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Nowadays polymer has become one of the most used engineering materials.

Polymers have pervaded our life to such an extent that we cannot avoid using them

on any given day. Polymers have special characteristics and offer some advantages

over the traditional materials such as metals, ceramics, glasses, etc. Such advan-

tages are, for example, corrosion resistance, low density, high ductility and toughness.

Their mechanical properties can be easily modified and improved when combined with

other materials to form polymeric composites. In this research, polyurea is studied

due to its promising advantages for blast-and-shock protection and acoustic appli-

xxiii



cations. Polyurea-based composites are also created in order to improve properties

of polyurea and expand its usages. Fabrication procedures for polyurea, phenolics-

microballoon filled polyurea, glass-microballoon embedded polyurea and milled-glass

reinforced polyurea are discussed. In order to fully understand their mechanical be-

haviors which depend strongly on frequency (or time), temperature, and pressure,

various characterization techniques spanning from quasi-static to high frequency dy-

namic ranges are conducted on these materials. Some new techniques; for example,

ultrasonic wave measurement under low and high pressures and acoustic ball impact

test, are developed for specific test conditions that cannot be accessed by other tra-

ditional testing techniques. The ultrasonic wave measurement under low and high

pressures allows us to measure wave speed and attenuation of acoustic wave in vis-

coelastic materials in the pressure range of 0 to 1 GPa. The acoustic ball impact

test allows us to measure the wave speed and attenuation in kHz frequency range

and the temperature range of -50 to 50 ◦C, which is not practical for ultrasonic wave

measurement using regular acoustic transducers. To reduce the time for experimen-

tal characterization, mathematical models based on micromechnics are also created

in order to accurately estimate mechanical properties of polymeric composites. The

models can be used for both elastic and viscoelastic composites with various shapes of

inclusions. Moreover, experiment-based constitutive model for polymeric materials,

which is implementable by finite element software, is presented. Lastly, a design of

a novel periodic layered composite is demonstrated. The designed composite can be

potentially used for acoustic sensing, transmitting, and silencing applications.
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Chapter 1

Introduction

A polymer is a material that is composed of long-chain molecules, where each

molecule is made up of repeating monomers connected together through a chemical

reaction process called polymerization. During polymerization, a monomer is cova-

lently bonded with other monomers within its vicinity to produce long chain molecules

or polymer chains. Typically, most polymers are either hydrocarbon or silicone based

since carbon and silicon in group 4 of periodic table have the ability to form long

chains of atoms that include bonds with other elements [1]. The other heavier ele-

ments in group 4 are, however, too big to form long chains and compounds for which

silicon and carbon are noted. There are many ways to characterize polymers, for

example, (1) by types of reaction by which these monomers are joined together to

make polymers, i.e. addition, condensation, and ring-opening polymerizations, (2)

by number of kinds of monomers existing in a polymer chain, i.e. homopolymers or

heteropolymers (co-polymers), (3) by polymer network structure, i.e. thermoplastics

(no crosslinking), thermosets (closely-meshed crosslinking), and rubbers or elastomers

(wide-meshed or loose crosslinking), and (4) degree of alignment of polymer chains

1
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which can be divided into amorphous, crystalline, and semi-crystalline polymers.

Polymers have special characteristics and offer some advantages over the tra-

ditional materials such as metals, ceramics, glasses and etc. Such advantages are, for

example, corrosion resistance, low density, high ductility and toughness. To design

application or usage of a polymer, its mechanical behavior is one of the the key re-

quired informations. Generally, mechanical properties of polymers depend on many

factors; e.g., their structures, operating temperature, pressure, frequency, time, UV

light exposure, humidity, and strain rate of induced deformation, etc. In this re-

search, polyurea which is a polymer with promising advantages for blast-and-shock

protection and acoustic applications is studied. Polyurea-based composites are also

created and studied in order to improve properties of polyurea and expand its usages.

Their mechanical properties are studied, and characterized with respect to temper-

ature, pressure, and frequency (or time). Characterization techniques for different

ranges of frequency, pressure, and temperature are discussed. Constitutive model for

polyurea under extreme environmental conditions is developed. It is implementable

by finite element software. Micromechanics-based models are developed to estimate

mechanical properties of polyurea-based composites. Dynamic homogenization model

for one-dimensional periodic layered composites is developed to aid composite design

for acoustic applications. Each model developed in this research is not limited to

polyurea. It could be applied to other polymers with behaviors similar to that of

polyurea.
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1.1 Polyurea and Polyurea-Based Composites

Polyurea (PU) is a segmented block copolymer derived by the reaction of a di-

isocyanate component and a diamine component. The rapid reaction of an isocyanate

group and an amine group yields a urea linkage and microphase-separated morphol-

ogy [2–4]. The microstructure of polyurea has nano-scale hard domains dispersed in

the soft domain due to the thermodynamic incompatibility of the segmented chain

blocks of polyurea [5]. The hard segments has a high glass transition temperature (Tg)

while the soft segments has a low Tg. The soft phase is primarily constituted of long

chain diamine, which confers flexibility to the material, and the hard phase consists of

diisocyanate typically in a semi-crystalline ordered state created by hydrogen bond-

ing, which gives an enhanced initial stiffness and high mechanical toughness [3, 5].

The mechanical properties of polyurea may be tuned by using different isocyanates

and amines [5]. The reaction ratio or stoichiometric ratio between the diisocyanate

and diamine components controls the microstructure and mechanical behavior of the

resulting polyurea. Fragiadakis et al. have studied the effect of stoichiometry varia-

tions on local segmental relaxation dynamics of polyurea. It was shown that increased

hard segment content is associated with a greater sensitivity to pressure and volume

changes [3]. Holzworth et al. also showed that the stoichiometric ratio affects the

dynamic mechanical properties of polyurea through Dynamic Mechanical Analysis

(DMA) [4]. Theoretically, the isocyanate component and amine component must be

mixed in a stoichiometric ratio of 1:1, i.e., the total number of isocyanate functional

ends must equal the total number of amine functional sites. However, as specified by

the manufacturer, a stoichiometric ratio of 1.05:1 is used, i.e., a five percent excess

of the isocyanate component is used beyond the stoichiometric ratio required for a
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complete reaction [6]. This excess isocyanate helps account for that which is lost upon

reaction with residual moisture during storage or application [4,7]. Furthermore, the

slight excess aids in producing a lightly cross-linked polymer through the development

of biuret structures [4, 8, 9]. The research study discussed herein is focused on 1.05:1

molar ratio of of isocyanate to amine groups.

Mechanical behavior of polyurea is characterized as viscoelastic, deformable

and incompressible. It depends strongly on the strain rate, temperature and pressure

[9,10]. Polyurea with crystalline well-dispersed hard segment morphology also shows

strong hysteresis and cyclic softening [11]. It is also capable of resisting large strain

and shape change due to small forces, without losing its original properties. The

elongation at tearing can be as high as 800% [9]. Polyurea is both chemically and

mechanically strong. It can be used for chemical resistance (chemical protection for

lab and factory floors) and truck bed abrasion protection [12]. It is non-flammable. It

shows excellent characteristics, including, but not limited to, environmental and safety

compliance, long-term stability and appearance, and high mechanical performance

[13]. A recent application of elastomeric polyurea is to improve the resistance of hard

sturcture to failure [14] and ballistic penetration [15–17]. Various experiments show

that this improvement can change the response from full penetration of a projectile

to fully eliminating failure [17, 18]. Recent researches show that coating a layer of

polyurea to the back of a steel plates significantly improves the impact and blast

resistance of the composite structure. Amini et al. also showed that the location of

the coating polyurea layer can have a significant effect on the response of the steel plate

to dynamic impulsive loads, both in terms of failure mitigation and energy absorption,

if it is coated on the back face of the plate. And, remarkably, when polyurea is applied
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on the front face of the plate, it may actually enhance the destructive effect of the

blast, promoting (rather than mitigating) the failure of the steel plate, depending

on the interface bonding strength between the polyurea and steel layers [16]. The

real mechanism underlying this effect is not yet fully understood, but an important

contribution to the coatings’ effectiveness is their ability to transition to the stiff

glassy state during the deformation [19]. The viscoelastic rubber-to-glass transition

is accompanied by large energy absorption, which thus toughens the coating.

Due to that polyurea is promising for many civilian and military applications,

many researches have been conducted to create polyurea-based composites in order

to improve its properties and expand its usages. Qiao et al studied polyurea with

fly ash composites [20, 21]. They showed that by mixing polyurea with fly ash, the

strength and stiffness of polyurea could be increased along with decrease in density.

Carey investigated mechanical properties and blast mitigation performance of differ-

ent discrete fiber-reinforced polyurea systems through experimental and analytical

work. She found that the addition of glass fiber provides improved stiffness and

strength to the composite system while the polyurea base material provides ductil-

ity [22]. Mihut et al. mixed hematite hybrid nanoparticles into polyurea and studied

its mechanical and thermo-mechanical properties for small and large deformations

as a function of the particle weight fraction. Their results indicate that significant

reinforcement of the polyurea-based hybrid nanocomposite is achieved even at very

low nanoparticle content with respect to the pure elastomeric matrix [23]. Qian

et al. created graphite-oxide/polyurea and graphene/polyurea nanocomposites and

studied their mechanical behaviors. They found that the two nanocomposites show

different trend with respect to the weight percentage of the filler materials. They re-
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ported that the graphene/polyurea nanocomposites has better tensile strength as the

graphene content increase while the graphite-oxide/polyurea nanocomposite shows

the drop in the tensile strength as the graphite oxide content increases. They rea-

soned that the graphite-oxide particles tend to aggregate in polyurea matrix, leading

to poor dispersion and weakening the hydrogen bonds among polyurea molecules,

resulting in the deduced mechanical properties of polyurea, while the graphene sheets

have good dispersion and the larger mechanical strength compared to graphite-oxide,

therefore improving the mechanical properties and the glass-transition temperature

of the graphene/polyurea composite [24]. Cai et al. studied the effect of integrating

C20 organoclay into highly and lowly crosslinked polyurea matrices. They found that

the significant reinforcement was acheived in highly crosslinked polyurea with C20

nanocomposite, in which the Young’s modulus, stress and elongation at break was

improved by 40%, 110% and 50%, respectively at 5 wt% of C20. They also noted

that the reinforcement is not equally significant in the lowly crosslinked polyurea ma-

trix, indicating that macromolecular structure of the polyurea matrix is important

for optimizing the nano-effect in the nanocomposites [25].

In this research, three polyurea-based composites; milled glass/polyurea, phe-

nolic microballon/polyurea, and glass microballoon/polyurea composites as well as

pristine polyurea are created for acoustic applications. The milled glass reinforced

polyurea composite is created in order to improve the stiffness of polyurea, while the

phenolic microballon filled polyurea and the glass microballoon embedded polyurea

composites are created in order to reduce the mass density and stiffness of polyurea.

These two microballoons are made of two different materials. The glass microballoon

is stiff and brittle, while the phenolic microballoon is softer and more ductile. The
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mechanical properties of the composites and pure polyurea are characterized with

respect to frequency, temperature, and pressure. The characterization techniques for

various experimental conditions are presented. Moreover, a constitutive model is de-

veloped for polyurea in order to understand and predict its behavior under various

environmental conditions. The model can also be applied to polyurea-based compos-

ites and other polymeric materials with similar behavior.

1.2 Motivation and Objective of Research

Polyurea has a unique microphase-separated structure which consists of nano-

scale semi-crystalline hard domains dispersed in the amorphous soft domain. The

soft phase confers flexibility to the material, and the hard phase semi-crystalline

state created by hydrogen bonding gives an enhanced initial stiffness with high me-

chanical toughness, leading to excellent overall mechanical properties, especially for

blast-and-shock protection and acoustic applications. However, its mechanical be-

haviors which depend strongly on frequency, temperature, and pressure are not fully

understood, and it is even more unclear for polyurea-based composites, leading to poor

performance in the designed applications. Thus, the objectives of this research are (1)

to study and understand the behaviors of polyurea and polyurea-based composites

using commonly-used and in-house developed characterization techniques (2) to re-

duce the dependence of experimental characterization through mathematical models

which are created in oder to accurately estimate mechanical properties and behav-

iors of polyurea-based composites (3) to design and use polyurea and polyurea-based

composites for novel acoustic applications.



8

1.3 Organization of Chapters

Background materials, motivation, and objective of this research have been

mentioned in this first chapter. Chapter 2 discuss fabrication procedures of polyurea

and polyurea-based composites: polyurea with milled glasses, polyurea with phe-

nolic microballons, and polyurea with glass microballoons. Various material char-

acterization techniques are described in Chapter 3, i.e., quasi-static compression

test, dynamic mechanical analysis (DMA), ultrasonic wave measurement at ambi-

ent, low, and high pressures, and acoustic ball impact test (ABI). In Chapter 4, the

backgrounds of viscoelastic behaviors of polymeric materials are explained in detail.

Time-temperature superposition for constructing viscoelastic modulus master curve

is discussed. Experiment-based constitutive model that includes effect of tempera-

ture and pressure is demonstrated for polyurea. Numerical model for finite element

analysis is also provided in this chapter. Micromechanical models for estimating

mechanical properties of polymeric composites with various types of inclusion are

presented in Chapter 5. In Chapter 6, the analysis of acoustic wave propagation

in a one-dimensional periodic layered composite is discussed. A design of a novel

polymeric periodic layered composite is demonstrated. The designed composite can

potentially used for acoustic sensing, transmitting, and silencing applications.



Chapter 2

Material Fabrications

2.1 Polyurea

Polyurea is synthesized from the reaction of an aromatic isocyanate compo-

nent and an amine-terminated resin blend component. In this research, the aromatic

isocyanate component is Isonate 143L modified MDI from Dow Chemicals. It has

144.5 g/equivalent weight. It is a polycarbodiimide-modified diphenylmethane diiso-

cyanate. Isonate 143L is in liquid form at room temperature and has a low viscosity

and good storage stability down to 24 °C (see Figure 2.1a). In this diisocyanate, the

carbodiimide linkage aids the stabilization of the polymer against hydrolytic degrada-

tion [26]. The amine-terminated resin blend component is Versalink P-1000 oligomeric

diamine from Air Products. It has 600 g/equivalent weight. It is a polytetramethyle-

neoxide-di-p-aminobenzoate. Versalink P-1000 is a liquid at ambient temperature

(see Figure 2.1b). Thus, it can be mixed, cast, and cured at room temperature. This

oligomeric diamine is often used as a curative for both methylene diphenyl diiso-

cyanates (MDI) and toluene diisocyanates (TDI) [6].

9
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Figure 2.1: (a) Isonate 143L (b) Versalink P-1000

Figure 2.2: (a) Single-neck round-bottom flask for Isonate 143L (b)
Three-neck round-bottom flask for Versalink P-1000

The recommended stoichiometric ratio between Versalink P-1000 oligomeric

diamine and Isonate 143L is 1.05:1 [6,27]. While 1:1 stoichiometry provides the exact

balance of isocyanate to amine functional sites, a five percent excess of Isonate 143L is
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typically recommended to ensure that a lightly cross-linked polyurea is formed, and it

also helps to account for the amount that is lost upon reacting with residual moisture

during storage or application [4, 9]. The exact amount of excess Isonate 143L was

estimated through weight measurements of containers before and after processing

Figure 2.3: (a) Teflon molds for ultrasonic longitudinal wave
measurement (b) Button-shaped polyurea samples for ultrasonic

longitudinal wave measurement

Insonate 143L is degassed in a single-neck round-bottom flask (see Figure 2.2a)

for 1 h at a vacuum pressure level of approximately 133.32 Pa. At the same time,

Versalink P-1000 is degassed separately in a 500 ml round-bottom reaction vessel with

a three-neck flat flange cover (see Figure 2.2b) for 1 h at the same vacuum pressure

level as Isonate 143L. At room temperature, polyurea fabrication is conducted in

the round-bottom reaction vessel of Versalink P-1000. After degassing for 1 hr, the

precise mass of the Isonate 143L weighted with a digital scale is added to the Versalink

P-1000. The mixture is then stirred using an egg-shaped magnetic stirrer and degassed

for 5 min at the vacuum pressure level of 133.32 Pa. Viscosity of Versalink P-1000
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Figure 2.4: (a) Teflon molds for ultrasonic shear wave measurement (b)
Polyurea film for ultrasonic shear wave measurement

oligomeric diamine is relatively high at room temperature, however when mixing,

the diluent effect from the lower-viscosity isocyanate decreases the viscosity of the

mixture and allows easy mixing and complete degassing prior to casting [4, 6]. The

polyurea working time, inclusive of mixing time, is approximately 20 mins at ambient

conditions [20].

After stirring and degassing for 5 min, the mixture is transferred from the

reaction flask to molds via syringe. Specimens for ultrasonic longitudinal wave mea-

surement are casted in Teflon molds to form button shape (see Figure 2.3). Due to

high dissipative nature of ultrasonic shear wave in polymer, the specimens for ultra-

sonic shear wave measurement need to be very thin. Teflon coated aluminum plates

and spacers with a specific thickness are used as a mold to cast polyurea sheet with

desired thickness (see Figure 2.4). The liquid mixture is compressed between the two

plates in order to create a thin polyurea film with uniform thickness. Specimens for
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Figure 2.5: (a) Teflon molds for DMA (b) Retangular polyurea sample
for DMA

Figure 2.6: (a) Teflon molds and polyurea samples for high pressure
ultrasonic wave measurement (b) Teflon molds and polyurea sample for low

pressure ultrasonic wave measurement (c) Teflon molds and polyurea
samples for acoustic ball impact measurement

DMA are casted in long-rectangular-bar-shaped molds (see Figure 2.5). Teflon molds

and samples for high pressure ultrasonic wave measurement, low pressure ultrasonic
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wave measurement, and acoustic ball impact measurement are shown in Figure 2.6.

All polyurea specimens are cured at room temperature in a moisture controlled envi-

ronmental chamber that maintains the relative humidity level at 10%. Two weeks are

required to achieve complete cure at ambient conditions, with 75% of the ultimate

physical properties being realized within 24 hrs [6]. All polyurea test specimens are

stored in the environmental chamber prior to testing.

2.2 Phenolic Microballoon Filled Polyurea

Composite

Phenolic resin or phenol formaldehyde (PF) is synthetic polymer obtained

by the reaction of a phenol or substituted phenol with formaldehyde. It is very

well known due to its excellent Fire Smoke Toxicity (FST) properties, retention of

properties after long-term exposure to high temperatures, and excellent electrical

and chemical resistance [28]. Its bulk density is 1.28 g cm−3 [29]. In this study, it

is used in the shape of thin-shelled microballoon with 37 µm average diameter and

1 µm shell thickness. Its apparent density is 0.227 g cm−3. The phenolic microballoon

filler was purchased from Fiberglass Supply. Figure 2.7a shows a bag of phenolic

microballoons. This thermosetting plastic serves as a filler material in the fabrication

process of phenolic-microballoon filled polyurea composite.

Due to the short gel time of polyurea at room temperature, pheonolic mi-

croballoons are first added to Versalink P-1000 in a predetermined volume fraction.

The mixture is mixed by hand to prevent the vacuum blowing out the microbal-

loons, and then mixed for 1 hour using a mechanical stirrer under vacuum (133.32 Pa
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absolute pressure) until most of the trapped air bubbles are gone. The second com-

ponent, Isonate 143L, is also degassed for 1 h separately. After the degassing process,

the Isonate 143L is added into the mixture of Versalink P-1000 and phenolic mi-

croballoons, and all of the components are thoroughly mixed together under vacuum

for 5 min. The resultant mixture is then transferred into a Teflon mold (depend on

which measurement the samples are made for) and allowed to cure at room tempera-

ture for 24 h in an environmental chamber at 10% relative humidity. The samples are

then removed from the mold and allowed to cure unrestrained for two weeks in the

chamber before testing. They are unrestrained to prevent the formation of residual

stresses. A similar procedure was also used for the fabrication of polyurea with glass

microballoons

Figure 2.7: (a) A bag of phenolic microballoons (b) A bag of glass
microballoons (a) A box of milled glasses

2.3 Glass Microballoon Filled Polyurea Composite

K1 glass microballoons (from 3M) are soda-lime-borosilicate engineered hollow

glass microspheres. They have a high strength-to-weight ratio, low alkalinity and high
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water resistance. They are useful for increasing strength and stiffness, while reducing

weight. The bulk density of glass is around 2.23 - 2.53 g cm−3. The apparent density

of microballoons is around 0.1 - 0.14 g cm−3 [30]. They have 65 µm average diameter

with 0.6 µm average shell thickness. Figure 2.7b shows a bag of glass microballoons.

Due to the chemical stability of glass microballoon, The fabrication procedure is

similar to that of polyurea with phenolic microballoons

Figure 2.8: Samples for ultrasonic longitudinal wave measurements (left
to right: polyurea, milled glass reinforced polyurea, and phenolic

microballoon filled polyurea composites)

2.4 Milled Glass Reinforced Polyurea Composite

The milled glass fiber is purchased from Fibertec, Inc. (product number 3032).

Figure 2.7c shows a box of milled glasses. Milled glass 3032 is made of E glass fiber.

This cylindrical shaped micro glass has average diameter of 16 m and average length

of 200 m. Polyurea with milled glasses of volume fractions of 5%, 10%, and 20% are
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Figure 2.9: Samples for ultrasonic shear wave measurements (left to
right: polyurea, milled glass reinforced polyurea, and phenolic microballoon

filled polyurea composites)

Figure 2.10: Samples for low pressure ultrasonic longitudinal wave
measurements (left to right: polyurea, glass microballoon filled polyurea,

and phenolic microballoon filled polyurea composites)

fabricated.

To clean the glass surface, piranha solution, which is a mixture of H2SO4 and

30% H2O2 solution in the ratio of 3:1 (by volume), is used. Mixing the piranha
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Figure 2.11: Samples for DMA (top to bottom: phenolic microballoon
filled polyurea composite, milled glass reinforced polyurea composite, and

polyurea)

Figure 2.12: Samples for acoustic ball impact measurement (top to
bottom: phenolic microballoon filled polyurea composite, milled glass

reinforced polyurea composite, and polyurea)

solution is exothermic. The resultant heat can cause solution temperatures exceeding

100°C. The milled glass is washed in the boiling solution for 10 min. Then the milled
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glass is neutralized in deionized water and dried in a vacuum oven overnight at 110°C.

The milled glass is first mixed with the more viscous component Versalink P-1000

using the magnetic stir bar to prevent the milled glass from being blown away by the

vacuum in the following degassing step. Then the Isonate 143L and Versalink P-1000

with milled glass are degassed separately under vacuum (133.32 Pa) while stirred

using magnetic stirrers. The degassing process lasts 2 hours until most of the air

bubbles are removed. Then the two parts are mixed together with the stoichiometric

ratio of 1.05:1 (isocyanate: amine). After adding Isonate 143L into Versalink P-1000

(with the pre-mixed milled glasses), the mixture is mixed and degassed for 5 min

before transferring, using disposable syringes, into a Teflon mold (depend on which

measurement the samples are made for). The samples are cured in the environmental

chamber, in which relative humidity is controlled at 10%, for two weeks before testing.

Figures 2.8, 2.9, 2.10, 2.11,and 2.12 show shapes and colors of the samples for

ultrasonic longitudinal and shear wave measurements, low pressure ultrasonic longitu-

dinal wave measurement, DMA, and acoustic ball impact measurement, respectively.
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Chapter 3

Material Characterization Techniques

Mechanical properties of polymers depend on many variables. Three major

variables affecting the properties are temperature, pressure and frequency (or time).

Mechanical properties of polymers can change significantly over a narrow range of

temperature. Some polymers are very sensitive to pressure. For example, stiffness

of polyurea under confined compression can increase 10 to 20 folds with increasing

pressure [9]. Also, the stiffness at very high frequency is several orders of magnitude

higher than that at low frequency [31]. In this chapter, quasi-static and dynamic

testing methods for measuring mechanical properties of polyurea and polyurea-based

composites under various conditions will be discussed in detail.

3.1 Quasi-Static Testing

Quasi-static material testing is necessary for characterization of mechanical

properties at low strain rate or slow loading rate and for the development of consti-

tutive model for quasi-static deformation. Materials under quasi-static load will go

20
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through a sequence of infinitesimal and slow deformation that remains close to equi-

librium such that inertial effects are negligible. In other words time and inertial mass

are irrelevant. In this research, we are interested in quasi-static confined compres-

sion mode. In general, compressible materials under this compression mode undergo

uniaxial deformation while there is no lateral deformation. Longitudinal modulus

can be measured using the confined compression mode. However, this mode can also

create hydrostatic pressure condition on materials which are nearly incompressible.

Polyurea is an example of nearly incompressible polymers. Under hydrostatic pres-

sure condition, it allows to measure bulk modulus of the tested material. In this case,

bulk modulus is very close to longitudinal modulus.

3.1.1 Experimental Setup

The experimental setup consists of force-displacement and temperature con-

trol units (see Figure. 3.1). Instron servo-hydraulic machine model 1332 is used as

loading test machine. It has capability to generate force up to 100 kN (22 klbf). MTS

controller model 407 is used to control the Instron load cell. Either displacement

or force control can be selected. The loading rate is adjustable depending on the

test condition. In this research, the slow loading rate of 15 lbf/s (67 N s−1) is used to

load sample. With this slow loading rate it ensures that sample is under quasi-static

condition. In order to control testing temperature, an MTS environmental chamber

model 651 is equipped with Instron load cell. The chamber can provide cooling range

from ambient to −129 ◦C (−200 °F) when equipped with liquid nitrogen. The heat-

ing range can go up to 315 ◦C (600 °F). Testing temperature is controlled by MTS

temperature controller model 409.80.
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Figure 3.1: Schematic diagram shows force-displacement and temperature
control units

In this research, pressure or compressive stress is divided into two ranges: low

and high pressures. Low pressure is considered from 0 to 20 MPa, while high pressure

is from 50 MPa to 1 GPa. Low-pressure range is used for characterizing material be-

haviors under moderate pressure environment such as several-kilometer-depth under

water, whereas high-pressure range can be used for characterizing material behaviors

under extreme pressure conditions such as in blast or explosion. Specially designed

test fixtures for low and high pressure ranges are developed. The low-pressure test

fixture is made of aluminum. It consists of two cylindrical pistons for compressing the

sample, one collar to confine the sample, and potentiometer for measuring displace-

ment or contraction of the sample (see Figure. 3.2). Sample for the fixture is designed

to have 63.5 mm diameter so that at the maximum load of 100 kN, the sample will be

compressed with around 31.6 MPa pressure which is enough to cover our low-pressure
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range. The high-pressure test fixture is made of maraging steel. It consists of two

pistons for compressing the sample, a cell to confine the sample (see Figure. 3.3). The

compression area of high-pressure sample is around 33 time smaller than low-pressure

sample. At the maximum load, the sample will be, approximately, under 1000 MPa.

Figures 3.4, 3.5, and 3.6 show the dimensions of the confinement cell, piston, and

sample for high-pressure test, respectively.

Figure 3.2: Schematic diagram shows the low-pressure test fixture

3.1.2 Measurement Procedure

Polymeric samples that are completely cured and have no defect are chosen for

testing (see Chapter 2 for sample fabrication). The samples are prepared such that

they have required shapes (see Figure. 3.2 for low-pressure test sample and Figures 3.3

and 3.6 for high-pressure test sample). Surfaces of the sample that will be in contact
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Figure 3.3: Schematic diagram shows the high-pressure test fixture

Figure 3.4: Drawing shows dimensions of the high-pressure confinement
cell
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Figure 3.5: Drawing shows dimensions of the high-pressure piston

Figure 3.6: Drawing shows dimensions of the high-pressure test sample
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with the surface of the piston are sanded to eliminate all invisible defects and to make

sure that they are parallel. The macro-grit sandpaper (320 CAMI Grit designation) is,

first, used to get rid of big defects and followed by the super-fine-grit-size sandpaper

(600 CAMI Grit designation) at the end of sanding process. All dimensions of the

ready-to-test samples are measured. The sample is then put into the test fixture,

sitting between the loading pistons. The test fixture is then placed in environmental

chamber and uniaxially aligned with the loading bar of the compression machine. A

testing temperature is chosen. Then, the testing system is equilibrated under the

testing temperature for an hour. After that the compressive load is applied normal to

the surface of the sample at the loading rate of 15 lbf/s (67 N s−1). Compressive force-

time history is measured by loading cell. Axial displacement-time history is measured

by two potentiometers in the low-pressure test (see Figure 3.2), while it is measured

by the linear variable differential transformer (LVDT) of the Instron machine in the

high-pressure test. The potentiometer has higher sensitivity than the LVDT so it is

better for measuring small sample displacement in the low-pressure test. During test,

both force and displacement are recorded in a text file for analysis. The stiffness of

the machine is also measured through the same test procedure but without sample.

At the same pressure, the measured strain from test with sample is subtracted by

the strain of the machine from the test without sample. The resulting strain is the

pure sample strains. The sample strain and coefficient of thermal expansion are

later used to calculate the density of the sample at each pressure. After testing is

finished. Stress and strain are calculated with equations 3.1 and 3.2 using force and

displacement histories from tests with sample and without sample, thermal expansion

coefficient, CTE and initial dimensions of the sample measured before the test starts:
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σ = P =
F (t)

Ao
, (3.1)

ε (T, P ) =
[d (P )− d (P = 0)]− [dm (P )− dm (P = 0)]

ho (1 + CTE (T − To))
, (3.2)

where σ and ε are engineering confined compressive stress and strain, F (t) is the

compressive force history, d (P ) and dm (P ) are displacements from the tests with

sample and without sample at pressure P , respectively, T and To are the testing and

ambient temperatures, respectively, ho and Ao are initial length and compression area,

respectively. The compression area of the sample is constant because the sample is

confined laterally. Due to the incompressible nature of polyurea and polyurea-based

composites in this research, the confined compressive stress is referred to as pressure,

P . Density of the sample can be calculated using:

ρ̃ (T, P ) =
ρo

(1 + 3CTE (T − To) + ε (T, P ))
, (3.3)

where ρ̃ and ρo are the measured and initial densities of the sample.

3.1.3 Results and Discussions

In this research, one of our goals is to create a low-density polyurea-based

composite with pressure-invariant and low acoustic impedance (density times wave

speed). The operating pressure range is from 0 to 10 MPa. The composite should be

able to maintain its integrity with in this range. This composite will be used later as

a component in a periodic layered composite which is designed for a submarine skin.

In order to reduce the mass density, polyurea was mixed with two candidate filler
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materials; (1) glass microballoon and (2) phenolic microballoon. The resulting com-

posites are glass microballoon filled polyurea (PUGMB) and phenolic microballoon

filled polyurea (PUPMB) composites. The dimensions and apparent densities of the

filler materials are provide in Chapter 2.

Figure 3.7: (a) Densities of PUGMB composites (b) Densities of PUPMB
composites

The glass microballoon filled polyurea composite was first studied. The com-

posites with 10%, 20%, 30%, and 40% volume fractions of glass microballoon were

created. The densities of the composites are shown in Figure 3.7a. As we can see,

the actual densities match very well with the calculated densities of the composites.

As volume fraction increases, the density of the composite linearly decreases. At the

maximum 40% volume fraction of glass microballoon, the density of the composite

can be as low as 730 kg m−3. There is no data for 20% volume fraction due to that the

sample has defect. PUGMB composites were then preliminarily tested under pressure
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Figure 3.8: (a) Stress-strain curves of PUGMB composites (b)
Stress-strain curves of PUPMB composites

from 0 to 10 MPa. The loading rate is very slow (67 N s−1 or 0.21 MPa s−1) to make

sure that the effect of strain rate is negligible. The stress-strain curves are shown in

Figure 3.8a. To be noted, for this preliminary study, the contraction of samples is

measured with LVDT of the Instron machine which is not quite accurate for small

displacement. Later on, we improved our measurement by using potentiometer (see

Figure 3.2). This is why the nonlinearity is observed at low pressure. However, these

curve are good enough to reveal distinct behaviors of PU-30%GMB and PU-40%GMB

composites. The PU-30%GMB is softening at around 8 MPa while the PU-40%GMB

becomes softening around 6 MPa. This is due to that some of the glass microballoons

are crushed. This is also confirmed by the plot between densities of the composites

versus pressure (see Figure 3.9a). Similar to the stress-strain curves, the densities

of PU-30%GMB and PU-40%GMB have sudden increases at around 8 and 6 MPa,
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Figure 3.9: (a) Densities of PUGMB composites versus pressure (b)
Densities of PUPMB composites versus pressure

respectively. It is worth noting that the type of the glass microballoon that we used

has the lowest apparent density among all glass microballoon from 3M [32]. If we

choose to try with thicker shell and higher strength microballoon, the density of the

composite will be higher at the same volume fraction. After we found that the glass

microballoon was crushed below 10 MPa, the phenolic microballoon filled polyurea

composites were then studied.

The phenolic microballoon filled polyurea composites with 10%, 20%, 30%,

and 40% volume fractions of phenolic microballoon were created. The reasons that

we chose to try phenolic microballoon are that (1) it has density as low as the glass

microballoon, (2) It is more flexible than the glass microballoon and it could possibly

recover when the pressure is released, and (3) its price is cheaper than the glass

microballoon. Figure 3.7b shows the density of the PUPMB compsites as a function
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of volume fraction. Consider at the same volume fraction, the density of PUPMB is as

low as that of PUGMB. Low pressure quasi-static test was preliminarily conducted

on the PUPMB composites. As mentioned earlier, the contractions of samples in

this preliminary studies were measured with LVDT of the Instron machine which

is not accurate for small displacement. Later on, we improved our measurement

by using two potentiometers (see Figure 3.2). Figure 3.8b shows the stress-strain

curves of PUPMB composites. At high pressures (7-10 MPa), PUPMB composites

tend to maintain their shapes better than PUGMB composite. Figure 3.9b shows

densities of PUPMB composties versus pressure. It is apparent that densities of PU-

10%PMB, PU-20%PMB, and PU-30%PMB do not change much within 0 to 10 MPa,

while density of PU-40%PMB has significant increase between 4 and 10 MPa. This

suggests that some phenolic microballons in PU-40%PMB might deform. However,

the its deformation is less than that of glass microballoon.

Figure 3.10: Load profile for low pressure test
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Figure 3.11: (a) Stress-strain curves of PUPMB composites (b) Densities
of PUPMB composites versus pressure

From our observation, PUPMB composite has better ability to maintain its

shape, compared to PUGMB. So we decided to perform thorough characterization

on PUPMB composites. We fabricated new PUPMB samples with the same volume

fractions as previous discussed. The low pressure quasi-static test was performed on

the composites with the load profile shown in Figure 3.10. Pressure was increased

from 0 to 10 MPa with the rate of 0.021 MPa s−1. At 10 MPa, the pressure was

kept constant for an hour to observe material’s creep. Then pressure was decreased

with the same rate. At 1 MPa, we kept pressure constant for another hour to observe

material’s recovery. All the dots on the curve are points where we performed ultrasonic

wave measurement. The result of the ultrasonic measurement will be discussed in

Section 3.3.4. In this test, the potentiometers were used, instead of LVDT, leading to

the much higher accuracy of the measured strains of the samples. The stress-strain



33

curves of the PUPMB composites are shown in Figure 3.11a. With the pressure

profile in Figure 3.10, it shows that while the pressure is kept constant at 10 MPa,

all PUPMB composites have creeps. The higher the volume fraction, the larger the

creep the composite has. This is also true for the recovery at 1 MPa. Both the

creep and recovery are due to the deformation of the phenolic microballoon since

there is no creep or recovery obsreved in the pure polyurea sample. When looking at

density, it appears that only PU-40%PMB has significant change in density 10 MPa.

Interestingly, after the recovery, all composites almost gain their initial densities.

Figure 3.12: Size distribution of phenolic microballoon

From the creep and recovery that we observed, we wanted to know what is the

crush pressure of the phenolic microballoon. The sizes of 237 phenolic microballoons

were measured under a microscope. The size distribution is shown in Figure 3.12.

The smallest diameter is 10 µm and the biggest is 100 µm. Mostly, the microballoon

population (around 71%) falls in the range of 15 to 45 µm where the highest count

frequency is at the diameter of 30 µm. It is found that the average diameter of the

phenolic microballoon is 37 µm. From this observation, it implies that the nonlinearity
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Figure 3.13: Crush pressure of phenolic microballoons

that we observed in the stress-strain curves of the PUPMB composites is due to

the microballoons collaspe in succession from larger down to smaller sizes. The the

crush pressures of various size of the microballoons were estimated and are shown

in Figure 3.13. The estimated crush pressure were calculated based on the elastic

buckling strength of spherical glass shells [33]. For calculation detail, please see

appendix 3.A. As we can see, the crush pressure of the 37-µm-diameter microballoon is

around 4.56 MPa which is below the observed crush pressures of 6,7 and 8 MPa for 0.2,

0.3, and 0.4 volume fractions, respectively. This underestimation might due to that

in our estimation, we assume that he crush pressure is applied directly to the shell of

microballoon (in other words, there is no polyurea matrix around the microballoon),

while in reality the pressure is applied on to the polyurea matrix phase and some

pressure might be supported by the matrix phase, thereby less pressure is transmitted

to the microballoon. If we include the effect of the matrix phase that surrounds

the microballoon, the estimated crush pressure of the microballoon would be higher

and would not be flat as volume fraction of the microballoon changes. Importantly,
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from this calculation, it suggests that If we can sieve out the microballoons that are

larger than 25 µm and use only the smaller ones to fabricate PUPMB composites, the

composites would be able to resist the pressure up to 10 MPa without damage of the

microballoons. This will be our future work.

3.2 Dynamic Mechanical Analysis

Dynamic mechanical analysis (DMA) is a technique that is used to study the

response of a material subjected to a harmonic force. In this research, it is restricted

to the range of small-strain amplitude deformations. This technique can also be called

as forced oscillatory measurement or dynamic mechanical thermal analysis (DMTA).

