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ABSTRACT OF THE DISSERTATION

Bioinformatic characterization of genomic and transcriptomic diversity in the human brain
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Professor Jerold Chun, Chair
Professor William Joiner, Co-Chair

The human brain can be organized using various different layers of information about

the cells: epigenetic, genomic, transcriptomic, proteomic, etc. Recent endeavors have put

tremendous effort into mapping the brain cell-by-cell using these layers of information. A

challenge associated with these multi-modal approaches is being able to parse through the giga-

to terabyte scale amount of data that is generated. My thesis work has focused on investigating the

diversity of the brain’s genome (DNA) and transcriptome (RNA) and developing bioinformatic

tools to make that possible. My work can be broken into two general categories, addressing the

genome and the transcriptome.
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On the genomic side, I focused on identifying novel features known as gencDNAs

(genomic cDNAs). gencDNAs are hypothesized to result from transcription of a highly expressed

gene which is then spliced, reverse-transcribed, and inserted back into the genome at the site

of a DNA strand break. These novel sequences are predicted to be functional, resulting in

additional translation of a protein. APP, the amyloid precursor protein gene, was the first gene to

be identified as a gencDNA and was determined to be more prevalent in neurons of Alzheimer’s

disease (AD) patient brains. I developed an unbiased approach to identify additional gencDNAs

in the genome from short-read sequencing data.

The transcriptome can be studied at various resolutions. Through several projects, I

examined gene expression at the single-cell level, and I additionally characterized full-length

isoforms using long-read sequencing technologies. Recent advances in sequencing have made

it possible to sequence the entire lengths of mRNA transcripts. This technology is relatively

new, and bioinformatic tools need to be developed to handle this type of data. While several

packages and tools exist for quality control, alignment, reduction of redundancy, and annotation,

a tool for comparing isoforms (known and novel) across multiple samples and groups is not

available. I made a database-driven tool for this purpose that is compatible with current analysis

pipelines. The applications of this software were demonstrated by examining a dataset from the

1000 Genomes Project in addition to a large single-cell dataset investigating gene and isoform

expression changes in several neurodegenerative diseases.
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CHAPTER 1

INTRODUCTION
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The brain contains multitudes - there is immense diversity on many levels from cell

morphology to gene expression. Recent endeavors have aimed to characterize and organize the

cell types of the brain using epigenetics, genomics, transcriptomics, proteomics, etc. Advances in

sequencing technology have made it easier to assess variations in the genome and transcriptome

that contribute to the overall diversity in cells of the brain.

On the genomic level, variations can exist on the population level as well as within an

individual. Genomic mosaicism, a phenomenon in which cells do not share an identical genome,

has been well characterized in the human brain (1-3). It can be observed and measured in many

forms through various experimental approaches. Early, low-resolution studies examined DNA

content variation (DCV) and aneuploidies using flow cytometry and imaging respectively. Initial

studies comparing neuronal and non-neuronal cells demonstrated that neurons typically had

increased DNA content in comparison to lymphocytes (4-6). Aneuploidies that were detected

showed both increased and decreased numbers of chromosomes compared to the expected 23

(7-10). Smaller features like copy number variations (CNVs) and single nucleotide variations

(SNVs) can also be detected (2, 11-20). It is predicted that rearrangements in the genome that

cause the individual variation from cell to cell can occur during development but also later in life.

Mutations in progenitor populations can be propagated to daughter cells, however in neurons,

which are postmitotic, these alterations will only occur in that single cell.

More recently, a novel form of genomic mosaicism in the brain has been identified

and termed genomic cDNA (gencDNA)(21). gencDNAs can be categorized as a specific type

of structural variation (SV) where the genomic sequence resembles a spliced mRNA. While

gencDNA sequences often resemble highly expressed mRNA isoforms, they can also contain

novel combinations of exons or splice sites. The initial study defining gencDNAs also observed

sequences with intra-exonic junctions (IEJs)(21). These new splice junctions join together the

middle of one exon to the middle of another (not necessarily adjacent) exon with all intervening

sequence spliced out. These new splice sites and junctions are hypothesized to be the result of a

low-fidelity reverse transcriptase involved in the formation of the gencDNA. The mechanism
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for the generation of gencDNAs has been determined to involve gene expression, reverse

transcriptase activity, and DNA strand breaks. First, a gene is expressed, and the mRNA is

processed, splicing out the introns. Next, the gene is reverse transcribed back into DNA. Finally,

that sequence is inserted back into the genome at the site of a DNA strand break.

The first gencDNA to be discovered was from the gene APP, the amyloid precursor

protein gene (21). This gene is strongly associated with Alzheimer’s disease (AD), and its

gencDNAs were found to be prevalent in frontal cortex tissue from individuals diagnosed with

sporadic AD. Many different forms of APP sequences were identified through several types of

experiments including genomic DNA PCR, targeted short-read sequencing, and PacBio long-read

sequencing. The targeted short-read sequencing experiment was later determined to contain

contamination from an APP plasmid (22). The plasmid sequence was discovered by identifying

the pGEM-T Easy backbone sequence flanking the terminal exons of APP. While impossible

to prove, the argument was made that all the exon junction-spanning reads originated not from

gencDNA sequence but the plasmid contamination. The presence of plasmid contamination was

acknowledged, and “clean” datasets that had reads indicating the presence of gencDNAs were

cited as evidence that the plasmid contamination could not account for all the exon junction-

spanning reads (Chapter 2)(23).

Additional evidence supporting the existence of gencDNAs was provided in the form

of insertion sites (23). gencDNAs are inserted back into the genome, and should therefore be

flanked by sequences that differ from the native gene locus. To look for evidence of insertion

sites, short-read sequencing data was analyzed to identify specific read structures. These paired

read structures were expected to contain a single read that spanned the UTR of the gene (APP in

this case) and the novel insertion site, while the mate was expected to map to the novel insertion

site as well. These types of read pairs do not provide direct evidence of the cDNA-like sequence,

however read mates of exon-junction spanning reads were additionally examined to see if they

mapped to potential insertion sites as well. Long-read sequencing approaches through PacBio

or Oxford Nanopore Technologies would provide a fuller picture of what the insertion sites of

3



gencDNAs look like if they could be captured. A read from either approach on average would

be long enough to capture the entire cDNA-like sequence in addition to flanking sequences

upstream and downstream of it.

One challenge of sequencing these structures is their rarity. Estimates of frequency in AD

brain regions in the original gencDNA report indicated that they were present in ∼60% of neurons

(21). This is predicted to be frequent enough to be captured in sequencing approaches (targeted

and whole genome) but depends on the sample itself. Neurons are largely outnumbered by glial

cells in the brain, which could affect the ability to sequence gencDNAs that are predominantly

expressed in neurons (24). However, the prediction that other genes could generate gencDNA

sequences does not preclude the possibility that certain gencDNAs are primarily created in

non-neuronal cells.

Chapter 3 describes a bioinformatic pipeline used to analyze over 3,000 sequencing

datasets with the intent of identifying additional gencDNAs. The premise of this project was

based on the estimate from the original gencDNA report that gencDNAs occur in approximately

60% of neurons from AD. We predicted that gencDNAs could account for some of the DCV

increase observed in neurons and that genes associated with particular diseases could potentially

have deleterious effects through gencDNA formation. The results of this study did not indicate

any enrichment of potential gencDNA-forming genes in brain regions, cell types (neuronal vs

non-neuronal), or disease. Moreover, APP gencDNAs were not detected in any AD samples,

neuronal or non-neuronal. These results were inconsistent with the publication identifying and

defining gencDNAs in AD, and we expected many samples to reads indicating the presence of

APP gencDNAs (21). The primary observation from this study was that evidence of gencDNA

reads in the form of exon-exon junction spanning reads is extremely rare and occur with a

frequency of approximately 1/500,000,000 reads. The non-standardized datasets that were all

previously generated for other studies with different purposes could have potentially limited our

ability to identify gencDNAs, and this study highlights the need for an approach that can more

reliably capture rare sequences.
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Another layer of heterogeneity in the brain is its transcriptome. While variants that occur

in the genome can then be propagated into RNA sequence, other factors can create diversity in

the transcriptome. Mechanisms like alternative splicing and gene expression regulation create

transcriptional heterogeneity across different cells in the brain.

Gene expression on a global level can be measured through RNA-sequencing. The

relative abundances of genes are estimated through the number of sequencing reads that map to

them. Relatively modern techniques like single-cell sequencing allow scientists to profile gene

expression in individual cells. Instead of averaging gene expression across all the cells in a tissue

sample, single-cell sequencing typically uses molecular barcoding to indicate which genes were

expressed together in an individual cell (25, 26). The resulting transcriptional profiles are used to

label each cell with its predicted cell type. With this approach, comparisons can be made across

various cell types in different conditions, and changes that only occur in a small population

of cells can actually be detected. Single-cell studies have provided detail about cellular gene

expression in health and identified cells that appear to be more affected or involved in disease.

Alternative splicing is a process that creates variably spliced mRNAs that can result in

many different gene products from a single gene. This mechanism can create a huge amount

of isoform diversity. Typical RNA-sequencing studies use short-read sequencing technologies

which are not able to capture splicing differences without ambiguity. Short reads can only span

one or two splice junctions, making it possible to infer that a few exons were present in the

same transcript but not providing enough information about additional exons not covered by the

read. In contrast, long-read sequencing can resolve the entire isoform making it possible to read

through all the different splice sites and exon combinations (27-29).

Several studies have made use of long-read sequencing approaches for examining RNA

diversity. Scientists have discovered numerous novel transcripts when examining the human

brain in health and disease and also in cancers (30-35). The consistency with which these studies

identify isoforms that are not part of the reference annotation highlights the great advance in

sequencing technology to be able to capture these rare structures.
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More recently, efforts have been made to combine the use of single-cell technologies

with long-read sequencing to characterize cell-type-specific transcript expression. The Tilgner

group combined 10X Genomics sequencing with PacBio Iso-Seq using mouse cerebellar cells

to establish the protocol (30). To our knowledge, our group published the first application of

this protocol to human brain (Chapter 4), sequencing 16 samples from healthy controls and

individuals with Down syndrome (36). The main takeaways from this approach were: 1) ∼50%

of the sequenced isoforms were novel, indicating that the human brain contains a high level of

transcriptomic diversity; 2) the proportion of isoforms that were novel varied amongst different

cell types; 3) isoform switching, or a change in the dominantly expressed isoform, occurred

between different cell types, but not between control and DS groups as a whole; and 4) cell type

identification can be performed using only long reads (without the support of corresponding

short-read data), but is limited by depth. While we were still able to make some interesting

observations regarding isoform expression amongst cell types in the brain, sequencing depth was

a major limitation in identifying trends and statistically significant changes in expression. Typical

short-read sequencing methods result in hundreds of millions of reads and can reach gene-level

sequencing saturation. The significantly lower throughput of long-read sequencing methods

only yields a few hundred thousand high quality reads after processing and filtering for quality

control. It is not certain how much sequencing is required to reach isoform-level saturation. The

seemingly infinite number of isoforms that can be created from alternative splicing makes it hard

to predict a read threshold.

Technology advances quickly, and in the weeks leading up to the finalization of this

dissertation, PacBio released a new RNA sequencing kit, MAS-seq, specifically designed to

improve the throughput of single-cell isoform sequencing ∼16X (37, 38). The polymerase reads

of PacBio’s sequencing instrument far exceed the length of a typical spliced mammalian gene.

MAS-seq concatenates several barcoded mRNAs together, and downstream bioinformatics tools

demultiplex and separate out the individual reads. This method is likely to be the most effective

for use in tissues with only a few cell types because the increased depth still does not attain
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comparable throughput to that of short-read sequencing for cell type identification.

With advances in data generation methods, data analysis tool development must follow

suit. Bioinformatic tools have been written for many steps of the process from processing to

alignment to annotation. Downstream analyses tools have remained fairly limited, with many

scientists encountering the dilemma of having no clear guidance or method for comparing

multiple samples. The problem originates in the typical analysis workflow. Individual transcrip-

tomes made up of known and novel isoforms are assembled for each sample by using various

bioinformatics tools. Each transcriptome’s isoform identifiers are unique to the particular sample,

and “isoform 1” in sample A will not necessarily match “isoform 1” in sample B. Several “hacks”

exist and make up the only current suggestions for how to unify isoform IDs across samples.

Each approach has limitations, and while several publications, including ours, has made use of

one or another, the field is in need of a tool specifically created to address this need.

Chapter 6 describes isoSeQL, a program I wrote to compare isoforms from different

datasets. The program creates a SQLite database for storing information about each isoform

identified in each sample. Supporting functions can be used to query the database to identify

isoforms that overlap, examine isoform switching, and calculate differential expression using

other bioinformatics packages. This tool has developed further through its application to other

projects in the lab and will hopefully continue to develop as other scientists use this for their

own studies.
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In the accompanying comment1, Kim et al. conclude that somatic gene recombination

(SGR) and amyloid precursor protein (APP) genomic complementary DNAs (gencDNAs) in the

brain are contamination artefacts and do not naturally exist. We disagree. Here we address the

three types of analyses used by Kim et al. to reach their conclusions: informatic contaminant

identification, plasmid PCR, and single-cell sequencing. Additionally, Kim et al. requested

“reads supporting novel APP insertion breakpoints,” and we now provide ten different examples

that support APP gencDNA insertion within eight chromosomes beyond wild-type APP on

chromosome 21 from patients with Alzheimer’s disease. If SGR exists, as experimentally

supported here and previously2,3, contamination scenarios become moot.

Our informatic analyses of data generated by an independent laboratory (Park et al.)4

complement, and are entirely consistent with, what Lee et al.2 presented via nine distinct lines of

evidence, in addition to three from a prior publication3. Plasmid contamination was identified

in a single pull-down dataset after publication of Lee et al.2; however, subsequent analyses

did not alter any of our conclusions, including those of our prior publications3,5, and plasmid

contamination-free replication of this approach by ourselves and others supported the original

conclusions. Novel retro-insertion sites, alterations of APP gencDNA number and form within

cell types from the same brain, and pathogenic SNVs that occur only in samples from patients

with AD, all support the existence of APP gencDNAs produced by SGR.

One predicted outcome of SGR is the generation of novel retro-insertion sites distinct

from the wild-type locus, as we demonstrated using DNA in situ hybridization (DISH; Fig.

2n in Lee et al.). Analyses of independently published data sets4 produced by whole-exome

pull-down of DNA from laser-captured human hippocampus or blood revealed ten different APP

insertion sites within eight different chromosomes (Fig. 1, Supplementary Table 1). We identified

clipped reads spanning APP untranslated regions (UTRs) and new genomic insertion sites on

chromosomes 1, 3, 9, 10, and 12 (Fig. 1a; wild-type APP is located on chromosome 21). The

corresponding paired-end reads mapped to the same inserted chromosome. We also identified

reads spanning APP exon–exon junctions of gencDNAs that had mate-reads mapping to other
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genomic sites on chromosomes 1, 3, 5, 6, and 13 (Fig. 1b). We are unaware of contamination

sources that could produce these results that are entirely consistent with our DISH data showing

APP gencDNA locations distinct from wild-type APP. These new APP gencDNA insertion sites

strongly support the natural occurrence of APP gencDNAs.

Figure 2.1. Identification of novel APP insertion sites in the human genome.
a, Clipped reads spanning APP UTRs and novel chromosomal insertion sites were identified.
The paired mate-reads of the clipped reads (black hatching) uniquely mapped to the same chro-
mosomes. b, Discordant read-pairs were identified where one read spanned an APP exon–exon
junction and the corresponding mate-read mapped to a novel chromosome. Each chromosome
has a unique colour. Arrowhead direction represents the read orientation after mapping to the
human reference genome. Arrows oriented in the same direction support sequence inversions.
See detailed sequence and alignment information in Supplementary Table 1.

An APP plasmid contaminant (pGEM-T Easy APP) was found in our single pull-down

dataset; however, we could not definitively determine which APP exon–exon reads resulted from

gencDNAs as opposed to plasmid contamination, especially in view of the 11 other distinct and

uncontaminated approaches that had independently supported and/or identified APP gencDNAs.

Three other pull-down datasets from our laboratory were informatically analysed and found

to contain APP gencDNA reads while being free from APP plasmid contamination by both

VecScreen6 and subsequent use of the Vecuum script7 (Fig. 2a, b). Possible external source

contamination noted by Kim et al. in two of three data sets could not definitively account for all

APP exon–exon junctions.

The recent availability of independently generated datasets derived from patients with

AD4 provided a test for the independent reproducibility of APP gencDNA identification. Five

brain and two blood samples from individuals with sporadic AD (SAD) contained APP gencDNA
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Figure 2.2. Identification of APP gencDNA sequences in ten new whole-exome pull-down
datasets from two independent laboratories.
a, Method schematic depicting the standard protocol for whole-exome pull-downs and high-
lighted methodological differences between the independent laboratories (our lab and Park et
al.4). b, APP-751 sequence with non-duplicate gencDNA reads from the ten new datasets; colour
key indicates the source reads for all panels. c, Reads that map to junctions between APP exons
7, 8, and 9 that are absent from APP-751. d,e, Paired reads that represent a DNA fragment
containing both an exon–exon junction and an APP 3’ or 5’ UTR.

sequences and were shown to be plasmid-free by Vecuum7 screening (Fig. 2a–e). In addition

to exon–exon junction reads and novel insertion sites, we also identified APP UTR sequences

paired with reads containing APP gencDNA exon–exon junctions (Fig. 2d, e). This may be

explained by a key experimental design factor: the pull-down probes used by Park et al. contain

sequences corresponding to the 5’and 3’UTRs of APP.

