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Abstract 

Several developments and new applications of the recently developed 

reaction path Hamiltonian model for polyatomic reaction dynamics are 

described. (1) The original form of the Hamiltonian is transformed so 

that the coupling between vibrational modes normal to the reaction path' 

appears in the potential rather than in the kinetic energy of the 

Hamiltonian. This is easier to deal with in some applications. (2) It 

is shown that the unified statistical model takes an extremely simple 

form within the reaction path Hamiltonian model. Also, a generalized 

version of the unified statistical model is derived which permits an 

arbitrary number of "bottlenecks" (flux minima) along the reaction path. 

(3) A generalized Langevin equation is derived for motion along the 

reaction path. This is an equation of motion for only one degree of 

freedom, the reaction coordinate, but it experiences "friction" and 

"random" forces which are due to coupling with the vibrational modes 

normal to the reaction path • 
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I. Introduction. 

Ab initio quantum chemistry has made important advances recently 

1 in developing methods for the accurate and efficient calculation of the 

gradient of the potential energy surface, Le., the derivative of the 

Born-Oppenheimer e1ectronic,~nergy with respect to nuclear coprdinates, 

for a general molecular system. This has been used most commonly to 

facilitate the search for transition states, i.e., saddle points on a 

potential energy surface, but once a saddle point is found it can be 

used to follow the steepest descent path down from the transition state 

to reactants and to products. If mass-weighted cartesian coordinates 

2 were used, this is the reaction path, and the distance along it the 

(mass-weighted) reac.tion coordinate. 

3 Miller, Handy and Adams have recently shown how one can construct 

a classical Hamiltonian for a general molecular system based on the 

reaction path and a harmonic approximation to the potential surface 

about it. The coordinates of this model are the reaction coordinate 

and normal mode coordinates for vibrations transverse to the reaction 

path, and are essentially a po1yatomic version of the "natural collision 

, 4 .. ,5 
coordinates" introduced by.Marcus and by Hofacker for A + BC -+ AB + C 

reactions. One of the important practical aspects o~ this model is 

that all of the quantities necessary to define it are obtainable from 

a relatively modest number ofab initio quantum chemistry calculations, 

essentially independent of the number of atoms in the system. This thus 

makes possible an ab initio theoretical description of the reaction 

dynamics of more than atom-diatom (i.e., A + BC -+ AS + C) reactions. 

/ 



-2-

6-8 The first application made of this approach has been to tunneling 

effects in unimo1ecu1ar rate constants. Specifically, the microcanonica1 

rates k(E) for the reactions 

HNe .. HCN 

have been determined in the region below the classical reaction threshold. 

Somewhat surpris,ing1y perhaps, tunneling is fo~d to have extremely 

important consequences in these reactions. 

This paper describes some new developments and applications based 

on the reaction path model. In Section II the original form of the 

reaction path Hamiltonian (cf. Eq. (1.1) be1ow),is transformed to a 

new represetnation that has a more desirable structure for some app1ica-

tions. Section III shows how the reaction path model makes application 

of the unified statistical mode19 for chemical reactions especially 

simp1e~ and a generalized version of the unified statistical model is 

also developed there. Finally, in Section IV the fact that the reaction 

path model consists of one special degree of freedom-~i.e., the reaction 

coordinate--coup1ed to a number of harmonic oscillators ~s exploited to 

derive a generalized Langevin equation10 (GLE) for motion along the 

reaction path. This is a reduced equation of motion for only the 

reaction coordinate, but it experiences "friction" and a "random force" 

because of co~p1ing tO,the transverse vibrational modes. 

In concluding this Introduction we summarize the form of the reaction 

path Hami1tonian3 for a non-rotating system, i.e., zero total angular 

.. 

-01 
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momentum, of F = 3N-6 (N= number of ato~) degrees of freedom (F = 3N~5 

if the reaction path corresponds to a linear molecule), 

+ 

F 
1:. [p - L 
2 . s k,k'=2 

F 
[1 + E 

k=2 

s and pare the reaction coordinate and its conjugate momentum, 
. s 

respectively, and VO(s) the potential energy as a function of s, 

the mass-weighted distance along the reaction path. Q~ and P
k

, 

k = 2, ••• , F are the normal mode coordinates and momenta for 

vibrations normal to the reaction path, with frequencies Wk(s) that 

are functions of the reaction coordinate. 