Viscoelastic properties, such as modulus (stiffness) and damping (energy dissipation)

of solid and soft solid materials can be measured using this technique. Moreover,

it can be used to locate the glass transition temperature of polymeric materials, as

well as to identify transitions corresponding to other molecular motions. Figure 3.14

shows transitions in polymeric materials, which can be seen as changes in the storage

modulus E ′ [34].

3.2.1 Background

DMA is used to measure complex stiffness and damping of polymers. They

are reported as storage and loss moduli for complex stiffness and tan δ for damping.

A sinusoidal force (or displacement) is applied to a sample with specific dimensions.

The machine measures displacement (or force) of the sample and calculates stress,

strain, and the phase shift between the measured stress and strain, using the input

force (or displacement) and dimensions of the sample. The measured sinusoidal stress
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Figure 3.14: Storage modulus E ′ versus temperature and transitions in
polymeric materials [34]

variation in time is usually described as a rate specified by the frequency f or angular

frequency ω. The measured strain of a polymer is generally out of phase with the

stress, by the phase shift angle, δ. This phase lag is due to the excess time necessary

for molecular motions and relaxations to occur. The dynamic stress, σ, and strain, ε,

can be written as:

σ (t) = σoe
i(ωt+δ), (3.4)

ε (t) = εoe
i(ωt), (3.5)

where σo and εo are the measured stress and strain amplitudes. To be noted, complex

form is used to simplify calculation. In general, only real parts of the stress and strain
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have physical meaning. The complex modulus, E∗ can be calculated as:

E∗ =
σ

ε
=
σo
εo
eiδ =

σo
εo

(cos δ + i sin δ) . (3.6)

The real and imaginary parts of the complex modulus are refered to as storage and

loss moduli, respectively. They are given as:

E∗ = E ′ + iE ′′, (3.7)

E ′ =
σo
εo

cos δ, (3.8)

E ′′ =
σo
εo

sin δ, (3.9)

where E ′ and E ′′ are storage and loss moduli, respectively. Equation 3.7 shows that

the complex modulus obtained from DMA consists of storage and loss moduli. The

storage modulus describes the ability of the material to store and release potential

energy during deformation. The loss modulus is associated with energy dissipation

in the form of heat upon deformation. The ratio of the loss to the storage is the tan δ

and is often called damping. It can be represented as:

tan δ =
E ′′

E ′
. (3.10)

It is a measure of the energy dissipation of a material. Figure 3.15 shows the DMA

stress and strain for different types of materials. For ideal elastic solids, the stress
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and strain will be in phase (δ = 0). For ideal viscous liquids, the stress will lead

the strain by π/2. For a viscoelastic materials, the phase angle will lie somewhere

between 0 to π/2.

Figure 3.15: DMA stress and strain for different types of materials

3.2.2 Experimental Setup

Dynamic mechanical analysis is performed using the TA Instrument Dynamic

Mechanical Analyzer 2980. Figure 3.16 shows DMA 2980 model. This model operates

over a temperature range of −145 °C to 600 °C, using heating rates up to 50 °C/min.

It can determine changes in sample properties resulting from changes in temperature,

time, frequency, force, and strain. Samples can be in bulk solid, film, fiber, gel,

or viscous liquid form. For detail of components of the machine, please see [35].
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Figure 3.16: Dynamic Mechanical Analysis Model 2980 from TA
instrument

This machine comes with interchangeable clamps for various dynamic tests. In this

research, single-cantilever clamp is used (see Figure 3.17). The required dimension

of the sample for this clamp can be calculated using the following equation and the

chart in Figure 3.18 [35]:

GF =
1

F

[
L3

12I
+ 2S (1 + ν)

L

A

]
, (3.11)

A = WT, (3.12)
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Figure 3.17: Single cantilever clamp for Dynamic Mechanical Analysis
Model 2980

Figure 3.18: Modulus vs Geometry Factor Chart [35]
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Figure 3.19: Dimension of the sample for single cantilever test

I =
1

12
WT 3, (3.13)

where GF is geometry factor in Figure 3.18, L, W , and T are length, width, and

thickness of the sample in mm, respectively, A is sample cross sectional area in mm2,

I is geometric moment in mm4, F and S are clamping and shearing factors (nominally

0.9 and 1.5, respectively), ν is Poisson’s ratio of the sample (nominally 0.44). For

polyurea and polyurea-based composites in this research, the dimension of the test

sample is 30 mm X 10 mm X 3 mm.

3.2.3 Measurement Procedure

Before testing, clamp, position, and instrument calibrations need to be done.

Please see [35] for procedures. During the test, the sample is clamped at both ends

with a free length of 17.5 mmin between the clamps. One end of the sample is fixed,

and the other end is attached to the movable clamp (center clamp see Figure 3.17),

which moves sinusoidally normal to the length of the sample with the chosen am-

plitude of 15 µm. The experiments are performed over the temperature range from

−80 ◦C to 70 ◦C, with increments of 3 ◦C. Liquid nitrogen is used to cool the system



42

down to sub-ambient temperatures. At each temperature step, five frequencies of 20

Hz, 10 Hz, 5 Hz, 2 Hz, and 1 Hz are tested sequentially. The thermal soaking time

is 3 minutes for each temperature point. One complete test with this protocol takes

about 4.5 hours on TA 2980. After the test is finished, DMA data are collected using

the corresponding TA data analysis software (see Figure 3.20).

Figure 3.20: TA Universal Analysis Software

3.2.4 Results and Discussions

Please see section 3.4

3.3 Ultrasonic Wave Measurement

Ultrasonic wave or ultrasound is a sound pressure wave with the frequency

higher than upper limit of human hearing capability (average 18 kHz). The use of
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ultrasound covers large range of frequency, from 20 kHz up to several GHz. Ultrasonic

wave measurement is used widely as a non-destructive testing technique for detection

of defects, cracking, pores and etc. It is also well suited for determining the viscoelas-

tic properties of polymeric materials [36]. When an acoustic wave propagates in the

materials, the particles in the materials are forced to vibrate around their equilibrium

positions. For crystalline materials, which are nearly elastic, their mechanical moduli

are real numbers and proportional to the squares of speeds of sound in the materials.

For the viscoelastic materials, the energy of the wave is dissipated during the prop-

agation. Most of the dissipated energy is converted into heat. The amplitude of the

wave becomes smaller as the wave propagates further in the viscoelastic materials.

The mechanical moduli of such materials are no longer enough to be described with

real number. The modulus of a viscoelastic material must be computed from the rela-

tion involving wave speed and attenuation [36, 37]. Similar to DMA, the viscoelastic

modulus of a viscoelastic material can be expressed as a complex modulus where its

real part is related to the elastic portion of the material and its imaginary part is

associated with the viscous portion.

3.3.1 Background

Ultrasound uses mechanical wave, which requires a medium for the transfer of

energy to occur, to make measurement. The particles in the medium will, in general,

oscillate as the wave propagates through. For elastic materials, the motion of the

particles can be imagined as the motion of a mass-spring system in which the mass

is subjected to a linear elastic force governed by Hooke’s law. The displacement of

the particle can be found by solving, in this case, elastic wave equation [38]. The
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simplest case is the one-dimensional wave equation. The displacement of the particle

can be perpendicular or parallel to the propagation direction of the wave. The term

“Longitudinal wave" is used to describe the wave in which the displacement of the

medium is in the same direction as, or the opposite direction to, the direction of the

traveling wave, while “shear wave" describes the wave in which the displace of the

medium are at right angles to the direction of the propagation of the wave. The

one-dimensional elastic wave propagation in x direction can be expressed as follows:

M
∂2u

∂x2
= ρ

∂2u

∂t2
, (3.14)

where u is the displacement of particle, M is the elastic modulus of the medium, ρ

is the mass density of the medium. The wave speed or phase velocity (co) in the

medium can be calculated as:

co =

√
M

ρ
. (3.15)

The harmonic solution of equation 3.14 is:

u = uoe
iω(t− x

co
) = uoe

i(ωt−kx), (3.16)

where

k =
2π

λ
, (3.17)

co =
ω

k
, (3.18)

uo is displacement amplitude, f and ω are frequency and angular frequency, k is wave

number, λ is wavelength. For elastic media, all parameters used in equations 3.14 -
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3.18 are real numbers. In the case of viscoelastic media, the wave loses its energy

during propagation. This results in the reduction in amplitude (attenuation). The

motions of particles can, no longer, be modeled as the energy-conserved mass-spring

system. Normally, the dashpot is added into the system to represent where the energy

is converted into heat. The one-dimensional wave equation 3.14, and the wave speed

equation 3.15 need to be modified for the case of wave propagation in a viscoelastic

medium as follows [20,37]:

M∗∂
2u

∂x2
= ρ

∂2u

∂t2
, (3.19)

c∗ =

√
M∗

ρ
, (3.20)

where M∗ is the complex modulus of the viscoelastic medium, c∗ is the complex wave

speed. c∗ and M∗ can be expressed as:

c∗ = c′ + ic′′, (3.21)

M∗ = M ′ + iM ′′, (3.22)

where

M ′ = ρ
(
c′2 − c′′2

)
, (3.23)

M ′′ = 2ρc′c′′, (3.24)
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c′ and c′′ are real and imaginary parts of the complex wave speeds, M ′ and M ′′ are

storage and loss moduli of the viscoelastic medium. The solution of equation 3.19 is

in the following form:

u = uoe
iω(t− x

c∗ )

= uoe
i(ωt)e−i(

ωx
c′+ic′′ t)

= uoe
i(ωt)e

−i
(

ωc′x
c′2+c′′2

)
e
−
(

ωc′′x
c′2+c′′2

)
. (3.25)

An attenuated harmonic wave in a viscoelastic material can be represented with a

mathematic equation as:

u = uoe
i(ωt)e−i(

ωx
c )e−(αx), (3.26)

where c is the measured wave speed in the viscoelastic material, α is the measured

attenuation. Equate equations 3.25 and 3.26, the real and imaginary parts of the

complex wave speed are given by:

c′ =
c

1 + r2
, (3.27)

c′′ =
cr

1 + r2
, (3.28)

where

r =
αc

ω
, (3.29)
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r is the dimensionless parameter. Substitute equations 3.27, 3.28 into equations 3.23

and 3.24, we arrive at:

M ′ =
ρc2 (1− r2)

(1 + r2)2 , (3.30)

M ′′ =
2ρc2r

(1 + r2)2 . (3.31)

The loss modulus, M ′′ measures how much energy would be dissipated as heat when

the wave propagates through the material, while the storage modulus, M ′ measures

how much energy would be stored. Another parameter commonly used to describe

the energy damping of the material is:

tan δ =
M ′′

M ′ =
2r

1− r2
. (3.32)

It is defined the ratio of the energy dissipated per cycle to the potential energy stored

during a cycle. For ultrasonic wave measurement, there are two wave modes; longi-

tudinal and shear, which can be generated, using longitudinal and shear transducers,

respectively. For longitudinal wave mode, the complex modulus M∗ can be replaced

by the complex longitudinal modulus, L∗ or complex shear modulus, G∗ for shear

wave mode. The diameters of the specimens for both shear and longitudinal modes

are much larger than its thickness to avoid the interferences from the reflected waves

from the edges of the specimens. To make sure that all reflected waves in the speci-

men will not interfere the first transmitted wave, the thickness of the specimen should

be at least one wavelength long at the frequency of interest.
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Table 3.1: Relations of viscoelastic moduli

K∗ E∗ G∗ ν∗ L∗

(K∗, E∗) K∗ E∗ 3K∗E∗

9K∗−E∗
3K∗−E∗

6K∗
3K∗(3K∗+E∗)

9K∗−E∗

(K∗, G∗) K∗ 9K∗G∗

3K∗+G∗
G∗ 3K∗−2G∗

2(3K∗+G∗)
K∗ + 4G∗

3

(K∗, ν∗) K∗ 3K∗ (1− 2ν∗) 3K∗(1−2ν∗)
2(1+ν∗)

ν∗ 3K∗(1−ν∗)
1+ν∗

(K∗, L∗) K∗ 9K∗(L∗−K∗)
3K∗+L∗

3(L∗−K∗)
4

3K∗−L∗
3K∗+L∗

L∗

(E∗, G∗) E∗G∗

3(3G∗−E∗) E∗ G∗ E∗

2G∗
− 1 G∗(4G∗−E∗)

3G∗−E∗

(E∗, ν∗) E∗

3(1−2ν∗)
E∗ E∗

2(1+ν∗)
ν∗ E∗(1−ν∗)

(1+ν∗)(1−2ν∗)

(G∗, ν∗) 2G∗(1+ν∗)
3(1−2ν∗)

2G∗ (1 + ν∗) G∗ ν∗ 2G∗(1−ν∗)
1−2ν∗

(G∗, L∗) L∗ − 4G∗

3
G∗(3L∗−4G∗)

L∗−G∗ G∗ L∗−2G∗

2L∗−2G∗
L∗

(ν∗, L∗) L∗(1+ν∗)
3(1−ν∗)

L∗(1+ν∗)(1−2ν∗)
1−ν∗

L∗(1−2ν∗)
2(1−ν∗) ν∗ L∗

3.3.2 Experimental Setup

Acoustic wave in ultrasonic range is used to determine the dynamic response

of materials in the frequency range of 0.5 to 1.5 MHz. To completely characterize me-

chanical properties of isotropic elastic (or viscoelastic) materials, at least two elastic

(or viscoelastic) parameters are required. The other parameters, in general, can be

calculated from the two known parameters (see Table 3.1). In this section, the longi-

tudinal and shear moduli of materials are measured through ultrasonic-longitudinal-

and ultrasonic-shear-wave measurements, respectively. For ultrasonic longitudinal

wave measurement, the longitudinal transducers which create longitudinal vibration

mode are required. In this longitudinal mode, the particles in a tested material are

forced to vibrate parallel to the wave propagation direction. For ultrasonic shear wave

measurement, the transducers which generate transverse vibration mode are required.

In this mode, the particles in the tested material are forced to vibrate perpendicular

to the wave propagation direction. In general, these two measurements have almost

the same equipment and measurement procedure except for the types of transducers



49

as previous mentioned. However, due to the unique characteristic of shear wave, com-

plexity of the ultrasonic shear wave measurement occurs and will be discussed later

on.

Ultrasonic Longitudinal Wave Measurement

Direct contact measurement is used to measure the speed of longitudinal wave

in the viscoelastic materials. The experimental setup consists of a desktop computer

containing a Matec TB-1000 Toneburst Card, two Panametrics videoscan longitudi-

nal transducers (V103 Panametrics-NDT OLYMPUS), an 100:1 attenuator box, and

a digital Oscilloscope. As shown in Figure 3.21, a toneburst signal with a nominal

frequency is sent from the card to the attenuator box where the signals in voltage

form are attenuated so that the signals would be able to be shown on the oscillo-

scope’s screen and to the generating transducer through BM-174-3 cable where the

measurement is performed. The received signal is sent directly to the oscilloscope

and displayed on the oscilloscope where the amplitude and travel time are measured.

The specially designed test fixture for ultrasonic longitudinal wave measure-

ment is used to align and hold the sample and transducers together (see Figure 3.22).

The samples for ultrasonic longitudinal wave measurement are made carefully. Their

thicknesses are bigger than one wavelength at the testing frequency so that the trans-

mitted and reflected longitudinal waves are separated apart and can be distinguished

easily. The assembly of the test fixture and sample dimensions are shown in Figure

3.22.
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Figure 3.21: Schematic diagram shows ultrasonic wave measurement
equipment

Figure 3.22: Schematic diagram shows (a) the components of the test
fixture for ultrasonic longitudinal wave measurement (b) assembly of the

test fixture (c) sample dimensions
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Ultrasonic Shear Wave Measurement

The previously described setup for longitudinal wave measurement is used

with shear transducers (V153 Panametrics-NDT OLYMPUS) instead of longitudinal

transducers. Due to an unavoidable coupled longitudinal wave signal generated by

the shear transducers, an aluminum rod is inserted between the generating transducer

and the sample to delay the shear wave, separating it from the longitudinal wave (see

Figure 3.23). Wave speed and attenuation of the shear wave are calculated after

two tests (with samples of different thicknesses) are conducted. Shear wave couplant

is applied to all interfaces to get better surface contact. Similar to longitudinal

wave testing, shear wave tests are conducted at 1MHz and -50 to 50 ◦C with 10 ◦C

increments. The speed of shear wave and its attenuation are used to calculate storage

and loss shear moduli of the tested materials. The samples are made carefully. We

have to ensure that their thicknesses are bigger than half of the wavelength so that the

transmitted and reflected shear waves are separated apart and can be distinguished

easily. However, the shear wave is very dissipative. Special care is needed when

considering the thickness of the samples. In this test on polyurea, the assembly and

sample dimensions are shown in Figure 3.23.

Low-Pressure Ultrasonic Longitudinal/Shear Wave Measurement

The low pressure test fixture discussed previously (see Figure 3.2) is integrated

with the ultrasonic measurement apparatus shown in Figure 3.21 for conducting ultra-

sonic longitudinal/shear wave measurement at low pressure (0-20 MPa). Figure 3.24

shows the test fixture and samples for low-pressure ultrasonic longitudinal and shear

wave measurements. The force-displacement and temperature control unit shown in



52

Figure 3.23: Schematic diagram shows (a) the components of the test
fixture for ultrasonic shear wave measurement (b) assembly of the test

fixture (c) sample dimensions

Figure 3.1 is used to equilibrate and compress the test sample to the desired test-

ing temperature and pressure. The potentiometer attached on the test fixture (see

Figure 3.24) measures the contraction of the sample during the test. The contrac-

tion will be used later to calculate density of the sample at the corresponding testing

condition.

High-Pressure Ultrasonic Longitudinal Wave Measurement

The high pressure test fixture discussed previously (see Figure 3.3) is inte-

grated with the ultrasonic measurement apparatus shown in Figure 3.21 for conduct-

ing ultrasonic longitudinal/shear wave measurement at high pressure (50-1000 MPa).

Figure 3.25 shows the test fixture and samples for high-pressure ultrasonic longitudi-
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Figure 3.24: Schematic diagram shows (a) the components of the test
fixture for low pressure ultrasonic longitudinal/shear wave measurement (b)

assembly of the test fixture (c) sample dimensions

nal wave measurement. The force-displacement and temperature control unit shown

in Figure 3.1 is used to equilibrate and compress the test sample to the desired testing

temperature and pressure and also to measure the contraction of the sample during

the test. The contraction will be used later to calculate density of the sample at the

corresponding testing condition. For high pressure range, it is difficult to perform

ultrasonic shear measurement using the same test fixture that is designed for longi-

tudinal wave measurement since the thickness of the test sample is too thick such

that the received shear wave signal becomes too small for measuring and observing

with the oscilloscope. In this study, we will focus only on high pressure ultrasonic

longitudinal wave measurement.
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Figure 3.25: Schematic diagram shows (a) the components of the test
fixture for high pressure ultrasonic longitudinal/shear wave measurement

(b) assembly of the test fixture (c) sample dimensions

3.3.3 Measurement Procedure

To find wave speed and attenuation of longitudinal (or shear) wave at ambient

pressure, two tests need to be performed using two different sample thicknesses. The

specially designed test fixture is used to align and hold the sample and transducers

together (see Figure 3.22 for longitudinal wave measurement and Figure 3.23 for shear

wave measurement). The longitudinal wave (or shear wave) couplant is applied to

all contact surfaces between the transducer and the sample. Tests are conducted

at 0.5 to 1.5 MHz with 0.5 MHz increments and -50 to 50 ◦C with 10 ◦C increments.

From observation, polyurea and polyurea-based composites in this research are quite

insensitive to frequency within 0.5 to 1.5 MHz. So the result at 1 MHz is generally

used as the representative for the frequency range. The speed of longitudinal wave (or
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shear wave) is determined by measuring the difference between the times of travels

through two samples of different thicknesses. By subtracting the results from the

two tests, interfacial problems and time lags in the system are assumed to cancel

out. Sample in each of the two tests is sandwiched between a pair of longitudinal

transducers (or shear transducers) and is tested at the same environmental condition.

The attenuation is measured using the transmitted wave amplitudes of these two

tests. The mass densities of the samples are first measured and averaged before the

test starts. The measured wave speed, attenuation, and average mass density at each

temperature are used to calculate longitudinal (or shear) storage and loss moduli of

the tested materials. With the known geometry of sample, the mass density, ρ of a

sample can be calculated by:

ρ =
m

V
, (3.33)

where m and V ave mass and volume of the sample. The wave speed, c in the

equations 3.29, 3.30, and 3.31 is calculated by:

c =
h2 − h1

tf
, (3.34)

where h1 and h2 are thicknesses of the samples in test 1 and 2, respectively, tf is the

time of flight (see Figure 3.26). The attenuation, α in equation 3.29 can be calculated

by:

α =
1

h2 − h1

ln
A1

A2

, (3.35)

where A1 and A2 are amplitudes of the waves traveling through the samples in test

1 and 2, respectively (see Figure 3.26). If the wave speed, c and attenuation, α are

calculated from the longitudinal wave measurement, the storage and loss moduli (M ′
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and M ′′) calculated from equations 3.30 and 3.31 represent the longitudinal storage

and loss moduli (L′ and L′′) of the tested material. Similarly, if we conduct the shear

wave measurement, M ′ and M ′′ will represent the shear storage and loss moduli (G′

and G′′). Once we obtain both longitudinal and shear moduli, we can calculated other

moduli using relation in Table 3.1.

Figure 3.26: Longitudinal wave signals, amplitudes A1 and A2 from tests
1 and 2, and time of flight tf (dashed line shows signal traveling through
thin sample (test 1), solid line shows signal traveling through thick sample

(test 2))

The test procedure for ultrasonic wave testing under low pressure is slightly

modified from the testing at atmospheric pressure. Two tests under the same pressure

are required, each using a different sample thickness. In each of the two tests, the

sample is confined in the closed fixture (see Figure 3.24), placed in the environmental

chamber (see Figure 3.1), uniaxially aligned with the loading post of the Instron load

cell, and equilibrated at a chosen temperature for an hour. The compressive force is

then gradually applied normal to the surface of the sample with the rate of 15 lbf/s

(67 N s−1). The compressive force is kept constant at every 1 MPa pressure to perform

ultrasonic wave measurement while the temperature is kept unchanged for the whole

test. The testing pressure ranges from 0 to 20 MPa with 1 MPa step. To be noted, due

to the nearly incompressible nature of polyurea (ν ∼ 0.5), pressure can be calculated
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by dividing compressive force with the compression area of the sample. Compressive

force and displacement histories are measured by the load cell and the two poten-

tiometers, respectively, and recorded for analysis. After the tests are completed, the

stress and strain of the tested samples are calculated using the initial dimensions of

the samples, the compressive force, and the contraction histories. The stiffness of the

machine is also measured through the same test procedure but without sample. At

the same pressure, the measured strains from the two tests with samples with dif-

ferent thicknesses are subtracted by the strain of the machine from the test without

sample. The resulting strains are the pure sample strains. The sample strain and

coefficient of thermal expansion are later used to calculate the density of the sample

at each pressure. Ultrasonic wave signals of the two tests with samples are recorded

separately at each pressure. The wave speed and attenuation, which take into account

the contraction of the sample at each pressure and temperature, are calculated. Then,

the moduli are calculated using the density, wave speed, and attenuation. The same

procedure is repeated for other testing temperatures. Temperature range is from -50

to 50 ◦C, with 10 ◦C increment. The compressive stress or pressure can be calculated

as:

σ1 = P1 =
F1 (t)

Ao1
, (3.36)

σ2 = P2 =
F2 (t)

Ao2
, (3.37)

σave = P =
σ1 + σ2

2
, (3.38)

where σ1, σ2, and σave are engineering confined compressive stresses from test 1, test
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2, and the average stress, respectively, t is time, Ao1 and Ao2 are the compression

areas of samples in test 1 and 2, and they are constants since the sample in each test

is confined in the closed volume. Due to the nearly incompressible nature of polyurea

and polyurea-based composites in this research, the confined compressive stress is

referred to as pressure. Generally, P1, P2, and P are almost the same since F1 and

F2, and Ao1 and Ao2 are very close. The compressive strain can be calculated as:

ε1 (T, P ) =
[d1 (P )− d1 (P = 0)]− [dm (P )− dm (P = 0)]

h1 (1 + CTE (T − To))
, (3.39)

ε2 (T, P ) =
[d2 (P )− d2 (P = 0)]− [dm (P )− dm (P = 0)]

h2 (1 + CTE (T − To))
, (3.40)

εave =
ε1 + ε2

2
, (3.41)

where ε1, ε2 and εave are the engineering strains from test 1, test 2, and the average

strain, respectively, d1 (P ), d2 (P ), and dm (P ) are displacements from test 1 and test

2, and the displacement of the machine from the test without sample at pressure P ,

respectively, h1 and h2 are the initial thicknesses of sample in tests 1 and 2, T and

To are the testing and room temperatures, respectively, CTE is thermal expansion

coefficient of the sample (207 µm m−1 K−1 for polyurea, 151 µm m−1 K−1 for polyurea

with 40% volume fraction of phenolic microballoon, and 103 µm m−1 K−1 for polyurea

with 20% volume fraction of milled glass). The average stress and strain in equations

3.38 and 3.41 are used to construct the stress-strain relation of the sample. The
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thicknesses of the samples at each pressure and temperature can be written as:

h̃1 (T, P ) = h1 (1 + CTE (T − To) + ε1 (T, P )) , (3.42)

h̃2 (T, P ) = h2 (1 + CTE (T − To) + ε2 (T, P )) , (3.43)

where h̃1 and h̃2 are thicknesses of the samples in tests 1 and 2 that include effects of

extensions from pressure and temperature. Densities of the samples can be calculated

as:

ρ̃1 (T, P ) =
ρ1

(1 + 3CTE (T − To) + ε1 (T, P ))
, (3.44)

ρ̃2 (T, P ) =
ρ2

(1 + 3CTE (T − To) + ε2 (T, P ))
, (3.45)

ρ̃ave =
ρ̃1 + ρ̃2

2
, (3.46)

where ρ1 and ρ1 are initial densities of the samples in test 1 and 2 at ambient condition,

ρ̃1, ρ̃2, and ρ̃ave are the densities of the samples in tests 1, 2, and the average density

that include effects of extensions from pressure and temperature. In general, the effect

of thermal contraction or expansion is very small compared to that from pressure. So

we might neglect the thermal term for simplicity.

With the received ultrasonic wave signals recorded from the two tests at each

pressure and temperature, the time of flight can be calculated (see Figure 3.26).

Wave speed and attenuation can be calculated from equations 3.34 and 3.35 using

the previously calculated time of flight, h̃1, and h̃2 defined in equations 3.42 and 3.43.
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Then, the storage and loss moduli are calculated, using equations 3.30 and 3.31 with

the average density, ρ̃ave calculated using equation 3.46.

For high-pressure test, the test fixture is designed for inserting only one sample

with smaller cross-sectional area to create higher pressure than low-pressure test at

the same load (see Figure 3.25). Thus one test is performed at each pressure and

temperature, and only the wave speed is measured. The high pressure ultrasonic

wave measurement will be discussed in detail later in Section 4.2 of Chapter 4.

3.3.4 Results and Discussions

Ultrasonic Wave Measurement at Ambient Pressure

Polyurea (PU), phenolic microballoon filled polyurea (PUPMB), and milled

glasses reinforced polyurea (PUMG) composites were tested with ultrasonic wave

measurement at ambient pressure in order to study their viscoelastic responses in the

frequency range of 0.5 to 1.5 MHz. In this section, PU and PUPMB are discussed

first; while PUMG will be discussed later in Section 3.4. Figure 3.27 shows the results

of ultrasonic longitudinal wave measurement on PU. The plot of longitudinal wave

speed, cL as a function of temperature (from -90 to 30 ◦C) is shown in Figure 3.27a.

The testing frequencies are 0.5, 0.75, 1, 1.25, and 1.5 MHz. To be noted, 1 MHz is the

central frequency of the longitudinal transducers that we used. It appears that 0.5

and 1.5 MHz are the minimum and maximum frequencies that the transducers can

perform effectively. cL decreases with increasing temperature. It has a flat reverse S

shape, in which low negative slopes occur at low and high temperature regions. High

negative slope occurs around −40 ◦C. The cL curves of the five frequencies lie on top

of each other, suggesting that cL is frequency-insensitive within this frequency range.
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Figure 3.27b shows attenuation of longitudinal wave per unit length of the sample,

αL as a function of temperature. Unlike cL, it is apparent that αL is frequency-

sensitive. It increases with increasing frequency. αL is a dome-shaped curve where

the peak is around −50 ◦C for all the five frequencies. The dome shape becomes

flatter at lower frequency. The longitudinal storage and loss moduli, L′ and L′′ as

functions of temperature are shown in Figrues 3.27c and d, respectively. Similar to

cL, L′ decreases with increasing temperature and it is frequency-insensitive within

0.5 to 1.5 MHz. Unlike L′, L′′ is frequency-dependent. L′′ decreases with increasing

frequency. This behavior is opposite to that of αL. L′′ reaches its peak around −70 ◦C

while, as mentioned earlier, αL peaks at around −50 ◦C. It is worth noting that the

behavior of L′ is dominated by the behavior of cL while the behavior of L′′ is influenced

by the combination of cL and αL.

The ratio of L′′ to L′, called tan δ is shown in Figure 3.28. It gives a ratio

of the viscous portion to the elastic portion. Mostly, the behavior of tan δ is similar

to that of L′′, except that its peak is around −60 ◦C. Generally the three peaks

of αL, L′′, and tan δ are used to locate the temperature of transition from rubbery

to glassy behaviors (or glass transition temperature, Tg ) of viscoelastic materials.

However, they can be at different temperatures. Therefore, this glass transition is

not a particular temperature but rather a range of temperature.

Figure 3.29 shows the results of ultrasonic shear wave measurement on polyurea.

Due to lower performance of the shear transducers (compared to the longitudinal

transducers) and higher dissipation of shear wave, we study only three frequencies

(0.5, 1, and 1.5 MHz) and narrower temperature range (-50 to 30 ◦C). We found that

the shear transducers work poorly below −50 ◦C. Above 30 ◦C, shear wave in polyurea
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Figure 3.27: PU: (a) Longitudinal wave speed as a function of
temperature (b) Attenuation of longitudinal wave per unit length of the

sample as a function of temperature (c) Longitudinal storage modulus as a
function of temperature (d) Longitudinal loss modulus as a function of

temperature

become very attenuated, especially at high frequency. Samples for shear wave mea-

surement need to be very thin to allow us to see the transmitted shear wave signal in

polyurea at high temperature. To be noted, the accuracy of shear wave measurement

is lower than that of longitudinal wave measurement. Figure 3.29a shows the plot

of shear wave speed, cG as a function of temperature (from -50 to 30 ◦C). Similar to

cL, cG decreases with increasing temperature. Due to narrower testing temperature

range of this measurement than that of the longitudinal wave measurement, we can-

not see clearly the flat reverse S shape of shear wave speed. However, we did observe

that cG flattens out at around 20 ◦C. The cG is quite frequency-insensitive within

this frequency range. Figure 3.29b shows attenuation of shear wave per unit length
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Figure 3.28: PU: tan δ versus temperature

of the test sample, αG as a function of temperature. Unlike cG, we can see that αG is

frequency-sensitive. Similar to αL, αG also increases with increasing frequency. How-

ever αG does not show the dome-shaped curve as in αL. αG increases with increasing

temperature, instead. The shear storage and loss moduli, G′ and G′′ as functions

of temperature are shown in Figrues 3.29c and d, respectively. Similar to cG, both

L′ and L′′ decreases with increasing temperature. From observation, they are quite

frequency-insensitive within 0.5 to 1.5 MHz.

The results of ultrasonic longitudinal wave measurement on PUPMB com-

posites with 10%, 20%, and 40% volume fractions are shown in Figure 3.30. In this

study, the viscoelastic behaviors of the composites are characterized at 1 MHz (central

frequency of the longitudinal transducers) and from -50 to 30 ◦C.

Figure 3.30a shows cLs of the PUPMB composites as functions of temperature.

Apparently, cL of each composite decreases as temperature increases. cL also decreases
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Figure 3.29: PU: (a) Shear wave speed as a function of temperature (b)
Attenuation of shear wave per unit length of the sample as a function of
temperature (c) Shear storage modulus as a function of temperature (d)

Shear loss modulus as a function of temperature

with increasing volume fraction of the PMB filler. This is due to that the voids in the

microballoon are obstacles of the propagating wave, thereby, slowing down the wave

speed. Figure 3.30b shows the plots of αLs of the PUPMB composites as functions

of temperature. αLs of the composites behave differently from that of pure polyurea.

αLs of the composites increase with increasing temperature while αL of polyurea de-

creases with increasing temperature. αL increases with increasing volume fraction of

the microballoon. A jump of αL is observed, at low temperature, between 10% and

20% volume fraction while at higher temperature αL spread out evenly. This compli-

cate behavior may be caused by the difference in temperature-dependent viscoelastic

behaviors of two polymeric materials, i.e., polyurea and phenolic microballoon. L′

and L′′ as functions of temperature are shown in Figrues 3.30c and d, respectively.
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Figure 3.30: PUPMB: (a) Longitudinal wave speed as a function of
temperature (b) Attenuation of longitudinal wave per unit length of the

sample as a function of temperature (c) Longitudinal storage modulus as a
function of temperature (d) Longitudinal loss modulus as a function of

temperature

Similar to cL, L′ decreases as temperature and volume fraction of the microballoon

increase. Unlike L′, the behavior of L′′ is more complicate. At low temperature

L′′ decreases with increasing volume fraction while at temperature above 0 ◦C it in-

creases first, reaches a peak at around 10% volume fraction, and drops back down as

volume fraction increases further. This behavior at 20 ◦C can also be predicted by

micromechanical models that will be discussed in Chapter 5.

Figure 3.31a shows cGs of the PUPMB composites as functions of temperature.

Unlike cL, cG does not vary much when volume fraction changes. With careful notice,

we can see that at low temperature cG slightly decreases with increasing volume frac-

tion. However, the trend reverses as temperature increases. Apparently, cG decreases
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Figure 3.31: PUPMB: (a) Shear wave speed as a function of temperature
(b) Attenuation of shear wave per unit length of the sample as a function of
temperature (c) Shear storage modulus as a function of temperature (d)

Shear loss modulus as a function of temperature

as temperature increases in the same way as cL. αGs of the PUPMB composites as

functions of temperature are shown in Figure 3.31b. αGs of the composites increase

with increasing temperature. At low temperature αGs of the composites converge to

cG of pure polyurea, while at high temperature they spread out. Consider in term of

volume fraction, it seems that αG peaks out at 10% volume fraction and drops down

as volume fraction increases further. Figrues 3.31c and d show G′ and G′′ as functions

of temperature, respectively. Both G′ and G′′ decrease with increasing temperature.

At low temperature, both G′ and G′′ decrease with increasing volume fraction, while

at high temperature they converge to G′ and G′′ of polyurea.



67

Low Pressure Ultrasonic Wave Measurement

Previously in Section 3.1.3, we discussed the results of low pressure quasi-static

tests on PUPMB composites. The stress-strain and density curves of the composites

as functions of pressure from 0 to 10 MPa were explained in detail there. Here, we will

discuss about the results of ultrasonic longitudinal wave measurement with respect

to pressure. As a reminder, the objective of this test is that we want to study the

acoustic impedances of the PUPMB composites and determine whether or not they

are pressure invariant.

Figure 3.32: PUPMB: (a) Density as a function of pressure (b)
Longitudinal wave speed as a function of pressure (c) Acoustic impedance
as a function of pressure (d) Longitudinal storage modulus as a function of

pressure

Similar to Figure 3.11b, densities of PUPMB composites as functions of pres-

sure are also shown here in Figure 3.32a for the sake of discussion. To be noted,

the load or pressure profile is shown in Figure 3.10. Figure 3.32b shows longitudinal
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wave speeds, cLs of PUPMB composites as functions of loading and unloading pres-

sures. For each composite, the top solid line refers to loading and bottom solid line

is unloading. The knots in each plot observed at 10 and 1 MPa are at the creep and

recovery steps where we kept the testing pressure fixed for 1 hour (see Figure 3.10).

As we can see from Figure 3.32b, cL decreases with increasing volume fraction of the

PMB filler. During loading, cL is constant over the pressure range of study; however,

during the creep stage where we applied 10 MPa pressure for 1 hour, cL drops as

time passes. The drop of cL is larger in the composite with higher volume fraction of

microballoon. This is due to that higher amount of microballons were collapsed by

pressure in the the composite with higher volume fraction of microballoon. During

unloading, cL slightly decreases and slightly recover at the recovery stage where we

fixed the applied 1 MPa pressure for 1 hour. Acoustic impedance as a function of pres-

sure for each composite is shown in Figure 3.32c. It is apparent that the impedance

decreases with increasing volume fraction. At 40% volume fraction, the impedance

is lowered by over 50%, compared to the impedance of the pure polyurea. More in-

teresting, the impedance, which is the product of the multiplication between density

and wave speed, seems to be pressure-invariant even though many micro balloons

were collapsed by pressure during loading and unloading. At 0 MPa, a little drop of

impedance (around 10%) is observed for PUPMB composite with 40% volume frac-

tion. This is due to that drop of wave speed during unloading is compensated by the

jump in density of the composite at the same stage. This behavior is also observed in

L′ since L′ in this study was calculated by density times the square of the wave speed.

In conclusion, this suggest that the PUPMB composites have the ability to maintain

its acoustic impedance in this range of pressure. As discussed in Section 3.1.3, we
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can improve the quality of PUPMB composites if we sieve out the microballoons that

are larger than 25 µm and use only the smaller ones to fabricate PUPMB composites.

The composites would be able to resist the pressure up to 10 MPa without damage

of the microballoons. This will be our future work.

