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Abstract

Interactive data visualization is inherently an iterative
trial-and-error process searching for an ideal set of param-
eters for classifying and rendering features of interest in the
data. This paper presents 3-d region growing based tech-
niques that can assist the users to locate and define fea-
tures of interest in volume data more quickly and more ac-
curately. One technique employs partial region growing to
generate a 2-d transfer function that effectively reveals the
full features of interest. The other technique uses the result
of full region growing to systematically construct a bound-
ary surface for the extracted features. The resulting polyg-
onal representation of the boundary surface can facilitate
comparison, measurement, and simulation. A visual assess-
ment method is suggested by using the extracted volume
and surface information. These techniques either shorten or
completely eliminate the typical trial-and-error step in the
process of interactive data exploration.

1. Introduction

Increasingly, many studies in science and medicine pro-
duce volume data. Volume rendering is a powerful tech-
nique which can effectively reveal different aspects of the
volumetric data content [3]. Over the past decade, various
research efforts have gone into improving the quality, per-
formance, and usability of volume rendering. In particular,
the recent commodity graphics hardware support for inter-
active volume rendering has brought to us a desktop solu-
tion to volume visualization. While volume rendering will
not replace the traditional surface rendering in work place,
it is gaining growing popularity and becoming the primary
method to use for visualizing volume data.

Volume rendering, however, is only the image synthe-
sis step of a complete volume visualization process. Typi-
cally, there are a filtering step and a classification step prior
to the rendering step, which could be followed by an as-
sessment step. In this paper, we present our study on using

region growing methods to assist the classification and as-
sessment steps of volume visualization. We have applied a
similar approach to the visualization of nondestructive test-
ing data and obtained good results [6], which motivated
us to refine our designs and conduct a more comprehen-
sive study for more general volume visualization problems.
The result is a new visualization technique which we call
RGVis—Region Growing based Visualization. Our new in-
vestigations have focused on how the degree and extent of
region growing impact the quality of transfer functions as
well as the subsequent surface modeling. We have also de-
veloped an efficient and robust modeling technique, which
is supplemented with an assessment method through visu-
alizing uncertainty. We have built an interactive visualiza-
tion system based on RGVis. This paper presents the results
of applying RGVis to several data sets from medical appli-
cations.

2. Interactive Volume Data Exploration

A high-resolution volume data set can contain a wealth of
information. The features which the scientists are interested
in are generally related to some local density variation and
can be either clustered or scattered. Even though the sci-
entist might have some knowledge about the data content,
due to the inherent complexity of the embedded structures,
noise resulted from data acquisition, low contrast of some
features, or large dynamic range of data values, it could take
a great effort to locate a feature and effectively portray it by
visualizing the data directly. A visualization system should
thus provide to the user as much assistance and hints as pos-
sible during the whole course of data exploration and visu-
alization.

The advent of hardware-accelerated volume render-
ing enables interactive feature finding and visualization.
The latest graphics cards also support sophisticated pro-
grammable features which allow for the making of high
quality, expressive visualizations. Hardware accelerated
volume rendering is only limited by fill rates and the tex-
ture memory size of the video card since data must first be



loaded into the texture memory before rendering can be per-
formed.

If interactive rendering is possible, volume data explo-
ration is generally achieved by editing color and opacity
transfer functions [12]. Kindlmann and Durkin [7] intro-
duced an intuitive way to derive opacity transfer functions
based on the fact that the derivatives of data values suggest
material boundaries. They show that by looking at a two-
dimensional scatterplot of data values and gradient magni-
tudes (i.e., a 2-d histogram), opacity transfer functions can
be easily defined to effectively capture features composed
of boundaries between materials of relatively constant data
value. Kniss, et al. [8] extended their work by introducing a
set of direct manipulation widgets as the interface for defin-
ing multidimensional transfer functions for volume visual-
ization. The concept of dual-domain interaction is particu-
larly powerful and demonstrated with several effective vi-
sualization examples. However, to derive desirable classifi-
cation and visualization result a trial-and-errors process is
still needed.

We have developed an interactive volume visualization
system which uses region growing to assist user in the data
exploration and visualization process. As shown in Figure 1,
the user interacts with the volume data through an interface
which displays a slice and a 2-d histogram of the volume.
The user slices through the volume and select a region of in-
terest on the slice by plotting a line segment over the region.
The system uses the points on the line segment to initiate a
region growing process. The statistical properties of the re-
gion growing result are then used to derive a transfer func-
tion that would capture all related regions of interest in the
volume. The central idea here is that a full region growing
is generally not needed. The left image of Figure 2 displays
the results of applying a partial region growing to a confocal
microscopy ganglion data set which has 64×300×400 vox-
els. The partial growing took 0.03 seconds and 5,000 voxels
were extracted. The left image was rendered using the de-
rived 2-d transfer function.

