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Abstract

Adjusting for a balancing score is sufficient for bias reduction when estimating causal effects 

including the average treatment effect and effect among the treated. Estimators that adjust for the 

propensity score in a nonparametric way, such as matching on an estimate of the propensity score, 

can be consistent when the estimated propensity score is not consistent for the true propensity 

score but converges to some other balancing score. We call this property the balancing score 

property, and discuss a class of estimators that have this property. We introduce a targeted 

minimum loss-based estimator (TMLE) for a treatment-specific mean with the balancing score 

property that is additionally locally efficient and doubly robust. We investigate the new 

estimator’s performance relative to other estimators, including another TMLE, a propensity score 

matching estimator, an inverse probability of treatment weighted estimator, and a regression-based 

estimator in simulation studies.

Keywords
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1 Introduction

Estimators based on the propensity score (PS), the probability of receiving a treatment given 

baseline covariates, are popular for estimation of causal effects such as the average 

treatment effect (ATE), average treatment effect among the treated (ATT), or the average 

outcome under treatment. Such methods can be thought of as adjusting for the propensity 

score in place of baseline covariates, and generally require consistent estimation of the 

propensity score if it is not known. Common propensity score methods include stratification 

or subclassification [1–3], inverse probability of treatment weighting (IPTW) [4, 5], and 

propensity score matching [6–8].
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A “balancing score” as defined by Rosenbaum and Rubin [8] is a function of baseline 

covariates such that treatment and baseline covariates are independent conditional on that 

function. The propensity score is perhaps the most well-known example of a balancing 

score, but balancing scores are more general. Typically, propensity score-based methods are 

said to be consistent when the true propensity score is consistently estimated. Methods that 

adjust for the propensity score nonparametrically, such as matching or stratification by the 

propensity score, actually only need that the estimated propensity score converge to some 

balancing score in order for the parameter of interest to be estimated consistently. However, 

we are not aware of specific claims in the literature that particular propensity score-based 

methods are consistent under this weaker condition. We say that an estimator using the 

propensity score or other balancing score has the balancing score property if it is consistent 

when the estimated propensity score converges to a balancing score.

Though not guaranteed in general, it is possible for an estimated propensity score based on a 

misspecified model to converge to a balancing score that is not equal to the true propensity 

score. Propensity score-based estimators that have the balancing score property are robust to 

this sort of estimator misspecification of the PS, while other propensity score-based 

estimators are not. The balancing score property is desirable because, even though most such 

estimators were initially developed based on the PS specifically, they inherit this robustness 

for free. Estimators with the balancing score property are in general not efficient.

An efficient estimator is one that achieves the minimum asymptotic variance of all regular 

estimators. In many cases, for example when estimating the ATE, ATT, and average 

outcome under treatment, doubly robust estimators can be constructed. A doubly robust 

estimator is one that relies on an estimate of both the propensity score and of the outcome 

regression, the conditional mean of the outcome given baseline covariates and treatment. 

Doubly robust estimators are consistent if either the estimated propensity score or outcome 

regression is consistent. Examples include targeted minimum loss-based estimation (TMLE) 

[9, 10] and augmented inverse probability of treatment weighted estimation (A-IPTW) [11, 

12]. In addition to being doubly robust, both TMLE and A-IPTW are efficient when both the 

propensity score and outcome regression are consistently estimated.

In this article, we discuss a general class of estimators that have the balancing score 

property. We also construct a TMLE [9, 10] with the balancing score property. This new 

TMLE not only has the benefit of the robustness provided by the balancing score property, it 

also is a locally efficient, doubly robust plug-in estimator. This means that our new 

estimator retains all of the attractive properties of a traditional TMLE while gaining 

robustness that other estimators with the balancing score property enjoy when the propensity 

score only converges to a balancing score.

In Section 2, we introduce notation and define the statistical parameter we wish to estimate. 

In Section 3 we describe a TMLE for the statistical parameter. In Section 4 we discuss the 

balancing score property and describe the proposed new TMLE. In Section 5 we compare 

the performance of the new estimator to a traditional TMLE as well as other common 

estimator and conclude with a discussion in Section 6. A list of notation used throughout the 

article is provided in Appendix A. Some results and proofs not included in the main text are 
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in Appendix A.2 and two modifications to the TMLE algorithm are presented in Appendix 

A.3. An example implementation of the proposed new TMLE in R [13] is provided in 

Appendix A.4.

2 Preliminaries

Consider the random variable O = (W, A, Y) where W is a real-valued vector, A is binary 

with values in {0, 1} and Y is univariate real number. Call the probability distribution of 

 where  is the statistical model. Assume P0(A = 1 ∣ W) > 0 for almost every W. 

This is sometimes called a positivity assumption. Define the parameter mapping Ψ from 

to  that maps P to EP(EP(Y ∣ A = 1, W)) where EP denotes expected value under 

probability distribution .

Suppose A = 1 indicates some treatment of interest and A = 0 represents some control or 

reference treatment, W represents a vector of baseline covariates measured before treatment, 

and Y represents some outcome measured after treatment. Then under additional causal 

assumptions, Ψ(P0) can be interpreted as a causal quantity. In particular, we may assume 

that observed treatment A is independent of the counter-factual outcome had each 

observation received treatment 1 given covariates W. This is known as the randomization 

assumption or the “no unmeasured confounders” assumption, and the validity depends on 

the particular application. Under the randomization positivity assumptions, Ψ(P0) can be 

interpreted as the average outcome had everyone in the population received treatment 1. In 

this paper we focus on estimation of the statistical parameter Ψ(P0), but other similar 

statistical parameters can, under assumptions, be interpreted as causal parameters such as the 

ATE or the ATT [14].

For a probability distribution ,  is the regression of 

the outcome on covariates and treatment. Let QW(w) = P(W = w) be the distribution of 

baseline covariates. The conditional distribution of treatment on baseline covariates is called 

g(a ∣ w) = P(A = a ∣ W = w), and define the propensity score as , the 

probability of treatment given covariates w. The parameter mapping Ψ depends on P only 

through , so recognizing the abuse of notation, we sometimes write 

.

