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ABSTRACT  

 

A numerical simulator entitled TOUGH-UDEC is introduced for the analysis of coupled thermal-

hydraulic-mechanical processes in fractured porous media. Two existing well-established codes, 

TOUGH2 and UDEC, are coupled to model multiphase fluid flows, heat transfers, and discontinuous 

deformations in fractured porous media by means of discrete fracture representation. TOUGH2 is 

widely used for the modeling of heat transfers and multiphase multicomponent fluid flows, and UDEC 

is a well-known distinct element code for rock mechanics. The two codes are solved sequentially, with 

coupling parameters passed to each equation at specific intervals. After solving thermal-hydraulic 

equations within the TOUGH2 code, pressure and temperature information is imported into the UDEC 

model. After solving the mechanical equation within the UDEC code the calculated fracture apertures 

are converted to the equivalent permeability and porosity values for a TOUGH2 flow analysis. The 

solution is calculated by iteratively following an explicit sequence for numerical efficiency. 

Verifications are presented to demonstrate the capabilities of the coupled TOUGH-UDEC simulator. 

Three application examples of (1) shear dilation due to increased pore pressure, (2) thermal stress and 

(3) CO2 injection, show that the new simulator can be an effective tool for geoengineering applications 

involving shear activation of fractures and faults.    
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1. Introduction 

Shear slip of rock fractures is a critical process in many applications of geological engineering, such 

as CO2 geosequestration (Shukla et al., 2010; Zoback and Gorelick, 2012), enhanced geothermal 

systems (EGS) (De Simone et al., 2017; Xie and Min, 2017), shale-gas production (Rutqvist et al., 

2015), and underground nuclear waste disposal (Min et al., 2013; Hudson et al., 2001). Shear slip can 

induce mechanical instability and enhanced fluid flow in fractures, possibly resulting in substantially 

enhanced permeability of a fractured rock mass unit (Min et al., 2004; Rutqvist, 2015). Shear slip can 

be caused by various mechanisms. For example, a pore pressure increase caused by a CO2 injection into 

a reservoir for carbon geosequestration reduces the effective normal stress between two fracture 

surfaces, which may induce fracture shear slip (Hawkes et al., 2005). For a deep geological repository 

used to store high-level nuclear waste, heat is emitted by the decaying nuclear waste and thermal stress 

is generated due to the confined nature of the rock. The thermal stress alters the stress distribution 

throughout the rock mass, and shear slip may be triggered (Ghassemi et al., 2005; Min et al., 2013).  

There are basic requirements and desired features of numerical codes for the adequate modeling of 

hydraulically or thermally induced shear slip, termed hydroshearing or thermoshearing, respectively 

(Cladouhos et al., 2009; Min et al., 2013). First, the numerical code should be able to model coupled 

thermal, hydraulic and mechanical processes in fractured porous rock. Second, it is critical for the 

coupled hydromechanical and thermomechanical behavior of fractures to be modeled accurately. Third, 

in certain applications, such as CO2 geosequestration and geothermal energy extraction from high-

temperature steam reservoirs, the modeling of multiphase and multicomponent fluid flow processes is 

required. However, most existing simulators for geological applications considering coupled THM 

phenomena are limited with regard to adequately modeling hydroshearing and thermoshearing. 

COMSOL Multiphysics (COMSOL, 2017), OpenGeoSys (Kolditz et al., 2012), CODE_BRIGHT 

(Olivella et al., 1996), FEHM (Zyvoloski et al., 1988) and FALCON (Podgorney et al., 2010) are 

examples of fully-coupled codes that can handle multiphase fluid flow and geomechanics, including 

coupled THM processes in geological media. They are based on continuum modeling approaches which 

cannot explicitly consider hydromechanical and thermomechanical fracture processes involving large 



 

 

number of fractures. Other codes such as FLAC3D (Itasca, 2009), THAMES (Ohnishi and Kobayashi, 

1996), ROCMAS (Noorishad et al., 1984), ABAQUS (Börgesson et al., 2001) are also based on a 

continuum approach with limited capabilities of considering complex fracture behavior and fracture 

networks. Although there are numerical codes capable of modeling the hydromechanical behavior of 

fractures explicitly, including codes based on the distinct element method (DEM) such as UDEC (Itasca, 

2011), and PFC (Itasca, 2008), distinct deformation analysis (DDA) (Shi, 1988), or the numerical 

manifold method (Hu et al., 2017), the fluid flow is often limited to take place within the fractures and 

does not include multiphase and multicomponent fluid flow. 