3.4 Dymamic Properties of Polyurea-Milled Glass

Composites Part I: Experimental Characteriza-

tion

Polyurea (PU) is an elastomer, which exhibits unique thermo-mechanical prop-

erties. It is synthesized from a di-functional amine, e.g. Versalink P-1000 and a

diisocyanate, e.g. Isonate143L. In this study, various volume fractions milled glass

(MG) was added to create polyuria-milled glass composites (PU-MG). Milled glass

is a micro fiber with cylindrical shape. The distribution of the milled glass in the

polyurea matrix was observed under the scanning electron microscope. The dynamic

properties of pure polyurea and the PU-MG composites were measured by dynamic

mechanical analysis (DMA) in the low frequency range (1-20 Hz) and by ultrasonic

wave measurement in the high frequency range (0.5-1.5 MHz). Both experiments show

that increasing the milled glass volume fraction drastically increases both the storage

and loss moduli of the composites. DMA results show that dynamic Young’s modulus

increases with increasing frequency. However, longitudinal and shear moduli from ul-

trasonic wave measurement appears to be insensitive to frequency within the range of

0.5 to 1.5 MHz. The experimental dynamic moduli master curves of PU and PU-MG

composites were constructed and compared. The relaxation function or creep com-
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pliance are generally useful than dynamic moduli for modeling of material response

under complex histories. It is of practical use to convert dynamic mechanical data

from the frequency domain into the time domain. The discrete relaxation spectra

of the composites were calculated by fitting Prony series to the master curves, using

least square nonlinear regression. Retardation spectra were then calculated using the

interrelation between relaxation modulus and creep compliance in Laplace domain.

Finally, the time domain relaxation modulus and creep compliance for each compos-

ite were obtained from the two spectra. In order to extend our understanding of

the dynamic behavior of the PU-MG composite, micromechanical models have been

created and are discussed in the accompanying paper [39].

3.4.1 Introduction

Polyurea (PU) is a segmented block copolymer derived by the reaction of a

diisocyanate component and a diamine component. Generally, polyurea is formulated

to have hard segments with a high glass transition temperature (Tg) and soft seg-

ments with a low Tg. The soft phase is primarily constituted of long chain diamine,

which confers flexibility to the material, and the hard phase consists of diisocyanate

typically in a semi-crystalline ordered state created by hydrogen bonding, which gives

an enhanced initial stiffness often followed by a yield-like event. The hard and soft do-

main phase separation is due to the thermodynamic incompatibility of the segmented

chain blocks of polyurea [5]. Therefore, the microstructure of polyurea has nano-scale

hard domains dispersed in the soft domain. The microstructure mechanical properties

of polyurea may be tuned by using different isocyanates and amines [5]. Holzworth

et al. also showed that even for the same chemistry, the stoichiometric ratio affects
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the mechanical properties of polyurea [4]. In this study, molar ratio of isocyanate to

amine groups is chosen to be 1.05 as recommended by the manufacturer [6].

Previous researches have shown that the mechanical properties of polyurea

depend strongly on the strain rate, temperature and pressure [9, 20, 40, 41]. It also

shows strong hysteresis and cyclic softening [11]. For the polyurea-based composites,

not much data is available. Qiao et al studied polyurea with fly ash composites

[42,43]. They showed that by mixing polyurea with fly ash, the strength of polyurea

increases along with decrease in density. Alternatively, glass fibers can be blended

with a polymer to improve the strength of the polymer. Experiments on milled-glass-

fiber-filled polyethylene terephthalate-co-isophthalate composites were conducted by

Velasco et al. [44]. Their results showed a trend of increasing composite Young’s

modulus and tensile strength with increasing fiber volume fraction. Increasing wear

and impact resistances is another advantage of polymeric composites containing milled

glass fibers [45].

In this study, the micron-scale cylindrical glass fibers were introduced as the

filler material into polyurea. Pure polyurea and polyurea with milled glass (PU-MG)

composites with 5%, 10%, 15%, and 20% volume fractions of inclusions were created.

The main contributions of this study are the following:

1. The effect of milled glass volume fraction, frequency, and temperature on

dynamic mechanical properties of PU-MG composites was experimentally measured.

The composites were studied using dynamic mechanical analysis (DMA) in the low

frequency range of 1 to 20 Hz and -80 to 50 ◦C and through ultrasonic wave measure-

ments in the high frequency range of 0.5 to 1.5 MHz and -50 to 30 ◦C.

2. The energy dissipation behavior of PU and PU-MG composites were stud-
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ied, considering volume fraction, frequency, and temperature.

3. The master curves of PU and PU-MG composites were constructed with the

assumption that PU and PU-MG composites are thermorheologically simple. These

curves contain the material information over wider ranges of frequency than can be ob-

tained from a single standard experimental technique. These master curves and their

parameterization in selected ranges of strain rates/frequencies and temperatures may

be used for robust computational modeling of complex structures that include these

composites as layers, dampers, or high strain-rate stiffeners and stabilizers [46–48].

While the comparison of the master curves obtained from DMA with the ultrasonic

results show that this assumption is justified for use in storage modulus, it was ob-

served that the loss modulus at higher frequencies is consistently higher than what

is predicted from DMA master curves. This indicates the presence of enhanced dy-

namic loss mechanisms at ultrasonic frequencies and underlines the need for further

modeling that can capture these effects.

4. Discrete relaxation and retardation spectra, as well as uniaxial relaxation

function and creep compliance of the composites were calculated. The discrete relax-

ation and retardation spectra can be used with finite element programs for designing

and analysis of the composites, under dynamic and unsteady load histories. A small

modification to the formulation previously presented in [49] was realized for the solid

viscoelastic cases. The effect of volume fraction of milled glass on the profiles of the

relaxation and compliance were studied.

Additionally, in our accompanying paper, micromechanical models will be dis-

cussed and used as a computational tool to estimate mechanical properties of the

composite and to extend our understanding of their dynamic behavior [39]. These
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models are not limited to PU-MG composite and can be directly used for other com-

posites with similar particulate microstructure; see for example [21].

3.4.2 Material Fabrication

In this study, Isonate 143L [26], which is a polycarbodiimide modified diphenyl-

methane diisocyanate, was used with the diamine Versalink P-1000 [6], which is a

poly(tetramethyleneoxide-di-p-aminobenzoate). The milled glass was purchased from

Fibertec, Inc. (product number 3032). The fibers have an average diameter of 16 µm,

average length of 200 µm, and average density of 2.5 g cm−3. PU-MG composites of

volume fractions of 5%, 10%, 15%, and 20% were fabricated, as well as PU with no

MG (PU-0%MG). The composite fabrication procedure is shown elsewhere [31]. The

nominal dimension of the DMA samples was 3 mm x 10 mm x 20 mm. Two DMA sam-

ples from the same batch were fabricated for each milled glass volume fraction. The

nominal dimension of the ultrasonic test samples were 25.4 mm (1 inch) in diameter

and 6 mm in thickness for longitudinal waves, and 76.2 mm in diameter (3 inch) and

0.7 mm (hereafter referred to as thin) or 1.2 mm (thick) in thickness for shear waves.

Two longitudinal-, one thick and one thin shear-wave-test samples were fabricated for

each volume fraction.

3.4.3 Characterization

Dynamic Mechanical Analysis

Dynamic mechanical analysis was conducted on a TA Instrument Dynamic

Mechanical Analyzer 2980. The experimental data was collected and analyzed using

the Universal Analysis software to obtain storage modulus E ′, loss modulus E ′′, and
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tan δ. During the test, the sample was cantilevered at both ends with a free length

of 17.5 mm between the clamps. One end of the sample was fixed, and the other end

was attached to the movable clamp, which oscillated harmonically with amplitude

of 15 µm. The temperature range of the test was -80 to 50 ◦C with 3 ◦C increments

for each step. The sample was equilibrated at each temperature point for 3 minutes

before the frequency sweep. The tested frequencies were 20 Hz, 10 Hz, 5 Hz, 2 Hz and

1 Hz, stepping down sequentially for each sweep. Liquid nitrogen was used to cool

the system down to subambient temperatures.

Scanning Electron Microscopy

The fractured surfaces of polyurea with milled glass composites were observed

using a Philips Environmental Scanning Electron Microscope XL30 scanning electron

microscopy (SEM).

Figure 3.33: Fractured surface of PU-10%MG-DMA sample

The fractured surface was coated with 75 nm of iridium in an automatic sput-

ter. DMA and longitudinal-wave-test samples were cross-sectioned, fractured, and

observed under SEM. It shows that the milled glass fibers are randomly dispersed in

the polyurea matrix as shown in Figure 3.33. The milled glass fibers in shear-wave-
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test samples, as shown in Figure 3.34, tend to lie parallel to the surface of the samples

due to fabrication process needed to achieve such thin samples. The mixture has to

flow parallel to the surface of the top and bottom glass plate molds and this will

naturally push the fibers to rearrange themselves parallel to the two plates as well.

Figure 3.34: (a) Fractured surface of
PU-5%MG-ultrasonic-shear-wave-test sample (b) Fractured surface of
PU-10%MG-ultrasonic-shear-wave-test sample (c) Fractured surface of

PU-20%MG-ultrasonic-shear-wave-test sample. (Dotted line shows surface
of the sample)

Composite Density Measurement

The density of each composite was determined through the application of

Archimedes’ principle by measurement of the weight of the specimen in air and in

water, respectively [42].

ρc =
wair

wair − wwater
ρwater, (3.47)

where ρc is the density of the composite, ρwater is the density of water, wair is the

weight of the composite in air, and wwater is the weight of the composites in water.

Five measurements were conducted for each volume fraction. The measured densities

were compared with the calculated densities and are shown in Figure 3.35.
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Figure 3.35: PU-MG composite density versus volume fraction

Longitudinal and Shear Ultrasonic Wave Measurements

The longitudinal wave speed in the composites was measured by direct con-

tact measurement. The experimental setup is shown and discussed elsewhere [20,50].

To determine the wave speed and attenuation of the longitudinal wave, two tests

were performed using two different sample thicknesses (for longitudinal wave test,

the thicker sample was made by stacking two thin ones). The samples were sand-

wiched between a pair of longitudinal transducers using a fixture to ensure relatively

uniform pressure applied at all times, and longitudinal wave couplant was applied to

all contact surfaces. Tests were conducted at 0.5, 1.0, and 1.5 MHz and from -50 to

30 ◦C with 10 degreeCelsius increments. The longitudinal wave speed was determined

by measuring the difference between the travel times of the two tests with different

sample thicknesses:

vL =
d

t
, (3.48)

where vL is the longitudinal wave speed in the composite, d is the difference of sample

thickness between the two tests, and t is the time shift observed between the two tests.
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The longitudinal-wave attenuation coefficient per unit thickness was measured using

the transmitted-wave amplitudes of these two tests:

αL =
1

d
ln

(
A1

A2

)
, (3.49)

where αL is the longitudinal-wave attenuation coefficient per unit thickness, A1 is the

amplitude of the longitudinal wave in single-sample test, and A2 is the amplitude of

the longitudinal wave in double-sample test. The wave speed and attenuation are used

to calculate longitudinal storage and loss moduli of the composites as follows [20,50]:

L′ =
ρcv

2
L [1− r2

L]

[1 + r2
L]

2 , (3.50)

L′′ =
2ρcv

2
LrL

[1 + r2
L]

2 , (3.51)

where

rL =
αLvL
ω

, (3.52)

rL is a dimensionless parameter, ω is the angular frequency, L′ is the longitudinal

storage modulus, and L′′ is the longitudinal loss modulus. The speed of shear wave

(vG) and shear attenuation (αG) are also calculated using equations 3.48 and 3.52 for

each material. Then the shear storage and loss moduli (G′ and G′′) are calculated in

the same manner, using equations3.50 and 3.51 with dimensionless shear parameter

(rG), equation 3.52.
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3.4.4 Results and Discussion

DMA

In the DMA single cantilever test, the general expression of the complex

Young’s modulus is defined as E∗ = E ′ + iE ′′, where E ′ is the Young’s storage

modulus and E ′′ is the Young’s loss modulus. E ′ reflects the elastic stiffness of the

material and E ′′ is related to the energy loss. tan δ is defined as E′′

E′
. The complex

longitudinal and shear moduli can be used to calculate the complex Young’s modulus

as

E∗ =
G∗ (3L∗ − 4G∗)

L∗ −G∗
, (3.53)

where E∗, L∗, and G∗ are complex Young’s, longitudinal, and shear moduli. Figures

3.36a-d show the average Young’s storage and loss moduli of the two tests for PU-

0%MG, PU-10%MG, PU-15%MG and PU-20%MG respectively. The average was

taken between the two samples made from the same batch. Both storage and loss

moduli increase drastically with the increase of the volume fraction of the milled

glass, as shown in Figures 3.37a-b, which summarize the ratio of the modulus of

each PU-MG composite with different volume fraction to that of pure polyurea at 1

and 20 Hz. This behavior can also be observed at other test frequencies. For higher

temperatures above 5 ◦C, the storage and loss moduli increases to about 2, 2.6, and

4 times comparing to the pure polyurea for the 10%, 15% and 20% milled glass

volume fraction, respectively. Note that for higher temperatures above 5 ◦C, tan δ

of each composite approaches that of pure PU (see Figure 3.38). This means that

although as the milled glass volume fraction increases, and the PU-MG composite

gets stiffer, the energy loss does not drop. This is opposite to our expectation that
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the composites should have less energy dissipation due to the reduction of the volume

of PU. In other words, one gets a stiff composite with the same dissipation potential as

the flexible matrix. The peak of the loss modulus (E ′′) indicates the glass transition

in the material. As can be seen in Figures 3.36a-d, the peaks of E ′′ are all around

−60 ◦C, which is consistent with the measurement by differential scanning calorimetry

(DSC) for pure polyurea [4]. For higher milled glass volume fraction, the peaks shift

slightly towards higher temperature. This implies that the existence of the milled

glass hinders the movement of the polymer chains.

Figure 3.36: (a) E ′ and E ′′ of PU-0%MG. (b) E ′ and E ′′ of PU-10%MG.
(c) E ′ and E ′′ of PU-15%MG. (d) E ′ and E ′′ of PU-20%MG
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Figure 3.37: (a) Relative E ′ of PU-MG composites comparing with
PU-0%MG. (b) Relative E ′′ of PU-MG composites comparing with

PU-0%MG

Figure 3.38: tan δ of PU-MG composites versus temperature.

Ultrasonic Wave Measurement

It is observed that within 0.5 to 1.5 MHz interval (normal working range of the

transducers used in this study) and -50 to 30 ◦C, the longitudinal and shear moduli

may be considered nearly frequency insensitive. Thus, only the results at 1 MHz,

which is the central frequency of both longitudinal and shear transducers, will be

presented as representative. The longitudinal- and shear-wave speeds as functions

of temperature at 1 MHz are shown in Figures 3.39a-b. It can be seen that both
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longitudinal- and shear-wave speeds increase monotonically with decreasing temper-

ature and increasing volume fraction of milled glass fiber. However, at low volume

fraction 5% and 10%, the increases of both wave speeds compared to pure polyurea

are not obvious. At 20% volume fraction, the two wave speeds increase significantly,

especially at low temperature. At −50 ◦C the ratio of longitudinal wave speed (vL)

to shear wave speed (vG) is at minimum around 2.5. As the temperature increases,

this ratio increases remarkably and reaches its maximum around 5 at the highest

measured temperature, 30 ◦C (see Figure 3.39c). This monotonic increase in the ratio

of vL to vG is due to shear softening at higher temperatures. This leads to the higher

drop in shear wave speed, compared to longitudinal wave speed. The material with

higher volume fraction of milled glass tends to have lower ratio of vL to vG due to the

stiffening effect of the milled glass.

Figure 3.39: : (a) vL versus temperature at 1 MHz, atmospheric pressure.
(b) vG versus temperature at 1 MHz, atmospheric pressure (c) vL

vG
versus

temperature at 1 MHz, atmospheric pressure



82

Figure 3.40: (a) rL versus temperature at 1 MHz, atmospheric pressure
(b) rG versus temperature at 1 MHz, atmospheric pressure

The dimensionless parameters rL and rG, which are the attenuations per wave-

length of the longitudinal and shear waves divided by 2π, are calculated, using equa-

tion 3.52 and shown in Figures 3.40a-b. rL decreases as temperature increases; while

rG is relatively flat with a slight curved bump between 0 to 20 ◦C. As volume fraction

increases, rL shows increasing trend and a significant jump between 10% and 20% vol-

ume fraction. However, there is no perceptible increase for rL at low volume fractions

of 0% and 5%. Unlike rL, there is no obvious trend observed for rG with respect to the

volume fraction. With vL, vG, rL, and rG, the longitudinal- and shear-storage mod-

uli, L′ and G′, are calculated from equation 3.50 and shown in Figures 3.41a-b. The

longitudinal- and shear-loss moduli, L′′ and G′′, are calculated using equation 3.51

and shown in Figures 3.41c-d. Overall, the longitudinal and shear moduli have the

same trend. They all increase with decreasing temperature and increasing the volume

fraction of milled glass particle. While the wave speeds and normalized attenuations

appear to be independent of volume fraction at lower values the moduli show clearly

increasing trend, indicating a rise proportional to the density. However, L′, L′′, G′

and G′′ increase as the volume fraction increases with an outstanding jump at 20%
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with an effect well beyond that of densityUnlike the relative Young’s storage and loss

moduli from DMA, the ultrasonic longitudinal and shear moduli normalized to those

of pure PU are flat over the range of testing temperatures. The longitudinal loss

tangent L′′

L′
decreases as temperature increases and significantly rises at 20% volume

fraction, while shear loss tangent G′′

G′
is flat with a bump between 0 to 20 ◦C and

insensitive to volume fraction. These curves behave, as expected, similarly to those

of rL and rG, and therefore are not graphed in this paper.

Figure 3.41: (a) L′ versus temperature at 1 MHz, atmospheric pressure
(b) G′ versus temperature at 1 MHz, atmospheric pressure (c) L′′ versus

temperature at 1 MHz, atmospheric pressure. (d) G′′ versus temperature at
1 MHz, atmospheric pressure

Frequency Dependent Master Curves

The time-temperature superposition was applied to DMA and ultrasonic wave

testing data. With the assumption that all materials are thermorheological simple,
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master curves were constructed. The process of how each master curve is constructed

is discussed below, and this process will be used in the accompanying paper on mi-

cromechanical models for PU-MG composites [39]. The Young’s storage and loss

moduli for each material from DMA are shown in Figures 3.36a-d. Young’s storage

and loss moduli from ultrasonic wave testing are calculated, using equation 7.To con-

struct Young’s modulus master curve, both Young’s storage and loss moduli of each

material need to be normalized, by a factor that depends on density and temperature.

This factor is suggested, based on the flexible chain theory (see equation 8) [36].

E∗R (T, ω) = E∗ (T, ω)
ρrefTref
ρT

, (3.54)

where E∗R (T, ω) is the reduced complex Young’s modulus at testing temperature,

T and angular frequency, ω, and ρref and ρ are densities of polyurea at reference

temperature, Tref and testing temperature, T respectively. We also use the density

of pure polyurea in the factor for other PU-MG composites since the frequency-

dependent behavior of the composites are essentially dominated by polyurea. The

milled glass particles behave fully elastically and do not contribute to the frequency

sensitivity of the composites (unless the wavelength is comparable with their length

and spacing). Tref and T are absolute temperatures. To construct the master curves,

we only use the data above glass transition temperature (−50 ◦C for PU-0%MG and a

little higher for other PU-MG composites), i.e. from -50 to 50 ◦C with 3 ◦C increments

for DMA data and from -50 to 30 ◦C with 10 ◦C steps for ultrasonic wave testing. The

reduced storage and loss moduli at each testing temperature are calculated, using

equation 3.54 and plotted with respect to angular frequency in logarithmic scale. Each

isothermal segment of the reduced storage and loss moduli is then shifted horizontally
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and independently relative to the isothermal segment at a reference temperature,

Tref . We chose the reference temperature at around 1 ◦C that is the mid point of the

considered testing temperature range. The shifted isothermal segments are assembled

together; thereby creating a resultant master curve that covers a very wide range of

angular frequency. The shift distance of each isothermal segment, aT is plotted with

respect to the testing temperature, T . Williams et al. proposed that the shift factor of

a polymer is a function of a fractional free volume that is defined as a ratio of the free

volume inside a polymer to the total volume (free volume plus occupied volume) of

the polymer [51]. They also showed that the fractional free volume may be considered

as a linear function of temperature.

log aT =
B

2.303

(
1

f (T )
− 1

f (Tref )

)
, (3.55)

where

f (T ) = f (Tref ) + αf (T − Tref ) , (3.56)

B is a constant, f (T ) and f (Tref ) are the fractional free volumes at the testing

temperature, T and the reference temperature, Tref respectively, αf is the expansivity

of the free volume inside the polymer. Substitute equation 3.56 into 3.55, we obtain

WLF equation.

log aT =
−c1 (T − Tref )

c2 + T − Tref
, (3.57)

where

c1 =
B

2.303f (Tref )
, (3.58)
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c2 =
f (Tref )

αf
. (3.59)

c1 and c2 are positive constants that depend on the material and the reference tem-

perature. These two constants for each material can be obtained from fitting equa-

tion 3.57 to a plot of shift factor, log aT versus the testing temperature T (see Fig-

ure 3.42). The two constants for each material are shown in Table 3.2. For further

fundamental discussion, see [36, 51]. From DMA and ultrasonic wave testing data,

master curve for each material at the reference temperature (Tref= 274 K or 1 ◦C)

were determined (see Figures 3.43a-d). Note that, the reduced Young’s storage and

loss moduli from ultrasonic wave testing at 1 MHz in Figures 3.43a,b, and d were

shifted using shift factor obtained from DMA data.

Figure 3.42: Shift factors, log aT of PU-MG composites versus
temperature

The shifting procedure based on the time-temperature superposition was done
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Table 3.2: Constants c1 and c2 for PU-MG composites at Tref = 274 K

PU-0%MG PU-10%MG PU-15%MG PU-20%MG
Tref (K) 274 274 274 274

c1 25.25 31.15 33.41 50.94
c2 (K) 208.89 246.93 262 371.74

Figure 3.43: (a) Master curve of PU-0%MG (b) Master curve of
PU-10%MG (c) Master curve of PU-15%MG (ultrasonic data was not

collected for this case) (d) Master curve of PU-20%MG

with smooth transitions and therefore its application is qualitatively justified. As

can be seen in Figures 3.43a-d, three regions on each master curve may be identified

over the extended range of angular frequencies, considering DMA and ultrasonic wave

testing data together. The storage modulus levels off, obviously, at low and, likely,

at high reduced frequencies ωaT . The plateau at low ωaT represents rubbery zone.

While, the plateau at high ωaT represents glassy zone in which the material is very

stiff. In the middle between the two plateaus, it represents the transition zone where
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the behavior of the material is sensitive to frequency and temperature. As volume

fraction of milled glass increases, the transition zone becomes smaller. In other words,

the two plateau zones get close to each other. This is due to the fact that the material

becomes more elastic or less frequency sensitive when more milled glass particles are

added into the polyurea matrix. We can see that the reduced Young’s storage modulus

from DMA likely matches pretty well with that from ultrasonic wave testing; while,

there is significant difference in the reduced loss modulus. Below log (ωaT ) = 9, the

reduced loss moduli from DMA and Ultrasonic tests show similar trends. While, at

log (ωaT ) higher than 9, they deviate from each other. One possible reason is that

the DMA data in this region are at the temperature close to −50 ◦C in which the

materials are close to glassy state where the time-temperature superposition with

WLF equation cannot be properly applied, thereby yielding unreliable loss modulus.

While, the ultrasonic data of each material in this region are at temperature range

of -20 to −40 ◦C that is higher than its glass transition temperature. It must be

emphasized that the assumption of simple thermo-rheology is implicit in all such

calculations. Note that since the MG fibers are not expected to introduce any further

time-scales into this material (unless one deals with wavelengths that are comparable

with their size and spacing), making such assumption for composites is somewhat

equivalent to making it for pure PU. This issue has been addressed in detail elsewhere

[31,42,47,48,52]. These frequency domain master curves of Young’s storage and loss

moduli can be used to explain viscoelastic behaviors of PUMG composites under

unconfined uniaxial periodic excitation.
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Time Domain Master Curve

Modeling of material response under complex histories, and design of polymer

processing and applications often require the relaxation function, E (t) or creep com-

pliance, D (t), instead of the storage and loss moduli, E ′ (ω) and E ′′ (ω). Therefore

it is of practical use to convert dynamic mechanical data from the frequency domain

into the time domain. In this study, numerical methods of inter-conversions between

the frequency and time domain moduli, and between relaxation and compliance func-

tions are presented. Various inter-conversion methods can be found in [36,49,53,54].

The relaxation and creep functions for solids in time domain can be represented in

forms of Prony series as:

E (t) = Ee +
N∑
i=1

Eie
−t
τi , (3.60)

D (t) = Dg +
N∑
i=1

Di

(
1− e

−t
λi

)
, (3.61)

where, Ee is equilibrium modulus as t goes to infinity, Dg is the instantaneous com-

pliance at t equals to zero, Ei and Di are relaxation and retardation strengths, and

τi and λi are relaxation and retardation times. In frequency domain, the storage and

loss moduli, E ′ (ω) and E ′′ (ω) can be written as:

E ′ (ω) = Ee +
N∑
i=1

(ωτi)
2Ei

(ωτi)
2 + 1

, (3.62)

E ′′ (ω) =
N∑
i=1

ωτiEi

(ωτi)
2 + 1

. (3.63)
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Parameters τi, Ei, and N are unknown variables and can be found by simply fitting

equations 3.62 and 3.63 to E ′R and E ′′R data shown in Figure 3.43. The parameters Ei

and τi are determined such that the sum of squared deviation between the predicted

values and the experimental data is minimized (least squares nonlinear regression)

[49]:

error =
m∑
j=1

{[
E ′ (ωj)

E ′R (ωj)
− 1

]2

+

[
E ′′ (ωj)

E ′′R (ωj)
− 1

]2
}
, (3.64)

where E ′R (ωj) and E ′′R (ωj) are the experimental data from DMA at m frequencies

ωj. E ′ (ωj) and E ′′ (ωj) are the calculated data from equations 3.62 and 3.63. Once

parameters τi, Ei, and N are obtained from the least squares nonlinear regression,

the relaxation function can be written based on equation 3.60. The retardation pa-

rameters λi, Di, and Dg can then be calculated through the relationship between

relaxation function and creep compliance in Laplace domain. Baumgaertel et al. has

shown the very detailed calculation for polymeric liquid case [49]. Their method

was later used to create the commercial software IRIS. However, it appears that

some equations for the solid case described in the appendix of this reference require

modification. The convolution integral relationship between the relaxation and creep

functions transforms in the Laplace domain with variable s to:

Ê (S) D̂ (S) =
1

S2
. (3.65)

Performing Laplace transform on equation 3.60, Ê (s) is:

Ê (S) =
Ee
S

+
N∑
i=1

Ei
S + 1

τi

. (3.66)
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Substitute equation 20 into 19, to obtain D̂ (s) as:

D̂ (S) =
1

S

1
E0

[∏N
k=1

(
S + 1

τk

)]
Ee
E0

[∏N
k=1

(
S + 1

τk

)]
+ S

∑N
i=1

Ei
E0

[∏N
k=1,i

(
S + 1

τk

)] , (3.67)

where

E0 = Ee +
N∑
i=1

Ei, (3.68)

the notation
∏N

k=1,i ak represents the multiplication of all ak from k = 1 to N except

ai. The Laplace transform of Equation 3.61 can be written as:

D̂ (S) =
A0

S
−

N∑
i=1

Di

S + 1
λi

, (3.69)

where

A0 = Dg +
N∑
i=1

Di. (3.70)

By equating the denominator of equation 3.67 to that of equation 3.69, the N dis-

crete retardation times, λi, may be calculated as the inverses of the real roots of the

following polynomial equation for S:

Ee
E0

[
N∏
k=1

(
S +

1

τk

)]
+ S

N∑
i=1

Ei
E0

[
N∏

k=1,i

(
S +

1

τk

)]
=

N∏
k=1

(
S +

1

λk

)
. (3.71)

Furthermore, the numerators of the partial fractions in equation 3.69 are

A0 =
1

E0

[
N∏
k=1

λk
τk

]
, (3.72)
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Di = − 1

E0

[∏N
k=1

(
1− λi

τk

)]
[∏N

k=1,i

(
1− λi

λk

)] . (3.73)

Once λi, Di, and Dg (in equations 3.69 and 3.70) are found, the creep compliance can

be calculated and plotted using equation 3.61.

The very good agreement between the experimental lines and the Prony series

fits of the master curves are shown in Figure 3.44, and the parameters of the discrete

relaxation and retardation spectra for all are presented in Figure 3.45a. The number

of relaxation and retardation times, N is 23 for all materials. Baumgaertel et al.

reported 8 and 18 modes for a blend of two monodisperse polystyrenes of different

molecular weight and a commercial blend of tar and oil, respectively [49]. The number

of relaxation and retardation times are higher due to the complexity of polyurea and

its composites as solid phase separated elastomeric composites; a lower number terms

for the discrete spectra leads to waviness in the calculated dynamic moduli; while,

increasing the number of modes further rarely changes the error in equation 3.64. A

method for developing computationally efficient Prony series for specific frequency

ranges can be found in [31]. Figure 3.45b shows the time domain relaxation function

and creep compliance for all composites calculated using equations 3.60 and 3.61.

The relaxation function and creep compliance show two distinct regions of rubbery,

and transitional behaviors with switch happening around 102 s for Tref=274 K. As

volume fraction of milled glass increases, the relaxation function increases, the creep

compliance decreases, and the transitional stage becomes flatter or apparently less

time-dependent possibly due to generally stiffer behavior of a higher volume fraction

of glass in the polyurea matrix.
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Figure 3.44: Comparisons between the measured E ′R and E ′′R and the
calculated E ′ and E ′′

3.4.5 Conclusions

In this study the dynamic properties of polyurea with various volume fractions

of milled glass were studied using DMA at low frequencies and ultrasonics at high

frequencies. PU-MG composites clearly demonstrate strong sensitivity to volume

fraction of milled glass particles, temperature, and frequency. As volume fraction

of milled glass increases, the composite becomes stiffer and lossier with a signifi-

cant jump between 10% to 20% volume fraction of MG. Conversely, they become

softer with increasing temperature. The high relative E ′′ (normalized with respect to

pure PU) of the composites at high temperatures is observed in DMA; whereas, in

ultrasonic tests, both relative L′′ and G′′ are flat over the entire range of tested tem-

perature. Frequency dependent master curves of dynamic moduli for each material

were created, using DMA and ultrasonic measurement data using time-temperature

superposition model. It was observed that the Young’s loss modulus values from ultra-

sonic measurements are higher than those predicted from DMA master curves, while
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Figure 3.45: (a) Relaxation and retardation spectra (b) Relaxation
function and creep compliance versus time

Young’s storage modulus values correlated very well with the prediction from master

curves. Time domain master curves, i.e. relaxation functions and creep compliances,
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were also calculated. The discrete relaxation function can be used with commercial

and other finite element software packages for design and analysis of composites. In

the accompanying paper, the corresponding micromechanical models are presented to

assist computational tools for estimating the mechanical properties of PU-MG com-

posites [39]. The developed computational tools are not limited to PU-MG composite

and may be used for other composites with similar microstructures.

3.5 A Novel Technique for Characterization of Elas-

tomeric polyurea at kHz Frequencies

Elastomeric polyurea is a copolymer which has excellent chemical, thermal,

and mechanical properties and is widely used as a coating material or protection

material. The polyurea system used in this study is synthesized using Versalink P-

1000 (Air Products) and Isonate 143L (Dow Chemicals). This polyurea has wide

unique transitions of storage and loss moduli from rubber-like to glassy behaviors in

which they extend from low to high frequencies. The characterization of polyurea

is very challenging in the kHz frequency range, due to the long wave length and the

dissipative nature of polyurea. In this study, we have developed a novel test technique

by modifying the split Hopkins pressure bar and using ball impact to measure Young’s

storage and loss moduli of polyurea at kHz frequencies, which fills the frequency

gap between dynamic mechanical analysis and ultrasonic wave measurement. The

measured Young’s storage and loss moduli from this technique are compared with the

Young’s storage and loss modulus master curves developed using experimental data

of dynamic mechanical analysis and ultrasonic wave measurement. This technique is
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a direct measurement which provides more reliable data in the kHz frequency range

and can be used to evaluate the reliability, in the same frequency range, of other

non-direct measurements including master curves. The usage of this technique is not

limited to polyurea, it can also be used to characterize other polymeric materials at

kHz frequencies.

3.5.1 Introduction

Elastomeric polyurea has excellent chemical, thermal, and mechanical prop-

erties. It can be used for chemical resistance (lab and factory floor protections) and

truck bed abrasion protection [12]. Polyurea is tough and simultaneously dissipative.

A recent application of polyurea is to improve the resistance of hard sturcture to fail-

ure [14] and ballistic penetration [15–17]. Moreover, it is also excellent for managing

shock/impact-induced energy [46]. Polyurea has a unique relaxation behavior, which

spans more than 10 decades on the logarithmic scale of frequency [31]. Its viscoelastic

properties are highly sensitive to frequencies. Existing characterization techniques are

not sufficient to directly measure its viscoelastic properties for the entire frequency

range of its relaxation.

Towards the low frequency end, viscoelastic properties can be measured by

dynamic mechanical analysis (DMA). The operating frequency range of modern DMA

is in the order of 10−2 to 102 Hz according to TA Instruments. For the high frequency

end, ultrasonic wave measurement is the regular characterization technique. Normally

testing frequency range of ultrasound spans from a little less than 50 kHz to 200 MHz

[55]. The fundamental detail of this technique can be found in [56,57]. Measurement

at moderate frequency from 1 to several kHz is very challenging for ultrasonic wave
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measurement since it requires large piezoelectric material and it also requires large

transmitting media between transducers and the sample.

In order to fill the frequency gap between the regular operating frequency

ranges of DMA and ultrasonic wave measurement, we have developed a novel mea-

surement technique by modifying the split Hopkins pressure bar (SPHB) and using

ball impact to measure Young’s storage and loss moduli of polyurea at kHz frequen-

cies. This new measurement is later on refereed to as acoustic ball impact test (ABI).

Unlike standard operation of SPHB, we use an aluminum ball striker with diameter

�1 = 0.01905 m (3/4 inch), incident and transmission aluminum bars with length

L = 1.219 m (4 feet) each and diameter �2 = 0.01905 m (3/4 inch) to generate and

propagate a compression wave pulse that contains low frequencies. The sample for

this measurement is cylindrical and has the same diameter as the aluminum bars.

The sample is placed between the incident and transmission similar to the sample

location of the regular SPHB measurement. It is worth noting that this technique is

considered as small deformation measurement. The tested sample maintains in orig-

inal shape, and it is reusable. The impact force profile can be accurately estimated

using Hertzian contact solution. The estimated impact force profile is used as a the-

oretical guidance to design the testing frequency content and the amplitude of the

input compression pulse signal. We also integrated a temperature chamber, which

enables us to test from -50 to 50 ◦C, considering viscoelastic properties of polymers

are usually temperature-sensitive.

Incident, reflected, and transmitted signals are measured using two ultra-

sensitive semiconductor strain gages placed at the half-span of the two aluminum

bars. Two tests with different sample lengths are required for determination of mate-



98

rial properties. Two transmitted signals from the two test are used to measure wave

speed and attenuation in the material, using phase spectral analysis (PS) [58–61].

Transfer matrix method [62] together with the Incident, reflected, and transmitted

wave signal from each test, is used to improve and validate the measured attenua-

tion. The resulting wave speed and attenuation are used to calculate the Young’s

storage and loss moduli of the material. The Young’s storage and loss moduli from

this measurement are compared with the frequency domain master curves that were

developed from the data of dynamic mechanical analysis (DMA). This test is not

limited to polyurea characterization, and can be applied for other similar materials.

The following paper is organized as: Section 3.5.2 discusses design of the test

and shows the experimental setup, Section 3.5.3 discusses design of the incident pulse,

Section 3.5.4 presents sample fabrication, Section 3.5.5 provides the measurement

and data analysis procedure, Section 3.5.6 shows results and discussions, and finally

conclusions are discussed in Section 3.5.7.

3.5.2 Design of The Test and Experimental Setup

The SHPB measurement is a commonly used experimental technique to study

behavior of metallic material at high strain rates [63–66]. However, if the specimen

is a soft material, the acoustic impedance can be so low that the noise level often

prevents proper interpretation of the transmitted signal obtained from a conventional

SHPB experiment (Steel bar) [67]. Viscoelastic SHPB was developed and can provide

measurable transmitted signal [68–70]; however it requires extensive effort and mathe-

matical treatment of the signals obtained from the experiment due to the geometrical

and material dispersions in the viscoelastic bar [68,71].
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To avoid material dispersion in the bar, two aluminum bars (7075-T6) of length

L =1.219 m each and diameters �2 = 0.01905 m are used as the wave propagation

medium in the ABI measurement. The high-strength aluminum alloy was chosen

instead of conventional steel bar because at the same stress level, the lower Young’s

modulus of the aluminum alloy significantly increased the amplitude of the transmit-

ted strain signal as compared to the steel bar [67].

The incident pulse is generated by the impact between an aluminum ball and

the incident bar. The striker ball is made of the same grade of the aluminum as

the aluminum bars and has diameter �1 = 0.01905 m. The reason to choose ball

impact to generate incident pulse is because in such a way, the incident pulse can

be a clear pure-compression bell-shaped signal. And importantly, the incident pulse

can be modeled with Hertzian contact force such that the amplitude and frequency

content of the pulse can be adjusted if necessary. The degree of impact depends on

the velocity of the ball before impact. To control the ball velocity at impact, we

developed a simple ball release system with a three-prong clamp to hold and release

the ball, as in Figure 3.46. The ball is suspended by two strings in the form of

V-shaped pendulum. The other ends of the two strings are hung on the horizontal

pivot bar. The lengths of the strings and the height of the suspension pivot bar are

adjustable to provide the desired ball impact speed and force (see Figure 3.46). In

order to increase measurement sensitivity, two encapsulated Kulite G S/AGP-1000-

300 semiconductor strain gages, which can operate up to 5000 microstrain in tension

and 7000 microstrain in compression [72], were bonded on the side surface at the

half-span of each bar (location S1 and S2) in the form of half Wheatstone bridge

circuit (see Figure 3.47). The measured strain signals at S1 and S2 are sent through



100

BM-174-3 cables to the digital oscilloscope (Tektronix DPO 3014). To perform the

ABI measurement at various temperatures, the temperature chamber, Sun Electronic

System model ET1, is integrated into the measurement system (see Figure 3.47).

