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Interplay between CaSR and PTH1R Signaling in Skeletal 
Development and Osteoanabolism

Christian Santa Maria, Zhiqiang Cheng, Alfred Li, Jiali Wang, Dolores Shoback, Chia-Ling 
Tu, and Wenhan Chang
Endocrine Research Unit, University of California, San Francisco, Veterans Affairs Medical 
Center, San Francisco, CA, USA

Abstract

Parathyroid hormone (PTH)-related peptide (PTHrP) controls the pace of pre- and post-natal 

growth plate development by activating the PTH1R in chondrocytes, while PTH maintains mineral 

and skeletal homeostasis by modulating calciotropic activities in kidneys, gut, and bone. The 

extracellular calcium-sensing receptor (CaSR) is a member of family C G protein-coupled 

receptor, which regulates mineral and skeletal homeostasis by controlling PTH secretion in 

parathyroid glands and Ca2+ excretion in kidneys. Recent studies showed the expression of CaSR 

in chondrocytes, osteoblasts, and osteoclasts and confirmed its non-redundant roles in modulating 

the recruitment, proliferation, survival, and differentiation of the cells. This review emphasizes the 

actions of CaSR and PTH1R signaling responses in cartilage and bone and discusses how these 

two signaling cascades interact to control growth plate development and maintain skeletal 

metabolism in physiological and pathological conditions. Lastly, novel therapeutic regimens that 

exploit interrelationship between the CaSR and PTH1R are proposed to produce more robust 

osteoanabolism.
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1. Introduction

Maintaining normal Ca2+ homeostasis is essential for all cellular functions in our body. 

Land vertebrates develop large bony skeleton to store excess Ca2+ in the form of 

hydroxyapatite [Ca10(PO4)6(OH)2] and releases it to meet systemic demands at the time of 

Ca2+ deficiency. The parathyroid gland (PTG) also evolves to coordinate the calciotropic 

activities in the skeleton with those in the gut and kidney, by secreting the parathyroid 
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hormone (PTH). The current working model for the regulation of serum Ca2+ concentration 

(sCa2+) emphasizes: (i) the ability of parathyroid cell (PTC) to respond to subtle changes in 

sCa2+ that promptly alter PTH secretion (Figure 1A, ➀); (ii) the ability of PTH to activate 

its receptor, PTH1R (➁), in the kidney to promote Ca2+ reabsorption (➂) and stimulate 

1,25dihydroxyvitamin D (1,25D) production to increase intestinal Ca2+ absorption (➃); (iii) 

the ability of PTH to enhance bone turnover (➄-➈, see detailed descriptions in Section 8 

Actions of PTH and PTH1R in bone) to release Ca2+ into the circulation (➉); and (iv) the 

negative feedback of increasing sCa2+ and serum 1,25D (s1,25D) to suppress PTH secretion 

by activating the extracellular Ca2+-sensing receptor (CaSR) and vitamin D receptor (VDR) 

(➀) to close this regulatory loop [1–3]. Defects at any point in this pathway disturb mineral 

balance and produce endocrine and skeletal dysfunction.

Skeletal development begins in the embryo and continues throughout adolescence until a 

peak bone mass is attained in early adulthood. The mature skeleton is then maintained by 

continuous bone turnover (or remodeling) through balanced bone-forming activities of 

osteoblasts (OBs) and bone-resorbing activities of osteoclasts (OCLs) (Figure 1A, ➅-➈) in 

the bone-remodeling units (BRUs). Excessive bone resorption due to aging, post-

menopause, use of glucocorticoids, and metabolic diseases, like hyperparathyroidism (HPT), 

produces osteoporotic skeleton with increased risk of fracture [4–13].

Ca2+ availability critically impacts skeletal development and bone turnover [14]. Ca2+ 

deficiency produces rickets and osteomalacia, characterized by inadequate cartilage or bone 

matrix mineralization, in patients [15–18]. Supplementation of the diet with Ca2+ and 

vitamin D, and in some cases with Ca2+ alone, completely heals those cartilage and bone 

defects [14, 15, 19–21]. Similarly, rachitic changes in bone and cartilage in VDR knockout 

(KO) mice are prevented by a high Ca2+ diet [22–24]. The above observations underscore 

the importance of adequate Ca2+ supply to normal cartilage and bone development. 

Although Ca2+ could contribute passively to bone mineralization as an essential substrate, 

recent discoveries of CaSR in chondrocytes, OBs, and OCLs have prompted investigations 

for direct Ca2+ actions on those cells as a critical “growth factor”.

Inactivating mutations in the CASR gene reduce the responsiveness of PTC to changes in 

sCa2+ and produce familial hypocalciuric hypercalcemia (FHH) and neonatal severe HPT 

(NSHPT) in patients, who show elevated serum PTH (sPTH), s1,25D, and sCa2+ levels and 

in the severest forms a growth-retarded and under-mineralized skeleton [25–28]. Skeletal 

defects in NSHPT patients are likely caused by aberrant PTH secretion and the associated 

mineral and hormonal disturbances. Direct effects of mutant CaSR in chondrocyte and bone 

cell, however, cannot be ruled out [29–38].

Prolonged elevation of sPTH produces catabolic effects on bone [39–42], but once-daily (or 

intermittent) injections of supra-physiological doses of PTH1–34 or PTH1–84 increase 

trabecular bone mass in normal and osteoporotic animal models and in osteoporosis patients 

[43–47]. The anabolic effect of intermittent PTH (iPTH) appears to rely on its ability to 

promote bone-forming activities of OBs to a greater extent than the bone-resorbing activities 

of OCLs at the beginning of the treatment -- creating a so-called “anabolic window”, but its 

underlying cellular and molecular mechanisms remain unclear.
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In the past decades, investigations using genetically manipulated mouse models and cell 

cultures have confirmed essential roles for the CaSR and PTH1R signaling in controlling 

pre-and post-natal skeletal development and maintenance of adult skeleton. However, 

perspectives on how these two signaling pathways interact in cartilage and bone are lacking. 

In light of two recent review articles that provide comprehensive updates on general 

systemic and local actions of the CaSR and PTH on bone and mineral metabolism [30, 48], 

this review emphasizes the interplay between the CaSR and PTH1R signaling in 

chondrocytes, OBs, and OCLs and proposes novel regimens exploiting this receptor 

interaction to enhance osteoanabolism for treatment of skeletal disease.

