique values in the treatment and control groups. As

φ̃ is non-increasing with outcome values in the treatment group, and non-decreasing with

outcome values in the control group, for every threshold value p ∈ {Ỹ t
1 , · · · , Ỹ t

αt
,−∞} and
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Figure 4.1: Algorithm demonstration

q ∈ {Ỹ c
1 , · · · , Ỹ c

αc
,−∞}, we set zti = Λ−1

1 I(Y t
i ≤ p) + Λ1I(Y t

i > p) for i ∈ {1, · · · , nt} and

zcj = Λ0I(Y c
j ≤ q) + Λ−1

0 I(Y c
j > q) for j ∈ {1, · · · , nc}. We consider all (αt + 1)(αc + 1)

possible combinations of p and q. Then the maximizer of U
(h1,h0)
A obtained from the (αt +

1)(αc + 1) combinations will also maximize U
(h1,h0)
A for (h1, h0) ∈ (H1(λ1),H0(λ0)). The

minimizer of U
(h1,h0)
A can be obtained in the same way since minimizing U

(h1,h0)
A is equivalent

to maximizing 1 − U (h1,h0)
A , which is the adjusted U-statistic obtained by replacing Y with

−Y . This algorithm can be further improved by considering fewer thresholds when the

degree of interlacement of units from treatment and control groups is small. We could sort

all outcomes in the treatment and control groups together. For a list of adjacent subjects

from the same group, their values of φ̃ are the same. So they share the same z values,

and we only need to choose one of them as a threshold. For instance, if the outcomes from

treatment and control groups are sorted as in Figure 4.1, for the treatment (control) group,

we only need to consider the thresholds that are outcome values of subjects represented by

filled triangles (circles) and −∞.

The aforementioned approach can help us obtain the range of adjusted U statistic values

across all sensitivity models. To obtain the sensitivity interval, we can apply this approach

to each bootstrap sample b (b ∈ {1, · · · , B}) and generate Inf(UA,b) and Sup(UA,b). Then the

(1 − α)-level asymptotic sensitivity interval [Lo, Up] can be obtained by taking the 100α/2

percentile of {Inf(UA,b)
B
b=1} and the 100(1− α/2) percentile of {Sup(UA,b)

B
b=1}.
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4.3.3 Testing the treatment effect in treatment group

In some situations, there is an interest in studying the treatment effect within the treat-

ment group, that is, the difference between the conditional distributions of Y (1)|T = 1 and

Y (0)|T = 1. We discuss how the adjusted Mann-Whitney test and its sensitivity analysis

can be conducted in this case. Note that although the target population has changed, a

similar weighting technique can still be applied for observational studies, with the primary

difference that we only need to reweight subjects in the control group as the conditional

distribution of observed outcomes in the treatment group, Y |T = 1, is the same with that

of Y (1)|T = 1. After weighting subjects in the control group by e0(X,Y (0))
1−e0(X,Y (0))

, the weighted

distribution of (Y,X)|T = 0 would be equal to (Y (0), X)|T = 1.

We still assume the unconfoundedness assumption, i.e., e(X) = e0(X, Y (0)) and use the

estimator of e(X), denoted by ê(X), to replace e0(X, Y (0)) in the weights for subjects under

control. The adjusted Mann-Whitney test statistic measuring the treatment effect for treated

subjects then has the same form as in (4.2), except with weights wtATT,i = 1 for i = 1, · · · , nt

and wcATT,j =
ê(Xj)

1−ê(Xj)
for j = 1, · · · , nc. Those weights were also considered in Satten et al.

(2018). Our test statistic in the average treatment effect on treated (ATT) case is

UATT =
1

nt
∑nc

j=1 w
c
ATT,j

nt∑
i=1

nc∑
j=1

wcATT,jφ(Y t
i ;Y c

j ). (4.6)

For sensitivity analysis, we adopt the same framework as introduced above. Because we

only need to study the deviation of ê(X) from e0(X, Y (0)) in this case, we only consider

sensitivity models for e0(X, Y (0)). After specifying the sensitivity parameter λ0 ≥ 0, the set

of sensitivity models are

H0(λ0) = {h0(x, y) : |h0(x, y)| ≤ λ0 for all x ∈ X , y ∈ R}. (4.7)
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For a fixed sensitivity model h0 ∈ H0(λ0), we define e
(h0)
0 (x, y) = 1

1+exp {h0(x,y)−ĝ(x)} , where

ĝ(x) = log
(

ê(x)
1−ê(x)

)
. The adjusted U-statistic under the sensitivity model h0 then becomes

U
(h0)
ATT =

1

nt
∑nc

j=1w
c,(h0)
ATT,j

nt∑
i=1

nc∑
j=1

w
c,(h0)
ATT,jφ(Y t

i ;Y c
j )

=
1

nt
∑nc

j=1 z
c
j exp {ĝ(xcj)}

·
nt∑
i=1

nc∑
j=1

zcj exp {ĝ(xcj)}φ(Y t
i ;Y c

j ), (4.8)

where w
c,(h0)
ATT,j =

e
(h0)
0 (xcj ,y

c
j )

1−e(h0)0 (xcj ,y
c
j )

, zcj = exp {−h0(xcj, y
c
j)} ∈ [Λ−1

0 ,Λ0] for j ∈ {1, · · · , nc} and

Λ0 = exp(λ0).

To obtain a sensitivity interval, we use the same bootstrap approach described in Sec-

tion 4.3.1. Then similarly with Section 4.3.2, we can obtain the optimums of U
(h0)
ATT with

h0 ranging over H0(λ0) in a computationally efficient way by showing that U
(h0)
ATT has similar

properties as U
(h1,h0)
A in (4.4). The next two theorems give the details.

Theorem 4.3. To maximize or minimize U
(h0)
ATT in (4.8) with h0 ranging over H0(λ0), there

is a solution {zcj , j = 1, · · · , nc} such that zcj ∈ {Λ0,Λ
−1
0 } for every j = 1, · · · , nc.

Theorem 4.4. Let φ̃(Y c
j ) be the collection of all kernel terms φ in (4.8) with Y c

j included for

every j ∈ {1, · · · , nc}. To maximize U
(h0)
ATT in (4.8) with h0 ∈ H0(λ0), there exists a solution

{zcj , j = 1, · · · , nc} such that for every pair of k, l ∈ {1, · · · , nc}, the following results hold:

(i) zck = zcl if φ̃(Y c
k ) = φ̃(Y c

l ); and (ii) zck ≥ zcl if φ̃(Y c
k ) � φ̃(Y c

l ).

Proofs of these two theorems are very similar to those for Theorem 4.1 and Theorem 4.2 and

hence are omitted. Based on the two theorems, we can conveniently obtain the maximum

value of U
(h0)
ATT by first sorting the unique values of outcomes in the control group as Ỹ c

1 >

· · · > Ỹ c
αc

, where αc is the number of unique outcome values in the control group. As φ̃

is non-decreasing, for each threshold value q ∈ {Ỹ c
1 , · · · , Ỹ c

α ,−∞}, we set zcj = Λ0I(Y c
j ≤

q) + Λ−1
0 I(Y c

j > q) for j = 1, · · · , nc. The maximizer of U
(h0)
ATT over q ∈ {0, · · · , nc} yields

the maximizer of U
(h0)
ATT with h0 ∈ H0(λ0). Moreover, minimizing U

(h0)
ATT is equivalent to
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maximizing 1−U (h0)
ATT , which is equal to U

(h0)
ATT with all outcomes Y replaced by −Y . Similarly

to Section 4.3.2, the optimization process can be further improved by trying fewer threshold

values. After sorting the outcomes from both treatment groups, the adjacent subjects from

the control group can be assumed to have the same z values since the φ̃ values for them are

the same.