In addition to APP plasmid and amplicon contaminants, Kim et al. invoked genome-

wide mouse and human mRNA contamination in the Park et al. data set. We cannot address

conditions in the Park et al. laboratory but note that it is completely independent of our own.

Kim et al. explain this by implicating the generation of DNA from mRNA, which requires

reverse transcriptase activity. The Agilent SureSelect pull-down used by Park et al. and in our

experiments do not use reverse transcriptase (Fig. 2a and Supplementary Methods), and we
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are unaware of any mechanism that would generate DNA from RNA in the absence of reverse

transcriptase activity under the conditions used. An alternative explanation is the existence of

gencDNAs that affect other genes, as we previously detected in non-APP intra-exonic junctions

(IEJs) found in commercial cDNA Iso-Seq data sets (Extended Data Fig. 1). Additional validation

would be required for new genes, but we note that an average of 450 Mb of extra DNA exists

within cortical neurons from individuals with AD3 that could accommodate new gencDNA

sequences. Kim et al. further invoked genome-wide mouse mRNA contamination in the Park et

al. data set to account for APP gencDNAs, but this explanation conflicts with the available data.

Mouse-specific single nucleotide polymorphisms (SNPs) in the Park et al. data set cannot account

for all APP gencDNA-supporting reads: five of seven APP exon–exon junction sequences do not

contain putative mouse-specific SNPs at the specific region reported by Kim et al. (Fig. 3; Kim

et al. Fig. 2d). Most critically, the novel APP gencDNA insertion sites identified here cannot be

explained by genome-wide mRNA contamination.

Figure 2.3. Five APP gencDNA-supporting reads that span exon-exon junctions and do not
contain mouse-specific SNPs.
APP gencDNA reads were identified that span the APP exon10–exon11 junction from the Park et
al. datasets4. The reference sequences of human and mouse exons are indicated and the positions
at which the nucleotides differ are highlighted. Five of the seven exon–exon junction-spanning
reads do not contain mouse-specific SNPs.

Kim et al. used PCR of APP splice variant plasmids, which generated sequences contain-

ing IEJs. However, there are multiple discrepancies between this approach and our biological

IEJs and gencDNAs. 1) The experimental conditions, beyond our primer sequences, were

different: Kim et al. used twice the concentration of primers and more than one million times

more template (250 pg APP plasmid is 4.6 × 107 copies versus about 40 gencDNA copies in our

16



PCR of 20 nuclei; based on Lee et al.2 Fig. 5: DISH 16/17 averaged about 1.8 copies per SAD

nucleus). 2) Both gencDNA and IEJ sequences can be detected with as few as 30 cycles of PCR,

as we used in single molecule real-time sequencing (SMRT-seq) (Lee et al.2 Fig. 3) versus 40

cycles used by Kim et al. 3) The agarose gels in Kim et al. are uniformly and unambiguously

dominated by a vastly over-amplified about 2-kb band (Kim et al. Fig. 1c and Extended Data

Fig. 3a) that is never seen in human neurons despite our routine identification of myriad smaller

bands (compare with Lee et al.2 Fig. 2b). We did observe an over-amplified about 2-kb band in

our purposeful plasmid transfection experiments, which also used PCR; however, the formation

of gencDNA and IEJs was comparatively limited, of sequences distinct from brain and critically,

required both reverse transcriptase activity and DNA strand breakage (Lee et al.2, Fig. 4). 4)

Finally, only 45 unique IEJs from individual brains with AD and 20 from the brains of healthy

controls were identified (Lee et al.2 Fig. 3 with some overlap, fewer than 65 total) compared to

the 12,426 identified by Kim et al. (an approximately 200-fold increase over biological IEJs; Kim

et al. Supplementary Table 1). We wish to note that microhomology regions within APP exons

are intrinsic to the APP DNA sequence and that microhomology-mediated repair mechanisms

involve DNA polymerases8,9. The PCR results of Kim et al. differ from our biological data but

might inadvertently support the endogenous formation of at least some IEJs within DNA rather

than requiring RNA.

Despite these differences between the non-biological plasmid PCR data generated by

Kim et al. and our data, Kim et al. conclude that IEJs from our original study2 might have

originated from contaminants. To eliminate this possibility, Lee et al.2 presented four lines of

evidence for APP gencDNAs containing IEJs that are independent of APP PCR: two different

commercially produced cDNA SMRT-seq libraries, DISH, and RNA in situ hybridization (RISH).

The SMRT-seq libraries revealed IEJs within APP (Lee et al.2 Extended Data Fig. 1e) as well

as other genes (Extended Data Fig. 1), which cannot be attributed to plasmid contamination

or PCR amplification. The DISH and RISH results support the existence of APP gencDNAs

and IEJs (see Supplementary Discussion and Lee et al.2 Fig. 2, Extended Data Figs. 1, 2) by
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using custom-designed and validated commercial probe technology (Advanced Cell Diagnostics,

ACD), which was independently shown to detect exon–exon junctions10 and single-nucleotide

mutations11. Thus, gencDNAs and IEJs can be detected in the absence of targeted PCR. Notably,

the contamination proposed by Kim et al. cannot account for the marked change in the number

and forms of APP gencDNAs that occurs with disease state. The change is also apparent when

comparing cell types; signals are vastly more prevalent in neurons than in non-neuronal cells

from the same brains of individuals with SAD when the samples are processed at the same time

by DISH (Lee et al.2 Fig. 5). Independent peptide nucleic acid fluorescence in situ hybridization

(PNA-FISH) and dual-point-paint experiments from our previous work further support APP

gencDNAs3 (Table 1). Critically, SMRT-seq identified 11 single-nucleotide variations that are

considered pathogenic in familial AD and that were present only in our samples from individuals

with SAD; none of them exist as plasmids in our laboratory.

Table 2.1. Summary of targeted and non-targeted APP PCR methods and lines of evidence
that support APP gencDNAs and IEJs

Method Targeted
APP PCR

Support for the existence of IEJs and
gencDNAs

Reference

Approaches without targeted APP PCR
RISH on IEJ 3/16 None IEJ 3/16 RNA signal is present in

human SAD brain tissue
Lee et al.2

Whole-transcriptome
SMRT-seq

None An independent commercial source
identified IEJs in APP and other
genes

Public
dataseta,
Lee et al.2,
this Reply

Targeted RNA SMRT-
seq

None RNA pull-down that identified APP
IEJs

Public
dataseta,
Lee et al.2
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Table 2.1. Summary of targeted and non-targeted APP PCR methods and lines of
evidence that support APP gencDNAs and IEJs (cont’d)
Method Targeted

APP PCR
Support for the existence of IEJs and
gencDNAs

Reference

DISH of gencDNAs None IEJ 3/16 and exon–exon junction
16/17 showed increases in neurons
compared to non-neurons from the
same brain from an individual with
SAD and to non-diseased neurons;
J20 mice containing the APP trans-
gene under a PDGF-β -promoter
showed increased number and size
of signal compared to non-neurons
and wild-type mice

Lee et al.2

Dual point-paint FISH None Identified APP CNVs of variable
puncta size that were not always as-
sociated with Chr21

Bushman et
al.3

PNA-FISH None APP exon copy number increases
show variable signal size and shape
with semiquantitative exonic probes

Bushman et
al.3

Agilent SureSelect tar-
geted pull-down

None Identified APP gencDNAs in brains
from individuals with SAD; con-
tains plasmid sequence contamina-
tion

Lee et al.2,
this Reply

Agilent all-exon pull-
down

None All-exon pull-downs, with no plas-
mid contamination by both Vec-
screen and Vecuum, contain APP
gencDNA sequences and evidence
of gencDNA UTRs and novel inser-
tion sites

Park et al.4,
this Reply

Approaches with targeted APP PCR
RT-PCR and Sanger se-
quencing

Oligo-dT
primed
and tar-
geted APP
primers

Novel APP RNA variants with IEJs;
predominantly in neurons from indi-
viduals with SAD

Lee et al.2

Genomic DNA PCR
and Sanger sequencing

Yes Identified APP gencDNAs with
IEJs; predominantly in neurons
from individuals with SAD

Lee et al.2
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Table 2.1. Summary of targeted and non-targeted APP PCR methods and lines of
evidence that support APP gencDNAs and IEJs (cont’d)
Method Targeted

APP PCR
Support for the existence of IEJs and
gencDNAs

Reference

Genomic DNA PCR
and SMRT-seq

Yes IEJ/gencDNAs were more prevalent
in number and form in neurons from
individuals with SAD compared to
non-diseased neurons; identified 11
pathogenic SNVs that were present
only in SAD samples

Lee et al.2

APP-751 overexpres-
sion in CHO cells

Yes IEJ and gencDNA formation re-
quired DNA strand breakage and re-
verse transcriptase

Lee et al.2

Single-cell qPCR Yes; indi-
vidual exon

Intragenic exon 14 single-cell qPCR
showed copy number increases in
prefrontal cortical neurons over cere-
bellar neurons from the same brain
of an individual with SAD

Bushman et
al.3

CNV, copy number variation.
aThe Alzheimer brain Iso-Seq dataset was generated by Pacific Biosciences, Menlo Park,
California.
Additional sequencing information and analysis is provided at
https://downloads.pacbcloud.com/public/dataset/Alzheimer IsoSeq 2016/.

Kim et al. compared APP gencDNA copy number estimates from pull-down sequencing

and DISH. However, a direct comparison is not possible since the two methodologies are

fundamentally different. For example, pull-downs use solution hybridization on isolated DNA,

whereas DISH uses solid-phase hybridization on fixed and sorted single nuclei. Moreover,

the sequences targeted are not the same. Pull-down probes target wild-type sequences for

endogenous and gencDNA loci, resulting in pull-down competition. By contrast, DISH probes

target only gencDNA sequences to provide greater sensitivity. Competition by wild-type loci

reduces the efficiency of capture, which is underscored by 32% to 40% of nuclei that do not

contain gencDNAs and would contribute only wild-type sequences (Lee et al., Fig. 5c, f).

Moreover, a majority of gencDNA positive nuclei (62% to 73%) showed two or fewer signals

(Lee et al., Fig. 5c, f) which reduced the relative representation of gencDNA loci. As IEJs
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do not contain the full exon sequence, there is inefficient hybridization and a lack of sequence

capture and detection. This limitation is overcome by SMRT-seq (Table 1). Lastly, multiple other

protocol variations exist, including tissue preparation, fixation, and hybridization conditions,

which explain the hypothesized discrepancies.

Kim et al.’s third type of analysis yielded a negative result via interrogation of their own

single-cell whole-genome sequencing (scWGS) data, which cannot disprove the existence of

APP gencDNAs. An average of nine neurons from the brains of seven individuals with SAD were

examined, raising immediate sampling issues required to detect mosaic APP gencDNAs. Kim et

al. identified “uneven genome amplification”1,12-14 that resulted in about 20% of their single-cell

genomes having less than 10× depth of coverage14 with potential amplification failure at one

(∼9% allelic dropout rate) or both alleles (∼2.3% locus dropout rate)12,14. These limitations are

compounded by potential amplification biases reflected by whole-genome amplification failure

rates that may miss neuronal subtypes and/or disease states, which is especially relevant to single

copies of APP gencDNAs that are as small as about 0.15 kb (but still detectable by DISH). Kim

et al. state that the increased exonic read depth relative to introns reliably detects germline

retrogene insertions in single cells from affected individuals (Kim et al., Fig. 3b); however, these

data also demonstrate that increased exonic read depth is not observed in all cells—or even a

majority in some cases—from the same individuals carrying the germline insertions of SKA3

(AD3 and AD4) and ZNF100 (AD2). These results demonstrate inherent technical limitations in

the work by Kim et al. that prevent the accurate detection of even germline pseudogenes present

in all cells, thus explaining an inability to detect the rarer mosaic gencDNAs produced by SGR.

Kim et al.’s informatic analysis is also based on the unproven assumption that the structural

features of gencDNA are shared with processed pseudogenes and LINE1 elements (Kim et al.

Fig. 3a and Extended Data Fig. 1a), and possible differences could prevent straightforward

detection under even ideal conditions as has been documented for LINE115. These issues could

explain Kim et al.’s negative results.

Considering these points, we believe that our data and conclusions supporting SGR and
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APP gencDNAs remain intact and warrant their continued study in the normal and diseased

brain.
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Code availability
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christine-liu/exonjunction.
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CHAPTER 3

NOVEL BIOINFORMATIC PIPELINE FOR IDENTIFYING GENCDNAS IN SHORT-READ
SEQUENCING
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Introduction

The diversity of the brain can be examined at many levels - cellular, genomic, tran-

scriptomic, etc. Genomic mosaicism, variation in individual cellular genomes, has been well

documented in the human brain. Features such as aneuploidies, copy number variations (CNVs),

and single-nucleotide variations (SNVs) can contribute to mosaicism (1-20). Initial studies

identified DNA content variation (DCV) between neurons and non-neurons in the frontal cortex

of the brain. These neurons showed a substantial increase of ∼200Mb DNA in comparison to

lymphocytes and neurons from the cerebellum (3, 6, 19). More recent work has identified a

novel form of genomic mosaicism in the brain: genomic cDNAs (gencDNAs) (21). gencDNAs

are genomic sequences that resemble spliced mRNAs but are found in the genome. gencDNA

sequences often resemble prominently expressed mRNA isoforms, but can also contain novel

combinations of exons or junctions. Novel splice junctions called intra-exonic junctions (IEJs)

are sometimes observed in gencDNAs, joining together the middle of one exon to the middle

of another (not necessarily adjacent) exon with all intervening sequencing spliced out. Three

requirements for gencDNA formation were identified: 1) gene expression, 2) reverse transcriptase

activity, and 3) DNA strand breaks. gencDNAs are thought to form through reverse transcription

of the expressed mRNA and reinsertion into a random location in the genome. The first gencDNA

identified originated from the amyloid precursor protein gene, APP, and the prevalence of the

gencDNA was increased in Alzheimer’s disease.

We hypothesize that many other genes besides APP could generate gencDNAs and that

these gencDNAs may partially account for the increased DNA content observed in neurons. The

frequency with which APP gencDNAs were observed suggested that next-generation sequencing

approaches could be used to identify additional genes that became gencDNAs. Currently, no

other published studies have identified additional gencDNAs and their relationship to disease,

but many sequencing datasets from brain have been produced to examine other genomic features.

We present a comprehensive survey of 3,646 publicly available sequencing datasets from various

diseases, brain regions, and sequencing strategies that were analyzed with a novel pipeline to

28



detect evidence of gencDNAs.

Results

NGS sequencing uses read lengths that are typically 50-250 nucleotides (nt) in length.

These reads are long enough to cover the junction between two exons (Fig 1A). These types of

reads are commonplace in RNA-seq, but should not be observed often in genomic DNA. Exon-

exon spanning reads detected in genomic DNA can serve as potential indicators of the presence

of gencDNAs. To identify these reads in genomic DNA sequencing, we started by mapping the

reads with STAR, a short-read aligner typically used for RNA-seq, and followed with custom

bash and Python scripts to parse through the alignments to identify exon junction-spanning reads

(Fig 1B)(22). The custom scripts specifically pulled out these reads of interest and validated

their mapping with an additional aligner, blat (23). STAR was chosen as the initial aligner for its

ability to map across large “gaps” where the read does not contain large stretches of the genome,

typically corresponding to introns in RNA-seq. Because the structure of a gencDNA resembles

processed mRNA, reads originating from them would resemble RNA-seq reads. Other alignment

tools would instead split the read and align the two parts separately, making it more difficult to

find the individual reads that map across an exon-exon junction (24, 25).

The custom scripts rely on STAR’s ability to align these “split reads” accurately. In order

to determine how much of the read needs to align to a single exon while the rest of the read

maps to another exon, we randomly generated one million 150nt reads with varying split lengths

and counted which ones were mapped accurately (Fig 1C). Reads with at least 15nt or more

mapped to a single exon were mapped correctly ≥95% of the time. This 15nt limit was used

as a cutoff for identifying split reads. The two “blocks” that made up the split read were then

compared to a reference annotation file that contained all the coordinates of annotated exons in

the reference genome. These reference files are generated for the reference genome of interest.

The comparisons are then used to mark whether the split reads map to precise splice sites or if

they indicate that the two exons were joined together at an intra-exonic splice junction. Reads

that map to known pseudogenes are removed from further validation steps as known pseudogenes
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Figure 3.1. Bioinformatic pipeline for identifying gencDNAs.
(A) Schematic of exon-exon junction-spanning reads that are identified as evidence for gencDNAs.
(B) General workflow for processing raw sequencing data to generate a list of potential genes
that have become gencDNAs and evidence reads (C) Simulated reads with exon-exon junctions
used to determine the smallest number of nucleotides necessary to map to an exon accurately.
(D) Example of information provided in the output file.

may contain exon-exon junctions. As a final confirmation step, these reads are realigned with

blat, another aligner that accommodates large gaps in the mapping (23). Reads with alignments

identical between STAR and blat are output as gencDNA evidence. The output file contains a

list of genes, the number of gencDNA-containing reads that were detected for each gene, and the

corresponding read names (Fig 1D).