Programs with code-coupling have been frequently applied. Examples include a simulator linking 

the multiphase flow simulator TOUGH2 and the reactive transport simulator TOUGHREACT to 

geomechanics codes, such as FLAC3D (Rutqvist, 2011; Rutqvist et al., 2002; Taron et al., 2009). 

Sequential coupling of two codes offers a significant advantage due to its modularity, by which the fluid 

and the mechanical solver for the corresponding governing equations can be executed separately 

without much modification, which is particularly desirable in many practical applications (Xie and 

Wang, 2014). Additionally, the sequential coupling will typically be more rapid and less expensive to 

develop, and the modular construction approach allows for easier implementation of future advances in 

constitutive relationships or modeling structures (Settari and Mourits, 1998). Finally, existing codes for 

sequential coupling are already well tested and widely applied in their respective fields. 

The purpose of this study is to present the development of a numerical simulator that explicitly 

conducts a systematic and quantitative analysis of the hydroshearing and thermoshearing of discrete 

fractures in a fractured porous medium. Two existing codes were linked to model coupled multiphase 

fluid flows, heat transport, and mechanical processes in a complex fractured rock mass. These are 

TOUGH2, a finite volume multiphase flow and heat transport code (Pruess et al., 2012), and UDEC, a 

DEM geomechanical code. The two codes are linked by means of sequential executions and data 

transfers through a coupling module. Two verification examples and three application cases are 

presented using the developed TOUGH-UDEC simulator to demonstrate its capability to explicitly 

model shear slip-dilation behavior under coupled hydromechanical and thermomechanical processes.  



 

 

 

2. Methodology 

 

2.1. Mesh conversion from UDEC to TOUGH2 

 

In order to link TOUGH2 and UDEC, the geometry and element numbering along fractures and 

matrix blocks should be consistent in the two codes. A special MATLAB routine was developed to 

produce finite volume mesh discretization for TOUGH2 based on the UDEC mesh. In TOUGH2, the 

numerical grid is defined into finite volume elements with one node located at the centroid of an element. 

In UDEC, mesh discretization includes zones within matrix blocks, and the domains within fractures 

and nodes are located at the corners of the zones (Fig. 1). The domains within fractures are defined as 

apertures between nodal points along the fractures (Fig. 1). These fracture domains are typically small 

compared to the zones within the matrix blocks, which can lead to numerical convergence problems 

and reduced time steps for the flow and heat calculation in TOUGH2. To mitigate such numerical 

problems, the fractures in TOUGH2 are represented by porous elements of a certain thickness larger 

than the physical aperture in UDEC, with equivalent permeability and effective porosity (Stephens et 

al., 1998) calculated from the UDEC facture aperture (Eqs. (1) and (2)).  

 

 𝑘𝑘𝑒𝑒 =
𝑒𝑒3

12𝑏𝑏
 (1) 

 

 𝑛𝑛𝑒𝑒 =
𝑒𝑒
𝑏𝑏

 (2) 

 

Where ke is the equivalent permeability, ne is the effective porosity, e denotes the hydraulic aperture, 

and b is the width of the TOUGH2 fracture elements. 

 

 



 

 

2.2. Code-linking logic 

 

When linking a fluid flow and geomechanical codes sequentially, four different operator-split 

strategies for the coupling scheme exist: two schemes in which the mechanical problem is solved first 

(drained and undrained splits) and two schemes where the fluid flow problem is solved first (fixed-

strain and fixed-stress splits) (Kim et al., 2011). Among them, the solutions of fixed-stress splitting 

methods are unconditionally stable and the convergence properties are comparable to those of the fully 

coupled method (Kim et al., 2011). For TOUGH-UDEC coupled simulations, we applied the fixed-

stress splitting method to achieve optimum stability and the best convergence rate. 

