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CORRESPONDENCE AND COMPONENT ANALYSIS

JAN DE LEEUW, GEORGE MICHAILIDES, AND DEBORAH Y. WANG

Abstract. This paper is a non-standard introduction to (mul-
tiple) correspondence analysis and nonlinear principal component
analysis. We start with a brief introduction to the classical (ge-
ometrical) motivation for the technique. We then restart from
scratch, using the problem of maximizing an aspect of a multivari-
able or its correlation matrix. Some general algorithmic consider-
ations are briefly discussed, and then we specialize our criteria in
such a way that they define principal component analysis. Next,
we introduce two different ways of defining multidimensionality.
Various properties of the techniques derived in this way are stud-
ied.

1. Correspondence Analysis

Correspondence Analysis can be introduced in many different ways,
which is probably the reason why it was reinvented many times over the
years. We do not repeat the various derivations in this paper, instead
we refer to the extensive discussion in the books by Greenacre [1984],
Gifi [1990], and Benzécri [1992].
Usually, correspondence analysis is motivated in graphical language.
It is often said, in this context, that “A picture is worth a thousand
numbers.” Complicated multivariate data are made more accessible
by displaying the main regularities of the data in scatterplots. This
graphical approach is outlined in considerable detail in the books men-
tioned above, and in the review articles by Hoffman and de Leeuw
[1992] or Michailides and de Leeuw [1996]. We merely give a brief in-
troduction, which differs in some important aspects from earlier ones,
because it emphasizes the graph plot and the star plots (defined be-
low). We think these plots introduction nicely capture the essential
geometric characteristics of the technique.
We have to choose one of the many names the technique has had
over the years (see de Leeuw [1973, 1983] for an historical overview).
The most widely used name seems to be (Multiple) Correspondence
Analysis or MCA, and this is what we shall use as well.

Date: December 15, 1997.
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2 JAN DE LEEUW, GEORGE MICHAILIDES, AND DEBORAH Y. WANG

1.1. Data. MCA starts with n observations onm categorical variables,
where variable j has kj categories (possible values). Using categorical
variables causes no real loss of generality: so-called continuous vari-
ables are merely categorical variables with a large number of numerical
categories. We use K for the total number of categories over all vari-
ables.
The data are coded as m indicator matrices or dummies Gj, where

Gj is a binary n×kj matrix with exactly one non-zero element in each
row i (indicating in which category of variable j observation i falls).
The n×K matrix G = (G1| . . . |Gm) is called the indicator supermatrix.
1.2. Graph Drawing. One can represent all information in the data
by a bipartite graph with n + K vertices and nm edges. Each edge
connects an object and a category. Thus the n vertices corresponding
with the objects all have degree m, the K vertices corresponding with
the categories have varying degrees, equal to the number of objects in
the category. The indicator supermatrix G is the adjacency matrix of
the graph.
We can make a drawing of the graph, by placing the vertices at n+K
locations in the plane, or, more generally, in Rp. If we then draw the
nm edges, then the resulting picture will generally be more informative
and more aesthetically pleasing if the edges are short. In other words,
if objects are close to the categories they fall in, and categories are
close to the objects falling in them. Thus we want to make a graph plot
that “minimizes the amount of ink”, i.e. the total length of all edges.
There is a substantial literature in computer science about methods
and criteria to draw graphs [di Battista et al., 1994]. Graph drawing al-
gorithms for bipartite graphs that emphasize minimizing edge crossing
are discussed in Eades and Wormald [1994]. MCA, i.e. our “minimum
ink” criterion, is closely related to the force-directed or spring algo-
rithms first introduced by Eades [1984]. Many of the criteria discussed
in the computer science literature lead to NP-complete problems, i.e.
they are computationally infeasible even for fairly small problems. Our
edge-length algorithm is designed to be practical even for very large bi-
partite graphs.
Actually, we will minimize the total squared length of the edges. The
reasons for choosing the square are the classical ones.

Of all the principles that can be proposed for this pur-
pose, I think there is none more general, more exact,
or easier to apply, that that which we have used in this
work; it consists of making the sum of squares of the er-
rors aminimum. By this method, a kind of equilibrium is
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established among the errors which, since it prevents the
extremes from dominating, is appropriate for revealing
the state of the system which most nearly approximates
the truth.

Legendre [1805], quoted by Stigler [1986, p. 13].

In order to implement a useful algorithm, we also need a normalization
constraint. This is needed because we want distances between vertices
that are connected to be small, but we do not require distances be-
tween edges that are not connected to be large. Merely minimizing
the amount of ink, without requiring a normalization, can be done by
collapsing the drawing into a single point.

