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Abstract

Several developments and new applications of the recently developed

reaction path Hamiltonian model for polyatomic reaction dynamics are
deséribed. (1) The original form of the Hamiltonian is transformed so
that the:coupling between vigrational modes normal to the reaction path
appears in the potenﬁial rather than in the kinetic energy of the
Hamiltonian. This is easier to deal with in some applicationé. (2) It

is shown that the unified statistical model takes an extremely simple

form within the reaction path Hamiltonian model. Also, a generalized
version of the unified statistical model is derived which permits an
arbitrary number of "bottlenecks" (flux minima) along the reaction path.

(3) A generalized Langevin equation is derived for motion along the

reaction path. This is an equation of motion for only one degree of
freedom, the reaction coordinate, but it experiences "friction" and
"random" forces which are due to coupling with the vibrational modes

normal to the reaction path.



I. Introduction.

Ab initio quantum chemistry has made important advances recently
in developihg methods1 for the accurate and efficient calculation of the

gradient of the potential energy surface, i.e., the derivative of the

‘Born-Oppenheimer electronic_energy with respect to nuclear coordinates,

for a general molecular system. This has been used most commonly to
facilitate‘the search for transition states, i.e., saddle points on a
potential energy surface, but once a saddle point is found it can be
used to follow the steepest descent path dbwn‘from the transition stéte

to reactants and to products. If mass-weighted caftesian coordinates

wére uséd, this is the reaction path,2 and the distance along it the
(mass-weighted)'reaction coordinate.

Miller, Handy and Adams3 have recenﬁly éhown how one can construct
a classical Hamiltbnian for a general molecular sygtem based on the
reaction path and a harmonic approxiﬁation to the potential surface
abOut it. The coordinates of this model are the reaction coordinate
and normal mode coordinates for vibrations transverse td the reaction
path, and are essentially a polyatoﬁic #ersioﬁ of the '"natural collision
coordihates"'inérodﬁéed byv,Marcus4 and by H,of'aickef5 for A + BC -+ AB + C
reactions. One of the important prgcticalbaspécts of this model is |
that all of the quantities necesséry to define it ére 6btaina51e’from.

a relatively modest number of ab initio quantum chemistry calculatioms,

essentially independent of the number of atoms in the system. ' This thus

‘makes possible an ab initio theoretical description of the reaction

dynamics of more than atom-diatom (i.é., A + BC - AB + C) reactions.



The first application6-8 made of this approach has been'tq tunneling
effects in unimolecular rate constants. Spe;ifically,ithe microcanonical

- ‘rates k(E) for the reactions

HNC -+ HCN

H,CO > H, + CO

2 2

H,C =C: + HC

CH

have been determined in the regién below the classical reaction threshold.
Somewhat surprisingly perhaps, tunneling'is found to have extreﬁely
important consequences in fhese reactions.

This paper describes some new developments and applications based
on the reaction path model. InvSection II the original form of the
reaction path Hamiltoniap (cf. Eq. (1.1) below) is transformed to a
ﬁew fepresetnation that has:almoré désirab1e structure for some applica-
tions. Section III shows how the reaction‘path model makes apﬁlication
of the unified statistical niodel9 for chemical reactions especiallf
simplé; aﬁd a generaliéed version of the unified statistical model is
also developed there. Finally, in Section IV the fact that the reaction
path model consists of one special dégtee of freedom-ji.e., the reaction
coordinate--coﬁpled to a numbervdf harmonic oscillators -is exploited to
derive a éeneralized Laﬁge#in equation10 (GLE) for motion along the
reaction path. This is a reduced equation of motion for only the
reaction coordinate, but it experiences "friction" and é "random force'
_ because of codpling to the transverse vibrational modes.
Iﬁ cﬁncluding this Introduction we summarize the form of the'reactionv'

path Hamiltonian3 for a non-rotdating system, i.e., zero total angular



momentum, of F = 3N-6 (N = number of atoms) degrees of freedom (F = 3N-5

if the reaction path corresponds to a_liﬁear_molecule),

Hp,,5,2,0) = 30 G B2 +2w e +v (e

‘ 2
Qe Byt (BT A |

5 . (1.1)
(s)]