For certain strongly coupled problems, there is likely a trade-off between the computational time 

and the degree of accuracy. According to Preisig and Prévost (2011), for strongly coupled poro-elastic 

problems, a sequential (or staggered) solution method could require a large number of iterations to attain 

the same results achievable with the fully coupled method. This indicates that sequential coupled 

methods could be less efficient than fully coupled methods. However, several recently published studies 

have shown that a fixed stress split is a robust and efficient scheme for iteratively coupling poro-elastic 

systems, even in the case of highly nonlinear and anisotropic problems (Mikelíc et al., 2014; White et 

al., 2016; Dana and Wheeler, 2018). Moreover, the type of coupling plays an important role, whether 

dominant by direct pore-volume couplings or indirect couplings through property changes (Rutqvist, 

2017), as does the rate of change in the system. If coupling variables of the porosity and permeability 

change slowly, as in most geological engineering problems, or the time step is relatively small, the 

accuracy of the results is guaranteed even with relatively few iterations (Rutqvist et al., 2002; Rutqvist, 

2017). Therefore, in TOUGH-UDEC, we apply an explicit sequential scheme for numerical efficiency, 

which means that the coupling variables of the porosity and permeability are evaluated only at the 

beginning of each time step, with TOUGH2 holding the time step size to a small value to avoid any 

abrupt change in the hydrological conditions.  

A flow diagram of the explicit sequential coupling procedure used with TOUGH-UDEC is shown 

in Fig. 2. After solving thermal and hydraulic equations in TOUGH2 at a fixed level of stress, the 



 

 

pressure (P) and temperature (T) are supplied to UDEC. Although calculation of the mechanical process 

is operated only at the corner nodes, the pressure is directly stored at the center of the zones and domains 

of UDEC. In the current version of UDEC, temperature data can only be stored at the corner 

nodes. Thus, temperature data transferred from the centroid of a mesh in TOUGH2 are 

interpolated at the corner nodes by considering the distance from each corner node to the 

centroid. If UDEC is updated to store the temperature at the centroid of a mesh in the future, 

the code will be modified. After solving the mechanical equations in UDEC, the updated aperture (e) 

of each fracture is converted to the permeability (ke) and porosity (ne) and used for the fluid flow 

calculation in TOUGH2. The solution is calculated by iteratively following an explicit sequence.  

 

2.3.  Verifications 

 

TOUGH2 and UDEC have each been extensively verified, i.e., TOUGH2 (Pruess et al., 2012) for 

multiphase (gas and liquid) fluid flows and heat transport (conductive and convective) and UDEC 

(Itasca, 2011) for geomechanics, including solid rock and fracture mechanical behavior. Moreover, both 

TOUGH2 and UDEC have a large user base, thus providing additional confidence with regard to their 

validity and applicability (Lee et al., 2015). Accordingly, our verification presented in this section is 

focused on the coupling between TOUGH2 and UDEC. Two independent code verifications were 

conducted relevant to code linking and coupled hydromechanical and thermomechanical responses in 

reservoirs.  

 

2.3.1. Uniaxial consolidation 

 

For the hydromechanical response, a uniaxial consolidation analysis was conducted and the 

numerical results were compared with Terzaghi’s analytic solution for this problem (Terzaghi, 1923). 

Fig. 3 shows a schematic view of the numerical model. The initial and boundary conditions are 

represented using the vertical lines with the specified depth of the model. Table 1 shows the properties 



 

 

used for the verification. 

If mechanical loading (σm) is applied at the upper boundary of one-dimensional saturated poroelastic 

media with height h, the pore pressure (Pp) at height z and time t is given as follows (Jaeger et al., 2007): 

 

 𝑃𝑃𝑝𝑝(𝑧𝑧, 𝑡𝑡) = 𝛼𝛼𝛼𝛼𝜎𝜎𝑚𝑚
(𝜆𝜆+2𝐺𝐺+𝛼𝛼2𝛼𝛼)

∑ 4
𝑛𝑛𝑛𝑛
𝑠𝑠𝑠𝑠𝑛𝑛 �𝑛𝑛𝑛𝑛𝑛𝑛

2ℎ
� 𝑒𝑒𝑒𝑒𝑒𝑒 (−𝑛𝑛2𝑛𝑛2𝑘𝑘𝑘𝑘)

4𝜇𝜇𝜇𝜇ℎ2
)

∞
𝑛𝑛=1,3,⋯ , (3) 

 

where α is the Biot constant, M is the Biot modulus, λ is the Lamé constant, G is the shear modulus, k 

denotes the permeability, μ is the fluid viscosity, and S is the storage coefficient.  