4.4 Extensions to other adjusted multi-sample U-statistics

The proposed sensitivity analysis framework can be extended to a more general scenario

involving adjusted S-sample (S ≥ 1) U-statistics of degree (1, · · · , 1)︸ ︷︷ ︸
S

(i.e., the kernel func-

tion φ(y1; · · · ; yS) only has 1 argument for each sample) where subjects in some samples

are weighted. More specifically, consider S independent samples {(Ys,i, Xs,i, Ts,i)
ns
i=1, s =

1, · · · , S} and let the first S ′ (0 < S ′ ≤ S) samples be weighted by some functions of propen-

sity score estimators ês(Xs) = P̂ (Ts = 1|Xs). Then we can specify sensitivity models for

every es(Xs, Ys) = P (Ts = 1|Ys, Xs) with s ∈ {1, · · · , S ′} as in (4.3), i.e., with pre-specified

sensitivity parameters λs (λs ≥ 0) for s = 1, · · · , S ′, the sensitivity models are

Hs(λs) = {hs(x, y) : |hs(x, y)| ≤ λs for all x ∈ X , y ∈ R}, (4.9)

where hs(x, y) = ĝs(x)− gs(x, y), ĝs(x) = log
(

ês(x)
1−ês(x)

)
and gs(x, y) = log

(
es(x,y)

1−es(x,y)

)
.

Let fs be a real-valued positive function for s = 1, · · · , S ′, with weights wsis = fs(ê(Xs))I(s ≤

S ′) + I(s > S ′) for is = 1, · · · , ns and s = 1, · · · , S, the adjusted U-statistic is

US =
1∑n1

i1=1 w
1
i1
· · ·
∑nS

iS=1 w
S
iS

n1∑
i1=1

· · ·
nS∑
iS=1

w1
i1
· · ·wSiSφ(Y1,i1 ; · · · ;YS,iS). (4.10)

For a set of fixed sensitivity models (h1, · · · , hS′), the weights become w
s,(hs)
is

= fs(e
(hs)(Xs, Ys))I(s ≤
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S ′) + I(s > S ′), where e(hs)(Xs, Ys) = 1
1+exp{hs(Xs,Ys)−ĝs(Xs)} . Thus the adjusted U-statistic

under the sensitivity models becomes

U
(h1,··· ,hS′ )
S =

1∑n1

i1=1w
1,(h1)
i1

· · ·
∑nS

iS=1 w
S,(hS)
iS

n1∑
i1=1

· · ·
nS∑
iS=1

w
1,(h1)
i1

· · ·wS,(hS)
iS

φ(Y1,i1 ; · · · ;YS,iS).

(4.11)

Before we present how to obtain the sensitivity interval for the expectation of US among

sensitivity models Hs(λs) for s ∈ {1, · · · , S ′}, we first discuss two relevant examples.

The first example is conducting sensitivity analysis for mean response estimation with miss-

ing data, considered by Zhao et al. (2019). In this case, S = S ′ = 1. Suppose that there

are n i.i.d. observations (T,X, Y ) = {(Ti, Xi, Yi), i = 1, · · · , n}, where T is an indicator

of the response being observed, X is a vector of observed baseline covariates, and Y is the

collection of potential outcomes. Without loss of generalization, we assume the outcomes

of the first n′ (0 < n′ ≤ n) subjects are observed. An unbiased estimator of µ = E(Y ) is(∑n′

i=1
1

e(Xi,Yi)

)−1∑n′

i=1
Yi

e(Xi,Yi)
, where e(Xi, Yi) = P (Ti = 1|Xi, Yi). As e(X, Y ) is unidentifi-

able with available data, in practice, a commonly used estimator for µ is

µ̂ =

 n′∑
i=1

1

ê(Xi)

−1
n′∑
i=1

Yi
ê(Xi)

. (4.12)

This estimator is a one-sample adjusted U-statistic with kernel function φ(y) = y and weights

wi = 1
ê(Xi)

for i = 1, · · · , n′.

Another example is comparing treatment effects of two independent strata in observational

studies considered by Dai et al. (2021). In this case, S = 4. We use (T ωs , X
ω
s , Y

ω
s ) =

{(T ωs,i, Xω
s,i, Y

ω
s,i), i = 1, · · · , nωs } to denote i.i.d. subjects in stratum s (s ∈ {1, 2}) and

treatment group ω (ω ∈ {t, c}). Here Xω
s denotes the observed baseline covariates, Y ω

s

denotes the outcomes, and T ωs denotes the indicator of belonging to treatment group ω
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conditional on being in stratum s. Thus P (T ts |X) = 1 − P (T cs |X). The propensity scores

are defined as eωs (Xω
s ) = P (T ωs = 1|Xω

s ) = {eωs (Xω
s,i); i = 1, · · · , nωs }. To adjust for the

imbalanced baseline covariates within each stratum and compare the treatment effects, Dai

et al. (2021) proposes a test statistic under the unconfoundedness assumption as

US =

∑nt
1
i=1

∑nc
1
j=1

∑nt
2
k=1

∑nc
2
l=1 w

t
1iw

c
1jw

t
2kw

c
2lφ(Y t

1,i;Y
c

1,j;Y
t

2,k;Y
c

2,l)∑nt
1
i=1w

t
1i ·
∑nc

1
j=1 w

c
1j ·
∑nt

2
k=1w

t
2k ·
∑nc

2
l=1w

c
2l

, (4.13)

which is an adjusted four-sample U-statistic with kernel function φ(yt1; yc1; yt2; yc2) = I(yt1−yc1 <

yt2−yc2)+ 1
2
I(yt1−yc1 = yt2−yc2). If one is interested in comparing the average treatment effects

between two strata, the weights can be chosen as wωsi = 1
êωs (Xω

s,i)
for i ∈ {1, · · · , nωs }, s ∈ {1, 2}

and ω ∈ {t, c}, that is, S ′ = 4. If the average treatment effects of the treated subjects are of

interest, the weights are wωsi = I(ω = t) +
êωs (Xω

s,i)

1−êωs (Xω
s,i)
I(ω = c) for i ∈ {1, · · · , nωs }, s ∈ {1, 2}

and ω ∈ {t, c}. In this case, S ′ = 2.

Now we apply the same bootstrap approach to obtain sensitivity intervals for E(US) over

sensitivity models in (4.9). We show in the following theorems that, under some conditions,

U
(h1,··· ,hS′ )
S in (4.11) have similar properties to U

(h0,h1)
A in Section 4.3.2, which makes the

required optimization procedure computationally feasible.

Theorem 4.5. For maximization or minimization of U
(h1,··· ,hS′ )
S in (4.11) with hs ∈ Hs(λs)

(s = 1, · · · , S ′), there exists a solution {
(
hs(Xs,is , Ys,is)

)ns

is=1
; s = 1, · · · , S ′} such that every

hs(Xs,is , Ys,is) maximizes or minimizes wsis for is = 1, · · · , ns and s = 1, · · · , S ′.

Theorem 4.6. For each sample s (s = 1, · · · , S ′), assume that the weights w
s,(hs)
is

in (4.11)

satisfy w
s,(hs)
is

= as + zs,isbs,is for constants as and bs,is (bs,is ≥ 0). Then there exists a

solution {(zs,is)ns

s=1; s = 1, · · · , S ′} that maximizes U
(h1,··· ,hS′ )
S in (4.11) with hs ∈ Hs(λs)

(s = 1, · · · , S ′). In particular, for any pair ks, ls ∈ {1, · · · , ns} (s ∈ {1, · · · , S ′}), the

following results holds: (i) zs,ks = zs,ls if φ̃(Ys,ks) = φ̃(Ys,ls); and (ii) zs,ks ≥ zs,ls if φ̃(Ys,ks) �

φ̃(Ys,ls).
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Proofs of these two theorems are given in the Appendix B, and they are based on similar ideas

as in Theorems 4.1 and 4.2. Theorem 4.5 and 4.6 are applicable to the two aforementioned

examples and the adjusted Mann-Whitney tests discussed in Section 4.3, as their weights

satisfy the form required by Theorem 4.6. For example, consider the problem of mean

response estimation with missing data. In this case, w
(h)
i = 1+exp {h(Xi, Yi)− ĝ(Xi)}, where

ĝ(Xi) = log( ê(Xi)
1−ê(Xi)

). Thus we have a = 1, zi = exp {h(Xi, Yi)} and bi = exp {−ĝ(Xi)}, for

i = 1, · · · , n′. There is no subscript s for this example because there is only one weighted

stratum. Note that Theorems 4.5 and 4.6 include Theorems 4.1–4.4 as special cases.