7 [pg ZFI
278y E=2
_F
[1L+ ) QB
&, Yk,

s and pg are the reaction coordinate and its conjugate momentum,

respectively, and VO(S) the potential energy as a function of s,

‘the mass-weighted distance along the reaction path. Qk and Pk’

k=2, ..., F are the normal mode coordinates and momenta for

vibrations normal to the reaction path, with frequencies wk(s) that
are functions of the reaction coordinate.
The coupling elements Bk k,(s) couple vibrational modes k and k',

and Bk 1(s) couples vibrational mode k to the reaction coordinate (which
, :

is designated mode k=1).  The coupling elements Bk 1
. ’

how the curvature of the reaction path couples to mode k; the total

(s) are a measure of

curvature of the reaction path, K(s), is related to these elements by3
, Q/i?—_—_—;_—; .
kK(s) =V-Y_ B, .(s) | | (1.2)
=2 ol

The coupling functions B (s) are essentially a Coriolis-like coupling

Kk, k'

involving the twist of the vibrational modes about the reaction path as

a function of s. The coupling functionms, as well as Vo(s) and {wk(s)},



are obtainable from the 'Q_ vinit:io quantum chemistﬁ calculation of the
‘reaction path and the force constant métrix alor;g it. The Hamiltonian
for the rotating case, vJ # 0, has also been wbrked out3' but is more .
complicated .than for J = 0 because of ;rarious kinds of rotation-~-vibration
coupling. o

I;l .some applications it is useful to t1:a_nsform from the cartesian
variables {Qk,Pi(} of the vibratiﬂonal modes to. theif action—~angle
variablesT {n.k,qk}, which are related by

2nk+l:‘, | , ‘ : A
Q =y — sing, . o (1.3a)

w (s)

Pk =‘/(2nk+1)wk(s$ . cosq, , - (1.3b)

k=2, ..., F. In terms of these variables the Hamiltonian becomes

F jw, ()
% [Ps - E k.(s)y/(2nk+l) (an,+1) k NG suqu cosqk

k,k'=2 Wit

H(psss’r_},g) = 7 RS

_ e
[1 + k§2 Bk,l(é) O sing, ]

2

« 1 ]
+Vy(s) + 1?;2 (nk"'f) wk(s) . | | (1-.4)’

This form is especially useful for semiclassical applications since

the action variables {nk}' are the classical counterpart to vibrational

1y

quantum numbers.
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. be made to eliminate the Coriolis coupling elements {B

~ ITI. Elimination of Coriolis Coupling.

Before considering specific applications :0f the reaction path
model, it is useful to show how a change of canonical variables can
k,k'} from the
Hamiltonian. Coupling between the vibrational modes is not eliminated

" by this transformation, but it is shifted from the kinetic energy,

as in Eq. (1.1), to the potential enefgy (vide infra). Which

(equivalent) form of the Hamiltonian is preferred, Eq. (1.1) or

Eq. (2.13) below, depends on the application at hand.
The desire is to change from the canonical variables (s,ps,P,Q)

of Eq. (1.1) to new variables (E;Es,ﬁ,a) such that (1) the reaction

' coordinate is unchanged, i.e.,

(2.1)

(O]
[
[}
-

(2) in the new variables the kinetic energy associated with the

reaction coordinate involves no Coriolis coupling terms, i.e.,

F .
I-) =P - 2 Q P ',B '(S) : ’ : (2023)
s s K. K=2 k k ‘k,k
or in matrix notation
Pg = Pg = QB(s)°P s (2.2b)

the numerator in the last term in Eq. (l,l) is then simply-% Esz. A



third condition we wish to impose is that (3) the kinetic energy of

' the vibrational modes transverse to the reaction path maintains its

. b
diagonal form, i.e., .
1 Z 2 1 =2 :
> P =3 > P _ , (2.3a)
2 k=2 k 2 = k . : _
or in matrix'notation,
1 1l ==
22E=37E% (2.3b)
Equation (2.3) doesjnot necessarily imply that P = P, but that one
must have
P = U(s)-P > (2.4)
where U is a unitary matrix that may be a function of s. Equatioh
(2.3) is then fulfilled since
+ - : . .
v (s)°g(s) =1 . (2.5)
Using Eqs. (2.2) and (2.4) in the usual way, one is able to
12 ‘ ‘
construct the following generating function to effect the transformation: -
FZ(S,Q;ES,E) = ‘:E + SES