The vertical displacement (w) at the upper boundary (z = 0 m) versus time is determined as follows: 
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4𝜇𝜇𝜇𝜇ℎ2

)
∞

𝑛𝑛=1,3,⋯

� (4) 

 

Fig. 4 (a), (b), and (c) show the evolution of the pressure at the lower boundary, the evolution of the 

displacement at the upper boundary, and the pressure distributions after 105, 106, and 107 seconds. The 

numerical results are in close agreement with the analytical solutions. 

 

2.3.2. Heating of a hollow cylinder 

 

To verify the algorithms and code implementations related to thermomechanical responses, the 

heating of a hollow cylinder simulation was conducted for a comparison with analytic solutions. 

Nowacki (1962) provides the solution to this problem in terms of the temperatures and radial, tangential 

and axial stresses in a steady state, as shown below. 
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Where m=3KαT/(λ+2G), λ=K-2G/3, r is the radial distance from the cylinder center, a is the inner 

radius of the cylinder, b is the outer radius of the cylinder, Ta is the temperature at the inner radius, σr is 

the radial stress, σt is the tangential stress, σa is the axial stress, K is the bulk modulus, G is the shear 

modulus, and αT is the linear thermal expansion coefficient. 

A quarter section of the cylinder is modeled, and Fig. 5 shows the geometry and boundary conditions. 

A constant-temperature boundary of 100 °C is specified at the inner radius of the model. The 

temperature at the outer radius is set to 0 °C. Table 2 presents the properties of the model. 

Fig. 6 shows the temperature contour of the model in a steady state, and Fig. 7 shows the temperature, 

radial stress, tangential stress, and axial stress distributions along the radial axis AA’ in Fig. 5 compared 

with those of the analytic solutions. The plotted values are normalized, in which the temperature and 

stress are normalized by Ta and mGTa, respectively. The results of the numerical analysis are in good 

agreement with those of the analytical solutions showing that the data transfer and coupling between 

TOUGH and UDEC is working properly. 

 

 

 

 



 

 

3. Applications 

 

3.1.  Fluid injection into a single inclined joint 

 

In order to demonstrate the capability of the explicit modeling of the transient hydromechanical 

behavior of a joint, a simulation was conducted in which fluid is injected into a single inclined joint. 

Fig. 8 shows the model geometry. The initial and boundary conditions are represented using the inclined 

or vertical (if the variable is constant) lines with the specified depth of the model. Table 3 presents the 

material properties. Water is injected along the joint at a flow rate of 0.8 kg/s to build up the pore 

pressure uniformly. The normal and shear stiffness of the joint are held constant. A Coulomb slip 

criterion is used to determine the condition of shear failure.  

Fig. 9 shows the variation of the pore pressure, aperture, shear displacement and stress state at the 

center of the joint before the injection and after 260 seconds of the injection. Due to the constant 

injection rate, the pressure increases linearly from 9.8 MPa to 20.3 MPa (Fig. 9 (a)). The stress state 

reached failure after 170 seconds of injection (Fig. 9 (c)), after which shear slip started to occur (Fig. 9 

(b)). Before shear slip, the aperture of the joint initially increased as a result of the reduced effective 

normal stress. After the shear slip, shear dilation gives rise to an additional normal displacement until 

the shear displacement reaches the critical shear displacement for a dilation of 5 mm, with this value 

taken from (McClure and Horne, 2011). The numerical result of the aperture is in good agreement with 

the analytic solution (Esaki et al., 1999; Min et al., 2004), as presented below. 