For a distribution , we make no assumptions on the outcome regression  or on the 

distribution QW of W. We may put some restriction on possible functions g, for example we 

may know that P(A ∣ W) depends only on a subset of W. The model  is therefore 

nonparametric or semiparametric.

Let O1, … , On be a data set of n independent and identically distributed random variables 

drawn from P0 where Oi = (Wi, Ai, Yi). We use the subscript 0 to denote the true probability 

distribution, and n to denote an estimate based on a dataset of size n, so, for example, E0 

Lendle et al. Page 3

J Causal Inference. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



denotes expectation with respect to , and  is an 

estimate of . Let ψ0 = Ψ(P0).

3 Targeted minimum loss-based estimation

A plug-in estimator takes an estimate of the distribution P0, or relevant parts of P0, and 

plugs it into the parameter mapping Ψ. In this case, Ψ depends on P through  and QW. 

Using an estimate  of , and letting QWn be the empirical distribution of W, we can 

calculate the plug-in estimate as

That is, we take the mean of  with respect to the empirical distribution of W. Plug-

in estimators are desirable because they fully utilize known global constraints of Q0 (by 

using an estimate Qn that satisfies these constraints) and guarantee that estimates are in the 

parameter space, even in small samples. Non-plug-in estimators such as IPTW can produce 

estimates outside of the parameter space. For instance if our estimand is a probability, a 

method like IPTW could yield an estimate outside of [0, 1] when the sample size is small.

TMLE is a general framework for constructing a plug-in estimator for ψ0 with additional 

properties such as efficiency. TMLE takes an initial estimate of the outcome regression , 

say , and, using an estimate  of the propensity score, updates it to . Using the 

empirical distribution of W along with the updated , the final estimate is calculated as 

. The updated  is constructed in such a way that the final estimate is 

efficient or attains other properties. We now review some background and a specific 

implementation of the TMLE procedure for Ψ(P0).

An estimator that is asymptotically linear can be written as

for some mean zero function IC(P0) where oP(1) is a term that converges in probability to 0. 

The function IC(P0) is called the influence curve of the estimator at P0. For an estimator to 

be efficient, that is, to have the minimum asymptotic variance among all regular estimators, 

it must be asymptotically linear with influence curve equal to the so called efficient 

influence curve [9, 15]. The efficient influence curve for a particular parameter mapping Ψ 

depends on the model. For our model, regardless of the model for g0, the efficient influence 

curve at a  written in terms of Q and g is
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A derivation of the efficient influence curve is presented in Chapter 4 van der Laan and 

Rose [9].

Suppose for now Y is binary or bounded by 0 and 1. A modification to the algorithm and a 

different TMLE are described in Appendix A.3 if this is not the case. The initial estimate 

can be obtained via a parametric model for E0(Y ∣ A, W), such as a generalized linear model 

[16], or with a data adaptive machine learning algorithm such as the SuperLearner algorithm 

[9, 17], which combines parametric and data adaptive estimators using cross-validation.

The updating step is defined by a choice of loss function L for Q such that E0L(Q)(O) is 

minimized at Q0, and a working parametric submodel with finite dimensional real-valued 

parameter ε, {Q(ε) : ε} such that Q(0) = Q. The submodel is typically chosen so that the 

efficient influence curve is in the linear span of the components of the “score” 

 at ε = 0. When L is the negative log likelihood,  is the score 

in the usual sense. Starting with k = 0, the empirical risk minimizer 

 is calculated and  is updated to . The 

process is iterated until εk ≈ 0, sometimes converging in one step. Details can be found in 

Refs [9, 10, 18, 19].

Define the loss function  where

and LW(QW)(O) = −log(QW(W)). When Y is binary,  is the negative conditional 

log likelihood of the Bernoulli distribution. Because Y is at least bounded by 0 and 1 if not 

binary,  is a valid loss function for the conditional mean. That is, 

 [20]. The function LW(QW)(O) is the negative log likelihood 

of the distribution of W, and its true mean is minimized by QW0. Thus, the sum loss function 

is a valid loss function for .

For a working submodel for , we use
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indexed by ε. We call this a logistic working model because it is a logistic regression model 

with offset  and single covariate A/g(1 ∣ W). The score of this model at ε = 0 

is

For QW, we can use as working submodel

which has score  at . We can see that the efficient influence 

curve D*(P0) can be written as a linear combination of the scores of these submodels when 

Q = Q0 and g = g0.

The estimate  can be calculated using standard logistic regression software with 

 as a fixed offset term, and A/gn(1 ∣ W) as a covariate. By using the 

empirical distribution of W as an initial estimate for , and negative log likelihood loss 

function for LW, the empirical risk is already minimized at , so  and no update is 

needed. In this case, the algorithm converges in one step, because  is not updated 

between iterations, so an additional update to  will yield . The estimate 

and the TMLE estimate of Ψ(P0) is calculated as

Under regularity conditions, the TMLE is asymptotically linear and doubly robust, meaning 

that if the initial estimate  is consistent for , or  is consistent for , then 

 is consistent for Ψ(P0). Additionally, when both  and gn are consistent, the 

influence curve of the TMLE is equal to the efficient influence curve, so the estimator 

achieves the semiparametric efficiency bound. Precise regularity conditions for asymptotic 

linearity and efficiency are presented in Appendix A.2 in Theorem 3.
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4 Balancing score property and proposed estimator

A function b of W is called a balancing score if A⊥W ∣ b(W) [8]. Trivially, b(W) = W is a 

balancing score, and by definition of the propensity score, , is a balancing score. In 

general, any function b(W) is a balancing score if and only if there exists some function f 

such that  (Theorem 2 [8]). For example, any monotone transformation of 

the propensity is a balancing score. Such a function is called a “balancing score” because, 

conditional on b(W), the distribution of W between the treated and untreated observations is 

equal or balanced. That is, P0(W ∣ A = 1, b(W)) = P0(W ∣ A = 0, b(W)). Rosenbaum and 

Rubin [8] show that adjusting for a balancing score yields the same estimand as adjusting for 

the full set of covariates W which we state in Lemma 1 and offer a different proof in 

Appendix A.2.

Lemma 1

If b(W) is a balancing score under distribution P, then EP(EP(Y ∣ A = 1, b(W))) = Ψ(P).