(1.1) 

The coupling elements Bk k'(s) couple vibrational modes k and k', , 
and Bk ,l(s) couples vibrational mode k to the reaction coordinate (which 

is designated mode k=l). The coupling elements.Bk ,l(s) are a measure of 

how the curvature of the reaction path couples to mode k; the total 

3 curvature of the reaction path, K(S), is related to these elements by 

(1.2) 

The coupling functions Bk k'(s) are essentially a Corio1is-1ike coupling 
. , 

involving the twist of the vibrational modes about the reaction path as 

a function of s. The coupling functions, as well as VO(s) and {~(s)}, 
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are obtainable from the'ab initio quantum chemistry calculation of the 

reaction path' and the force constant matrix along it. The Hamiltonian 

3 for the rotating case. J ~ O. has also been worked out but is more 
• 

complicated than for J = 0 because of various kinds of rotation-vibration ,~! 

coupling. 

In some applications it is useful to transform from the cartesian 

variables {Qk,Pk} of the vibrational modes to their action-angle 

11 { } variables ~.qk' which are related by 

(1. 3a) 

(1. 3b) 

k = 2 ••••• F. In terms of these variables the Hamiltonian becomes 

(1.4) 

This form is especially useful for semiclassical applications since 

the action variables ink} are the classical counterpart to vibrational 

quantum numbers. 
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II. Elimination of Corio lis Coupling. 

() Before considering specific applications 'of the reaction path 

model, it is useful to show how a change of canonical variables can 

be made to eliminate the Coriolis coupling elements {Bk,k'} from the 

Hamiltonian. Coupling between the vibrational modes is not eliminated 

by this transformation, but it is shifted from the kinetic energy, 

as in Eq. (1.1), to the potential energy (vide infra). Which 

(equivalent) form of the Hamiltonian is preferred, Eq. (1.1) or 

Eq. (2.13) below, depends on the application at hand. 

The desire is to change from the canonical variables (s,p ,P,Q) 
s 

of Eq. (1.1) to new variables (s,p ,P,Q) such that (1) the reaction , s 

coordinate is unchanged, i.e., 

s = s (2~1) 

(2) in the new variables the kine'tic energy associated with the 

reaction coordinate involves no Coriolis coupling terms, i.e., 

F 

I: (2.2a) 
k,k'=2 

or in matrix notation 

(2.2b) 

. 1 - 2 the numerator in the last term in Eq. (1.1) is then s~mply 2 Ps A 
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third condition we wish to impose is that (3) the kinetic energy of 

the vibrational modes transverse to the reaction path maintains its 

diagonal form~ i.~., 

1 
2 

or in matrix notation 

Equation (2.3) does not necessarily imply that P = -
must have 

P = U(s)-P 

(2.3a) 

(2.3b) 

~, but that one 

(2.4) 

where g is a unitary matrix that may be a function of s. Equation 

(2.3) is then fulfilled since 

t ' 
U (s)-U(s) = 1 (2.5) 

Using Eqs. (2.2) and (2.4) in the usual way, one'is able to 

12 
construct the following generating function to effect the transformation: 

F2 (S,Q;p ,P) = Q-P + sp 
,., s - -- s 

(2.6) 
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The associated differential equations which specify the (s,p ,Q,P) ~ s _ _ 

- - - -. . 12 (s,p ,Q,P) transformation are-s __ 

aF2 
Ps =--

as (2.7a) 

aF 
P 2 =--
.y aQ 

(2.7b) 

- aF2 ·s =--a-Ps 
(2.7c) 

Q 
dF2 
=~ 

ap 
(2.7d) 

Equations (2.7a) and (2.7c) reproduce the desired results in Eqs. 