 

 𝑒𝑒 = 𝑒𝑒0 +
∆𝜎𝜎𝑛𝑛′

𝑘𝑘𝑛𝑛
+ tan(𝜃𝜃) ∗ ∆𝛿𝛿𝑠𝑠 (9) 

 

Where e is the aperture, e0 represents the initial aperture, σ’n is the effective normal stress, kn is the 

normal stiffness, θ is the dilation angle, and δs is the shear displacement. The aperture of the joint 

increased by six-fold after 260 seconds of the injection. 



 

 

 

3.2.  Cooling around a single inclined joint 

 

In order to demonstrate the capability of the explicit modeling of the transient thermomechanical 

behavior of joints, heat extraction is conducted at a single inclined joint. Fig. 10 shows the model 

geometry and initial and boundary conditions, and Table 4 presents the material properties. Heat is 

extracted along the joint at a rate of -1,200 J/s. The normal and shear stiffnesses are held constant. A 

Coulomb slip criterion is used to determine the condition of shear failure. 

The temperature at the center of the joint decreases from 100 °C to 29.8 °C (Fig. 11 (a)). Initially, the 

aperture of the joint increases gradually due to changes in the cooling-induced normal stress (Fig. 11 

(b) and (c)). The stress state at the center of the joint reaches failure after one year of heat extraction, 

and shear displacement then increases sharply (Fig. 11 (b) and (c)). After the initiation of shear slip, the 

aperture of the joint also increases, mostly due to shear dilation. The numerical result of the aperture is 

in good agreement with the analytic solution according to Eq. (9). The aperture of the joint increased 

by 5.3 times after three years.  

 

3.3.  Large-scale CO2 injection and leakage analysis 

 

The TOUGH-UDEC simulator was applied to a large scale domain to demonstrate its capability for 

modeling CO2 geosequestration into a brine formation. Due to buoyancy of CO2 with a density of 200-

900 kg/m3, which is lower than that of brine, the integrity of the caprock is crucial to avert the leakage 

of injected CO2 for a sufficiently long period (Rutqvist et al., 2002). In order to investigate the aperture 

change of a fault due to shear slip, a numerical analysis with a particular TOUGH2 module for brine-

CO2 mixtures was conducted in the current study (Pruess and Garcia, 2002).  

The schematic geometry and initial and boundary conditions are shown in Fig. 12. The formation 

temperature was held constant as hydro-mechanical coupling was considered to be sufficient to 

investigate the change in the aperture. CO2 was injected at the bottom of a 200-m-thick sandstone 



 

 

aquifer, and the injection rate per meter (normal to model) is consistent with that of the In Salah, Algeria 

CCS site considering the 1 – 1.5 km length of horizontal injection wells (Rutqvist et al., 2010). The 

formation properties, including the relative permeability and capillary pressure functions of the model, 

was taken from those used in Rutqvist et al (2010) (Table 5). The single fault is located across the shale 

caprock slightly straddling the overburden and injection layers. In order to represent the effects of shear 

slip, two cases with identical conditions except for the friction angle of the fault were compared (Table 

6). 

Fig. 13 shows the variations of the pore pressure, aperture, and shear displacement at the top, center, 

and bottom of the fault for cases 1 and 2. Due to the CO2 injection, the pore pressure at the center and 

bottom of the fault starts to increase, whereas the pore pressure at the top of the fault remains nearly 

constant in both cases. After approximately 0.15 years of injection, shear slip occurs locally at the 

bottom of the fault for case 1, which locally affects the aperture and effectively results in a significant 

increase in the fault permeability (Fig. 13 (c)). After about 0.85 years of injection, shear slip extends 

along the entire fault, inducing an abrupt increase of the aperture along the entire fault. The pore 

pressures at the top and middle of the fault become equal to that at the bottom of the fault after this 

abrupt shear slip event. In case 2, shear slip does not occur owing to the higher shear strength.  

Aperture profiles along the depth of the fault after two years of injection are shown in Fig. 14. In 

case 1, the aperture of the fault increases much more than it does in case 2, as shear dilation significantly 

affects the aperture of the fault. In case 2, only normal deformation due to the pore pressure affects the 

aperture. The CO2 gas saturation contour during the formation of both cases shows that the integrity of 

the caprock was compromised by the shear slip, through which CO2 leakage could occur (Fig. 15). 