+ st' Q+B(s)*U(s') P . (2.6)



The associated differential equations which specify the (s,ps,Q,P) >

(g,ﬁs,a,ﬁ) transformation a're12

N

o
]

(2.7a)

)]
Q
0]

N

(2.7b)

3
Q
14

oF

N

nl
[]

(2.7¢)

7

N

(2.74)

¥ =]]
[

‘Qr
=t

Equations (2.7a) and (2.7¢) reproduce the desired results in Egs.
(2.2) and (2.1) above, respectively. Equation (2.7b) leads to the

following condition

[
]
1]

+ .st' E(s')°g(s')°g _ , - (2.8)

which together with Eq. (2.7) implies that the unitary matrix U.must_'

satisfy the equation
U(s) = } + Z-ds' B(s')*U(s") . (2.9)

Finally, Eq. (2.7d) defines the new vibrational coordinates in terms

of the old,



q=9q+ st' Q*B(s")+U(s")
= Q-[1 + 7ds’ B(s')-U(s')j ' s
v o= 0 x = . .

or in light of Eq.,(2;9) this reads

LOI

= QoU(s) . . N (2.103)
and the old coordinates are given in terms of the new ones by

(s) . (2.10b)
Equation (2.9) above is the most important relation involved in .
the transformation to the new variables. Given the Coriolis coupling
'elements_ka;k,(s)} = 2(8)’ Eq. (2.9)'15 an integral equation for the.
unitary matrix P(s). By differentiating @ith respect to s, it is

converted into the differential equation

/vg'(s) = B(s)U(s) - (2.11a)
with initial condition
U = 1 . | (2.11b)

3 . . ' .
The fact that the matrix B(s) is real and skew-symmetric guarantees

that U is indeed unitary. To see this, note that the matrix iB is

-~

hermitian, so that Eq. (2.11la) may be written as



135 UG) = [1 B

which has the form of the time dependent (with s = time) Schrodinger
equation (with hermitian Hamiltonian iB) for the time evolution

13

operator U, which is well-known to be unitary.~ Equation (2.9) is

then recognized as the integral form of the time-dependent Schrodinger

equation. A formal solution for U : can be given as a power series .
in B,
[}
- s S’
SU(s) =1 + st' B(s') + [ds' : fds" B(s')*B(s")
P ~ - . = 0 < . x
+ ... . (2.12a)

or also as a time-ordered exponential

5 ' ' , '
U(s) = T-exp[Jl.ds' B(s')] »  (2.12b)
= . 0 x
- : 14
where T is the usual time-ordering operator.
Using the above equationé, it is easy to show that the Hamiltonian
is given in terms of the new variables (from which the over-bars -are

now dropped) by

12
1.2 |
H(p,,8,P,Q) = —2—2 + X %sz
[1+ 25 Q A (s)]
k=2 KR
Foo |
FVe) + X S Qe Ay 0 () Qs , (2.13a)

k,k'=2
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or ‘in matrix notation

1,2
H(p,,s,P,Q) = -—2—% +%Pep
i+ g’
| + vocs') +2QM*Q ., - (2.13b)
where . o s ®- " , g
&t o2
Ak,k' (S) = k'§2 Uk,k"(S) mkv"(.S) Uk",k(s) |
or ) )
ot 2,y
A(s) = U (s)-w(s)“+U(s) : SN - (2.14a)

i

where w(s)2 is the diagonal matrix of frequency squares, and

Ne(®) = 3 U,Z,k'-@) Bpr,1(®
| Kiz2 >
or
+ | . N . .
o) =0T () . (2.14b)

As noted at the beginning“of this section, the coupling between
vibrational modes 'k and k' now éppeérs in the potential energy,
ch&ractefized by the.coupling element Ak,k,(s); In mény
-applications it is easier to héndle this form of coupliﬁg than
that in the Hamiltonian of Eq. (1.1). Since U is unitary, we note
that the elements Ak(s), which couple mode k to the reaétion
coordinate, are related to the curvature of the reaction path in

a similar way as the elements Bk l(s),
b

- /F , |
k(s) =V 25 A (s) :
‘ - k=2
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IIT. Unified Statistical Model, Generalization and Applications.