4.5 Simulation

We conduct simulation studies to demonstrate the finite-sample performance of our approach.

Here we focus on the average treatment effect. Suppose there are n = 200 independent

subjects randomly assigned to treatment and control groups. We generate observed baseline

covariates X̃ = {X̃i, i = 1, · · · , n} i.i.d. from N(0, 1). Then we generate an unobserved

covariate Z̃ = {Z̃i, i = 1, · · · , n} such that Z̃ = X + εz, where X is the collection of

standardized values of X̃ (such that X has an exact variance of 1) and εz
i.i.d.∼ N(0, σ2

z). Let

R2
z = 1

1+σ2
z

be the amount information in Z̃ that can be explained by the observed covariateX.

The treatment indicators T = {Ti, i = 1, · · · , n} are independently generated from Bernoulli

distributions with probabilities p = {pi, i = 1, · · · , n} with log
(

p
1−p

)
= c(X − Z), where Z

is the standardized Z̃, and the constant c is chosen to yield E[c(X − Z)] = 1
2

so that p will

not be too close to 0 or 1. The outcomes Y = {Yi, i = 1, · · · , n} satisfy Y = X +Z +βT + ε

where ε
i.i.d.∼ N(0, 1) and β is the treatment effect. As the unobserved covariate Z is related

to both the outcome Y and the treatment assignment T , it is a confounding variable that

should be adjusted for in an analysis.

Here we investigate the relationship between R2
z and the robustness of the adjusted Mann-
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Whitney test when Z is unobserved. We choose R2
z ∈ {0.99, 0.5, 0.01}. Smaller value of

R2
z indicates that Z contains more unique unobserved information. For each R2

z, we choose

coefficients β such that the adjusted Mann-Whitney test statistic is around 0.25 when the

propensity score model is correctly specified (i.e., Z is included). Under each simulation

scenario, adjusted Mann-Whitney tests are conducted based on estimated propensity scores

with and without Z separately. The point estimates and 95% confidence intervals for the

probability of an outcome in the treatment group being smaller than an outcome in the

control group (the estimand of the U-statistic) are summarized in the rows of the upper

panel of Table 4.1 where the sensitivity parameter Λ = 1. In the table, we find that when

the propensity score models are correctly specified, the point estimates and 95% confidence

intervals indicate statistically significant positive treatment effects in all three scenarios.

When the propensity score models are misspecified, the point estimates start to deviate from

the true value of 0.25 and becomes closer to 0.5 as R2
z decreases, although the conclusions

of a significant positive treatment effect are maintained as can be seen by checking the CIs.

Next, we conduct sensitivity analyses by setting Z as missing with sensitivity parameters

Λ0 = Λ1 = Λ > 1 and present the results in the same table. For each R2
z, the smallest

Λ’s are found such that the 95% sensitivity intervals cover 0.5, which means the sensitivity

analysis with this choice of Λ indicates the possibility that observed treatment effect does

not remain significant over this full range of sensitivity models. We also find the smallest

Λ such that the range of point estimates cover 0.5, which indicates that the observed test

statistic may support the opposite sign of treatment effect over the set of sensitivity models.

For example, when σz = 0.1, we find the smallest value for Λ is 2.0 such that the 95% CI

starts to include .5, and Λ has to be at least 2.8 for the range of point estimates to include

.5. As R2
z decreases, the value of Λ that is required to overturn the conclusion decreases.

This is expected because the model becomes more vulnerable to model misspecification as

Z̃ becomes more important, and it hence becomes easier to see different conclusions over the

space of sensitivity models.
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Propensity score model: log
(

p
1−p

)
= c(X − Z)

Correct PS model Incorrect PS model
σz R2

z β Λ point estimate 95% CI point estimate 95% CI
0.1 0.99 2.05 1 0.250 (.178, .312) 0.258 (.188, .322)

2.0 (.140, .420) (.096, .506)
2.8 (.101, .507) (.068, .592)

1 0.5 1.79 1 0.250 (.181, .314) 0.298 (.219, .371)
1.6 (.206, .410) (.146, .503)
2.3 (.150, .504) (.103, .596)

10 0.01 1.61 1 0.250 (.182, .315) 0.316 (.234, .386)
1.5 (.232, .413) (.164, .504)
2.2 (.168, .511) (.115, .602)

Propensity score model: log
(

p
1−p

)
= c(X + Z)

Correct PS model Incorrect PS model
σz R2

z β Λ point estimate 95% CI point estimate 95% CI
0.1 0.99 2.02 1 0.250 (.177, .317) .248 (.174, .314)

2.0 (.132, .412) (.085, .509)
2.8 (.093, .501) (,058, .596)

1 0.5 1.67 1 0.249 (.174, .324) .237 (.164, .308)
2.1 (.119, .408) (.074, .503)
3.0 (.081, .501) (.049, .597)

10 0.01 1.56 1 0.249 (.168, .320) .200 (.131, .260)
2.5 (.080, .405) (.049, .501)
3.6 (.054, .501) (.031, .597)

Table 4.1: Sensitivity analysis for simulated data. The rightmost columns show sensitivity
analysis results when the incorrect sensitivity model is used. Simulation scenarios are defined
by R2

z, β as defined in the Section 4.5.
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We also consider another simulation setting, where log
(

p
1−p

)
= c(X − Z) is replaced by

log
(

p
1−p

)
= c(X + Z), while keeping other parameter settings the same. The results are

summarized in the lower panel of Table 4.1. Again when the propensity score model is

correctly specified, the results indicate statistically significant positive treatment effects for

all values of R2
z. The point estimates based on incorrectly estimated propensity scores

deviate more from the correct estimates (approximately 0.25) as R2
z decreases. This time,

the point estimates become further away from 0.5 and the thresholds of Λ that are needed

to include models that modify the conclusion take larger values. This is because now the

unobserved covariate Z̃ has an opposite sign in the logistic model for p compared to the

previous case; hence the model is “pushed” towards the other direction under the propensity

score misspecification as Z̃ becomes more important.

4.6 Case Study

4.6.1 Assessing the effectiveness of a labor program

We first apply our method to a labor program study that evaluated the effect of the Na-

tional Support Work (NSW) Demonstration, which was an employment program that pro-

vided working experience to disadvantaged workers. More details of this program evaluation

study are given in LaLonde (1986) and Dehejia and Wahba (1999). Briefly, the program

was conducted in the mid-1970s, and candidates were randomly assigned to treatment and

control groups. Post-treatment earnings in 1978 (RE78) is treated as the outcome to as-

sess the effectiveness of the program. The pre-treatment covariates include age, educa-

tion, indicator of married, indicator of “no degree”, race indicators, and earnings in 1974

(RE74) and 1975 (RE75). In order to examine whether techniques used in the analyses

of observational studies can replicate the results from randomized experiments, LaLonde
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(1986) replaced the randomized control group by two nonexperimental comparison groups,

namely the Panel Study of Income Dynamics (PSID-1) cohort and the Current Population

Survey-Social Security Administration File (CPS-1) cohort. In addition, two subsets from

each group (PSID-2, PSID-3, CPS-2, CPS-3) were also considered. Dehejia and Wahba

(1999) used a subset of data used by LaLonde (1986) which only includes male candi-

dates with earnings in 1974 recorded. They used a propensity-score-based approach to

compare the experiment treatment group with the nonexperiment comparison groups and

found that their propensity-score-based approach was more robust to model misspecification

than a linear regression approach to adjusting for possible confounders. In our study, we

focus on the data subset constructed by Dehejia and Wahba (1999), which is available at

https://users.nber.org/~rdehejia/data/.nswdata2.html.