2. Endochondral bone formation

In vertebrates, all weight-bearing axial and appendicular skeletons are formed by 

endochondral bone formation that begins in early embryos. This process starts with the 

condensation of mesenchymal progenitors and their commitment to the chondrocytic lineage 

to form cartilaginous anlagen that later becomes a growth plate (GP). In the GP, 

chondrocytes proliferate, mature, and hypertrophy sequentially within single cell columns 

and then begin to deposit Ca2+/phosphate-containing minerals into the surrounding matrix 

after they reach terminal differentiation (Figure 2A). Within this mineralized matrix, the 

terminally differentiated chondrocytes produce matrix metalloproteinases to remodel 

surrounding matrix [49–51] and release growth factors to induce vascular invasion and 

promote OB differentiation at the chondro-osseous junction. It was originally proposed, 

mainly based on histological observations, that terminally differentiated hypertrophic 

chondrocytes in the GP undergo cell death and OBs arise from the osteoprogenitors 

delivered by the invading vasculature to replace the dying chondrocytes and produce new 

bone. This classic scheme of chondro-to-osteo transition has just undergone a significant 

paradigm shift [52–54]. By using protein-based fluorescent probes to label chondrocytes in 

vivo and by following the fate of the labeled cells in the bone using time-lapse cell/tissue 

imaging, it has been clearly shown that the majority of hypertrophic chondrocytes can trans-

differentiate directly into OBs in the GP during endochondral bone formation or in the 

healing callus of fractured bone [53, 55–57]. GPs exist throughout adolescence to support 

longitudinal bone growth by repeating the above cell differentiation programs until the 

chondroprogenitor pool is exhausted at the time of GP closure in early adulthood. Aberrant 

acceleration or delay in chondrocyte differentiation produces disorganized GPs and impede 

bone growth [58].

3. PTHrP and PTH1R in endochondral bone formation

Many transcription [58–69] and autocrine/paracrine factors [56, 70–83] were found to 

induce the commitment of progenitors to the chondrocytic lineage and to pace their 

differentiation [49, 56, 76, 84, 85]. Among them, the parathyroid hormone–related protein/

Indian hedgehog (PTHrP/Ihh) feedback loop is the best-established pathway that prevents 

aberrant acceleration of chondrocyte differentiation and early closure of the GP [58, 86, 87]. 

According to the current model, PTHrP produced by perichondral cells in embryonic 

skeleton or by maturing/prehypertrophic chondrocytes in postnatal GPs diffuses into the 

proliferation zone where it activates the PTH1R and downstream signaling cascades to 
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sustain the proliferative activities of the cells and delay their further differentiation [88] 

(Figure 2A). When chondrocytes eventually mature, they increase the production of Ihh to 

simulate its receptor Patched in the neighboring cells and increase PTHrP production via 

mechanisms that remain to be determined, thus constituting a feedback loop to slow down 

cell differentiation [87, 89] (Figure 2A). Pth1r, Pthrp, and Ihh gene KOs in mice all led to 

accelerated chondrocyte differentiation, early GP closure, and dwarfism [87]. Transgenic 

mice overexpressing PTHrP specifically in chondrocytes also presented short-limbed 

dwarfism, but their growth plates were composed exclusively of proliferating cells and 

lacked endochondral ossification [90], confirming the role of PTHrP/PTH1R signaling in 

preventing an early entry of proliferating chondrocyte into terminal differentiation.

Several elegant investigations explored signaling events underlying the actions of PTHrP on 

cartilage development with emphases on its ability to activate different heterotrimeric GTP-

binding proteins (G-proteins) and multiple down-stream effectors in chondrocytes [86]. In 

fibroblastic COS-7 cells expressing exogenous PTH1Rs, binding of PTHrP to the receptor 

stimulated Gs-mediated cAMP synthesis as well as Gq-mediated intracellular Ca2+ releases, 

indicating the multifaceted actions of PTHrP/PTH1R signaling [91]. To determine the 

impact of Gs-mediated signaling responses on GP development, chimeric mice with GPs 

comprising mixed populations of normal and Gsα-deficient chondrocytes were studied [92]. 

In the chimeric GPs, Gsα-deficient chondrocytes appeared to stop proliferating and become 

hypertrophic prematurely [91] -- phenotypes similar to those of chondrocyte-specific 

PTH1R KO mice [93, 94]. It was, therefore, concluded that PTHrP activates Gs-mediated 

signaling responses to sustain chondrocyte proliferation [87].

In cultured chondrocytes, pharmacological stimulation of Gq-coupled protein kinase C 

(PKC) and mitogen-activated protein kinase kinase (MEK) pathway suppressed 

proliferation, enhanced cell hypertrophy, and increased expression of type X collagen [95, 

96], supporting a role for Gq-mediated signaling in promoting chondrocyte terminal 

differentiation. But there has been no report on the study of mice with targeted ablation of 

Gαq specifically in chondrocytes to clearly define its impact on GP development in vivo. 

Instead, studies of mice with a knock-in of an engineered Pth1r mutant gene, which encodes 

a mutant PTH1R that retains the ability to activate Gs, but not Gq, signaling pathway, 

showed delayed GP ossification and increased chondrocyte proliferation [97]. Though, the 

effects were modest, likely due to the relatively restricted expression of PTH1R in the 

proliferation zone. Nevertheless, the investigators of the study concluded that the PTH1R-

mediatd Gs and Gq signaling cascades constitute a “Yin-Yang” relationship to control the 

pace of cell differentiation [86, 87]. However, the fact that chondrocyte-specific PTH1R KO 

mice presented profoundly accelerated chondrocyte differentiation and early GP closure 

indicates the existence of other, perhaps Gq-coupled, mediators that can promote the 

terminal differentiation of chondrocyte and engage in a “tug-of-war” relationship with the 

PTHrP/PTH1R/Ihh feedback loop to control the pace of GP development. Recent studies 

suggest that Ca2+ and its receptor, CaSR, constitute a critical signaling pathway that 

instigates such “pro-differentiation” activities in chondrocytes.
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4. Signaling transduction of the CaSR