We will discuss the relation between the degree and
extent of region growing and the quality of the transfer
function derived. In contrast, the dual-domain interactive
method [8] takes a point specified by the user and then high-
lights the corresponding point on the 2-d histogram of the
volume. The user would use this point as a starting place to
edit a transfer function while simultaneously watching the
resulting image.

Therefore, with our system the user only need to specify
the region of interest, and a transfer function is suggested
to the user. According to our test results, most of the time
the suggested transfer function is close to the desired one,
which if defined manually could take several iterations of
editing over the 2-d histogram.

A full region growing collects the set of voxels com-

Figure 1. An interactive volume visualization
system using region growing to assist the
user to extract and visualize features of in-
terest.

Figure 2. Left: Partial growing which takes
0.03 seconds. Right: Visualization of the full
feature using the derived transfer function.

pletely representing the feature of interest. It is often useful
to derive a boundary surface for the extracted feature. Such
a surface representation can facilitate comparative studies,
measurement, and quality assessment. Constructing an iso-
surface directly can miss many fine parts in the features.
Our system can generate a boundary surface from the col-
lection of data points out of a full region growing. Figure 3
compares an isosurface and a boundary surface of ganglia
extracted from a confocal microscopic data set. The bound-
ary surface represents the vessels more completely, includ-
ing many many very fine ones. In addition, a hybrid render-
ing of the surface representation and the points allows us
to assess the quality of the surface, as demonstrated in Sec-
tion 5.

The rest of the paper describes how region growing
works to extract features of interest, how a transfer function
is defined with partial region growing, the surface model al-
gorithm, and finally a quality assessment method.



Figure 3. Surface visualization of a confocal
microscopic ganglion data. Left: isosurface.
Right: region-growing based surface extrac-
tion results in less ambiguous surfaces and
leaves out all the undesirable parts.

3. A Region Growing Method

Region growing is a fundamental segmentation technique in
image processing [13]. In the context of volume data seg-
mentation, the goal of region growing is to map the input
volume data into sets of connected voxels, called regions,
according to a prescribed criterion which generally exam-
ines the properties of local groups of voxels [9]. The grow-
ing starts from a voxel in the proximity of the seed point
selected by the user. The voxel can be chosen based on ei-
ther its distance from the seed point or the statistical prop-
erties of the neighborhood. Then each of the twenty-six im-
mediate neighbors of that voxel are visited to determine if
they belong to the region. This growing expands further by
visiting the neighbors of each of these twenty-six voxels.
This recursive process continues until either some termina-
tion criterion is met or all voxels in the volume are exam-
ined. The result is a set of connected voxels determined to
be located within the region of interest.

Feature finding thus becomes semiautomatic start-
ing with an interactive seed point selection step, followed
by the region growing process. As a result, the user only
needs to find a few representative features and lets the re-
gion growing locate all features of similar properties in
the same volume data. This approach is similar to the vol-
ume seedling method introduced by Cohen et al. [2].
In their work, region growing is used to help iden-
tify fine blood vessels in MRA volume data. More recently,
Hahn et al. [4] develop a pipeline of 3D image process-
ing steps to derive accurate models for visualization and ex-
ploration of vascular structures from radiological data. The
resulting vessel models are used to study the branching pat-
terns, for measurement, etc. Hu et al. [5] apply region
growing to the segmentation of lung data to derive air-
way tree for surgical planning.

3.1. Seed point selection

Region growing begins from a seed point. In our system
the user picks a seed by interactively slicing through the vol-
ume data. As soon as a slice is picked the user can move
the cursor into the desired region and click to complete the
selection. To further assist interactive seed point selection,
some information about the seed voxel and its surrounding
voxels is presented to the user. As shown in Figure 4, when a
point is selected, it is highlighted on the scatterplot together
with its 26 neighbors. This resembles to the dual-domain in-
terface but more information is provided to the viewer. The
coordinates of each highlighted point are the corresponding
voxel’s scalar and gradient magnitude values. A solid line
connects the current point to each of its 26 neighbors. An-
other very important piece of information is the blue rect-
angle which shows the standard deviation of the data values
(x-axis) and the standard deviation of the gradient magni-
tudes (y-axis) of the neighbors. Essentially, a tighter rectan-
gular box suggests a region of high homogeneity. All these
pieces of information provide the user some hints about the
goodness of the selection.