The first gencDNA identified, APP, was proposed to play a role in the development

of sporadic Alzheimer’s disease (21). The original publication also suggested that APP may

not be the only gene to become a gencDNA and contribute to a brain disorder. To investigate

whether other genes could be found in gencDNA form in the brain, we examined over 3,000

sequencing datasets. Many sequencing studies have been carried out using brain tissue, but none
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have searched for the presence of gencDNAs in the DNA. These datasets are readily available

from various data repositories. The only criteria for inclusion in this study were that it originated

from brain tissue and that DNA was sequenced. Brain tissue is not easily obtainable, and we

wanted to be inclusive of all regions, diseases, sequencing strategies, etc. A total of 3,646

datasets were downloaded: 3,547 from brain tissue, while the rest were composed of other

patient-matched tissues. A variety of sequencing library preparation strategies were represented,

including whole-genome sequencing (WGS), whole-exome sequencing (WES), targeted gene

panels, and single-cell WGS (4, 7, 10, 12, 26-39). All of these modalities generate data that can

be analyzed using the gencDNA pipeline, however, targeted strategies may be more limited in

which genes could be detected as gencDNAs. Each of these datasets was first analyzed with

Vecuum, a bioinformatics tool for identifying plasmid contamination in sequencing data, to

eliminate the possibility that these exon-exon spanning reads originated from contamination (40).

“Clean” datasets with no plasmid contamination were then analyzed using the gencDNA pipeline.

27 samples were removed after Vecuum screening.

To account for potential concerns that cDNA library contamination would produce

misleading results that were not detected by Vecuum due to the lack of plasmid vector backbone

sequence, samples with an outlier number of genes (>10) identified as gencDNAs were removed

from the sample pool. cDNA library contamination would result in reads spanning exon-exon

junctions from a large number of genes. Out of 3619 samples (after removing samples with

Vecuum-detected contamination), 359 were removed using this criterion. Notably, all samples

from a single study known to have additionally generated matching single-cell RNA-seq libraries

were removed (38).

2451 samples out of 3260 total (75.18%) that fit our criteria had zero gencDNAs. Using

a cutoff of two reads necessary to support each potential gencDNA gene, 42.77% of samples

had only one gencDNA gene (Fig 2A). Very few genes were repeatedly detected as potential

gencDNAs, and gencDNA reads appeared to occur at a very low frequency, ∼1/500,000,000

reads. These results are consistent with the idea that they may occur in an individual cell that
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may not be propagated through continued division. gencDNAs that occur in neurons would not

be replicated in another cell because neurons are postmitotic.

Figure 3.2. Results of gencDNA identification in publicly available datasets.
(A) Histogram of the number of samples with a certain number of gencDNAs (B) Heat map of
expression of top 10 most detected gencDNA genes in different cell types of the human brain
(41).

Surprisingly, there did not appear to be any enrichment of gencDNAs in any particular

disease or brain region. Gene expression also did not serve as a predictor of genes that were

more likely to be detected as gencDNAs. Several of the top ten most detected gencDNA genes

(detected in the most samples) did not appear to have high expression in various cell types of

the brain (Fig 2B, Table 1)(41). Contrasting with the original APP gencDNA report, no APP

gencDNA reads were detected in Alzheimer’s disease (AD) samples. 1215 AD samples were

included in this study, and zero APP gencDNA-supporting reads were detected in any of them.

Given the estimate that >60% of neurons in AD contained at least one APP gencDNA, we would

have expected to identify these gencDNAs readily (21). It could be argued that many samples

included in this study were unsorted, bulk samples where the glial cells could easily outnumber

the neurons, however, 945 of the 1215 AD datasets were single cells sorted for NeuN+. If the

estimate held true, we’d expect that about 567 of the datasets would have an APP gencDNA.
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Table 3.1. Top 10 most detected gencDNAs by number of samples

Gene Sample Count Total Read Count
KRTAP4-1 665 4764
MUC21 145 482
SKA3 114 11830
C16orf52 (MOSMO) 100 477
ZNF664 99 5095
ZNF664-RFLNA 74 1264
MUC4 63 146
LRRK2 25 139
SARAF 23 2076
ZC3H11A 20 43

Discussion

The original report identifying APP gencDNAs described sequences that occurred with

relatively high frequency in neurons. This suggested that these sequences could easily be

identified from next-generation technologies that assess entire genomes in an unbiased manner

or even through exon/gene-targeted strategies. We hypothesized that examining short-read

sequencing datasets from the brain would uncover several other genes that could form gencDNAs

and be linked to other neurological diseases and disorders. We developed a bioinformatic

pipeline combining established tools and custom scripts with the goal of identifying exon-exon

junction-spanning reads that would be indicative of cDNA-like sequences in the genome. This

pipeline was then used to analyze 3,646 publicly available short-read sequencing datasets, a

majority of which were from post-mortem human brain tissue.

We had hypothesized that similar to APP, the presence of other disease-related genes as

gencDNAs would be linked to their respective diseases and affected brain regions. We did not

observe an enrichment of gencDNA-generating genes that was linked to disease or brain region.

More surprisingly, we also did not detect APP gencDNAs in any of our AD samples. Several

of these datasets were whole-genome amplifications of single neurons, and if the previously

observed frequency had held true, we would have expected a majority of these datasets to have

detectable reads spanning APP exon-exon junctions.
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These negative data could reflect the limitations of this approach to identifying gencDNA

sequences. If we assume that gencDNAs are forming mostly in post-mitotic neurons, then these

gencDNAs will not be propagated to additional cells through mitotic divisions. Bulk sequencing

of the genome does not fully capture the entire genome of each individual cell that is sampled.

The odds of capturing a DNA fragment that spans an exon-exon junction of a gencDNA that

only occurs in a single cell out of thousands that are sampled are low. Targeting specific genes

or only exonic sequences can improve the odds of capturing a gencDNA, but these approaches

are still limited by the inability to thoroughly examine the entire genome of each individual cell.

This suggests that single-cell whole-genome amplification (WGA) may provide the best estimate

of how frequently gencDNAs are formed and which genes become gencDNAs. However, this

method is limited too, and several studies have reported “uneven genome amplification” resulting

in allelic dropout that may prevent the capture of gencDNA insertions (28, 29). This method also

relies on the ability to sort out neurons or other cell types of interest which may be subject to its

own selection biases.

Another potential explanation for these negative data is that these exon-exon junction

reads are an artifact of the sample preparation process or the result of contamination. There

are no mechanisms that would explain how these reads would be spliced together exactly at a

known mRNA junction, however, further analysis needs to be done to determine the prevalence

of similar reads that cover a large ”splice junction” but do not join exons together (potentially in

an intergenic region). The frequency with which we observed exon-exon junction spanning reads

is rare enough that it could be randomly occurring. It’s nearly impossible to completely rule out

the potential for cDNA contamination. Unpublished calculations from our lab indicate that on

average ∼10% of reads from RNA-sequencing span exon-exon junctions. A small amount of

cDNA contamination would be indistinguishable from gencDNA sequence, and the resulting

sequencing reads would exhibit the same hallmark exon-exon junction spanning structure.

One important factor that this approach does not address is the gencDNA’s site of

integration. 150-200bp is not long enough to span more than an exon-exon junction or two, so
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we can only make inferences about the rest of the gencDNA structure and have no information

about where it was inserted into the genome. Long-read genomic sequencing is one way to

obtain this information. Long sequencing reads will easily cover an entire gencDNA and can

potentially include both 5’ and 3’ flanking sequences. This method can provide both confirmation

of the intron-less structure and placement in the genome. The considerably lower throughput

and consequently increased limitations in covering the entire genome of an individual cell are

challenges of long-read sequencing for identifying gencDNAs.

The difficulty in identifying additional gencDNAs reflects their rarity but also the fact

that the current technology does not quite have the resolution to detect anything at such low

levels with confidence. This study hints at the possible presence of gencDNA sequences in the

genome but was unable to detect any at a meaningful level. As sequencing technologies continue

to advance, it may one day be possible to sequence the entire individual genomes of thousands

of cells, providing more clarity regarding the frequency with which gencDNAs are integrated

into the genome and what role they may play in disease.

35



References

1. Bae, T., Fasching, L., Wang, Y., Shin, J. H., Suvakov, M., Jang, Y., Norton, S., Dias, C.,
Mariani, J., Jourdon, A., Wu, F., Panda, A., Pattni, R., Chahine, Y., Yeh, R., Roberts,
R. C., Huttner, A., Kleinman, J. E., Hyde, T. M., Straub, R. E., Walsh, C. A., Brain
Somatic Mosaicism Network section, sign, Urban, A. E., Leckman, J. F., Weinberger, D.
R., Vaccarino, F. M. and Abyzov, A., Analysis of somatic mutations in 131 human brains
reveals aging-associated hypermutability. Science 377, 511-517 (2022).

2. Bizzotto, S., Dou, Y., Ganz, J., Doan, R. N., Kwon, M., Bohrson, C. L., Kim, S. N., Bae,
T., Abyzov, A., Network, Nimh Brain Somatic Mosaicism, Park, P. J. and Walsh, C. A.,
Landmarks of human embryonic development inscribed in somatic mutations. Science
371, 1249-1253 (2021).

3. Bushman, D. M., Kaeser, G. E., Siddoway, B., Westra, J. W., Rivera, R. R., Rehen, S. K.,
Yung, Y. C. and Chun, J., Genomic mosaicism with increased amyloid precursor protein
(APP) gene copy number in single neurons from sporadic Alzheimer’s disease brains. Elife
4, (2015).

4. Cai, X., Evrony, G. D., Lehmann, H. S., Elhosary, P. C., Mehta, B. K., Poduri, A. and
Walsh, C. A., Single-cell, genome-wide sequencing identifies clonal somatic copy-number
variation in the human brain. Cell Rep 8, 1280-1289 (2014).

5. Costantino, I., Nicodemus, J. and Chun, J., Genomic Mosaicism Formed by Somatic
Variation in the Aging and Diseased Brain. Genes (Basel) 12, (2021).

6. Fischer, H. G., Morawski, M., Bruckner, M. K., Mittag, A., Tarnok, A. and Arendt, T..,
Changes in neuronal DNA content variation in the human brain during aging. Aging Cell
11, 628-633 (2012).

7. Knouse, K. A., Wu, J., Whittaker, C. A. and Amon, A., Single cell sequencing reveals
low levels of aneuploidy across mammalian tissues. Proc Natl Acad Sci U S A 111,
13409-13414 (2014).

8. Lodato, M. A., Rodin, R. E., Bohrson, C. L., Coulter, M. E., Barton, A. R., Kwon, M.,
Sherman, M. A., Vitzthum, C. M., Luquette, L. J., Yandava, C. N., Yang, P., Chittenden,
T. W., Hatem, N. E., Ryu, S. C., Woodworth, M. B., Park, P. J. and Walsh, C. A., Aging
and neurodegeneration are associated with increased mutations in single human neurons.
Science 359, 555-559 (2018).

9. Lodato, M. A. and Walsh, C. A., Genome aging: somatic mutation in the brain links
age-related decline with disease and nominates pathogenic mechanisms. Hum Mol Genet
28, R197-R206 (2019).

10. Lodato, M. A., Woodworth, M. B., Lee, S., Evrony, G. D., Mehta, B. K., Karger, A.,
Lee, S., Chittenden, T. W., D’Gama, A. M., Cai, X., Luquette, L. J., Lee, E., Park, P. J.
and Walsh, C. A., Somatic mutation in single human neurons tracks developmental and
transcriptional history. Science 350, 94-98 (2015).

36



11. Luquette, L. J., Miller, M. B., Zhou, Z., Bohrson, C. L., Zhao, Y., Jin, H., Gulhan, D., Ganz,
J., Bizzotto, S., Kirkham, S., Hochepied, T., Libert, C., Galor, A., Kim, J., Lodato, M. A.,
Garaycoechea, J. I., Gawad, C., West, J., Walsh, C. A. and Park, P. J., Single-cell genome
sequencing of human neurons identifies somatic point mutation and indel enrichment in
regulatory elements. Nat Genet 54, 1564-1571 (2022).

12. McConnell, M. J., Lindberg, M. R., Brennand, K. J., Piper, J. C., Voet, T., Cowing-Zitron,
C., Shumilina, S., Lasken, R. S., Vermeesch, J. R., Hall, I. M. and Gage, F. H., Mosaic
copy number variation in human neurons. Science 342, 632-637 (2013).

13. McConnell, M. J., Moran, J. V., Abyzov, A., Akbarian, S., Bae, T., Cortes-Ciriano, I.,
Erwin, J. A., Fasching, L., Flasch, D. A., Freed, D., Ganz, J., Jaffe, A. E., Kwan, K. Y.,
Kwon, M., Lodato, M. A., Mills, R. E., Paquola, A. C. M., Rodin, R. E., Rosenbluh, C.,
Sestan, N., Sherman, M. A., Shin, J. H., Song, S., Straub, R. E., Thorpe, J., Weinberger,
D. R., Urban, A. E., Zhou, B., Gage, F. H., Lehner, T., Senthil, G., Walsh, C. A., Chess,
A., Courchesne, E., Gleeson, J. G., Kidd, J. M., Park, P. J., Pevsner, J., Vaccarino, F. M.
and Brain Somatic Mosaicism, Network, Intersection of diverse neuronal genomes and
neuropsychiatric disease: The Brain Somatic Mosaicism Network. Science 356, (2017).

14. Peterson, S. E., Westra, J. W., Rehen, S. K., Young, H., Bushman, D. M., Paczkowski,
C. M., Yung, Y. C., Lynch, C. L., Tran, H. T., Nickey, K. S., Wang, Y. C., Laurent, L. C.,
Loring, J. F., Carpenter, M. K. and Chun, J., Normal human pluripotent stem cell lines
exhibit pervasive mosaic aneuploidy. PLoS One 6, e23018 (2011).

15. Rehen, S. K., Yung, Y. C., McCreight, M. P., Kaushal, D., Yang, A. H., Almeida, B. S.,
Kingsbury, M. A., Cabral, K. M., McConnell, M. J., Anliker, B., Fontanoz, M. and Chun,
J., Constitutional aneuploidy in the normal human brain. J Neurosci 25, 2176-2180 (2005).

16. Rohrback, S., April, C., Kaper, F., Rivera, R. R., Liu, C. S., Siddoway, B. and Chun,
J., Submegabase copy number variations arise during cerebral cortical neurogenesis as
revealed by single-cell whole-genome sequencing. Proc Natl Acad Sci U S A 115, 10804-
10809 (2018).

17. Rohrback, S., Siddoway, B., Liu, C. S. and Chun, J., Genomic mosaicism in the developing
and adult brain. Dev Neurobiol 78, 1026-1048 (2018).

18. Wang, Y., Bae, T., Thorpe, J., Sherman, M. A., Jones, A. G., Cho, S., Daily, K., Dou, Y.,
Ganz, J., Galor, A., Lobon, I., Pattni, R., Rosenbluh, C., Tomasi, S., Tomasini, L., Yang,
X., Zhou, B., Akbarian, S., Ball, L. L., Bizzotto, S., Emery, S. B., Doan, R., Fasching, L.,
Jang, Y., Juan, D., Lizano, E., Luquette, L. J., Moldovan, J. B., Narurkar, R., Oetjens, M.
T., Rodin, R. E., Sekar, S., Shin, J. H., Soriano, E., Straub, R. E., Zhou, W., Chess, A.,
Gleeson, J. G., Marques-Bonet, T., Park, P. J., Peters, M. A., Pevsner, J., Walsh, C. A.,
Weinberger, D. R., Brain Somatic Mosaicism, Network, Vaccarino, F. M., Moran, J. V.,
Urban, A. E., Kidd, J. M., Mills, R. E. and Abyzov, A., Comprehensive identification of
somatic nucleotide variants in human brain tissue. Genome Biol 22, 92 (2021).

37



19. Westra, J. W., Rivera, R. R., Bushman, D. M., Yung, Y. C., Peterson, S. E., Barral, S. and
Chun, J., Neuronal DNA content variation (DCV) with regional and individual differences
in the human brain. J Comp Neurol 518, 3981-4000 (2010).

20. Yang, A. H., Kaushal, D., Rehen, S. K., Kriedt, K., Kingsbury, M. A., McConnell, M. J.
and Chun, J., Chromosome segregation defects contribute to aneuploidy in normal neural
progenitor cells. J Neurosci 23, 10454-10462 (2003).

21. Lee, M. H., Siddoway, B., Kaeser, G. E., Segota, I., Rivera, R., Romanow, W. J., Liu, C.
S., Park, C., Kennedy, G., Long, T. and Chun, J., Somatic APP gene recombination in
Alzheimer’s disease and normal neurons. Nature 563, 639-645 (2018).

22. Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chais-
son, M. and Gingeras, T. R., STAR: ultrafast universal RNA-seq aligner. Bioinformatics
29, 15-21 (2013).