The CaSR is a member of family C G-protein coupled receptor (GPCR), which consists of a 

large extracellular domain (ECD; ≈450–600 amino acids) for ligand binding, a seven-

transmembrane domain (7-TMD) for G protein coupling, and a long intracellular C-terminal 

tail (≈250 amino acids) for recruitment of signaling molecules and for receptor binding to 

cytoskeletons [98, 99]. Members of family C GPCRs function exclusively in the form of 

multimeric complex [100, 101]. The CaSR can form homodimers [100, 101] or 

heterodimerize with other members of family C GPCRs, including metabotropic glutamate 

receptors [102] and type B gamma-aminobutyric acid receptors (GABABR1 and 

GABABR2) [103, 104]. Like other GPCRs, the CaSR activates multiple downstream 

signaling cascades by coupling to 3 major groups of G proteins, Gq/11, Gi/o and G12/13 

[99]. Through coupling to the Gq/11, the CaSR activated different subtypes (β, γ, δ, ε, ζ, η) 

of phospholipase C (PLC) to cleave the phospholipid phosphatidylinositol 4,5-bisphosphate 

(PIP2) into diacyl glycerol (DAG), which activates protein kinase C, and inositol 1,4,5-

trisphosphate (IP3), which releases Ca2+ from intracellular stores by binding to IP3 receptors 

in the stores [99]. This signaling cascade has been demonstrated in most of the cell systems 

tested, including parathyroid cells [105, 106], keratinocytes [107], chondrocytes, osteoblasts 

[29], and transformed cells expressing the CaSR exogenously [108], to regulate diverse cell 

functions ranging from PTH secretion [109], osteoblast migration [35], and cell growth, 

survival, and differentiation [33]. By coupling to the pertussis toxin-sensitive Gi/o, the CaSR 

suppressed adenylyl cyclase activities and cAMP production in PTCs [110] and OBs [29]. 

Activation of Gi/o also activated the extracellular-signal-regulated kinases (ERK1/2) in 

PTCs [111, 112], OBs [113, 114], and HEK-293 cells expressing exogenous CaSRs [115–

117]. Through the activation of G12/13, the CaSR enhanced Wnt3a-βcatenin signaling to 

promote osteoblast differentiation [118], but inhibited osteoclastogenesis by suppressing the 

expression of the receptor activator of nuclear factor kappa-B ligand (RANKL) and 

increasing osteoprotegerin (OPG) expression [119]. The CaSR could also activate 

phospholipase D though coupling to G12/13 in Madin-Darby canine kidney cells [120].

5. CaSR in chondrocyte differentiation and cartilage development

Ca2+ deficiency produced rickets in childhood [18] and in VDR and Cyp27b1 KO mice [24, 

121] by delaying chondrocyte differentiation and blocking matrix mineralization in their 

GPs. The ability of dietary Ca2+ supplements to reverse the GP defects [21] signifies the 

importance of Ca2+ availability to GP development. The expression of CaSR first appears in 

maturing chondrocytes in the GP and increases in hypertrophic chondrocytes (Figure 2B) 

[29] including those being released from the cartilage matrix at the chondro-osseous 

junction (Figure 2C, red arrowheads) and adjacent OBs [29]. This expression pattern 

supports a role for the CaSR in mediating the terminal differentiation of hypertrophic 

chondrocytes and their transformation into osteoblastic lineage, according to the newly 

established paradigm [52–54].

Direct actions of Ca2+ and CaSR on chondrocyte differentiation have been confirmed by 

studies of primary cells cultured from cartilage of different species, chondrogenic cell lines, 

and metatarsal bone rudiments explants. Chondrocytes in a high-density culture exhibited 
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spontaneous differentiation that recapitulates keep steps of chondrogenesis as seen in vivo 

(Figure 3A) [29, 103, 122–124]. For example, mouse GP chondrocytes proliferated robustly 

and produced a proteoglycans (PG)-rich matrix immediately after plating (Figure 3A). 

Mineral deposition appeared to start in the matrix surrounding the hypertrophic 

chondrocytes (Figure 3A, 7-day post-confluence, insert). As mineral deposition increased in 

the cultures, PG accumulation declined and the cells lost their chondrocytic morphology 

(Figure 3A, 21-day post-confluence, insert). Along with those morphological changes, RNA 

levels for early differentiation markers -- aggrecan (Agg) and type II collagen α1 subunit 

[α1(II)] -- were highest in early cultures and decreased in later cultures (by >90%), while the 

expression of late differentiation markers -- alkaline phosphatase (ALP) and type X collagen 

α1 subunit [α1(X)], and putative OB markers --osteopontin (OPN), osteocalcin (OCN) and 

osteonectin (ON) increased with time of culture (Figure 3B). The above changes in cell 

morphology, gene expression, and matrix protein synthesis recapitulate steps of 

chondrogenesis and indicate time-dependent transformation of the cultured chondrocytes 

into the osteoblastic lineage.

Changes in [Ca2+]e profoundly impacted the differentiation of cultured chondrocytes. In 

tibio-tarsal chondrocytes cultured from chicken embryos, high [Ca2+]e increased the 

expression of α1(X) [125]. In mouse GP chondrocyte cultures, raising [Ca2+]e dose-

dependently suppressed PG accumulation, increased mineral accumulation (Figure 3C and 

3D -PTHrP), reduced expression of chondrocyte markers [Agg, α1(II), and α1(X)], and 

increased expression of OPN (Figure 3E, Control) [29, 103, 122, 123]. Similar effects of 

high [Ca2+]e were seen in cultures of non-transformed chondrogenic RCJ3.1C5.18 (or 

C5.18) cells, cloned from fetal rat calvarias [29, 124, 126]. The ability of high [Ca2+]e to 

increase intracellular Ca2+ mobilization and promote terminal differentiation in C5.18 cells 

could be blocked by overexpression of a dominant-negative CaSR or anti-sense RNA in the 

cells [29, 124, 126]. In cultures of fetal rat metatarsal bone explants, administration of CaSR 

agonist (or calcimimetics) increased their longitudinal growth by enhancing chondrocyte 

differentiation in the GP [127]. The above studies confirm the actions of Ca2+ and CaSR in 

promoting chondrocyte differentiation and mineralizing functions, and perhaps to speed up 

their transformation to acquire osteogenic phenotypes.