Alternatively, the user can specify a line segment instead
of a point. A line segment consists of a sequence 3-d points.
Figure 5 shows the interface displaying some properties of
those selected 3-d points divided into preclassified zones
(i.e., the bottom color rectangles). The user can then choose
a a seed point for subsequent region growing by selecting
one of the preclassified zones. Again, such an interface of-
fers the user more information assisting in the data explo-
ration process.

3.2. Growing criteria selection

To do region growing, a set of criteria must be appro-
priately selected to effectively extract the regions. Possible
criteria include region homogeneity and contrast with the
background, strength of the region boundary, size, confor-
mity to a desired texture or shape, and so on [13]. We have
derived three criteria mainly based on region homogeneity
and region aggregation using either data values or gradi-
ent magnitudes of the voxels. To make our region growing
method more robust, at each voxel we also take into account
some first-order statistical information about its 26 neigh-
boring voxels.

Each criterion is defined by acost functionwhich is de-
signed to extract a particular type of feature. If the value re-
turned by the cost function is less than 1, then the voxel un-
der consideration is within the region. Three functions are
defined:

A. fca = |v−vs|
kσv

wherev is the data value of the current
voxel,vs is the data value of the seed voxel, k is a con-
stant specified by the user, andσv is the standard de-



Figure 4. Left: A selected point. Right: Ad-
ditional information displayed to assist seed
selection.

Figure 5. Left: A selected line segment. Right:
Additional information displayed to assist
seed selection. The white curve plots the
data values of the points while the blue curve
plots their gradient magnitude values.

viation of the values of the 26 neighboring voxels of
the seed voxel. Note that0 < k. It is used to control
the strictness of the criterion, and its default value is
1. This cost function exploits the data values. It works
well for capturing homogeneous regions in which gra-
dient magnitudes are nearly zero.

B. fcb = |g−gs|
kσg

whereg is the gradient magnitude value
of the current voxel,gs is the gradient value of the seed
voxel, andσg is the standard deviation of the gradient
values of the 26 neighboring voxels of the seed voxel.
This cost function exploits gradient magnitudes and is
used to capture only the boundaries of a region.

C. fcc(p) = fcap+fcb(1−p) wherep is a weight specified
by the user or by the system. By default,p = σg

(σv+σg) .
As a result, this cost function exploits both the data val-
ues and gradient magnitudes. It is more flexible than

fca andfcb.

We can makefcc adaptive that is by adjusting the criterion
during the course of growing. Essentially,σv, σg, andp are
continuously recomputed using the voxels collected so far.
The user can choose to stick to a more conservative grow-
ing criterion by limiting thek value. While this adaptive ap-
proach would require a little more calculations, it frequently
prevents from growing into erroneous regions and thus low-
ers the cost of growing.

Modayur et al. [11] design an adaptive cost function
which takes into account the statistical information of the
region extracted so far to handle the situation where small
connections between two regions should be discarded. Ba-
sically, an adjacency criterion is employed in a postprocess-
ing step but their cost function does not consider the gradi-
ents of voxels which are useful for growing boundaries.

3.3. Postprocessing

After region growing, a postprocessing step might be de-
sirable to extend the results or to improve the results such
as removing erroneous voxels or to fill gaps introduced by
noisy data [6]. Depending on which criterion was used, the
results of feature extraction may vary. For example, due to
noise it is possible for a feature to grow into another through
a very thin connection that is one- or two-voxels wide. A
postprocessing filtering step can be performed to remove
this type of erroneous connection. The lung structure dis-
played in both Figures 6 and 12 was postprocessed.

Since it is easier for the user to extract one feature at a
time, our system allows the user to compose multiple ex-
tracted features into a single visualization, as depicted in
Figure 6. The composition is done interactively through the
user interface providing the user with multiple views. In this
way, the user can extract and enhance each of the features
completely independent of the other features in the same
data set but present them in a single visualization for other
specific purpose. The multiple views also allow the user to
perform comparative visualization of similar features in the
same volume or two different volumes.

4. Partial Region Growing and Transfer
Function Generation

When the cost of region growing is high or there are
multiple regions, it becomes desirable to perform partial
region growing instead, especially during the exploration
stage of volume visualization. That is, feature extraction is
only done for a subset of the volume, or only a small sub-
set of all the interested regions in the data is explicitly ex-
tracted. The system takes the partial region growing result
to construct a classifier, and then a 2-d transfer function,
for the visualization of the overall regions/features of the



Figure 6. Two features, rib and lung, are ex-
tracted independently, and composed to form
a single visualization.

same nature in the data. In a highly interactive visualiza-
tion setting, such exploration procedure allows the user to
very quickly browse through the features of interest in the
data as completely as possible.