(2.2) and (2.1) above, respectively. Equation (2.7b) leads to .the 

following condition 

P = ~ + Ids' ~(s,).~(s,).p (2.8) 

which together with Eq. (2.7) implies that the unitary matrix U must 

satisfy the equ~tion 

U(s) = ; + 1 ds' ~(s')·~(s') (2.9) 

Finally, Eq. (2.7d) defines the new vibrational coordinates in terms 

of the old, 
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9 - 9 + Ids' 9·~(s·).g(s·) 

or in light of Eq •. (2.9) this reads 

Q = Q-U(s) (2.l0a) - -

and the old coordinates are given in terms of the new ones by 

- t Q = Q-U (s) (2.l0b), - --
Equation (2.9) above is the most important relation involved in 

the transformation to the new variables. Given the Corio lis coupling 

elements fBk;k'(s)} := ~(s), Eq. (2.9) is an integral equation' for the 

unitary matrix U(s). By differentiating with respect to s, it is 

converted into the differential equation 

U'(s) = B(s)-U(s) (2.lla) 
~ 

with initial condition 

U(O) = 1 - (2.11b) --

The fact
3

that the matrix B(s) is real and skew~symmetric guarantees 

that U is indeed unitary. To see this, note that the matrix iB is 
~ ~ 

hermitian, so that Eq. (2.lla) may be written as 



" 
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d 
i -d U(s) = s :::: 

[i B(s)]·U(s) 

which has the form of the time dependent (with s = time) Schrodinger 

equation (with hermitian Hamiltonian iB) for the time evolution 

operator U, which is well-known to be unitary~3 Equation (2.9) is 

then recognized as the integral form of the'time-dependent Schrodinger 

equation. A formal solution for U can be given ,as a power series 

in B, 

-- = ~ + .1 ds' ~ (s') + 1 ds' 
s' I ds" ~(s') .~(s") . U(s) 

+ ... 
or also as a time-ordered exponential 

:::: 

s 
= Texp[I ds' ~(s')] U(s) 

14 
where T is the usual time-ordering operator. 

(2.12a) 

(2.l2b) 

Using the above equations, it is easy to show that the Hami1t'onian 

is given in terms of the new variables (from which the over-bars are 

now dropped) by 

1 2 
"2 Ps 

H(p ,s,P,Q) = ----~F~~--------
s - - 2 

[1 + E Qk Ak(S)] . 
k=2 

F 
+ VO(s) + E 

k,k'=2 

F 
+ E 1. P 2 

k=2 2 k 

(2.13a) 
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orin ma.trix notation 

where 

or 

H(p ,s,P,Q) -' 
s 1_""'; 

1 2 
2 Ps 1· ---.;;;;......-=---- + - p-p 

2 2 - -
[1 + Q-,,(s) 1. 

F t2 
Ak k' (s) = I: Uk,k." (s) ~,,(s) Uk." ,k (s) 

, k"=2 

where w(s)2 is the diagonal matrix of frequency ~quares, and 
::: 

or 

(2.13b) 

(2.l4a) 

(2.l4b) 

As noted at the beginning of this section, the coupling between 

vibrational mopes '.k and k' now appears in the potential energy, 

characterized by the coupling element ~ k'(s). In many , 
:applications it is easi~r to handle this form of coupling than 

that in the Hamiltonian of Eq. (1.1). Since ~ is unitary, we note 

that the elements "k(s) , which couple mode k to the reaction 

coordinate, are related to the curvature of the reaction path in 

a similar way as the elements Bk l(s), , 
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III. Unified Statistical Model, Generalization and Applications. 

9 
The "unified" statistical model was introduced originally in order 

to reconcile, or unify two different k~nds of statistical theories, 

15 
transition state theory which is appropriate for reactions proceeding 

via a "direct" reaction mechanism, and the phase space theory of 

16 17 
Light anI Nikitin which is designed to describe reactions proceeding 

via a long-lived collision complex. It is particularly straight-

forward to apply this theory within the framework of the reaction 

path Hamiltonian. 

One needs to consider first the microcanonical flux through a 

sequence of (F-l) dimensional "dividiI,lg surfaces" which are normal 

to the reaction path at position So along it. For total energy E 

this flux'integral is9 

(3.1) 

where H is the reaction path Hamiltonian of Eq. (1.1). The velocity 

s is evaluated via Hamilton equations, 

dH s =--
dP s 

where h(s) is. the unit step function, 

(3.2) 
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which means that Eq. (3.1) is the "one-way flux" through the surface, ' 

i.e., the flux through it in the direction of increasing s. Using 

Eq. (3.2) and the Hamiltonian in Eq. (3.1), it is not a hard calculation 

to show that Eq. (3.1) gives t~e following simple expression, 

[E-V (s)]F-1 
o N (s ,E) = -----"~---­

F 
(F-1)! lnr hwk(s) 

k=2 

where So has been replaced by s. Equation (3.3),which does not 

(3.3) 

require that one neglect the B-coup1ing functions in Eq. (1.1), is 

essentially an RRK formu1a1~or a fixed value of the reaction 

coordinate. 