Preliminary data analysis suggests that the outcome RE78 has many zero values and is

heavily right-skewed. Hence the Mann-Whitney test is more appropriate than the usual two

sample t-test. We first use an unadjusted Mann-Whitney test to compare the randomized

study treatment group to the randomized study control group and the six non-experimental

comparison groups separately. The point estimates (for the U-statistic) and the correspond-

ing 95% confidence intervals are presented in Table 4.2. Note that the expectation of the

U-statistic is the probability of an outcome in the treatment group being smaller than an

outcome in the control group. Therefore the result from the randomized experiment indi-

cates that there is a statistically significant positive treatment effect since the confidence

interval (0.388, 0.473) is below 0.5. Interestingly, opposite results are found in the compar-

isons with the nonexperimental groups. All the U-statistics except PSID-3 are uniformly

greater than 0.5, with most of the confidence intervals (except CPS-3) above 0.5 as well.

Thus the nonexperimental control groups provide misleading results without adjustment.

Next, we apply the adjusted Mann-Whitney test to balance the baseline covariates when

non-experimental comparison groups are used. Here we are interested in the treatment effect
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Comparison Group Unadjusted U-statistic 95% Confidence Interval
NSW (randomized) .430 (.388, .473)

PSID-1 .815 (.791, .840)
PSID-2 .558 (.504, .611)
PSID-3 .405 (.338, .471)
CPS-1 .744 (.716, .771)
CPS-2 .627 (.590, .664)
CPS-3 .527 (.479, .576)

Table 4.2: Labor program data analysis: Point estimates and 95% confidence intervals of
unadjusted Mann-Whitney tests comparing treatment group to a list of comparison groups.

NSW Treated PSID-1 CPS-1
Unweighted Unweighted Weighted Unweighted Weighted

Sample Size 185 2490 2490 15992 15992
Age(yrs) 25.82 (7.14) 34.85 (10.44) 24.49 (4.86) 33.23 (11.04) 26.31 (7.15)
Education(yrs) 10.35 (2.00) 12.12 (3.08) 10.39 (1.69) 12.03 (2.87) 10.31 (1.84)
I(Black) 0.84 (0.36) 0.25 (0.44) 0.92 (0.28) 0.07 (0.26) 0.87 (0.35)
I(Hispanic) 0.06 (0.24) 0.03 (0.17) 0.03 (0.17) 0.07 (0.26) 0.05 (0.20)
I(Married) 0.19 (0.39) 0.87 (0.35) 0.10 (0.30) 0.71 (0.46) 0.16 (0.37)
I(No Degree) 0.71 (0.46) 0.31 (0.46) 0.75 (0.44) 0.30 (0.46) 0.73 (0.45)
RE74(dollars) 2095.57 (4873.4) 19428.75 (13404.2) 1395.47 (4021.4) 14016.80 (9569.5) 1929.51 (4412.2)
RE75(dollars) 1532.06 (3210.5) 19063.34 (13594.2) 1097.75 (2816.5) 13650.80 (9270.1) 1384.89 (3151.9)

Table 4.3: Labor program data analysis: weighted and unweighted mean(SD) of baseline
covariates in NSW treated sample, PSID-1 and CPS-1.

on the treated candidates, so we use the weighting mechanism described in Section 4.3.3.

For each non-experimental comparison group, the propensity scores are estimated using a

logistic regression model with the same set of baseline covariates as in Dehejia and Wahba

(1999). The unweighted and weighted distributions of baseline covariates of PSID-1 and

CPS-1, as well as the covariate distributions of the randomized (NSW) treatment group are

summarized in Table 4.3. It clearly shows that after weighting, the covariate distributions

of PSID-1 and CPS-1 are much more similar to those in the treatment group. We report

the adjusted Mann-Whitney test statistics and their associated 95% confidence intervals in

Table 4.4. For all non-experimental comparison groups, after adjustment, the test statistics

indicate positive treatment effects of the employment program, but only PSID-1 and CPS-1

lead to statistically significant results as shown in confidence intervals.

Although the weighting procedure balances the observed covariates well, it still remains
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unclear how unobserved confounding variables may affect the conclusions. Therefore we

conduct a sensitivity analysis for the treatment group in comparisons with PSID-1 and CPS-1

separately. In each comparison, we gradually increase the sensitivity parameter Λ0 = exp(λ0)

from 1 with a step size of 0.1 to find the minimum Λ0 such that the 95% sensitivity interval

covers 0.5 and the minimum Λ0 such that the range of point estimates covers 0.5. The results

are summarized in Table 4.5. When Λ0 = 1, the sensitivity interval is the confidence interval

as the set of sensitivity models only include the estimated propensity score model. When

the comparison group is PSID-1, Λ0 has to be at least 1.2 to let the sensitivity interval cover

0.5. This indicates that if there exist unobserved confounders that can potentially modify

the conclusion, then there must exist at least one study subject such that the absolute value

of the log odds ratio between the subject’s estimated propensity score and the subject’s

true propensity score (based on the knowledge of those unobserved confounders) achieves

log(1.2). Similarly, we will need Λ0 to be at least 2.0 to have a point estimates higher

than 0.5 be plausible over the range of sensitivity models. As for CPS-1, we will need

Λ0 ≥ 1.1 to make the sensitivity interval cover 0.5, and when Λ0 ≥ 1.4, there starts to have

point estimates being greater than 0.5 among all sensitivity models. These results provide

a useful quantification for the sensitivity of statistically significant findings regarding the

comparison of the NSW treated group and the nonexperimental control, PSID-1 and CPS-1.

A larger value of Λ0 implies a higher level of robustness to the violation of unconfoundedeness

assumption, which suggests that using the PSID-1 group as the comparison group seems to

be a more robust choice than using the CPS-1 group as the comparison group.

4.6.2 Evaluating the effect of a one-child policy on children’s men-

tal health

To alleviate the rapid growth of the population in China, the Chinese government imple-

mented the one-child policy from 1979 to 2010 to limit the number of children a family could
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Comparison Group Unadjusted U-statistic 95% Confidence Interval
PSID-1 .359 (.281, .470)
PSID-2 .399 (.293, .537)
PSID-3 .387 (.273, .530)
CPS-1 .422 (.366, .489)
CPS-2 .433 (.332, .535)
CPS-3 .478 (.369, .564)

Table 4.4: Labor program data analysis: Point estimates and 95% confidence interval of
adjusted Mann-Whitney tests.

Comparison Group Sensitivity Parameter Λ Range of Point Estimates 95% Sensitivity Interval
PSID-1 1 .359 (.281, .470)

1.2 (.322, .396) (.248, .505)
2.0 (.235, .511) (.180, .628)

CPS-1 1 .422 (.366, .489)
1.1 (.398, .447) (.340, .509)
1.4 (.340, .511) (.287, .569)

Table 4.5: Labor program data analysis: Sensitivity analyses results for estimates with
PSID-1 and CPS-1 being the comparison group.

have. Though there were exceptions, very large number of parents were allowed to have only

one child. There is a rich literature studying the economic benefits and social impact of the

one-child policy, including the resulting gender imbalance and forced abortions (Hesketh and

Zhu, 1997). Evaluating the impact of being an only child on children’s mental health has

received considerable attention, as there has been a growing literature demonstrating the

positive effect of siblings on children’s well-being (e.g., Dunn, 1988; Gass et al., 2007).