Figure 7 displays the image results of using partial region
growing, derived transfer functions, and full region grow-
ing. The corresponding costs for each of the four data sets
used are summarized in the table. All timing results were
obtained on a PC with a 1.8GHz Pentium 4 CPU. In most
cases the cost of a full region growing is too high for interac-
tive visualization. Partial growing, on the other hand, would
take only a small fraction of the time, and the wait time is
generally only tens of milliseconds rather than several sec-
onds. However, when using RGVis, the quality of the raw
data has a significant impact on the resulting visualizations.
For example, in Figure 7 we can observe some differences
in the quality of the visualizations generated with the de-
rived transfer function (classification) and the full region
growing (segmentation). A cleaner structure is depicted in
Figure 2 than those in Figure 7 because the corresponding
data set is less noisy.

The derived 2-d transfer function can be generated by us-
ing the averages as well as standard deviations of the voxel
values and gradient magnitude values. These four values de-
fine a rectangular region on the two-dimensional scatterplot
of the data values and gradient values, which is the classi-
fier we are looking for to capture the extended features. The
two average values are used as the coordinates of the cen-

ter of the rectangular region, and the two standard devia-
tion values define the size of the region. We have used this
method in our previous work [6].

Alternatively, a classifier can be generated directly in
the feature’s 2-d histogram space, and the resulting clas-
sifier is often more robust. The construction of the classi-
fier starts with a k-d tree partitioning of the histogram re-
gion defined by partial growing. For each leaf node, the data
points in the corresponding region are then sorted accord-
ing to their values. Next, for each leaf node a local classifier
is constructed by using the data points with values over a
pre-selected threshold. Other voxels are discarded as noise.
The following step recursively merges these local classifiers
whenever appropriate by traversing the k-d tree. Two clas-
sifiers are merged into one if the new classifier can be con-
structed to contain most data points in these two classifiers
while the new classifier’s area is similar or less than the sum
area of the original two. Figure 8 gives an example show-
ing two classifiers automatically constructed to tightly cap-
ture a boundary surface. The corresponding k-d partition-
ing is shown in Figure 9. After generating the classifier, an
opacity map and a color map are assigned to it for render-
ing the extracted features. An simple way is to use the fea-
ture’s histogram data to construct the opacity map, in addi-
tion to using predefined ones like a linear or Gaussian func-
tion.

More information about the features of interest helps de-
rive a better classification function. Figure 10 displays the
difference of using a point, a small rectangular region, and
a region obtained with partial region growing to construct
a classification function. It is clear the transfer function de-
rived from the region growing captures the enamel part of
the tooth more completely. We have also conducted a study
on how the degree and extent of a partial region growing af-
fect the goodness of the derived transfer function. From the
study results, we found that for most of the data sets we
have used, a 20-40% growing is often sufficient for deriv-
ing a transfer function that is good enough. Figure 11 dis-
plays the rendered images using transfer functions derived
from 20% and 80% growing. The two images are visually
indistinguishable. It took under 0.2 seconds to reach 20%
growing, and about 0.6 seconds to complete 80%.

5. Surface Modeling

Although volume rendering can generate images of the
features of interest without first extracting any geometric in-
formation from the data, a geometric representation of the
features allows for evaluation beyond visual inspection. The
commonly used isosurface extraction method [10] based on
a binary decision would not work well in general, particu-
larly when the volume data is noisy or contains small, fine
features.



With partial region growing:

With derived 2-d transfer function:

With full region growing:

Summary:

data Confocal Microscopyganglion MRA head vasculature MRI head MRI Chest

volume size (voxels) 55×512×512 125×250×250 1283 2563

feature size (voxels) 224,316 (1.55%) 270,696 (3.46%) 123,571 (4.89%) 307,644 (1.83%)
time (seconds) 5.7 7.2 2.8 8.1

partial growing (voxels) 4,363 (0.03%) 5,000 (0.064%) 65,652 (3.13%) 20,001 (0.119%)
time (seconds) 0.022 0.028 0.34 0.12

Figure 7. Visualizations using partial and full region growing for four different data sets. The corre-
sponding costs are summarized in the table. The feature size is the number of voxels resulted from
full region growing. All timing results were obtained on a PC with a 1.8GHz Pentium 4 CPU.