1.3. Least Squares Criterion. To formalize our “minimum ink” cri-
terion in a convenient way, we use the indicator matrices Gj. If the
n×p matrix X has the locations of the object vertices in Rp, and Yj has
the location of the kj category vertices of variable j, then the squared
length of the n edges for variable j is

σj(X, Yj) = SSQ(X −GjYj),(1)

where SSQ() is short for the sum of squares. The corresponding graph
drawing, with n+kj vertices and n edges, is known as the star plot for
variable j. The graph plot is the union (overlay) of the m star plots.
The squared edge length over all variables is

σ(X, Y ) =

m∑
j=1

SSQ(X −GjYj),(2)

and this is the function we want to minimize. The book by Gifi [1990]
is mainly about many different versions of this minimization problem,
where the differences are a consequence of various restrictions imposed
on the quantifications Yj .
As we said earlier, minimizing (2) without any restrictions on the
vertex locations is not possible. Or, more appropriately, it is too easy.
We just collapse all vertices in a single point, and we use no ink at
all. This means that in order to get a nontrivial solution, we have to
impose some form of normalization. There are two obvious ways to
normalize, defining, say, MCA1 and MCA2. In MCA1 we require that
the columns of X add up to zero, and are orthonormal, i.e. satisfy
mX ′X = I. In MCA2 we normalize Y , i.e. we require that u

′DY = 0
and Y ′DY = I. Here u is a vector with all elements equal to +1, and
D is the K × K diagonal matrix with marginal frequencies of all m
variables on the diagonal.
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We emphasize that there are no compelling reasons, except for com-
putational convenience, to choose these particular normalizations. Specif-
ically, introducing additional dimensions by requiring orthonormality
is in many respects not completely satisfactory. This was already indi-
cated in Guttman’s classical 1941 MCA paper.

. . . we should be tempted to try a “multiple factor” anal-
ysis. But the present rationale was devised specifically
for a “single factor” analysis and does not necessarily
carry over to the other case. It may be quite a different
task to devise a rationale for “multiple factor” analysis
of attributes . . .

[Guttman, 1941, p. 332]

1.4. Eigenvalue Formulations. One of the reasons why squared edge
lengths are so appealing is that the MCA1 and MCA2 problems we are
trying to solve are basically eigenvalue problems. We discuss this in
some detail, following Gifi [1990].
First we define some useful matrices. Define the kj × k` matrix

Cj` = G′jG`. Matrix Cj` is the cross table or contingency table of
variables j and `. Thus Dj = Cjj, where Dj is the diagonal matrix
with the univariate marginals of variable j on the diagonal. The K×K
supermatrix C is known in the correspondence analysis literature as the
Burt Matrix, after Burt [1950]. Write CY = mDY Ξ for the generalized
eigenvalue problem associated with the Burt matrix.
We also define Pj = GjD

−1
j G′j , then Pj is the between-category pro-

jector, which transforms each vector in Rn into a vector in Rn with
category means. Moreover Qj = I − Pj transforms each vector into a
within-category vector of deviations from category means. Write P? for
the average of the Pj , and write Θ for the diagonal matrix of eigenvalues
of P?.

Theorem 1.1. Suppose (X̂, Ŷ ) solves either the MCA1 or the MCA2
problem. Then

P?X̂ = X̂Λ,(3a)

CŶ = mDŶ Λ,(3b)

where Θ = Ξ = Λ.

Proof. We first analyze MCA1, in whichX is normalized bymX
′X = I,

and Y is free. Define σ(X, •) as the minimum of σ(X, Y ) over all Y .
Clearly the minimum is attained for

Ŷj = D
−1
j G′jX,(4)
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i.e. by locating a category quantification in the centroids of the objects
in that category. We see that

σ(X, •) = m tr X ′(I − P?)X.(5)

Clearly we minimize σ(X, •) over mX ′X = I by choosing X̂ equal
to the eigenvectors corresponding with the p largest eigenvalues of P?.
Thus P?X̂ = X̂Θ for MCA1. Also, from (4), we see GŶ = mP?X̂ =

mX̂Θ and thus CŶ = mG′X̂Θ = mDŶΘ. This proves (3b), with
Θ = Λ.
We now travel the other route, and tackle MCA2. Define σ(•, Y ) as
the minimum of σ(X, Y ) over all X. This minimum is attained for

X̂ =
1

m

m∑
j=1

GjYj,(6)

i.e. each object is located in the centroid of the m categories that it is
in. Then

σ(•, Y ) = tr Y ′(D − 1
m
C)Y,(7)

and the minimum over Y ′DY = I is attained by finding Ŷ , the eigen-
vector corresponding with the largest eigenvalues of the eigen-problem
CY = mDY Ξ. Now we use (6) to derive mG′X̂ = CŶ = mDŶ Ξ and

thus mP?X̂ = GŶ Ξ = mX̂Ξ. This proves (3a), with Ξ = Λ.