23. Kent, W. J., BLAT–the BLAST-like alignment tool. Genome Res 12, 656-664 (2002).

24. Langmead, B., Trapnell, C., Pop, M. and Salzberg, S. L., Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biol 10, R25 (2009).

25. Li, H. and Durbin, R., Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinformatics 25, 1754-1760 (2009).

26. Cookson, M. NABEC: Exome Sequencing of North American Brain Expression Consor-
tium (NABEC) Subjects (dbGaP). phs001301.v3.p1

27. Erwin, J. A., Paquola, A. C., Singer, T., Gallina, I., Novotny, M., Quayle, C., Bedrosian,
T. A., Alves, F. I., Butcher, C. R., Herdy, J. R., Sarkar, A., Lasken, R. S., Muotri, A. R.
and Gage, F. H., L1-associated genomic regions are deleted in somatic cells of the healthy
human brain. Nat Neurosci 19, 1583-1591 (2016).

28. Evrony, G. D., Cai, X., Lee, E., Hills, L. B., Elhosary, P. C., Lehmann, H. S., Parker, J.
J., Atabay, K. D., Gilmore, E. C., Poduri, A., Park, P. J. and Walsh, C. A., Single-neuron
sequencing analysis of L1 retrotransposition and somatic mutation in the human brain.
Cell 151, 483-496 (2012).

29. Evrony, G. D., Lee, E., Mehta, B. K., Benjamini, Y., Johnson, R. M., Cai, X., Yang, L.,
Haseley, P., Lehmann, H. S., Park, P. J. and Walsh, C. A., Cell lineage analysis in human
brain using endogenous retroelements. Neuron 85, 49-59 (2015).

30. Keogh, M. J., Wei, W., Aryaman, J., Walker, L., van den Ameele, J., Coxhead, J., Wilson,
I., Bashton, M., Beck, J., West, J., Chen, R., Haudenschild, C., Bartha, G., Luo, S., Morris,
C. M., Jones, N. S., Attems, J. and Chinnery, P. F., High prevalence of focal and multi-focal
somatic genetic variants in the human brain. Nat Commun 9, 4257 (2018).

38



31. Leija-Salazar, M., Pittman, A., Mokretar, K., Morris, H., Schapira, A. H. and Proukakis,
C., Investigation of Somatic Mutations in Human Brains Targeting Genes Associated With
Parkinson’s Disease. Front Neurol 11, 570424 (2020).

32. Li, J., Shi, M., Ma, Z., Zhao, S., Euskirchen, G., Ziskin, J., Urban, A., Hallmayer, J. and
Snyder, M., Integrated systems analysis reveals a molecular network underlying autism
spectrum disorders. Mol Syst Biol 10, 774 (2014).

33. Park, J. S., Lee, J., Jung, E. S., Kim, M. H., Kim, I. B., Son, H., Kim, S., Kim, S., Park,
Y. M., Mook-Jung, I., Yu, S. J. and Lee, J. H., Brain somatic mutations observed in
Alzheimer’s disease associated with aging and dysregulation of tau phosphorylation. Nat
Commun 10, 3090 (2019).

34. Sanchez-Luque, F. J., Kempen, M. H. C., Gerdes, P., Vargas-Landin, D. B., Richardson, S.
R., Troskie, R. L., Jesuadian, J. S., Cheetham, S. W., Carreira, P. E., Salvador-Palomeque,
C., Garcia-Canadas, M., Munoz-Lopez, M., Sanchez, L., Lundberg, M., Macia, A., Heras,
S. R., Brennan, P. M., Lister, R., Garcia-Perez, J. L., Ewing, A. D. and Faulkner, G. J.,
LINE-1 Evasion of Epigenetic Repression in Humans. Mol Cell 75, 590-604 e512 (2019).

35. Tombacz, D., Maroti, Z., Kalmar, T., Csabai, Z., Balazs, Z., Takahashi, S., Palkovits,
M., Snyder, M. and Boldogkoi, Z., High-Coverage Whole-Exome Sequencing Identifies
Candidate Genes for Suicide in Victims with Major Depressive Disorder. Sci Rep 7, 7106
(2017).

36. Upton, K. R., Gerhardt, D. J., Jesuadian, J. S., Richardson, S. R., Sanchez-Luque, F. J.,
Bodea, G. O., Ewing, A. D., Salvador-Palomeque, C., van der Knaap, M. S., Brennan, P.
M., Vanderver, A. and Faulkner, G. J., Ubiquitous L1 mosaicism in hippocampal neurons.
Cell 161, 228-239 (2015).

37. van den Bos, H., Spierings, D. C., Taudt, A. S., Bakker, B., Porubsky, D., Falconer,
E., Novoa, C., Halsema, N., Kazemier, H. G., Hoekstra-Wakker, K., Guryev, V., den
Dunnen, W. F., Foijer, F., Tatche, M. C., Boddeke, H. W. and Lansdorp, P. M., Single-cell
whole genome sequencing reveals no evidence for common aneuploidy in normal and
Alzheimer’s disease neurons. Genome Biol 17, 116 (2016).

38. Velmeshev, D., Schirmer, L., Jung, D., Haeussler, M., Perez, Y., Mayer, S., Bhaduri, A.,
Goyal, N., Rowitch, D. H. and Kriegstein, A. R., Single-cell genomics identifies cell
type-specific molecular changes in autism. Science 364, 685-689 (2019).

39. Wang, M., Beckmann, N. D., Roussos, P., Wang, E., Zhou, X., Wang, Q., Ming, C., Neff,
R., Ma, W., Fullard, J. F., Hauberg, M. E., Bendl, J., Peters, M. A., Logsdon, B., Wang,
P., Mahajan, M., Mangravite, L. M., Dammer, E. B., Duong, D. M., Lah, J. J., Seyfried,
N. T., Levey, A. I., Buxbaum, J. D., Ehrlich, M., Gandy, S., Katsel, P., Haroutunian, V.,
Schadt, E. and Zhang, B., The Mount Sinai cohort of large-scale genomic, transcriptomic
and proteomic data in Alzheimer’s disease. Sci Data 5, 180185 (2018).

39



40. Kim, J., Maeng, J. H., Lim, J. S., Son, H., Lee, J., Lee, J. H. and Kim, S., Vecuum: identifi-
cation and filtration of false somatic variants caused by recombinant vector contamination.
Bioinformatics 32, 3072-3080 (2016).

41. Lake, B. B., Chen, S., Sos, B. C., Fan, J., Kaeser, G. E., Yung, Y. C., Duong, T. E.,
Gao, D., Chun, J., Kharchenko, P. V. and Zhang, K., Integrative single-cell analysis of
transcriptional and epigenetic states in the human adult brain. Nat Biotechnol 36, 70-80
(2018).

40



Chapter 3, in part, is currently being prepared for submission for publication of the

material. Liu, C.S., Zhu, Y., Chun, J. The dissertation author was the primary researcher and

author of this material.

41



CHAPTER 4

ALTERED CELL AND RNA ISOFORM DIVERSITY IN AGING DOWN SYNDROME BRAINS

Carter R. Palmera,b,1, Christine S. Liua,b,1, William J. Romanowa, Ming-Hsiang Leea, Jerold

Chuna,*

aTranslational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La

Jolla, CA 92037, USA.

bBiomedical Sciences Program, School of Medicine, University of California San Diego, La

Jolla, CA 92093, USA.

1C. Palmer and C. Liu contributed equally to this work.

* Corresponding author, jchun@sbpdiscovery.org

Published in PNAS

November 2021

42



Abstract

Down syndrome (DS) – trisomy of human chromosome 21 (HSA21) – is characterized by

lifelong cognitive impairments and development of neuropathological hallmarks of Alzheimer’s

disease (AD). The cellular and molecular modifications responsible for these effects are not

understood. Here we performed single-nucleus RNA-sequencing (snRNA-seq) employing both

short- (Illumina) and long-read (Pacific Biosciences) sequencing technologies on a total of 29

DS and non-DS control prefrontal cortex samples. In DS, the ratio of inhibitory-to-excitatory

neurons was significantly increased, which was not observed in previous reports examining

sporadic AD. DS microglial transcriptomes displayed AD-related aging and activation signatures

in advance of AD neuropathology, with increased microglial expression of C1q complement

genes (associated with dendritic pruning) and the HSA21 transcription factor gene RUNX1.

Long-read sequencing detected vast RNA isoform diversity within and among specific cell types

including numerous novel sequences that differed between DS and normal brains. Notably, over

8,000 genes produced RNAs containing intra-exonic junctions, including amyloid precursor

protein (APP) that had previously been associated with somatic gene recombination. These and

related results illuminate large-scale cellular and transcriptomic alterations as novel features of

the aging DS brain.

Significance Statement

Down syndrome (DS) neurocognitive disabilities associated with trisomy 21 are known;

however, gene changes within individual brain cells occurring with age are unknown. Here, we

interrogated >170,000 cells from 29 aging DS and control brains using single-nucleus RNA-

sequencing. We observed increases in inhibitory-over-excitatory neurons, microglial activation

in the youngest DS brains coinciding with overexpression of genes associated with microglial-

mediated synaptic pruning, and overexpression of the chromosome 21 gene RUNX1 that may

be a potential driving factor in microglial activation. Single-nucleus long-read sequencing

revealed hundreds of thousands of novel RNA transcripts. These included diverse species for
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the Alzheimer’s disease gene - amyloid precursor protein – that contained intra-exonic junctions

(IEJs) previously associated with somatic gene recombination, also identified in ∼8,000 other

genes.

MAIN TEXT

Introduction

Down Syndrome (DS) is a common genetic disorder affecting ∼1 in 700 live births (1).

It is caused by the triplication of human chromosome 21 (HSA21) and results in numerous

impairments. Brain abnormalities produce deficits in cognitive performance, learning, and

language acquisition, as well as short and long-term memory impairment (2). As DS individuals

age, they show increased incidence of dementia and neuropathological hallmarks of Alzheimer’s

disease (AD) by their 40’s (3). The mechanistic etiology of the complex DS phenotype is known

only in part. It includes defects in neuronal development (4) and GABA signaling (5). Alterations

in dendritic spine dynamics have also been reported in DS models (6-8). It is hypothesized that

the early onset of AD neuropathology and dementia in DS is driven by overexpression of genes

located on HSA21 such as the kinase DYRK1A and especially amyloid precursor protein (APP)

(9). Notably, increased brain transcription (9) and increased copy numbers of the APP gene have

been linked to APP somatic gene recombination associated with sporadic AD. This form of gene

recombination produced internally truncated RNA sequences containing intra-exonic junctions

(IEJs) (10).

Single-cell sequencing technologies have opened new avenues to understanding cellular

transcriptomics, particularly through the use of single-nucleus RNA-seq (snRNA-seq), which has

been applied to normal (11, 12) and diseased (13-15) human brains, but has not been reported

for postnatal or aging DS brains. Bulk RNA-sequencing studies of DS brains identified global

alterations in gene expression (16, 17), but how specific cell types or RNA isoforms are impacted

remains unknown. In addition, nearly all single-cell or single-nucleus transcriptomic studies

lack unbiased RNA isoform information, which may have important biological consequences for
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cellular function (18, 19). Here, we report single-nucleus analyses using both short and long-

read snRNA-seq on aging DS brains versus normal controls. These results revealed significant

differences between aging DS and normal brains in regard to their cellular composition and

isoform-specific transcriptomes, including novel truncated RNAs containing IEJs and involving

not only APP but thousands of other genes.

Results

DS and control brain sample characteristics

snRNA-seq was performed on DS and control samples (Fig. 1A). Human cerebral cortical

Brodmann Areas 8/9 (BAs 8/9) from 56 DS and control brains were sectioned and assessed

for cortical layers, RNA integrity number (RIN), and defined neuropathological signs of AD

(Fig. S1A and Dataset S1). The prefrontal cortex was profiled because it is essential to memory

and behavior, and gene expression differences could offer key insights into the DS brain (20).

Samples with the confirmed presence of all six cortical layers and a RIN ≥ 6 were included

in subsequent sequencing experiments. Samples with a RIN <6 were excluded from analysis

because of negative trends in key single-cell output characteristics including the number of

captured nuclei, total genes detected, and median genes per nucleus (Fig. S1B). Twenty-nine

samples met the inclusion criteria (Fig. 1B) and were processed for snRNA-seq. Nine DS and 14

control samples were matched for age, sex, and RIN and were used for primary analyses (Fig.

S1C and Dataset S1, Mann-Whitney U-test, P >0.1). Brains were categorized as “young” if

they were ≤ 36 years of age, and thioflavin-S staining confirmed a lack of neuropathological

hallmarks of AD (Fig. S1D). Another six control brains older than 70 years (“Ctrl-old”) were

processed for snRNA-seq to profile aging in control brains. In addition to matching samples for

age, sex, and RIN, potential batch effects were accounted for by randomizing samples during

processing and utilizing Seurat version 3 for analysis (see Methods)(21). A total of 172,237

filtered transcriptomic cell profiles were generated from snRNA-seq cDNA libraries (using 10X

Genomics Single Cell 3’ v3 system) and clustered using Seurat version 3 (22). Clusters were
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identified with marker genes previously established in the human prefrontal cortex and labeled

as: astrocytes, Ast; endothelial cells, End; excitatory neurons, Ex1-8; inhibitory neurons, In1-8;

microglia, Mic; oligodendrocytes, Oli; oligodendrocyte precursor cells, OPC; and pericytes,

Per (11)(Fig. 1C). This approach labeled 20 known neuronal subclusters, while only 11 were

resolved by unbiased techniques (Fig. S1E). Clusters displayed a gene expression pattern similar

to previous snRNA-seq classifications within the human brain (Fig. S1F, Dataset S2). All major

cell types were present in each cohort and not significantly altered by sex or processing batch

(Fig. S1G-I, Dataset S1). Pre-fragmented samples from the same cDNA libraries used for

short-read sequencing enabled generation of approximately 98 million long reads that revealed

434,201 unique RNA isoforms with cellular barcodes.

Increased inhibitory:excitatory neuron ratios and neuronal subtype alterations in DS

prefrontal cortex

An imbalance in inhibitory vs. excitatory neuronal firing has been reported in mouse

models of DS (23). However, it is unclear if such an imbalance exists in human DS. At all

examined ages, the proportion of inhibitory to total neurons was significantly increased in DS

brains compared to controls (Fig. 1D, unpaired t-test, p = 0.04). A multiple linear regression

analysis accounting for sex, RIN, age, and DS vs. control status was also performed. DS

was the only variable with a significant effect (p = 0.03). Immunolabelling for inhibitory

neurons supported the snRNA-seq data (Fig. S2A-B). An inhibitory:excitatory imbalance was

not observed in published AD datasets (13)(Fig. S2C), potentially indicating that this is a DS-

specific phenomenon. Notably, this imbalance was previously observed in single-cell ATAC-seq

analysis of the Ts65Dn mouse model of DS (24)(Fig. S2D), further supporting the imbalance

as a feature of the DS brain. Focused analyses on DS-young vs. Ctrl-young samples identified

similar results (Fig. S2E), supporting early changes in DS. The proportions of inhibitory neurons

from the In1a, In1b, In3, and In4b clusters were increased compared to controls (Fig. 2E). By

comparison, proportions of excitatory neuronal clusters were relatively unchanged or slightly
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Figure 4.1. Experimental approach for cell clustering and altered neuronal fractions in DS.
(A) Experimental outline for selecting samples and processing short and long-read sequencing
of snRNA-seq data. (B) Ages for all samples analyzed by snRNA-seq and sample groups used
in subsequent analyses (boxed). (C) UMAP and cell-type assignments of nuclei from DS and
control age-matched brains. (D) Fraction of total neurons identified as inhibitory (In) in control
and DS brains. (E and F) Fraction of inhibitory (E) and excitatory (Ex) (F) neuronal subtypes
in control and DS brains. For (E and F) boxes extend from the 25th to 75th percentiles and
whiskers extend from minimum to maximum values. (G) Fraction of inhibitory neurons that
expressed LHX6 or ADARB2. For (D-G) asterisks denote statistical significance in unpaired t-test
(* p <0.05, ** p <0.01, *** p <0.001).

reduced at all ages with the exception of the Ex1 subcluster (Fig. 2F)(11).

Inhibitory neurons within the cerebral cortex arise developmentally from defined portions
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of the embryonic ganglionic eminence (GE). In mice, interneurons expressing LHX6 (In6-In8)

originate from the medial ganglionic eminence (MGE) while interneurons expressing ADARB2

(In1-In4) are derived from the caudal ganglionic eminence (CGE)(25). A distinction between

LHX6 and ADARB2-expressing neurons is also observed in humans (Fig. S1F). LHX6-expressing

neurons were present in the human DS brain at similar proportions to controls, while ADARB2-

expressing neurons were overrepresented in DS (Fig. 1G; unpaired t-test, p <0.01), supporting

a CGE origin of neuronal imbalance. These cellular subtype proportional changes were also

observed in the DS-young cohort (Fig. S2F-H).

Cell-type-specific changes in HSA21 genes in the DS brain

HSA21 trisomy alters expression of HSA21 genes (26). However, direct proportionality

between gene copy number and transcription is not expected (16, 17, 27, 28). Comparison of

DS to control brains across genes on HSA21 in each individual cell type identified 308 of 4,008

genes with an expression fold change >1.1 in DS, and only 9 showed a >1.5-fold increase (Fig.