A global CaSR KO (Exon5CaSR−/−) mouse model was generated by inserting a neomycin 

gene cassette into the exon 5 of the gene, which encodes 77 amino acids in the ECD of the 

receptor. The Exon5CaSR−/− mice manifested severe phenotypes of human disorder NSHPT 

-- HPT, hypercalcemia, hypocalciuria, hypophosphatemia, parathyroid hyperplasia, and 

failure to thrive and the mice died before 3–4 weeks of age. Analyses of their bones reveled 

severe rickets with delayed formation of secondary ossification center, expanded and 

disorganized growth plate, and impaired bone formation [36, 128]. Interestingly, the growth 

and skeletal defects and early death of the Exon5CaSR −/− mice could be rescued by 

preventing the development of HPT after breeding the mice with PTH−/− mice lacking PTH 

gene or Gcm2−/− mice lacking the development of PTG [129, 130]. The reversal of skeletal 

defects in the Exon5CaSR −/−;PTH−/−and Exon5CaSR −/−;Gcm2−/− double KO mice led to 

the conclusion that the CaSR is not essential for skeletal development [129, 130] and 

prompted searches for other Ca2+-sensing mechanism(s) [131, 132]. However, it was not 

realized at the time that the exon 5 gene-targeting strategy allowed an in-frame gene-splicing 
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event to exclude the exon 5 along with the inserted neomycin cassette from the full-length 

transcript, producing a truncated CaSR lacking 77 amino acids in its ECD. This truncated 

receptor was expressed in the skin, growth plate, and bone of the Exon5CaSR −/− mice [122, 

133] and is sufficient to render Ca2+-resposiveness in GPCs cultured from the mice [122].

To clearly define the role of CaSR in skeletal development, a floxed-CaSR mouse model 

was generated by flanking the exon 7 of the Casr gene with two loxP sites. The exon 7 

encodes the entire 7-TM domain and the C-terminal tail, which are absolutely required for 

the coupling of the receptor to downstream signaling cascades [33]. The utility of this 

floxed-CaSR model was validated by the generation of PTC-specific CaSR KO mice 

(PTCCaSRΔflox/Δflox) through breeding the floxed-CaSR mice with PTH-Cre mice expressing 

Cre-recombinase under the control of PTH promoter [33]. Analyses of genomic DNA, RNA, 

and protein extracted from different tissues of the PTCCaSRΔflox/Δflox mice showed 

completely deletion of the exon 7 of the gene in PTGs, but not in other vital organs 

[33]. PTCCaSRΔflox/Δflox mice presented severe HPT hypercalcemia, skeletal and growth 

phenotypes, and early death as seen in the Exon5CaSR −/− mice, except that 

the PTCCaSRΔflox/Δflox mice developed hypercalciuria, but not hypocalciuria, due to the 

preservation of normal renal CaSR functions, which enhances Ca2+ excretion in response to 

hypercalcemia [33].

To determine the role of CaSR in GP development, the floxed-CaSR mice were bred with 

Col(II)-Cre mice, which express Cre recombinase under the control of α1(II) gene promoter 

[134]. Unexpectedly, the resulting CartCaSRΔflox/Δflox embryos died before embryonic day 

13 (E13), with severely under-mineralized skeleton [33]. The cause for the early death 

of CartCaSRΔflox/Δflox embryos remains unclear [33]. As chondrogenesis also takes place 

during the development of heart valve [135–138], defective cardiac functions could have 

caused the death of CartCaSRΔflox/Δflox embryos. These observations also support the ability 

of exon5-less CaSR to sustain the development of Exon5CaSR −/− embryos. An additional 

mouse model was made to study the impact of CaSR function at later stages of GP 

development by breeding floxed-CaSR mice with Tam-Col(II)-Cre mice, which express 

tamoxifen-inducible Cre recombinase under the control of α1(II) gene promoter [139] to 

achieve time-dependent chondrocyte-specific CaSR gene ablation. The 

resulting Tam-CartCaSRflox/flox mice developed normally until adulthood in the absence of 

tamoxifen. Induction of CaSR KO in E18–19 embryos by a single maternal injection of 

tamoxifen profoundly ablated CaSR expression in the GPs of the 

newborn Tam-CartCaSRΔflox/Δflox mice, which presented short stature with expanded and 

under-mineralized GPs and delayed chondrocyte terminal differentiation as seen in rickets 

[33]. These in vivo studies confirm a non-redundant role for the CaSR in mediating 

chondrocyte differentiation and GP development.

6. Interplay between Ca2+/CaSR and PTHrP/PTH1R signaling in 

chondrocytes

Studies of cultured GP chondrocytes revealed a close interaction between PTHrP/PTH1R 

and Ca2+/CaSR signaling pathways in controlling the pace of chondrocyte differentiation. 

Raising [Ca2+]e profoundly inhibited PTH1R and PTHrP expression in cultures of mouse 
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GP chondrocytes (Figure 3E, Control and unpublished observations) [123]. Conversely, 

treating those cultures with PTHrP(1–34) significantly blunted the ability of high [Ca2+]e to 

suppress PG accumulation and promote mineral deposition (Figure 3D; -PTHrP vs 

+PTHrP). In cells maintained at 0.5 mM Ca2+, treatment with PTHrP significantly increased 

Agg expression and markedly reduced the expression of α1(X) and ALP -- markers of 

maturing and hypertrophic chondrocytes (Figure 3E). Incubation with PTHrP also blocked 

the ability of high [Ca2+]e to inhibit Agg and α1(II) expression and to increase OPN RNA 

levels (Figure 3E), suggesting that increased PTHrP/PTH1R signaling can counteract the 

effects of high [Ca2+]e on cell differentiation.

In the GPs of Tam-CartCaSRΔflox/Δflox mice, the expression of IGF1 and IGF1R was 

profoundly reduced [33], suggesting that Ca2+/CaSR could promote chondrocyte 

differentiation at least in part by enhancing IGF1 signaling (Figure 2A). This scenario is 

supported by the ability of Igf1r gene knockdown to suppress the ability of high [Ca2+]e to 

promote terminal differentiation and matrix mineralization in cultured chondrocytes [33]. 

Furthermore, ablating the Igf1r gene specifically in GP chondrocytes in mice increased their 

expression of PTHrP, but not PTH1R [140], indicating a negative regulation of PTHrP 

expression by IGF1R signaling. These observations support a paradigm in which Ca2+/CaSR 

signaling counteracts PTHrP/PTH1R signaling by suppressing PTH1R expression 

independently of IGF1/IGF1R signaling and by inhibiting PTHrP expression via the IGF1R-

dependent pathway to support normal progression of chondrocyte differentiation and growth 

plate development (Figure 2A).