There are several aspects of the proof which deserve some additional
attention. Equation (4) is called the first centroid principle, and (6) is
the second centroid principle. The first centroid principle shows clearly
how the star plots get their name in MCA1. Category vertices are in
the centroid of the vertices of the objects in the category, and if we
have a clear separation of the kj categories, we see kj stars in R

p. This
also shows that in MCA1 the category vertices are in the convex hull
of the object vertices, they form a more compact cloud. In MCA2, it
is the other way around.
Of course the theorem does not say the solutions to MCA1 and MCA2
are identical, they are in fact merely proportional. In MCA1 we see
from (4) that Ŷ ′DŶ = mX̂ ′P?X̂ = Λ. In the same way, in MCA2,
mX̂ ′X̂ = Λ.
In fact, this leads to one last important construct in MCA1. The
matrix Ŷ ′jDjŶj = X̂ ′PjX̂ is known as the discrimination matrix. It
is equal to the between-category dispersion matrix of variable j, i.e.
to the size of the stars for that variable. The average discrimination
matrix is equal to Λ, the diagonal matrix of eigenvalues. Since P? is the
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average of m orthogonal projectors, we have Λ ≤ I. This can also be
seen from the fact that each element of Λ is the average, over variables,
of the ratio of the between-category variance and the total variance.
A more direct proof of the equivalence of the eigenvalue problems
for MCA1 and MCA2 is possible by starting with the singular value
problem GY = mXM and G′X = DYM , which immediately gives
CY = mDYM2 and P?X = XM2. In the French approach, this is
expressed by saying that MCA is correspondence analysis applied to
the “tableau disjonctif complet” G.

2. Aspects of Multivariables

We think the graphical or geometric approach to MCA outlined
above is a valid and interesting way to introduce and discuss the tech-
nique, but in this paper we go back to the more analytical formulations
first proposed by Guttman [1941]. We unify and extend results in pre-
vious papers [de Leeuw, 1982, 1983, 1988, 1990, 1993].
One major reason for preferring the analytical approach is that it
generalizes easily to different criteria and to more general (infinite-
dimensional) situations. Another reason is that a more convincing
treatment of multidimensional quantification becomes possible.
In the alternative (non-geometric) formulation we discuss here the
emphasis is on finding transformations of variables and on the construc-
tion of scales. This makes it easier to relate correspondence analysis to
classical multivariate analysis techniques, such as principal components
analysis.

2.1. Aspects and Feasible Transformations. In this paper, a vari-
able is an element h of some Hilbert space H. This could just be the
space of vectors with n elements, but it could also be the space of
random variables with finite variances. A multivariable is just a map-
ping of an index set J into H, i.e. each j ∈ J corresponds with a
variable hj . A finite number of the hj can be collected in a “matrix”
H = {h1, . . . , hJ}. Observe that H , interpreted as a matrix, does not
have a well-defined number of rows. Nevertheless it is straightforward
to define the matrix operations we need in a consistent way. Matrix
H ′H contains inner-products of the elements of H , while Hu ∈ H is a
linear combination of the hj . If f ∈ H, then f ′H has inner products of
f with the elements of H .
Informally, an aspect of a multivariable is a well-defined function that
is used to measure how well the multivariable satisfies some, presum-
ably desirable, criterion. Because there are many such criteria, there
are many different aspects.
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Definition 2.1. An aspect of a multivariable is a real-valued function
φ defined on the set of multivariables on a given index set J .