We consider a data set derived from the Chinese Family Panel Studies (Xie and Hu, 2014),

which is a national representative longitudinal survey started in 2010, aimed at documenting

both economic and non-economic information about the Chinese population over time. Zeng

et al. (2020) used a subset of the baseline survey to study the impact of being an only child

on children’s mental health. Their data set is available at https://rss.onlinelibrary.

wiley.com/pb-assets/hub-assets/rss/Datasets/RSSA%20183.4/A1595Zeng-1600084584507.

zip. It includes children born after 1979, which is the year when the one-child policy was

initially implemented. For families with more than one children, the data only keeps the
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oldest one. The data covers 25 provinces/municipalities/autonomous regions representing

95% of the Chinese population. The response variables are three self-rated measures for

mental health: confidence, anxiety and desperation. Each measure takes integer values from

1 to 5, and a higher value indicates a better mental health condition. Baseline covariates

include age, indicator of Han ethnicity, education years of parents, family income in 2010,

whether the parents are divorced, parents’ ages at the child’s birth, indicator of urban area

and gender. Only children are treated as treatment group, and non-only children as control.

Several different versions of this data set have been analyzed in previous studies (Zeng et al.,

2020; Dai et al., 2021; Wu, 2014) to assess the causal effect of the one-child policy on the three

response variables. It is common to divide the data into four strata for analysis based on

gender and region types, that is, urban males, urban females, rural males and rural females,

to account for the large disparities between families in urban and rural areas and the fact

that a preference for male children was prevalent during that era, especially in rural areas.

In this paper, we focus on the data set used in Dai et al. (2021); they deleted a small number

of cases with anomalous values for outcome variables, parents’ age or income. Dai et al.

(2021) use the adjusted Mann-Whitney test to assess the treatment effect for the full data

set and then separately within each of the four strata. The primary focus in that paper was

on testing for heterogeneity of treatment effects across strata, and the primary conclusion

favored the null hypothesis of no heterogeneity. Our goal is to conduct a sensitivity analysis

for some of their findings for individual strata.

We start with a brief review of the results in Dai et al. (2021). For each of the strata,

the authors use logistic regressions to estimate propensity scores and perform trimming and

reweighting to balance the baseline covariates in the treatment and control groups. They

then perform adjusted Mann-Whitney tests. They found significant comparison results for

confidence among urban females (point est: 0.542; 95% CI: (0.503, 0.582)) and rural females

(point est:0.581; 95% CI: (0.511, 0.651)), as well as desperation among urban males (point
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est: 0.537; 95% CI: (0.505, 0.569)). Here point estimate is the estimated value for the

adjusted U-statistic whose expectation is the probability of an only child’s mental health

score being smaller (i.e., worse) than that of a child with siblings. In other words, these

significant point estimates (above .5) and confidence intervals indicate significantly worse

mental health levels in only children compared to the levels in children with siblings.

Although the available covariates are seen in Dai et al. (2021) to be reasonably well bal-

anced after weighting by propensity scores, it is still possible that there may be unobserved

confounders. For instance, studies have found that mothers of only children tend to be less

affiliative (Falbo, 1978), and a lower level of affiliation could possibly affect the personality

and mental health of children. It is hence of interest to apply our proposed sensitivity anal-

ysis approach to assess the robustness of the statistically significant findings in Dai et al.

(2021). In our analysis, we set sensitivity parameters for both the treatment and control

groups at the same value, Λ1 = Λ0 = Λ. For each test, we increase Λ from 1 with a step size

of 0.1 to find the minimum Λ such that the 95% sensitivity interval covers 0.5 and the mini-

mum Λ such that the range of point estimates covers 0.5. The results are presented in Table

4.6. Note that when Λ = 1, the sensitivity interval is the same confidence interval obtained

by Dai et al. (2021). For all cases, when Λ is equal to 1.1, the 95% sensitivity intervals cover

0.5, which means that the conclusions can be easily modified even by a mild violation of

the unconfoundedness assumption. For the minimum Λ value such that the range of point

estimates cover 0.5, we find the values for urban and rural females’ confidence measures are

respectively 1.3 and 1.4, and the value for urban males’ desperation measure is 1.3, which

means that the statistically significant result for the rural females’ confidence measure is a

bit less sensitive to the violation of the unconfoundedness assumption than the others. All

these results suggest the need for cautious interpretation of the causality conclusions in Dai

et al. (2021).
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Response Sensitivity Parameter Λ Range of Point Estimates 95% Sensitivity Interval
Urban Females
confidence 1 0.542 (0.503, 0.582)
confidence 1.1 (0.522, 0.563) (0.480, 0.600)
confidence 1.2 (0.504, 0.582) (0.462, 0.619)
confidence 1.3 (0.487, 0.599) (0.444, 0.637)
Rural Females
confidence 1 0.581 (0.511, 0.651)
confidence 1.1 (0.559, 0.604) (0.479, 0.678)
confidence 1.2 (0.538, 0.625) (0.457, 0.697)
confidence 1.3 (0.518, 0.644) (0.437, 0.714)
confidence 1.4 (0.499, 0.661) (0.417, 0.728)
Urban Males
desperation 1 0.537 (0.505, 0.569)
desperation 1.1 (0.519, 0.554) (0.487, 0.585)
desperation 1.2 (0.504, 0.571) (0.472, 0.602)
desperation 1.3 (0.489, 0.586) (0.458, 0.618)

Table 4.6: One-child policy study: Sensitivity analyses for statistically significant treatment
effects.

4.7 Discussion

In this paper, we propose a sensitivity analysis approach that assesses the impact of violating

the unconfoundedness assumption for the adjusted Mann-Whitney test developed by Satten

et al. (2018). The analysis is based on the marginal sensitivity framework introduced by Zhao

et al. (2019) and Tan (2006), which bypasses the need for modeling unobserved confounders

and instead focuses on the deviation of the estimated propensity scores from the truth,

i.e., the truth assuming the knowledge of unobserved confounders. A discussion of the

relationship between this sensitivity framework and others can be found in Section 7 of Zhao

et al. (2019). Our approach is also extended to treat general adjusted S-sample (S ≥ 1)

U-statistics of degree (1, · · · , 1)︸ ︷︷ ︸
S

, which applies to the adjusted four-sample U-statistic in Dai

and Stern (2020) and includes the missing data problem in Zhao et al. (2019) as a special

example.

Several future working directions remain open. First, the proposed bootstrap approach re-

quires solving a complicated optimization problem for each bootstrap sample; when the

sample size is large and the outcomes are continuous, the computational cost can be quite
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expensive. For an S-sample U-statistic with sample sizes (n1, · · · , nS), the complexity of the

U-statistic is O(
∏S

s=1 ns). Even with the help of Theorems 4.5 and 4.6, we may need to check

as many as
∏S′

s=1(ns+1) solution candidates to obtain optimums of the U-statistic. Therefore

the computational complexity for each optimization process is O(
∏S′

s=1 n
2
s

∏S
s=S′+1 ns), which

makes the total time complexity O(B
∏S′

s=1 n
2
s

∏S
s=S′+1 ns) given B bootstrap samples. Par-

allel computing and more efficient algorithms will be very helpful when S is large. Second,

we restrict the degree of the S-sample U-statistics to be (1, · · · , 1)︸ ︷︷ ︸
S

in this paper. A more

efficient optimization procedure is needed to relax this requirement. Third, it is of inter-

est to extend our work to study test statistics constructed by combining multiple adjusted

U-statistics together. For instance, in order to assess treatment effect heterogeneity, Dai

et al. (2021) combines several four-sample adjusted U-statistics to compare treatment effects

across more than two strata. Our approach cannot be directly applied to this example.
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Chapter 5

Conclusion and Future Directions

This dissertation presented three contributions to assessing heterogeneity of treatment ef-

fects. Chapters 2 and 3 focus on non-parametric statistical tests for heterogeneity of treat-

ment effects across subpopulations, which is a key element of attempts to assess localized

treatment effects and provide more precise treatment recommendations. A non-parametric

U-statistic-based test for treatment effect heterogeneity is described in Chapter 2. It is only

applicable to cases, like randomized experiments, where covariates are well balanced within

each stratum. Compared to its parametric counterpart, the Likelihood Ratio Test (LRT),

the U-statistic-based test is more powerful when the parametric assumption of the LRT

fails. Chapter 3 extends the U-statistic-based test to observational studies by using propen-

sity scores to adjust for observed confounders. The idea holds on the work of Satten et al.