7. Bone modeling and remodeling

At the end of chondrogenesis in the GP, vascular invasion recruits OCL precursors to the 

chondro-osseous junction where they differentiate and resorb mineralized cartilage matrix to 

facilitate the release of GP-derived OB precursors [53, 55–57]. The vasculature may also 

provide a migratory pathway for osterix-expressing osteoprogenitors from the periosteum to 

future bone sites [141, 142]. The relative contributions of various sources of OB precursors 

to overall bone development remain unclear.

In the primary spongiosa beneath the GP, osteoprogenitors progress though the stages of 

pre-OBs, committed OBs, mature OBs, and osteocytes, which are characterized by the 

expression of specific marker proteins, osterix (Osx), type I collagen [Col(I)], OCN, and 

dentin matrix protein 1 (DMP1), respectively. The immature OBs produce a large quantity 

of Col(I), which constitutes the majority of protein matrix (or osteoid), while mature OBs 

exert mineralizing functions to deposit Ca2+ and phosphate into the protein matrix to 

increase its mechanical strength. At the end of bone-forming activity, OBs, which are 

embedded in the mineralized matrix, become osteocytes, while others turn into inactive 

flattened bone-lining OBs. Upon stimulation by calcemic factors, like PTH, bone-lining OBs 

are reactivated and OCLs are recruited to the BRUs, which serve to liberate matrix Ca2+ to 

meet systemic demands of Ca2+ and repair micro damages of the bone.
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8. Actions of PTH and PTH1R in bone

Comparison of the skeletal phenotypes in PTH−/− mice and PTH−/−;PTHrP−/− double KO 

mice indicated PTH-dependent bone-forming activities in the primary spongiosa of long 

bone [143]. Bone cell-specific PTH1R KO mouse models are, however, required to further 

define cell-autonomous actions of the receptor. Thus far, there is no report on study of mice 

with PTH1R KO at early stages of osteoblast differentiation. Mice with osteocyte-specific 

PTH1R KO showed increases in bone mineral density and trabecular and cortical bone 

volume and thickness, along with a low bone turnover state due to suppressed OB and OCL 

activities [144]. Interestingly, mice with osteocyte-specific overexpression of a 

constitutively active PTH1R also showed increased trabecular and cortical bone mass, but in 

the state of high bone turnover [145, 146]. These studies support a role for the osteocytic 

PTH1R in controlling bone turnover, but other factors are involved in balancing bone 

forming and resorbing activities and determining overall bone accrual.

Direct actions of PTH on OBs were deduced from in vitro studies using cultures of bone 

marrow-derived osteoprogenitors, osteoblasts/osteocytes released from bone fragments, and 

osteogenic cell lines, and in vivo studies of mice injected with PTH [44–47]. Those studies 

together support the scheme that PTH increases osteoblastic activities by recruiting 

osteoprogenitors and sustaining the proliferation and survival of the committed OBs (Figure 

1A, ➄). Although, iPTH could increase bone accrual and more importantly bone 

mineralization in vivo [44–47], PTH actually inhibits terminal differentiation of primary 

OBs or OB-like cell lines and their mineralizing functions in culture [147–151]. This 

paradox between in vivo and in vitro observations suggests that iPTH in vivo must produce 

other changes in bone microenvironment that are needed to promote terminal differentiation 

of the newly recruited OBs by iPTH. This effect is not recapitulated in OB cultures, likely 

due to the absence of OCL activity.

In vivo, PTH enhances osteoclastic activities by increasing osteoblastic expression of 

RANKL, macrophage colony stimulating factor (M-CSF), and other cytokines to recruit 

osteoclast precursors and promote their growth and differentiation through activation of 

RANK, c-fms (M-CSF receptor), and other signaling pathways in the cells (Figure 1A, ➅) 

[152–155]. The above PTH actions on OBs are mediated by cell-autonomous responses as 

well as by locally produced growth factors and cytokines, including IGF1 [155–157], 

fibroblast growth factor-2 (FGF-2) [158, 159], Wnt signaling-related agonists and 

antagonists [160–163], periostin [164], and sympathetic tone [165]. These sequential effects 

of PTH on OBs and then OCLs provide not only a cellular basis for iPTH to increase bone 

turnover rate, but also a time window to produce anabolic effects before its catabolic effects 

catch up [44–47].

The importance of OCL activity in producing osteoanabolism is shown by studies of 

antiresorptives, such as bisphosphonates and the humanized monoclonal antibody 

denosumab, which binds to and neutralizes the activity of RANKL and therefore suppresses 

osteoclastogenesis and bone resorption [166–170]. Antiresorptive agents not only block 

bone resorption, but also impede bone-forming activities in the BRUs. The exact 

mechanisms for coupling bone resorption to formation remain unclear. It is proposed that 
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OCLs interact with OBs directly through binding of their cell-surface receptors (e.g., the 

RANK/RANKL and Ephrin/Eph systems) [152–155] to promote mutual cell differentiation 

and functions. Alternatively, OCLs actively release growth factors (e.g., IGF1 and TGFβ) 

[171, 172] and other constituents (e.g., Ca2+) from the matrix that may serve as anabolic 

signals to recruit osteoprogenitors and promote their differentiation. It has been shown that 

local [Ca2+] can rise to >40 mM at sites of active resorption [173] and that Ca2+ can 

function as a strong anabolic signal for OB recruitment, growth, survival, and differentiation 

[29, 31, 33, 174–178]. Based on this coupling mechanism, inhibition of bone resorption by 

antiresorptives is expected to limit local Ca2+ availability and thereby slow down OB 

differentiation and bone formation. On the other hand, increasing bone turnover by iPTH is 

anticipated to increase local [Ca2+] bathing the OBs and promote their differentiation 

(Figure 1A, ➇).