The idea of using aspects to define multivariate analysis techniques
was introduced in de Leeuw [1990]. The basic idea is simple. In many
situations, especially in the social and behavioral sciences, we do not
know precisely how to express our variables. Thus in a regression model
the dependent variable “income”, for instance, might be dollar-income,
but it might also be log-dollar-income, or even some unknown mono-
tonic transformation of dollar-income. For other variables, there may
be missing information on some of the observations, and we get differ-
ent expressions for different imputations. In yet another scenario, there
may be latent variables, which are completely unobserved and only de-
fined by their place in the model. And finally, some variables may be
ordinal or nominal, and they can be incorporated in a correlational
analysis only after quantification.
Of course not all quantifications are feasible. If we impute missing
data, we want the imputed variable to be equal to the data in the
non-missing part. If we transform or quantify an ordinal variable, we
want the transformation to be monotone. If we quantify the nominal
variable “religion”, we want all protestants to get the same value, all
buddhists to get the same value, and so on.
Thus the basic problem in this particular approach to multivariate
analysis is to select an aspect, and to investigate how this aspect varies
over all feasible transformations, quantifications, or imputations of the
variables. One particular approach is to study what the maximum
value of the aspect is. We will formalize this optimization problem for
the case in which the feasible transformations are finite-dimensional
subspaces of H. This can easily be generalized to infinite-dimensional
subspaces, and even to convex cones. See de Leeuw [1990].

2.2. Examples of Aspects. In a well-known paper Kettenring [1971]
uses a similar “aspect” approach to extend canonical correlation anal-
ysis to three or more sets of variables. Versions of these ideas were pro-
posed even earlier by Steel [1951] and Horst [1961, 1965]. Kettenring’s
contribution is also discussed in the book by Gnanadesikan [1977, pags
69-81]. From a slightly different (psychometric) angle, other related
aspects were discussed by van de Geer [1984] and ten Berge [1988].
All aspects in the table below are correlational aspects, i.e. they are
functions of the correlation matrix R = {rj`} of the variables.
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Proposer Name Description
Horst SUMCOR Sum of rj`

Kettenring SSQCOR Sum of r2j`
Horst MAXVAR largest eigenvalue of R

Kettenring MINVAR smallest eigenvalue of R
Steel GENVAR determinant of R

All of the correlational aspects in the table, except SUMCOR, are actu-
ally also eigenvalue aspects, i.e. they are functions of the eigenvalues of
the correlation matrix. SSQCOR is the sum of squares of the eigenvalues
of the correlation matrix. Because the sum of the eigenvalues of the cor-
relation matrix is a constant, using the SSQCOR aspect is also identical
to looking at the variance of the eigenvalues. GENVAR, the determinant
of the correlation matrix, is the product of the eigenvalues.
The correlational aspects in the table are all measures of “interde-
pendence” of the variables, there is no notion of dependence or causal
ordering in any of them. In de Leeuw [1990] it was observed that we
may as well include aspects such as the squared multiple correlation
(SMC) coefficient between one variable and the rest. Or we could use
the sum or sum-of-squares of one or more canonical correlation coeffi-
cients for a given partitioning of the variables into sets. Also, general-
izations such as the sum of the correlation coefficients to the power s,
or the absolute value of the correlation coefficients to the power s could
be considered. MAXVAR and MINVAR can be generalized by considering
the sum of the p largest or smallest eigenvalues. The multinormal neg-
ative log-likelihood can also be analyzed as a correlational aspect. It
is

φ(R) = min
Γ
log |Γ|+ tr Γ−1R,(8)

where the minimization is over a set of model-constrained correlation
matrices (for instance, all matrices satisfying the Spearman two-factor
model). We do not go into details here, but clearly the notion of a
correlational aspect is very general.
In de Leeuw [1988] another aspect, which is non-correlational, was
studied in some detail. We form the difference of the sum of all corre-
lation ratio’s and corresponding squared correlation coefficients. Thus
the aspect is

φ(H) =

m∑
j=1

m∑
`=1

{η2j` − r2j`}.(9)

Minimizing such an aspect means aiming for transformations that max-
imize linearity of the bivariate regressions.
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Another non-correlational aspect is the Box-Cox version of (8). This
adds a penalty term to the log-likelihood equal to the logarithm of the
transformation Jacobian. It penalizes for making the transformations
too flat. Because of this there is no need to normalize, and we can use
covariances instead of correlations. The aspect is

φ(S) = min
Σ
log |Σ|+ tr Σ−1S − 2

m∑
j=1

logDhj,(10)

The original reference is Box and Cox [1964], and use of this aspect in
multivariate analysis has been analyzed in detail in Meijerink [1996].
One reason why it makes sense for us to look at aspects at this level
of generality, is because there is a simple algorithm that allows us to
optimize many of them. We will discuss it below. The other reason is,
that in some theoretically and perhaps also practically interesting sit-
uations we can show that the transformations we find are independent
of the choice of the aspect. This will be discussed in Section 6.