N

The "unified" statistical ﬁodelgwas introduced originally in order
to'reconcile, or unify two different kinds of statistical theories,
transition.state theorylghich‘is appropriate for reactions proceeding
via a "direct" reaction mééﬁénism, and the phase space theory of
Ligh%6anlNikitinl£hich is designed to describe reactions proceeding
via a long-lived colliéion complex. It is particularly straiéht-
forﬁard to appiy this theory within the framework of the reaé;ion
path Hamiltonian.

One needs to consider first the microcanonical flux'through a
sequence of (F-1) dimensional "dividing surfaces" which éré‘normal
to the reactién path at position g along it. For total energy E

this flux'integral 189

N(sO;E) = ZTlh h_Fﬁs ﬁpsﬁgﬁg §(E-H) G(S.-SO) s h(s) | , ’(.3.]'.)

where H is the reaction path Hamiltonian of Eq. (1.1). The velocity

§ is evaluated via Hamilton equations,
ap g [ ’ (3-2)

- where h(8) is the unit step function,

1,s>0.

° ’

h(s) = |
S 0, s<0
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which means that Eq. (3.1) is the "one-way flux" through the surface, .
i.e., the flux through it in the direction of increasing s. Using

Eq. (3.2) and the Hamiltonian in Eq. (3.1), it is not a hard calculation

to éhow that Eq. (3.1) gives the following simple expression,

eV ()17

N(s,E) = > - (3.3)

(F-1)! 1%~ ha, (s)

k=2 o _
where soAhas béen replaced by s. Equation (3.3),which-does'33£
require that.one‘neglect the B-coupling functions in Eq. (1.1), is
essentiaily,an RRK formulalgor a fixed value of the reaction
coordinate.

The next step in the unified statistical theorygis to look for
minima %n the flux with respect to s. If only one minimum, or
-"botfleneck” is found, at s, say, then simple transition state
theory applies, and the cummulative reaction pfobability N(E)f-
which is defined ekaétly as - | |

N

I , (3.4)

N(E) = 2: |sn2’81

207 -

where Sn n (E) are the scattering S-matrix elements for the
, ~2°~1 :
reaction as § = -® > 4o——is given approximately by

N(E) = N(s ,E) _ . (3.5)

!

If two minima are found, at s, and s, say, separated by a relative

1

maximum at Sy» then the unified statistical model gives the following
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approximation to N(E):

N, (E)N,(E) -
NE) = ym (é) = »3: (E)N, (E) /N, (E)
Sl 3 1 3 2 (3.6a)
where
Ni(E) = N(Si’E) ’ i=1,2,3 e (3.6b)

In appropriate limits this reduces to the Light-Nikitin statistical-

model,

Nl(E)N3(E)
Nl(E)7+ N3(E)

N(E) =

Equation (3.6a) can be re~written in the following equivalent

form

S S | <]—1
Nl(E) N3(E) Nz(E)

NE) = (3.7)
and this is the form that generalizes. Thus suppose that relative
minima of flux occur at values 31’83’85’ ""S2M+l’ and relative
maxima of flux occur at S53Sys cees Soye (The first and last flux
extrema must always be minima, which can always be achieved by, if
necessary, letting 8, + - and/or SoM+1 + 4 .) The generalized:
unified statistical model then approximates the cummulative reaction

~

probability by
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' EE 1 X 1 |
NE) = [F -y L1 (3.8)
50 Ny B £ Ny, (B)
'where
Ny(E) = N(s,E) , i=1,2, ..., 241 .

Equation (3.8) is most easily proved by induction. Thus for M=2, .

so that Nl’N3 and NS'are flux minima, and N2 ahd‘N4 are flux

maxima, one considers the region of N NZ,'and N3 all as one

1’
"composite bottleneck" with net flux N ,, given by Eq. (3.7):

1 1 1 1 ‘
= = Ty + - = . (3.9)
N123(E) NI(E) o :

One then has the 3—extrema case again with fluxes N123, N4, and NS’

so that Eq. (3.7) is appliéd again to give

1=1+i_1
NE) " N,,® N® T N® .