The length of the sample need to be estimated. In order to avoid the inter-

ference from multiple reflections, the length of the sample should be long enough to

contain at least the longest length of one incident pulse in the sample. The longest

length of the pulse occurs at the lowest testing temperature at which the wave speed

is the maximum. By multiplying the maximum wave speed to the time period of

the incident pulse (pulse width), the longest length of the pulse is obtained. The

pulse width can be estimated using the Hertzian contact force model. In this test,

the designed pulse width is around 0.06 ms (see Figure 3.50). However, we have no

information on the wave speed in the material since it is the goal of this measurement.

Therefore, the wave speed must be estimated. For our estimation, we used the wave

speed in polyurea which is estimated from the square root of the Young’s storage

modulus (obtained from ultrasonic wave measurement at −50 ◦C and 1 MHz) divided

by polyurea’s density. The ultrasonic wave measurement result of polyurea can be

found in [73]. The estimated wave speed is found to be around 1500 m s−1. Therefore,

the length of the sample should be at least 0.09 m long (1500 m s−1 x 0.06 ms). In this

study, our polyurea samples with 10cm, 14cm, 16cm, 18cm are used.

3.5.3 Design of The Incident Pulse: Amplitude and Frequency

Contents

The estimation of amplitude and rise time of the incident pulse is required in

order to find out whether the frequency content in the incident pulse covers the desired
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Figure 3.46: Schematic diagram of experimental setup

Figure 3.47: Real experimental setup

testing frequencies and whether amplitude at each frequency is strong enough to be

measured by the strain gages on each bar. Since the ball and bars in ABI measurement

are linearly elastic, the interaction force between the ball and incident bar can be

represented through strongly nonlinear Hertzian interaction which is generally used in
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the study of granular materials [74–77]. Due to the geometries of the impact surfaces

of the ball and the incident bar, the force-deformation law is highly nonlinear and

can be described by [74,78,79]:

F (δ) = k̃δ
3
2 , (3.74)

where

k̃ =
4

3
E∗
√
R∗, (3.75)

1

Ẽ
=

(1− ν2
1)

E1

+
(1− ν2

2)

E2

, (3.76)

1

R̃
=

1

R1

+
1

R2

, (3.77)

F is Hertzian contact force, k̃ is a constant, δ is the indentation, Ẽ and R̃ are equiva-

lent Young’s modulus and relative radius of curvature of impact surface, respectively,

E and ν are Young’s modulus and Poisson’s ratio, R is radius of curvature of impact

surface, and the subscripts 1 and 2 refer to the ball and the bar. Figure 3.48 shows

the schematic diagram of the impact problem between the ball and the bar. The ball

is treated as point mass while the bar is treated as continuous mass. For our problem,

the δ becomes:

δ = u1(t)− u2(t, 0), (3.78)

where u1(t) is displacement of the ball at time t, u2(t, 0) is the displacement of the

impact surface of the incident bar at time t.

The normalized equations of motion governing the dynamics of the ball and
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Figure 3.48: Schematic diagram of the impact problem between the ball
and the bar

Table 3.3: All parameters for ABI calculation

E1 = E2 73.9 [GPa]
ν1 = ν2 0.33 -
ρ1 = ρ2 2807 [kg m−3]
�1 = �2 1.905E-2 [m]
m1 9.998E-3 [kg]
m2 9.753E-1 [kg]
L 1.219 [m]
A 2.85E-4 [m2]
R1 9.47E-3 [m]
R2 ∞ [m]
D 35 [kg s−1]
h 0.33 [m]

the bar are given by [74]:

ε
d2U1(τ)

dτ 2
= − [U1(τ)− U2(τ, 0)]

3
2 H(U1(τ)− U2(τ, 0)), (3.79)

∂U2(τ, 0)

dτ
= [U1(τ)− U2(τ, 0)]

3
2 H(U1(τ)− U2(τ, 0)), (3.80)
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where

U1(τ) = β−1u1(t), (3.81)

U2(τ, 0) = β−1u2(t, 0), (3.82)

ε =
m1

2m2

, (3.83)

τ = ψ−1t, (3.84)

β =
E2

2A
2

(2L)2k̃2
, (3.85)

ψ =
2L

c0

, (3.86)

c0 =

√
E2

ρ2

, (3.87)

U1(τ) is normalized displacement of the ball, U2(τ, 0) is the normalized displacement

of the impact surface of the incident bar, H(•) is the Heaviside step function, ε is mass

ratio, τ is the normalized time, β and ψ are the normalized displacement and time

factors, m1 is the mass of the ball, m2, ρ2, L, and A are the mass, density, length, and

cross-sectional area of one aluminum bar, c0 is acoustic wave speed in aluminum bar.

Generally, there is energy loss during impact from the dynamical interaction between

the ball and the bar. This can be accounted by incorporating a viscous damping term
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into equations 3.79 and 3.80 [77,80]. The two equations become:

ε
d2U1(τ)

dτ 2
= −

{
[U1(τ)− U2(τ, 0)]

3
2 + η

[
dU1(τ)

dτ
− ∂U2(τ, 0)

∂τ

]}
H(U1(τ)− U2(τ, 0)), (3.88)

∂U2(τ, 0)

∂τ
=

{
[U1(τ)− U2(τ, 0)]

3
2 + η

[
dU1(τ)

dτ
− ∂U2(τ, 0)

∂τ

]}
H(U1(τ)− U2(τ, 0)), (3.89)

where

η =
LD

m2c0

, (3.90)

η and D are the normalized and the actual damping coefficient, respectively. Pa-

rameter D is obtained experimentally in [77] and is shown in Table 3.3. The initial

conditions for the problem are:

U1(0) = 0, (3.91)

dU1(0)

dτ
=

√
2gh

βψ
, (3.92)

U2(0, 0) = 0. (3.93)

U1(τ), U2(τ, 0), dU1(τ)
dτ

, and ∂U2(τ,0)
∂τ

can be found by numerically solving equations

3.88 and 3.89 with initial conditions in equations 3.91, 3.92, and 3.93. All necessary

parameters are shown in Table 3.3. Matlab function, ode43 was used to solve this

problem. The unnormalized variables, u1(t), u2(t, 0), du1(t)
dt

, and ∂u2(t,0)
∂t

can be cal-
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culated with equations 3.81, 3.82, and 3.84. The the impact force that includes the

effect of viscous damping can be calculated by:

F (t) = k̃ [u1(t)− u2(t, 0)]
3
2 H(u1(t)− u2(t, 0)). (3.94)

The damping term is not included in equation 3.94 since it is already taken into ac-

count during the numerical calculation with equations 3.88 and 3.89. Adding damping

to equation 3.94 does not effect much the profile of the impact force but it creates

irregular tiny jump and drop at the head and tail of the force profile. To verify

this impact force estimation, ABI measurement was performed without sample at

223 to 323 K with 10 K increments. Tests at various temperatures were conducted

in order to determine the effect of temperature gradient on the two Aluminum bars

since some parts of the aluminum bars are in the temperature chamber and some are

outside the chamber (see Figure 3.46). The two aluminum bars were in contact and

equilibrated at each temperature for 40 minutes. After that the ball was freed from

the holder at the height of 0.33 m. The ball hit the incident bar at the left end. The

compressive wave from the impact between the ball and the incident bar propagated

through the incident and the transmission bars. The incident and the reflected strain

signals were measured at strain gage S1 on the incident bar and the transmitted wave

was measured on the strain gage S2 on the transmission bar (see Figure 3.48). The

measured strain signals were then converted to force signals, using Young’s modulus

and cross-sectional area of the aluminum bar. The force signals are shown in Fig-

ure 3.49a. Then equation 3.94 was used to estimated force signal at impact location.

Since the calculated force signal was not estimated at the measured force locations, it

was then moved to locations S1 (half bar length) and S2 (one and a half bar length)
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where the incident and transmitted signals were measured and dispersion corrected

to include the effect of geometrical dispersion in the bars before comparison with the

measured signals from ABI tests. The dispersion correction procedure can be found

in [81]. The comparison between the calculated and the measured forces are shown

in Figure 3.49a. Amplitude and frequency content of signals at S1 and S2 were then

calculated, using Fast Fourier Transform (FFT) function in MATLAB and are shown

in Figures 3.49b and 3.49c. As we can see, the amplitudes at S2 are slightly lower

than those at S1. This is due to the fact that the two strain gages are not exactly

the same. Therefore, the gage S1 was used as a baseline and the amplitude calibra-

tion factor for S2 was calculated by dividing amplitudes at S1 by those at S2. The

calibration factor is shown in Figure 3.49d for 1 to 10 kHz. We can see that out force

estimation is very close to the measurement. Therefore it verifies that our estimation

is accurate and it can be used for designing the input pulse for other higher frequency

range.

By changing calculation parameters, e.g. the drop height, the size and the

properties of the ball, the profile of the impact pulse is changed, leading to the changes

in amplitude and frequency contents of the pulse. Figure 3.50 shows how the pulse

profile, the amplitude and frequency contents change, when a calculation parameter is

changed while others are fixed. Figure 3.50a shows how the pulse profile changes when

the diameter of the ball is changed. When the ball becomes bigger, the peak of pulse

is higher and the duration of the pulse is wider. In other words, larger ball creates

lower frequency pulse with higher signal strength (see Figure 3.50b). Figure 3.50c

shows how the pulse profile changes when the drop height of the ball is changed. The

higher the drop height, the higher the peak the pulse has. Unlike changing size of
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Figure 3.49: (a) The comparison between the measured and the
calculated forces (b) Amplitudes of signal at S1 vs frequencies (c)

Amplitudes of signal at S2 vs frequencies (d) Calibration factor for strain
gage S2

the ball, changing the drop height does not change much the frequency content or

duration of the signal (see Figure 3.50d). Figures 3.50e and 3.50g show how the pulse

changes, when the ball properties, i.e. Young’s modulus and Poisson’s ratio change,

respectively. We can see that when the ball becomes softer, it creates the pulse with

lower frequency content (see Figure 3.50f). Adjusting Poisson’s ratio almost does not

change anything of the pulse (see Figures 3.50g and 3.50h).

3.5.4 Sample Fabrication

Polyurea samples are fabricated using Isonate 143L (Dow Chemical Com-

pany) and Versalink P-1000 (Air Product and Chemicals, Inc.). Isonate 143L is a

polycarbodiimide-modified diphenylmethane diisocyanate that is liquid at room tem-
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Figure 3.50: (a) Effect of �1 on force profile (b) Effect of �1 on
amplitude and frequency contents (c) Effect of h on force profile (d) Effect
of h on amplitude and frequency contents (e) Effect of E1 on force profile
(f) Effect of E1 on amplitude and frequency contents (g) Effect of ν1 on

force profile (h) Effect of ν1 on amplitude and frequency contents
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perature. Versalink P-1000 is an oligomeric diamine, which is an amber liquid at

ambient temperatures and can be mixed, cast and cured at room temperature. The

stoichiometric ratio of Isonate 143L and Versalink P-1000 is controlled at 1.05:1 in

the fabrication, since it has been shown that polyurea performs best at stoichiometric

index 1.05 or higher [82]. The 5% extra isocyanate insures the completion of the

chemical reaction.

The two components (Isonate 143L and Versalink P-1000) were first degassed

at 1 torr while stirred by magnetic stir bars for an hour until most of the air bubbles

were removed. Then appropriate amount of Isonate 143L was quickly added into

Versalink P-1000, and the mixture was degassed for an additional 5 minutes under

vacuum. The mixture was then transferred into the 1 foot long Teflon pipe using the

experimental setup shown in the schematic drawing Figure 3.51a. The inner diameter

of the Teflon pipe is 0.01905 m (3/4 inch), the same as the aluminum bars of the test

setup. The valve at the bottom of the Teflon pipe was turned off at the end of the

suction when the Teflon pipe was full. The Teflon pipe was set in the upright position

after the polyurea suction to remove any air bubbles that could be trapped in the

polyurea during the suction. The sample was cured in the desiccant chamber for two

weeks before cutting and demolding.

The 0.3-m-long Teflon pipe with polyurea cast and cured inside was machined

into sections of various lengths (see Figure 3.51b). Both ends of the polyurea samples

were sanded with high accuracy such that the two ends of each sample were smooth

and perpendicular to the axial direction. The final sample lengths were 4 cm, 6 cm,

8 cm, and 10 cm. These samples could be combined to make additional lengths for

the test.
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Figure 3.51: (a) Polyurea sample casting. (b) Machined polyurea bar
samples of various lengths.

3.5.5 Measurement and Data Analysis Procedures

The unconfined modified Hopkinson bar testing is performed on polyurea sam-

ple from 223 to 323 K with 10 K increments. Two tests with two different sample

lengths are required for measuring wave speed and attenuation of the sample. In test

1, a short sample is inside the temperature chamber and placed between the incident

and transmission bars. The sample is aligned uniaxially with the bars. Two thin

cylindrical sleeves made of nylon tape are used as support and alignment between

the sample and bars (see Figure 3.46). Oil couplant is applied on all contact cross-

sectional surfaces of the samples. Then the sample is equilibrated for 40 minutes at

each testing temperature. The ball is set into place and held by the 3-prong clamp.

The left cross-sectional surface of the incident bar is set at the location that the

direction of the ball velocity when hitting the bar is perpendicular to the surface.
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This location is consistent for all tests. After reaching thermal equilibrium, the ball

impactor is released from the height of 0.33 m. The ball hits the incident bar at the

left end. The compression wave from the impact between the ball and the incident

bar propagates through the incident bar, the sample and the transmission bar, con-

secutively. The incident and the reflected signals are measured at strain gage S1 on

the incident bar and the transmitted wave is measured on the strain gage S2 on the

transmission bar. The signals are transmitted through BM-174-3 cables to a digital

oscilloscope (Tektronix DPO3014) and recorded there (see Figure 3.46). The same

procedure is followed for test 2 using a longer sample. The transmitted wave signals

recorded at strain gage S2 from the two tests are used as inputs for phase spectral

analysis (PS) to calculate attenuation, wave speed, Young’s storage and loss moduli

at each temperature. Transfer matrix calculation is then performed to improve and

validate the calculated attenuation from PS, using the wave speed from PS and the

information of incident, reflected, and transmitted waves that are recorded for each

sample at each temperature. Figures 3.52a and 3.52b show examples of recorded sig-

nals at S1 and S2 on the incident and transmission bars, respectively. These signals

are obtained from tests with 14-cm sample at 4 different temperatures.

Phase Spectral Analysis (PS)

At each testing temperature, the transmitted wave signals from the two tests

with different sample lengths are converted to frequency domain using Fast Fourier

Transform (FFT) function in MATLAB. Figure 3.52 shows examples of transmitted

signals from tests with 14-cm sample at 4 different temperatures. As we can see, the

tail of the transmission signals, which are the reflections, are cut off and replaced with



113

Table 3.4: Test matrix

Temperature Sample pairs (length (cm), lenght (cm)) Tests per pair Total
223 K (10, 14), (10, 16), (10, 18) 2 6
233 K (10, 14), (10, 16), (10, 18) 2 6
243 K (10, 14), (10, 16), (10, 18) 2 6
253 K (10, 14), (10, 16), (10, 18) 2 6
263 K (10, 14), (10, 16), (10, 18) 2 6
273 K (10, 14), (10, 16), (10, 18) 2 6
293 K (10, 14), (10, 16), (10, 18) 2 6
303 K (10, 14), (10, 16), (10, 18) 2 6
313 K (10, 14), (10, 16), (10, 18) 2 6
323 K (10, 14), (10, 16), (10, 18) 2 6

zero (see Figures 3.52b and 3.52d). After performing FFT, we obtain the complex

amplitude (absolute amplitude and phase) of each frequency in the transmitted wave

signals. The wave speed and attenuation can calculated using [58–60]:

c (f) =
2πf (d2 − d1)

(φ2 (f)− φ1 (f))
, (3.95)

α (f) = − 1

(d2 − d1)
ln

(
A2 (f)

A1 (f)

)
, (3.96)

where c is wave speed, f is frequency of interest, d1 and d2 are lengths of samples

in test 1 (thin) and test 2 (thick), respectively, φ1 and φ2 are unwrapped phases at

frequency f from tests 1 and 2 respectively, α is attenuation per unit length, A1 and

A2 are the absolute amplitudes at frequency f from tests 1 and 2, respectively. The

Young’s storage and loss moduli can be obtained from [20]:

E ′ =
ρc2(1− r2)

(1 + r2)2
, (3.97)
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E ′′ =
2ρc2r

(1 + r2)2
, (3.98)

where

r =
αc

ω
, (3.99)

E∗ = E ′ + E ′′i, (3.100)

E ′, E”, and E∗ are Young’s storage, loss and complex moduli, respectively, ρ is

the density of the sample, r is dimensionless parameter, and ω is angular frequency.

At each temperature, 6 tests were performed see Table 3.4. The best wave speed,

attenuation, Young’s storage, and loss moduli at a given frequency and temperature

are the average numbers over the 6 tests.

Transfer Matrix Calculation (TM)

Transfer matrix calculation is an effective method to calculate reflected, trans-

mitted, and dissipated energies of a harmonic plane wave propagating through a one

dimensional layered composite sandwiched between two homogeneous half-spaces,

based on the given geometries and properties of each material component in the com-

posite [62,83,84]. According to the one-dimensional propagations of harmonic waves,

the displacement and stress in the polyurea sample are in the following forms:

uS = aei(ωt−k
∗x) + bei(ωt+k

∗x), (3.101)
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Figure 3.52: (a) recorded signals at S1 on the incident bar (b) recorded
signals at S2 on transmission bar (c) Incident and 1st reflected signals at S1

on incident bar (d) transmitted signals at S2 on the transmission bar.

σS = −ik∗E∗aei(ωt−k∗x) + ik∗E∗bei(ωt+k
∗x), (3.102)

where

k∗ =
ω

c∗
, (3.103)

c∗ =

√
E∗

ρ
, (3.104)

uSand σS are the displacement and stress fields, a and b are unknown constants,

k∗ and c∗ are the wavenumber and the complex wave speed in the polyurea sample,

respectively. Similarly, the displacements and stresses in the incident and transmission

bars have the same forms with the bars’s properties. The first terms on the right hand



116

side of equations 3.101 and 3.102 are related to the wave propagating to the right,

and the second terms are related to the wave propagating to the left. The relations

between displacements and stresses at the left and right boundaries of the sample can

be written as [62,83]:  uSR

σSR

 = T

 uSL

σSL

 , (3.105)

where

T =

 cos(kd) −sin(kd)
E∗k

E∗ksin(kd) cos(kd)

 , (3.106)

uSL and uSR are displacements in the sample at the left and the right boundaries respec-

tively, σSL and σSR are the stresses in the sample at the left and the right boundaries

respectively, T is the transfer matrix. Due to the continuities of displacements and

stresses at the interfaces between the sample and the two bars, the displacements and

stresses at the left and right boundaries can be written as:

uSL = uS(x = 0) = uB1(x = 0)

= ÂIne
i(ωt) + ÂRee

i(ωt), (3.107)

uSR = uS(x = d) = uB2(x = d)

= ÂTre
i(ωt−kB2d), (3.108)

σSL = σS(x = 0) = σB1(x = 0)

= −ikB1EB1ÂIne
i(ωt) + ikB1EB1ÂRee

i(ωt), (3.109)
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σSR = σS(x = d) = σB2(x = d)

= −ikB2EB2ÂTre
i(ωt−kB2d), (3.110)

where

kB1 =
ω

cB1

, (3.111)

kB2 =
ω

cB2

, (3.112)

cB1 =

√
EB1

ρB1

, (3.113)

cB2 =

√
EB2

ρB2

, (3.114)

uB1 and uB2 are displacements in the incident and the transmission bars respectively,

σB1 and σB2 are stresses in the incident and the transmission bars respectively, po-

sition x = 0 is at the left boundary of the sample, position x = d is at the right

boundary of the sample (see Figure 3.53), Â is the amplitude of displacement, the

subscripts In, Re, and Tr refer to incident, reflected, and transmitted waves, kB,

cB, EB, and ρB are the wavenumber, the wave speed, the Young’s modulus, and the

density of the bar, where the subscript 1 and 2 refers to the incident and transmission

bars respectively, d is length of the sample (see Figure 3.53). From equations 3.107 -

3.110, equation 3.105 can be written in term of amplitudes of incident, reflected, and

transmitted waves as:  ÂTr

0

 = K

 ÂIn

ÂRe

 , (3.115)



118

where

K = D−1
B2B

−1
B2TBB1, (3.116)

DB2 =

 e−ikB2d 0

0 eikB2d

 , (3.117)

BB2 =

 1 1

−ikB2EB2 ikB2EB2

 , (3.118)

T =

 cos(kd) −sin(kd)
E∗k

E∗ksin(kd) cos(kd)

 , (3.119)

BB1 =

 1 1

−ikB1EB1 ikB1EB1

 , (3.120)

From equation 3.115, ÂRe and ÂTr can be written in term of ÂIn as:

ÂRe = −K21

K22

ÂIn, (3.121)

ÂTr =

(
K11 −

K12K21

K22

)
ÂIn, (3.122)

where Kij is component ij (i, j = 1, 2) of the matrix K. Since the energy of acoustic

wave is proportional to the square of its amplitude, we then define energy reflection

and transmission coefficients, RC and TC as:

RC =

∣∣∣∣∣A(0)
−

A
(0)
+

∣∣∣∣∣
2

=

∣∣∣∣−K21

K22

∣∣∣∣2 , (3.123)
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TC =

∣∣∣∣∣A(Nm+1)
+

A
(0)
+

∣∣∣∣∣
2

=

∣∣∣∣K11 −
K12K21

K22

∣∣∣∣2 . (3.124)

Figure 3.53: Displacement amplitudes of incident (ÂIn), reflected (ÂRe),
and transmitted (ÂTr) waves at boundaries of the sample

When the transmitted wave signal is small, especially at high temperature,

the measured attenuation from PS analysis might not be accurate . TM calculation

can be used to improve and validate the measured attenuation. Consider a testing

temperature, at a given frequency, f (or angular frequency, ω), only E∗ of the sample

is the input for TM calculation, assumed that the sample length (d), sample density

(ρ) and the properties (EB1, EB2, ρB1, ρB2) of the two bars are known. E∗ depends

on wave speed and attenuation and can be calculated using equations 3.97 - 3.100.

In TM calculation, the wave speed is the average wave speed obtained form PS and

is fixed at each frequency. The attenuation is guessed and runs from 0 to ω
c
neper/m,

with ω
c
× 10−6 neper/m increments, where c is the average wave speed at the cor-

responding frequency from PS analysis. At a given frequency, the energy reflection
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and transmission coefficients, RC and TC are calculated for each guessed attenuation

using equations 3.123 and 3.124. These RC and TC from TM calculation are referred

as RCCAL and TCCAL and will be compared with RC and TC obtained from exper-

iment which are referred as RCEXP and TCEXP . To calculate RCEXP and TCEXP ,

the incident, reflected, and transmitted wave signals recorded from ABI measurement

on the sample with the same length as in TM calculation are needed. Figures 3.52c

and 3.52d show the examples of the incident, reflected, and transmitted signals from

tests with 14-cm sample at four different temperatures. To be noted, the tails of the

signals are already eliminated. At a given temperature, the amplitudes of the three

signals as functions of frequency are obtained by performing FFT on the three signals.

Then RCEXP and TCEXP are calculated for each frequency using equations 3.123,

and 3.124. The acceptable attenuation at each frequency is the guessed attenuation

that minimizes the following equation:

Errori(f) =

(
TCEXP (f)− TCi

CAL(f)

TCEXP (f)

)2

+

(
RCEXP (f)−RCi

CAL(f)

RCEXP (f)

)2

, (3.125)

where superscripted i refers to the i-th guessed attenuation. The same precess is

applied on all data of other sample lengths. At a given temperature, the best at-

tenuation at each frequency is obtained by averaging the 4 acceptable attenuations

received from TM calculations of the 4 cases with different sample lengths; 10, 14,

16, and 18 cm. This process is repeated for all other testing temperatures.
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3.5.6 Results and Discussions

The results from PS analysis are shown in figure 3.54. From our observation,

we consider frequency in the range of 5 to 10 kHz for Polyurea since acoustic waves

in the incident and transmission bars with frequencies below this range have wave-

length longer than the length of the two bars and the acoustic waves in the sample

with frequencies higher than this range are very dissipative and cannot be measured.

Therefore the frequencies outside this range cannot be reliably measured by the cur-

rent test setup. Figure 3.54a shows attenuation per unit length, α as a function of

frequency. As we can see, α linearly increases with frequency in the range of 5 to

10 kHz, except at the two highest temperatures where it shows nonlinear behavior

with the drop at high frequency. This nonlinear behavior can be corrected with TM

calculation (see figure 3.55a). Figure 3.54b shows wave speed as a function of fre-

quency at various temperatures. We can see that the wave speed slightly increases

with frequency. This trend is less obvious at high temperature. The wave speed also

increases as temperature decreases. This is due to that at low temperature polyurea

becomes denser, stiffer, therefore vibrational energy can be transferred easier and

faster. This trend is also observed in ultrasonic wave measurement [20, 73]. Figures

3.54c and 3.54d show E ′ and E” as functions of frequency. Similar to wave speed,

E ′ increases with frequency. This trend is also observed in E ′′, except at the lowest

temperatures where it slightly lower at high frequency. E ′′ can be improved using α

from TM (see figure 3.55c).

Figure 3.55a shows α that is calculated using TM calculation with wave speed

from PS analysis. As mentioned previously, TM calculation takes into account multi-

ple reflection in the sample, thereby improving quality of attenuation measurement.
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Figure 3.54: (a) α from PS versus frequency (b) c from PS versus
frequency (c) E ′ from PS versus frequency (d) E ′′ from PS versus frequency

Moreover, in TM the attenuation was calculated using incident, reflected, and trans-

mitted signals from single ABI test with one sample length while in PS it requires two

transmitted signals from two ABI tests with two different sample lengths. Therefore,

in TM calculation it minimizes error from the difference between the two environmen-

tal conditions of the two ABI tests. It is believed that the attenuation calculated with

TM is more reliable. From figure 3.55a, it is apparent that α increases linearly with

frequency. Its slope increases as temperature increases. At around 273 K and higher,

α and its slope becomes saturated which is different from what we observed with

α calculated using PS in figure 3.54a. Figure 3.56 shows the Comparison between

attenuations from PS and TM as functions of temperature. At high frequency, α

from PS develops a peak around 273 K and drops down, while α from TM develops a

peak at around 283 K, gradually decreases, and converges to a number. As frequency
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decreases, the peaks becomes smaller for the two cases. Figures 3.55b and 3.55c show

E ′ and E ′′ calculated with wave speed, c from PS and attenuation, α from TM as

functions of frequency. Clearly, E ′ and E ′′ increases with frequency except at 223 K

where E ′′ exhibits fluctuation with increasing trend according to the behavior of the

attenuation at the same temperature.

Figure 3.55: (a) α (calculated using TM with c from PS) versus frequency
(b) E ′ (calculated with c from PS and α from TM) versus frequency (d) E”

(calculated with c from PS and α from TM) versus frequency

Even though DMA tests are conducted at much lower frequencies than ABI

test, and the sample deformation in the DMA test is totally different from the de-

formation in the wave propagation in a bar, it is still meaningful to compare the

trend of the attenuation calculated form DMA test to the attenuation from ABI test.

Figure 3.57 shows the Young’s storage and loss moduli of polyurea fabricated from

the same batch as the samples for ABI test. The detail of the DMA measurement
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Figure 3.56: (a) attenuation from PS as a function of temperature (b)
attenuation from TM as a function of temperature (c) attenuation from

DMA as a function of temperature (d) attenuation from US as a function of
temperature

can be found in [31, 73]. The attenuation can be calculated from the DMA data by

the following equations:

αDMA =
ωrDMA

cDMA

, (3.126)

where

cDMA =

√
E ′DMA(1 + r2

DMA)2

ρ(1− r2
DMA)

, (3.127)

rDMA =
−1 +

√
1 + tan2δDMA

tanδDMA

, (3.128)

tan δDMA =
E ′′DMA

E ′DMA

, (3.129)
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subscript DMA refers to data from DMA. E ′DMA and E ′′DMA are Young’s storage and

loss moduli from DMA (shown in Figure 3.57). Equation 3.127 and 3.128 are derived

by direct solving equations 3.97, and 3.98, using tan δDMA defined in equation 3.129.

Similarly, the attenuation can be calculated from the data of ultrasonic wave mea-

surement (US) by replacing parameters with subscript DMA with the corresonding

paprameters from US. Young’s storage and loss moduli from US can be found in [73].

Figure 3.57: Young’s storage and loss moduli from DMA

The attenuation of pure polyurea between 193 to 323 K, at 1 Hz, 2 Hz, 5 Hz,

10 Hz and 20 Hz is shown in Fig. 3.56c. It should be noted that equations 3.97, 3.98

and 3.99 are derived from wave propagation while DMA test is a single cantilever

bending test, and they are very different measurement techniques. But the trend of

the attenuation calculated from the DMA data are in consistent with the attenuation

measured by the ABI test, especially after improvement with TM calculation (see
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Figures 3.56b and 3.56c). As we can see, αDMA develops a peak at around 247

K, gradually decreases, and converges to a number. We believe that this peak is

an indiction of the glass transition in Polyurea; even though, it occurs at different

temperature, compared to the temperature at the peak of E ′′DMA which is widely

used to determine the glass transition temperature Tg. This supports that Tg is not a

discrete thermodynamic transition, but a temperature range over which the mobility

of the polymer chains undergoes significant change. As expected, peaks of αDMA

occur at lower temperature, compared to the peaks of α from TM calculation since

polyurea chains have higher mobilities at lower frequency, thereby requiring lower

temperature to transform into glassy state. Figure 3.56d shows the attenuation of

pure polyurea between 213 to 333 K, from US at 1 MHz. Interestingly, the attenuation

calculated with US data has similar behavior, compared to attenuation from ABI

test. Attenuation from US increases with increasing temperature and develops a

peak around 293 K which is a little higher than peak of ABI test. However, above

303 K the trend of the attenuation from US cannot be revealed because of the lack of

data above 303 K. Compare the trends of the three calculated attenuations from three

different tests shown in Figures 3.56a-d, it suggests that the attenuation measured by

the ABI test, can be improveed with TM calculation.

Figure 3.58a shows comparison between four master curves of polyurea con-

structed using data from three different methods; DMA, ABI, and ultrasonic wave

measurement. The information on how to create a master curve can be found

in [31, 73]. E ′R and E ′′R are Young’s storage and loss moduli at reference tempera-

ture, 274 K. Shift factor, log(aT ) shown in figure 3.58b was obtained from shifting

DMA data and was used to shift other test data. The shift factor can be fitted with
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Figure 3.58: (a) master curve of polyurea (b) shift factor

the WLF equation which we found that the two constants c1 and c2 are 26.26 and

229.5, respectively. To be noted, DMA master curve was obtained from testing DMA

sample fabricated in the same batch as all ABI samples while ultrasonic wave master

curve were obtained from [73] with samples from different batch. E ′R and E ′′R from

ultrasonic wave measurement were calculated using longitudinal and shear moduli at

1 MHz and the temperature range of the measurement was from 223 to 303 K [73].

Due to the fact that, the Young’s storage and loos moduli from ABI test are slightly

increase with frequency, the two master curves (PS and PS-TM) were obtained by

shifting Young’s storage and loss moduli at 5 kHz, where PS refers to that E ′R and

E ′′R were calculated using attenuation and wave speed only from PS analysis while

PS-TM means that E ′R and E ′′R were calculated using wave speed from PS analysis

and attenuation from TM calculation. As we can see, the two master curves (PS and

PS-TM) are on top of each other on the logarithmic scale. E ′R from ABI test agrees

very well with E ′R from DMA. Both E ′R from ABI test and DMA are lower than that
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of ultrasonic wave measurement. E ′′R from ABI test lie between those from DMA

and Ultrasonic wave measurement, where E ′′R from ultrasonic wave measurement is

the highest among the three. It is worth noting that low frequency test technique

tends to underestimate loss modulus at higher frequencies, while high frequency test

technique tends to overestimate loss modulus at lower frequencies. The two possible

reasons for this disagreement might be that (1) the ultrasonic wave samples were

fabricated from different batch and (2) the three different test techniques are appro-

priate and accurate for different ranges of frequency. Interestingly, if we consider all

master curves from the three test techniques, we can see the three common stages of

polymeric materials; rubbery, transitional, and glassy stages. This introduces an idea

for unifying the master curves from the three test techniques in our future work.

3.5.7 Conclusions

The characterization of polyurea is especially challenging in the kHz frequency

range, due to the long wave length and the dissipative nature of polyurea. This study

provides a novel testing technique, called acoustic ball impact measurement (ABI) to

characterize polyurea’s storage and loss moduli at kHz frequencies. The technique

utilizes pendulum ball impact to generate a pulse containing kHz frequencies. Numer-

ical calculation of the pulse profile is given so that the incident pulse profile, as well

as amplitude and frequency contents of the pulse, can be adjusted if necessary. Two

long bars as in split Hopkinson pressure bar experiment are used as wave propagating

media. The bar materials are chosen to elastic materials, thereby eliminating material

dispersion and simplifying analysis procedure compared to viscoelastic bar. In this

work, the ball and bars are made of aluminum. Temperature chamber is equipped
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to allow tests at various temperatures, in this case 223 to 323 K. Sample fabrica-

tion, measurement, and analysis procedures are proposed. Phase spectral analysis

(PS) is used to analyze wave speeds and attenuations in Polyurea at various exper-

imental conditions. Transfer matrix method (TM) is used to correct the measured

attenuations from PS. The improved alpha from TM calculation shows similar trend

as found in alpha calculated from DMA data. Young’s storage and loss moduli of

polyurea are calculated using wave speed and attenuation. Then Young’s storage

and loss moduli master curve from ABI measurement is created and compared with

those from DMA and ultrasonic wave measurement. E ′R from ABI test agrees very

well with E ′R from DMA. Both E ′R from ABI test and DMA are lower than that of

ultrasonic wave measurement. E”R from ABI test lie between those from DMA and

Ultrasonic wave measurement, where E”R from ultrasonic wave measurement is the

highest among the three. The two possible reasons for the disagreement might be

that (1) the ultrasonic wave samples were fabricated from different batch and (2) the

three different test techniques are appropriate and accurate for different ranges of

frequency. Interestingly, considering all master curves from the three test techniques

together yield the three common stages of polymeric materials; rubbery, transitional,

and glassy stages. This introduces an idea for unifying the master curves from the

three test techniques in our future work. This new measurement technique is not

limited to polyurea, it can also be used to characterize other similar materials at kHz

frequencies.
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3.A The Elastic Buckling Strength of Spherical Glass

Shells

The whole detail of this appendix can be found in [33]. Only necessary detail

will be presented here. The general expression for the elastic buckling pressure of a

complete sphere, Pcr may be given as:

Pcr =
KE

(
h
R

)2

√
1− ν2

, (3.130)

where K is a buckling coefficient, E is Young’s modulus, h is the shell thickness, R is

the radius to the midsurface of the shell, and ν is Poisson’s ratio. K for the classical

small-deflection buckling is 1.15. Unfortunately, the data existing do not support the

classical theory. The improvement based on nonlinear and large-deflection shell has



131

been done and found to have the same general form as equation 3.130. However the

elastic buckling coefficient is one-fourth of K in equation 3.130. Based on nonlinear

and large-deflection shell, equation 3.130 is changed to:

Pcr =
KE

(
h
R

)2

4
√

1− ν2
. (3.131)

E and ν for phenolics are 4.83 GPa and 0.351. Average shell thickness and diam-

eter of phenolic microballoon are 1 and 37 µm, respectively. To be noted, phenolic

microballoon is a thermoset plastic, not glass. Thus, we needs to be cautious when

using this theory for plastic microballoon.



Chapter 4

Material Behavior Modeling

4.1 Dynamic Mechanical Properties and

Viscoelastic Master Curves

4.1.1 Background

The material in this section is mainly summarized from [36,85–87]. Generally,

a material is referred to as either a solid or a liquid. Its behavior depends on envi-

ronmental conditions. An ideal solid is the material that is purely elastic. When a

load is applied on the ideal solid or elastic material, its shape is deformed and the

deformational energy is stored in the body of the material. The ability to store the

deformational energy is called elasticity. When the load is released, it regains its

original shape and the stored energy is released. This behavior is comparable to the

behavior of an elastic spring. In general, this elastic behavior is described by Hooke’s

law, which states that stress (force per unit area) is a linear function of strain (de-

formation per unit initial length). They are related through a proportional constant

132
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called modulus as follows:

σ = Mε, (4.1)

where M is the elastic modulus, σ and ε are the stress and the strain, respectively.

Contrary to the ideal solid, an ideal liquid has no elasticity. It cannot store the

deformational energy. When an ideal fluid is deformed, it flows, and when the applied

load or deformation is removed, it cannot regain its initial shape but remains in its

new deformed shape. Water can be taken as an example. When a shear stress is

applied on water, the water flows. This behavior is referred to as viscous flow. For

the ideal liquid, the shear stress is a linear relation of the rate of the shear strain as

follows:

τ = η
dγ

dt
, (4.2)

where τ and γ are the shear stress and strain, respectively, η is the viscosity of the

liquid. When η is constant or independent of the shear rate, the material is referred

to as Newtonian. If the material exhibits a non-linear response to the shear rate, it

is categorized as Non-Newtonian.

Due to the fact that most of engineering materials are not ideal solid and liquid,

the concept of viscoelasticity is introduced. Viscoelasticity describes the behavior

of materials that exhibit both elastic and viscous characteristics when undergoing

deformation. A viscoelastic material will flow under an applied stress as time passes.