(2018) which uses inverse probability weighting to adjust for confounders for two-sample U-

statistics. The adjusted U-statistic test inherits the advantages of the unadjusted test from

Chapter 2, and also holds the advantages of propensity-score-based approaches (Dehejia and

Wahba, 1999; Imbens and Rubin, 2015), i.e., it is more robust to model misspecification

compared to regression-based approaches for adjusting for confounders.
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Chapter 4 focuses on addressing a concern associated with propensity score approaches like

the adjusted Mann-Whitney test proposed by Satten et al. (2018) and the adjusted U-

statistic-based test for two strata in Chapter 3. The adjusted tests are robust to various

distributions of the outcomes, but heavily rely on the assumption that we have observed all

covariates that are correlated with both the treatment assignment and outcome. Chapter 4

describes an approach to assessing the sensitivity of the adjusted Mann-Whitney test to the

violation of this assumption, and also generalizes this approach to general adjusted S-sample

(S ≥ 1) U-statistics of degree (1, · · · , 1︸ ︷︷ ︸
S

).

There are several open questions related to our work that invite further study.

• The sensitivity analysis introduced in Chapter 4 is only applicable to adjusted S-

sample (S ≥ 1) U-statistics with degree (1, · · · , 1︸ ︷︷ ︸
S

). However, there are many other

U-statistics with higher degrees that may be of interest. For example, the signed

rank test (Van der Vaart, 2000) is a one-sample U-statistic with degree two, and it

is commonly used to test hypotheses the location of a distribution. If observations

are missing at random in the sense of Little and Rubin (2019), an adjusted version of

the signed-rank U-statistic can be constructed based on inverse probability weighting.

However, the approach in Chapter 4 cannot be applied in this case, and the reason is

that the efficient algorithm used to solve the optimization problem in Chapter 4 does

not apply. Therefore alternative optimization strategies are needed in order to extend

this approach to be applicable for higher-degree U-statistics.

• All three contributions encounter computational issues under some situations as they

all involve computationally expensive U-statistics. With respect to the heterogeneity

tests addressed in Chapters 2 and 3, the test statistics are functions of all pairwise

unadjusted and adjusted U-statistics. As the number of strata increases, the number

of required U-statistics exhibits quadratic growth. With respect to the sensitivity anal-
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ysis for adjusted S-sample U-statistics in Chapter 4, the optimization procedure for

each bootstrap sample requires computing the adjusted S-sample U-statistics approx-

imately
∏S

s=1 ns times in some cases, where (n1, · · · , nS) are the sample sizes of the S

independent samples. Since the time complexity of computing a S-sample U-statistic

of degree (1, · · · , 1︸ ︷︷ ︸
S

) is O(
∏S

s=1 ns), the time complexity of each optimization procedure

in such cases is O(
∏S

s=1 n
2
s). Though we can randomly select some terms of the U-

statistics to approximate their true values to alleviate the computation burden, when

the number of samples S is large, the computational time can still be problematic.

Parallelization can help address this challenge.

• The approach in Chapter 4 can be directly applied to a single adjusted multi-sample U-

statistics, including the adjusted four-sample U-statistic described in Chapter 3 which

compares the treatment effects for two strata in observational studies. However when

there are more than two strata, the test statistic is a function of multiple adjusted

U-statistics, and the sensitivity analysis in Chapter 4 cannot deal with that situa-

tion. Therefore, we hope to extend the approach and find sensitivity intervals for test

statistics that are functions of multiple adjusted U-statistics.
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Appendix A

Supplementary materials for Chapter

3

A.1 Proof of Theorem 3.1

Proof. We prove the asymptotic normality of the adjusted U-statistic U
(1,2)
a in (3.7) via

approximating by four independent sets of i.i.d. random variables. The asymptotic normality

then holds by the Central Limit Theorem. This can be directly generalized to any U
(p,q)
a with

1 ≤ p < q ≤ S. For simplicity, we omit the superscript (1, 2) in the following proof and use

≈ to denote the equalities up to op(n
− 1

2 ), where n = n1 + n2. Some of the notations we use

here are similar to what Satten et al. (2018) used in their appendix section. Throughout the

proof, we use plim to denote the limit under convergence in probability.

We set θ∗ = 1
nt
1n

c
1n

t
2n

c
2
E[

nt
1∑

i=1

nc
1∑

j=1

nt
2∑

k=1

nc
2∑

l=1

wt1i(β1)wc1j(β1)wt2k(β2)wc2l(β2)φ(i, j, k, l)],

θωs = plim w̄ωs (βs) = plim 1
nω
s

nω
s∑

j=1

wtsj(βs) (s ∈ {1, 2}, ω ∈ {t, c}), and θa = θ∗

θt1θ
c
1θ

t
2θ

c
2
. By
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first-order Taylor expansion in four variables at (θ∗, θt1, θ
c
1, θ

t
2, θ

c
2), we have

Ua − θa =
1

nt1n
c
1n

t
2n

c
2

nt
1∑

i=1

nc
1∑

j=1

nt
2∑

k=1

nc
2∑

l=1

wt1i(β̂1)wc1j(β̂1)wt2k(β̂2)wc2l(β̂2)φ(i, j, k, l)

w̄t1(β̂1)w̄c1(β̂1)w̄t2(β̂2)w̄c2(β̂2)
− θ∗

θt1θ
c
1θ
t
2θ
c
2

≈ct11(w̄t1(β̂1)− θt1) + cc11(w̄c1(β̂1)− θc1) + ct12(w̄t2(β̂2)− θt2) + cc12(w̄c2(β̂2)− θc2)

+ c2[
1

nt1n
c
1n

t
2n

c
2

nt
1∑

i=1

nc
1∑

j=1

nt
2∑

k=1

nc
2∑

l=1

wt1i(β̂1)wc1j(β̂1)wt2k(β̂2)wc2l(β̂2)φ(i, j, k, l)− θ∗]

(A.1)

where cω1s = − θa
θωs

for s ∈ {1, 2} and ω ∈ {t, c}, c2 = 1
θt1θ

c
1θ

t
2θ

c
2
.

Then by first-order Taylor expansion again, we have

w̄ωs (β̂s)− θωs =
1

nωs

nω
s∑

i=1

wωsi(β̂s)− θωs

=
1

nωs

nω
s∑

i=1

wωsi(β̂s)−
1

nωs

nω
s∑

i=1

wωsi(βs) +
1

nωs

nω
s∑

i=1

wωsi(βs)− θωs

≈ cω3s(β̂s − βs) +
1

nωs

nω
s∑

i=1

wωsi(βs)− θωs for s = 1, 2;ω = t, c (A.2)

where cω3s = plim 1
nω
s

nω
s∑

i=1

∂wω
si(βs)

∂βs
.