3. Maximizing Aspects

We have seen that different multivariate analysis techniques are as-
sociated with different aspects. Canonical analysis looks at aspects de-
fined in terms of the canonical correlations, principal component analy-
sis looks at eigenvalue aspects. Multiple regression uses the SMC, path
analysis uses the sum of a number of SMC’s, and so on. Some of the
aspects we have considered do not correspond with classical techniques
at all.
We need some additional notation. Suppose Gj is a basis for the
subspace Hj of feasible transformations of variable j. Thus Gj consists
of a finite number of elements, say kj elements, of H, collected in the
“matrix” H . Previously, Gj was the indicator matrix of variable j,
now it is more general. Suppose Dj is the diagonal matrix of order kj
with the squared lengths of the elements of Gj on the diagonal. An
element of Hj can obviously be written as a linear combination of the
elements of Gj, i.e. in the form hj = Gjθj . We write NORM(θj) for
the normalization of θj that satisfies θ

′
jDjθj = 1.

3.1. Majorization. The algorithms proposed in this paper are all of
the majorization type. In a majorization algorithm we want to max-
imize φ(θ) over θ ∈ Θ. Suppose ψ(θ, ξ) on Θ × Θ, which we call the
majorization function, satisfies

φ(θ) ≥ ψ(θ, ξ) for all θ, ξ ∈ Θ,(11a)

φ(θ) = ψ(θ, θ) for all θ ∈ Θ.(11b)
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Thus, for a fixed ξ, ψ(•, ξ) is below φ, and it touches φ in the point
(ξ, φ(ξ)).
There are two key theorems associated with these definitions.

Theorem 3.1. If φ attains its maximum on Θ at θ̂, then ψ(•, θ̂) also
attains its maximum on Θ at θ̂.

Proof. Suppose ψ(θ̃, θ̂) > ψ(θ̂, θ̂) for some θ̃ ∈ Θ. Then, by (11a)
and (11b), φ(θ̃) ≥ ψ(θ̃, θ̂) > ψ(θ̂, θ̂) = φ(θ̂), which contradicts the

definition of θ̂ as the maximizer of φ on Θ.

Theorem 3.2. If θ̃ ∈ Θ and θ̂ maximizes ψ(•, θ̃) over Θ, then φ(θ̂) ≥
φ(θ̃).

Proof. By (11a) we have φ(θ̂) ≥ ψ(θ̂, θ̃). By the definition of θ̂ we have

ψ(θ̂, θ̃) ≥ ψ(θ̃, θ̃). And by (11b) we have ψ(θ̃, θ̃) = φ(θ̃). Combining
the three results gives the desired conclusion.

If φ is bounded above on Θ, then the algorithm generates a bounded
increasing sequence of function values, thus it converges. Some mild
continuity considerations are needed to actually show that the sequence
of θ values converges as well. See de Leeuw [1990], or for a general
discussion the book by Zangwill [1969].

3.2. General Aspects. We shall maximize the aspect

φ(G1θ1, . . . , Gmθm)

over the θj with the normalizations conditions θ
′
jDjθj = 1 for all j.

Theorem 3.3. If (θ1, . . . , θm) maximizes the aspect φ(H) over the
normalized θj then

G′j
∂φ

∂hj
= λjDjθj(12)

Proof. This just applies the chain rule to the Langrangian of the opti-
mization problem.

It follows that the Lagrange multipliers λj are given by

λj = h
′
j

∂φ

∂hj
.(13)

Theorem 3.4. Suppose φ(H) is a convex and differentiable function
of H which is bounded above. Then the algorithm A defined by

θ
(k)

j = D
−1
j G′j

∂φ

∂hj

∣∣∣∣
θ=θ(k)

,(14a)
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and

θ
(k+1)
j = NORM(θ

(k)

j ).(14b)

converges from any starting point.

Proof. Convexity implies that for all θ and θ̃ we have the majorization

φ(H(θ)) ≥ φ(H(θ̃)) +
m∑
j=1

(θj − θ̃j)′G′j
∂φ

∂hj

∣∣∣∣
θ=θ̃

.(15)

Maximizing the majorization function on the right hand side gives the
algorithm in the theorem.

3.3. Correlational Aspects. For correlational aspects we use the
fact that the covariance of feasible transformations of variables j and
` can be written as the simple bilinear form θ′jCj`θ`. The variances are
θ′jDjθj and θ

′
`D`θ`. We now state two theorems very similar to those

in the previous section.