(3.10)

which with Eq. (3.9) gives

which is Eq. (3.8) for M=2. The general case is established by

repetition of the argument from the obvious fashion.

« .
I
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Examples

It is interesting to see that this more general situation can
arise in some simple applications. Consider first the general condition

for an extremum in the flux N(s,E),

ON(s,E) _ 0

" ; : (3.11)

from Eq. (3.3) it is not hard to show that this equation can be

written in the form

V. '(s) + [E-V (8)] == - w ' (s) : (3 12)
o (s NS By 2: k7, (3.

k=2 wk(S)

If the saddle point s=0 is a point of symmetry,as for example in the

H + H2 + H2 + H reaction, then the symmetry dictates that

vy (0)

]
o

Qk'(O)-é

)
o
~

]
N
-
]

so that s=0 will alwéys be an extremum in N(s,E). For all the other -

extrema Eq. (3.13) can be written in the more convenient form

E = V(s) | . ~ (3.13a)

where V(s) is independent of energy
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- : . Vol(s)' )
V(s) = Vo(s) - T , - e (3.13b)
(F—l)ml 3 w " (8)/w, (s)
k=2 : _
Collinear H + H, .
Fér this case F=2, so thatl?g. (3.13b) becomes
V(s) = Vo(e) = Vo' () w@/w'(s) L (3.14)

o o . 19
and this quantity is plotted in Figure 1 for the Porter-Karplus
H3 potential energy surface. There are sever31 different

energy regions to distinguish.

(a) 0¢ E-VSp <0.11 eV. For energies less than 0.11 eV.above
the barrier the only extremum in the fiux occurs at.s=0, and it is

a minimum. Thus Eq. (3f8) with M=0 applies, and tyis is the case of .
éimple transition staté theoryQ It is known, too, that transition
state theory gives esseﬁtially exact agreément with classical trajectory
calculations for this energy region.

(b). 0.11 §V < E--V'sp 5‘ 0.25 eV. Figure l‘shdéé that for this
energy region there will be two roots qf Eq.:(3.13a) for s > 0, and
there{wﬁll by two symmetrically related roots for s < 0, as well as
the one at s=0, for a total of five extrema in N(s,E), two\paxima
and three minima, so that Eq. (3.8) apﬁlieé with M=2.

(¢) 0.25 eV < E'Vép < 0.34 eV. Figure 1 shows that here ﬁhere

are three roots to Eq. (3.13a) for s > 0, and with the three symmetrically

. &4. N



-17-

related ones for s < 0 and the-bne_at s = 0, there are seven flux
extrema altogether so that Eq. (3.8) applies.with M= 3,

(d) 0.34 ev < E-Vsp. For energies:more than 0.34 eV above the
saddle point Figure 1 indicates that there is just‘oﬂe root té
Eq. (3.13a) for s > 0, and with the symmetrically related one'for.
s <0 and the one at s.= 0, there‘are three flux extréma, so that
Eq. (3.8) applies with M = 1.

The appearance and_disappearanée of various fiux extrema as a
funétion of energy is a manifestation of how the reaction mechanism
changes as a function 6f energy; e.g., at low energies thére is a
single bottléneck to the reactive flux, aﬁd siﬁple traﬁsition state

vtheory is a good model, but at higher energies'othér bottlenecks
' | 20

apﬁear. These same phenomena have been seen by Pechukas and.Pollack
in a more dynamically based_théory; the dividing surfaces at the flux
extrem;.of thé present statistical modél become periodic cléssicél
tfajectoriesvthat osciilaté across the pptential.valley, i.e.,
"trapped trajectorieéﬁ?o It is interesting to see éhat many aspects
of this more detailed dynamical treatment appear, albeit approximately,
in a purely statiétical.model. |