Figure 8. Left: Two classifiers on the 2-d his-
togram. Right: The corresponding visualiza-
tion which shows a boundary surface from a
CT nondestructive testing data.

Figure 9. Kd-partitioning of the space for con-
structing classifiers. The starting rectangular
region is the bounding box of the histogram
of the extracted voxels from the partial region
growing.

To construct boundary surfaces for the features, we make
use of the segmented volume from a full region growing. A
boundary tracking algorithm [1] is used to identify all the
boundary faces which together enclose the extracted voxels.
The resulting volumetric feature representation allows us
to construct compact and hole-free boundary surfaces. The
next step, which is optional, is to filter out high-frequency
artifacts on the boundary faces. At this point, we could ren-
der the boundary faces directly by interpolating the faces’
normals. However, this would only give us a better picture

Figure 10. Left: Visualizing the enamel part of
a tooth using information at a point. Middle:
Using a tiny rectangular region. Right: Using
the extracted region defined with partial re-
gion growing.

Figure 11. Top: The result of 80% growing.
Bottom: The result of 20% growing. The two
images look indistinguishable. The percent-
age was computed by dividing the number of
voxels extracted with the partial region grow-
ing by the number of voxels extracted with a
full region growing.



Figure 12. Left: Isosurface generated directly
from a CT chest data set using Marching
Cube. Right: Boundary suface of the lung
from a CT chest data set derived using
RGVis. The boundary surface is more useful
than the isosurface.

of the boundary surfaces but not the actual more continuous
boundary surfaces. The more desirable boundary surfaces
can be extracted by first computing an isovalue, which can
be the average of the values of those voxels on the bound-
ary faces, and then constructing the corresponding isosur-
face using the marching cubes method [10]. The resulting
surface is smooth while preserving the main topological in-
formation of the features, as shown in the right image of
Figure 3. Figure 12 displays an isosurface and the extracted
boundary surface of the lung from the MRI chest data set.
Note that the isosurface also includes some surrounding un-
wanted parts while the boundary surface more closely cap-
tures the lung structure.

The quality of the boundary surface of an extracted fea-
ture can be assessed visually by hardware-accelerated ren-
dering both the boundary surface and extracted voxels in a
superimposed manner, as shown in Figure 13. Such an in-
teractive visualization allows the user to examine what parts
are left out in the surface representation. This technique can
also be considered as a way to visualize uncertainty infor-
mation. In Figure 13, those voxels outside the boundary sur-
face are colored blue. The user can interactively change the
color and transparency of either the surface or voxels to
evaluate the surface.

Figure 13. Superimposed rendering of the
boundary surface and the extracted voxels
to assess the quality of the surface. In this
case, those voxels outside the boundary sur-
face are colored blue.

6. Conclusions

The process of interactive volume data exploration typi-
cally involves an iterative searching for the desirable visu-
alization parameters. This process is made even more diffi-
cult if the size of the data is large hampering interactive ren-
dering, the volume data is noisy, or a manual search of sev-
eral features is required. The objective of our work is to as-
sist the user in the process of volume visualization. We want
the user to focus on the data as much as possible, rather than
the user interface artifacts. The user should not always need
to go through a trial-and-error process to derive useful visu-
alizations. A visualization system should do as much work
as possible for the user, provide a lot of hints to the user for
making some key decisions, and then generate the visual-
ization results the user is after.

We have developed a new volume visualization
approach—RGVis which is based on region grow-
ing. In addition to the traditional way of using region
growing, a new concept introduced here is the auto-
matic generation of a transfer function for the user by
making use of the result of partial region growing. Essen-
tially, the user only needs to point to the region of interest
and the system does everything else for the user. The trans-
fer function derived is generally good enough so the previ-
ously required searching effort is eliminated.



The surface modeling feature allows the user to oper-
ate on the extracted features such as making comparison,
measurement, evaluation, and simulation. We plan to add a
functionality to compute topological information from the
surface representation and investigate how this information
can be used in some application-specific tasks, such as di-
agnosis or surgical planning.

We have built a prototype system based on this region-
growing approach and tested it on a variety of data. The re-
sults we have obtained so far are promising as demonstrated
in this paper. We feel this new technique can be made more
robust by further improving the growing criteria as well as
the formulation of the transfer functions. We also intend to
improve the efficiency of the system so it will become even
more attractive to users. We plan to exploit the programma-
bility of the latest commodity graphics cards to accelerate
not only the rendering but also the visualization calcula-
tions.
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