9 
The next step in the unified statistical theory is to look for 

minima in the flux with respect to s. If only one minimum, or 

"bottleneck" is found, at sl say, then, simple transition state 

theory applies, and the cummu1ative reaction probability N(E)--

which is defined exactly as 

N(E) = L. 
~2'~1 

where S (E) are the scattering S-matrix elements for the 
~2'~1 

reaction as s = _00 ~ +oo--is given approximately by 

N(E) = N(sl,E) 

(3.4) 

(3'.5) 

If two minima are found, at sl and s3 say, separated by a relative 

maximum at s2' then the unified statistical model gives the following 

iJ 

,I 
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approximation to N(E): 

(3.6a) 

where 

i = 1,2,3 O.6b) 

In appropriate limits this reduces to the Light-Nikitin statistical· 

model, 

Equation (3.6a) can be re-written in the following equivalent 

form 

N(E) (3.7) 

and this is the form that generalizes. Thus suppose that relative 

minima of flux occur at values sl,s3,s5' ••• ,s2M+1' and relative 

maxima of flux occur at s2,s4' ••. , s2M. (The first and last flux 

extrema must always be minima, which can always be achieved by, if 

necessary, letting sl + -~ and/or s2M+1 + +00.) The generalized 

unified statistical model then approximates the cummu1ative reaction 

probability by 
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N(E) 

where 

M E 1 ]-1 
i=l N2i (E) 

i = 1,2, ••• , 2M+l 

(3.8) 

Equation (3.8) is most easily proved by induction. Thus for M=2, 

so that Nl ,N3 and NS are flux minima, and N2 and N4 are flux 

maxima, one considers the region of Nl , N2, and N3 all as one 

"composite bot~leneck" with net flux N123 given by Eq. (3.7): 

1 
(3.9) 

One then has the 3-extrema case again with fluxes N123 , N4, and NS' 

so that Eq. (3.7) is applied again to give 

1 
(3.10) 

which with Eq. (3.9) gives 

1 1 1 1 1 1 --=-+-+-----
N(E) Nl N3 NS N2 N4 

which is Eq. (3.8) for M=2. The general case" is established by 

repetition of the argument from the obvious fash"ion. 
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Examples 

It is interesting to see that this more general situation can 

aris'e in some simple applications. Consider first the general condition 

for an extremum in the flux N(s,E), 

dN(s,E) = 0 
dS (3.11) 

from Eq. (3.3) it is not hard to show that this equation can be 

written in the form 

1 
VO'(s) + [E-VO(s)] (F-l) ,(3.12) 

If the saddle point .s=O is a point of symmetry,as for example in the 

H + H2 .. H2 + H reaction, then the symmetry dictates that 

v '(0) = 0 o 

w '(0). == 0 
,k 

k = 2, ••• , F 

so that s=O will always be an extremum in N(s,E). For all the other 

extrema Eq. (3.13) can be written in the more convenient form 

E = V(s) (3.l3a) 

where V(s) is 4ndependent of energy 
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v 0' (s) 
v (s) = v 0 (s) - -----=F-'----.--­

-1 ~ 
(F-l) ,LJ ~'(s) /Wk(s) 

k=2 " 

Collinear H + H2 

For this case F=2, so that Eq. (3.l3b) becomes 

V(s) = VO(s) ~ VO'(s) w(s)/w'(s) 

(3.l3b) 

, (3.14) 

, 19 
and this quantity is plotted in Figure 1 for the Porter-Karplus 

H3 potential energy surface-. There are several -different 

energy regions to dist,inguish. 

(a) 0 ~ E-Vsp ~ 0.11 eVe For energies less than 0.11 eV above 

the barrier the only extremum in the flux occurs at s=O, and it is 

a minimum. Thus Eq. (3.8) with M=O applies, and this is the case of 

simple transition state theory. It is known, too, that transition 
, 

state theory gives essentially exact agreement with classic1'll trajectory 

calculations for this energy region. 