This result gives rise to methods for estimating Ψ(P0) based on a balancing score and not on 

an estimate of . The propensity score is the balancing score most commonly used for 

estimating Ψ(P0), and frequently used estimators include propensity score matching, 

stratification, and IPTW. When the propensity score is not known, these estimators rely on 

an estimated propensity score , and, under regularity conditions, are consistent when  is 

consistent for . The IPTW estimator, in particular, requires that  converges to  for 

consistency. However, many of these methods, such as propensity score matching and 

stratification by the propensity score, can be seen as nonparametrically adjusting for the 

propensity score and only rely on the propensity score being a balancing score. For these 

estimators, it is sufficient for  to converge to some balancing score under P0. We call this 

property the balancing score property.

In practice, an estimator  can approximate a balancing score well but not converge to the 

true propensity score. A parametric logistic regression estimator will estimate some function 

of the covariates that is a projection of  onto the model determined by the parametrization 

of the estimator. If the parametric estimator is correctly specified, this projection will be . 

Depending on the true  and distribution of covariates, it is possible for this projection to be 

a balancing score or at least approximate some balancing score when the estimator is not 

correctly specified. For example, suppose the true  depends on higher order interactions of 

covariates. Though not the case in general, in some settings a main terms logistic regression 

may approximate a balancing score well. We explore such a setting via simulation in Section 

5. In another example, suppose  depends on covariates in an additive on the logit scale but 

not necessarily linear or even smooth way. A logistic regression estimator with linear or 

possibly higher order polynomial main terms may again approximate some balancing score.

Estimators based only on the propensity score are not doubly robust. We now construct a 

locally efficient doubly robust estimator with the balancing score property. We start with 
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initial estimators  for  and  for . We then update  by nonparametrically 

regressing Y on A and  using  as an offset. Similarly to the TMLE 

procedure in Section 3, we use this updated estimate of  to estimate ψ0 by plugging it in to 

the parameter mapping Ψ along with the empirical distribution of W.

To update  by further adjusting for A and , we specify a working model and loss 

function pair. The working model and loss function pair is somewhat analogous to that in 

the updating step in the TMLE procedure described in Section 3. The loss function can be 

the same as that in the TMLE procedure’s updating step, but it need not be. Define  and b 

to be the limits of  and , respectively, as n → ∞. Let Θ be the class of all functions of 

A and b(W), and let θ be some function in that class. Here  is not necessarily  and b is 

not necessarily  or even a balancing score. For concreteness, consider two working model 

and loss function pairs: a logistic working model

(1)

with loss function

which is the negative log likelihood loss when Y is binary, and a linear working model

(2)

with loss function

the squared error loss. In both working models, we leave the function θ unspecified. We can 

view a working model used for the updating step in the TMLE procedure as a special case of 

the working model here by restricting θ to have the form

where ε is real, using notation b(W) in place of g(1 ∣ W) as used in Section 3.

Define
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Given , the limit of some estimate for , one can think of Θ0, a function of A and b(W), as 

the residual bias between  and E0(Y ∣ A, b(W)) on either the 

logistic or linear scale. When the initial estimator  is consistent, so 

will be 0, because  will already be fully adjusting for A and b(W).

Suppose for now that we have an estimate of θ0 which we call θn. We return to the problem 

of estimating θ0 later in this section. Calculate the update of  as  and using this 

updated regression, a final estimate of ψ0 is calculated as , which we call a 

doubly robust balancing score adjusted (DR-BSA) plug-in estimator. In Theorem 1 in 

Appendix A.2, we show that the DR-BSA estimator doubly robust in the sense that it is 

consistent when either  or θn consistently estimates θ0 and b is a balancing score.

When initial estimator  does not consistently estimate , consistency of the DR-BSA 

estimate requires that b is a balancing score and θ0 is consistently estimated. To weaken this 

requirement, we now construct a TMLE with the balancing score property by using 

 as the initial estimate in the TMLE procedure in Section 3 and updating it to . 

The TMLE of Ψ(P0) is calculated as . We call this a balancing score adjusted 

TMLE (BSA-TMLE). In Theorem 2 in Appendix A.2, we show that the BSA-TMLE is 

consistent if any of the three conditions hold: (1) , (2) , or (3) b is a balancing 

score and θn consistently estimates θ0. The BSA-TMLE is therefore doubly robust in the 

usual sense and also has the balancing score property. The BSA-TMLE is a TMLE as 

described in Section 3 where in addition to attempting to adjust for W, the initial estimator 

 is making an extra attempt to adjust for a balancing score. If θ0 is consistently estimated, 

then like the standard TMLE, when both the initial estimates of  and g0 are consistent, the 

influence curve of the BSA-TMLE is the efficient influence curve. Therefore, under 

regularity conditions, the BSA-TMLE is locally efficient and keeps all of the attractive 

properties of TMLE while also having the balancing score property.

We now return to the problem of estimating θ0. The working model in the definition of θ0 

depends is  which depends on limits  and b. To estimate θn, we use  as the 

working model. If  is discrete and θ0 is estimated in a saturated parametric model, 
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 is exactly a TMLE as proved in Lemma 2 in Appendix A.2. When 

 is not discrete, it can be discretized into k categories based on quantiles. The 

parameter θ0 can be estimated with a saturated parametric model with standard logistic 

regression software with dummy variables for each stratum and treatment combination, and 

 as an offset. When  is unadjusted for W, for example  is 

estimated in a GLM with only an intercept and treatment as a main term, this reduces to 

usual propensity score stratification. In general, when the number of categories k is fixed 

and does not grow with sample size, stratification is not consistent, though one hopes that 

the residual bias is small [2]. If k is too large, there is a possibility of all observations in a 

particular stratum having the same value for A, in which case θn(A, W) is not well defined. 

In many applications, the number of strata is often set based on the rule of thumb k = 5 

recommended by Rosenbaum and Rubin [3]. Though the stratification estimator of ψ0 is not 

root-n consistent when k is fixed, the BSA-TMLE removes this remaining bias if gn 

consistently estimates the true propensity score while preserving the balancing score 

property. In practice, the number of strata k can be chosen based on cross-validation in such 

a way that it can grow with sample size.