S3A), signifying limited overexpression of HSA21 genes.

To further investigate HSA21 gene expression in DS brain cell types, data were filtered to

focus on differentially expressed genes (DEGs) having a log2-fold change >0.25, a Bonferroni

adjusted p-value <0.05, and expression in at least 10% of cells within analyzed cell types. A

limited number of genes on HSA21 were observed as DEGs, but as expected, significantly more

of these DEGs had increased expression in DS (Fig. 2A-B). Microglia had the greatest number

of HSA21 DEGs (DEGs=25), with endothelial cells (DEGs=20) and neurons (Ex DEGs=17; In

DEGs=15) also showing extensive changes in HSA21 gene expression (Fig. S3A). Differential

expression analysis of all genes also identified the greatest expression changes occurring in

microglia (Fig. S3B). Numerous genes on HSA21 were differentially expressed in multiple cell

types, including the cell adhesion molecules, NCAM2 and DSCAM, the splicing regulator, SON,

and the kinase, DYRK1A. In neurons, DSCAM (29), CXADR (30), APP (31), and NCAM2 (32)

were altered in both excitatory and inhibitory neuronal populations in the DS brain; these genes
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Figure 4.2. Gene expression changes in DS.
(A) Bar graphs displaying the fraction of annotated genes on each chromosome detected as an
upregulated or downregulated differentially expressed gene (DEG) in DS compared to control
brains for each specific cell type. Chr21 is bolded. (B) Heatmap displaying the log2-fold change
of select HSA21 genes. Asterisks denote genes that meet the criteria as DEGs (log2-fold change
>0.25, a Bonferroni adjusted p-value <0.05, and expression in at least 10% of cells within
analyzed cell types). (C) Violin plots of five HSA21 genes hypothesized to play central roles
in DS; # symbol denotes genes that meets DEG criteria. (D and E) Volcano plots displaying
DEGs for each cell type, color coded by Gene Ontology (GO) biological processes classification.
(F and G) Key biological processes determined by GO analyses for excitatory neuron (F) and
inhibitory neuron (G) full transcriptome DEGs.

are directly involved in neuronal cell-cell interactions and neurite outgrowth (Fig. 2C). Notably,

DSCAM was specifically expressed in ADARB2-expressing interneurons, potentially playing a

key role in the observed overrepresentation of these cells. In contrast, DSCAM was very lowly

expressed in LHX6-expressing interneurons (Fig. S3C), while its expression was significantly

49



downregulated in DS microglia compared to controls (Fig. 2B-C).

Dysregulation of key neurological pathways in DS revealed by Gene Ontology (GO)

To study functional changes in DS neurons, DEGs from the entire transcriptome were

analyzed by Gene Ontology (GO)(33-35)(Fig. 2D-G). DS excitatory neuron DEGs were involved

in the regulation of trans-synaptic signaling, the regulation of neuron projection development,

and cell adhesion (Fig. 2D and F and Fig. S3D-E). Significantly upregulated genes included the

ephrin receptors, EPHA3, EPHA5, and EPHA6, which are involved in neural development (36),

the membrane receptors, ROBO1 and ROBO2, and secreted guidance cues, SEMA3C and SLIT2

(Dataset S3), which are all involved in axonal guidance and maintenance of synaptic connections

(37).

Inhibitory neuron GO categories included nervous system development and regulation

of neuron death (Fig. 2E and G and Fig. S2F-G). Intriguingly, the immediate early gene FOS,

a marker of neuronal firing (38), was the most overexpressed gene not on HSA21 (Fig. 2E),

supporting increased inhibitory neuron firing in addition to inhibitory neuron overrepresentation

in the DS brain.

Variable expression of aging-associated genes in controls

Control brains were used to identify DEGs associated with brain age. No shift in the

overall inhibitory:excitatory neuron ratio was observed with age (Fig. S4A). However, slight

changes were observed in specific subtypes of both inhibitory and excitatory neurons, including a

decrease in the number of SST-expressing interneurons (In7 and In8; Fig. S4B-C). Aging DEGs

were identified from the comparisons between Ctrl-young vs. Ctrl-middle and Ctrl-middle vs.

Ctrl-old, and particularly involved microglia and astrocytes (Fig. 3A and Dataset S6-8). To study

the effects of aging on the transcriptome in a continuous manner, an unsupervised pseudotime-

trajectory analysis using reversed graph embedding via Monocle 3 (39) was pursued for individual

cell types. Microglia, astrocytes, and oligodendrocytes clustered in an age-dependent manner

(Fig. S4D) and displayed pseudotime trajectories that clearly tracked from young to old samples
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(Fig. 3B-G). Microglia clustered distinctly by age and showed widespread transcriptomic

hallmarks of activation with increasing age (15, 40)(Fig. 3B) including increased expression of

the inflammatory mediator, SPP1, and loss of both the chemokine receptor, CX3CR1, and the

purinergic receptor, P2RY13 (Fig. 3H).

Pseudotime analysis of astrocytes independently partitioned into two trajectories, each

proceeding from young to old. One of the groups predominantly expressed two markers of

astrocyte activation, GFAP and FOS, and is referred to as GFAP+ (Fig. S4E). Ctrl-young,

Ctrl-middle, and Ctrl-old groups had 26%, 22%, and 39% of total astrocytes partition as GFAP+,

respectively, signifying that, unlike microglia, there does not appear to be activation of all

astrocytes during aging. However, both GFAP+ and GFAP- partitions showed transcriptomic

signs of aging. Genes including MMD2 and ERBIN, were significantly changed in each trajectory,

while others, including the OPN receptor CD44, increased only in GFAP+ astrocytes (Fig. 3I).

As expected, concurrent with exhaustion of the OPC pool, the ratio of OPCs to oligo-

dendrocytes decreased with age (Fig. S4F). This correlated with decreased expression of the

AMPA receptor subunit GRIA2, which has been tied to oligodendrocyte survival and myelination

(41)(Fig. 3J).

Early activation of DS microglia

Many DEGs identified in the aging brain were also differentially expressed in DS

compared to age-matched control brains, with a striking signal in microglia, where 40 of 45

aging DEGs were also DS DEGs (Fig. S5A). Pseudotime analysis of microglia from all cohorts

also indicated an aged microglial state in DS-young brains (Fig. S5B-C). To study microglial gene

expression and different activation states, microglia from all samples were clustered separately

from other cell types (Fig. 4A). Analyses were focused on clusters containing >2.5% of total

microglia, resulting in 4 distinct microglial clusters with gene expression profiles similar to other

single-nucleus microglial datasets (15, 40)(Fig. 4B). The largest cluster, labeled “Homeostatic,”

was comprised of microglia expressing homeostatic markers including CX3CR1, P2RY12, and
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Figure 4.3. Cell-type-specific signatures of aging in control brains.
(A) Heatmap of most differentially expressed aging DEGs for each cell type. (B, C, and D)
Unsupervised pseudotime trajectories with cells colored by pseudotime assignment (left) and
age (right). OPCs are not included in oligodendrocyte analysis. (H, I, and J) Expression levels
of aging DEGs of interest with respect to pseudotime. (F) includes plots for both the GFAP+
partition and GFAP- partition with respect to pseudotime. In (B-G and H-J), each dot represents
a single nucleus.

P2RY13, while lacking activation markers such as SPP1. A second cluster, labeled “Activated,”

had high expression of complement components, C1QA, C1QB, and C1QC, as well as CD14,

ERC2, and PTPN2. The third major cluster, “Antigen presenting,” contained highly expressed

genes associated with antigen presentation including CD83, HLA-DRA, HLA-DRB1, and HLA-

DPB1, as well as PADI2, MSR1, and APOC1. Lastly, a small subset of microglia expressed

transcripts typically associated with oligodendrocytes, specifically MBP, PLP1, and ST18; these

“Phagocytosing” microglia are hypothesized to internalize oligodendrocyte transcripts while

phagocytosing myelin (15). Strikingly, >80% of microglia from every Ctrl-young sample

clustered as homeostatic, contrasting with the age-matched DS-young cohort that averaged only

28% (Fig. 4C). DS-young microglia were largely classified as activated (Fig. 4C). As expected,

DS-old microglia clustered as both activated and antigen presenting, likely associated with the
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AD pathology in this cohort (Fig. 4C). Broad increases in expression of microglial activation

markers and a loss of homeostatic gene expression were observed in microglia in all DS samples,

as well as the DS-young cohort (Fig 4D). Transcripts of CX3CR1 and C1QA were observed

in generally distinct cells (Fig. S5D), and CX3CR1 transcripts were sequenced primarily in

microglia (Fig. S5E). Significant decreases in CX3CR1 protein were observed in DS-young

brains (Fig. 4E).

AD-associated gene upregulation in DS microglia

AD neuropathology uniformly occurs in DS individuals beyond age 40. A direct compari-

son of DS microglia to human AD microglia (13) revealed a shared increase in APOE and PTPRG

expression (Fig. S5F). However, DS microglia displayed distinct profiles wherein most genes

that were downregulated in AD showed upregulation in DS (Fig. S5F) and numerous DEGs in

DS microglia were not identified as DEGs in AD. Microglial gene expression was also compared

to previously defined disease-associated microglia (DAM) expression signatures (42)(Fig. S5G).

Antigen presenting microglia most closely resembled DAMs, displaying increased expression of

many DAM upregulated DEGs and decreased expression of DAM downregulated DEGs.

As previously noted, the DS-young cohort lacked the pathological hallmarks of AD.

However, microglial genes associated with the earliest signs of AD onset (13) were upregulated in

DS-young microglia including VSIG4, ADGRG1, CACNA1A, and C1QC (Fig. S5H), supporting

overlap of microglial AD-like activation occurring in the young DS brain. With increasing age,

DS microglia showed reductions in complement-associated genes and accompanying increases

in antigen presentation-associated genes like the major histocompatibility complex (MHC) and

CD83 (Fig. S5I). These results support precocious and evolving microglial activation states with

age, modified for differing age-dependent activities, including in response to developing AD.

Increased expression in DS of microglial genes related to synaptic function

Microglia are implicated in synapse and memory loss through both complement-mediated

(43, 44) and ADGRG1-mediated (45) pathways. Remarkably, all three gene components of

53



complement C1q (C1QA, C1QB, C1QC) as well as ADGRG1 were significantly overexpressed

in DS microglia, particularly in the DS-young cohort (Fig. 4F, Fig. S5J), suggesting that

overactive pruning by microglia may occur in DS. In addition, a decrease of P2RY12 expression

was identified (Fig. 4D); loss or inhibition of P2RY12 has been linked to impaired synaptic

function (46). These microglial transcriptomic alterations affecting neurons may contribute to

neurocognitive changes in DS.

A significant decrease in the density of dendritic spines was reported in the Dp16 mouse

model of DS, which could be reversed by the depletion or inhibition of microglia (47). However,

these findings directly conflict with data from the Tc1 and Ts1Rhr mouse models of DS that

show no changes in dendritic spine density (7). To discern if a HSA21 gene might be responsible

for this discrepancy, we profiled the HSA21 DEGs in human microglia and cross referenced

these with genes triplicated in the Dp16 model, but functionally diploid in Tc1 and Ts1Rhr mice

(48-50). Multiple microglial DEGs were triplicated in Dp16 but not Tc1 or Ts1Rhr mice. These

genes included the IFN receptor, IFNGR2, the splicing regulator, SON, and most significantly,

the transcription factor, RUNX1 (Fig. 4G). RUNX1 overexpression was observed broadly in

microglia across all DS samples (Fig. S5J) and was the most overexpressed HSA21 microglial

DEG (Fig. 4G). RUNX1 is a key transcription factor in regulating microglial gene expression

(51), and its expression typically decreases after early neurodevelopment but can be induced

following brain injury in adults (52). TRPM2, a calcium channel that has been tied to microglia

activation (53), was one of the top microglial DEGs but is not triplicated in any of the three

mouse models discussed, signifying that microglia activation may be even more striking in the

human brain. Furthermore, BACH1, triplicated in Tc1 and Dp16 mice, encodes a transcriptional

repressor involved in the development of numerous antigen presenting cell subtypes including

macrophages, and its diminished expression correlates with protective autoimmune effects (54,

55), which may be relevant to microglial activation states.

54



Figure 4.4. Hallmarks of microglial activation in DS microglia.
(A) UMAP of microglia from all processed samples, colored by microglial sub-cluster. (B)
Heatmap displaying key differentially expressed genes used to define microglial sub-clusters. (C)
Fraction of total microglia from each sample that clustered in each of the four major microglia
sub-clusters. (D) Violin plots of gene expression for hallmark microglial activation genes from
DS vs Ctrl and DS-young vs Ctrl-young cohorts, adjusted p-value using Bonferroni correction
on Wilcoxon rank sum test. (E) Western blot for CX3CR1 and quantification relative to GAPDH.
Asterisk denotes statistical significance in unpaired t-test (p = 0.011). (F) Violin plots of gene
expression for C1q complement genes, ADGRG1, and RUNX1. (G) Volcano plots for total DEGs
in microglia (gray), DEGs from HSA21 that are triplicated in the Dp16 mouse model but not
Tc1 or Ts1Rhr (green) and all other HSA21 microglia DEGs (purple) (48-50).
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Transcriptomic diversity discovered through long-read sequencing of single-nucleus cDNA

libraries

Long-read single molecular real-time (SMRT) sequencing enables profiling of full-

length RNA isoforms from single-cell cDNA libraries (56, 57). Single-nucleus cDNA libraries

were sequenced with SMRT sequencing to obtain approximately 98 million long reads from

16 individual brains, eight each from control and DS cohorts (Fig. S6A). Each sample was

sequenced to a depth of 5.5 - 7.5 million raw long reads. Of these, 34,988,576 total reads

had both a cellular barcode and a unique molecular identifier (UMI). Reads were analyzed

using cDNA Cupcake and SQANTI2 (58) to identify isoforms and group them into 4 main

categories defined as: Full Splice Match (FSM) isoforms that match GENCODE v28 annotations;

Incomplete Splice Match (ISM) isoforms that only partially match annotations and result from

3’ and/or 5’ truncations; Novel In Catalog (NIC) isoforms that have not been annotated but

contain known splice sites and exons; and Novel Not in Catalog (NNC) isoforms that contain

at least one novel splice site. After filtering, 434,201 unique isoforms remained, supported

by a total of 6,905,832 reads (Fig. S6B), and 47.7% of these isoforms were supported by at

least two reads with distinct UMIs. Matching the cell barcodes back to the originating cell

identified by short-read sequencing enabled cell type identification for 40.42% of the isoform

reads. A majority of the reads that were not associated with a cell type had a barcode that either

corresponded to a cell that did not pass QC in the Seurat analysis (64.7% of unidentified reads) or

was determined to be background in the cellranger analysis (25.4%). A small percentage of these

reads contained known 10X Genomics cellular barcodes that were not observed in the short-read

dataset (1.6%). The remaining reads had cellular barcodes that were not among the available

10X Genomics cellular barcodes and could have resulted from error introduced during library

preparation or sequencing (8.3%). Interestingly, long-read coverage was enough to identify most

cell types (Supplementary Text).

Vast isoform diversity was observed in the brain. Novel isoforms (NIC and NNC)

displayed greater variation than annotated forms (FSM)(Fig. 5A), but the overall proportion of
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novel isoforms did not change with age or across DS and control cohorts (Fig. 5B, two-way

ANOVA, NIC by cohort p = 0.96, NNC by cohort p = 0.13). However, the proportion of novel

isoforms did vary with cell type. Analysis of all cells showed the greatest NIC and NNC isoform

diversity in astrocytes, whereas endothelial cells and pericytes showed the least (Fig. 5C, NIC

by cell type p <0.0001, NNC by cell type p <0.0001). Excitatory neurons, inhibitory neurons,

and oligodendrocytes also showed NNC enrichment (Fig. 5C). Multiple types of NNC isoforms

were observed and included features such as: novel exon junctions within an intron that created

an entirely new exon that does not overlap with any previously annotated exon sequences;

intra-exonic junctions (IEJs)(10) that were formed by joining the internal regions of two exons;

and intron retention junctions that were formed by a new splice site that extends exon coordinates

partially into the next intron (Fig. 6SC-E; IEJs were found in over 8,000 genes (Dataset S10)).