(b) O.lleV < E-V < 0.25 eVe Figure 1 shows that for this 
- sp 

energy region there will be two roots of Eq. (3.l3a) for s > 0, and 

there will by two symmetrically related roots for, s < 0, as well as 

the one at s=O, for a total of five extrema in ij(s,E), two maxima 

and three ~inima, so that Eq. (3.8) applies with M=2. 

(c) 0.25 eV < E-V' <_ 0.34 eVe Figure 1 shows that here there - sp 

are three roots to Eq. (3.l~a) for s > 0, and with the three symmetrically 
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related ones for s < 0 and the· one at S = 0, there are seven flux 

extrema altogether so that Eq. (3.8) applies. with M = 3. 

(d) 0.34 eV < E-V • For energies more than 0.34 eV above the 
- sp 

saddle point,Figure 1 indicates that there is just one root to 

Eq. (3.13a) for s > 0; and,.with the symmetrically related one for 

s < 0 and the one at s = 0, there are three flux extrema, so that 

Eq. (3.8) applies with M = 1. 

The appearance and disappearance of various flux extrema as a 

function of energy is a manifestation of how the reaction mechanism 

changes as a function of energy; e.g., ~t low energies there is a 

single bottleneck to the reactive flux, and Simple transition state 

theory is a good model, but at higher energies other bottlenecks 
. . 20 

appear. These same phenomena have been seen by Pechukas and ~ollack 

in a more dynamically based theory; the dividing surfaces at the flux 

extrema of the present statistical model become periodic classical 

traj ectories that oscillate across the P9tential valley, 1. e. , 
, '20 

"trapped trajectories!'. It is intetesting to see that many aspects 

of this more detailed dynamical treatment appear, albeit approximately, 

in a purely statistical model. 

As noted above, the unified statistical model works very well at 

low energy--where it is simply transition state theory--·and though it 

is an improvement over ordinary transition state theory at higher 

energies, it is not so accurate as at low energies. This seems to be 

due to the fact that implicit in theUSM is an assumption of micro-

canonical equilibrium between the dividing surfaces corresponding to 

, ,. 
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any two' flux minima (Le., bottlenecks). This is a plausible 

assumption for the case of a long-lived collision complex, but 

for the H + H2 system discussed above the "collision complex" caused 

by the multiple bottlenecks is not sufficiently strongly coupled to make 

this a good approximation. IIi ·their more dynamically based theory, 

Pechukas etal. have been~ble to make progress by introducing more 

dynamical information into the description, but it is not clear 'how 

one can do this within a purely statistical model. 

H + H2 in 3-d. 

Most of the features which complicate the statistical treatment 

of the collinear H : H2 reaction--or perhaps make it interesting-­

actually disappear when' the reaction is treated in three dimensions. 

Because the reaction path is linear for this case, F = 3N-5 = 4, 

and Eq. (3.l3b) becomes 

(3.15) 

: where wv(s) is the stretching frequency normal to the reaction path 

(it is the symmetric stretch at the saddle point s = 0), the same 

frequency as w(s) of the collinear system, and Wb(s) is the bending 

vibrational frequency. 

For the ~ame (i.e., Porter-Karp Ius) potential energy surface, 

however, V(s) above is negative relative to the saddle point energy 

for all values of S; i.e., there are no roots to Eq. (3.13a) for any 

energy E, so that for all energies the flux minimum at s=O is the 

only extremum. . The unified statistical model is then sim~le transition 
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state theory for all energies, and it is indeed true2that transition 

state theory is in quite good agreement with exact classical trajectory 

calculations to quite high energies; e.g., transition state theory is 

only 10%. too large at E-V . = 1 eV, while it is a factor of two too sp 

large at this energy in the collinear case. ·The phase ~pace effect of 

changing dimensionality can thus have dramat~c effects on the reaction 

mechanism and is thus a warning against pLacing ·too much relianoe on 

conclusions drawn from collinear studies. 