9. Actions of Ca2+ and CaSR in bone

9.1 Osteoblastogenesis

Studies of primary OBs and osteocytes and osteoblastic cell lines in culture demonstrated 

the ability of extracellular Ca2+ to stimulate acute signaling responses and enhance the 

migration, proliferation, survival, expression of terminal differentiation markers, and 

mineralizing functions of the cells by activating the CaSR [29, 32, 33, 35, 37, 174, 178–

181]. In bone, the CaSR was found in active OBs, inactive bone-lining cells, and osteocytes 

([29] and Figure 2B, 2E). As seen in cultured chondrocytes, CaSR activation with specific 

agonists stimulated Gq-mediated PLC activity, increased production of IP3, elevated [Ca2+]i, 

and opened Ca2+-dependent K+ channels to promote chemotaxis and cell proliferation in 

cultures of osteoblastic MC3T3-E1 [35, 182]. In calvarial OBs, CaSR activation (i) 

stimulated ERK 1/2 and downstream Akt and glycogen synthase kinase 3β (GSK3β) 

signaling cascades to promote cell growth, survival, and matrix mineralization [178, 180] 

and (ii) activated PLC and store-operated Ca2+ entry to increase [Ca2+]i to support cell 

proliferation [183]. The above observations are just few of many studies demonstrating the 

multifaceted actions of the CaSR in mediating OB proliferation, survival, and terminal 

differentiation.

While the above in vitro studies support a role for the CaSR in OB differentiation, its role in 

vivo had been controversial. This was due to the ability of concurrent Pth or Gcm2 gene KO 

to rescue the skeletal defects in the global Exon5CaSR−/− mice [184]. It was concluded at the 

time that the development of HPT due to defective CaSRs in PTCs was the main cause for 

skeletal defects observed in the Exon5CaSR−/− mice [129, 130]. Again, follow-up studies 

revealed the expression of the truncated exon 5-less CaSR in the cartilage and bone of 

the Exon5CaSR−/− mice. This truncated CaSR appeared to be sufficient to support overall 

skeletal development. The latter notion was further supported by studies of mice with OB-

specific ablation of the exon 7 of the Casr gene KO [185].

Deletion of the exon 7 of Casr at the early stage of OB differentiation in vivo by crossing 

the floxed-CaSR mice with mice expressing Cre under the control of two different versions 

(2.3 and 3.6 kb) of the Col(I)-α1 gene promoter produced the OBCaSRΔflox/Δflox mice [185], 

which died before 3–4 weeks of age with severely blunted growth. µCT images reveled their 
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severely under-mineralized skeletons with multiple unhealed bone fractures [33, 175]. 

Histomorphometric analyses of the CaSR-deficient bones showed reduced bone formation 

rates and bone volume and large quantifies of unmineralized osteoid deposited in both 

trabecular and cortical bone. Gene expression profiling showed profoundly reduced 

expression of OB differentiation markers, but increased expression of IL-10 gene -- an 

inducer of cell apoptosis. The up-regulation of the latter gene was consistent with an 

increased number of apoptotic OBs and osteocytes in the bones of the KO mice [33, 175]. 

The above skeletal defects were presented in the presence of lower serum PTH levels, 

further supporting cell-autonomous effects of the gene KO. These data together confirm an 

essential role for the CaSR in mediating OB proliferation, survival, and mineralizing 

functions.

Mice with transgenic overexpression of a constitutively active CaSR mutant cDNA under 

the control of a 3.5-kb OCN gene promoter were also made to examine the impact of the 

CaSR in mature OBs [176, 177]. The transgenic mice displayed mild osteopenia due to 

increased number and activity of osteoclast as a result of increased RANKL expression, 

supporting a role for the CaSR in mediating the coupling between osteoblastic and 

osteoclastic activities.

9.2 Osteoclastogenesis

OCLs responded to changes in [Ca2+]e in culture [186–189]. CaSR expression has been 

detected in monocytes and macrophages freshly isolated from human bone marrow [190], 

and in osteoclasts cultured from bone marrow and spleen [37, 38]. In situ hybridization and 

immunohistochemistry (Figure 2C, green arrowheads) confirmed the expression of CaSR 

mRNA and protein, respectively, in bone marrow cells and osteoclasts in resorbing pits [29]. 

High [Ca2+]e and/or CaSR agonists stimulated PLC, elevated [Ca2+]i [187–189, 191], and 

enhanced the translocation of nuclear factor NF-κB [189] in cultured OCLs. Some of those 

signaling responses were blunted in OCLs cultured from Exon5CaSR−/− mice [189]. High 

[Ca2+]e also inhibited the differentiation [37], secretion of acid phosphatase [188], and bone-

resorbing functions in cultured OCLs [38] and increased apoptosis of mature OCLs [189]. 

The above in vitro data support the scheme that CaSR activation inhibits bone-resorbing 

activities by suppressing differentiation and secretory function of OCL and promoting cell 

apoptosis. Interestingly, allosteric activator of the CaSR (e.g., cinacalcet HCl) at the 

concentration, which suppresses PTH section in PTCs, had no effect on resorbing functions 

of human OCLs in culture [192]. Similarly, the inhibitory effect of the allosteric inhibitor of 

the CaSR, NPS 2143, on resorbing functions of cultured human OCLs could be seen only at 

concentrations that are 250 fold higher than those required to block the CaSR in PTCs [193]. 

These data indicate different pharmacological profiles of the CaSR in OCLs vs PTCs. As 

decreasing pH renders the CaSR a right-shifted Ca2+ set-point [194], so the CaSR in OCLs 

are predicted to be less responsive to its ligand (i.e., Ca2+) and perhaps its modulators 

(calcimimetics and calcilytics) in actively resorbing pits. By using a combination H+ and 

Ca2+ double-barreled electrode, Silver et al. showed that the pH reached a lower limit of 4.7 

and the [Ca2+]e rose to a maximum of 40 mM in the erosion sites of the bone. It is plausible 

that the OCL CaSRs could be operational under such high [Ca2+]e environments despite the 

low pH. Future in vitro studies of OCL cultures with better controls of [Ca2+]e and pH that 
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mimic in vivo conditions and in vivo studies of OCL-specific CaSR KO mice are required to 

clearly define the CaSR actions in OCLs.