Notably, prior studies using cap analysis gene expression (CAGE) sequencing demonstrated

that 94% of NIC and 87% of NNC reads have 5’ ends that contain the transcription start site

(59), supporting the conclusion that NIC and NNC reads are indeed bona fide transcripts and not

sequencing artifacts.
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Figure 4.5. Novel isoform variants and specific isoform changes in different brain cell types.
(A) Overlap of full splice match (FSM), novel in catalog (NIC), and novel not in catalog (NNC)
isoforms across DS, aging, and control (Ctrl) cohorts. (B) Fraction of total isoforms called
as NIC or NNC by cohort and cell type. Two-way ANOVA, NIC by cohort p=0.96, NIC by
cell type p<0.0001, NNC by cohort p=0.13, NNC by cell type p<0.0001. Error bars represent
one standard deviation. (C) Fraction of isoforms classified as NIC or NNC for each sample
by cell type. Asterisks denote statistical significance in unpaired t-test (*p<0.05, **p<0.01,
***p<0.001, ****p<0.0001). (D) Volcano plot of isoform usage differences between DS and
control cohorts. % usage change represents the redistribution of isoform proportions within a
gene. Log2FC is the change in expression of an isoform between two conditions. (E) Plot of
significantly changed isoforms between excitatory and oligodendrocyte populations. Q-value
represents the false discovery rate for which at least one isoform of a particular gene displays
differential proportionality across compared groups, signifying changes in isoform usage at the
gene level. Only isoforms with <0.01 Q value and non-zero expression in both cell types are
displayed. (F-I) Cell-type-specific isoform proportions for cell types with over 50 unique reads
mapping to FSM isoforms for CLTB (F), SPP1 (G), BIN1 (H), and APP (I).
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Differential isoform expression and usage are observed across cell types

Identification of specific isoforms that are differentially expressed could potentially offer

targets for modern therapeutics, such as antisense oligonucleotides or gene therapies (60, 61).

Differential isoform expression and proportional isoform usage were analyzed using tappAS

(62). Limited differential isoform expression or differential isoform usage was identified between

control and DS samples (Fig. 5D). However, pairwise comparisons of isoform usage between

cell types revealed numerous genes for which a cell type preferentially utilized one isoform over

others (Fig. 5E and Fig. S7A). Numerous genes switched cell-type-specific isoforms including

SEPT8, RPL13 (Fig. S7B-C) and CLTB (Fig. 5F), which plays an important role in clathrin-

mediated endocytosis and utilized a different isoform in neurons compared to oligodendrocytes.

To characterize isoform diversity further, SPP1, BIN1, and APP were selectively amplified

from single-nucleus cDNA libraries using the Read1 primer from the 10X adapter and primers

designed against their 5’UTRs. Minimal changes in the proportional expression of SPP1 FSM

isoforms across cell types (Fig. 5G) or between DS and control cohorts were detected (Fig.

S7D). A significantly higher proportion of reads were found originating from microglia in DS as

compared to controls (Fig. S7E), which is consistent with the differential expression displayed

in the short-read data. Untargeted sequencing identified a SPP1 NNC isoform with a novel exon

that was confirmed with targeted sequencing. Targeted sequencing also identified an additional 4

isoforms containing this exon; altogether, this novel exon was supported by 73 UMIs (Fig. S7F).

In genome-wide association studies, mutations in a region upstream of BIN1 showed the

second highest odds-ratio for sporadic AD (63, 64). BIN1 transcripts were selectively amplified,

which revealed cell-type-specific isoform switching similar to patterns reported in mice (56).

The shortest isoform that lacks all alternatively spliced exons was predominantly sequenced in

non-neuronal cell types, whereas the longest isoform that contains all alternatively spliced exons

was the predominant isoform in both excitatory and inhibitory neurons (Fig. 5H).

The AD-associated gene, APP, expresses two major brain isoforms, encoding APP-695

and APP-751, with the literature supporting neuron-specific expression of APP-695 that lacks a
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Kunitz-type serine protease inhibitory domain, implicating neurons as the source for soluble Aβ

in the brain (65, 66). However, APP-695 was observed to be the predominant RNA isoform in

all cell types (Fig. 5I). Furthermore, total expression levels of APP are similar across neurons,

oligodendrocytes, OPCs, pericytes, and endothelial cells (Fig. 2C), signifying that many cell

types in the human brain contribute significantly to the RNA expression of APP-695 rather than

just neurons. Isoform diversity also included NNC species containing IEJs in APP, consistent

with the literature (10)(Fig. S8A).

Discussion

Transcriptomic effects of HSA21 trisomy at the level of single cells in the postnatal

and aging DS brain have not been previously reported. snRNA-seq using short and long-

read sequencing, as well as targeted-gene approaches, revealed differences involving multiple

transcriptomic pathways and cell types. Most transcriptomic changes affected non-HSA21 genes,

supporting global effects of HSA21 trisomy on the transcriptome. However, notable exceptions

included APP, NCAM2, DYRK1A, SON, BACE2, and TTC3, indicating dosage effects on select

HSA21 genes within specific cell types. Increased neuronal inhibitory:excitatory ratios and

increased neurodevelopmental gene expression existed at all examined ages in DS. Prominently,

microglia exhibited transcriptomic states indicative of activation. Cell autonomous causes could

include overexpression of the HSA21 transcription factors RUNX1 and BACH1. Furthermore,

increased C1q expression could directly affect neuronal process pruning. Aging signatures in

the DS brain paralleled gene expression patterns reported in multiple neurological disorders,

particularly AD (13, 67-69).

The current study represents the first single-nucleus transcriptome analysis of the post-

natal human DS brain and the largest single-nucleus profiling of RNA isoforms in the human

brain to date. Limitations of this study include focused analyses of BA8,9 of the prefrontal

cortex, relatively limited numbers of DS brains, and assessment of ∼6,000 cells per brain that

while standard, represents a small percentage of total brain cells. These results identified trends
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that will benefit from expanded analyses in the future. At least three identified features deserve

additional comment.

First, neurodevelopmental transcriptome differences are prominent in DS brain cells, in-

cluding those of cell adhesion genes like DSCAM (29), CXADR (30), APP (31) and NCAM2 (32),

as well as genes of the Robo-Slit-Ephrin pathways that normally contribute to axonal guidance,

synapse formation, and neurogenesis (36, 37). Abnormal neurodevelopmental programs in DS

are further supported by increased ADARB2-expressing (CGE-derived), but not LHX6-expressing

(MGE-derived) inhibitory neuron ratios. CGE-derived neurons migrate prenatally from the CGE

to the cortex (70, 71), and this increase could result in enhanced neuronal inhibition as supported

by DS animal models (72, 73). In human DS, an imbalance of inhibition and excitation may

exist considering the clinical reports of elevated seizure activity (74). This dichotomy may be

explained by variations in neuronal subsets such as the statistically significant increase in one

cluster of excitatory neurons, Ex1, contrasting with other Ex clusters in DS, as well as by other

possible changes affecting epileptogenic parts of the brain that were not assessed.

Second, microglia show major transcriptomic differences at all ages in DS, indicative of

activation even at the youngest age examined. Activation could again reflect cell autonomous

mechanisms potentially resulting from increased RUNX1 expression. Alternatively, microglial

activation could be indicative of non-cell autonomous mechanisms activated by mismatched

neurodevelopmental activities involving C1q complement and other pruning genes associated

with exuberant axon outgrowth and synapse formation/elimination, whereby microglia would

face a chronic activating-milieu to remove surplus or mismatched process outgrowth and neuronal

connections. The downregulation of genes like P2RY12 in microglia may also contribute to

the increased prevalence of seizures in DS (46). In later adult life, microglial activation could

additionally reflect stimuli associated with incipient AD and contribute further to neurocognitive

deficits. snRNA-seq was sufficient to distinguish activation states, supporting the possibility

of a distinct microglial transcriptomic profile compared to AD. The combination of persistent

neurodevelopmental gene expression and induced microglial activation provide a novel facet on
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functional deficits within the DS brain and may distinguish it from AD signatures.

Third, isoform resolution in single-cell transcriptomic profiling is essential to generating

a full understanding of transcriptional biology yet cannot be achieved by standard 3’-short-read

sequencing techniques. RNA splice variants have important roles in development and disease (19,

75), and these new data provide an initial platform for approaching cell-type-specific isoforms

in the DS and normal brain. Additionally, this study explored the potential for identifying cell

types using only long reads, an approach that would eliminate the need for short-read sequencing

in cell-type-specific isoform profiling, and suggests that this can be achieved with reasonable

accuracy, but would require greater sequencing depth for optimal identification. Notably, isoform

diversity and usage varied extensively across cell types, while being relatively stable within

cell types between disease cohorts, supporting isoform functions in maintaining cell identity.

The thousands of novel sequences beyond known splice variants, whose functions are unknown,

provide a new reservoir of transcripts towards understanding the normal and diseased brain.

These include isoforms with novel structures like IEJs that were detected on APP and over

8,000 thousand additional genes, which might reflect the widespread operation of somatic gene

recombination mechanisms including those relevant to AD (10). Additional experiments are

required to determine if these IEJs reflect expression of somatically recombined genes and/or if

they are novel splicing variants. Overall, these snRNA-seq studies of the normal aging and DS

brain implicate both intrinsic neurodevelopmental cellular processes and RNA isoform diversity,

providing new understanding and novel therapeutic targets to aid DS individuals.

Materials and Methods

See Supplementary Information for more details.

Tissue sampling and preparation

Frozen tissue samples from Brodmann Area (BA) 8 or 9 of the prefrontal cortex were obtained

from multiple sources and stored at -80◦C. Samples were sectioned in a cryostat set at -20◦C.

RNA integrity measurement
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RNA was isolated using a RNeasy isolation kit from Qiagen and evaluated on an Agilent 4200

TapeStation.

Thioflavin S staining

Tissue sections (20µm) were stained using thioflavin S to visualize amyloid plaques and tau

tangles as hallmarks of Alzheimer’s disease (AD) pathology.

Nissl staining

Tissue sections (20µm) were stained using Cresyl Violet to visualize the cortical layers of each

section.

Nuclei isolation and generation of amplified cDNA libraries

DS and control samples were randomized and processed in groups of four to negate potential

batch process variation. Tissue sections (300µm) were removed from frozen storage and

immediately submerged in 1 mL of nuclei isolation buffer (20mM Tris, 320mM Sucrose, 5mM

CaCl2, 3mM MgAc2, 0.1mM EDTA, 0.1% Triton-X 100, 0.2% RNase Inhibitor)(10, 11).

Extracted nuclei were washed twice in PBS + 0.25mM EGTA + 1% BSA + 0.2% RNase

inhibitors (Takara Bio, Mountain View, CA). They were then suspended in PBSE + BSA +

RNase inhibitors + 1.25ug/mL 4’,6-diamidino-2-phenylindole (DAPI) (Sigma, St. Louis, MO).

FANS was performed on a FACSAria Fusion (BD Biosciences, Franklin Lakes, NJ) gating out

debris from FSC and SSC plots and selecting DAPI+ singlets. Samples were kept on ice until

sorting was complete and were immediately processed after sorting. Sorted nuclei were diluted

to ∼700-1,500 nuclei/mL, and a final concentration was determined using a fluorescent cell

counter. The 10X Genomics Single Cell 3’ v3 kit was then used to prepare samples targeting

10,000 single nuclei GEMs. The protocol was followed without deviation prior to fragmentation

of the cDNA libraries.

cDNA preparation and long-read sequencing

Fifty percent of the pre-fragmented cDNA library was used for long-read sequencing. If the cDNA
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input concentration was too low for Pacific Biosciences (PacBio) library preparation, the cDNA

library was re-amplified (Supplemental Table 1) using the same reagents and concentrations as

outlined in the 10X Genomics kit protocol. 100ng of cDNA was used in the PacBio procedure

for sequencing. Each sample was sequenced in an individual SMRTcell. An average of 6.003

million polymerase reads were obtained per sample.

Selective amplification of cDNA libraries and subsequent long-read sequencing

Selective amplification of the genes APP, SPP1, and BIN1 was pursued using custom designed

primers and the Read 1 primer from the 10X Genomics preparation. The same cDNA libraries

used for long-read analysis were linearly amplified with only the 5’ UTR primer present prior to

addition of the Read 1 primer. Samples were cleaned with Pronex beads and were sequenced

with PacBio Sequel II as outlined above.

Short-read snRNA-seq data processing and filtering

10X Genomics CellRanger software (v3.0.2) was used to demultiplex samples, align reads, quan-

tify unique molecular identifiers (UMIs), and generate cell count matrices. Default parameters

were used, with the exception of a pre-mRNA reference file (ENSEMBL GRCh38) to capture

intronic reads originating from pre-mRNA species present in the nuclei. Using Seurat (v3.0.3),

sample matrices were filtered and normalized by the default global-scaling method in Seurat.

Clustering and UMAP visualization

Lake et al.’s (11) dataset was used as a reference with Seurat’s TransferData function to label cell

types in our samples. Seurat objects from the samples in the same disease/age group were merged

(Seurat merge function). For comparisons between two groups, differential expression analysis

and pseudotime analysis, merged samples within a group were integrated (Seurat IntegrateData

function). The integrated data was then scaled and UMAP embeddings were generated.

GAD67/NeuN staining

Tissue sections (20µm) from DS-young and age matched Ctrl-young samples were co-stained
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for GAD67 and NeuN and imaged. After imaging, cells were counted in three separate rows for

each section spanning from white matter to the pial surface.

Multiple linear regression of inhibitory:excitatory ratios

For DS and control cohorts, data on sex, RIN, age, and DS vs control status were collected.

Data was input into tables and Prism was utilized to calculate a multiple linear least squares

regression for which the independent variable was ex:in ratio. Sex and DS status were assigned

binary indicator variables. No weighting was utilized and no 2-way or 3-way interactions were

accounted for.

Differential Gene Expression (DEG) analysis

Seurat was used to identify differentially expressed genes (DEGs) in DS compared to control

samples by cell type and between age groups. Default parameters for FindMarkers were used to

identify DEGs that were expressed in at least 10% of either of the populations being compared,

had at least a 0.25 log fold difference, and were significant based on a Wilcoxon Rank Sum test.

Gene enrichment analysis

Gene Ontology (GO) analysis was conducted using PANTHER (34, 35, 76).

Pseudotime analysis

Count matrices and UMAP projections of specific cell types from Seurat analysis were loaded

into Monocle3 (v0.2.1). Cells were partitioned, and pseudotime trajectories were learned and

plotted. Endpoints that clustered with the youngest samples’ cells were chosen as the roots

for each graph. Differential expression analysis was completed to determine which genes had

expression that varied as a function of pseudotime. Astrocytes separated into two partitions that

were analyzed individually.

Processing of long reads and isoform calling

Samples from both untargeted and targeted long-read datasets were demultiplexed and barcodes
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were removed using lima (v1.10.0). Following the recommendations in the cDNA Cupcake repos-

itory (version updated 02/07/2020) for single-cell isoform analysis, CCS reads were generated

using ccs (v4.2.0) with the following parameters: --minPasses 1 --min-rq 0.8 --minLength 50 --

maxLength 21000. 10X Genomics R1 and TSO primer sequences and reads with improper primer

orientation were removed using lima with the parameter --isoseq. UMIs and cellular barcodes

were identified for each read. Isoseq3 refine (v3.2.2) was used to remove poly-A tails and artifi-

cial concatemers before mapping to the human reference genome (GRCh38). cDNA Cupcake’s

(v9.0.1) collapse isoforms by sam.py was used to collapse redundant isoforms. SQANTI2

(v7.3.2) was used to filter out mono-exon isoforms and artifacts of intra-priming and annotate

the identified isoforms. Scripts from cDNA Cupcake were used to assign UMIs/barcodes and

isoforms back to specific reads. Original scripts were written to match specific reads back to

sample and cell type, summarize which samples each isoform was detected in, and visualize the

resulting isoforms in UCSC Genome Browser.

Differential isoform expression and usage analysis

The protocol for using tappAS (v0.99.15) for “Data from Long-read Sequencing Technology”

was followed.

RNAscope for microglial gene markers

Sections of tissue (20µm) were cut and processed using the recommended kit protocol (2.5 HD

Duplex Assay, Advanced Cell Diagnostics 322500). Probes applied were C1QA (485451-C2)

and CX3CR1 (411251). Slides were imaged at 40X magnification.

Western blot analysis

Sections (200 µm) of 5 control and 5 DS brains (including 1 with a RIN below the cutoff for

sequencing analysis) were lysed in RIPA buffer separated on an Invitrogen Bolt 4-12% Bis-Tris

protein gel and transferred to a PVDF membrane. The blot was probed with antibodies to

CX3CR1 (Invitrogen #14-6093-81) and GAPDH (Invitrogen #AM4300) and visualized using a

66



LI-COR Biosciences CLx Imager. Bands were quantitated using the LI-COR Image Studio Lite

software.
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Sloan-Béna, F., Falconnet, E., Ribaux, P., Borel, C., Santoni, F. and Antonarakis, S. E.,
Single cell transcriptome in aneuploidies reveals mechanisms of gene dosage imbalance.
Nat Commun 10, 4495 (2019).

28. Veitia, R. A., Bottani, S. and Birchler, J. A., Gene dosage effects: nonlinearities, genetic
interactions, and dosage compensation. Trends Genet 29, 385-393 (2013).

29. Simmons, A. B., Bloomsburg, S. J., Sukeena, J. M., Miller, C. J., Ortega-Burgos, Y.,
Borghuis, B. G. and Fuerst, P. G., DSCAM-mediated control of dendritic and axonal arbor
outgrowth enforces tiling and inhibits synaptic plasticity. Proc Natl Acad Sci U S A 114,
E10224-e10233 (2017).