Alternatively, when  is not discrete or has many levels, θ0 can be estimated in an 

generalized additive model [21] with  as an offset. We can parameterize this model as

(3)

with θ = (θ1, θ2) where θ1 and θ2 are unspecified. Other parametric or nonparametric 

methods can be used and cross-validation based SuperLearning can be used to select the best 

weighted combination of estimators for θ0 [9, 17]. When the linear model (2) is used, 

. In this case, a nearest neighbor or kernel 

regression can be used where residuals from the initial estimate, , are 

treated as an outcome. This is similar to the bias corrected matching estimator presented by 

Abadie and Imbens [22].

5 Simulations

We demonstrate properties of the proposed BSA-TMLE in various scenarios, and compare it 

to other estimators. The estimators compared in simulations include a plug-in estimator 

based on just the initial estimator of  without balancing score adjustment, DR-BSA plug-

in estimators without a TMLE update, non-doubly robust BSA plug-in estimators, an inverse 

probability of treatment weighted estimator, and a TMLE using an initial estimator for 

not directly adjusted for a balancing score.
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The plug-in estimator not adjusted for a balancing score is calculated as  with 

 as defined in Section 4. We call this the simple plug-in estimator. The DR-BSA plug-in 

estimator uses the balancing score adjusted  as in Section 4 and is calculated as 

. The non-doubly robust BSA plug-in estimator adjusts for the balancing 

score, but uses as initial  an unadjusted estimate that is not a function of W. The non-DR-

BSA plug-in estimator can be thought of as only adjusting for gn(1 ∣ W) and not the whole 

covariate vector W. The IPTW estimator is calculated as

The estimators we compare are summarized in Table 1.

In the simulation studies, we use two methods for adjusting the initial estimator with the 

propensity score. All simulations were conducted in R [13]. The initial estimator  was 

adjusted with either a generalized additive model (GAM) in eq. (3), or a nearest neighbor 

approach analogous to propensity score matching. The non-DR-BSA plug-in estimator 

based on nearest neighbors reduces exactly to a propensity score matching estimator. The 

GAM was fitted with the mgcv package [21] and the nearest neighbor/propensity score 

matching type estimator was implement with the Matching package [23].

The initial estimates for  and  are estimated using generalized linear models. 

Specifically,  is estimated using logistic regression, and  is estimated with least squares 

when Y is continuous, and logistic regression when Y is binary. To investigate robustness to 

various kinds of model misspecification, models are either correctly specified, or some 

relevant covariates are excluded.

The data generating distribution in the simulations was as follows. Baseline covariates W1, 

W2 and W3 have independent uniform distributions on [0, 1]. Treatment A is Bernoulli with 

mean

Outcome Y is either Bernoulli or normal with variance 1 and mean

where m is logit−1 if Y is Bernoulli, or the identity if Y is normal. All estimators were 

evaluated on 1,000 datasets of size n = 100 and n = 1,000. Bias, variance, and mean squared 

error (MSE) are calculated for each estimator.
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In the first scenario, which we call distribution one, α = (α0, α1, α2, α3, α4) = (−3, 2, 2, 0.5) 

and β = (β0, β1, β2, β3, β4) = (−3, 1, 1, 0, 5) so W1 and W2 are confounders, and the 

propensity score depends on the product W1W2. The true parameter ψ0 ≈ 0.0985 and the 

variance bound is approximately 1.5691/n. The variance bound of a parameter in a 

semiparametric model is the minimum asymptotic variance that a regular estimator can 

achieve, and depends on the parameter mapping Ψ and the true distribution P0 [15]. This is 

analogous with the Cramér-Rao bound in a parametric model. An estimator that 

asymptotically achieves the variance bound is called efficient.

The first set of results in Table 2 demonstrate the balancing score property. The initial 

estimate  is unadjusted. A correct logistic regression model is specified for , but 

predictions are transformed by the Beta cumulative distribution function with both shape 

parameters equal to 2. Although artificial, this means that  converges to a monotone 

transformation of , which is a balancing score, but does not converge to the true . We 

can see that the TMLE not adjusted for the propensity score and the IPTW estimators are not 

consistent as the bias is not decrease substantially when sample size increase. Conversely, 

methods where the initially estimate  is adjusted with the propensity score, are consistent, 

as bias is decreasing quickly with sample size.

Table 3 shows similar performance in a more realistic scenario. In this setting, the initial 

estimator for  is unadjusted, but the logistic regression model for the propensity score is 

misspecified by excluding the interaction term W1W2. Here predictions are not transformed. 

Here  is close to but not exactly a balancing score, but it is close enough that the bias in 

estimators that nonparametrically adjust for  is small. The IPTW estimator, however, is 

still biased at large n because  is not converging to . In this case TMLE performs well 

even with an unadjusted initial estimator but this is not guaranteed when  is misspecified.

Table 4 examines the performance of estimators when the model for  is misspecified (only 

including W1 in the logistic regression model,) but the initial estimate  is a correctly 

specified model. Here we see that estimates that rely only on estimated propensity score (the 

non-doubly robust BSA estimators and IPTW,) fail to be consistent, but estimates that use 

the correctly specified initial estimate of , are consistent. Importantly, even when the 

initial estimate is adjusted with the completely misspecified , final estimates are still 

consistent when the initial  is correctly specified.

In a second scenario, called distribution two, Y is conditionally normal with α = (0, 10, 8, 0, 

2) and β = (−1, 0, 0, 3, 0). Here Y depends on W1 and W2 but A does not, so they are not 

confounders. Additionally, A depends on W3, but Y does not, so W3 is an instrumental 

variable. In this setting, because none of the baseline covariates are confounders, an 

unadjusted estimator of ψ0 will be consistent but not efficient, because it will fail to take into 

account the relationship with the non-confounding baseline covariates W1 and W2. Here, the 

true ψ0 is 2 and the variance bound is approximately 5.1979/n.
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Table 5 shows results from distribution two where the initial estimate for  is the least 

squares estimate from a linear regression model with A, W1, W2, and W3 are main terms, and 

the initial estimate for the propensity score is the MLE from a logistic regression model with 

main terms W1, W2, and W3. Here we see that, although all estimators have low bias, those 

that only adjust for , (the non-doubly robust BSA estimators and IPTW,) have much 

higher variance than those with a correctly specified initial estimate. This demonstrates the 

importance in terms of efficiency of attempting to estimate  well with the initial estimate 

even when confounding is not a concern.