This application example demonstrates the capability of the TOUGH-UDEC simulator to study 

the large-scale hydromechanical behavior of a fault with explicit modeling of shear slip across a fault 

represented by a discontinuity, which can contribute to the understanding of the critical mechanisms 

related to the long-term storage security of a large-scale CO2 injection project. Other fluid injection 

applications involving deformation in discontinuities, such as hydraulic stimulations in EGS, will be 

considered in future studies.  



 

 

4. Discussion 

The merit of the TOUGH-UDEC simulator is its capability to undertake the explicit modeling of 

fracture behaviors driven by hydraulic and thermal processes in systems of fractured and porous media. 

Earlier THM coupled simulators using continuum-based models represent the fracture element using 

relatively thin continuum elements and typically use the empirical stress versus permeability functions 

(Rutqvist et al., 2002). Continuum-based fracture representation is limited in that it can only be applied 

to the complex fracture networks observed in many engineering applications related to the THM 

behavior of subsurface rocks, such as EGS, CO2 geosequestration, and underground nuclear waste 

disposal (Lei et al., 2017). The TOUGH-UDEC simulator may be applicable to multiple fracture models 

due to its explicit consideration of the fracture system.  

The current simulator has the following limitations. First, the TOUGH-UDEC simulator is not able 

to consider the influences of fault-filling materials on the fault behavior. Variation of the gouges and 

clays during shear slip could affect the friction coefficients (Numelin et al., 2007). The permeability of 

the fault could change during the long-term CO2 injection operation due to the chemical reactions of 

clays and minerals (Rochelle et al., 2004). Such chemical reactions could be managed if a coupled 

simulator between UDEC and TOUGHREACT, which is an extended version of TOUGH2 for 

chemically reactive transport, were to be developed. Second, the convective heat transfer between fluid 

and rock currently available in TOUGH (Moridis and Pruess, 1992; Pruess et al., 2012) is not fully 

implemented into the TOUGH-UDEC simulator; this would allow for the convective heat transfers in 

the fractures within rock masses. Third, the generation and propagation of a fracture cannot be modeled, 

and the current TOUGH-UDEC simulator is limited in applications involving the generation and 

propagation of certain types of fractures, such as hydraulic fracturing in a shale gas reservoir, and 

mixed-mechanism stimulations in an EGS reservoir (McClure and Horne, 2014). Fourth, the porosity 

in Eq. (2) should be applied to isotropic materials. The anisotropic characteristics of the porosity 

resulting from the pore connectivity as indicated in several numerical and field studies (Blum et al., 

2009; Endo et al., 1984; Neuman, 2005) can be considered in future studies.  

It was noted that the numerical demonstration of CO2 leakage presented here must be interpreted 



 

 

with caution due to the potential for more complex fault characteristics. The loss of caprock integrity 

in section 3.3 occurred due to a change in the permeability along a single and homogeneous fault as a 

result of changes in the effective normal stress and shear dilation. In reality, however, other factors also 

contribute to caprock integrity. First, a fault in a low-permeable formation with high clay content tends 

to retain fault-filling materials such as gouge, clay, and minerals. The permeability of such faults could 

be very low, even after shear slip, comparable to that before the shear slip (Laurich et al., 2014; Vilarrasa 

and Makhnenko, 2017). Second, shale formations or clay-rich faults could have high capillary entry 

pressure levels on the order of several MPa (Vilarrasa and Makhnenko, 2017; Espinoza and Santamarina, 

2017). In section 3.3, the capillary entry pressure of the shale caprock is 1.1 MPa, but that of the fault 

is 6.7 kPa, which is set low to highlight the effect of shear slip on the leakage of CO2. Considering that 

the CO2 overpressure for cases 1 and 2 is less than 1 MPa within two years of the injection, CO2 leakage 

would be restricted even after shear slip if the capillary entry pressure of the fault was assumed to be 

several MPa, Third, the hydraulic and mechanical heterogeneity along the faults affects the pore 

pressure diffusion (Rinaldi et al., 2014). Some regions with lower permeability could prevent the 

pressure from diffusing upward, resulting in a restricted area of fault activation and a relatively minor 

permeability increase of the fault.  