When the stress is removed, the material will not completely recover. The strain that

can be recovered represents the elastic part of the material, whereas the portion of

strain that cannot be recovered represents the viscous part of the material. If the

material can almost fully recover when the stress released, the material is more like
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elastic solid. If the deformational strain almost cannot be recovered, the material

is likely liquid. In general, viscoelastic materials have time-dependent mechanical

properties. Two common time dependent phenomena that can be seen in viscoelastic

materials are creep and relaxation. Creep can be described as the tendency of a

viscoelastic material to move or deform slowly under an applied mechanical stress.

In general, creep can be tested with creep experiment, which the constant stress is

applied to the material and strain is measured as a function of time. Figure 4.1 shows a

simple creep behavior where the measured strain increases with the exponential decay

rate. Figure 4.1 is just an example. It is not the actual behavior of a real polymer.

The creep experiment yields creep compliance, which is the ratio of the measured

strain to constant applied stress.

D (t) =
ε (t)

σo
, (4.3)

where D is the creep compliance, σo is the applied constant stress, and ε is the

measured strain.

Figure 4.1: Creep versus time
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Figure 4.2: Relaxation versus time

Figure 4.3: (a) Kelvin-Voigt model (b) Maxwell model

Relative to creep, stress relaxation describes how a polymer relieves stress un-

der an applied constant strain. The relaxation modulus (see equation 4.4) can be

calculated after testing the material under stress relaxation test, which the material

is subjected to the constant strain and the stress is measured as a function of time.

Figure 4.2 shows a simple relaxation behavior where the measured stress decays ex-

ponentially while the constant strain is applied. Figure 4.2 is just an example. It is
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not the actual behavior of a real polymer.

E (t) =
σ (t)

εo
, (4.4)

where E is the relaxation modulus, εo is the applied constant strain, and σ is the

measured stress. The behaviors of viscoelastic materials can be modeled for different

loading conditions. Their viscoelastic behaviors are modeled using spring and dash-

pot in combination. The spring represents the elastic behavior while the dashpot

represents the viscous behavior. Two simplest models, which are efficient for pre-

dicting simple creep and relaxation phenomena, are Kelvin-Voigt model and Maxwell

model, respectively.

Kelvin-Voigt Model

The Kelvin-Voigt model consists of a Newtonian dashpot and a Hookean elastic

spring connected in parallel, as shown in Figure 4.3a. Upon the application of a

constant stress, the dashpot acts to exponentially decelerate the growth of strain

with time. When the stress is removed, the dashpot again exponentially decelerates

the recovery of strain, causing the material to gradually relax to its undeformed state

(see Figure 4.1). The Kelvin-Voigt model effectively predict the simple creep of the

simple viscoelastic materials; however it poorly describe the relaxation behavior of

the material. Under constant strain (relaxation test), the Kevin-Voigt model predicts

that the stress is constant such that the viscoelastic material behaves as if it is purely

elastic. The verification of the Kevin-Voigt model is the following.

Consider creep test, the constant stress, σo is applied to the Kelvin-Voigt

model. Since the dashpot and spring are parallel, the strain must be the same in
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both elements while the stress must be the sum of the stresses in the two individual

elements. Consider uniaxial extension case, the total stress can be written as:

σo = Eoε (t) + ηo
dε (t)

dt
, (4.5)

where ηo is the extensional viscosity of the dashpot, Eo is stiffness of the spring.

Simplify equation 4.5, we obtain:

dε (t)

dt
+
ε (t)

τo
=
σo
ηo
, (4.6)

where τo is defined as ηo
Eo
. Equation 4.6 is a simple linear differential equation which

can be solved using the integrating factor e
t
τo and integration between the limits

(0, ε (0)) and (t, ε (t)). The solution is:

ε (t) =
σo
Eo

(
1− e−

t
τo

)
= εo

(
1− e−

t
τo

)
, (4.7)

where εo is the strain of the Kevin-Voigt model as time t goes to ∞. The creep

compliance is defined as:

D (t) =
ε (t)

σo
=

1

Eo

(
1− e−

t
τo

)
= Do

(
1− e−

t
τo

)
, (4.8)

where D is the creep compliance, Do is the compliance of the spring. Equation 4.7

can be used to explain the creep process shown in Figure 4.1.

For relaxation, the constant strain, εo is applied to the Kelvin-Voigt model.

Since the applied strain is constant, the derivative of strain with respect to time

is zero. Therefore, there is no stress in the dashpot component. The total stress,
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equation 4.5, is reduced to:

σ (t) = Eoεo. (4.9)

The relaxation modulus is defined as:

E (t) =
σ (t)

εo
= Eo, (4.10)

where E is the relaxation modulus. For Kevin-Voigt model, the relaxation modulus is

Eo which is constant. So the stress relaxation of the Kevin-Voigt model, equation 4.9

does not match the exponential decay of the relaxation process in Figure 4.2.

Maxwell Model

Maxwell model is much better for modeling the relaxation phenomenon. The

Maxwell model is composed of a dashpot and an elastic spring connected in series,

as shown in Figure 4.3b. The Maxwell model predicts that the stress under the

application of constant strain (relaxation test) decays exponentially with time. This is

very close to the actual behaviors of the viscoelastic materials. However, the Maxwell

model estimates that under the application of constant stress (creep test), the strain

increases linearly with time, whereas in reality the strain increases with exponentially

decreasing rate. Since in Maxwell model the dashpot and spring are connected in

series, the stresses on the two element are the same while the total strain (or total

strain rate) is the summation of the strains (or strain rates) in the two individual

elements. The mathematical derivation for relaxation process is as follows:

dε (t)

dt
=

1

Eo

dσ (t)

dt
+
σ (t)

ηo
. (4.11)
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Under relaxation test, the constant strain, εo is applied to the Maxwell model.

The derivative of strain with respect to time is zero, so equation 4.11 becomes:

dσ (t)

σ (t)
= −dt

τo
. (4.12)

This equation can be solved by integration from σ (0) at time t = 0 to σ (t) at time

t. The solution is:

σ (t) = σ (0) e−
t
τo , (4.13)

where σ (0) can be considered as the stress in the spring element since stresses are

equal in the two elements. Then, the relaxation modulus can be written as:

E (t) =
σ (t)

εo
=
σ (0)

εo
e−

t
τo = Eoe

− t
τo . (4.14)

As we can see, the stress relaxation of the Maxwell model, equation 4.13 can excel-

lently predict the exponential decay of the relaxation process shown in Figure 4.2.

For creep test, the model is subjected to an applied constant stress, σo. There-

fore the derivative of stress with respect to time is zero. Equation 4.11 is reduced to:

dε (t)

dt
=
σo
ηo
. (4.15)

Integration of equation 4.15 from time t = 0 to time t yields:

ε (t) = εo +
σot

ηo
. (4.16)
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Divide equation 4.16 with σo, the creep compliance is obtained.

D (t) =
ε (t)

σo
=
εo
σo

+
t

ηo
= Do +

t

ηo
. (4.17)

As we can see, the strain solution, equation 4.16, of the Maxwell model is linear with

time. It cannot represent the creep process shown in Figure 4.1.

As mentioned earlier, Kevin-Voigt and Maxwell models are good only for sim-

ple creep and relaxation, which each of them has only one transition and is enough

to be fitted with a single exponential term. In reality, the creep and relaxation be-

haviors of a real polymer deviate from the creep and relaxation behaviors shown in

Figures 4.1 and 4.2. For real polymers, they might exhibit more complicated behav-

iors with many transitions in the creep and relaxation, which only single exponential

term in Kevin-Voigt or Maxwell model is not enough to represent all the transitions.

To overcome these deficiencies, models that consist of combinations of Maxwell and

Kevin-Voigt elements have been proposed. Although an infinite number of such com-

binations is possible, we will consider only two models called, generalized Maxwell

and generalized Kevin-Voigt models. The two models are shown in Figures 4.4 and

4.6, respectively. The treatments of other such models are completely analogous. The

generalized Maxwell model allows us to effectively predict of experimental data of the

relaxation to an arbitrary level of accuracy, depending on number of the Maxwell

subunits, while the generalized Kevin-Voigt model is excellent for predicting creep up

to very high level of accuracy, depending on number of the Kevin-Voigt subunits.
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Generalized Maxwell Model

Consider a generalized Maxwell model in Figure 4.4, it has nMaxwell subunits

connected in parallel. Each of Maxwell subunit has a spring and a dashpot which

each of them has its own unique property, except that an extra subunit consisting

of a single spring with stiffness Ee is added to track the behaviors of solid polymers

which exhibit a plateau of relaxation modulus as time goes to∞. Each of this unique

pair of the spring and dashpot contributes to different relaxation mechanism of the

modeled polymer. In other words, this pair of the spring and dashpot possesses a

unique relaxation time which is defined as:

τi =
ηi
Ei
, (4.18)

where ηi, Ei, and τi are the viscosity of the dashpot and stiffness of the spring, and

the relaxation time of the i-th pair respectively. If we consider all the relaxation

times together, it represents a discrete relaxation spectrum of the modeled relaxation

behavior. Figure 4.5 shows examples of the relaxation moduli in logarithmic scale

predicted by the generalized Maxwell model with two subunits. There are two relax-

ation times at 1 min and 1000 min, therefore two relaxation mechanisms are observed

at the corresponding times. Figure 4.5a represents the relaxation modulus in loga-

rithmic scale with Ee = 0. As you can see, the modulus goes to zero as time goes

to ∞, therefore representing the behavior of a polymer melt. Figure 4.5b represents

the relaxation modulus with Ee 6= 0. As you can see, the relaxation modulus flattens

out as time goes to ∞, therefore representing the behavior of a solid polymer. The

mathematical representation of the model will be discussed in detail.
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Figure 4.4: Generalized Maxwell model

Figure 4.5: (a) An example of relaxation of a polymer melt (b) An
example of relaxation of a solid polymer
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When the generalized Maxwell model is subjected to a stress relaxation exper-

iment, each subunit (dashpot + spring) shares the applied constant strain, εo. The

total stress is the summation of the individual stresses experienced by each subunit.

The derivative of strain with respective to time is zero. We can then write:

dε (t)

dt
= 0

=
1

E1

dσ1 (t)

dt
+
σ1 (t)

η1

=
1

E2

dσ2 (t)

dt
+
σ2 (t)

η2

...

=
1

Ei

dσi (t)

dt
+
σi (t)

ηi
...

=
1

En−1

dσn−1 (t)

dt
+
σn−1 (t)

ηn−1

=
1

En

dσn (t)

dt
+
σn (t)

ηn
, (4.19)

σe = Eeεo, (4.20)

σ (t) = σe + σ1 + σ2 + ...+ σi + ...+ σn−1 + σn. (4.21)

Similar to the regular Maxwell model, the partial stress in each subunit, σi(i =

1, 2, 3, .., n) can be solved individually by integration from σi (0) at time t = 0 to

σi (t) at time t. Substitute σe and all σi into equation 4.21 and divide with εo, the
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relaxation modulus is obtained as:

E (t) = Ee +
n∑
i=1

Eie
− t
τi . (4.22)

As we can see, the relaxation modulus of the generalized Maxwell model is the sum-

mation of the individual relaxation moduli of all subunits. Since the generalized

Maxwell model will be used only for prediction of relaxation modulus in this study,

the mathematical representation of creep will not be considered here.

Generalized Kelvin-Voigt Model

Consider a generalized Kelvin-Voigt model in Figure 4.6, it has n Kelvin-

Voigt subunits connected in series. Similar to Maxwell subunit, each of Kelvin-Voigt

subunit has a pair of a spring and a dashpot. The single spring with stiffness Mg

is added to track the instantaneous creep response of polymers. Each of this unique

pair of the spring and dashpot contributes to different retardation mechanism of the

modeled polymer. In other words, this pair of the spring and dashpot possesses a

unique retardation time which is defined as:

λi =
βi
Mi

, (4.23)

where βi, Mi, and λi are the viscosity of the dashpot and stiffness of the spring,

and the retardation time of the i-th pair in the generalized Kelvin-Voigt model re-

spectively. If we consider all the retardation times together, it represents a discrete

retardation spectrum of the modeled creep behavior. Figure 4.7 shows examples of

the creep compliance in logarithmic scale predicted by the generalized Kelvin-Voigt
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model with two subunits. There are two retardation times at 1 min and 1000 min,

therefore two retardation mechanisms are observed at the corresponding times. Fig-

ure 4.7a represents the creep compliance in logarithmic scale with Mg = ∞. As you

can see, the creep compliance at time t → 0 is very small, which represents a stiff

instantaneous creep response. Later it increases with exponential decay rate as time

progresses. Figure 4.7b represents the creep compliance with a finite value of Mg.

Apparently, the creep compliance instantaneously jumps at time t→ 0, which repre-

sents a softer instantaneous creep response. The smaller Mg yields larger jump of the

creep compliance. The mathematical representation of the model will be discussed in

detail.

Figure 4.6: Generalized Kevin-Voigt model

When the generalized Kelvin-Voigt model is subjected to a creep experiment,

each subunit (dashpot + spring) shares the applied constant stress, σo. The total

strain is the summation of the individual strains experienced by each subunit. We
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Figure 4.7: (a) An example of creep without the stiffness Mg (b) An
example of creep with the stiffness Mg

can then write:

σo = ε1 (t)M1 + β1
dε1 (t)

dt

= ε2 (t)M2 + β2
dε2 (t)

dt
...

= εi (t)Mi + βi
dεi (t)

dt
...

= εn−1 (t)Mn−1 + βn−1
dεn−1 (t)

dt

= εn (t)Mn + βn
dεn (t)

dt
, (4.24)
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εg =
σo
Mg

, (4.25)

ε (t) = εg + ε1 + ε2 + ...+ εi + ...+ εn−1 + εn. (4.26)

Similar to the regular Kelvin-Voigt model, the partial strain in each subunit, εi(i =

1, 2, 3, .., n) can be solved individually, using the integrating factor e
t
τi and integration

between the limits (0, εi (0)) and (t, εi (t)). Then, the strain for the i-th subunit is:

εi (t) =
σo
Mi

(
1− e−

t
λi

)
, (4.27)

Substitute εg and all εi from i = 1 to n into equation 4.26 and divide with σo, the

creep compliance is obtained.

D (t) =
1

Mg

+
n∑
i=1

1

Mi

(
1− e−

t
λi

)
= Dg +

n∑
i=1

Di

(
1− e−

t
λi

)
. (4.28)

where Dg and Di are compliances of the single spring and the i-th spring in the

i-th subunit. As we can see, the creep compliance of the generalized Kelvin-Voigt

model is the summation of the individual creep compliances of all subunits. When

the generalized Kelvin-Voigt model is subjected to the applied constant stress, at

time t = 0 compliance of each subunit is zero due to the very stiff response of each

dashpot in each subunit. Only the single spring with stiffness Mg is extended at

time t = 0. As time passes, the Kelvin-Voigt subunits with smaller retardation times

relax themselves first. The dashpot in each subunit relaxes and stretches itself and

allows its paired spring to extend simultaneously. This process continues on with
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the Kelvin-Voigt subunits with higher retardation times, leading to the increasing

of the overall compliance as time passes. Since the generalized Kelvin-Voigt model

will be used only for prediction of creep compliance in this study, the mathematical

representation of relaxation of the model will not be considered here.

Boltzmann Superposition Principle

So far, we have learnt about relaxation and creep experiments, in which the

constant strain and stress are applied on the test material, respectively. The measured

stress of the uniaxial relaxation experiment can be presented by:

σ (t) = E (t) εo, (4.29)

where εo, E, and σ are the applied constant strain, uniaxial relaxation modulus, and

the measured stress. The measured strain of the creep experiment is in the following

form:

ε (t) = D (t)σo, (4.30)

where σo, D, and ε are the applied constant stress, compliance, and the measured

strain. E and D depend on the viscoelastic behaviors of the tested polymer. They can

be modeled with equations 4.22 and 4.28 up to arbitrary level of accuracy, depending

on the number of the exponential terms. The applied loads in equations 4.29 and

4.30 are constants. One might imagine a case where the applied stress (or strain) is

a function of time. This becomes challenging when one thinks about how to find the

strain (or the stress) response. The Boltzmann superposition principle is one of the

simplest but most powerful principles of polymer physics that can be used to solve
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this problem. For linear viscoelasticity, we consider only small deformation where E

and D do not change their forms during deformation. Consider the application of two

small strain ε0 and ε1, at the times t = 0 and t = s1, respectively. The Boltzmarn

superposition principle states that the two strains act independently and the resultant

stresses add linearly. Thus:

σ (t) = E (t) εo + E (t− s1) ε1. (4.31)

Now consider a series of very tiny step strains, dεi applied to our polymer at time si

where i = 1, 2, 3, ..., n, from Boltzmarn superposition principle the overall resultant

stress would be:

σ (t) =
n∑
i=1

E (t− si) dεi. (4.32)

Considering a continuous strain application, ε (s), the increment of the applied strain

is just the derivative of ε (s) times the increment of time, ds. Replacing the summation

in equation 4.32 by an integration, we obtain:

σ (t) =

∫ t

−∞
E (t− s) dε (s)

ds
ds =

∫ t

−∞
E (t− s) ε̇ (s) ds. (4.33)

This can apply to the case of continuous stress application. Then the resulting strain

is:

ε (t) =

∫ t

−∞
D (t− s) dσ (s)

ds
ds =

∫ t

−∞
D (t− s) σ̇ (s) ds. (4.34)

Modulus and Compliance in Frequency Domain

With the help of the Boltzmarn superposition principle, we can now consider

the viscoelastic response of a polymer under an applied harmonic stress or strain.
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Consider a unit harmonic strain which is in the following form:

ε (t) = eiωt, (4.35)

where ω is an angular frequency. Differentiate equation 4.35, strain rate can then be

written as:

ε̇ (t) = iωeiωt. (4.36)

Substitute equations 4.36 and 4.22 into equation 4.33 and obtain:

σ (t) =

∫ t

−∞

(
Ee +

n∑
j=1

Eje
− t−s

τj

)
iωeiωsds. (4.37)

After integration from −∞ to t, we obtain:

σ (t) =

([
Ee +

n∑
j=1

Ej (ωτj)
2

1 + (ωτj)
2

]
+

[
n∑
j=1

Ejωτj

1 + (ωτj)
2

]
i

)
eiωt

= (E ′ (ω) + E ′′ (ω) i) eiωt

= E∗ (ω) eiωt

= E∗ (ω) ε (t) , (4.38)

where

E∗ (ω) = E ′ (ω) + E ′′ (ω) i, (4.39)

E ′ (ω) = Ee +
n∑
j=1

Ej (ωτj)
2

1 + (ωτj)
2 , (4.40)
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E ′′ (ω) =
n∑
j=1

Ejωτj

1 + (ωτj)
2 i, (4.41)

E∗ is complex modulus, E ′ and E ′′ are real and imaginary parts of the complex

modulus. E ′ is called storage modulus. It represents the elastic part of the polymer.

E ′′ is called loss modulus. It represents the viscous part of the polymer. Similarly, if

a unit harmonic stress is applied, one can write the harmonic strain response as:

ε (t) =

([
Dg +

n∑
j=1

Dj

1 + (ωλj)
2

]
+

[
n∑
j=1

Djωλj

1 + (ωλj)
2

]
i

)
eiωt

= (D′ (ω) +D′′ (ω) i) eiωt

= D∗ (ω) eiωt

= D∗ (ω)σ (t) , (4.42)

where

D∗ (ω) = D′ (ω) +D′′ (ω) i, (4.43)

D′ (ω) = Dg +
n∑
j=1

Dj

1 + (ωλj)
2 , (4.44)

D′′ (ω) =
n∑
j=1

Djωλj

1 + (ωλj)
2 i, (4.45)

D∗ is complex compliance, D′ and D′′ are real and imaginary parts of the complex

compliance. D′ is called storage compliance. D′′ is called loss compliance. From

equations 4.38 and 4.42, the complex modulus is an inverse of the complex compliance

and vice versa. However this is not true for the relaxation modulus and the creep
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compliance in time domain [36,85,87].

E∗ (ω) =
1

D∗ (ω)
. (4.46)

Up to this point, we have showed the mathematical formulations for predicting

the relaxation modulus and creep compliance in time domain and also the complex

modulus and compliance in frequency domain. With these mathematical formula-

tions, equations 4.22, 4.28, 4.40, 4.41, 4.44, and 4.45, one can predict material re-

sponses under either applied stress or strain in both time and frequency domians.

Parameters in equation 4.22 for relaxation modulus is related to parameters in equa-

tions 4.40 and 4.41 for storage and loss moduli. Once we fit equation 4.22 to the

experimental data obtained from relaxation experiment, we could use the resulting

parameters to predict storage and loss moduli, using equations 4.40 and 4.41. The

other way around is also doable when we have experimental data of storage and loss

moduli which generally can be obtained from DMA experiment discussed in Sec-

tion 3.2. This also applies to the relation between the creep compliance and the

storage and loss compliances.

To be able to predict material behaviors of polymers for an inexhaustible range

application, one needs to characterize the polymers over sufficiently long time or wide

frequency window. However, in reality the experimental time window is too narrow,

i.e. in the range of a fraction of a second to several days, and the experimental fre-

quency window is not continuous due to the limitation of the testing devices, therefore

the available data are not enough to cover the whole range of material behaviors, es-

pecially at very short and long term behaviors. This has been the interesting topic of

many researches dealing with polymeric materials. According to experimental data
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obtained from many tests on polymers, the viscoelastic modulus is found to be a

function of time at a constant temperature and vice versa. According to this, the

time-temperature correspondence theory is developed. Based on this theory, the long

term behavior of a polymer may be measured by two different means. First, experi-

ments for extended periods of time can be carried out at a given temperature, and the

response measured directly. However, this means is time consuming due to the long

response times of many polymers. The second method takes advantage of the princi-

ples of time-temperature correspondence wherein experiments are performed over a

short time frame at various testing temperatures, a reference temperature is chosen,

the experimental data at the reference temperature is fixed, and the rest at other

temperatures are shifted using the time-temperature relation. The two methods are

equivalent according to the principles of time-temperature superposition. The detail

of time temperature superposition based on free volume concept will be discussed in

the next section.

4.1.2 Time-Temperature Superposition (TTS)

and Master Curve

Time-temperature superposition was firstly developed for the so called ther-

morheologically simple materials. For polymeric materials that are regarded as the

thermorheologically simple materials, it requires that all relaxation or retardation

times depend equally on temperature [52]. The relaxation (or ratardation) times at

two different temperatures are related through:

aT (T ) =
τi (T )

τi (To)
, i = 1, 2, 3, ... (4.47)
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where aT is the temperature-dependent shift function (shift factor) of the relaxation

or retardation time. τi (T ) and τi (To) are the i-th relaxation (or retardation) times

at a temperature T and a reference temperature To. According to observations form

experiments on various polymers, if T is higher than To, τi (T ) is less than τi (To), and

aT < 1. This means that at temperature T the mechanism of a relaxation or molecu-

lar event is accelerated through the shortening of the relaxation time with the factor

of aT , compared to τi (To). If T is less than To, τi (T ) is larger than τi (To), and aT > 1.

Therefore, the relaxation at T is decelerated, compared to at To. Thermorheologically

simple materials allow time-temperature superposition, i.e., the shifting of isothermal

segments into superposition to generate a master curve, thereby extending the time

scale beyond the range that could normally be covered in a single experiment. An

example of such a procedure is given in Figure 4.8. The relaxation modulus of a poly-

mer from a tensile test, E is plotted as a function of time in logarithmic scale over a

normal experimental time window, from 10−2 to 102 hours, for various temperatures.

A chosen reference temperature is 0 ◦C in this case. Thus, the isothermal data at 0 ◦C

was fixed at its original position. The modulus-versus-time curves for the remaining

isotherms were horizontally shifted towards this reference until an exact superposition

is accomplished. Shifting of each isothermal curve results in a much larger, smooth

continuous curve called a master curve. It can be seen that this procedure results in

a dramatic increase in the range of the time scale. The inset is the plot of shift fac-

tor in the logarithmic scale, log aT , versus temperature. The shift factor represents

the magnitude of shifting along the time axis, necessary for a specific isotherm to

superimpose on its neighbor in the final master curve with respect to a given refer-

ence temperature. Generally, the log aT versus temperature plot should be a smooth
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monotonic curve, provided the mechanism of relaxation remains the same during the

process. An inflection in the shift factor plot would be an indication of a change in

the mechanism of the process which might invalidate the procedure. Normally, amor-

phous homopolymers and random copolymers with primarily single phase and single

transition are thermorheologically simple materials. For thermorheologically complex

materials that show two or more distinct distributions of relaxation times, each with

its own time-temperature dependence, shifting of isothermal segments into superpo-

sition might generate misleading master curves. However, there is no evidence that

prohibits us from applying the TTS principle on other complex polymers. So, the

TTS should be used with caution when dealing complex polymers that show multiple

transitions of their moduli.

Figure 4.8: Shifting isothermal segments into a relaxation modulus
master curve (The inset shows shift factor)

There are many theories for modeling the effect of temperature on time-
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dependent behavior of polymers, for example, free volume [36, 51], excess configura-

tional entropy [88,89], excess enthalpy [90], and chemical reaction based [91] theories.

In this work, we will focus on the free-volume based theory which is one of the most

well-known theory for modeling time-temperature correspondence above glass transi-

tion temperature, Tg. This free-volume concept was first introduced by Doolittle and

Doolittle in their work on the viscosity of liquids [92]. The key concept is that the

change in viscosity could be expressed by a simple function of the net available volume

between the polymer molecules. The net available volume represents the free volume,

which directly affects the mobility of the polymer chains. At a given temperature, T ,

the relation between the viscosity and the free volume is:

η (T ) = Ae
B
Vφ(T )

Vf (T ) = Ae
B
V (T )−Vf (T )

Vf (T ) = AeB( 1
f(T )
−1), (4.48)

where Vφ, Vf , V are the occupied, free, and total volumes, respectively, A and B are

empirical material constants, f is the fractional free volume, defined as Vf
V
. From

equation 4.49, the relation between viscosities at two different temperatures can be

written as:
η (T )

η (To)
= eB( 1

f(T )
− 1
f(To)

). (4.49)

Williams, Landel, and Ferry adapted equation 4.49 for the viscoelastic behavior of

polymers by letting [51]:
η (T )

η (To)
=
τi (T )

τi (To)
. (4.50)

From equations 4.47, 4.49, and 4.50, the temperature shift factor can be written as:

aT =
τi (T )

τi (To)
= eB( 1

f(T )
− 1
f(To)

). (4.51)
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In logarithmic form, equation 4.51 becomes:

log aT =
B

2.303

(
1

f (T )
− 1

f (To)

)
. (4.52)

Williams et al. suggested that the fractional free volume is a linear function of

temperature. They let:

f (T ) = f (To) + αf (T − To) , (4.53)

where αf is the isobaric expansivity. Substitute equation 4.53 into equation 4.52, we

obatin:

log aT = − c1 (T − To)
c2 + T − To

, (4.54)

c1 =
B

2.303
f (To) , (4.55)

c2 =
f (To)

αf
. (4.56)

Equation 4.54 is called WLF equation. To be noted, WLF equation should be used

to model the time-temperautre correspondence above Tg. For temperature below Tg,

it can be modeled with the shift factor in the form of Arrhenius rate of chemical

reaction equation [91].

log aT =
−4E
2.303R

(
1

T
− 1

To

)
(4.57)

where 4E is activation energy and R is gas constant. We will not discuss the Arrhe-

nius form shift factor here since in this work we tested polyurea and polyurea-based
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composites above Tg.

Figure 4.9: Shifting isothermal segments into a storage modulus master
curve (The inset shows shift factor)

Equation 4.54 is used to fit the plot of shift factor versus temperature ob-

tained experimentally by shifting isothermal curves into superposition as shown in

Figure 4.8. Relaxation or creep tests at various temperatures generally require quite

long experimental time. It is found that the data of time-temperature correspondence

can also be obtained through the measurement in frequency domain, using dynamic

mechanical analysis (DMA) discussed previously in Sections 3.2 and 3.4. Similar to

relaxation test, DMA is performed over a short frequency range at various tempera-

tures. The storage and loss moduli are obtained as functions of frequencies at various

temperature. The plot of shift factor versus temperature can be found by shifting

either storage or loss modulus. Shift factors from shifting storage and loss moduli are

close. The average between the two are used. Figure 4.9 shows the process of shift-
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ing storage-modulus-versus-frequency of a polymer. It is found that the shift factors

from time-domain and frequency-domain measurement are very close. Equations 4.22

and 4.28 can be used to fit relaxation modulus and creep compliance master curves.

Equations 4.40, 4.41 can be used to fit the storage and loss modulus master curves,

and equations 4.44 and 4.45 can be used to fit the storage and loss compliance master

curves, respectively. The models of the relaxation moduli and retardation compli-

ances for polyurea and milled glass reinforced composites are shown in Section 3.4.

The relation between relaxation modulus and creep compliance is also given in that

section. If either one of them is known, the other one can be calculated without

experiment [49].

So far, we have shown that the temperature which is a thermodynamic quantity

has an influence on the relaxation and retardation mechanisms of polymeric materials.

The time-temperature correspondence can be modeled based on the free volume con-

cept by assuming that the decreasing in temperature reduces the micro-size free space

between polymer molecules while increasing in temperature has an opposite effect.

Therefore changing in temperature affects the mobility of the polymer chain, leading

to the change in relaxation and retardation mechanisms. In the next chapter, the ef-

fect of pressure which is also a thermodynamic quantity is taken into account through

the same free volume theory. It is assumed that increasing in pressure equivalently

affects the free volume in a polymer in the same way as decreasing in temperature

does.
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4.2 Constitutive Modeling and Experimental Cali-

bration of Pressure Effect for Polyurea Based on

Free Volume Concept

In this study, the combined effect of pressure and temperature on the me-

chanical behavior of polyurea is experimentally characterized and integrated into a

constitutive model based on Williams-Landel-Ferry (WLF) equation. The increase

in pressure is related to a decrease in temperature, both pressure and temperature

affecting the polymer’s molecular free volume and thereby introducing a pressure-

dependent term into the WLF equation. This modified WLF equation can represent

viscoelastic properties of thermorheologically and piezorheologically simple materials

over wide ranges of temperature and pressure. The model is derived based on Fillers

and Tschoegl’s original work, regarding the free volume as a state variable. Although

in previous work, the effect of pressure was modeled as a linear (or quadratic) decrease

in equivalent temperature, the present results and analysis demonstrate a nonlinear

relationship, with a stronger effect at smaller pressures. The model provides a closed-

form expression for the time scale shift factor for equivalent temperature in terms

of temperature and pressure and its three-dimensional surface representation. The

prediction of the present model agrees well with pressure shift factor data obtained

from confined compression tests of polyurea, reported elsewhere, confirming our con-

stitutive model and its experimental calibration procedure. A simplified model of the

pressure effect was also developed which yields good approximate results. Both ver-

sions can be readily integrated into user-defined constitutive subroutines for explicit

finite element modeling.
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4.2.1 Introduction

The relation between relaxation times and temperature in viscoelastic materi-

als has been studied over the past 60 years. Many researches have used the assumption

of thermorheologically simple materials which allow time-temperature superposition

and generate a master curve by shifting isothermal segments, thereby extending the

experimental time window beyond the normal range of a single test [36, 51, 93, 94].

Many theories for modeling the effect of temperature on the time-dependent behavior

of polymers are based on the free volume concept. Doolittle and Doolittle [92] pro-

posed this idea in their work on the viscosity of liquids. They found that the change

in viscosity due to the temperature might be expressed as a simple function of the net

available volume between the polymer molecules, or free volume. William, Landel,

and Ferry [51] extended this idea for application to polymers. They proposed that

the fractional free volume, which is the ratio of free volume to total volume of a poly-

mer, directly determines the mobility of the polymer chains, which in turn governs

the time-dependent mechanical properties of the polymer. Above Tg, the effect of

temperature on the time-dependent mechanical properties is traditionally modeled by

the well-known WLF equation, in which the fractional free volume is approximated

by a linear function of temperature [36, 51]. A more sophisticated free volume-based

model was proposed by Knauss and Emri [95, 96]. Their model is able to predict

nonlinear response of several polymers. They suggested that the fractional free vol-

ume should depend on the temperature, mechanical dilatation and swelling histories.

In the case of negligible moisture and dilatational effects their model reduces to the

WLF equation. Popelar and Liechti modified this model to include distortional effect

by introducing a new term, similar to the dilatational one [97, 98]. Losi and Knauss
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modified the free volume-based model for temperature below Tg [99]. Other than the

fractional free volume concept, the effect of temperature can be modeled via other

thermodynamic quantities, e.g. the excess configurational entropy [88,89], the excess

enthalpy [90], and the relaxation or retardation process as the physical counterpart

of a chemical reaction [91].

While the effect of temperature on the viscoelastic properties of polymers is

fairly well understood, relatively little information is available on the effect of pres-

sure. Generally, volume is reduced as temperature is decreased and/or pressure is

increased. One could equate the effect of pressure increase to that of temperature

decrease following this rationale. Ferry and Stratton assumed that the fractional free

volume decreases linearly with pressure, yielding an equation of shift factor that has

the same form as WLF equation [100]. O’Reilly assumed that the fractional free

volume is a function of the inverse of pressure, obtaining a simple exponential form

for the shift factor [101]. However, it has been found that the dependence of the

empirical shift distances on pressure could not be successfully described by either the

Ferry-Stratton or the O’Reilly equation [102]. The present work shows that these

two models are not appropriate for the behavior of polyurea in particular. Fillers

and Tschoegl proposed that pressure is associated with the change in fractional free

volume via compressibility, which is defined as the inverse of the tangential bulk

modulus [52, 102]. They considered the fractional free volume to be a state variable

depending on pressure and temperature and developed an equation for shift factor,

which describes the pressure dependence and contains the WLF equation as a lim-

iting case. They showed that shifting isobaric segments of mechanical properties of

viscoelastic materials could yield the similar master curve as shifting the isothermal
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segments. The materials that allow isobaric shifting are referred to as piezorheologi-

cally simple materials.

The change in fractional free volume due to pressure is related to the com-

pressibility of the free volume, and the change due to the temperature is associated

with the thermal expansivity. With the assumption of the fractional free volume

being a state variable, its differential may be written accordingly as the sum of the

two effects [102]. To consider the total change with pressure and temperature, Fillers

and Tschoegl proposed two different integration paths; (1) integrate the pressure-

dependent term at a fixed temperature first, followed by the temperature-dependent

term at a fixed pressure, and (2) integrate the temperature-dependent term at a fixed

pressure first, followed by the pressure-dependent term at a fixed temperature. They

suggested that the first path is preferable since the first path requires knowledge of

the pressure dependence of the expansivity while the second requires knowledge of

the temperature dependence of the compressibility that is more difficult to deter-

mine. However, the second integration path yields the WLF equation as a limiting

case without having to change its constants for each reference pressure. Moreover,

one does not have to complete the stress relaxation test under pressure to obtain

pressure-dependent parameters, as it is required with the first integration path. In

this work, we extend Fillers and Tschoegl’s work, utilizing the second integration path

and designing the experimental framework to extract all desired constitutive param-

eters. For the sake of clarity in presentation, we will refer to this model as modified

WLF equation (mWLF). However the original authors call it, the FMT model.

Polyurea, a block copolymer formed from the chemical reaction of diisocyanates

with polyamines, was studied under high-pressure using ultrasonic measurements.
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The test specimens were quasi-statically compressed in confined uniaxial deforma-

tion. The longitudinal ultrasonic wave speed in the sample was measured at various

pressures and temperatures. Then, the longitudinal moduli at various temperature

and pressure were calculated, using the wave speeds and densities of the samples,

modified by the uniaxial strain. The testing pressure and temperature ranges in this

study are 0.1 to 900 MPa and 223 to 303 K. The longitudinal moduli were used to

relate the pressure increase to temperature decrease at ambient pressure that would

have yielded the same longitudinal modulus. The mWLF model gives the necessary

shifts along the time or frequency axes that would lead to overlapping and alignment

of the measured isothermal and isobaric viscoelastic modulus curves. The shift factor

may be considered as the combination of two parts that account for effects of tem-

perature and pressure. All parameters controlling the time scale shifts needed for the

effect of temperature may be obtained from the original WLF equation. Furthermore,

one can construct a function that for a given applied pressure gives the equivalent re-

duction in temperature, which induces the similar change in material behavior as the

applied pressure. All remaining parameters for the effect of pressure can be found by

curve-fitting this function. The mWLF model can be presented by a three-dimensional

surface of the necessary shift in time or frequency scale as a function of temperature

and pressure. The model fits very well with the present experimental data. Moreover,

when specialized to the appropriate experimental range (0-850 MPa and 215-313 K)

the predictions of the model also agree quite well with the previous study on nonlinear

viscoelastic behavior of polyurea, conducted by Chevellard et al [103].
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4.2.2 Experiment

Material

Polyurea (PU) is a block copolymer formed from a chemical reaction of an

aromatic isocyanate component (hard segment) and an amine-terminated resin blend

component (soft segment). The aromatic isocyanate component, commercial name

Isonate 143L is manufactured by Dow Chemicals [26]. It is a polycarbodiimide-

modified diphenylmethane diisocyanate. It is in liquid form at room temperature and

has a low viscosity and good storage stability down to 24 ◦C. The amine-terminated

resin blend component, commercial name Versalink P-1000, is an oligomeric di-

amine, manufactured by Air Products [6]. It is a polytetramethyleneoxide-di-p-

aminobenzoate and is liquid at room temperature, which allows it to be mixed, cast,

and cured in ambient conditions. The reaction between Isonate 143L and Versalink

P-1000 is generally very fast and insensitive to humidity and low temperatures. The-

oretically, Isonate 143L and Versalink P-1000 should be mixed in a stoichiometric

ratio of 1:1, i.e., the total number of isocyanate groups must equal the total number

of amine groups in order to obtain complete chemical reaction. Holzworth et al. also

showed that the stoichiometric ratio affects the mechanical properties of polyurea [4].