6 Discussion

In this paper, we discuss the balancing score property of estimators that nonparametrically 

adjust for the propensity score. We see in simulations that, even when the propensity score 

estimator is not consistent, Ψ(P0) can be estimated with low bias if the estimate of the 

propensity score approximates a balancing score well enough. Additionally, we introduce a 

balancing score adjusted TMLE which has the balancing score property and is also doubly 

robust and locally efficient, and provide regularity conditions for asymptotic linearity in 

Appendix A.2.

In order for an estimator to have the balancing score property, we need to estimate some 

balancing score. We acknowledge that in practice, one does not expect an estimate of the 

propensity score to converge exactly to a balancing score that is not g0 in general. However, 

because the propensity score is a single element of the large class of balancing scores, the 

condition that an estimated propensity score gn converges to some balancing score is strictly 

weaker than requiring gn to converge to g0. When gn fails to converge to g0, we may still 

have a chance at approximating a balancing score, and the proposed BSA-TMLE can still 

reduce bias relative to an estimator that requires that gn converges to g0 without sacrificing 

double robustness or efficiency.

We now discuss some possible generalizations to the work in this paper and areas for further 

research. The estimators present in this paper are for the statistical parameter E0[E0(Y ∣ A = 

1, W)], which, under assumptions, can be interpreted as the population mean of a variable Y 

when Y is subject to missingness [24]. The results and similar estimators are immediately 

applicable to other interesting statistical parameters such as

and

which, under non-testable causal assumptions, can be interpreted as causal parameters called 

the ATE or ATT, respectively [9, 14]. Additionally, the results are immediately 

generalizable to the estimation of parameters in marginal structural models [25, 26].

Lendle et al. Page 13

J Causal Inference. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Propensity score-based methods are most often applied in settings where the treatment 

variable is binary. In settings where the treatment variable is not binary, Imai and Van Dyk 

[27] generalize the notion of the propensity score to the propensity function, the conditional 

probability of observed treatment given covariates. Imai and Van Dyk [27] show that the 

propensity function is a balancing score. When the propensity function can be characterized 

by a finite dimensional parameter, one can estimate parameters of the distribution of 

counterfactuals by adjusting for the dimensional characterization of the propensity function 

in place of all covariates. Using the approach of Imai and Van Dyk [27], the methods in this 

paper may be extended to develop estimators that are doubly robust and efficient with the 

balancing score property for more general situations where treatment is categorical or 

potentially even continuous.

Traditionally, propensity score-based estimators estimate the propensity score based on how 

well  approximates the true . Collaborative targeted minimum loss-based estimation 

(CTMLE) is a method that chooses an estimator for the propensity score based on how well 

it helps reduce bias in the estimation of Ψ(P0) in collaboration with an initial estimate of 

using cross-validation [9, 28]. In doing so, CTMLE attempts to adjust the propensity score 

for the most important confounders first and avoid adjustment for instrumental variables. 

This can lead to improvements in efficiency and robustness to violations of the assumption 

P0(A = a ∣ W) > 0. Applying an analogous techniques of estimator selection for balancing 

score adjusted estimators is an area of further research.
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Appendix

A.1 Notation

– O = (W, A, Y): observed data structure

– W: vector of covariates

– A: treatment indicator, 0 or 1

– Y: univariate outcome

– P: a distribution of O

– : statistical model, set of possible probability distributions P

– Ep(·): expectation under distribution P

– 

– 
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– QW(w) = P(W = w)

– g(a ∣ w) = P(A = a ∣ W = w)

– , also called the propensity score when.

– Ψ: statistical parameter mapping from  to .

– In particular, Ψ(P) = EP[EP(Y ∣ A = 1, W)

– Also written as Ψ(Q)

– ψ = Ψ(P)

– Subscript 0: indicates the truth, e.g. ψ0 = Ψ(P0) is the true parameter value

– Subscript n: indicates an estimate based on n observations, e.g.  is an estimate of 

–  an initial estimate of 

– L: loss function

– LY: loss function for 

– LW: loss function for QW

– Q(ε) a working submodel through Q

– IC: an influence curve

– D*: the efficient influence curve

–  a TMLE updated estimate of some initial 

– b(w): some function of w that is a potential balancing score

– θ: some function of a and b(w)

– : a working submodel through  for a particular b and θ

–  loss function for , used in Section 4

A.2 Some results and proofs

Proof of Lemma~1

In this proof, E means expectation with respect to P. First note that E(Y ∣ A = 1, W, b(W)) = 

E(Y ∣ A = 1, W) because b is a function of only W. Next,
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because the inner conditional expectation is a function of only W and W⊥A ∣ b(W) when b is 

a balancing score. Thus,

Theorem 1—Assume

In addition, assume that either  is a balancing score or . Then 

is consistent for ψ0.

Proof

By definition of θ0, we have

for all functions h of A and b(W). Theorem 2 Rosenbaum and Rubin [8] show that b is a 

balancing score if and only if there exists a function f so that  a.e., so we 

can select the function

In addition, we also have that . This proves that

where D* is the efficient influence curve of Ψ at P, and notation
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for some function ϕ of O and distribution P. Since , this 

shows

This proves that under the stated consistency condition, we indeed have that 

 is consistent for ψ0. This proves the consistency under the condition 

that b is a balancing score.

Consider now the case that . Then θ0 = 0 and thus . Thus, the limit 

, which proves the second claim of the theorem.

Theorem 2—Assume

where .

In addition, assume that b is a balancing score, or . Then ε0 = 0 and 

 is consistent for ψ0.

Proof

Firstly, assume b is a balancing score so by Theorem 2 Rosenbaum and Rubin [8] there 

exists a mapping f so that g0(w) = f(b(w)) a.e.. In the proof of the previous theorem we 

showed that

The left-hand side equals  and this score equation in ε is solved by 

ε0. This proves that ε0 = 0 under the assumption that this score equation 
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has a unique solution. The latter follows from the fact that the submodel with single 

parameter ε has an expected loss that is strictly convex.

This now proves that the limit  so that we 

can apply the previous theorem which shows that the latter limit equals ψ0. This proves the 

consistency of the TMLE when b is a balancing score.