30. Patzke, C., Max, K. E., Behlke, J., Schreiber, J., Schmidt, H., Dorner, A. A., Kröger, S.,
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CHAPTER 5

IDENTIFYING NOVEL ISOFORM FEATURES THROUGH MODIFICATION OF SQANTI3
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Advances in long-read sequencing have made it possible to examine the transcriptome at

isoform-level resolution, and bioinformatics efforts to support analysis of these datasets have

also kept pace. Numerous software packages have been written to process the data from raw data

to isoforms and their corresponding structural characteristics, abundances, etc. These tools are

used perform quality control (QC) on the sequencing reads to remove potential artifacts from

the library preparation and sequencing processes, align reads to the genome/transcriptome, and

compare the sequences to the reference annotation. While many of the QC tools are technology-

specific to better account for artifacts/errors that each technology is more prone to, downstream

analysis after read alignment is often technology-agnostic.

A highly-cited software package from the Conesa lab, called SQANTI3, is a technology-

agnostic tool that uses a gff/gtf file of mapped, non-redundant transcripts as an input and outputs

numerous files detailing the characteristics of transcripts (gene, structural category, percent of

A’s in the downstream sequence, junction canonical status, etc) (1). These metrics can then be

used to filter out potential artifacts, resulting in a confident set of isoforms that were detected in

the sample. Read counts can be provided as an input as well, making it possible to calculate the

relative abundances of each of the detected isoforms. Its greatest utility is its ability to compare

the isoforms to the reference annotation, making it possible to identify potentially undiscovered,

novel isoforms.

SQANTI3 categorizes isoforms relative to the reference annotation, labeling isoforms

as belonging to one of four major groups: full-splice match (FSM), incomplete-splice match

(ISM), novel in catalog (NIC) and novel not in catalog (NNC) (Fig 1A), in addition to a few

smaller categories: antisense, fusion, genic, and intergenic. An FSM isoform contains identical

junctions and splice sites as a known isoform. An ISM isoform is a truncated form of a known

isoform, and the junctions that are present match those of that isoform. NIC and NNC isoforms

are novel forms of annotated genes that can contain novel combinations of known splice sites

(NIC) or include non-annotated splice sites (NNC). These larger categories can be further broken

down into small subcategories with additional detail about how they compare to reference
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isoforms. FSM isoforms can be truncated on the 5’ or 3’ ends without affecting the splice

junctions. ISM isoforms likewise may be truncated on the 5’ or 3’ end or may even represent an

internal fragment. NIC isoforms can result from a combination of known splice sites/junctions

or the absence of a junction through intron retention. NNC isoforms in particular have various

features that differentiate them from the isoforms in the reference annotation. Identification and

annotation of these features are not part of the current version of SQANTI3. We made some

fully-integrated modifications to SQANTI3 in order to characterize these features as part of its

normal implementation.
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Figure 5.1. SQANTI3 categories and NNC features.
(A) The four main SQANTI3 isoform categories. Dashed lines indicate novel junctions that
differ from the reference annotation transcript. (B) Seven features of NNC isoforms that create
a novel junction (or two). Multiple features can be observed in a single transcript, but only
one is necessary to assign the isoform to the NNC category. (C) New categorization of spliced
transcripts that map to a gene with a single exon. (D) Example gene with multiple isoforms and
a novel transcript with a donor site that overlaps a coordinate overlapping both a coding exon
and UTR in different reference isoforms.
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The modifications to SQANTI3 only involve the part of the tool that determines which

category an isoform belongs to. Once an isoform is determined to diverge from the known set

in the reference, its junctions and splice sites are examined more closely to determine whether

it belongs in the NIC or NNC category. In our edited script, additional features of the NNC

isoforms are identified and noted in the “subcategory” section of the classification output file.

Each of these features on its own can make an isoform NNC, or several can be present in a

single isoform. These seven features are: Alt 3’ junction, Alt 5’ junction, CDS CDS junction,

CDS UTR junction, UTR UTR junction, partial intron retention, and novel exon (Fig 1B). Alt

3’, Alt 5’, CDS CDS, CDS UTR, and UTR UTR junctions all increase the size of junctions,

and new splice sites are generated within known exons, while partial intron retentions and novel

exons decrease and split junctions respectively with new splice sites in annotated introns. Alt

3’ junctions result from a new acceptor splice site on the 3’ end of the junction that truncates

the “acceptor” exon; the 5’ donor splice site is unchanged and matches a known splice site.

Alt 5’ junctions follow the same pattern as Alt 3’ junctions, but the novel splice site is the 5’

donor. CDS CDS junctions are created from two new splice sites within the coding sequence.

These exons do not need to be adjacent, and both novel splice sites can occur in the same exon.

CDS UTR junctions have two new splice sites within exons where one splice site is in the coding

sequence and one splice site is in a UTR (on either end). Similarly to the CDS CDS junction, the

exons do not need to be adjacent, and the junction can occur within a single exon. UTR UTR

junctions have two novel splice sites that are both within a UTR; they can occur within the

same UTR (5’ or 3’) or different ones (5’ and 3’). The extension of an exon into previously

annotated intronic space by creation of a new splice site in intronic sequence describes partial

intron retention. Novel exons create two new splice sites in intronic space by including sequence

that does not overlap any known exon (Fig 1B).

An additional small modification was made with regards to how SQANTI3 handles

single-exon genes. Originally, SQANTI3 would label an isoform with two exons that mapped

to a single-exon gene, as intergenic. This splice pattern matches a CDS CDS, CDS UTR, or
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UTR UTR junction, and modifications were made to the code to label these isoforms in this

manner (Fig 1C).

Many genes have more than one transcript, which can complicate the assignment of

whether a novel splice site occurs in the CDS or UTR. While many transcripts often share exons

and differ by which exons are present in combination, there are genes with vastly differing

transcripts because of alternate start codons or sequence that can be spliced in or out in different

isoforms. In the case where a novel splice site in a transcript overlaps a coordinate annotated

as CDS in one transcript and UTR in the other, priority is given to labeling that site as being in

CDS (Fig 1D). Likewise, for a coordinate that is part of an exon in one isoform and part of an

intron in another, priority is given to labeling that site as being in CDS (Fig 1E).

The ability to identify the features that make an isoform novel relative to what has been

reported has many potential applications. Identifying features commonly present in artifacts

generated through sample preparation and sequencing could improve filtering and quality control.

It is known that “RT-switching” during the reverse transcription process for converting RNA

to cDNA can create “new” splice sites (2, 3). Additional details about what these splice sites

look like can better inform researchers of potential artifacts that may not actually have biological

significance. One way to evaluate this would be to compare isoforms from cDNA sequencing

and direct-RNA sequencing using Oxford Nanopore Technologies’ (ONT) approach for directly

sequencing RNA without the reverse transcription step. NNC features that are more prominent

in cDNA libraries may be indicative of reverse transcription artifacts.

Many diseases are associated with altered splicing whether through observation of un-

common isoforms or through mutations in splicing factors/regulators. Full-length transcriptome

analyses can highlight which types of novel isoforms are more prevalent in disease states. Amy-

otrophic lateral sclerosis (ALS) is on example of a disease that could be studied this way. Several

studies have linked ALS to splicing disruption because many ALS-associated inherited mutations

occur in splicing factors (4-7). Others have observed isoforms with altered splicing resulting

from mutations that alter the splice sites that are recognized by the spliceosome (8, 9). These
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novel features also have the potential to affect gene expression and protein translation. Altered

splice sites could cause frame shifts that lead to increased nonsense-mediated decay or translation

of novel proteins. This opens up the possibility for NNC isoform features to contribute to altered

cellular function in disease.

This work was inspired by a previous publication from our lab (see Chapter 4). While

examining the isoforms that we detected in our Iso-Seq samples, we identified the seven NNC

features as being comprehensive of the different variations that could result in the isoforms

being labeled as NNC. The modifications to SQANTI3 were made to automate this process and

characterize novel isoforms on a greater scale.
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CHAPTER 6

ISOSEQL: COMPARING LONG-READ ISOFORMS ACROSS MULTIPLE DATASETS
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Background

Advances in long-read sequencing technology have made it possible to examine the

transcriptome at isoform-resolution. Short-read RNA sequencing technologies are not able to

capture entire isoforms and can only be used to infer exon combinations from reads spanning

exon-exon junctions. The long reads obtained through either Oxford Nanopore Technologies

(ONT) or PacBio sequencing technologies readily exceed the length of the average human mRNA

of approximately 3kb, making it possible to examine the combination of exons that are expressed

together in a single transcript (1, 2). Bioinformatics pipelines and tools have been developed

to characterize these isoforms and examine abundance, structure, and protein-coding potential

among other properties. Isoform diversity has been explored in several organisms, including

humans, mice, and various other animals and plants (3-11). Novel isoforms are identified in

many studies, indicating that there is a whole set of isoforms that have not been captured and

annotated up to this point. This highlights the potential for long-read isoform profiling to help

identify new transcripts that could code for unknown proteins with different functions.

One tool in particular, SQANTI3, provides extensive quality control and structural feature

characterization of sequenced transcripts (12). SQANTI3 is widely used and compatible with

both ONT and PacBio sequencing datasets. To expand upon the utility of SQANTI3, we present

isoSeQL, a new tool for comparing isoform profiles across multiple datasets that is intended for

use with SQANTI3 output files. We demonstrate its usage by comparing Iso-Seq datasets from

twelve samples from the Human Genome Structural Variation Consortium phase 3.

Results and discussion

A significant challenge of working with long-read isoform data is comparing across

several different samples. Currently analysis pipelines like SQANTI3 are better suited to handling

individual samples, and during the classification process, novel isoform IDs (eg. PB.1111.22)

are assigned to isoforms in the sample. These isoform IDs are not standardized across analyses,

and isoform PBXX.Y in one sample is not the same isoform as PBXX.Y in another sample that

was analyzed separately. A few suggested solutions exist, but each has limitations. One solution,
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“chaining samples” with cDNA Cupcake, is only recommended for two to four samples and has

known redundancy issues (13). A second approach is to utilize TAMA Merge, a script from

another isoform classification tool, but this method does not keep track of isoform abundances

(14). Another solution, using TALON, re-categorizes the isoforms and removes all classification

details associated with each isoform from SQANTI3 (15). A final solution, used in a previous

publication from our group, is to combine all the sample reads into a single “mega-sample”

after labeling reads to indicate their sample of origin but prior to alignment, collapsing, and

annotation (8, 9). This approach allows comparison across samples by using the same isoform

IDs, however, it is severely limited in the number of samples that can be studied and by the

computing power/memory required.

In order to examine isoform diversity across many samples in a manner that is compatible

with the classification and filtering steps from SQANTI3, we developed a software package for

comparing isoform characterizations, isoSeQL. isoSeQL uses two output files from SQANTI3

and two user-supplied files with sample information to create a SQLite database (Fig. 1a).

The SQLite database is made up of several tables to keep track of isoform characteristics

(chromosome, strand, gene, number of exons, SQANTI3 category, etc), read counts, experiment

parameters (software versions, date of sequencing run, etc), and sample information (sample ID,

tissue, age, etc). All of this information can be queried and used to compare samples of interest.

One unique feature of the database is the ability to group isoforms that only differ very

slightly by the start/end coordinates. A challenge of third generation sequencing is generating

long fragments of cDNA/RNA to sequence. The length of these fragments is limited by poly-

merase processivity and stability of the cDNA or RNA (3, 16). It is not a trivial task to determine

whether reads originate from different isoforms if they only differ by a few hundred nucleotides

on the 5’ or 3’ end. cDNA Cupcake’s collapse isoforms processing step tries to account for this

by collapsing reads that otherwise have the same junctions but differ by fewer than 1000bp on the

5’ end and 100bp on the 3’ end (13). When comparing across several samples, it may not always

be clear if certain isoforms would have been collapsed together or not had they been processed
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Figure 6.1. isoSeQL workflow and handling of isoforms with common junctions.
(a) Generalized workflow for processing long-read isoform sequencing data from raw data to
addition to database. Every sample is processed separately and added to the database using two
SQANTI3 output files and two user-supplied config files with sample and experiment information.
(b) Schematic of a reference isoform and many transcripts that map to it. Each transcript differs
from the annotation on the 5’ or 3’ ends. (c) Simplified tables in the database demonstrating how
read counts for common junction isoforms and isoforms with variable ends are recorded.

all together. In order to emphasize which sequences the samples have in common, the user can

decide to analyze isoforms with common junctions, ignoring the end variability completely. This

effectively combines all isoforms with the exact same exons and splice junctions (donor/acceptor

sites) together and defines that as a single “common junction” isoform that can be identified

across multiple samples of interest.

Isoform end variability can, however, be indicative of different transcript start sites

(TSS) and transcript termination sites (TTS). Without CAGE peak or additional orthogonal

data indicating evidence for start/end sites, it is difficult to interpret whether the ends of the

observed isoforms are real or a result of fragmentation (17). Graphs showing the spread of the

end coordinates can be generated to visualize read counts for each TSS/TTS.

Several built-in functions create plots and tables that illustrate some of the commonly
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explored metrics in RNA isoform analysis. The outputs of these functions were demonstrated

on Iso-Seq samples from the Human Genome Structural Variation Consortium phase 3. Plots

showing the proportion of isoforms or reads belonging to each structural category can be

generated with a single command (Fig. 2a). Isoforms in each sample can be visualized in the

UCSC Genome Browser or Integrative Genomics Viewer (IGV) by creating bed files color-coded

by isoform category (Fig. 2b). Input files to tappAS (read count matrix and transcriptome gff) can

be generated for downstream analysis of differential isoform usage/expression (18). Gene-level

comparisons can be visualized to investigate the distribution of reads corresponding to different

isoforms of a specific gene (Fig. 2c). UpSet plots can be made to show how many isoforms were

found to be in common or unique amongst several samples (Fig. 2d). For more complicated or

study-specific questions, the database can be loaded in Python, and custom queries can be used

to incorporate additional filtering or sample grouping.
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Figure 6.2. Plots generated through isoSeQL’s built-in functions.
(a) Plots of structural category proportion of isoforms (left) and reads (right). (b) UCSC genome
browser track visualization. (c) Plot showing the proportion of reads from each annotated
isoform of ATP7A. (d) UpSet plot showing how many isoforms with common junctions are
shared between samples.
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Conclusion

This report describes isoSeQL, the first program for comparing full-length isoform

profiles resulting from SQANTI3 analysis. Several studies prior to this have relied on methods

with limitations in order to compare across samples or have previously only reported isoforms

that come from a very limited sample size. Future iterations of isoSeQL will include additional

built-in features and improvements to the current implementation. Currently isoSeQL only tracks

long-read abundances (ie read counts), but many people supply matching short-read sequencing

data that can be mapped to the long-read-generated transcriptome for junction confirmation

and higher-depth estimates of relative abundance. Incorporating short-read counts will not

only add further validation of novel junctions but also allow correlation between short- and

long-read expression estimates. Another addition will be the ability to group together samples

for comparisons with multiple replicates. This would also be helpful to combine multiple runs of

the same sample that were intended to increase the sequencing depth and capture rare isoforms.

Another important enhancement of the current implementation will be to make it compatible

with single-cell long-read isoform data. Several studies have already shown that cell types

express different isoforms, and new advances in long-read methods (MAS-seq) have increased

the throughput of single-cell long-read sequencing, making this application particularly relevant

(5, 6, 9, 19). In summary, this package improves upon the utility of SQANTI3 and opens the

door for comparative isoform analysis across different conditions, diseases, tissues, etc.
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isoSeQL will be made publicly available upon publication: github.com/christine-liu/isoSeQL

Chapter 6, in part, is currently being prepared for submission for publication of the

material. Liu, C.S., Chun, J. The dissertation author was the primary researcher and author of

this material.
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CHAPTER 7

TRANSCRIPTOMIC HALLMARKS AND RNA ISOFORM DIVERSITY IN HUMAN
NEURODEGENERATIVE DISEASE
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This chapter describes novel bioinformatic methods extending the utility of isoSeQL

(Chapter 6) for use with single-cell long-read RNA-sequencing. An ongoing project at the time

of my graduation examined six different neurodegenerative diseases (Alzheimer’s disease (AD),

cortical basal degeneration (CBD), dementia with Lewy bodies (DLB), Parkinson’s disease (PD),

Pick’s disease (PiD), and progressive supranuclear palsy (PSP)) using single-cell sequencing

technologies. This study utilized targeted PacBio Iso-Seq to examine a panel of 50 genes at

single-cell isoform resolution.

43 samples in total were sequenced using the 10X Genomics Single Cell 3’ v3.1 kit.

Prior to fragmentation, the libraries were split for short-read sequencing (Illumina) and long-

read sequencing (PacBio). A portion was fragmented to construct the final library for Illumina

sequencing. The unfragmented library was used for target gene enrichment with a custom

probe panel (Twist Biosciences). The 50 genes used for probe design were chosen for having

a predicted correlation with neurological disorders from literature or for being differentially

expressed in a disease group compared to controls.

We utilized a targeted approach to address the limited throughput of single-cell long-

read sequencing. Previous work in the lab (see Chapter 4) and other studies have shown that

limited sequencing depth is a challenge of identifying novel isoforms and their prevalence (1-3).

While short-read sequencing approaches can output hundreds of millions of reads from a single

sequencing lane, a single SMRTcell will output approximately five million reads on average.