As’noted above,-the unified statisticai model works very wéll at
low énergy——where it ié simpiy transition state theory--and though it
is an improvement ovér ordinary transition statevthéory at higﬁé;
energies, it‘is_not S0 accurate as at low energiéé. This‘seems to be
dﬁe to the fact that implicit in the USM is an assumption of micro-

canonical eqﬁilibrium between the dividing surfaces éorresponding to -
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an& two flux minima (i.;.,vbottlenecks). This is.a plausible
assumption for the c;se of a long-lived collision qomplé#, but
for the H + H, system discussed above the "collision complex' caused
by the multiple bottlenecks is ndt.sufficienfly strongly cohpled to make
this a good approximation. In their more dynamically based theory,
Pechukés.gglglL have been -able to make progress by introducing more
dynamical information into the description, But-it is not clear how

one can do this within a purely statistical model.

H + ﬁz in 3—d:

ﬁbst of the features which comﬁlicate the statistical treatment
of the collinear H.f HZ teaction-—or perhaps_make it intéresting--
actually disappear when the reaction is treated in three dimensions.
Because the.reaction path is linear for this case, F = 3Nf5 = 4,

and Eq. (3.13Db) becomes

. . - V' (s R
U(S) =" VO(S) - L _wvv (S) %v(s) s N (3.15)
3 [wv(S) 2 w, () ]

:Qhere wv(s) is the stretching frequency normal to the reaction path
(it is the symmétriclstretch at the saddie point s = 0), the same
fréquency as w(s) of the collinear system, and wb(s) is the bending
vibrational frequency. |

Fof the same (i.e.,iPorter—Karplﬁs) pot;ntial enérgy.surface,
howevér, V(s) above ;s negative relative to thé saddle point‘enérgy
for all vaiues of g; i.e., there éré no ¥oots-to Eq. (3.13a) for any

energy E, so that for all energies the flux minimum at s=0 is the

only extremum. ' The unified statistical model is then simple transition
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state theory.for all energies? and it is indeed truez%hat ﬁransition
étate theory is in_quite g&od agreement with exact classica; trajectory
calculations tq.quite high eﬁergies; e.g., transition state_theofy is
only 10% too 1arge at E-Vsp = 1 eV, while it is g factor of:two too
large at’thisgehergy in thehgollinear casg."‘The phase gpace:éffect of
changing dimensibnalit? can thus have dramatic effects én the reaction
' mééhanism and is éﬁusvaAwarniﬁg against piacing-tao much rélianoe on
cénclusions_&rawn from coilinear studies. o

Finally, we note that although all of the discuésionlin thié
section has applied to a completely classiéal mechanical treatment
of the reaction, the expression for the cumulative reacgion probability
cén beuquantized in the usuai ad hoc fashion iﬁ stétisticél'theory by
repiacing'the classical flux of Eq. (3.35 by the quantum mechanical
ihtegral density of states,

v .F 1 1 ; .
Nop(8-E) = > COR[EV(s) - 2 (m +3) he ()],
T n2,n3,...,nF—0 k=2 .

where h is againvthe unit step function. This expression must be
modified further if one wishes to take account of tunneling through

the bottleneck regions.
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IV. Generalized LangevinnModel.

In most chemical reactinns, narticularly those involving large
nolecular systems, not all modes of the composite.system will‘be.
strongly coupled to the reaction path. If the reaction is.an atom
transfér neaction, for_exampie, then ﬁodes correspondingvto vibfations
in regions of the molecules far from the reaction site will clearly
be only weakly affected by thé reantion. In te;mé of the reaction
path Hamiltonian, this means that for sunh modes wg(s) will be.
ESsentially independent of s and the conpling elements Bk,l(s) or
Ak(s) will be small. |

It seems inﬁuitively reasonable, therefore, that one should be
able to.pa:tition the complete F degrees of freedom into the
reaction coordinate and the few vibrational modes that are strongly
coupleduto it (the "systém"), and the remaining (perhaps very'many)
modes that are only weakly affected by the reaction (the "bath"). The’
"system" thus conéists of the.;ean;ion coordinate, mode 1, and
vibrational mode k = 2, ..., £, say,and tné "bath" are.the renaining
modes k = f+1, ..., F. As is customary*in such developments, the

' Hamiltonian is divided as

H = 4.1
system Hbath coupling ’ v “-
where the "system' Hamiltonian is the standard reaction path Hamiltonian

for the f strongly coupled degreés'of freedom, 1.e., Eq. (1.1) or
(2.13), with F+f. The "bath" Hamiltonian is that for the k = f+1, ..., F

uncoupled vibrational modes

Many references could be given related to generalized Langevin equations.
The methodology I follow is very similar to that in reference 10.
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. F "
. 1 2 1 2 2
= GP +5w Q) (4.2)
fath = & 2T Y24 %
and H | is the interaction coupling the "system" and the "bath".
coupling ] .