Theorem 3.5. If (θ1, . . . , θm) maximizes the aspect φ(R) over all nor-
malized θ then

m∑
`=1

∂φ

∂rj`
Cj`θ` = µjDjθj .(16)

Proof. Use the chain rule, just as before.

The Lagrange multipliers µj are now given by

µj =
m∑
`=1

∂φ

∂rj`
rj`.(17)

Unfortunately the majorization algorithm for correlational aspects is
somewhat less simple. The main difference is that we now have to
update a single θj at a time, and then recompute the aspect and its
derivatives before we update the next θj .

Theorem 3.6. Suppose φ(R) is a convex and differentiable function
of R which is bounded above. Then the algorithm A defined by

θ
(k)

j = D
−1
j

{
j−1∑
`=1

∂φ

∂rj`
Cj`θ

(k+1)
` +

m∑
`=j+1

∂φ

∂rj`
Cj`θ

(k)
`

}
,(18a)

and

θ
(k+1)
j = NORM(θ

(k)

j ).(18b)

converges from any starting point.
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Proof. Suppose we update θj . The convexity of φ gives the majorization

φ(R) ≥ φ(R̃) +

m∑
`=1
` 6=j

∂φ

∂rj`
(rj` − r̃j`).

Thus it obviously suffices to maximize
m∑
`=1
` 6=j

∂φ

∂rj`
θ′jCj`θ`

over the normalized θj . This gives the update in the theorem.

In de Leeuw [1990] several ways are discussed to simplify the above
algorithm for correlational aspects. If we assume that ∂φ

∂R
is positive

semidefinite for all R, then we can apply majorization a second time,
and we find an algorithm that can update all θj in a single step, without
having to recompute aspects and derivatives.

3.4. Convexity. The theorems above are useful if the aspects we
study are convex, either in the transformed variables H or in the cor-
relation matrix R. In de Leeuw [1990] it is shown that most interesting
correlational and eigenvalue aspects are, indeed, convex. The key result
used to prove convexity is the following lemma.

Lemma 3.7. Suppose ψ(θ, ξ) is convex in θ for every ξ ∈ Ξ. Then
φ(θ) = sup

ξ∈Ξ
ψ(θ, ξ)

is convex in θ as well.

Proof. See, for instance,[Rockafellar, 1970, pag xx].

In particular, the first three aspects in Table 2.2 are convex in R, the
last two (which we usually want to minimize) are concave in R. Norms
ofR are convex, the SMC is convex, the sum of the p largest eigenvalues
is convex, the multinormal log-likelihood (8) is convex, and so on.

3.5. Canonical Correlation Aspects. It is observed in de Leeuw
[1990] that the canonical correlations and most aspects based on them
are not convex functions of the correlation coefficients. Thus although
they are correlational aspects, we cannot use the results based on con-
vexity. Nevertheless successful algorithms based on canonical correla-
tion aspects were tried out by Tijssen and de Leeuw [1989].
To some extent, however, reintroducing enough convexity is merely
a matter of redefining the problem. Suppose we have three sets of vari-
ables. We then set up the analysis as if there are only three subspaces
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of H, and we computes the correlations between elements of those
three subspaces. Thus we do not transform each variable separately,
we transform each set of variables with a feasible transformation. This
brings us back to the correlational aspects, in particular those in the
Kettenring table, applied to the 3× 3 correlation matrix of the sets.
This is precisely the way in which the generalized canonical correla-
tion program OVERALS, discussed in van der Burg et al. [1988], is fitted
into the MCA loss function (2). We code the variables in the sets inter-
actively, and then impose additivity restrictions on the quantifications.

4. The Largest Eigenvalue Aspect

Suppose the aspect we want to maximize is the largest eigenvalue
λmax(R). Thus, in a sense, we want to scale the variables in such a way
that they are as one-dimensional as possible. It is of some interest that
in recent numerical analysis and mathematical programming literature
there is a great deal of interest in minimzing the largest eigenvalue
of a parameter-dependent matrix. Compare, for example, various pa-
pers by Michael Overton and co-workers [Overton, 1988; Haeberly and
Overton, 1994; Overton and Womersley, 1993]. In fact, it might be in-
teresting in general to look at the range of aspects, i.e. to compute both
the minimum and the maximum over all monotonic transformations.
To compute the derivatives of the aspect, we need a general result on
the derivatives of eigenvalues. This result is classical. Background, and
rigorous proofs, can be found in Kato [1976] or Baumgaertel [1985].

Lemma 4.1. Suppose Rz = λz, where z′z = 1 and the eigenvalue λ is
unique. Then

∂λ

∂R
= zz′.