The resulting read count per cell is much lower from long-read sequencing than from short-read

sequencing. By targeting a specific number of genes, we hoped to obtain sufficient coverage of

those genes’ isoforms across different cell types.

Several modifications had to be made to isoSeQL to accommodate the additional informa-

tion provided by single-cell sequencing. All the structural and experimental/sample information

tables stayed the same, but the read counts were handled very differently. The analysis process of

individual sequencing runs had a few additional steps to demultiplex and deduplicate the cellular

barcodes and unique molecular identifiers (UMIs). This information was then annotated with
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cell types determined from corresponding short-read single-cell sequencing on the same samples.

When running isoSeQL, an additional file containing the barcode and UMIs associated with

various transcripts is provided.

This file is parsed into a Python dictionary to keep track of the number of unique UMIs

observed in support of particular transcripts. Through the process of adding samples to the

database, these counts are added to three new tables that were initialized for use with single-cell

sequencing. The first table, scInfo, keeps track of the experiment ID, cellular barcode sequence,

and assigned cell type. Each entry is given a unique scID number for reference in the count

tables. The second and third tables keep track of counts for common junction isoforms as well

as isoforms with variable ends, consistent with isoSeQL’s design to group isoforms with the

same common junctions as well as treat them as unique isoforms. The original counts tables

(counts and ends counts) are then populated by summing the UMIs over all the cells of a sample,

reporting “pseudobulk” abundances. These numbers are not exactly the same as those that would

result from analyzing the data as a bulk sample instead of single-cell because UMI duplicates are

detected and removed. Without UMIs, PCR duplicate reads could be counted individually.

Once the data were consolidated into the isoSeQL database, custom queries were used to

access read counts and generate plots showing the distribution of isoform structural categories,

the proportion of reads from a variety of isoforms of a particular gene, the number of isoforms

in common between the different disease groups, etc. The data could be queried as pseudobulk

(ignoring cell type assignments) or at the cell type level, providing information about the isoforms

detected in specific cell types.
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CHAPTER 8

CONCLUSION/FUTURE DIRECTIONS
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This chapter summarizes earlier chapters and provides insight into what I believe are directions

that my work can take in the future.

Chapter 2

Chapter 2 is the response to a Matters Arising issue written by the Walsh lab, challenging

the conclusions of our November 2018 Nature paper describing the first gencDNA. This publica-

tion resulted from a few rounds of revision during which they were able to edit their manuscript

in response to ours and vice versa. Their main issues with the original Nature paper were the

presence of plasmid contamination (which we confirmed), lack of insertion site evidence (which

we provided), and the inability to replicate our findings with their own data.

In our response, we acknowledged the presence of plasmid contamination but argued

that the plasmid sequences could not account for every read that was interpreted as evidence

of gencDNAs (exon-exon junction spanning reads). While we can’t prove this directly from

those sequencing datasets, we cited 12 lines of evidence that provide orthogonal support for

our findings. We additionally analyzed another group’s published, whole-exome sequencing

dataset from Alzheimer’s disease (AD) brain samples. Their data did not have any plasmid

contamination, as determined through analysis using Vecuum and VecScreen, and we found

exon-exon spanning reads from APP (1, 2). These data also contained insertion site information

about these APP gencDNAs in the form of read pairs that contained either a “clipped read”

mapping across the UTR-insertion site boundary with its mate also mapping to the new insertion

site or an exon-exon spanning read with its mate mapping to an entirely different locus. The

additional exon-exon spanning reads were dismissed as potential mRNA contamination in view

of many additional genes that were identified as having similar intron-less structures.

The Walsh group used their own single-neuron whole genome sequencing (WGS) data

from AD patients to search for APP gencDNAs and their insertion sites. Their samples were

sequenced to an average depth of 45X, but they were unable to identify APP retroinsertions in

any of their samples. Limitations in their genome amplification method and small sample size
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(average of nine neurons per individual, seven individuals total) did not convince us that these

data could disprove the existence of APP gencDNAs.

The process of writing this response really emphasized the need for us to show evidence

for each step of the gencDNA mechanism of creation. In defining a novel genomic structure, I

believe that the burden of proof falls on us as a lab to convince the scientific community that it

truly exists and can have ramifications. Chapter 3 details work that I did in order to unbiasedly

identify other gencDNAs that could exist and be correlated with disease. Additional projects

in the lab have been started to look for gencDNAs and their insertion sites using long-read

sequencing, to examine potential reverse transcriptases that could facilitate the formation of

gencDNAs, and to prevent their formation using reverse transcriptase inhibitors. There are a lot

of unanswered questions regarding gencDNAs and several other projects could more closely

examine other aspects of their existence:

• mRNA expression

• protein translation

• pattern of gencDNA insertion across different brain regions or other tissues

• relation to other diseases besides AD

• prevalence/function in health

• differences and similarities with processed pseudogenes

• insertion site influence on expression

• chromatin configuration influence on insertion

• SNVs in gencDNA sequences

There are many challenges associated with detecting gencDNAs with confidence, and

full characterization of their properties may potentially be stymied by the limitations of current
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technology. For example, in sequencing-based experiments, read depth and abundance cutoffs

are currently implemented to more confidently distinguish between variants and noise. Variants

that only occur in a single neuron may not reach those cutoffs or be distinguishable from noisy

data until sequencing technology improves. Replicability and sampling are also ever-present

challenges that may make it more difficult to prove that a gencDNA exists with a really low

prevalence.

Chapter 3

Chapter 3 describes a novel pipeline for identifying gencDNAs unbiasedly from short-

read sequencing data. The novel bioinformatics pipeline parses the alignment from STAR (a

short-read aligner typically used for RNA-sequencing datasets) and identifies sequencing reads

that could be indicative of gencDNA formation (3). This pipeline was then applied to over 3,000

samples representing various brain regions, disease states, and sequencing technologies. No

clear patterns were observed linking certain genes’ gencDNAs with disease or brain region. A

vast majority of samples had zero gencDNAs, and from this large study, exon-exon spanning

reads were estimated to occur with a frequency of 1/500,000,000 reads. More surprisingly, APP

gencDNAs were not detected in any of the 1,000+ samples obtained from AD patients.

These results strongly contradict the findings of our paper detailing the existence of

the first gencDNA. That paper estimated that APP gencDNAs were present in 60% of neurons

in sporadic AD, and from that estimate, we would have expected that a large number of the

examined samples would have APP exon-exon spanning reads. Potential explanations for the

low frequency of exon-exon reads and the lack of patterns linking gencDNAs to disease include

limitations in sequencing approaches and sampling issues. Read depth of sequencing experiments

is calculated with the assumption that a single genome is the subject of the experiment. Assuming

complete mosaicism, individual cells’ genomes can vary, and the coverage of each cell’s genome

is far from complete. Current sequencing technologies often require several thousands of cells

as input to obtain ∼30X genome coverage. The probability that a sequencing read covers an
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exon-exon junction of a gencDNA that occurs in one small portion of the genome in a particular

cell is extremely slim. Additionally, the expected inter-cell variability makes it possible that cells

that were sampled just happened to not be affected by the variation of interest. In our case, we

could interpret the lack of APP gencDNAs in AD samples as a result of poor sampling that may

have unintentionally selected cells that were less likely to contain a gencDNA insertion or lack

of sequencing coverage across the APP gencDNAs in cells that were present in the sample.

The pipeline that was presented in Chapter 3 is fairly incomplete in its assessment of

potential gencDNA structures. The pipeline I wrote primarily focuses on identifying the exon-

exon junction spanning reads. Additionally, we wanted to look for insertion site evidence to

support our claims that these sequences were reverse transcribed and inserted into the genome. I

made use of STAR’s ability to look for chimeric reads that mapped improbably far away from

each other. These types of reads would theoretically be able to link a gencDNA sequence to its

insertion site even if it was inserted on an entirely separate chromosome. Yunjiao Zhu, a post-doc

in the lab wrote an additional part of the pipeline for examining reads containing insertion

site information from sequences that flanked UTRs. Neither pipeline resulted in convincing

conclusions that the exon-exon spanning reads originated from a reverse-transcribed sequence

inserted into the genome. The number of insertion site reads tracked well with expectations

for known processed pseudogenes, but did not correlate well with other genes that had a lot of

exon-exon spanning reads. This could be the result of insertion sites occurring in regions that are

challenging to map with only a portion of a short sequencing read or the ever-present sampling

issue. UTRs are not confirmed to be included as part of the retrotranscribed sequence either,

which may present an incorrect assumption that the discovery pipeline was based on.

Overall, much more work needs to be put into identifying insertion sites to better confirm

that these gencDNAs exist according to our original definition. Several of the shortcomings of

this chapter can be alleviated through long-read sequencing. Long-read sequencing can’t address

the sampling issues or lack of individual genomic coverage, but the reads themselves will have

less ambiguity about whether they represent a gencDNA structure. Similar considerations will
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need to be made in terms of accounting for artifacts of the sample preparation and sequencing

processes and determining appropriate cutoffs.

Chapter 4

Chapter 4 describes our single-cell RNA-sequencing study of Down syndrome (DS). At

the time, it represented the first single-nucleus transcriptomic analysis of the post-natal human

DS brain. Three main takeaways from this study were: 1) there is an increased ratio of inhibitory

to excitatory neurons in DS; 2) microglia in DS appeared to be activated and have signatures of

AD-related aging prior to AD-related neuropathology; and 3) vast RNA isoform diversity exists

amongst different cell types of the brain.

Focusing on the long-read bioinformatics analysis in this paper - the long-read isoform

analysis - there are a couple of ideas that can be expanded upon:

• Long-read-only cell type identification: We showed a proof of concept that it was possible

to identify cell types using only long reads. I presented this work to Jean Fan’s lab at

Johns Hopkins University, and she suggested that I use a projection algorithm that she

developed, MUDAN, with the intent of reducing noise in the dataset and grouping the

cells by their similarities instead of trying to cluster maximizing the differences between

them (4). While I believe that the main limitation of trying to identify cell types solely

from long read sequencing is the depth (long-read sequencing has much lower throughput

than short-read sequencing), removing noise from the data may also be another potential

option. In terms of increasing the read depth/improving throughput, technology has already

improved since we published our paper. PacBio recently released MAS-Seq, a new kit for

improving single-cell long read isoform throughput by concatenating several barcoded

cDNAs together to take advantage of the long polymerase read lengths that exceed the

length of a single cDNA. MAS-Seq improves the throughput of a single run by 16X (5, 6).

Additional new developments in technology include the release of the PacBio Revio - the
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number of ZMWs per SMRTcell is increased to 25M ZMWs, more than three times the

ZMWs on the Sequel II/e.

• Increased sequencing depth for confidence & setting cutoffs: As stated in the previous

point, depth is a real limitation of identifying meaningful novel isoforms. It’s pretty

difficult to estimate how many reads are required to reach saturation at an isoform level

given that the number of isoforms is not fixed (almost every long-read RNA-seq study

identifies novel isoforms) and relative abundances will determine how easily the isoforms

are captured. Unlike the genome where the number of copies of each gene is (mostly) fixed

at two and there are a known number of genes, the transcriptome is a lot more variable.

We’ve tried to address this through targeted sequencing (Chapters 4 and 7), either through

PCR amplification or probe-based pulldown. PCR amplification was only able to capture

isoforms that contained the primer sequences, which is potentially very limiting in cases

where the 5’ or 3’ ends vary a lot. Twist Biosciences’ probe design was based off of known

isoforms; as long as novel isoforms had some sort of sequence overlap with the known

ones, they could be captured, but this approach could still fail to capture novel isoforms

that differ significantly from the known transcripts. Again, a solution is to start using new

technologies that have significantly increased throughput and read depth, but I think more

efforts could be put into establishing a general consensus read depth sufficient for isoform

studies. Increased throughput will make it challenging to utilize the same bioinformatic

tools for analysis that were not necessarily optimized for so much data, however, the

solutions in Chapter 6 and 7 hopefully provide a starting point for starting to integrate

large isoform sequencing datasets.

Chapter 5

Chapter 5 describes the modifications I made to an already existing bioinformatics tool,

SQANTI3. SQANTI2 (the previous version) was used for long-read Iso-Seq analysis in Chapter

4, and while looking through the data, we noticed that there could be a few “subcategories” that
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the NNC isoforms could belong to that more specifically described how the structures were

novel. After trying to parse through the outputs to automate identification of novel features like

intra-exonic junctions, it made more sense to incorporate the novel feature annotation into the

initial SQANTI2/3 run. I first identified the seven different features and then figured out which

metrics could be used to differentiate them.

The initial plan was to show the application of these modifications using a variety of

datasets which I still think are potentially good future applications:

• Quality control: one of SQANTI3’s main functions is to annotate many different structural

characteristics of the isoforms that could be potentially used to identify artifacts. For

example, intra-priming is identified by a high percentage of A’s downstream of the detected

end of the transcript; a stretch of sequential A’s could be erroneously picked up by the

poly-A selection step, leading to detection of a more truncated isoform (7, 8). SQANTI3

is fairly conservative when it comes to identification of novel splice sites, and without

additional short-read sequencing support, isoforms with novel, non-canonical splice sites

(splice sites that don’t use canonical donor/acceptor sequences) are removed as potential

artifacts from RT-switching during the mRNA to cDNA conversion. While the creators of

SQANTI used a spike-in control sequence to identify anomalous sequence that’s generated

through the library preparation process, another control could be direct RNA-sequencing

data. Direct RNA-sequencing datasets potentially better represent the sequences that are

present in the sample without any potential modification or selection bias from RT-PCR.

The additional structural information provided by my SQANTI3 modifications may be

helpful for identifying features that are predominantly created artifactually. If any of the

seven features is particularly enriched in cDNA libraries compared to direct-RNA or if a

feature is unique to cDNA libraries, then it can be used as an additional filtering criterion.

• Disease vs non-disease: alternative splicing is implicated in several neurological and

neuropsychiatric diseases in addition to cancers. In some conditions, certain splicing
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patterns are expected to be affected. For example, novel exons have been reported in ALS.

Being able to globally assess the ways in which novel isoforms differentiate from the

expected transcripts could identify which splicing mechanisms are altered in disease.

Chapter 6

Chapter 6 describes isoSeQL, a tool I created for the purpose of unifying isoform IDs

across different datasets and therefore making the datasets comparable. Personal experience

from trying to compare sixteen different samples in the DS single-cell project (Chapter 4) really

highlighted the need for this type of analysis, especially if I wanted to continue to use SQANTI3

for analysis (which of course I did after making my own modifications to it). Although there are

a number of suggestions for comparing isoforms across datasets, all of them have limitations that

make them less than ideal. isoSeQL overcomes most of the issues associated with the current

recommendations and further accounts for 5’/3’ end diversity.

I tried to build in some basic plotting and visualization functions to cover some basic

numbers that people tend to report in isoform analyses. These types of plots don’t cover all the

possible different ways that people want to examine their data, but the database is query-able

through loading it into Python. Several additions I’d like to add to isoSeQL include (may contain

ideas that are in progress but not finished at the time of writing this dissertation):

• Ability to process single-cell data - single-cell data includes another layer of information

to store in the database and query. Individual cells’ isoform profiles need to be accessible

in addition to aggregating and averaging counts over a specific cell type. This work is

already in progress and is being used to analyze a single-cell isoform sequencing dataset

from examination of six different neurodegenerative diseases (Chapter 7). The SQLite

database has been configured to included UMI counts, celltypes, barcodes, etc, but many

more built-in queries need to be written to make it more user-friendly.

• Designation of groups of interest - there are many different comparisons that can be

made between groups of replicates that have differences in age, sex, disease, etc. Built-in
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comparisons examine individual samples, but most experiments are set up to compare

different groups, each with multiple replicates. I would like to be able to designate the

groups of interest and which samples belong to the groups and make plots and statistical

comparisons with a single command.

• Merging of multiple sequencing runs from a single sample - to increase sequencing depth,

one could sequence the same library multiple times. While it’s possible to merge the files

of a few runs together for analysis prior to addition to the database, it would be more

convenient to be able to merge replicates within the database and treat it as a single sample.

• Incorporation of short-read sequencing data - short-read sequencing abundances are still

the gold standard because of the high-throughput used to obtain reliable counts. Some

tools estimate isoform abundance by aligning short-read sequencing from the same sample

to its own long-read transcriptome. These types of numbers can be used for validation

of novel structures and for potentially more accurate estimations of isoform expression.

isoSeQL currently does not keep track of corresponding short-read counts for isoforms.

Chapter 7

Chapter 7 briefly describes the alterations made to the isoSeQL pipeline for use with

single-cell sequencing datasets. This project is still in progress at the time of writing this

document.

The addition of single-cell sequencing support suffices; however, I can already think of

things to improve:

• Speed - in the current implementation, adding isoforms from single-cell datasets and

querying the resulting database is significantly slower than with bulk sequencing datasets.

I would like to determine if there are ways to speed this up (more redundancy, indexing,

etc)
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• Merging samples - increased depth is even more imperative for single-cell sequencing

datasets, and low throughput can be partially remedied by more sequencing. At the

moment, the way the UMIs and numbers are stored, there is no way to simply aggregate

counts across the individual sequencing runs once they are added to the isoSeQL database.

Samples need to be merged during the previous analysis steps to ensure that UMIs are not

counted multiple times.
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