Consider now the case that . Then θ0 = 0 and thus . Thus, the limit 

, which proves the consistency under the condition 

that . In the latter case, it also follows that ε0 = 0.

Lemma 2—If  takes only discrete values with support G, then  is a 

TMLE if θ0 is estimated as θn using MLE in a saturated parametric model

(4)

where  is some initial estimator for  and I is the indicator function.

Proof of Lemma~2

The MLE θn (or empirical risk minimizer for the negative quasi-binomial log likelihood, if Y 

is not binary), solves the score equations for each parameter θa,c:

Additionally, any function h of A and  is in the linear span of basis functions 

 for all a ∈ {0, 1}, c ∈ G, so
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In particular, the above equation is solved when , which is the score from 

the parametric submodel in eq. (4). Thus if the TMLE update is applied to the initial 

estimate , and  so  is a TMLE.

Theorem 3—Define  and . Assume 

 falls in a P0-Donsker class with probability tending to 1; 

 in probability as n → ∞;

 and  are asymptotically linear estimators of  and  with 

influence curves IC1 and IC2, respectively.

Then  is asymptotically linear with influence curve D*(Q, g) + IC1 + IC2.

Proof

Since  (e.g., Zheng and Laan [29]); 

Zheng and van der Laan [30]), where we use the notation , this results in 

the identity:

The first term equals  if  falls in a P0-Donsker 

class with probability tending to 1, and  in probability as 

n → ∞ [31, 32]. We write

Assume that the last term is . We now write

Lendle et al. Page 19

J Causal Inference. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where  and . We assume that the first term is 

, the last term equals zero (i.e., either  or ), and  and 

 are asymptotically linear estimators with influence curves IC1 and IC2, 

respectively. This proves  is asymptotically linear with influence curve D*(Q, g) + 

IC1 + IC2.

A.3 TMLE when Y is not bounded by 0 and 1

If Y is not bounded by 0 and 1, but we can assume Y is bounded by l and u with 

−∞<l<u<∞, Y can be transformed to . Similarly  can be transformed to 

. The procedure described in Section 3 can be applied to the data structure (W, 

A, Y†) using  as initial estimator, and the final estimate can be transformed back to the 

original scale as . When l and u are not known, they can be set 

to the minimum and maximum of the observed Y as described in [20].

For completeness we can define an alternative TMLE using a linear working model where

with loss function
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the squared error loss. Here,  can be estimated by standard 

least squares regression software, with  as an offset.

Asymptotically, a TMLE using a linear working model (or linear fluctuation) is the 

equivalent to a TMLE with a logistic working model, but in practice can perform poorly. 

This is because if gn(1 ∣ Wi) is very small for some observations, which is more likely in 

small samples,  can be large in absolute value, having a large effect on  with a linear 

fluctuation, which is unbounded. Because of this, if it is reasonable to bound Y by some l 

and u, it the logistic working model is recommended because  always respects these 

bounds, even if  is large.

A.4 Example implementation of a BSA-TMLE estimator in R

bsatmle <- function(QnA1, QnA0, gn1, A, Y, family = “binomial”) { # computes estimates 

of E(E(Y∣A=1, W)) (called ey1 in the # output), E(E(Y∣A=0, W)) (called ey0), and # 

E(E(Y∣A=1, W)) – E(E(Y∣A=1, W)) (called ate) # # Inputs: # QnA1, QnA0: vectors, initial 

estimates of \bar{Q}_n(1, W) # and \bar{Q}_n(O, W) # gn1: vector, estimates of g_n(1∣W) # 

A: vector, indicator of treatment # Y: vector, outcome # family: “binomial” for logistic 

fluctuation, “gaussian” # for linear fluctuation. # if “binomial”, Y should be binary or 

bounded # by 0 and 1 if (!require(mgcv)) stop(“mgcv package is required”) if 
(family==“binomial”) { #use quasibinomial to suppress error messages about #non-integer 

Y family <- “quasibinomial” link <- qlogis } else { link <- identity } QnAA <- ifelse(A==1, 

QnA1, QnA0) # Use a generalized additive model to estimate theta_0 # using the initial 

estimate of \bar{Q} gamfit <- gam(Y factor(A) + s(gn1, by=factor(A)) + offset(off), 

family, data=data.frame(A=A, gn1=gn1, off=link(QnAA))) #Get predictions from gam fit 

QnA1.gam <- predict(gamfit, type=“response”, newdata=data.frame(A=1, gn1=gn1, 

off=link(QnA1))) QnA0.gam <- predict(gamfit, type=“response”, 

newdata=data.frame(A=0, gn1=gn1, off=link(QnA0))) QnAA.gam <- ifelse(A==1, 

QnA1.gam, QnA0.gam) # compute a/g_n(1∣W) hA1 <- 1/gn1 hA0 <- −1/(1 – gn1) hAA <- 

ifelse(A==1, hA1, hA0) #using glm, fluctuate the gam-updated initial fit of \bar{Q} glmfit 

<- glm(Y −1 + h + offset(off), family, data=data.frame(h=hAA, off=link(QnAA.gam))) 

QnA1.star <- predict(glmfit, type=“response”, newdata=data.frame(h=hA1, 

off=link(QnA1.gam))) QnA0.star <- predict(glmfit, type=“response”, 

newdata=data.frame(h=hA0, off=link(QnA0.gam))) #compute the final estimates ey1 <- 

mean(QnA1.star) ey0 <- mean(QnA0.star) ate <- ey1-ey0 list(ey1=ey1, ey0=ey0, ate=ate) }

References

1. Austin PC. The performance of different propensity-score methods for estimating differences in 
proportions (risk differences or absolute risk reductions) in observational studies. Stat Med. 2010; 
29:2137–48. [PubMed: 20108233] 

2. Lunceford J, Davidian M. Stratification and weighting via the propensity score in estimation of 
causal treatment effects: a comparative study. Stat Med. 2004; 23:2937–60. [PubMed: 15351954] 

Lendle et al. Page 21

J Causal Inference. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Rosenbaum P, Rubin D. Reducing bias in observational studies using subclassification on the 
propensity score. J Am Stat Assoc. 1984; 79:516–24.