10. Interplay between Ca2+/CaSR and PTHrP/PTH1R signaling in bone

Based on the studies reviewed above, we propose the following models for the regulation of 

mineral and bone metabolism by the interactions between Ca2+/CaSR and PTHrP/PTH1R 

signaling. Under a physiological state (Figure 1A), a normal sCa2+ level (➀) maintains a 

steady supply of PTH from PTCs (➁) to support basal Ca2+ reabsorption in the kidney (➂) 

and Ca2+ absorption in the gut (via stimulation of renal 1,25D production) (➃), together 

maintaining Ca2+ homeostasis at the level that meets the systemic demand. This level of 

PTH also supports steady bone forming activities by recruiting OB progenitors, activating 

bone-lining OBs, and sustaining their survival to maintain an adequate number of bone-

forming cells (Figure 1A, ➄) [44, 157, 158, 195–200]. Through production of growth 

factors and/or direct physical interactions, the OBs aid in the recruitment of osteoclast 

precursors and their survival and differentiation (➅) in the BRUs. The resulting bone 

resorbing activities liberate matrix Ca2+ into fluid bathing OBs and OCLs (➆). Under 

conditions of Ca2+ sufficiency, low systemic demand of Ca2+ (➉) allows retention of the 

liberated Ca2+ to increase local [Ca2+] that stimulates OB maturation and their mineralizing 

functions to redeposit the Ca2+ into newly formed matrices (➇). The increasing [Ca2+]e also 

feeds back to OCLs to prevent their further expansion and aberrant bone resorption (➈). 

These balanced bone-forming and bone-resorbing activities sustain a steady bone turnover 

rate to continuously remodel the skeleton without bone loss.

In conditions of chronic Ca2+ deficiency (Figure 1B), e.g., insufficient Ca2+ and/or vitamin 

D intakes, reduced sCa2+ levels increase PTH secretion (➀) in PTGs to enhance (➁) renal 

Ca2+ reabsorption (➂) and 1,25D production to increase intestinal Ca2+ absorption in an 

attempt to restore sCa2+ levels to normal. But inadequate intestinal Ca2+ intakes (➃) prevent 

such normalization and lead to chronic hypocalcemia and sustained elevation of sPTH, 

which drastically increases bone turnover rates (➄-➆). As a result, excessive bone 

resorption releases a large amount of Ca2+ (➆), which is shunted into the circulation (➉) to 

further meet the systemic demands of Ca2+. Consequently, the decreasing [Ca2+]e in the 

BRUs retards the maturation and differentiation of the OBs as well as their mineralizing 

functions (➇), leading to accumulation of unmineralized osteoid and osteomalacia. Inability 

of low [Ca2+]e to check on the osteoclastogenesis (➈) further increases bone resorption and 

exacerbates the catabolic effects of chronic HPT.

11. Skeletal anabolism by targeting the PTH1R and CaSR in bone

Osteoporosis is a growing epidemic that afflicts aging men and women across the world 

[201]. iPTH is the only FDA-approved therapy that produces skeletal anabolism [43–47], 

but its dosing is limited to the lowest level that produces anabolic effects with an acceptable 

rate of hypercalcemia as an adverse effect[43, 45]. A better understanding of the mechanism 

underlying the anabolic effects of iPTH is needed to improve the therapy. Based on the 

current data, we propose that daily injections of supra-physiological doses of PTH1–34 

(Figure 1C, ➁) in addition to the endogenous PTH1–84 transiently enhance calcemic 
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activities in the kidney (➂) and the gut (➃) to a degree that can cause hypercalcemia and 

perhaps shunting of Ca2+ into the bone (➉). As a result, local [Ca2+]e is elevated in the 

BRUs and promotes the differentiation and mineralizing functions (➇) of the OBs recruited 

by the injected PTH (➄). Although the increased OB activity is also anticipated to promote 

osteoclastogenesis (➅) in the BRUs, this effect could be transient due to a short half-life of 

PTH (in minutes) and a negative feedback of the increasing [Ca2+] (➈) at least before the 

Ca2+ is redeposit into the matrix. The above events together give an anabolic window for a 

bone gain. We hypothesize that continuous infusion of PTH eventually allows osteoclastic 

activities to surpass the osteoblastic activities due to the enhancement of RANKL/RANK 

signaling, therefore producing catabolic effects on bone. According to this scheme, the 

efficacy of iPTH treatment will highly depend on the availability of Ca2+ and calcemic 

functions in the kidney and the intestine. This may explain for the considerably variable 

efficacies of the treatment in patients. This regulatory scheme also critically relies on a 

functional CaSR in OBs. Indeed, a blunted anabolic effect of iPTH was recently observed in 

the OBCaSRΔflox/Δflox mice [202]. The latter study also raises the possibility of targeting the 

CaSRs in OBs and OCLs to enhance skeletal anabolism.

We have proposed to co-inject calcimimetics to enhance the anabolic effects of iPTH. 

Calcimimetics are non-ionic allosteric CaSR agonists that are being used clinically to treat 

HPT and hypercalcemia by potentiating extracellular Ca2+-induced inhibition of PTH 

secretion and thereby suppressing the calciotropic actions in the kidney, intestine, and bone 

[203–206]. We theorize that transient activation of CaSR in PTCs with calcimimetics will 

dampen the secretion of endogenous PTH1–84, and therefore reduce its calciotropic 

activities in the kidney (➂) and gut (➃), therefore alleviating some of the adverse 

hypercalcemic effects in patients also receiving iPTH (Figure 1D). According to our 

working model, the injected PTH will continue to promote OB (➄) and then OCL activities 

(➅) in the BRUs. Although a smaller increase in sCa2+ level is anticipated to give a less 

increase in local [Ca2+]e in the BRUs (➉), when compared to iPTH treatment alone, the 

injected calcimimetic is anticipated to enhance the Ca2+-responsivenes of OB by shifting the 

Ca2+ set-point of the CaSR to the left and therefore promote the differentiation and functions 

of OBs (➇). The inhibitory actions of calcimimetics on OCL activities are anticipated to 

slow down bone resorption by inhibiting OCL recruitment, differentiation and survival (➈), 

therefore expanding the anabolic window. The actions of both agents together are expected 

to produce more robust anabolism with less or no hypercalcemia. Preliminary studies indeed 

showed that daily co-injections of a calcimimetic, (NPS-R568, 20 nmole/kg) with PTH1–34 

(40–80 µg/kg) for 4–6 weeks in both adult (3 months old) male and aging (12 months old) 

female mice (i) completely prevented the development of hypercalcemia, (ii) produced 

anabolic effects on trabecular bone that was 2–3 fold more robust than that with iPTH 

treatment alone, and (iii) produced significant anabolic effects and increased bone strength 

at cortical sites, which were absent with iPTH treatment alone [207]. The ability of this 

combined PTH/calcimimetic treatment to address the issue of hypercalcemia may allow use 

of higher doses of PTH to build more bone mass perhaps over a shorter time-course to 

minimize possible risks of osteosarcoma and make treatment more effective and cost less. 