As β̂1 and β̂2 are obtained by solving estimating equations
n1∑
i=1

S1j(β̂1) = 0 and
n2∑
i=1

S2j(β̂2) = 0

respectively, again via first-order Taylor expansion,

β̂s − βs ≈ −J−1
s

1

ns

ns∑
i=1

Ssi(βs) for s = 1, 2 (A.3)

where Js = plim 1
ns

ns∑
j=1

∂Ssj(βs)

∂βs
. For the last component of (A.1), by first-order Taylor
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expansion in two variable at the point (β1, β2), we have

1

nt1n
c
1n

t
2n

c
2

nt
1∑

i=1

nc
1∑

j=1

nt
2∑

k=1

nc
2∑

l=1

wt1i(β̂1)wc1j(β̂1)wt2k(β̂2)wc2l(β̂2)φ(i, j, k, l)− θ∗

≈c41(β̂1 − β1) + c42(β̂2 − β2)+

+
1

nt1n
c
1n

t
2n

c
2

nt
1∑

i=1

nc
1∑

j=1

nt
2∑

k=1

nc
2∑

l=1

wt1i(β1)wc1j(β1)wt2k(β2)wc2l(β2)φ(i, j, k, l)− θ∗, (A.4)

where

c4s = plim
1

nt1n
c
1n

t
2n

c
2

nt
1∑

i=1

nc
1∑

j=1

nt
2∑

k=1

nc
2∑

l=1

∂wt1i(β1)wc1j(β1)wt2k(β2)wc2l(β2)

∂βs
φ(i, j, k, l), s = 1, 2

(A.5)

Note in (A.4), 1
nt
1n

c
1n

t
2n

c
2

∑nt
1
i=1

∑nc
1
j=1

∑nt
2
k=1

∑nc
2
l=1w

t
1i(β1)wc1j(β1)wt2k(β2)wc2l(β2)φ(i, j, k, l) is a

4-sample generalized U-statistic with kernel function

φ̃(i, j, k, l) = wt1i(β1)wc1j(β1)wt2k(β2)wc2l(β2)φ(i, j, k, l). So by the classical projection theorem

(Hájek, 1968; Van der Vaart, 2000), we have

1

nt1n
c
1n

t
2n

c
2

nt
1∑

i=1

nc
1∑

j=1

nt
2∑

k=1

nc
2∑

l=1

wt1i(β1)wc1j(β1)wt2k(β2)wc2l(β2)φ(i, j, k, l)− θ∗

≈ 1

nt1

nt
1∑

i=1

h̃t1(Y t
1i) +

1

nc1

nc
1∑

i=1

h̃c1(Y c
1i) +

1

nt2

nt
2∑

i=1

h̃t2(Y t
2i) +

1

nc2

nc
2∑

i=1

h̃c2(Y c
2i)− 4θ∗,

where h̃ωs (x) = E[φ̃(1, 1, 1, 1)|Y ω
s1 = x] for s ∈ {1, 2} and ω ∈ {t, c}.
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Finally, back to Equation (A.1), we have

Ua − θa ≈
ct11

nt1

nt
1∑

i=1

[wt1i(β1)− θt1] +
cc11

nc1

nc
1∑

i=1

[wc1i(β1)− θc1]

+
ct12

nt2

nt
2∑

i=1

[wt2i(β2)− θt2] +
cc12

nc2

nc
2∑

i=1

[wc2i(β2)− θc2]

− (ct11c
t
31 + cc11c

c
31 + c2c41)J−1

1

1

n1

n1∑
i=1

S1i(β1)

− (ct12c
t
32 + cc12c

c
32 + c2c42)J−1

2

1

n2

n2∑
i=1

S2i(β2)

+
c2

nt1

nt
1∑

i=1

h̃t1(Y t
1i)− c2θ

∗ +
c2

nc1

nc
1∑

i=1

h̃c1(Y c
1i)− c2θ

∗ +
c2

nt2

nt
2∑

i=1

h̃t2(Y t
2i)− c2θ

∗

+
c2

nc2

nc
2∑

i=1

h̃c2(Y c
2i)− c2θ

∗

∆
=

nt
1∑

i=1

ηt1(Y t
1i) +

nc
1∑

i=1

ηc1(Y c
1i) +

nt
2∑

i=1

ηt2(Y t
2i) +

nc
2∑

i=1

ηc2(Y c
2i), (A.6)

where

ηt1i =
ct11

nt1
[wt1i(β1)− θt1] +

c2

nt1
[h̃t1(Y t

1i)− θ∗]− (ct11c
t
31 + cc11c

c
31 + c2c41)J−1

1

1

n1

St1i(β1),

for i = 1, ..., nt1,

ηc1i =
cc11

nc1
[wc1i(β1)− θc1] +

c2

nc1
[h̃c1(Y c

1i)− θ∗]− (ct11c
t
31 + cc11c

c
31 + c2c41)J−1

1

1

n1

Sc1i(β1),

for i = 1, ..., nc1,

ηt2i =
ct12

nt2
[wt2i(β2)− θt2] +

c2

nt2
[h̃t2(Y t

2i)− θ∗]− (ct12c
t
32 + cc12c

c
32 + c2c42)J−1

2

1

n2

St2i(β2),

for i = 1, ..., nt2,

ηc2i =
cc12

nc2
[wc2i(β2)− θc2] +

c2

nc2
[h̃c2(Y c

2i)− θ∗]− (ct12c
t
32 + cc12c

c
32 + c2c42)J−1

2

1

n2

Sc2i(β2),

for i = 1, ..., nc2.
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As we always assume in each stratum s (s ∈ {1, 2}), the first nts subjects are in the treatment

group, and the last ncs subjects are in the control group, here {Stsi, i = 1, ..., nts} are the first

nts elements of {Ssi, i = 1, ..., ns}, and {Scsi, i = 1, ..., ncs} are the rest elements of it. Since

the expectation of the right hand side of (A.6) is 0, the limit expectation of Ua is θa. By the

Central Limit Theorem, Theorem 3.1 is obtained.

A.2 Proof of Theorem 3.2

Proof. Following the proof of Theorem 3.1 for U
(1,2)
a , we define Û

(1,2)
a as

Û (1,2)
a =

nt
1∑

i=1

η
t,(1,2)
1 (Y t

1i) +

nc
1∑

i=1

η
c,(1,2)
1 (Y c

1i) +

nt
2∑

i=1

η
t,(1,2)
2 (Y t

2i) +

nc
2∑

i=1

η
c,(1,2)
2 (Y c

2i). (A.7)

Thus we have

√
n1 + n2(U (1,2)

a − θ(1,2)
a − Û (1,2)

a )
P−→ 0, as (n1 + n2)→∞. (A.8)

For each U
(p,q)
a with 1 ≤ p < q ≤ S, we have Û

(p,q)
a with the same form of (A.7) satisfying

(A.8). Specifically,

Û (p,q)
a =

nt
p∑

j=1

ηt,(p,q)p (Y t
pj) +

nc
p∑

j=1

ηc,(p,q)p (Y c
pj) +

nt
q∑

j=1

ηt,(p,q)q (Y t
qj) +

nc
q∑

j=1

ηc,(p,q)q (Y c
qj) (A.9)

√
np + nq(U

(p,q)
a − θ(p,q)

a − Û (p,q)
a )

P−→ 0, as (np + nq)→∞. (A.10)
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Under the assumption that nω
s

N
→ λωs (0 < λωs < 1) when N → ∞, for s ∈ {1, · · · , S} and

ω ∈ {t, c}, we have

√
N



U
(1,2)
a − θ(1,2)

a − Û (1,2)
a

U
(1,3)
a − θ(1,3)

a − Û (1,3)
a

...

U
(S−1,S)
a − θ(S−1,S)

a − Û (S−1,S)
a


p−→ 0, as N →∞, (A.11)

and by the multivariate Central Limit Theorem,

√
N



Û
(1,2)
a

Û
(1,3)
a

...

Û
(S−1,S)
a


D−→ N (0,Σa), (A.12)

where Σa = 1
λt1

Σt
1 + 1

λc1
Σc

1 + ...+ 1
λtS

Σt
S + 1

λcS
Σc
S, and Σω

s is the covariance matrix of

(η̃
ω,(1,2)
s , ..., η̃

ω,(S−1,S)
s ) with

η̃ω,(p,q)s =


η
ω,(p,q)
s if s = p or s = q,

0 o.w.

Therefore we have

√
N(Ua − θa)

D−→ N (0,Σa) as N →∞. (A.13)

Theorem 3.2 is obtained.
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Appendix B

Supplementary materials for Chapter

4

B.1 Proof of Theorem 4.1

Proof. First we take the partial derivative of U
(h1,h0)
a with respect to a zk(1 ≤ k ≤ nt) and

obtain

∂U
(h1,h0)
a

∂ztk
=

exp{−ĝ(xtk)}(∑nt

i=1w
t,(h1)
i

)2∑nc

j=1w
c,(h0)
j

·
nt∑
i=1

nc∑
j=1

[
φ(Y t

k ;Y c
j )− φ(Y t

i ;Y c
j )
]
· wt,(h1)

i w
c,(h0)
j

=
exp{−ĝ(xtk)}(∑nt

i=1w
t,(h1)
i

)2∑nc

j=1w
c,(h0)
j

∑
i∈{1,...,nt}/{k}

nc∑
j=1

[
φ(Y t

k ;Y c
j )− φ(Y t

i ;Y c
j )
]
· wt,(h1)

i w
c,(h0)
j .