4. Robins J, Hernán M, Brumback B. Marginal structural models and causal inference in 
epidemiology. Epidemiology. 2000; 11:550–60. [PubMed: 10955408] 

5. Rosenbaum P. Model-based direct adjustment. J Am Stat Assoc. 1987; 82:387–94.

6. Caliendo M, Kopeinig S. Some practical guidance for the implementation of propensity score 
matching. J Econ Surv. 2008; 22:31–72.

7. Dehejia R, Wahba S. Propensity score-matching methods for nonexperimental causal studies. Rev 
Econ Stat. 2002; 84:151–61.

8. Rosenbaum P, Rubin D. The central role of the propensity score in observational studies for causal 
effects. Biometrika. 1983; 70:41.

9. van der Laan, MJ.; Rose, S. Targeted learning: causal inference for observational and experimental 
data. Springer; New York: 2011. 

10. van der Laan MJ, Rubin D. Targeted maximum likelihood learning. Int J Biostat. 2006; 2 
Available at: http://www.degruyter.com/view/j/ijb.2006.2.1/ijb.2006.2.1.1043/ijb.
2006.2.1.1043.xml. 

11. Robins JM, Rotnitzky A, Zhao LP. Estimation of regression coefficients when some regressors are 
not always observed. J Am Stat Assoc. 1994; 89:846–66.

12. van der Laan, MJ.; Robins, JM. Unified methods for censored longitudinal data and causality. 
Springer; New York: 2003. 

13. R Core Team. R: a language and environment for statistical computing. R Foundation for 
Statistical Computing; Vienna, Austria: 2012. Available at: http://www.R-project.org/, ISBN 
3-900051-07-0

14. Hahn J. On the role of the propensity score in efficient semiparametric estimation of average 
treatment effects. Econometrica. 1998; 66:315–31.

15. Bickel, PJ.; Klaassen, CAJ.; Ritov, Y.; Wellner, JA. Efficient and adaptive estimation for 
semiparametric models. The Johns Hopkins University Press; Baltimore, MD: 1993. 

16. McCullagh, P.; Nelder, J. Generalized linear models. Vol. Vol. 37. Chapman & Hall/CRC; Boca 
Raton, FL: 1989. 

17. van der Laan MJ, Polley EC, Hubbard AE. Super learner. Stat Appl Genet Mol Biol. 2007; 6 
Available at: http://www.degruyter.com/view/j/sagmb.2007.6.1/sagmb.2007.6.1.1309/sagmb.
2007.6.1.1309.xml. 

18. van der Laan MJ. Targeted maximum likelihood based causal inference: part I. Int J Biostat. 2010; 
6 Available at: http://www.degruyter.com/view/j/ijb.2010.6.2/ijb.2010.6.2.1211/ijb.
2010.6.2.1211.xml. 

19. van der Laan MJ. Targeted maximum likelihood based causal inference: part II. Int J Biostat. 2010; 
6 Available at: http://www.degruyter.com/dg/viewarticle/j$002fijb.2010.6.2$002fijb.
2010.6.2.1241$002fijb.2010.6.2.1241.xml. 

20. Gruber S, Van Der Laan M. A targeted maximum likelihood estimator of a causal effect on a 
bounded continuous outcome. Int J Biostat. 2010; 6 Available at: http://www.degruyter.com/
view/j/ijb.2010.6.1/ijb.2010.6.1.1260/ijb.2010.6.1.1260.xml. 

21. Wood SN. Fast stable restricted maximum likelihood and marginal likelihood estimation of 
semiparametric generalized linear models. J R Stat Soc Ser B (Stat Methodol). 2011; 73:3–36.

22. Abadie A, Imbens G. Bias-corrected matching estimators for average treatment effects. J Bus Econ 
Stat. 2011; 29:1–11.

23. Sekhon JS. Multivariate and propensity score matching software with automated balance 
optimization: the matching package for R. J Stat Softw. 2011; 42:1–52. Available at: http://
www.jstatsoft.org/v42/i07/. 

24. Kang J, Schafer J. Demystifying double robustness: a comparison of alternative strategies for 
estimating a population mean from incomplete data. Stat Sci. 2007; 22:523–39.

25. Robins, JM. Marginal structural models. Proceedings of the American Statistical Association. 
Section on Bayesian Statistical Science; 1997. p. 1-10.

Lendle et al. Page 22

J Causal Inference. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.degruyter.com/view/j/ijb.2006.2.1/ijb.2006.2.1.1043/ijb.2006.2.1.1043.xml
http://www.degruyter.com/view/j/ijb.2006.2.1/ijb.2006.2.1.1043/ijb.2006.2.1.1043.xml
http://www.R-project.org/
http://www.degruyter.com/view/j/sagmb.2007.6.1/sagmb.2007.6.1.1309/sagmb.2007.6.1.1309.xml
http://www.degruyter.com/view/j/sagmb.2007.6.1/sagmb.2007.6.1.1309/sagmb.2007.6.1.1309.xml
http://www.degruyter.com/view/j/ijb.2010.6.2/ijb.2010.6.2.1211/ijb.2010.6.2.1211.xml
http://www.degruyter.com/view/j/ijb.2010.6.2/ijb.2010.6.2.1211/ijb.2010.6.2.1211.xml
http://www.degruyter.com/dg/viewarticle/j$002fijb.2010.6.2$002fijb.2010.6.2.1241$002fijb.2010.6.2.1241.xml
http://www.degruyter.com/dg/viewarticle/j$002fijb.2010.6.2$002fijb.2010.6.2.1241$002fijb.2010.6.2.1241.xml
http://www.degruyter.com/view/j/ijb.2010.6.1/ijb.2010.6.1.1260/ijb.2010.6.1.1260.xml
http://www.degruyter.com/view/j/ijb.2010.6.1/ijb.2010.6.1.1260/ijb.2010.6.1.1260.xml
http://www.jstatsoft.org/v42/i07/
http://www.jstatsoft.org/v42/i07/


26. Rosenblum M, van der Laan MJ. Targeted maximum likelihood estimation of the parameter of a 
marginal structural model. Int J Biostat. 2010; 6 Article 19. 