However, a slight 5% excess of Isonate 143L is typically recommended by the manu-

facturer to ensure that the reaction is completed and to create a lightly cross-linked

polymer [6].

Sample Preparation

Samples were fabricated according to the process described in [4]. Teflon

molds were used to cast test specimens with the geometry shown in Figure 4.10b.
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This geometry was selected to match with the high-pressure cell described below.

The polyurea specimens were cured for 2 weeks at room temperature in a humidity-

controlled environmental chamber that maintains RH 10%. Twelve specimens were

fabricated in one batch.

Experimental Setup

The test system consists of ultrasonic wave measurement setup, quasi-static

confined loading setup, and temperature control chamber. The ultrasonic measure-

ments were performed in the through-transmission mode, using a desktop computer

with a Matec TB-1000 Toneburst card, two Panametrics videoscan longitudinal trans-

ducers (V103 Panametrics-NDT OLYMPUS), a 100:1 attenuator box, and a digital

oscilloscope (Tektronix DPO3014) [50]. Toneburst signals of prescribed frequencies

were generated from the card and split through BM-174-3 cables to the pitching

transducer and the attenuator box, where the voltage was reduced by a factor of 100

to be measured on the scope. The received signal at the catching transducer was sent

directly to the scope where the amplitude and travel time were measured.

Instron servo-hydraulic machine model 1332 was used as loading test machine.

It has the capability to generate forces up to 100 kN. The compression mode was

used in this study. MTS controller model 407 was used to control the force and

displacement. Either displacement or force control can be selected. The loading rate

is adjustable depending on the test condition. In this study, the force control mode

was used with the slow loading rate of 67 N s−1 to ensure that sample was under quasi-

static condition. An MTS environmental chamber model 651 was used to provide a

cooling range from ambient to 144 K using liquid nitrogen. Testing temperature was
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controlled by MTS temperature controller model 409.80.

To create quasi-hydrostatic conditions for the sample, a confinement cell was

made of maraging steel (see Figure 4.10). The nearly cylindrical geometry and small

size was chosen to achieve high pressures of 1000 MPa at the maximum force load

of 100 kN, while avoiding failure. The cell structure has no sharp edge, thereby

minimizing stress concentrations. Two vertical flat surfaces were machined on the

two opposite sides of the cell where the two transducers were placed. Two pistons

with the same cross-sectional shape of the sample were used for loading, while inside

the cell, two filler columns were aligned to ensure that the sample surfaces were flat

and parallel to the surfaces of the two transducers (see Figure 4.10). Screws, nuts,

springs, fasteners, and cover plates were used to hold the test setup and to provide

the constant applied load on the two transducers.

Figure 4.10: (a) Components of high-pressure test fixture (b) Sample (c)
Confinement cell

Experimental Procedure

The confinement cell calibration process was done at ambient condition. The

special shape of the cell lead to the complexity of the wave speed measurement;

internal reflections and interferences. The measured transmission can be roughly
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divided in two components (see Figure 4.11): traveling in a direct path through the

sample and traveling around the cell body. The purpose of the cell calibration is to

eliminate the effect of the second component from the measurement of time of travel

in the cell (tC). In calibration test 1, we filled the cell with water, sent ultrasonic

wave through the cell, and recorded the input and received signals (see Figure 4.12a).

We used water because the wave speed in water at room temperature was known

(1484 m s−1), and it could completely fill the cell without gaps. The received signal

in test 1 consisted of both direct-path and the go-around components added (see

Figure 4.11). In test 2, we repeated this for an empty cell. The received signal in test

2 is only the go-around component. Subtracting the received signal in test 2 from the

received signal from test 1, the direct-path signal is obtained (see Figure 4.12b). Note

that since the impedance mismatch between steel and water is very large, the effect

of transmission into the water on the go-around signal is neglected. Furthermore,

since we are only interested in the timing of the pulse, a small error in the amplitudes

due to this assumption is not expected to affect the eventual results. Finally, the

consistency of the shape and amplitude of the go-around signals in Figure 4.12a,

fortifies the relevance of this assumption (the input pulses are the same in both tests).

We estimated the total time of travel in the direct path (tT ) using the first peaks of

the input and the direct-path signals (see Figure 4.12b). We calculated the time of

travel in the water (tW ), using the known wave speed and gap width of 6.35 mm. The

time of travel in the cell (tC) can be found by subtracting tW from tT (see Figure 4.11).

Since the cell is made of maraging steel, whose mechanical properties do not change

much in the range of testing temperature and pressure, we assume that tC is constant.

This agreed with our observations on the wave speed in the steel as we varied the
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temperature. We found that tC equals 4.564 µs at 1 MHz. It will be used later in the

wave speed measurement. Note that tC can also be estimated by dividing the total

thickness of the steel in the direct-path propagation with the known wave speed in the

steel (5490 m s−1). From this method, tC is 4.442 µs which is in very close agreement

with the value above.

Figure 4.11: Confinement cell calibration; tT is total time of travel of
direct-path signal, tC is half of time of travel in the cell, tW is time of travel

in the water. The gap thickness is 6.35 mm

After the cell calibration was finished, the wave speed measurement was per-

formed. The testing temperature ranges from -50 to 30 ◦C with 10 ◦C steps. At each

testing temperature, the sample was loaded from ambient pressure to 900 MPa. After

loading, the sample could not be reused because it was deformed and loses its initial

shape (though the material is highly elastic in compression, at very high pressures,

it will extrude, in shear, through the very small gaps between the pistons and the

cell body). Nine samples, all made in the same batch, were used for the nine testing

temperatures. Before testing, dimensions and densities of all samples were measured.
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Figure 4.12: (a) Received signals from test 1 and 2 in cell calibration. (b)
Total time of travel in the direct-path (tT ) of the calibration is equal to the
time difference between the two red circles. (c) Received signals from test 1

and 2 in wave speed measurement. (d) Total time of travel in the
direct-path (tT ) of the wave speed measurement is equal to the time

difference between the two red circles. Note: The direct-path signal in (b)
and (d) are obtained by subtracting the Go-around from the Direct-path +

Go-around, in (a) and (c). The input signal is the same for all tests.

Longitudinal wave couplant was applied over all surfaces of the samples and where

the cell touched the samples and the transducers. To measure the wave speed in the

sample, two measurements were required at each testing temperature. In test 1, the

sample was inserted into the confinement cell and capped with pistons from top and

bottom (see Figure 4.10a). The two transducers were placed at the middle of the

flat surfaces of the cell and locked in position with the two cover plates. In order to

maintain relatively constant contact pressure between the transducers and the cell,

two identical springs, fasteners and aluminum columns were employed together. The

whole test fixture was held together by spring force (see Figure 4.10a). The test
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fixture was then placed in an environmental chamber and the whole test fixture was

equilibrated at the testing temperature for an hour, before the compressive load was

applied on the sample at the loading rate of 67 N s−1. The polyurea sample in the cell

was under quasi-hydrostatic conditions due to the slow loading rate and nearly incom-

pressible nature of the elastomer. The testing pressure range is from 25 to 900 MPa,

with 25 MPa increments up to 400 MPa and 50 MPa increments for the rest. At each

pressure step, the loading machine was stopped and held at constant load, while the

ultrasonic measurement was performed at nominal frequency 1 MHz, and data was

recorded. The compressive force and axial displacement histories were measured by

the load cell and linear variable differential transformer (LVDT), respectively. They

were recorded in a Labview signal express text file for analysis. In test 2, the test

fixture was assembled empty and was equilibrated in the environmental chamber at

the same temperature as test 1 for an hour. No pressure was applied on test fixture,

though the springs were tightened to the same level as test 1. After 1-hour equilibra-

tion, the signal was sent through the empty confinement cell to record the go-around

signal for the given temperature. Example of recorded signals test 1 and test 2 from

wave speed measurement are shown in Figure 4.12c.

Subtracting the received signal in test 2 (without sample) from the received sig-

nal from test 1 (with sample), the direct-path signal was obtained (see Figure 4.12d).

The total time of travel in the direct path (tT ) was measured using the first peaks of

the input and the direct-path signals (see Figure 4.12d). Subtracting tC previously

obtained from cell calibration process from tT , the time of travel in the sample (tS)

at the testing temperature and pressure was obtained. We then repeated the process

of finding tS for other testing temperatures and pressures. Longitudinal wave speed
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at each testing temperature and pressure can be calculated as:

vL (T, P ) =
dg

tS (T, P )
, (4.58)

where the constant dg =6.35 mm is the gap thickness shown in Figure 4.11,

tS(T, P ) and vL(T, P ) are the time of travel in the sample and the longitudinal wave

speed at testing temperature T and pressure P , respectively. Longitudinal wave speed

at each testing temperature and pressure is shown in Figure 4.13a. Uniaxial quasi-

static stress and strain of the sample were also calculated, using the recorded force,

displacement histories, and initial dimension of the sample. Since polyurea is nearly

incompressible material the confined compressive force creates quasi-hydrostatic pres-

sure on the sample. Machine stiffness was also measured for correcting the measured

strain in the sample.

σ = P =
F (t)

A
, (4.59)

ε (T, P ) =
d (T, P )− d (T, Po)

h
, (4.60)

where σ is engineering stress (or pressure (P ) in this particular case), ε (T, P ) is

compressive engineering strain at T and P , F (t) is compressive force history, d (T, P ),

and d (T, Po) are displacements at T and P , and T and Po, respectively. h and A are

the initial height and cross sectional area of the sample (see Figure 4.10b). The stress

and strain are shown in Figure 4.13b. The slope of the stress-strain plot represents the

tangential quasi-static longitudinal modulus (see Figure 4.13d). With the compressive

strain at each temperature and pressure, polyurea density ρ (T, P ) can be calculated
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as follows:

ρ (T, P ) =
ρo

(1 + 3CTE (T − To) + ε (T, P ))
, (4.61)

where ρo is the density of polyurea at room temperature To and ambient pressure, and

CTE is the thermal expansion coefficient of polyurea (207 µm m−1 K−1). ρ (T, P ) is

shown in Figure 4.13c. The 1 MHz dynamic longitudinal modulus at each temperature

and pressure can be calculated as:

L (T, P ) = ρ (T, P ) [vL (T, P )]2 , (4.62)

where L (T, P ) is the dynamic longitudinal modulus at 1 MHz, temperature T , and

pressure P . L (T, P ) is shown in Figure 4.13e.

Experimental results

During experiment, the samples were loaded slowly and step-wise from atmo-

spheric pressure all the way to the maximum value of 900 MPa, and the ultrasonic

data were collected at each pressure of interest. The unloading data were not consid-

ered here. The measured longitudinal wave speed is shown in Figure 4.13a. The wave

speed at each temperature can be divided into two segments, with the first having a

higher slope than the second. It is hypothesized that the bend in each line represents

a transition in the material from rubber to glassy. As temperature decreases the glass

transition point shifts toward lower pressure. At higher temperatures the transition

point is more pronounced; while, at lower temperatures it exhibits a more gradual

curve-like behavior. Figure 4.13b shows the compressive stress (to be an estimate of

the pressure)-compressive strain plots. At −50 ◦C polyurea undergoes 11% strain
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at 900 MPa; whereas, at 30 ◦C it takes 16% strain. Figure 4.13c shows the density

of polyurea versus pressure. When pressure is above 300 MPa, the density measured

at higher temperatures shows a higher slope, and all the curves converge to around

1200 kg m−3 at 900 MPa. Figure 4.13d represents quasi-static longitudinal modulus

as a function of pressure. The data of quasi-static longitudinal modulus that obtains

from the slope of the stress-strain plot are not clean due to the effect of the noise

in the strain measurement, which requires very accurate displacement history. The

overall trends with pressure and temperature are as expected. Figure 4.13e shows the

ultrasonic longitudinal modulus (L) at 1 MHz. It increases with increasing pressure

and decreasing temperature and is generally the quasi-static modulus, and they are

of the same order of magnitude. The difference between them is around 20%. Similar

to longitudinal wave speed, we can somewhat see the ultrasonic longitudinal modulus

has two distinct segments; higher slope at the first segment and smaller slope at the

second segment. However, due to the effect of density in longitudinal modulus (see

equation 4.62), this behavior is less pronounced. Despite the less apparent glass tran-

sition bend point, its location is the same as in the longitudinal wave speed. Paterson

did measurement of Young’s moduli of polyureathane, as a function of pressure up

to 1000 MPa at 20 ◦C and found similar behavior [104]. In Paterson’s work, the glass

transition of polyureathane occurs at around 400 MPa at 20 ◦C. Here the glass transi-

tion of polyurea happens at around 350 MPa at the same temperature. Paterson did

not determine the glass transition temperature of polyurethane at atmospheric pres-

sure; however, he provided the number from the supplier, −68 ◦C. For our polyurea

sample, the glass transition is found to be around -50 to −60 ◦C [42]. At each tem-

perature, the glass transition occurs when the 1 MHz dynamic longitudinal modulus
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is higher than 8 GPa. Note that at lower temperatures, the glass transition point

shifts toward lower pressure. Paterson did not test at other temperatures.

Figure 4.13: Longitudinal wave speed, vL versus pressure. (b) Pressure
versus compressive strain. (c) Density of polyurea versus pressure. (d)
Quasi-static longitudinal modulus, LQS versus pressure (e) Dynamic

longitudinal modulus, L at 1 MHz versus pressure.
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Analysis of the experimental data

In order to use the data of the longitudinal modulus for time-temperature-

pressure superposition, a slight modification is needed. The 1 MHz longitudinal mod-

ulus at each temperature and pressure, L (ω, T, P ) needs to be normalized, by a factor

that depends theoretically on the density and temperature (vertical shift), based on

the flexible chain theory [36,52].

LR (ω, T, P ) = L (ω, T, P )
ρrefTref
ρT

, (4.63)

where LR (ω, T, P ) is the reduced longitudinal modulus. ω is the angular frequency.

ρref is the density of polyurea at reference temperature, Tref and pressure, Pref . For

the following analysis, ρref and Tref can be arbitrary chosen since they are constant

multipliers; so we use 1 for both of them. Figure 4.14a shows LR as a function of

pressure at each testing temperature.

Following Fillers and Tschoegl [102], the fractional free volume is considered

a state variable that depends on pressure and temperature. Instead of dealing with

both pressure and temperature separately, we seek to find a relation between pres-

sure and temperature that yields the same state of the fractional free volume. It is

worth noting that the fractional free volume is not calculated directly in our study.

But it is associated to the reduced longitudinal modulus. If two different states of

polyurea with different temperatures and pressures yield the same reduced longitudi-

nal modulus, they are assumed to have the same fractional free volume. To do this,

the following process is used:

1.Consider only data point below glass transition pressure, above which the
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time-temperature-pressure superposition cannot be applied (see Figure 4.14a). Glass

transition temperature of polyurea is around 213-223 K at atmospheric pressure [42,

103].

2.Consider data of a testing temperature and use interpolation to relate pres-

sure to temperature that yields the same LR (see Figure 4.14b). Collect pressure-

temperature pairs.

3.Repeat the process for other testing temperatures.

Figure 4.14c shows the relation between pressure and temperature that give

the same value of reduced dynamic longitudinal modulus LR. Each line represents

each testing temperature and maps the testing pressure to the corresponding testing

temperature at 0.1 MPa (ambient pressure) that has the same LR. Figure 4.14d

relates the increasing in pressure to the amount of temperature reduction, depending

on the initial temperature. Each line has different number of data points since the

minimum temperature in the interpolation process is always Tg = 223 K. We remark

that the reduction in temperature that is resulted from pressure may be different if

we use longitudinal modulus at other frequencies. However, in the absence of any

information on this point we assume that the difference is negligible.

4.2.3 Discussion

Figure 4.14a shows a point or a very narrow range for each testing temperature,

where the slope of the reduced longitudinal modulus changes. At these transition

pressures, the behavior of polyurea changes from rubber-like to glass-like. We limit

the analysis in this paper to the rubbery range to be compatible with the free volume-

based WLF approach. It can be seen in Figure 4.14c that the equivalent temperature
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Figure 4.14: (a) The reduced dynamic longitudinal modulus, LR versus
pressure and temperature (b) Interpolation to find relation between

temperature and pressure (c) The apparent temperature for a given actual
temperature and applied pressure (d) Reduction in temperature versus

pressure for a given actual temperature

is more sensitive at lower pressure values, suggesting that it might asymptotically

approach to a limit value at high pressures. However, the material becomes glassy

before that state is reached. Figure 4.14d supports this conclusion. If all the curves

in this figure were to collapse on to a common one, a much simpler formulation

would have been possible. In what follows, we will implement Fillers and Tschoegl’s

idea to derive the modified WLF equation (mWLF) for the general case of combined

temperature and pressure effects [102].
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Theory

The main idea of the modification of the WLF equation in this work follows

that of Fillers and Tschoegl [52, 102]. However, we proposed an alternative material

testing method compatible with the mWLF model and that is less time-consuming

for nearly incompressible viscoelastic materials. The procedure is as follows. The

shift factor, aTP , is a function of fractional free volume defined as the ratio of the

free volume inside a polymer to the total volume (free volume plus occupied volume)

[36,51]. It is expressed as,

log aTP =
B

2.303

(
1

f (T, P )
− 1

f (To, Po)

)
, (4.64)

where

f (T, P ) =
Vf (T, P )

V (T, P )
=

Vf (T, P )

Vf (T, P ) + Vφ (T, P )
, (4.65)

the factor B is a constant, f (T, P ) is the fractional free volume at temperature T and

pressure P , f (To, Po) is the fractional free volume at reference temperature To and

pressure Po, Vf (T, P ), Vφ (T, P ), and V (T, P ) are the temperature- and pressure-

dependent free, occupied, and total volumes, respectively. The fractional free volume

f (T, P ) is assumed to be conservative. The change of f (T, P ) does not depend on

path. The differential of f (T, P ) or the infinitesimal change of f (T, P ) can be written

as follows:

df (T, P ) =

(
∂f

∂T

)
P

dT +

(
∂f

∂P

)
T

dP. (4.66)

We integrate equation 4.66 from reference temperature To and pressure Po to testing

temperature T and pressure P , using a path that first keeps pressure fixed at Po,



180

while increasing the temperature, followed by a segment that keeps the temperature

fixed at T and increases the pressure:

∫ T,P

To,Po

df (T, P ) =

∫ T

To

(
∂f

∂T

)
Po

dT +

∫ P

Po

(
∂f

∂P

)
T

dP. (4.67)

Fillers and Tschoegl preferred a different integration path [102]; they integrated(
∂f
∂P

)
(To)

from Po to P and
(
∂f
∂T

)
P

from To to T . They chose to consider the pres-

sure dependence of the expansivity of the free volume. In this work and consistent

with the original WLF equation, only the expansivity of the free volume at ambient

pressure is used. However, we have to deal with the temperature dependence of the

compressibility of the free volume. Moreover, this choice of path suits our experi-

mental data more seamless. The first term on the right of equation 4.67 relates to

expansivity of the free volume at reference pressure and can be written as follows:

∫ T

To

(
∂f

∂T

)
Po

dT =

∫ T

To

αf (Po) dT = αf (Po) [T − To] , (4.68)

where αf (Po) is the expansivity of the free volume at reference pressure. Filler and

Tschoegl suggested that the temperature dependence of αf (Po) could be neglected.

Generally, αf (Po) could be obtained, using the material database of constants c1 and

c2 in the WLF equation with the assumption that the constant B is equal to 1. It

is rather difficult to obtain information of αf (Po) without this assumption; however,

with our model, no such assumption is needed for determining αf (Po). We can obtain

both αf (Po), and B using nonlinear regression analysis as shown below. The second

term on the right of equation 4.67 relates to the compressibility of the free volume
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that depends on both temperature and pressure and can be written as:

∫ P

Po

(
∂f

∂P

)
T

dP = −
∫ P

Po

κf (T, P ) dP, (4.69)

where

κf (T, P ) = κ (T, P )− κφ (T, P ) , (4.70)

κf (T, P ), κ (T, P ), and κφ (T, P ) are the compressibilities of the free volume, poly-

mer, and occupied volume, respectively. The compressibility is the reciprocal of bulk

modulus.

κ (T, P ) =
1

K (T, P )
, (4.71)

κφ (T, P ) =
1

Kφ (T, P )
. (4.72)

Bulk modulus of a polymeric material has approximately a linear dependence on

pressure [102,105] and can be written as:

K (T, P ) = K (T, Po) + k (T )P. (4.73)

For nearly incompressible polymers, e.g. polyurea, Poisson’s ratio is around 0.4 (low

temperature, glass-like behavior) - 0.5 (high temperature, rubber-like behavior). Thus

bulk modulus is significantly larger than shear modulus and one may approximate

bulk modules with the longitudinal modulus L:

K (T, P ) ≈ L (T, P ) = L (T, Po) + l (T )P. (4.74)
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Our experimental observations confirm that the longitudinal modulus of polyurea is

a linear function of pressure up to the glass transition (see Figure 4.13e), with a

temperature-dependent slope. In this work, instead of using longitudinal modulus

measured quasi statically, we use a more accurate longitudinal modulus that was

measured at 1 MHz using ultrasonic wave measurement technique under pressure.

Both moduli of course have similar behavior, and are of the same order of magnitude,

thereby allowing us to use this replacement (see Figures 4.13d and 4.13e). L (T, Po)

and l (T ) can be obtained from fitting equation 4.74 to the experimental data shown

in Figure 4.13e. The results are shown in Figures 4.15b and 4.15c. The bulk modulus

of the occupied volume is very difficult to measure experimentally. Filler and Tschoegl

assumed that it has the same form as the bulk modulus of the polymer [52,102], i.e.

Kφ (T, P ) ≈ Lφ (T, P ) = Lφ (T, Po) + lφ (T )P. (4.75)

Lφ (T, P ), Lφ (T, Po), and lφ (T ) are obtained using nonlinear regression analysis, after

the final formulation is derived. Using equations 4.70-4.75, equation 4.69 can be

integrated and yields:

∫ P

Po

(
∂f

∂P

)
T

dP = −

 1

l (T )
ln

(
1 + l(T )

L(T,Po)
P

1 + l(T )
L(T,Po)

Po

)

− 1

lφ (T )
ln

 1 +
lφ(T )

Lφ(T,Po)
P

1 +
lφ(T )

Lφ(T,Po)
Po

 . (4.76)

Combining equations 4.67, 4.68, and 4.76, we obtain:

f (T, P ) = f (To, Po) +4fPo (T, To)−4fT (P, Po) , (4.77)
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where

4fPo (T, To) =

∫ T

To

(
∂f

∂T

)
Po

dT = αf (Po) [T − To] , (4.78)

4fT (P, Po) = −
∫ P

Po

(
∂f

∂P

)
T

dP

=
1

l (T )
ln

(
1 + l(T )

L(T,Po)
P

1 + l(T )
L(T,Po)

Po

)

− 1

lφ (T )
ln

 1 +
lφ(T )

Lφ(T,Po)
P

1 +
lφ(T )

Lφ(T,Po)
Po

 , (4.79)

4fPo (T, To) is the change in fractional free volume due to temperature at reference

pressure Po, and 4fT (P, Po) is the change in fractional free volume due to pressure

at testing temperature T . Equation 4.77 can be modified in term of temperature as:

f (T, P ) = f (To, Po) +4fPo (T, To) +4fPo (T ∗, T ) , (4.80)

where

4fPo (T ∗, T ) = −4fT (P, Po) , (4.81)

4fPo (T ∗, T ) = αf (Po) [T ∗ − T ] , (4.82)

4fPo (T ∗, T ) is the change in fractional free volume due to an equivalent tempera-

ture T ∗. Instead of dealing directly with 4fT (P, Po) in equation 4.77, we equate

−4fT (P, Po) to 4fPo (T ∗, T ). This allows us to relate the change in fractional free

volume due to pressure to the change in fractional free volume due to virtual tem-

perature that is defined in equation 4.82, i.e. the temperature that yields the same
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change in fractional free volume as the applied pressure. Combining equations 4.79,

4.81, and 4.82, we obtain:

− [T ∗ − T ] =
2.303

αf (Po) l (T )
log

(
1 + l(T )

L(T,Po)
P

1 + l(T )
L(T,Po)

Po

)

− 2.303

αf (Po) lφ (T )
log

 1 +
lφ(T )

Lφ(T,Po)
P

1 +
lφ(T )

Lφ(T,Po)
Po

 . (4.83)

Equation 4.83 equates any change in pressure from reference pressure Po at testing

temperature T to the change in temperature from testing temperature T at reference

pressure Po. We can rewrite equation 4.83 as:

− [T ∗ − T ] = c3 (T ) log

(
1 + c4 (T )P

1 + c4 (T )Po

)
− c5 (T ) log

(
1 + c6 (T )P

1 + c6 (T )Po

)
, (4.84)

where

c3 (T ) =
2.303

αf (Po) l (T )
, (4.85)

c4 (T ) =
l (T )

L (T, Po)
, (4.86)

c5 (T ) =
2.303

αf (Po) lφ (T )
, (4.87)

c6 (T ) =
lφ (T )

Lφ (T, Po)
, (4.88)

c4 (T ) is a known parameter since we know l (T ) and L (T, Po) from ultrasonic wave

testing under pressure, c3 (T ), c5 (T ) and c6 (T ) are unknown parameters that depend
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on testing temperature T .

Substituting equation 4.77 into equation 4.64, we obtain:

log aTP =
−B

2.303f (To, Po)

(
4fPo (T, To)−4fT (P, Po)

f (To, Po) +4fPo (T, To)−4fT (P, Po)

)
. (4.89)

The shift factor log aTP includes both temperature and pressure effects on time-

dependent viscoelastic properties. Using equations 4.78-4.88, equation 4.89 can be

written in more convenient from as:

log aTP =
−c1 (T − To − Ω (T, P ))

c2 + T − To − Ω (T, P )
, (4.90)

where

Ω (T, P ) = c3 (T ) log

(
1 + c4 (T )P

1 + c4 (T )Po

)
− c5 (T ) log

(
1 + c6 (T )P

1 + c6 (T )Po

)
, (4.91)

c1 =
B

2.303f (To, Po)
, (4.92)

c2 =
f (To, Po)

αf (Po)
, (4.93)

c1 and c2 are constants in original WLF equation, and Ω (T, P ) is the additional

pressure-dependent term that is introduced into the original WLF equation. Equa-

tion 4.90 represents the modified WLF equation that includes both effects of tem-

perature and pressure. At the pressure equal to the reference pressure Po, Ω (T, P )

equals to 0 and equation 4.90 reduces to the original WLF equation.
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Applications

The function log aTP in equation 4.90 is the temperature-and-pressure- depen-

dent logarithmic time shift required to bring data recorded at the testing temperature

T and pressure P , into superposition with data recorded at the reference tempera-

ture To and pressure Po. In this study, the reference temperature To and pressure

Po are 273 K and 0.1 MPa respectively. Materials that allow this superposition are

called, thermorheologically and piezorheologically simple materials. Each polymer

has different shift factor (though for temperature superposition, the WLF formula

presents a very good uniform approximation formula for most polymers between Tg

and Tg+100 K) and can be characterized through the parameters: c1, c2, c3 (T ), c4 (T ),

c5 (T ), and c6 (T ). L (T, Po) and l (T ), which appear in c4 (T ) can be obtained from

fitting equation 4.74 to the experimental data below glass transition pressure that

is shown in Figure 4.13e. Figure 4.15a shows that the approximation and lineariza-

tion in equation 4.74 agree very well with experimental data shown in Figure 4.13e.

L (T, Po) and l (T ) are shown in Figures 4.15b and 4.15c, considering only data in

the range between 243 and 303 K. We found that inverse of l (T ), which is a variable

in parameter c3 (T ) is a linear function of temperature (see Figure 4.15d). It can be

written in the following form:

1

l (T )
= I1 (T − I2) , (4.94)
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where I1 and I2 can be found from linear curve fitting. They are shown in Table 4.1.

With a constant αf (Po), c3 (T ) can then be written in the following form:

c3 (T ) = c31 (T − c32) , (4.95)

where

c31 =
2.303I1

αf (Po)
, (4.96)

c32 = I2, (4.97)

c31 is an unknown constant to-be-found based on parameter αf (Po). c4 (T ) or l(T )
L(T,Po)

can now be calculated using equation 4.86 and is shown in Figure 4.15e. As we

can see, c4 (T ) is independent of the temperature in the range from 243 to 303 K.

Therefore, we assume that c4 (T ) is constant and equal to the average of c4 (T ):

c4 (T ) = c̄4 (T ) = c4. (4.98)

c4 is shown in Table4.1. Due to the lack of information about parameters c5 (T ), and

c6 (T ), we assume that c5 (T ) also has a linear form similar to c3 (T ), and c6 (T ) is

constant similar to c4 (T ). This is quite reasonable assumption due to the similar

characteristics between c3 (T ) and c5 (T ), and c4 (T ) and c6 (T ) (see equations 4.85-

4.88).

With equations 4.95 to 4.98, and assumption that c5 (T ) and c6 (T ) are linear

function of temperature and constant, respectively, a preliminary nonlinear regression

analysis was performed using equation 4.84 (or equivalently equation 4.91) and data
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Figure 4.15: (a) Dynamic longitudinal modulus, L at 1 MHz versus
pressure. (b) Longitudinal moduli, L (T, Po) at 1 MHz and atmospheric
pressure versus temperature. (c) Slopes of longitudinal moduli, l (T ) at

1 MHz versus temperature. (d) Inverse of l (T ) at 1 MHz versus
temperature. (e) c4 (T ) at 1 MHz versus temperature

in Figure 4.14d. The initial guess for αf (Po) was obtained using equations 4.92 and

4.93, with the assumption that parameter B is 1. Constants c1 and c2 were measured

and recorded elsewhere [73]. They are shown in Table 4.1. The initial guesses for c51

and c52 were c31 and c32, respectively. Constant c4 was used as the initial guess for c6.

The results of the regression analysis are shown in Figure 4.16a. Constants c31, c32,
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c4, c51, c52, c6, and αf (Po) are given in Table 4.1. It is notable that c32 and c52 are

very close to each other and are below the glass transition temperature of polyurea

(213-223 K). As the temperature gets closer to these values, the effect of pressure

on the shift factor diminishes. From the nonlinear regression analysis, we obtain all

necessary parameters for the pressure-dependence in the mWLF equation. It can be

written as:

Ω (T, P ) = c31 (T − c32) log

(
1 + c4P

1 + c4Po

)
− c51 (T − c52) log

(
1 + c6P

1 + c6Po

)
, (4.99)

Equations 4.90, and 4.99, with parameters shown in Table 4.1 yields the full form

of the modified WLF equation that includes temperature and pressure effects for

polyurea at reference temperature (274 K) and pressure (0.1 MPa).

Figure 4.16: (a) Comparison between experimental data and the full
model (equation 42) with parameters in Table 1. (b) Comparison between

normalized experimental data and the normalized simplified model
(equation 45) with parameters in Table 2.

With αf (Po), c1, and c2, the constants B, and f (To, Po) in the original WLF

equation can be calculated, using equations 4.92 and 4.93. These parameters are

shown in Table 4.1. It is interesting to note that the constant B is not equal to

1 as commonly assumed. Clearly the ratio of B
f(To,Po)

is the physically important
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Table 4.1: Parameters in full form modified WLF equation for polyurea

Polyurea
B 0.839 c1 25.25

f (To, Po) 0.0144 c2 (K) 208.9
αf (Po) (K−1) 6.91E-05 c31 18.45

To (K) 274 c4 (MPa−1) 0.00475
Po (MPa) 0.1013 c51 18.65
I1 (K−1) 5.53E-04 c52 (K) 166.96

I2 = c32 (K) 165.94 c6 (MPa−1) 0.00423

quantity related directly to the horizontal shift function. At this point, we have

all the required parameters for the modified WLF equation. Effect of pressure is

added as an additional variable into the original WLF equation. The original WLF

line in temperature plane now becomes a surface in temperature and pressure space.

Figure 4.17a shows the three-dimensional plot of the shift factor of polyurea. The

glass transition temperature of polyurea is around 223 K at ambient pressure. For

other conditions, we assume that the value of shift factor is constant at glass transition

state and calculate glass transition temperatures at elevated pressures, in agreement

with Fillers and Tschoegl. Their experimental results showed that the glass transition,

at which polymers in their tests becomes glassy, occurs at a constant value of log aTP

[102].

Note that on the isobaric graph, the shift factor of polyurea is concave upward

with respect to temperature (see Figure 4.17b); while on the isothermal graph, the

shift factor is concave downward with respect to pressure (see Figure 4.17c). In other

words, as pressure increases, its effect on the isothermal shift factor becomes less

pronounced. This observation is compatible with the fact that at very high pressures

there is less free volume available for polymer chains; thus, increasing pressure further
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Figure 4.17: (a) Shift factor surface of polyurea (at reference temperature
and pressure 273 K and 0.1 MPa respectively). (b) Isobaric shift factor

versus temperature. (c) Isothermal shift factor versus pressure. (d) Glass
transition temperature, Tg versus pressure.

would not have as much effect as it does at low pressures. This behavior is also found

in the previous study on nonlinear viscoelastic behavior of polyurea by Chevellard et

al [103]. They performed confined compression tests to extract bulk and shear moduli.

Their pressure shift factor (shown as crosses in Figure 4.18) was obtained from shifting

isobaric bulk moduli at different pressures to form a bulk modulus master curve at

273 K. They fitted the pressure shift factor with a quadratic equation (shown as dash-

dotted line in Figure 4.18). The present model (shown as dashed line in Figure 4.18)

reproduces their experimental data quite well, even though the present parameters

were calibrated using longitudinal modulus data. In other words, the more efficient

and less complicated process of measuring the longitudinal wave behavior under high

pressure as described here could be utilized for a very good approximation of pressure
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Figure 4.18: Comparison between the prediction from modified WLF
model and experimental data obtained from the previous study on

nonlinear viscoelastic behavior of polyurea by Chevellard et al [19] for
reference temperature of 273 K and pressures at 62, 250, 370, and 850 MPa.

effect. Furthermore, the present model does not use a separable formulation for the

effects of pressure and temperature, therefore preserving the coupling between the

two; see equation 4.91. Finally, Figure 4.17d shows Tg as an increasing function

of pressure, showing glassy response at room temperature under around 400 MPa

confining pressure.

Simplification

Even though the pressure-dependent term (equation 4.99) can reflect the re-

lation between the effects of temperature and pressure on the viscoelastic behavior

of polyurea and fit excellently with the experimental data, a simpler from may be

more convenient for calculation and finite element models. Thus, we have tried to
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simplify equation 4.99 based on the observed trends that c3 (T ) and c5 (T ) are very

close functions. The difference in the definition of these two functions, shown in equa-

tions 4.85 and 4.87, is between l (T ) and lφ (T ), i.e. the slopes of the longitudinal

modulus of the polymer and that of the occupied volume (excluding free volume).

Since the polymer chains occupy most of the space in a polymer, it is reasonable

to assume that l (T ) and lφ (T ) are close. Note that this does not reflect the actual

values of moduli, but their dependence on pressure. Thus one may enforce that c3 (T )

and c5 (T ) are identical with small potential loss of accuracy. Furthermore, since Po,

c4 (T ), and c6 (T ) all have small values, the denominators in the logarithmic terms in

equation 4.99 may also be neglected with negligible effect on accuracy of the model.

We can then write the simplified equation for equation 4.99 as:

Ω′ (T, P ) = c′3 (T ) log

(
1 + c′4P

1 + c′6P

)
, (4.100)

where

c′3 (T ) = c′31 (T − c′32) , (4.101)

prime sign indicates parameters that relate to the simplified equation 4.100. c′3 (T )

has the same form as c3 (T ). We further prescribe c′32, c′4, and c′6 to have the same

value as c32, c4, and c6, respectively. It is noteworthy that when one normalizes the

experimental data in Figure 4.14d through dividing by (T − c′32) in equation 4.101, all

curves collapse and lie on top of each other (see Figure 4.16b). Although the temper-

ature c′32 is below the glass transition temperature, it represents an asymptotic state

for the rubbery regimes independent of the applied pressure. It will be interesting to

extend such characterization and analysis to the glassy regime to see how this behav-
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ior transitions. However, is beyond the scope of the present work. Corresponding to

this normalized data, equation 4.100 can be modified as:

Ω′ (T, P )

T − c′32

= c′31 log

(
1 + c′4P

1 + c′6P

)
. (4.102)

Now one can perform another nonlinear regression analysis using equation 4.102 with

the normalized data in Figure 4.16b to find c′31. The initial guess for c′31 is c31 shown in

Table 4.1. The result of this regression analysis is shown as solid line in Figure 4.16b.

With c′31 and I1 shown in Table 4.1, α′f (Po) can be calculated using equation 4.96

and is listed in Table 4.2. With α′f (Po), c1, and c2, the constants B′, f ′ (To, Po) can

be calculated, using equations 4.92, and 4.93. All primed parameters are shown in

Table 4.2 and the rest, which are the same as unprimed parameters are shown in

Table 4.1. Equations 4.90, and 4.100, with parameters c1 and c2 in Table 4.1 and

all the primed parameters yields the simplified form of the modified WLF equation

that includes temperature and pressure effects for polyurea at reference temperature

(273 K) and ambient pressure.

Table 4.2: Constants for the simplified pressure-dependence formulation
Ω′ (T, P ), equation 4.100 (The other are the same as unprimed series used

in the full form equation 4.99, Table 4.1)

Polyurea
B′ 0.860 α′f (Po) (K−1) 7.079E-05

f ′ (To, Po) 0.0148 c′31 17.99
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4.2.4 Conclusion

The standard WLF equation is modified to include the effect of pressure. The

increase in pressure from ambient condition is related to a temperature reduction and

therefore an additional pressure-dependent term is introduced into the original WLF

equation. A final closed form expression is obtained based on a thermodynamics ap-

proach. This modified WLF equation was calibrated for polyurea with experimental

data from ultrasonic longitudinal wave measurements under various pressures up to

900 MPa and temperatures as low as 243 K. The model can be represented by a three-

dimensional shift surface in terms of temperature and pressure. The modified WLF

equation results in a unique set of values for the parameters αf (Po), B, and f (To, Po).