For this generalized Langevin approach.to be useful it is necessary -
that the coupling be only a linear function of the "bath" coordinates
{Qk} k = £f+1, ..., F. Taking the reaction péth Hamiltonian as in

Eq. (2.13),‘tﬁe potential energy part of Hcoupling is of  this

form, namely

f

F
k'z=:2 k=zf;r1 % By ) e 7

|

but the coupling in the kinetic energy ' is not, at least ﬁot‘
without approximatioﬁ. Thus the kinetic energy in Eq. (2.13) is
linearized in the "bath" coordinates, so that the complete coupling

Hamiltonian is taken as-

f F '
'Hcoﬁpling N k§2 k=§+1 Qk Ak,k'(s) an
9 g& x’(
p. 2, Q s)
S k=£f+1 k Tk ) . (4.3)

f
3
[1+ 2 q A (s)]
k=2 k k
The next step in the standard 'generalized Langevin development
is to conmstruct the equations of motion for the "bath" variables.

These are easily obtained, -

2
P )‘k(s)

f
R (4.4)

k'=2

Zf: ’
1+ Q, /A (s)]
ki=y Kk
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and since the RHS is independent of the "bath" variables these equations

can be solved immedlately to give ,
Q (t) (0) (t) + Zdtl sin wk(t—t'.') [ ps(t') Ak(s(t'))

Wy f . 3
i+ 3 Q. (E") A4 (s(e))]
c | K'=2 :
' 1 ’ . :
kz':=2 A i (8870 (e )] , (4.5a) |
k = f+l,-..., F,
- where Qé )is the free harmonic oscillator "bath" traJectory,
‘ f2n_+T ' |
(0) _ k , v .
Qk (t) = ° 51n(qk+mkt) ) H | (4.5b)

k

(nk,qk) are the initial valuesvfor the action-angle variablea of‘the -
"bath". The "bath" trajectoryv{Qk(t)} k = f+1, ..., F is now cnmpietely
"known in terms of the "system" traJectory {s(t), Qk(t) k=2, ..., £},
and by substitutlng it into the equation of motion for the "system"
one obtains a generalized Langevin equation for the ' system'.:‘The
overall picture which emerges is then that of the reactienvof a,small
dynamical 69ystem" (of f degrees of freedom) which ekperiences
"friction" and "random" forces from a harmonic bath. If f = 2,
forvexample, the "system" consistsof tne reaction coordinate and
one transverse viBrational mode, which 1is equivalent to a collinear
A + BC + AB + C reaction systemn, but it is nowva collinear reaction
which experiences the adnitional effects of friction and random
forces from the other vibrational modes.

The development is reasonably straight-forward fron this point,
the only nnn—standard effects arising because the coupling ﬁamiltonian

of Eq. (4.3) involvesone of the "system's" momenta, ps,»in’addition
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to its coordin;tes (8,Qy5 ++vs Qf)' Rather than continuing with the

general situétion, we thus specialize'to thelpérticular case that

all the vibrational modes are taken aélthe’“bath? i.e. the

"gysfemﬁ is only thévneaction‘coqrdinate itself. The picture of

the reaction is then essentially that of Browman mbtioq,

i,e., a parti;le moving in one dimension'qnder the influence
- of friqtion and.random forces from a surrounding medium (Which in

the present case is the set of all transvérsevvibrational modes).