This result is powerful enough to implement the algorithm of the
previous section, but actually this algorithm can be simplified consid-
erably in this case.

Theorem 4.2. If (θ, µ) corresponds to a stationary value of the max-
imum eigenvalue aspect, then yj = zjθj and λ =

∑m
j=1 µj satisfy the

generalized eigenvalue problem
m∑
`=1

Cj`y` = λDjyj,(19a)

where
m∑
j=1

y′jDjyj = 1.(19b)
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Conversely, any eigenvalue-eigenvector pair (y, λ) of this generalized
eigenvalue problem defines a stationary value of the maximum eigen-
value aspect with µj = λz

2
j and θj = NORM(yj).

Proof. The stationary equations (3.5) in this case are

m∑
`=1

zjz`Cj`θ` = µjDjθj ,(20)

which implies that

µj =

m∑
`=1

zjz`rj` = λz
2
j .(21)

Substituting this and defining yj = zjθj gives the generalized eigenvalue
problem. A similar substitution establishes the converse.

This eigenvalue-ewigenvector problem is, of course, precisely (3b). Thus
finding quantifications which maximize the largest eigenvalue is the
same thing as finding the dominant eigenvalue in MCA. Again this
shows that the first dimension of MCA is special. The remaining di-
mensions, from this point of view, merely give the remaining stationary
values of the maximum eigenvalue aspect.

5. Notions of Multidimensionality

The technique we have discussed in the previous section can be ex-
tended, or “made multidimensional”, in at least two different ways.
This has created some confusion, but it also provides a framework in
which the Guttman quotation from subsection 1.3 and the “horseshoe”
effect (in French, the “effect Guttman”) can be discussed.

5.1. Multiple Quantifications. In our first multidimensional exten-
sion, we can compute additional solutions to the generalized eigenvalue
problem Cy = λDy. Each one of these defines a stationary value of
our maximum eigenvalue aspect, and a corresponding system of feasible
transformations. This type of multidimensionality is used in multiple
correspondence analysis. From the point of view of maximizing aspects
it is not very natural to go this way, as Guttman earlier has already
indicated.
Also, observe that each additional dimension produces a set of quan-
tifications, which can be used to construct an “induced” corraltion ma-
trix. Since we have mk non-trivial solutions with m variables coded
with subspaces over dimension k. This produces a lot of correlation
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matrices (and each of thse could be subjected to a principal compo-
nent analysis, for instance). Gifi uses the expression “data production”
in this context.

5.2. Multidimensional Aspects. In the second multidimensional ex-
tension, we use as a different aspect the sum of the first p largest eigen-
values. This is used in nonlinear principal component analysis, which
is discussed in considerable detail in the multidimensional scaling lit-
erature. A classic reference is Young et al. [1978], more recently the
technique has been discussed in the ACE framework by Koyak [1987].
Observe the aspect is a convex correlational aspect, but it does
not have a simple relationship any more with a single fixed general-
ized eigenvalue problem. Thus the computational problem is inher-
ently more complicated. It is based on the obvious generalization of
Lemma 4.1.

Lemma 5.1. Suppose RZ = ZΛ, where Z ′Z = 1 and the p dominant
eigenvalues are in the diagonal matrix Λ. If λp > λp+1 then

∂
∑p
s=1 λp

∂R
= ZZ ′.

The majorization algorithm alternates finding the dominant eigen-
values and their eigenvectors with optimal transformation of the vari-
ables. Or, alternatively, alternating a single simultaneous iteration for
the eigenvextors with optimal scaling. Convergence follows from the
general theory.
Observe that these multidimensional aspects give rise to stationary
equations that in gnereal also have more than one solution. Such addi-
tional solutions, corresponding with other stationary values, have not
been studied, except in some very special cases.

6. Linearizing All Bivariate Regressions

In this section we discuss a very interesting robustness result, which
was first mentioned in de Leeuw [1982]. It says that under some cir-
cumstances, the choice of the aspect does not matter. We find the same
quantifications, no matter which aspect we maximize.

Theorem 6.1. Suppose we can find (θ1, ..., θm) that make all bivari-
ate regressions linear. Then (θ1, ..., θm) satisfies the stationary equa-
tions (3.5), independently of the aspect.

Proof. The bivariate regressions are linear if

Cj`θ` = rj`Djθj .(22)
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If we substitute this in equations (3.5) we find
m∑
`=1

∂φ

∂rj`
rj`Djθj = µjDjθj ,(23)

which is an identity because of (17).