 

5.  Conclusions 

 

In order to model the hydroshearing and thermoshearing of discrete fractures in fractured porous 

media, the TOUGH-UDEC simulator was developed. The current status of this development along with 

two verification examples and three applications are presented. The main contents are summarized as 

follows.  

 Two existing well-established codes, TOUGH2 and UDEC, are linked to model coupled 

thermal, hydraulic and mechanical processes in fractured porous rock, with discrete 

fracture representation. A mesh conversion routine was developed to generate consistent 

model geometries and element numbering for both codes.   



 

 

 The coupled equations are solved sequentially with coupling parameters passed to each 

equation at specific intervals. TOUGH2 solves thermal and hydraulic equations, and 

pressure and temperature are supplied to UDEC. After solving mechanical equations in 

UDEC, the updated permeability and porosity of the fracture are used for the fluid flow 

calculation in TOUGH2. The TOUGH-UDEC simulator was verified by two 

hydromechanical and thermomechanical verification cases, resulting in good agreement 

with analytical solutions. 

 TOUGH-UDEC was applied to two basic hydroshearing and thermoshearing models with 

an inclined joint. The numerical result of the variation of the aperture matches the analytic 

solution well. 

 The developed simulator was finally applied to a large-scale CO2 injection and leakage 

analysis. Two cases with identical conditions except for the friction angle of the fault were 

compared. The case with a lower friction angle results in a much larger shear-dilation-

induced aperture increase and greater CO2 leakage compared to the other case with a 

higher friction angle. This application example demonstrates the applicability of the 

TOUGH-UDEC simulator for studying the large-scale hydromechanical behavior of a 

fault with the explicit modeling of shear slip across a fault represented by a discontinuity, 

and it can enhance the understanding of the critical mechanisms pertaining to the long-

term stability of a large-scale CO2 injection project. 
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Fig. 1. Schematic view of basic mesh structures in UDEC and TOUGH2 
 

 

 

 

Fig. 2. A flow diagram of the TOUGH–UDEC coupling procedure. 
 

 



 

 

 

 
Fig. 3. A schematic view of the model geometry and boundary condition 
of uniaxial consolidation 
 

 

 

Fig. 4. Evolution of the (a) pressure at the lower boundary and (b) displ
acement at the upper boundary, and (c) Pressure distributions after 105, 1
06, and 107 seconds 
 

 

 



 

 

 

Fig. 5. Geometry and boundary conditions of a quarter section of the hol
low cylinder model 
 

 

Fig. 6. Temperature contour of the model in a steady state 
 

 

 

 



 

 

 

Fig. 7. (a) Temperature, (b) radial stress, (c) tangential stress, and (d) axi
al stress distribution along the radial axis compared with the analytic solu
tions 
 

 

 

 

 

 

 



 

 

 

 

Fig. 8. Schematic view of a single inclined joint model with a fluid injec
tion 
 

 

 

 

Fig. 9. Variations of the (a) pore pressure, (b) aperture and shear displace
ment, and (c) stress state at the center of the joint 
 

 

 

 



 

 

 

 

Fig. 10. Schematic view of a single-inclined-fracture model with heat extr
action 
 

 

 

 
Fig. 11. Variations of (a) temperature (b) aperture and shear displacement,
and (c) stress state at the center of the joint 
 

 

 

 



 

 

 

 

 

 
 
Fig. 12. Schematic view of a brine formation model for CO2 geosequestration 
with initial and boundary conditions. 
 



 

 

 
Fig. 13. Pore pressure, aperture of the fault, and shear displacement at th
e top, center, and bottom of the fault for case 1 ((a), (b), and (c)) and c
ase 2 ((d), (e), and (f))  
 

 



 

 

 

 
Fig. 14. Aperture profiles along the depth of the fault after two years of 
injection for cases 1 (solid) and 2 (dashed)  
 
 

 

Fig. 15. CO2 gas saturation contours of (a) case 1 and (b) case 2 after two years 
of injectio 



 

 

 

 
 

 

 

 
 

 

 

 

 
 



 

 

 
 

 

 
 

 

 

 