A simplified closed form expression for the pressure-dependent term is also presented

which includes fewer fitting parameters since all the measurements at different tem-

peratures collapsed onto a single line once divided by (T − c′32), where c′32 appears as

an asymptotic “freezing” temperature below Tg for the combined pressure and tem-

perature effects on the elastomer in the rubbery regime. The full and simplified forms

fit experimental data very closely. It is believed that this modified WLF equation

could be used for other thermorheologically and piezorheologically simple materials

under similar conditions and assumptions. Once all the necessary parameters are

known, equation 4.90 can be used to predict the mechanical properties at any other

pressure and temperature within the rubbery regime. The transition to glassy regime

due to combination of increased pressure and decreased temperature is also derived

based on the experimental results and can be described based on equation 4.90.
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4.3 Numerical Model of Material Behavior for Finite

Element Analysis

In this section, an experimentally-based constitutive model for polyurea, which

is pressure- and temperature-dependent has been developed and improved to cover

nonlinear effect of pressure on viscoelastic mechanism of polyurea. The model is

improved based on the work of Amirkhizi et al. [9]. The nonlinear effect of pressure

on viscoelastic modulus was obtained from the experimental result presented in the

previous section. We will discuss the improvement of the constitutive model in detail

and show how to implement it with finite element software. However, the improved

model has not been used and validated with experimental data. The validation will

be future work. This model can be used for small strain and finite strain with small

rotation.

4.3.1 Background

The basic concept of linear viscoelasticity is discussed previously in Section 4.1.

For small strain with the assumption of linear viscoelasticity, the stress at time t can

be written in term of the history of the strain rate by:

σ (t) =

∫ t

−∞
χ (t− t′) : ε̇ (t′) dt′, (4.103)

where ε̇ is the strain-rate tensor for small deformation, σ is Cauchy stress tensor,

and χ is the forth-order relaxation modulus tensor. This is similar to equation 4.33

except that ε̇ in equation 4.33 is the uniaxial strain-rate for small deformation and E
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is relaxation modulus for uniaxial deformation. For finite strain and small rotation,

equation 4.103 is changed to:

σ (t) =

∫ t

−∞
χ (t− t′) : D (t′) dt′, (4.104)

where D is the deformation rate tensor which is the symmetric part of the velocity

gradient. To be noted, D in this section is not the compliance defined earlier. For large

rotation, the modification of equation 4.104 is required and can be found in [106,107].

For isotopic viscoelastic materials, the forth-order relaxation modulus tensor can be

written as:

χ (t) = 3K (t) Ẽ1 + 2G(t)Ẽ2, (4.105)

where K and G are the bulk and shear relaxation moduli, Ẽ1 and Ẽ2 are the fourth-

order tensors which are defined in term of components as:

Ẽ1
ijkl =

δijδkl
3

, (4.106)

Ẽ2
ijkl = 1

(4s)
ijkl − Ẽ1

ijkl =

(
δikδjl + δilδjk

2

)
− δijδkl

3
, (4.107)

where δij is the Kronecker delta. These Ẽ1 and Ẽ2 are used to separate the deviatoric

and the volumetric components of the deformation. Substitute equation 4.105 into

euqation 4.104, the stress can be divided into two components:

σ (t) = vol (σ) + dev (σ) (4.108)
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where

vol (σ) =

t∫
−∞

3K (t− t′) :
Dii (t′)

3
1(2)dt′, (4.109)

dev (σ) =

t∫
−∞

2G (t− t′) :

(
D (t′)− Dii (t′)

3
1(2)

)
dt′

=

t∫
−∞

2G (t− t′) : D′ (t′) dt′, (4.110)

D′ is the deviatoric part of D, Dii is trace of D, 1(2) is second-ordered unit tensor

which is defined in term of component as: 1
(2)
ij = δij. In general, for small deformation,

K and G can be obtained from relaxation experiments. However, based on the work

of Amirkhizi et al., the vol (σ) was modeled with the well-known Arruda-Boyce model

which is better for finite deformation [108].

vol (σ) = κ
ln J

J
, (4.111)

where κ is a modified bulk modulus that depends linearly on temperature, and J is

the Jacobian of the deformation tensor, given by

κ (T ) = κ (To) +m (T − To) , (4.112)

J = detF. (4.113)

Due to the very high bulk modulus of polyurea, shear relaxation modulus, G can

be estimated using the uniaxial relaxation modulus, E that has the same form as in
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equation 4.22.

G (t) =
E (t)

2 (1 + νinst)
, (4.114)

where νinst is the instantaneous Poisson’s ratio which is 0.486 [9]. For isothermal

deformation, G at reference temperature To is given by:

Gref (t) =

(
Ee +

∑n
i=1Eie

− t
τi

)
2 (1 + νinst)

= Ge +
n∑
i=1

Gie
− t
τi , (4.115)

where Ge is the shear stiffness of the single spring shown in Figure 4.19, n is the total

number of discrete shear relaxation spectra. It represents shear modulus of a polymer

at equilibrium when t goes to∞, Gi is the shear modulus of the the i-th spring in the

i-th Maxwell subunit, τi is the relaxation time of the i-th pair of spring and dashpot,

defined as ηi
Gi
. Similar to E, G can be modeled with the generalized Maxwell model.

Please see Section 4.1.1 for more detail of the generalized Maxwell model.

In reality, temperature of a polymer can change during deformation, especially

for very fast deformation. When temperature increases or decreases from the reference

temperature To, the shear modulus at To needs to be modified in two ways. Firstly,

the shear modulus of each spring and viscosity of each dashpot in the generalized

Maxwell model will be proportional to the ratio of the current temperature to the

reference temperature (see Figure 4.20). This modification is referred to as vertical

shift since it involves translation of the isothermal curves along the modulus-axis.

Secondly, change in temperature affects the molecular relaxation process as discussed

in the topic of time-temperature correspondence, Section 4.1.1. The relaxation time at

the current temperature is adjusted with the shift factor, aT at current temperature,

T according to equation 4.47. In other words, the viscosity of each dashpot is also
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Figure 4.19: Generalized Maxwell model for shear modulus at reference
temperature, To

multiplied with the shift factor at the current temperature (see Figure 4.20). Consider

Figure 4.20, under an applied shear strain, 2D′, the shear stress can be written as:

dev (σ) = σ′ (t)

= σ′e (t) +
n∑
i=1

σ
′dp
i (t)

= σ′e (t) +
n∑
i=1

σ
′sp
i (t), (4.116)

where σ′e is the shear stress in the single spring with shear modulus Ge, and it is

defined as:

σ′e (t) =
T (t)

To
Ge (2D′ (t)) , (4.117)
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Figure 4.20: Generalized Maxwell model for shear modulus at
temperature, T

σ
′dp
i is the shear stress in the i-th dashpot which is:

σ
′dp
i (t) = aT (T (t))

T (t)

To
ηi

(
2Ḋ

′dp
i (t)

)
, (4.118)

D
′dp
i is the time-dependent shear strain in the i-th dashpot, Ḋ

′dp
i is the shear strain

rate, σ
′sp
i is the shear stress in the i-th spring which is:

σ
′sp
i (t) =

T (t)

To
Gi

(
2
(
D′ (t)−D

′dp
i (t)

))
= σ

′dp
i (t), (4.119)

2
(
D′ (t)−D

′dp
i (t)

)
is the time-dependent shear strain in the i-th spring. Substitute
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equations 4.117 and 4.119 into equation 4.116, we obtain:

dev (σ) =
T (t)

To
Ge (2D′ (t)) +

n∑
i=1

T (t)

To
Gi

(
2
(
D′ (t)−D

′dp
i (t)

))
. (4.120)

Since the i-th spring and the i-th dashpot are connected in series, the shear stresses

in the spring and dashpot are equal. Equate equations 4.118 to 4.119, we obtain:

aT (T (t))
T (t)

To
ηi

(
2Ḋ

′dp
i (t)

)
=

T (t)

To
Gi

(
2
(
D′ (t)−D

′dp
i (t)

))
Ḋ
′dp
i (t) =

D′ (t)−D
′dp
i (t)

aT (T (t)) τi
, (4.121)

where τi is ηi
Gi
. From equation 4.121, it can be written as:

dD
′dp
i (t)

dt
+

D
′dp
i (t)

aT (T (t)) τi
=

D′ (t)

aT (T (t)) τi
. (4.122)

We then introduce a new time scale:

ξ (t) =

∫ t

−∞

dt′

aT (T (t′))
, (4.123)

where ξ can be considered as the internal time scale that material feels at temperature

T [109]. ξ is defined such that at t = −∞, ξ is equal to 0. Its derivative with respect

to the actual time scale is:
dξ

dt
=

1

aT (T (t))
(4.124)
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Using eqautions 4.124 and chain rule, equation 4.122 can be rewritten as,

dD
′dp
i (ξ)

dξ

dξ

dt
+

D
′dp
i (ξ)

aT (T (t)) τi
=

D′ (ξ)

aT (T (t)) τi

dD
′dp
i (ξ)

dξ
+

D
′dp
i (ξ)

τi
=

D′ (ξ)

τi
. (4.125)

Equation 4.125 is written in the ξ time scale. To solve for D
′dp
i , we multiply equa-

tion 4.125 with e
ξ
τi and integrate from 0 to ξ.

dD
′dp
i (ξ)

dξ
e
ξ
τi +

D
′dp
i (ξ)

τi
e
ξ
τi =

D′ (ξ)

τi
e
ξ
τi

d
(
D
′dp
i (ξ) e

ξ
τi

)
dξ

=
D′ (ξ) e

ξ
τi

τi∫ ξ

0

d

(
D
′dp
i (ξ′) e

ξ′
τi

)
=

∫ ξ

0

D′ (ξ′) e
ξ′
τi

τi
dξ′

D
′dp
i (ξ) =

∫ ξ

0

e
−(ξ−ξ′)

τi D′ (ξ′)

τi
dξ′. (4.126)

From equation 4.126, perform integrate by part, we obtain:

D
′dp
i (ξ) = D′ (ξ)−

∫ ξ

0

e
−(ξ−ξ′)

τi
dD′ (ξ′)

dξ′
dξ′. (4.127)

Equation 4.127 is in the ξ time scale. Convert equation 4.127 back to the actual time

scale t, we get:

D
′dp
i (t) = D′ (t)−

∫ t

−∞
e
−(ξ(t)−ξ(t′))

τi
dD′ (t′)

dt′
dt′. (4.128)
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Substitute equation 4.128 into equation 4.120, we obtain:

dev (σ) =
T (t)

To
Ge (2D′ (t)) +

n∑
i=1

T (t)

To
Gi

(
2

∫ t

−∞
e
−(ξ(t)−ξ(t′))

τi
dD′ (t)

dt′
dt′
)

=

∫ t

−∞
2
T (t)

To

[
Ge +

n∑
i=1

Gie
−(ξ(t)−ξ(t′))

τi

]
dD′ (t′)

dt′
dt′. (4.129)

Note that Pipkin pointed out about a ambiguity of the use of the current temperature

T since there is no non-isothermal experimental evidence to suggest how T should

be evaluated [109]. Another way is to allow T to change accordingly with D′. Then,

T (t) is replaced by T (t′). Equation 4.129 can be rewritten as:

dev (σ) =

∫ t

−∞
2
T (t′)

To

[
Ge +

n∑
i=1

Gie
−(ξ(t)−ξ(t′))

τi

]
dD′ (t′)

dt′
dt′. (4.130)

Equation 4.130 is the form that is used in the work of Amirkhizi et al. [9]. From our

preliminary investigation, it is found that the equations yields very close results if

the change in temperature during deformation is small. So in this work, we will use

equation 4.129 since it will be easier for us to estimate the change in temperature

during deformation. Substitute equation 4.128 into equation 4.119, we obtain the

stress in the i-th dashpot which is equal to the stress in the i-th spring, given by:

σ
′dp
i (t) =

T (t)

To
2Gi

∫ t

−∞
e
−(ξ(t)−ξ(t′))

τi
dD′

dt′
dt′. (4.131)

Substitute equation 4.128 into equation 4.121, we obtain the strain rate at the i-th

dashpot, which is:

Ḋ
′dp
i (t) =

1

aT (T (t)) τi

∫ t

−∞
e
−(ξ(t)−ξ(t′))

τi
dD′

dt′
dt′. (4.132)
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At high strain rates, the deformation is essentially locally adiabatic. When the only

available heat source is that from the dissipated mechanical energy at each dashpot

and the conductive and convective heat losses are slow relative to the strain rates.

The total rate of energy dissipation of all dashpots per unit volume, Ẇ d (t) can be

written as:

Ẇ d (t) =
n∑
i=1

σ
′dp
i (t) : Ḋ

′dp
i (t) =

T (t)

ToaT (T (t))

n∑
i=1

2Gi

τi
D
′d
i (t) : D

′d
i (t) , (4.133)

where

D
′d
i (t) =

∫ t

−∞
e
−(ξ(t)−ξ(t′))

τi
dD′

dt′
dt′. (4.134)

Consider adiabatic process, the dissipated energy is absorbed and kept as heat in

the system. The rate of energy dissipation is equal to the rate of heat stored in the

system.

Ẇ d (t) = CV
dT (t)

dt
. (4.135)

where CV is the heat capacity at constant volume (per unit original volume).Substitute

equation 4.133 into equation 4.135 and solve for the incremental change of tempera-

ture, 4T (t), we obtain:

4T (t) = 4ξ T (t)

CV To

n∑
i=1

2Gi

τi
D
′d
i (t) : D

′d
i (t) , (4.136)

where

4ξ =
4t

aT (T (t))
. (4.137)
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4.3.2 Recurrence Relation for The Numerical Model

In this section, the recurrence relationship for D
′d
i (t) will be discussed ac-

cording to the information in [9, 110]. Consider equation 4.134, D
′d
i (tn) at a current

numerical step n with a current time step tn is given by:

D
′d
i (tn) =

∫ tn

−∞
e
−(ξ(tn)−ξ(t′))

τi
dD′

dt′
dt′. (4.138)

Similarly, consider at step n+ 1 where tn+1 = tn +4tn, we obtain:

D
′d
i (tn+1) =

∫ tn+4tn

−∞
e
−(ξ(tn+4tn)−ξ(t′))

τi
dD′

dt′
dt′. (4.139)

Let consider the term ξ (tn +4tn). According to equation 4.123, this term can be

written as:

ξ (tn +4tn) =

∫ tn+4tn

−∞

dt′

aT (T (t′))

=

∫ tn

−∞

dt′

aT (T (t′))
+

∫ tn+4tn

tn

dt′

aT (T (t′))

= ξ (tn) +4ξ, (4.140)

where

4ξ =
4tn

aT
(
T
(
tn+1+tn

2

)) . (4.141)
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Substitute equation 4.140 into equation 4.139, we obtain:

D
′d
i (tn+1) =

∫ tn+4tn

−∞
e
−(ξ(tn)+4ξ−ξ(t′))

τi
dD′

dt′
dt′

=

∫ tn

−∞
e
−4ξ
τi e

−(ξ(tn)−ξ(t′))
τi

dD′

dt′
dt′

+

∫ tn+4tn

tn

e
−(ξ(tn)+4ξ−ξ(t′))

τi
dD′

dt′
dt′. (4.142)

Consider the first term on the right hand side of equation 4.142, we have:

∫ tn

−∞
e
−4ξ
τi e

−(ξ(tn)−ξ(t′))
τi

dD′

dt′
dt′ = e

−4ξ
τi

∫ tn

−∞
e
−(ξ(tn)−ξ(t′))

τi
dD′

dt′
dt′

= e
−4ξ
τi D

′d
i (tn) . (4.143)

Consider the second term on the right hand side of equation 4.142, we have:

∫ tn+4tn

tn

e
−(ξ(tn)+4ξ−ξ(t′))

τi
dD′

dt′
dt′ ≈

[
e
−(ξ(tn)+4ξ−ξ(t′))

τi
dD′ (t′)

dt′

]
t′=

tn+1+tn
2

4tn

=

e−
(
ξ(tn)+4ξ−ξ

(
tn+1+tn

2

))
τi

dD′
(
tn+1+tn

2

)
dt′

4tn
= e

−
(
ξ(tn)+4ξ−ξ

(
tn+1+tn

2

))
τi

[
dD′

(
tn+1+tn

2

)
dt′

4tn

]

= e
−
(
ξ(tn)+4ξ−ξ

(
tn+

tn+1−tn
2

))
τi [D′ (tn+1)−D′ (tn)] .

(4.144)
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Consider term ξ
(
tn + tn+1−tn

2

)
in equation 4.144, we have:

ξ

(
tn +

tn+1 − tn
2

)
=

∫ tn

−∞

dt′

aT (T (t′))
+

∫ tn+
tn+1−tn

2

tn

dt′

aT (T (t′))

= ξ (tn) +
4tn

2

aT
(
T
(

3tn+tn+1

4

))
≈ ξ (tn) +

4tn
2aT

(
T
(
tn+tn+1

2

))
= ξ (tn) +

4ξ
2
, (4.145)

where 4ξ is defined in equation 4.141. Substitute equation 4.145 into equation 4.144,

we obtain:

∫ tn+4tn

tn

e
−(ξ(tn)+4ξ−ξ(t′))

τi
dD′

dt′
dt′ = e

−(ξ(tn)+4ξ−(ξ(tn)+
4ξ
2 ))

τi [D′ (tn+1)−D′ (tn)]

= e
−4ξ
2τi [D′ (tn+1)−D′ (tn)] . (4.146)

Substitute equations 4.143 and 4.146 into equation 4.142, we obtain:

D
′d
i (tn+1) = e

−4ξ
τi D

′d
i (tn) + e

−4ξ
2τi [D′ (tn+1)−D′ (tn)] (4.147)

Form equation 4.128, we can rewrite the strain in the i-th dashpot, D
′dp
i as:

D
′dp
i (tn) = D′(tn)−D

′d
i (tn) (4.148)

The incremental change of the strain in the i-th dashpot from step n to n + 1 can

then be written as:

4D
′dp
i (tn, tn+1) = 4D′(tn, tn+1)−4D

′d
i (tn, tn+1) (4.149)
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where

4D′(tn, tn+1) = Ḋ′(t)4t = D′(tn+1)−D′(tn), (4.150)

and from equation 4.147,

4D
′d
i (tn, tn+1) = D

′d
i (tn+1)−D

′d
i (tn)

=
(
e
−4ξ
τi − 1

)
D
′d
i (tn) + e

−4ξ
2τi [D′ (tn+1)−D′ (tn)] . (4.151)

Terms, D
′d
i (t) and 4D

′dp
i (tn, tn+1) are similar to the terms, εid (t) and 4εic (t,4t),

respectively, in [9]. Now equation 4.129 can be written in numerical form as:

dev (σ (tn)) =
T (tn)

To
Ge (2D′ (tn)) +

n∑
i=1

T (tn)

To
Gi

(
2D

′d
i (tn)

)
(4.152)

4.3.3 Implementation of Temperature and Pressure Effect on

Relaxation Mechanism

The effect of both pressure and temperature on the viscoelastic mechanism

can be included into the previously discussed model by replacing the temperature-

dependent shift factor aT (T (t)) with the temperature-and-pressure-dependent shift

factor aTP (T (t) , P (t)) that is obtain from Section 4.2, see equations 4.90 and 4.99.

The rest of the model is still the same. Parameters for bulk and shear moduli for

this model are shown in Table 4.3. These parameters are similar to parameters

in [9]. Parameters for the temperature-and-pressure-dependent shift factor are shown

in Table 4.1.
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Table 4.3: Values of constitutive parameters used in this numerical
model [9]

Polyurea
To 273 CV (J mm−3 K−1) 1.977E-03

CTE (K−1) 2E-4 m (GPa K−1) -0.15
n 4 κ(To) (GPa) 4.948

Ge (GPa) 0.0224 G1 (GPa) 0.01895
G2 (GPa) 0.03777 G3 (GPa) 0.08051
G4 (GPa) 0.09726 τ1 (ms) 463.4
τ2 (ms) 0.06407 τ3 (ms) 1.163E-4
τ4 (ms) 7.321E-7
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Chapter 5

Micromechanical Modeling

In this chapter, the micromechanical models are developed based on three

approximations: (1) dilute random, (2) non-dilute random, and (3) non-dilute peri-

odic distributions of inclusions. These models are used to find the overall mechanical

properties of composite materials. The inputs of the models are only the mechanical

properties, geometries, and volume fraction of each constituent in the modeled com-

posite. Originally, these models were created for estimating mechanical properties

of elastic composites; however Hashin showed that by replacement of the real elastic

moduli by their complex counterparts (including storage and loss components), they

can be directly utilized for viscoelastic composites [111]. In this work, The models

are used to predict the overall quasi-static and dynamic mechanical properties of

polymeric composites. For dynamic case, it is worth noting that the models yield

pretty accurate results as long as the excitation wavelength of the applied load is not

comparable to the dimensions of the inclusion phases in the composites. Due to a

small number of the required inputs and short computational time, this mathemati-

cal model is considered as one of the most powerful tools for estimating the effective

211
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properties of polymeric composites.

5.1 Composite with Dilute Random Distribution of

Inclusions

In this section, two models, composite sphere and dilute random distribution

of inclusions, will be considered. The composite sphere model will be discussed based

on Hashin’s original work [112] and a straightforward extension of Hashin’s work by

Lee and Westmann [113]. The dilute random distribution of inclusions is developed

using Eshelby’s equivalent inclusion method. It will be discussed based on Eshelby’s

original works [114,115] and other useful references [116–118].

5.1.1 Composite Sphere Model (CS)

Consider three-phase heterogeneous material; matrix, shell, and core (see Fig-

ure 5.1). This model has the assumption that the composite model consists of in-

finitely extended matrix and an embedded two-phase spherical inclusion. The com-

posite model has a representative volume V and is bounded by surface δV . The

volume fraction of each phase is the same as those in the actual composite.

Overall bulk modulus of the composite

To find overall bulk modulus of the composite, we will consider two special

cases of the boundary conditions, i.e., the prescribed uniform strain (linear displace-

ment) and stress. These two special boundary conditions simplify the problem of

elasticity and allows us to easily calculate the average stress and strain in the com-
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Figure 5.1: Three-phase heterogeneous material consisting of infinitely
extended matrix and a two-phase spherical inclusion

posite. It is found that the average strain (stress) in the composite is equal to the

applied uniform strain (stress) [116]. Since bulk modulus is related to only the change

in volume of the material, it is necessary to determine only the volumetric part of

the strain tensor and assume the deviatoric part to be zero. Consider the applied

uniform strain, εoij as our first case, it is in the form of:

εoij =
1

3
εoδij, (5.1)

where

εo = εojj, (5.2)

δij is the Kronecker delta. The range of the indices i and j is 1, 2, 3 and a repeated in-

dex denotes summation. The applied displacement at the surface δV of the composite
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Figure 5.2: (a) Spherical homogeneous material under linear
displacement or uniform traction (b) Heterogeneous material under linear
displacement or uniform traction (c) Homogenized materials under linear

displacement or uniform traction

is:

uoi = εoijxj

=
1

3
εoδijxj

=
1

3
εoxi, (5.3)

where xi denotes the spatial variables. To simplify our problem, the matrix of the

model in Figure 5.1 is modified to be spherical (see Figure 5.2b). Subscript 0, 1, and 2

indicate matrix, shell, and core, respectively. The difference in strain energy between

a loaded homogeneous solid (Figure 5.2a) and heterogeneous solid with the presence

of inclusion (Figure 5.2b) is calculated. Assume the homogeneous and heterogeneous
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bodies undergo the same surface displacement in equation 5.3, the total strain energy,

W o(ε) of homogeneous solid and the change in strain energy due to the existence of

two-phase spherical inclusion δW (ε) are expressed as [112,113]:

W o(ε) =
1

2
K0 (εo)2 V, (5.4)

δW (ε) =
1

2

∫
V1

(K1 −K0) εoε1iidV +
1

2

∫
V2

(K2 −K0) εoε2iidV, (5.5)

where K0,K1, and K2 are bulk moduli of the matrix, shell, and core, respectively.

V , V1,and V2 are total, shell, and core volumes, respectively. εo, ε1ii, and ε2ii are

the volumetric components of strains at surface δV , in the shell, and in the core,

respectively. εo is constant while ε1ii and ε2ii are not constant, depending on the location

in the shell and core respectively. The summation of equations 5.4 and 5.5 yield the

total strain energy of the heterogeneous solid shown in Figure 5.2b.

W (ε) = W o(ε) + δW (ε)

=
1

2
K0 (εo)2 V +

1

2

∫
V1

(K1 −K0) εoε1iidV

+
1

2

∫
V2

(K2 −K0) εoε2iidV, (5.6)

where W (ε) is the total strain energy of the heterogeneous solid. To simplify the

problem, instead of considering the heterogeneous solid, we consider the equivalent

homogenized solid as shown in Figure 5.2c. We assume that the homogenized solid

has the same total volume as the actual composite. Its properties are the same as the

overall properties of the actual composite. The linear displacement boundary condi-
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tion, equation 5.3 is also applied on the surface of the homogenized solid. Therefore,

the total strain energy of the homogenized solid, W (ε) is expressed as [112,113]:

W (ε) =
1

2
K∗ (εo)2 V, (5.7)

where K∗ is the bulk modulus of the homogenized solid which is the same as the

overall bulk modulus of the heterogeneous solid.

If the stresses and strains in the inclusions are known, then W (ε) can also

be determined from equations 5.4-5.58. Equating then to equation 5.7, expressions

for the effective bulk modulus, K∗ is obtained. However, this is true for the case

of very small volume fraction of inclusion because we equate the total energy of the

homogenized solid to the total energy of the heterogeneous solid contains only single

inclusion. Even though the volume fraction of the inclusion in the heterogeneous solid

is the same as the actual composite, it does not take into account the effect of the

interaction between the actual inclusions when calculating the total strain energy,

equation 5.58. Thus, for finite fractional volume equating equation 5.58 to equa-

tion 5.7 clearly yield inaccurate overall bulk modulus, K∗ of the actual composite.

However, for finite volume fraction, an approximate upper bound on the bulk mod-

ulus can be obtained by using the variational theorems of the theory of elasticity.

From the theorem of minimum potential energy, it states that when displacements

are prescribed over the entire surface of an elastic body and the body forces vanish,

then among the admissible displacement fields satisfying the boundary conditions,

the actual displacements minimize the strain energy. Since we assume that the ho-

mogenized solid has the overall bulk modulus of the actual composite, the total strain

energy of the homogenized solid calculated with its bulk modulus and the actual pre-
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scribed linear displacement boundary condition (equation 5.3) would represent the

total strain energy of the actual composite, therefore it is the minimum among all the

total strain energies calculated with other methods, and can be showed as [112,113]:

W (ε) 6 W o(ε) + δW (ε)

1

2
K∗ (εo)2 V 6

1

2
K0 (εo)2 V

+
1

2

∫
V1

(K1 −K0) εoε1iidV +
1

2

∫
V2

(K2 −K0) εoε2iidV. (5.8)

Since εo and V are arbitrary constants, divide 1
2

(εo)2 V through equation 5.8 and

obtain:

K∗ 6 K0 +
1

V

∫
V1

(K1 −K0)
ε1ii
εo
dV +

1

V

∫
V2

(K2 −K0)
ε2ii
εo
dV. (5.9)

The two volumetric strains, ε1ii and ε2ii are not constants. ε1ii depends on position in

the shell phase (inside V1) while ε2ii depends on position in the core phase (inside V2).

Equation 5.9 can then be simplified further as:

K∗ 6 K0 + f1 (K1 −K0)
ε̄1ii
εo

+ f2 (K2 −K0)
ε̄2ii
εo

= K∗up, (5.10)

where

f1 =
V1

V
, (5.11)

f2 =
V2

V
, (5.12)
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ε̄1ii =
1

V1

∫
V1

ε1iidV, (5.13)

ε̄2ii =
1

V2

∫
V2

ε2iidV, (5.14)

f1 and f2 are fractional volumes of phases 1 (shell) and 2 (core), respectively, ε̄1ii and

ε̄2ii are the volume-averaged volumetric strains in phases 1 and 2, respectively, K∗up is

the approximate upper bound of overall bulk modulus.

In a similar manner, the lower bound of the overall bulk modulus can be

developed from the principle of minimum complementary energy and the applied

uniform volumetric stress boundary condition.

σoij =
1

3
σoδij, (5.15)

where

σo = σojj. (5.16)

According to the applied unifrom stress, the applied uniform traction at the surface

δV of the composite is:

toi = σoijnj, (5.17)

where ni are the components of the outward normal. Similar to the applied linear

displacement case, the total strain energy of the heterogeneous solid under the applied
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uniform traction is expressed as [112,113]:

W (σ) = W o(σ) + δW (σ), (5.18)

where

W o(σ) =
1

2

(σo)2

9K0

V, (5.19)

δW (σ) =
1

2

∫
V1

(K0 −K1)

9K0K1

σoσ1
jjdV +

1

2

∫
V2

(K0 −K2)

9K0K2

σoσ2
jjdV, (5.20)

W (σ) and W o(σ) are the total strain energy of the heterogeneous and homogeneous

solids (Figures 5.2a and 5.2b) under the applied uniform traction, δW (σ) is the en-

ergy difference between the two solids. Superscript (σ) refers to the applied uniform

traction. The total strain energy of the homogenized solid under the applied uniform

traction, W (σ) can be written as [112,113]:

W (σ) =
1

2

(σo)2

9K∗
V. (5.21)

Similar to the upper bound, the lower bound of the bulk modulus can be developed

from the principle of minimum complementary energy. From the theorem of minimum

complementary energy, it states that when the tractions are prescribed over the entire

surface of an elastic body and the body forces vanish, then among the admissible stress

fields satisfying the equilibrium equations and the boundary conditions, the actual
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stress minimizes the strain energy. Apply the theorem and obtain:

W (σ) 6 W o(σ) + δW (σ)

1

2

(σo)2

9K∗
V 6

1

2

(σo)2

9K0

V

+
1

2

∫
V1

(K0 −K1)

9K0K1

σoσ1
jjdV +

1

2

∫
V2

(K0 −K2)

9K0K2

σoσ2
jjdV. (5.22)

Since σo and V are arbitrary constants, divide 1
18

(σo)2 V through equation 5.22 and

obtain:

1

K∗
6

1

K0

+
1

V

∫
V1

(K0 −K1)

K0K1

σ1
ii

σo
dV +

1

V

∫
V2

(K0 −K2)

K0K2

σ2
ii

σo
dV. (5.23)

The two volumetric stress fields, σ1
ii and σ2

ii are not constants. σ1
ii depends on position

in the shell phase (inside V1) while σ2
ii depends on position in the core phase (inside

V2). Equation 5.9 can then be simplified further as:

K∗ > K0

[
1 + f1

(
K0

K1

− 1

)
σ̄1
ii

σo
+ f2

(
K0

K2

− 1

)
σ̄2
ii

σo

]−1

= K∗low, (5.24)

where

σ̄1
ii =

1

V1

∫
V1

σ1
iidV, (5.25)

σ̄2
ii =

1

V1

∫
V1

σ2
iidV, (5.26)

σ̄1
ii and σ̄2

ii are the volume-averaged volumetric stresses in phases 1 and 2, respectively,

K∗low is the lower bound of overall bulk modulus. From equations 5.10 and 5.24, the
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upper and lower bound of the overall bulk modulus of the composite are obtained:

K∗low 6 K∗ 6 K∗up. (5.27)

The formulation will be completed if one can calculate ε̄1ii, ε̄2ii, σ̄1
ii, and σ̄2

ii in equa-

tions 5.13, 5.14, 5.25, and 5.26, respectively. Due to the facts that we have simplified

and assumed that the matrix and the inclusion are perfect spherical and the defor-

mation of the heterogeneous solid is spherically symmetric, the displacement fields,

uni have the following forms [112,113]:

uni =

(
An +

Bn

r3

)
xi, (5.28)

where r =
√
xixi, n = 0, 1, 2 refers to matrix, shell, and core respectively, An and Bn

are unknown constants. Since the displacement field is known and explicit, the strain

and stress fields can be obtained from:

εnij =
1

2

(
∂uni
∂xj

+
∂unj
∂xi

)
, (5.29)

σnij = 3Kn

(
1

3
εnkkδij

)
+ 2Gn

(
εnij −

1

3
εnkkδij

)
. (5.30)

Calculate ε̄1ii, ε̄2ii, σ̄1
ii, and σ̄2

ii, using equations 5.28, 5.29, and 5.30, we then obtain:

ε̄1ii = 3A1, (5.31)
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ε̄2ii = 3A2, (5.32)

σ̄1
ii = 9K1A1, (5.33)

σ̄2
ii = 9K2A2. (5.34)

Substitute equations 5.31 and 5.32 into equation 5.10, the upper bound bulk modulus

now is:

K∗up = K0 + f1 (K1 −K0)
3A1

εo
+ f2 (K2 −K0)

3A2

εo
. (5.35)

Substitute equations 5.33 and 5.34 into equation 5.24, the lower bound bulk modulus

now is:

K∗low = K0

[
1 + f1

(
K0

K1

− 1

)
9K1A1

σo
+ f2

(
K0

K2

− 1

)
9K2A2

σo

]−1

. (5.36)

As we can see K∗up and K∗low depend on two constants A1 and A2 in the dis-

placement field equation. To get for these two constants, one need to simultaneously

solve for all the six unknown constants, (A0, A1, A2, B0, B1, and B2) in equation 5.28,

using the continuity of displacement and traction at each phase boundary [112,113].

For six unknowns, six independent equations are needed.

For the case of K∗up the six independent equations obtained from the continuity

of displacement and traction at each phase boundary are as follows:

(
A0 +

B0

r3
0

)
=

1

3
εo, (5.37)
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(
A0 +

B0

r3
1

)
−
(
A1 +

B1

r3
1

)
= 0, (5.38)

(
A1 +

B1

r3
2

)
−
(
A2 +

B2

r3
2

)
= 0, (5.39)

B2 = 0, (5.40)

(
3K0A0 −

4G0B0

r2
1

)
−
(

3K1A1 −
4G1B1

r2
1

)
= 0, (5.41)

(
3K1A1 −

4G1B1

r2
2

)
−
(

3K2A2 −
4G2B2

r2
2

)
= 0, (5.42)

where r2 and r1 are the inner and outer radii of the inclusion, r0 is the radius of the

composite (see Figure 5.3), G0, G1, and G2 are the shear moduli of the matrix, shell,

and core respectively.

For the case of K∗low, the six independent equations are the same as those for

K∗up, except that equation 5.37 is replaced with the following equation:

(
3K0A0 −

4G0B0

r2
0

)
=

1

3
σo. (5.43)

After solving the boundary value problem, the six constants are obtained in

term of εo and σo for the cases of K∗up and K∗low respectively. Substitute A1 and A2

for each case into equations 5.35 and 5.36, we obtain the the upper and lower bound

bulk moduli.
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Figure 5.3: Dimension of spherical heterogeneous solid

Overall shear modulus of the composite

To find overall shear modulus of the composite, similar to the case of the

overall bulk modulus we still consider the two special cases of the prescribed uniform

strain (linear displacement) and stress. Since shear modulus is related to only the

volume-conserving deformation of the material, it is necessary to determine only

the deviatoric part of the strain tensor and assume the volumetric part to be zero.

Consider the applied uniform shear strain, εoij as our first case, it is in the form of:

εoij = εo
′

ij = γoδi1δj2 + γoδi2δj1, (5.44)

where

γo = εo12 = εo21 = εo
′

12 = εo
′

21, (5.45)
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Prime (′) refers to the deviatoric part. The applied displacement at the surface δV

of the composite is:

uoi = γoδi2x1 + γoδi1x2. (5.46)

Similar to the case of the overall bulk modulus, the difference in strain energy between

the loaded homogeneous solid (Figure 5.2a) and heterogeneous solid with the presence

of inclusion (Figure 5.2b) is calculated. Assume the homogeneous and heterogeneous

bodies undergo the same surface displacement in equation 5.46, the total strain energy,

W o(ε) of homogeneous solid and the change in strain energy due to the existence of

two-phase spherical inclusion δW (ε) are expressed as [112,113]:

W o(ε) = 2G0 (γo)2 V, (5.47)

δW (ε) = 2

∫
V1

(G1 −G0) γoε1
′

12dV + 2

∫
V2

(G2 −G0) γoε2
′

12dV, (5.48)

where ε1′12, and ε2
′

12 are the deviatoric components of the strains in the shell, and in

the core, respectively. εo is constant while ε1ii and ε2ii are not constant, depending on

the location in the shell and core respectively. The summation of equations 5.47 and

5.48 yield the total strain energy of the heterogeneous solid shown in Figure 5.2b.

W (ε) = W o(ε) + δW (ε)

= 2G0 (γo)2 V + 2

∫
V1

(G1 −G0) γoε1
′

12dV

+2

∫
V2

(G2 −G0) γoε2
′

12dV, (5.49)
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where W (ε) is the total strain energy of the heterogeneous solid. To simplify the

problem, instead of considering the heterogeneous solid, we consider the equivalent

homogenized solid as shown in Figure 5.2c. We assume that the homogenized solid

has the same total volume as the actual composite. Its properties are the same as

the overall properties of the actual composite. The linear displacement boundary

condition, equation 5.46 is also applied on the surface of the homogenized solid.

Therefore, the total strain energy of the homogenized solid, W (ε) is expressed as

[112,113]:

W (ε) = 2G∗ (εo)2 V, (5.50)

where G∗ is the shear modulus of the homogenized solid which is the same as the

overall shear modulus of the heterogeneous solid.