Clearly, for such a bi-linearizable multivariate distribution, nonlinear
principal component analysis will give the same quantifications as the
first multiple correspondence analysis dimension.
The question is, however, in how far we can expect to observe ap-
proximate bi-linearizability in real data. It seems intuitively obvious
that we may be able to find it in ordinal variables, such as attitude
scales, but we are unlikely to observe it with purely nominal variables
which do not have any obvious order on the categories. Also, more than
one system of quantifications linearizing the regressions may exist.

7. Some Gauges

According to Gifi [1990], a gauge is a dataset whose structure we
know. Thus we know what to expect from an analysis of such a gauge,
and if a technique does not represent the essential features of the data,
it fails the gauge. The notion is used in Gifi’s book to broaden the
relationship between models and techniques beyond the classical opti-
mality relationship of mathematical statistics.
We shall discuss some gauges to show that bi-linearizability occurs
in at least three common situations. Two of them are more or less
trivial, the third one is of considerable interest for theoretical reasons.

7.1. A single bivariate table. In a single bivariate table both re-
gressions can be linearized by performing a correspondence analysis on
the table. The row and column scores of the correspondence analysis
linearize the regressions. In fact this is one way to define correspon-
dence analysis: find row and column scores for a table which make both
regressions linear.

7.2. Binary variables. If all variables are binary, then any set of
scores linearizes the regressions, because two points are always on a
line.

7.3. The multivariate normal. Suppose the multivariate distribu-
tion we analyze is a multivariate normal, with standard normal marginals
and correlations ρj`. The Hermite polynomials of degree s in hs(xj) are
a bi-linearizing system. In fact

Cj`hs(x`) = ρ
s
j`Djhs(xj).(24)
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Thus we have a denumerable system of bi-linearizing systems, one for
each polynomial degree. Each system induces a correlation matrix
which is an element-wise (Hadamard) power of the correlation matrix
R. The eigenvalues of MCA are the m eigenvalues of R, the m eigen-
values of R(2), and so on. Transformations corresponding to R(s) are
all Hermite polynomials of degree s, weighted by the coefficient from
the eigenvector.
This polynomial bi-linearizibility, discussed for the bivariate case in
great detail by Lancaster and his students Lancaster [1969], is a natural
explanation of the (in)famous “horse-shoe” of correspondence analysis.
If the largest eigenvalue of R(2) is larger than the second eigenvalue of
R = R(1), which will happen for dominant first dimensions, then all
second-dimension transformations are quadratic functions of the first-
dimension transformations. Two dimensional transformation plots will
look like horse-shoes.
Observe that basically the same result applies to what Yule calls
strained multinormals. If the variables we observe are smooth mono-
tonic (“strained”) transformations of a number of standard joint multi-
normals, then applying MCA (or any other aspect-based transforma-
tion technique) will “unstrain” by finding the inverse transformation,
which linearizes all bivariate regressions. Some statistical consequences
of bi-linearizability are discussed in de Leeuw [1988].

7.4. KPL diagonalization. The structure in our three gauges can
be described nicely in terms of diagonalizing the Burt matrix. Let
us look at the Burt matrix of a multinormal, for instance. We con-
tinue to use matrix notation, even though some of our operators are
infinite-dimensional. Thus each Cj` is a standard bivariate normal,
with correlation ρj`. Collect the Hermite polynomials as columns in
the “matrix” K. Then K ′Cj`K = Λj` where Λj` is a diagonal ma-
trix which contains the powers of ρj`. Thus if we use the direct sum
K = K ⊕ · · · ⊕ K in K′CK, then all blocks will be diagonal. Thus
there is a permutation matrix P , such that P ′K′CKP is the direct sum
R ⊕ R(2) ⊕ · · · . Construct the direct sum L = L ⊕ L(2) ⊕ · · · which
contains the eigenvalues of the R(s). Then L′P ′K′CKPL is diagonal,
i.e. the matrix KPL has the eigenvalues of the Burt matrix C.
This KPL structure for the eigenvectors also occurs (trivially) in
our two other gauges. See de Leeuw [1982]; Bekker and de Leeuw
[1988] for the details. But more importantly, there is an approximate
KPL structure for the MCA eigenvalues in many actual examples with
attitude or diagnostic scales. It provides a much compact decompositon
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of the Burt matrix, and in shows in which respects an MCA of the
matrix is redundant.
Of course KPL is stricter then bi-linearizibility, because if KPL ap-
plies, each dimension is a bi-linearizing system (with some of the bi-
linearizing systems inducing the same correlation matrix).
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