27. Imai K, Van Dyk DA. Causal inference with general treatment regimes. J Am Stat Assoc. 2004; 
99:854–66.

28. van der Laan MJ, Gruber S. Collaborative double robust targeted maximum likelihood estimation. 
Int J Biostat. 2010; 6 Available at: http://www.degruyter.com/view/j/ijb.2010.6.1/ijb.
2010.6.1.1181/ijb.2010.6.1.1181.xml. 

29. Zheng, W.; Laan, MJ. Asymptotic theory for cross-validated targeted maximum likelihood 
estimation. Working Paper 273, U.C. Berkeley Division of Biostatistics Working Paper Series. 
2010. Available at: http://www.bepress.com/ucbbiostat/paper273/

30. Zheng W, van der Laan MJ. Targeted maximum likelihood estimation of natural direct effects. Int 
J Biostat. 2012; 8 Available at: http://www.degruyter.com/view/j/ijb.
2012.8.issue-1/1557-4679.1361/1557-4679.1361.xml. 

31. van der Vaart, AW. Asymptotic statistics. Cambridge University Press; Cambridge and New York: 
1998. 

32. van der Vaart, AW.; Wellner, JA. Weak convergence and empirical processes. Springer; New 
York: 1996. 

Lendle et al. Page 23

J Causal Inference. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.degruyter.com/view/j/ijb.2010.6.1/ijb.2010.6.1.1181/ijb.2010.6.1.1181.xml
http://www.degruyter.com/view/j/ijb.2010.6.1/ijb.2010.6.1.1181/ijb.2010.6.1.1181.xml
http://www.bepress.com/ucbbiostat/paper273/
http://www.degruyter.com/view/j/ijb.2012.8.issue-1/1557-4679.1361/1557-4679.1361.xml
http://www.degruyter.com/view/j/ijb.2012.8.issue-1/1557-4679.1361/1557-4679.1361.xml


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lendle et al. Page 24

Table 1

Summary of properties of compared estimators

Estimator Plug-in Consistent if Efficient if

Q
‒

n → Q
‒

0 g
‒

n → g
‒

0 g
‒

n → BS Q
‒

n → Q
‒

0 & g
‒

n → g
‒

0

Simple plug-in ✓ ✓

BSA ✓ ✓ ✓

DR-BSA ✓ ✓ ✓ ✓ ✓ †

IPTW ✓

TMLE ✓ ✓ ✓ ✓

BSA-TMLE ✓ ✓ ✓ ✓ ✓

†
We do now show formally that the DR-BSA estimator is asymptotically linear.
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Table 2

Simulation results for distribution one with  unadjusted and  correctly specified but transformed with 

Beta CDF

Estimator n = 100 n = 1,000

Bias Variance MSE Bias Variance MSE

BSA, NN 0.0276 0.0180 0.0188 0.0026 0.0018 0.0018

BSA, GAM 0.0075 0.0163 0.0163 0.0041 0.0015 0.0015

IPTW −0.0249 0.0087 0.0093 −0.0246 0.0010 0.0016

TMLE 0.1063 0.0111 0.0224 0.1082 0.0010 0.0127

BSA-TMLE, NN 0.0276 0.0180 0.0188 0.0026 0.0018 0.0018

BSA-TMLE, GAM 0.0070 0.0164 0.0165 0.0037 0.0015 0.0015

J Causal Inference. Author manuscript; available in PMC 2016 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lendle et al. Page 26

Table 3

Simulation results for distribution one with  unadjusted, and  misspecified but close to a balancing score

Estimator n = 100 n = 1,000

Bias Variance MSE Bias Variance MSE

BSA, NN 0.0311 0.0166 0.0176 0.0027 0.0016 0.0016

BSA, GAM 0.0147 0.0159 0.0161 0.0033 0.0014 0.0014

IPTW 0.0390 0.0410 0.0425 0.0357 0.0025 0.0037

TMLE 0.0096 0.0172 0.0173 0.0098 0.0016 0.0017

BSA-TMLE, NN 0.0311 0.0166 0.0176 0.0027 0.0016 0.0016

BSA-TMLE, GAM 0.0101 0.0189 0.0190 −0.0042 0.0015 0.0016
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Table 4

Simulation results for distribution one with  correctly specified and  misspecified

Estimator n = 100 n = 1,000

Bias Variance MSE Bias Variance MSE

Simple plug-in 0.0071 0.0120 0.0120 0.0011 0.0013 0.0013

BSA, NN 0.1190 0.0126 0.0268 0.1064 0.0014 0.0128

DR-BSA, NN 0.0064 0.0139 0.0140 0.0003 0.0015 0.0015

BSA, GAM 0.1139 0.0116 0.0246 0.1096 0.0012 0.0133

DR-BSA, GAM 0.0152 0.0129 0.0132 0.0015 0.0013 0.0013

IPTW 0.1061 0.0115 0.0228 0.1035 0.0012 0.0119

TMLE 0.0076 0.0129 0.0130 0.0009 0.0013 0.0013

BSA-TMLE, NN 0.0064 0.0139 0.0140 0.0003 0.0015 0.0015

BSA-TMLE, GAM 0.0154 0.0133 0.0136 0.0014 0.0013 0.0013
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Table 5

Simulation results from distribution two with  correctly specified and  correctly specified and includes an 

instrumental variable

Estimator n = 100 n = 1,000

Bias Variance MSE Bias Variance MSE

Simple plug-in −0.0112 0.0505 0.0506 0.0007 0.0048 0.0048

BSA, NN 0.0080 0.1815 0.1815 0.0020 0.0185 0.0185

DR-BSA, NN −0.0108 0.0578 0.0579 0.0024 0.0059 0.0060

BSA, GAM −0.0061 0.3207 0.3208 −0.0008 0.0097 0.0097

DR-BSA, GAM −0.0112 0.0565 0.0566 0.0010 0.0051 0.0051

IPTW −0.0072 0.7559 0.7560 −0.0021 0.0231 0.0231

TMLE −0.0182 0.0575 0.0578 0.0009 0.0052 0.0052

BSA-TMLE, NN −0.0108 0.0578 0.0579 0.0024 0.0059 0.0060

BSA-TMLE, GAM −0.0181 0.0587 0.0590 0.0009 0.0053 0.0053
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