If all the vibrational modes are taken as the "bath", then the coupling
" elements Bk,k' and Ak,k' are all zero (by assumption), and Xk(s) =
Bk,l(s) are the curvature couplings. One then obtains a.generalized
Langevin equation of the standard formlgor motion along the reaction

coordinate,
3(t) + Vo'(s) + Zdt‘ s(t') M(t,t") + R(t) =0 , | (4.6)

where the random force R(t) is given by

- % aG? r) /T
R(t) = < [ sin(q, H, t)
& =2 dt wk v k 'k
4282 A V@ De, cos(q 0, t)] , 4.7

~and M, the memory kernel for the friction force, is
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‘ , *2 . 2 . .
M(t,t') = 1———_3;____ r d(s» Ak) d(s Ak) coswk(t_t )'
- ? S(t) é(t') dt T K 5

Y

k=2

+ 4% A (32 j - cosw (t-t')
, k't k't' Y

as? Ay

k’ 2 ,
+ 2 dtc (s Ak)t'

sinwk(t—t')
02 ' wk'
d(s Ak) sinwk(t~=t)}
dtl . w ’
. ) e k
s(t) Xk(s(t)), etc. » . ' (4.8)

+

*2
2 (s Xk)t

*2
(s- e
We note that, as usual,10 the memory kernel can be expressed in
 terms of the Boltzmann average of the autocorrelation function of

the random force,

M(e,t') = g5 <R(E) R(£))>, L Gy

where the Boltzmann average is over the initial-values of the action-

angle variables of the "bath"

¢+ F w 2 % '
_ k| -wen/k
o s () for fo V00 L G

where (Q,g) = k=2, ..., F.

nk’qk’

Using the above equations, a simple expreésioﬁ can be obtained
for the average energy loss experienced by the reaction coordinate

for a given time interval (O,tf),
t

f .
— d 12
AE, = <f dt 5 [58° + v )]

0
t

<fdt s(t) [E(t) + Vy'()1> (4.11)
O .
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where the average here need be only over the angle variables of the

"bath". The expressioﬁ one obtains is
AE, = - ) AE, , (4.12a)

where Zik’ the averagé enefé§ gained by mode k, is given by

N|H

t . i .
I/;dt e s(t)z Ak(s(t))lz> , (4.12b)

with the trajectory s(t) determined by the generalized Langevin
equation, Eq. (4.6). If, for example, t=0 corresponds to the saddle
point of the potential surface, s=0; and tf -+ ® corresponds to the
products,.s + o, then Eq. (4.12) gives the amount of energy gained
by vibrational ﬁod; k as the reaction proceeds from transition state
to products. If one adds the further approximétion that the
trajectory s(t) is the zeroth order trajectory de;ermined only by

the potential Vo(s), then the following explicit expression is

obtained
E—llmd;\ .,/ZE\;( ' [ s L 2
k=3 l s k(s) [ s Vo s) ] exp[iwké.ds \/TTETWTH s (4.13)

where Es is the ene?gy available at the transition state. We emphasize,
though that this aﬁproximation to the trajectory may be rather severe,
so that Eq. (4.13) is probably only of qualltative utility.

Flnally, we also emphasize that it is probably not a good idea

to take_all the vibrational modes as the "bath", for a few of them
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will probably be sttongly coupled to the reaction coordinate and

this Qould introduce complicated_dynaﬁical structure into the
"friction" and "random" forces. If one wishes to apply this procedure
quantitatively, then it is probably much more réalistiC'to keep at |
least the one or éwo modes most. strongly coupled tb tﬁe reaction
coordinate-—as measured by the size of the coupling elements

Ak(s) or Bk’l(s)-f as paft of the fsyscem", so that ﬁheA“Bath"

" then truly is a set of free harmonic oscillators only weakly coupled

to it.

N7
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V. Concluding Remarks.

This paper has considered several formal and practical develépments
baéed on the reaction path Hamiltonian for a molecular system. The
unified statistiéal model and its generalizations discussed in Section
III and the generalized Langevin description developéd in Section IV
may find utiiity as computétional tecﬁniqués and/or conceptual frameworks
for understanding various aspects of reaction dynamics in polyatomic

systems.
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Figure Caption

The quaﬂtity~V(s), as defined by Eq. (3.14), as a fﬁnction of the
(mass-weighted) reaction coordinate,'for the collinear H + H, ~ H

reaction.
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