Finally, we note that although all of the discussion in this 

section has applied to a completely classical mechanical treatment 

of the reaction, the expression for the cumulative reaction probability 

can be quantized in the usual ad hoc fashion in statistical theory by 

replacing the classical flux of Eq. (3.3) by the quantum mechanical 

integral density of states, 

where h is again the unit step function. This expression must be 

modified further if one wishes to take account of tunneling through 

the bottleneck regions. 
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IV. Generalized Langevin Model. , 

In most chemical reactions, part:f.cularly those involving large 

molecular systems, not all modes of the composite system will be 

strongly coupled to the reaction path. If the reaction is an atom 

transfer reaction, for example, then modes corresponding to vibrations 

in regions of the molecules far<from the reaction site will clearly 

be only weakly affected by the reaction. In terms of the reaction 

path Hamiltonian, this means that for such modes Wk(s) will be 

essentially independent of s and the coupling elements Bk,l(s) or 

Ak(S) will be small. 

It seems intuitively reasonable, therefore, that one should be 

able to partition the complete F degrees of freedom into the 

reaction coordinate and the few vibrational modes that are strongly 

coupled to it (the "system"), and the remaining (perhaps very many) 

modes that'are only weakly affected by the reaction (the "bath"). The' 
.~ 

"system" thus consists of the reaction coordinate, mode 1, and 

vibrational mode k = 2, ••• , f, say, and the "bath" are the remaining 

modes k = f+l, ••• , F. 
:j: 

As is customary in such developments, the 

Hamiltonian is divided as 

H=H +H. +H system --bath coupling 
(4.1) 

where the "system" Hamiltonian is the standard reaction path Hamiltonian 

for the f strongly coupled degrees of freedom, i.e., Eq. (1.1) or 

(2.13), with F-+f. The "bath" Handltonian is that for the k = f+l, .•. , F 

uncoupled vibrational modes 

=I: 
Many references could be given related to generalized Langevin equations. 
The. methodology I follow is very similar to that in reference 10. 

·.t .... 
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F 2 1 2 Q 2) 
l1,ath = E (1 p + 2" wk (4.2) 

k=f+l 2 k k 

and H coupling is the interaction coupling the "system" and the "bath". 

For this generalized Langevi.n approach to be useful it is necessary 

that the coupling be o1l'ly a linear functi0n of the "bath" coordinates 

{Qk} k = f+l, .•• , F. Taking the reaction path Hamiltonian as in 

Eq. (2.13),' the potential energy part of H Ii is of this coup ng 

form, namely 

f F 

E 
k'=2 

E 
k=f+l 

but the coupling in the kinetic energy' is not, at least not 

without approximation. Thus the kinetic energy in Eq. (2.13) is 

linearized in the "bath" coordinates, so that the complete coupling 

Hamiltonian is taken as 

H ' 
coupling 

f 
= E 

k'=2 

2 F 
p~ E Qk Ak(S) 

k=f+l 
f 

[1 + E Qk Ak(S)] 
k=2 

(4.3) 
3 

The next step ih the standard 'generalized Langevin development 

is to construct the equations of motion for the "bath" variables. 

These are easily obtained, ' 

= -

2 
f p s Ak (s) 
E Ak , k ,(s) Qk' + ----=--.::::-----

k'=2 f 3 
[1 + E Qk' Ak,(S)] 

k'=2 

(4.4) 



-22-

and since the RHS is independent of the "bath" variables these equations 

to give 
sin W

k 
(t-e) 

can be solved immediately 

Q (-t) = Q (0 ) (t) + 1 d t ' 
k k (.uk 

PS(t,)2 Ak(S(t'» 

f 
E Qk' (t ') ,Ak , (s ( t ' ) ) ] 3 

k'=2 

k = f+l," ••• , F, 

where Q(O)iS the free harmonic oscillator "bath" trajectory, 
k 

(4.5a) 
\ 

(4.5b) 

(~,qk) are the initial values for the action-angle variables of, the' 

"bath". The "bath" trajectory {Qk(t)}, k = f+l, ••• , F is now completely 

known in terms of the "system" trajectory {s(t), Q
k 

(t), k~= 2, ... , f}, 

and by substituting it into the equation of motion for the "system" 

one obtains a generalized Langevin equation for the "system". ,The 

overall picture which emerges is then that of the reaction of a, S1l'lall 

dynamical "system" (of f degrees of freedom) which experiences 

"fric·tion" and "random" forces from a harmonic bath. If f = 2, 

for example, the "system" consists of the reaction coordinate and 

one transverse vibrational mode, which is equivalent to a collinear 
, 

A + BC ~ AB + C reaction system, but it is now a collinear reaction 

which experiences the additional effects of friction and random 

forces from the other vibrational modes. 