Since all w′s are positive and
∑

i∈{1,...,nt}/{k}
∑nc

j=1

[
φ(Y t

k ;Y c
j )− φ(Y t

i ;Y c
j )
]
·wt,(h1)

i w
c,(h0)
j does

not involve ztk, the sign of ∂U
(h1,h0)
a

∂ztk
does not depend on ztk. Thus given the other z′s, U

(h1,h0)
a

can achieve minimum and maximum when zk is equal to 1/Λ1 or Λ1 for every k = 1, · · · , nt.
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Similarly, we can take the partial derivative of U
(h1,h0)
a with respect to zcl (1 ≤ l ≤ nc) as

∂U
(h1,h0)
a

∂zcl
=

exp{ĝ(xcl )}∑nt

i=1w
t,(h1)
i (

∑nc

j=1w
c,(h0)
j )2

·
nt∑
i=1

n∑
j={1,··· ,nc}/{l}

[
φ(Y t

i ;Y c
l )− φ(Y t

i ;Y c
j )
]
·wt,(h1)

i w
c,(h0)
j ,

and get the conclusion that given the other z′s, U
(h1,h0)
a achieves minimum and maximum

when zl is equal to 1/Λ0 or Λ0 for every l = 1, · · · , nc.

B.2 Proof of Theorem 4.2

Proof. We start by proving part (i). Without loss of generalization, suppose in the treatment

group, there exists a pair kt, lt ∈ {1, · · · , nt} with φ̃(Y t
kt

) = φ̃(Y t
lt
) and ztkt 6= ztlt . We can find

another set {(z̃ti)nt
i=1, (z̃

t
j)
nc
j=1} with

z̃tkt = z̃tlt =
ztkt exp {ĝ(xtkt)}+ ztlt exp {ĝ(xtlt)}

exp {ĝ(xtkt)}+ exp {ĝ(xtlt)}
,

z̃ti = zti for i ∈ {1, · · · , nt}/{kt, lt},

z̃cj = zcj for j = 1, · · · , nc,

that also achieves the maximum value.

We then prove part (ii) by contradiction. Without loss of generalization, suppose in the

treatment group there exists a pair kt, lt ∈ {1, · · · , nt} with φ̃(Y t
kt

) � φ̃(Y t
lt
) and ztkt < ztlt ,

and suppose there is another set {(z̃ti)nt
i=1, (z̃

t
j)
nc
j=1} such that

z̃ti = zti + ε exp{ĝ(xti)} · I(i = kt)− ε exp{ĝ(xti)} · I(i = lt) for i = 1, · · · , nt,

z̃cj = zcj for j = 1, · · · , nc.

Here ε is a positive small constant such that both z̃tkt and z̃tlt are within the range [1/Λ1,Λ1].
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The denominator of U
(h1,h0)
a is the same under {(zi)nt

i=1, (zj)
nc
j=1} and {(z̃i)nt

i=1, (z̃j)
nc
j=1}. With

{(z̃i)nt
i=1, (z̃j)

nc
j=1}, the numerator is

nt∑
i=1

nc∑
j=1

φ(Y t
i ;Y c

j )[1 + z̃ti exp{−ĝ(xti)}][1 + z̃tj exp{ĝ(xcj)}]

=
nt∑
i=1

nc∑
j=1

φ(Y t
i ;Y c

j )[1 + zti exp{−ĝ(xti)}][1 + zcj exp{ĝ(xcj)}]

+ ε
nc∑
j=1

[φ(Y t
k1

;Y c
j )− φ(Y t

k2
;Y c

j )]w
c,(h0)
j .

Since φ̃(Y t
kt

) � φ̃(Y t
lt
) and ε > 0, w

c,(h0)
j > 0 for every j ∈ {1, · · · , nc}, ε

∑nc

j=1[φ(Y t
k1

;Y c
j ) −

φ(Y t
k2

;Y c
j )]w

c,(h0)
j > 0. So the set {(z̃ti)nt

i=1, (z̃
t
j)
nc
j=1} leads to a larger U

(h1,h0)
a , which contradicts

with the statement that {(zti)nt
i=1, (z

c
j)
nc
j=1} maximize U

(h1,h0)
a .

B.3 Proof of Theorem 4.5

Proof. This theorem can be proved directly by taking the partial derivative of U
(h1,...,hS′ )
S

with respect to each weight function w
s,(hs)
k (k ∈ {1, · · · , ns}, s ∈ {1, · · · , S ′}) respectively.

We find that each of the partial derivatives with respect to the weight w
s,(hs)
k is free of w

s,(hs)
k

itself, therefore the theorem holds.

Here we take w
1,(h1)
1 as an example for illustration. The partial derivative of U

(h1,...,hS′ )
S with

respect to w
1,(h1)
1 is

∂U
(h1,...,hS′ )
S

∂w
1,(h1)
1

=
1(∑n1

i1=1w
1,(h1)
i1

)2∑n2

i2=1 w
2,(h2)
i2

· · ·
∑nS

iS=1w
S,(hS)
iS

·

n1∑
i1=2

n2∑
i2=1

· · ·
nS∑
iS=1

w
1,(h1)
i1

· · ·wS,(hS)
iS

φ(Y1,1;Y2,i2 ; · · · ;YS,iS),

which does not involve w
1,(h1)
1 .
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B.4 Proof of Theorem 4.6

Proof. We first prove part (i). Suppose there exists a pair kr, lr ∈ {1, · · · , nr} (r ∈ {1, · · · , S ′})

with φ̃(Yr,kr) = φ̃(Yr,lr) and zr,kr 6= zr,lr . Then there is another set {(z̃s,is)ns
is=1; s = 1, · · · , S ′}

that also achieves the maximum with z̃r,kr = z̃r,lr and other z values unchanged. In particu-

lar,

z̃s,is = zs,is + I(s = r, is ∈ {kr, lr})

(
zr,krbr,kr + zr,lrbr,lr

br,kr + br,lr
− zs,is

)
,

for is = 1, · · · , ns and s = 1, · · · , S ′.

We next prove part (ii) by contradiction. Without loss of generalization, suppose there

exists a pair k1, l1 ∈ {1, · · · , nr} (1 ∈ {1, · · · , S ′}) with φ̃(Y1,k1) � φ̃(Y1,l1) and z1,k1 < z1,l1 .

We construct another set {(z̃s,is)ns
is=1; s = 1, · · · , S ′} such that z̃s,is = zs,is + ε 1

bs,is
I(s =

1, is = k1) − ε 1
bs,is

I(s = 1, i = l1), where ε > 0 and is small enough such that z̃1,k1 ≤ z1,l1

and z̃1,l1 ≥ z1,k1 . We use US(z) and US(z̃) to denote the values of U
(h1,...,hS′ )
S with solution

{(zs,is)ns
is=1; s = 1, · · · , S ′} and {(z̃s,is)ns

is=1; s = 1, · · · , S ′}. Then

US(z̃) = US(z) + ε

n2∑
i2=1

· · ·
nS∑
iS=1

w
2,(h2)
i2

· · ·wS,(hS)
iS

(
φ(Y1,k1 ; · · · ;YS,iS)− φ(Y1,l1 ; · · · ;YS,iS)

)
.

As φ̃(Y1,k1) � φ̃(Y1,l1), ε > 0 and all w’s are positive, US(z̃) > US(z), which contradicts

with the statement that {(zs,i)ns
i=1; s = 1, · · · , S ′} maximizes U

(h1,··· ,hS′ )
S . This completes the

proof.
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