Cinacalcet, an orally active calcimimetic, is approved to treat hypercalcemia in patients with 
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primary and secondary HPT and has been in clinical use for several years. Translation of 

this novel combination drug strategy to human disease therapy could be facilitated.

12. Conclusion

In cartilage and bone, close complementary interactions between CaSR and PTH1R 

signaling are required for smooth progression of chondrocyte, OB, and OCL differentiation. 

Regimens with combined pharmaceutics concurrently targeting these two receptors have the 

propensity of producing more robust anabolic bone effects than treatments with individual 

compound. However, the dosing of the compounds and timing (concurrent vs sequential) for 

the drug deliveries remain to be optimized. Based on their cDNA sequences, the CaSRs 

expressed in OBs and chondrocytes are identical to that cloned from the PTGs [29, 122]. 

Immunoblotting analyses, however, showed distinct glycosylation patterns of the receptor in 

chondrocytes and OBs compared to that in PTGs and in HEK-293 cells expressing CaSR 

cDNA [29]. This difference in post-translational modification could produce different 

pharmacological profiles of the receptor at different anatomical sites (e.g., OCLs in the 

resorbing pits), but this concept has not been formally addressed. In addition, the CaSR 

forms heteromeric complexes with type B γ-aminobutyric acid receptor (GABABR1 and R2) 

in OBs and chondrocytes [[103], and unpublished data]. In GABABR1-deficient 

chondrocytes, the ability of Ca2+ to stimulate acute signaling responses was reduced 

significantly [103]. Since GABABR1 and R2 are co-localized with the CaSR in many tissues 

at various levels [103, 104], it is plausible that different stoichiometric interactions among 

these receptors and perhaps with other members of family C GPCRs could produce receptor 

complexes with distinct pharmacological files in a cell-specific manner. These differences in 

receptor processing and complex formation provide opportunities for designs of tissue-

specific compounds to enhance skeletal anabolism.

Acknowledgments

This work was supported by NIH grants RO1 AG021353 and AR067291 and by the Department of Veteran Affairs 
Program Project Award Program in Bone Disease BX001599 and Merit Review Grant BX001960.

Abbreviations

1,25D 1,25-dihydroxyvitamin D

Agg aggregan

ALP alkaline phosphatase

BRU bone remodeling unit

CaSR extracellular calcium-sensing receptor

[Ca2+]e extracellular calcium concentration

CDM, Col(I) type I collagen

α1(I) alpha 1 subunit of the type I collagen

Col(II) type II collagen
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α1(II) alpha 1 subunit of the type II collagen

DMP1 dentin matrix protieon-1

HPT hyperparathyroidism

IGF1 insulin-like growth factor

Ihh Indian hedgehog

KO gene knockout

Gcm2 glial cells missing homolog 2

GP growth plate

GPC growth plate chondrocyte

iPTH daily injection (or intermittent) PTH treatment

M-CSF macrophage colony-stimulating factor

µCT micro-computed tomography

OB osteoblast

OCL osteoclast

OCN osteocalcin

ON osteonectin

OPG osteoprotegerin

OPN osteopontin

PG proteoglycan

PTC parathyroid cell

PTG parathyroid gland

PTH parathyroid hormone

PTH1R parathyroid hormone 1 receptor

PTHrP parathyroid hormone-related protein

RANK receptor activator of nuclear factor kappa-B

RANKL RANK ligand

Floxed-CaSR control mice carrying loxP sequences flanking the exon 7 of the 

Casr gene

Exon5CaSR−/− mice with insertion a neomycin gene cassette into the exon 5 of 

the Casr gene

CartCaSRΔflox/Δflox mice with constitutive ablation of the exon 7 of the Casr gene 

targeted specifically to chondrocytes
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Tam-CartCaSRΔflox/Δflox mice with tamoxifen-induced ablation of the exon 7 of the Casr 

gene targeted specifically to chondrocytes

OBCaSRΔflox/Δflox mice with constitutive osteoclast-specific ablation of the exon 7 

of the Casr gene

PTH−/− mice with global deletion of Pth gene

Gcm2−/− mice with global deletion of Gcm2
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Figure 1. 
Schemas for the actions of PTH/PTH1R and Ca2+/CaSR signaling in the regulation of 

mineral and skeletal metabolism under (A) a physiological state and (B) Ca2+ deficiency and 

its responses to (C) iPTH or (D) combined iPTH and calcimimetics treatment. See the text 

for detailed descriptions.

Maria et al. Page 27

Semin Cell Dev Biol. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
(A) A schema for growth plate chondrocyte differentiation and its regulation by PTHrP/

PTH1R/Ihh, IGF1/IGF1R, and Ca2+/CaSR signaling pathways. See the text for detailed 

descriptions. (B–E) Immunohistochemical (IHC) detection of CaSR protein in (B) mouse 

growth plate and primary spongiosa; (C) chondro-osseous junction; (D) resorbing pits in the 

secondary spongiosa, and (E) cortical bone of the tibia. Red, greed, purple, blue arrowheads 

depict terminally differentiated chondrocyte being released from cartilage matrix in (C), 

osteoclasts in (D), and bone-lining OBs and osteocytes in (E), respectively.
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Figure 3. 
(A) PG accumulation and mineral deposition by Alcian green and von Kossa staining, 

respectively, in mouse GPCs cultured for different times. Cultures were counterstained with 

hematoxylin. Insets: high-power (100×) views. (B) RNA levels, assessed by q-PCR, for 

Agg, and a1(II), ALP, OPN, OCN, and ON, in mouse GPCs cultured for various times 

[subconfluent (Sub), confluent (Con), 7, 14, and 21 days post-confluence]. The level of gene 

is expressed as “%” of L19 expression. (C) Effects of different [Ca2+]e on proteoglycans 

(PG) accumulation, mineralization in mouse GPCs cultured at 0.5 or 3.0 mM Ca2+ for 14 

days after confluence and viewed at 20× and 100× in upper and 2 lower panels, respectively. 

(D) PG accumulation and mineral accumulation assessed by Alcian green and Alizarin red 

staining, respectively, and (E) RNA expression assessed by qPCR in mouse GPCs cultured 

at different [Ca2+]e (0.5 to 3.0 mM) in the absence (−) or presence (+) of 10−7 M PTHrP for 

14 days. RNA levels are presented as the percentage of ribosomal L19 gene expression.
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