The development is reasonably straight-forward from this point, 

the only non-standard effects arising because the coupling Hamiltonian 

of Eq. ,(4.3) involves one of the "system's" momenta, ps"in-addition 
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to its coordinates (s,Q2' ••• , Qi). Rather than continuing with the 

general situation, we thus specialize to the particular case that 

all the vibrational modes are taken as the "bath'! i.e. the 

"system" is only thll:t=eaction coordinate itself. The picture of 

the reaction is then essenti.~lly that of Browman motion, 

i,e., a particle moving in one dimension'under the influence 

. of friction and random forces fro. a surrounding medium (which in 

the present case is the set of all transverse vibrational modes). 

If all the vibrational modes are taken as the "bath", then the coupling 

elements Bk,k' and ~,k' are all zero (by assumption), and Ak(S) = 
Bk l(s) are the curvature couplings. One then obtains a generalized , 
Langevin equation of the standard forml~or motion along the reaction 

coordinate, 

set) +Vo'(s) + Idt' set') M(t,t') +R(t) = 0, (4.6) 

where the random force R(t) is given by 

-2 
j2nk+1' 1 

F des Ak) 
R(t) = - l: [ sin (qk;.wkt) . dt wk s k=2 

(4.7) 

and M, the memory kernel for the friction force, is 
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_2 sinwk(t-t') 
(s Ak) t' 

-2 
-2 des ;\) 

+ 2 (s Ak)t dt' 

- 2 = set) Ak(S(t», etc. 

COSWk ( t-t ' ) . 

2 
~ 

, 10 
that, as usual, the memory kernel can be expressed in 

(.4.8) 

terms of the Boltzmann average of the autocorrelation function of 

the random force, 

M(t,t') = ki <R(t) R(t'»T (4.9) 

where the Boltzmann average is over the initial 'values' of the action-

angle variables of the "bath" 

(4.10) 

where (~,~) = nk,qk' k = 2, ••• , F. 

Using the above equations, a simple expression can be obtained 

for the average energy loss experienced'by the reaction coordinate 

for a given time interval (O,t f ), 

t
f 

~Es - <10 dt d~ 

(4.11) 

" 
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where the average here need be only over the angle variables of the 

"bath". The expression one obtains is 

LlE s 

F 
= - E LlEk 

k=2 . 

where Ll~, the average energy gained by mode k, is given by 

with the trajectory s(t) determined by the generalized Langevin 

(4.l2a) 

(4.l2b) 

equation, Eq. (4.6). If, for example, t=O corresponds to the saddle 

point of the potential surface, s=O, and t f + 00 corresponds to the 

products, s + 00, then Eq. (4.12) gives the amount of energy gained 

by vibrational mode k as the reaction proceeds from transition state 

to products. If one adds the further approximation that the 

trajectory s(t) is the zeroth order trajectory determined only by 

the potential VO(s), then the following explicit expression is 

obtained 

(4.13 ) 

where E is the energy available at the transition state. s We emphasize, 

though, that this approximation to the trajectory may be rather severe, 

so that Eq. (4.13) is probably only of qualitative utility. 

Finally, we also emphasize that it is probably not a good idea 

to take all the vibrational modes as the "bath", for a few of them 
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will probably be strongly coupled to the reaction coordinate and 

this would introduce complicated dynamical structure into the 

"friction" and "random" forces. If one wishes to apply this procedure 

quantitatively, then it is probably much more rJalisticto keep at 

least the one or two modes most, ,strongly coupled to the reaction 

coordinate--as measured by the size of the coupling elements 

"tt(s) or Bk,l(s)-- as part of the "system", so that the Ubath" 

then truly is a set of free harmonic oscillators only weakly coupled 

to it. 

,..1-:. 
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V. Concluding Remarks. 

This paper has considered several formal and practical developments 

based on the reaction path Hamiltonian for a molecular system. The 

unified statistical model and its generalizations discussed in Section 

III and the generalized Langevin description developed in Section IV 

may find utility as computational techniques and/or conceptual frameworks 

for understanding various aspects of reaction dynamics in polyatomic 

systems. 
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Figul'e.Caption 

The quantityV(s), as defined by Eq. (3.14), as a function of the 

(mass-weighted) reaction coordinate, for the collinear H + H2 + H2 + H 

reaction. 
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