Similar to the case of the overall bulk modulus we apply the theorem of mini-

mum potential energy and obtain [112,113]:

W (ε) 6 W o(ε) + δW (ε)

2G∗ (γo)2 V 6
1

2
G0 (γo)2 V

+2

∫
V1

(G1 −G0) γoε1
′

12dV + 2

∫
V2

(G2 −G0) γoε2
′

12dV. (5.51)

Since γo and V are arbitrary constants, divide 2 (γo)2 V through equation 5.51 and

obtain:

G∗ 6 G0 +
1

V

∫
V1

(G1 −G0)
ε1
′

12

γo
dV +

1

V

∫
V2

(G2 −G0)
ε2
′

12

γo
dV. (5.52)

The two deviatoric strains, ε1′12 and ε2′12 are not constants. ε1′12 depends on position in



227

the shell phase (inside V1) while ε2
′

12 depends on position in the core phase (inside V2).

Equation 5.52 can then be simplified further as:

G∗ 6 G0 + f1 (G1 −G0)
ε̄1
′

12

γo
+ f2 (G2 −G0)

ε̄2
′

12

γo
= G∗up, (5.53)

where

ε̄1
′

12 =
1

V1

∫
V1

ε1
′

12dV, (5.54)

ε̄2
′

12 =
1

V2

∫
V2

ε2
′

12dV, (5.55)

ε̄1
′

12 and ε̄2′12 are the volume-averaged deviatoric strains in phases 1 and 2, respectively,

G∗up is the upper bound of overall shear modulus.

In a similar manner the lower bound of the overall shear modulus can be

developed from the principle of minimum complementary energy and the applied

uniform shear stress boundary condition.

σoij = τ oδi1δj2 + τ oδi2δj1, (5.56)

where

τ o = σo12 = σo21 = σo
′

12 = σo
′

21. (5.57)

Similar to the applied linear displacement case, the total strain energy of the
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heterogeneous solid under the applied uniform stress is expressed as [112,113]:

W (σ) = W o(σ) + δW (σ), (5.58)

where

W o(σ) =
1

2

(τ o)2

G0

V, (5.59)

δW (σ) =
1

2

∫
V1

(G0 −G1)

G0G1

τ oσ1′

12dV +
1

2

∫
V2

(G0 −G2)

G0G2

τ oσ2′

12dV, (5.60)

W (σ) and W o(σ) are the total strain energy of the heterogeneous and homogeneous

solids (Figures 5.2a and 5.2b) under the applied uniform stress, δW (σ) is the energy

difference between the two solids. The total strain energy of the homogenized solid

under the applied uniform stress, W (σ) can be written as [112,113]:

W (σ) =
1

2

(τ o)2

G∗
V. (5.61)

Similar to the upper bound, the lower bound of the shear modulus can be developed

from the principle of minimum complementary energy:

W (σ) 6 W o(σ) + δW (σ)

1

2

(τ o)2

G∗
V 6

1

2

(τ o)2

G0

V

+
1

2

∫
V1

(G0 −G1)

G0G1

τ oσ1′

12dV +
1

2

∫
V2

(G0 −G2)

G0G2

τ oσ2′

12dV. (5.62)

Since τ o and V are arbitrary constants, divide 1
2

(τ o)2 V through equation 5.62 and
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obtain:

1

G∗
6

1

G0

+
1

V

∫
V1

(G0 −G1)

G0G1

σ1′
12

τ o
dV +

1

V

∫
V2

(G0 −G2)

G0G2

σ2
12

τ o
dV. (5.63)

The two deviatoric stresses, σ1′
12 and σ2′

12 are not constants. σ1′
12 depends on position

in the shell phase (inside V1) while σ2′
12 depends on position in the core phase (inside

V2). Equation 5.63 can then be simplified further as:

G∗ > G0

[
1 + f1

(
G0

G1

− 1

)
σ̄1′

12

τ o
+ f2

(
G0

G2

− 1

)
σ̄2′

12

τ o

]−1

= G∗low, (5.64)

where

σ̄1′

12 =
1

V1

∫
V1

σ1′

12dV, (5.65)

σ̄2′

12 =
1

V1

∫
V1

σ2′

12dV, (5.66)

σ̄1′
12 and σ̄2′

12 are the volume-averaged 12 components of the deviatoric stresses in

phases 1 and 2, respectively, G∗low is the lower bound of overall shear modulus. From

equations 5.53 and 5.64, the upper and lower bound of the overall shear modulus of

the composite are obtained:

G∗low 6 G∗ 6 G∗up. (5.67)

The formulation will be completed if one can calculate ε̄1′12, ε̄2
′

12, σ̄1′
12, and σ̄2′

12 in equa-

tions 5.54, 5.55, 5.65, and 5.66, respectively. Due to the facts that we have simplified

and assumed that the matrix and the inclusion are perfect spherical, the displacement
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field, uni under shear has the following forms [112,113]:

uni = Anϕ,i + r5
1Bnψ,i + Cn

1

r2
1

[
r2ϕ,i + αnxiϕ

]
+Dnr

3
1

[
r2ψ,i + βnxiψ

]
, (5.68)

where

ϕ = x1x2, (5.69)

ψ =
x1x2

r5
, (5.70)

αn = −(12Kn + 34Gn)

15Kn + 11Gn

, (5.71)

βn =
(3Kn + 6Gn)

Gn

, (5.72)

r =
√
xixi, (5.73)

r1 is the radius of the outer radius of the inclusion. subscript , i refers to differentiation

with respect to xi, n = 0, 1, 2 refers to matrix, shell, and core respectively, An,

Bn, Cn, and Dn are unknown constants. The strain and stress fields are shown in

equations 5.29 and 5.30 respectively.

Calculate ε̄1′12, ε̄2
′

12, σ̄1′
12, and σ̄2′

12, using equations 5.68, 5.29, and 5.30, we then

obtain:

ε̄1
′

12 = A1 +
1

5
(5 + α1)C1

1−
(
r2
r1

)5

1−
(
r2
r1

)3

 , (5.74)
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ε̄2
′

12 = A2 +
1

5
(5 + α2)C2

(
r2

r1

)2

, (5.75)

σ̄1′

12 = 2G1

A1 +
1

5
(5 + α1)C1

1−
(
r2
r1

)5

1−
(
r2
r1

)3


 , (5.76)

σ̄2,
12 = 2G2

(
A2 +

1

5
(5 + α2)C2

(
r2

r1

)2
)
. (5.77)

Substitute equations 5.74 and 5.75 into equation 5.53, the upper bound shear modulus

now is:

G∗up = G0

[
1 +

2∑
n=1

fn
(Gn −G0)

G0

(
An + 1

5
(5 + αn)Fn

)
τ o

]
, (5.78)

where

F1 = C1

[
1− (d)5

1− (d)3

]
, (5.79)

F2 = C2 (d)2 , (5.80)

d =
r2

r1

. (5.81)

Substitute equations 5.76 and 5.77 into equation 5.64, the lower bound shear modulus

now is:

G∗low = G0

[
1 +

2∑
n=1

fn

(
G0

Gn

− 1

)
2Gn

(
An + 1

5
(5 + αn)Fn

)
τ o

]−1

. (5.82)

As we can see G∗up and G∗low depend on four constants A1, A2, C1, and C2 in
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the displacement field equation 5.68. To get for these four constants, one need to

simultaneously solve for all the twelve unknown constants, (A0, A1, A2, B0, B1, B2,

C0, C1, C2, D0, D1, andD2) in equation 5.68, using the continuity of displacement and

traction at each phase boundary [112,113]. For twelve unknowns, twelve independent

equations are needed.

For the case of G∗up the twelve independent equations obtained from the con-

tinuity of displacement and traction at each phase boundary are as follows:

γo = A0 +
C0

f
2
3

+ fD0 + f
5
3B0, (5.83)

0 = α0C0 − 5f
5
3D0 + f

5
3β0D0 − 5f

7
3B0, (5.84)

0 = A0 − A1 + C0 − C1 +B0 −B1 +D0 −D1, (5.85)

0 = −5B0 + 5B1 + α0C0 − α1C1 − 5D0 + 5D1 + β0D0 − β1D1, (5.86)

0 = A1 + d2C1 +
D1

d3
+
B1

d5
− A2 − d2C2 −

D2

d3
− B2

d5
, (5.87)

0 = (α1C1)− (α2C2) +
5 (B2 −B1)

d7
+

(β1 − 5)D1

d5
− (β2 − 5)D2

d5
, (5.88)

0 = B2, (5.89)
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0 = D2, (5.90)

0 = 2A0G0 − 2A1G1 − 8B0G0 + 8B1G1 + 4C0G0 − 4C1G1 + α0C0G0

−α1C1G1 + β0D0G0 − β1D1G1 − 6D0G0 + 6D1G1, (5.91)

0 = 40B0G0 − 40B1G1 +
4C0G0

3
− 4C1G1

3
+

2α0C0G0

3
− 2α1C1G1

3

+28D0G0 − 28D1G1 − 6β0D0G0 + 6β1D1G1 + 4C0K0 − 4C1K1

+5α0C0K0 − 5α1C1K1 − 6D0K0 + 6D1K1, (5.92)

0 = 2A1G1 − 2A2G2 + (4 + α1)G1d
2C1 − (4 + α2)G2d

2C2

+
(β1 − 6)G1D1

d3
− (β2 − 6)G2D2

d3
− 8B1G1

d5
+

8B2G2

d5
, (5.93)

0 =
40B1G1

d5
− 40B2G2

d5
+

4

3
C1G1d

2 − 4

3
C2G2d

2

+
2

3
α1C1G1d

2 − 2

3
α2C2G2d

2 +
28D1G1

d3
− 28D2G2

d3
− 6β1D1G1

d3

+
6β2D2G2

d3
+ 4C1K1d

2 − 4C2K2d
2 + 5α1C1K1d

2 − 5α2C2K2d
2

−6D1K1

d3
+

6D2K2

d3
, (5.94)

where f is the volume fraction of the inclusion (f = f1 + f2).

For the case of G∗low, the twelve independent equations are the same as those

for G∗up, except that equations 5.83 and 5.84 are replaced with the following equatios:
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τ o = 2A0G0 − 8B0G0f
5
3 +

4C0G0

f
2
3

+
α0G0C0

f
2
3

− 6fD0G0 + β0fD0G0, (5.95)

0 = 40B0G0f
5
3 +

4C0G0

3f
2
3

+
2α0G0C0

3f
2
3

+ 28fD0G0 − 6β0fD0G0

+
4C0K0

f
2
3

+
5α0C0K0

f
2
3

− 6fD0K0. (5.96)

After solving the boundary value problem, the twelve constants are obtained

in term of γo and τ o for the cases of G∗up and G∗low respectively. Substitute A1, A2,

C1, and C2 for each case into equations 5.78 and 5.82, we obtain the the upper and

lower bound shear moduli.

CS Model VS Experiment

CS model is used to predict complex longitudinal and shear moduli of phe-

nolic microballoon filled polyurea (PUPMB) composites. There are three PUPMB

composites with different volume fraction of the microballoon, 0.1, 0.2, and 0.4. Pris-

tine polyurea samples were also created for comparison. The experimental data were

obtained from ultrasonic longitudinal and shear measurements at 1 MHz, 20 ◦C, and

ambient pressure. The longitudinal storage and loss moduli were calculated from the

measured longitudinal wave speed and attenuation in the materials, while The shear

storage and loss moduli were calculated from the measured shear wave speed and

attenuation. The experiment detail and procedure can be found in Section 3.3.

With regard to computation, the inputs for CS model are the two complex

moduli of each phase, inner and outer radii of the microballoon, and volume fraction.

Table 5.1 shows longitudinal storage and loss moduli, L′ and L′′, and shear storage
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Figure 5.4: CS-model: (a) Storage longitudinal modulus, L′ of PUPMB
versus volume fraction (b) Loss longitudinal modulus, L′′ of PUPMB versus

volume fraction

and loss moduli, G′ and G′′ of all phases in PUPMB composite. The matrix is

polyurea. For microballoom, the shell is phenolic while the core is void. Since we

want to predict the mechanical properties of PUPMB composites at 1 MHz, 20 ◦C, and

ambient pressure, the input properties need to be from the same testing condition.

For the polyurea matrix phase, the properties were measured in-house with the same

measurement and condition as in PUPMB. While, the properties of the shell phase

(phenolic) were obtained elsewhere from Hartmann’s work [119]. It is worth noting

that Hartmann conducted the longitudinal and shear ultrasonic wave measurements

at 1.8 MHz which is higher than our experiments. Since there is no other data for

phenolic at 1 MHz, the data at 1.8 MHz were used in our calculation. The properties

of core phase (void) are zero. Table 5.2 shows the geometries and apparent density
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of the microballoon. The inner and outer radii were the average number that was

obtained in-house from the observation of 237 microballoon under microscope. The

size distribution is shown in Figure 3.12. With properties in Tables 5.1 and 5.2, the

calculations were done for PUPMB with 0.1, 0.2, 0.3, and 0.4 volume fraction of the

microballoon. To be noted, density is not an input for our models.

Figure 5.5: CS-model: (a) Storage shear modulus, G′ of PUPMB versus
volume fraction (b) Loss shear modulus, G′′ of PUPMB versus volume

fraction

Figure 5.4a shows L′ of PUPMB as a function of volume fraction. The ex-

perimental result are compared with the calculation results from the CS models with

uniform strain εo and uniform stress σo assumption. As we can see L′ decrease non-

linearly with volume fraction of the microballoon. The rate of the decrease is faster

at low volume fraction. The CS-εo and CS-σo are on top of each other. The compu-

tation results agree excellently with the experimental result. Figure 5.4b shows L′′ of



237

PUPMB as a function of volume fraction. Apparently, L′′ behaves differently from

L′. L′′ increases as volume fraction changes from 0 to 0.1. Above 0.1 volume fraction,

L′′ decrease with increasing volume fraction. The computation results from CS-εo

and CS-σo are very close and can predict the trend of L′′. However, CS-εo and CS-σo

are around 20% lower than the experiment. This can be expected since we do not

have accurate input properties for phenolic. We do not know whether our phenolic

is the same as that in Harmann’s work. Different type or stoichiometric ratio of re-

actants in phenolic could yield the different of mechanical properties of the resulting

phenolic polymer. Moreover, Harmann did the test at the frequency slightly higher

than our frequency. It is worth noting that the longitudinal wave speed in phenolic

is not sensitive to degree of crosslinking and fabrication condition but attenuation is.

Due to the fact that L′ depends mainly on longitudinal wave speed and L′′ depends

mostly on attenuation, we tend to believe that L′ of the phenolic that we obtained

from Harmann’s work would be more comparable to our phenolic microballoon than

L′′. This might be the reason that the our prediction of L′ is a lot better than the

prediction of L′′.

Table 5.1: Properties of each phase in PUPMB for micromechanical
modeling

Polyurea (Matrix) Phenolics (Shell) Void (Core)
L′ (GPa) 3.4625 9.8601 0
L′′ (GPa) 0.1223 0.2338 0
G′ (GPa) 0.1320 2.1268 0
G′′ (GPa) 0.0331 0.1087 0
ρ (g cm−3) 1.1 1.223 0

Figure 5.5a shows G′ of PUPMB as a function of volume fraction. As we can

see from experiment, G′ is quite flat over the range of 0-0.4 volume fraction of the
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Table 5.2: Average dimensions and density of phenolic microballoon for
micromechanical modeling

Phenolic Microballoon
Inner Radius (µm) 17.25
Outer Radius (µm) 18.5

Apparent Density (g cm−3) 0.231

microballoon. CS-εo and CS-σo for G′ are very close similar to the case of L′. The

computation results agree excellently with the experimental result. Figure 5.5b shows

G′′ of PUPMB as a function of volume fraction. According to the experimental result,

G′′ behaves similar to L′′, except that the trend is not as obvious as L′′. G′′ increases

as volume fraction changes from 0 to 0.1, and then above 0.1 G′′ gradually decrease

with increasing volume fraction. The computation result from CS-εo is slightly higher

than that from CS-σo at high volume fraction. CS-εo and CS-σo predict that the

G′′ should gradually decrease with increasing volume fraction of the microballoon.

They underestimate the experimental result by around 25%. Similar to the case of

longitudinal modulus, we estimate G′ accurately and significantly underestimate G′′.

The reason is similar to what we discussed previously for the case of L′ and L′′.

5.1.2 Dilute Random Distributions of Inclusion Model (DD)

In this section, the micromechanical models for estimating the overall mechani-

cal properties of composite with short fibers or spherical inclusions are discussed. The

models are based on dilute randomly distributed inclusions method. A general idea is

that a two-phase composite material can be divided by proportion of its constituents

as matrix (having more volume) and filler (having less volume). The total volume of

the composite V is the summation between the volume occupied by the filler (fiber)
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VΩ and the volume occupied by the matrix Vm. The volume fractions of the fiber, fΩ,

and matrix, fm, are defined as:

fΩ =
VΩ

V
, (5.97)

fm =
Vm
V
. (5.98)

The summation between fΩ and fm is unity. Consider a composite located with

respect to x1, x2,and x3 rectangular coordinates. x is the position vector. The

inclusion and the matrix have constant elasticity tensors CΩ and Cm (or constant

compliance tensors DΩ and Dm), respectively. CΩ and DΩ, and Cm and Dm are

inverses of each other. When the composite material is under applied load, the strain

field ε (x) and stress field σ (x) inside the composite will be non-uniform on the

microscale and can be written as:

ε (x) =


εΩ (x) =

εm (x) =

DΩ : σΩ (x)

Dm : σm (x)

in inclusion

in matrix,
(5.99)

σ (x) =


σΩ (x) =

σm (x) =

CΩ : εΩ (x)

Cm : εm (x)

in inclusion

in matrix,
(5.100)

where εΩ (x) and εm (x) are strain fields in the inclusion and the matrix, σΩ (x)

and σm (x) are stress fields in the inclusion and the matrix. The solution of these

non-uniform fields is a formidable problem. However, many useful results can be

obtained in terms of the average stress and strain [116, 120]. The volume-averaged

stress σ̄ is defined as the average of the point-wise stress σ (x) over the volume V
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and can be written as:

σ̄ = fΩσ̄
Ω + fmσ̄

m = fΩσ̄
Ω + (1− fΩ) σ̄m, (5.101)

where σ̄Ω and σ̄m are the average stresses over inclusion and matrix volumes, respec-

tively. The average strains for the total volume ε̄, inclusion ε̄Ω, and matrix ε̄m are

defined similarly.

ε̄ = fΩε̄
Ω + fmε̄

m = fΩε̄
Ω + (1− fΩ) ε̄m. (5.102)

From equations 5.99-5.102, one can write constitutive equations for the composite as:

σ̄ = C̄ : ε̄ = fΩC
Ω : ε̄Ω + fmC

m : ε̄m, (5.103)

where C̄ is the unknown overall elasticity tensor of the composite. Similarly, the

constitutive equations in term of compliance tensors can be defined as:

ε̄ = D̄ : σ̄ = fΩD
Ω : σ̄Ω + fmD

m : σ̄m, (5.104)

where D̄ is the unknown overall compliance tensor of the composite. To be noted,

equations 5.103 and 5.104 can also be proved through the integral of the strain energy

over total volume of the composite V [112,116,120]. Consider applied uniform strain

εo (linear displacement) and applied uniform stress σo boundary conditions. The

average strain and stress over total volume of a composite that is subjected to these
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two special boundary conditions can be showed as [116,120]:

ε̄ = εo, (5.105)

σ̄ = σo. (5.106)

Using equations 5.101-5.106, the constitutive equations reduce to:

C̄ : εo = Cm : εo + fΩ

(
CΩ −Cm

)
: ε̄Ω, (5.107)

D̄ : σo = Dm : σo + fΩ

(
DΩ −Dm

)
: σ̄Ω. (5.108)

εo and σo are arbitrary constants. If the relation between ε̄Ω (or σ̄Ω) and εo (or

σo) is known, one could solve for C̄ (or D̄). This idea was first introduced by Hill

through the introduction of strain- and stress-concentration tensors [120].

ε̄Ω = PΩ : εo, (5.109)

σ̄Ω = QΩ : σo, (5.110)

where PΩ and QΩ are the strain- and stress-concentration tensors, respectively. Sub-

stitute equations 5.109 and 5.110 into equations 5.107 and 5.108, C̄ and D̄ are in the

following forms:

C̄ = Cm + fΩ

(
CΩ −Cm

)
: PΩ, (5.111)
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D̄ = Dm + fΩ

(
DΩ −Dm

)
: QΩ. (5.112)

At this point on, we will discuss about the two methods to find the tensors PΩ

and QΩ. For DD model, PΩ and QΩ can be found, using the Eshelby’s equivalent

inclusion theory [114–116, 118]. Eshelby solved an elasticity problem of a system

consisting of an ellipsoidal particle in an infinite matrix and obtained a formulation

for elastic stress field in and around the ellipsoidal particle. By changing the geometry

parameters in the ellipsoid particle, one can use Eshelby’s result to model the stress

and strain fields around various types of inclusions, for example, sphere, prolate

ellipsoid which can represent short fiber, and etc.

Figure 5.6: (a) A solid at stress-free state (b) An ellipsoidal region in the
solid undergoes a transformation strain εT (c) A heterogenous solid without

the transformation strain but has the same stress, σΩ in the ellipsoidal
region
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Consider an infinite solid body with stiffness Cm that is initially at its stress-

free stage (see Figure 5.6a). Suppose that an ellipsoidal region in the solid undergoes

some type of transformation such that, if it were a separate body, it would acquire a

uniform strain εT with no surface traction or stress. εT is called the transformation

strain, or the eigenstrain. In fact the region is bonded to the matrix, so when the

transformation occurs the whole body develops some disturdation strain ε̃d relative

to its shape before the transformation (see Figure 5.6b). Eshelby proved that within

this ellipsoidal region the strain ε̃d is uniform. It is related to εT by [114,116–118]:

ε̃d = SΩ : εT , (5.113)

where SΩ is Eshelby’s tensor. It is independent of the material properties of the

ellipsoidal region. It is completely defined in terms of the aspect ratio of the ellipsoidal

region and the elastic parameters of the surrounding matrix. Now consider a solid

with an ellipsoidal inclusion (having the same geometry as the ellipsoidal region) with

a different stiffness CΩ, but no transformation strain (see Figure 5.6c). The presence

of the ellipsoidal inclusion also introduces the disturbation strain ε̃d. Subject both

the solid with the transformed ellipsoidal region and the heterogeneous solid with

ellipsoidal inclusion to a uniform applied strain εo at infinity. Our goal is to find the

relation between the strain field in the ellipsoidal inclusion and εo; in other words, the

strain concentration factor discussed previously. We then compare these two cases.

The strain in the ellipsoidal inclusion can be found by adjusting the transformation

strain such that it gives the two cases the same stress and strain distributions.

For solid with the transformation strain in the ellipsoidal region, the stress in
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the ellipsoidal region is:

σ̄Ω = Cm :
(
εo + ε̃d − εT

)
. (5.114)

εT has the negative sign since it behaves oppositely, compared with ε̃d. In other

words, if the the ellipsoidal region is expanding (transformation strain is positive),

the areas around would try to maintain its shape by pushing back, therefore negative

disturbation strain. For solid with the ellipsoidal inclusion, the stress in the ellipsoid

is just the product of the multiplication between the stiffness of the ellipsoid and the

strain in the ellipsoid:

σ̄Ω = CΩ : ε̄Ω, (5.115)

where

ε̄Ω = εo + ε̃d. (5.116)

Since this is the problem of infinitely extended solid with the single inclusion, the

average strain in the heterogeneous solid is identical to the uniform applied strain,

given by

ε̄ = εo. (5.117)

Equate equation 5.114 to 5.115 and obtain:

Cm :
(
εo + ε̃d − εT

)
= CΩ :

(
εo + ε̃d

)
. (5.118)

From equation 5.116, we obtain:

Cm :
(
ε̄Ω − εT

)
= CΩ : ε̄Ω. (5.119)
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Solve for εT :

εT = Dm :
(
Cm −CΩ

)
: ε̄Ω. (5.120)

Substitute equation 5.120 into 5.113, we obtain:

ε̃d = SΩ : Dm :
(
Cm −CΩ

)
: ε̄Ω. (5.121)

Substitute equation 5.121 into 5.116, we obtain ε̄Ω:

ε̄Ω =
[
1(2) + SΩ : Dm :

(
CΩ −Cm

)]−1
: ε̄, (5.122)

where 1(2) is the second order identity tensor. The strain concentration tensor, PΩ

for DD model is given by:

PΩ−DD =
[
1(2) + SΩ : Dm :

(
CΩ −Cm

)]−1
, (5.123)

where PΩ−DD is the PΩ for DD model. Substitute equation 5.123 into 5.111, we

obtain the overall elasticity tensor of the composite with dilute randomly distributed

and uniaxially oriented ellipsoidal inclusion, which is given by:

C̄ = Cm + fΩ

(
CΩ −Cm

)
:
[
1(2) + SΩ : Dm :

(
CΩ −Cm

)]−1
. (5.124)

Equation 5.124 can be used for many composites with different types of inclusions.

It can be done by choosing the Eshelby’s tensor such that it matches with the type

of inclusion in the composite. Eshelby’s tensors for spherical and prolate ellipsoid
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inclusions are shown in Appendix 5.A. Cm and CΩ are isotropic and can be written

in the following forms:

Cn = λn1(2) ⊗ 1(2) + 2Gn1(4S), (5.125)

where n can be Ω or m, 1(4S) is the forth-order symmetric identity tensor, λn is

Lamé constant, and Gn is shear modulus. λn and Gn can be complex number if it is

a viscoelastic material. It can also be written in term of components as:

Cn
ijkl = λnδijδkl + 2Gn

(
1

2
[δikδjl + δilδjk]

)
, (5.126)

where the indices,i, j, k, l = 1,2,3, and δij is Kronecker delta which is defined as:

δij =


0 if i 6= j

1 if i = j

(5.127)

The DD model is developed based on the assumption that it has only single

inclusion embedded in the infinitely extended matrix, therefore it does not take into

account the effect of interaction between inclusions. It is appropriate for predicting

mechanical properties of composite with low volume fraction of inclusion. Figures 5.7a

shows a composite with dilute randomly distributed and uniaxially oriented prolate

ellipsoid inclusions. It can also represent composite with uniaxially oriented fibers

by adjusting the dimensions of the prolate ellipsoid such that its volume and aspect

ratio agree with those of the fiber. The major axis of the prolate ellipsoid points in

the x1 direction. However, this model can be modified to represent composites with
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in-plane oriented prolate ellipsoids and with randomly oriented prolate ellipsoids (see

Section 5.4). Figure 5.7b shows composite with dilute randomly distributed spherical

inclusions.

Figure 5.7: (a) Composite with dilute randomly distributed and
uniaxially oriented prolate ellipsoid inclusions (b)Composite with dilute

randomly distributed spherical inclusions

DD Model VS Experiment

This model is used to predict the overall mechanical properties of milled glassed

reinforced polyurea composites at different volume fractions. The result and discus-

sion are shown in Section 5.4.

5.2 Composite with Finite Volume Fraction and

Random Distribution of Inclusions (MT)

In this section, our models for composite with Finite Volume Fraction and

Random Distribution of Inclusions are developed based on Mori and Tanaka’s work
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[121]. Benveniste has provided a thorough and clear explanation of the Mori-Tanaka

approach [122]. Tucker et al. has summarized and shown how to develop the model

[118]. Here we will discuss and show the derivation of the model in detail. We

will refer the models developed in this section as Mori-Tanaka models (MT). Our

goal here is to find the strain concentration factor, PΩ in equation 5.111 for MT

models. Equation 5.111 with the strain concentration factor that is obtained using

MT approach yields the model for composite with finite volume fraction and random

distribution of inclusions.

In Mori-Tanaka approach and contrary to the dilute models, the inclusions may

interact with each other through modifications in far-field strain to average strain in

the matrix [116, 118]. The Mori-Tanaka assumption is that, when many identical

particles are introduced in the composite, the average strain in the inclusion is given

by [118]:

ε̄Ω = PΩ−DD : ε̄m, (5.128)

where PΩ−DD is shown in equation 5.123. To obtain equation 5.128, the average

strains in matrix and inclusion, ε̄m and ε̄Ω are expressed as:

ε̄m = εo + ε̃m, (5.129)

ε̄Ω = εo + ε̃m + ε̃Ω, (5.130)

where ε̃m and ε̃Ω are the disturbation strains in the matrix and inclusion, respectively.
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From Eshelby’s equivalent inclusion, ε̃Ω is related to transformation strain by:

ε̃Ω = SΩ : εT . (5.131)

Apply the previously discussed Eshelby’s equivalent inclusion and substitute equa-

tion 5.130 into equation 5.119, we obtain

Cm :
(
εo + ε̃m + ε̃Ω − εT

)
= CΩ :

(
εo + ε̃m + ε̃Ω

)
. (5.132)

From equations 5.130-5.133, we have:

Cm :
(
ε̄Ω − ε̄T

)
= CΩ : ε̄Ω

(
CΩ −Cm

)
: ε̄Ω = −Cm : SΩ−1

: ε̃Ω

ε̃Ω = −SΩ : Dm :
(
CΩ −Cm

)
: ε̄Ω. (5.133)

Substitute equations 5.129 and 5.133 into 5.130, we obtain:

ε̄Ω =
[
1(2) + SΩ : Dm :

(
CΩ −Cm

)]−1
: ε̄m. (5.134)

Equation 5.134 is exactly equation 5.128. Substitute equation 5.128 (or 5.134) into

5.102, we obtain:

ε̄ = fΩP
Ω−DDε̄m + (1− fΩ) : ε̄m

ε̄ =
[
fΩP

Ω−DD + (1− fΩ) 1(2)
]

: ε̄m. (5.135)
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From equation 5.102, we can write:

ε̄m =
ε̄− fΩε̄

Ω

1− fΩ

. (5.136)

Substitute equation 5.135 into 5.136 and solve for ε̄Ω in term of ε̄, we obtain:

ε̄Ω = PΩ−MT : ε̄, (5.137)

where

PΩ−MT =
[
(1− fΩ) 1(2) + fΩP

Ω−DD]−1
: PΩ−DD. (5.138)

Substitute equation 5.138 into 5.111, we obtain the overall elasticity tensor of the

composite with finite volume fraction and random distribution of uniaxially oriented

ellipsoidal inclusions, which is given by:

C̄ = Cm + fΩ

(
CΩ −Cm

)
:
[
(1− fΩ) 1(2) + fΩP

Ω−DD]−1
: PΩ−DD. (5.139)

Equation 5.124 can be used for many composites with different types of inclusions.

It can be done by choosing the Eshelby’s tensor such that it matches with the type

of inclusion in the composite. CΩ, Cm, and PΩ−DD are shown in equations 5.125

and 5.123. Eshelby’s tensors for spherical and prolate ellipsoid inclusions are shown

in Appendix 5.A.

The MT model indirectly takes into account the effect of interaction between

inclusions by assuming that the each particle sees a far field strain equal to the average

strain in the matrix. Figures 5.8a shows a composite with finite volume fraction and

random distribution of uniaxially oriented ellipsoidal inclusions. It can also represent
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Figure 5.8: (a) Composite with finite volume fraction and random
distribution of uniaxially oriented ellipsoidal inclusions (b) Composite with

finite volume fraction and random distribution of spherical inclusions

composite with uniaxially oriented fibers by adjusting the dimensions of the prolate

ellipsoid such that its volume and aspect ratio agree with those of the fiber. The

major axis of the prolate ellipsoid points in the x1 direction. However, this model can

be modified to represent composites with in-plane oriented prolate ellipsoids and with

randomly oriented prolate ellipsoids (see Section 5.4). Figure 5.8b shows composite

with with finite volume fraction and random distribution of spherical inclusions.

MT Model VS Experiment

This model is used to predict the overall mechanical properties of milled glassed

reinforced polyurea composites at different volume fractions. The result and discus-

sion are shown in Section 5.4.
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5.3 Composite with Finite Volume Fraction and

Periodic Distribution of Inclusions (P)

In this part, we present a static homogenization method for the material with

periodic microstructure based on micromechanical consideration of the volume av-

erages of the field variables. This theory is firmly established in the literatures

(see [116, 123, 124]). The models in this section are developed based on the peri-

odic distribution of inclusions, in which the inclusion can be void or solid and can

have various shapes. At high volume fraction, this method accounts for the interac-

tion between particles in a more direct manner than Mori-Tanaka method. However,

this method might not appropriately represent the microstructure of a composite ma-

terial that has inclusions randomly distributed in the matrix. Despite this concern,

the assumption of periodicity has been proved very powerful in predicting mechanical

properties of composites with high inclusion-interaction effects and random distribu-

tion of inclusions [116]. Two models are developed for (1) composite with periodically

distributed cylindrical inclusions and (2) composite with periodically distributed two-

phase spherical inclusions

5.3.1 Composite with Periodically Distributed Cylindrical

Inclusions (P-CI)

Consider an infinitely extended, homogeneous, isotropic, elastic solid. When

the uniform stress is prescribed on the boundary of the solid, the strain within the solid

would be uniform and vice versa. Suppose now that instead of being homogeneous, the

infinite solid contains periodically distributed inclusions of common size and elastic



253

properties, in such a manner that the body may be regarded as a collection of infinite

unit cells of identical dimensions, each containing one inclusion. The presence of

inclusions with different elasticity, from that of the matrix disturbs the uniform stress

and strain fields.

The disturbed stress σ (x) and strain ε (x) fields are now considered as peri-

odic fields due to geometric periodicity of the material. The elasticity and compliance

tensors are not uniform anymore but periodic in space. An elastic solid with peri-

odically distributed inhomogeneities can be homogenized by introduction of suitable

periodically disturbed eigenstrains or eigenstresses. This homogenization method is

similar to the transformation strain in Eshelby’s equivalent inclusion method dis-

cussed previously, except that here. In this approach, the actual periodic elasticity

tensor of the solid CP (x) is replaced with a reference constant elasticity tensor C

and a suitable periodic eigenstrain ε∗ (x) (eigenstress σ∗ (x)) field. The uniform solid

with constant elasticity tensor CP (x), is referred to as the equivalent homogeneous

solid. U , M , and Ω denote unit cell, matrix, and inclusion respectively. Defined the

domain of a typical unit cell, U , by

U = {x;−ai < xi < ai (i = 1, 2, 3)} , (5.140)

VU = 8a1a2a3, (5.141)

where x is a position vector or a typical point in the unit cell, 2ai are the dimensions

of parallelepiped unit cell in xi direction, VU is the total volume of the unit cell U .
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Introduce a variable ξ where

ξi = ξi (ni) =
niπ

ai
(ni = 0,±1,±2, ...; i not summed; i = 1, 2, 3) . (5.142)

A field variable Q is periodic and can be represented in Fourier series form as:

Q (x) =
∑
ξ

FQ (ξ)eix·ξ, (5.143)

or

Q (x) = 〈Q〉+QP (x), (5.144)

where

〈Q〉 =
1

VU

∫
U

Q (x)dVx, (5.145)

QP (x) =
∑
ξ 6=0

FQ (ξ)eix·ξ, (5.146)

FQ (ξ) =
1

VU

∫
U

Q (x)e−ix·ξdVx, (5.147)

〈Q〉 represents the averaged value of the field variable over the unit cell. QP (x),

which is periodic with zero mean value, represents the local deviations from the

average value. Due to the periodicity of the material, ε (x), σ (x), ε∗ (x), and

σ∗ (x) can be written as in equation 5.144.
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To relate field variable in the equivalent homogenized solid to those in the orig-

inal heterogeneous solid with periodic structure, the following consistency conditions

is used

CP (x) : ε (x) = C : (ε (x)− ε∗ (x)) For x in U, (5.148)

where CP (x) is the actual periodic elasticity tensor and C is the reference constant

elasticity tensor of the homogenized solid. Normally, C is chosen to be identical

to elasticity tensor of the matrix phase. However, this is not restriction. ε∗ (x) is

introduced to compensate for the effect of the homogenization of the elasticity tensor.

For the case of an isotropic reference material, C can be described with two constant

material parameters. The following is its index form.

Cijkl = λδijδkl + 2µ

(
1

2
[δikδjl + δilδjk]

)
, (5.149)

where λ and µ are Lamé constant. one of the forms of λ is K − 2
3
G where K and G

are bulk and shear moduli respectively, while µ is G. The equilibrium equation can

be written in the following form:

∇σ (x) = ∇
(
CP (x) : ε (x)

)
= 0 For x in U. (5.150)

Substitute equation 5.148 into 5.150, we obtain:

∇ (C : (ε (x)− ε∗ (x))) = 0. (5.151)

Due to that the symmetry of C, we can write equation 5.151 in term of displacement
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field u (x) as [116]:

0 = ∇ (C : (∇⊗ u (x)− ε∗ (x))) ,

0 = ∇ (C : (∇⊗ u (x)))−∇ (C : ε∗ (x)) , (5.152)

where ⊗ is dyadic operator. Noting that equations 5.152 and 5.150 are equivalent,

related by equation 5.148. Using Fourier series form of each field variable, equa-

tion 5.152 becomes:

0 = −ξ ·C : [ξ ⊗ Fu (ξ)]− iξ ·C : Fε∗ (ξ) For ξ 6= 0. (5.153)

From equation 5.153, now we can relate displacement and strain to eigenstrain in the

ξ domain as:

Fu (ξ) = −i [ξ ·C : ξ]−1 · [ξ ·C : Fε∗ (ξ)] , (5.154)

Fε (ξ) =
1

2
· [ξ ⊗ Fu (ξ) + Fu (ξ)⊗ ξ]

= sym
[
ξ ⊗ (ξ ·C · ξ)−1 ⊗ ξ

]
: C : Fε∗ (ξ), (5.155)

where sym stands for the symmetric part of the corresponding fourth-order tensor.

From equations 5.144-5.147 and equation 5.155, strain field in term spatial variable

x has the following form:

ε (x) = 〈ε〉+ εP (x), (5.156)
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where

〈ε〉 =
1

VU

∫
U

ε (x)dVx, (5.157)

εP (x) =
∑
ξ 6=0

FSP (ξ) :

(
1

VU

∫
U

ε∗ (y)ei(x−y)·ξdVy

)
, (5.158)

FSP (ξ) = sym
[
ξ ⊗ (ξ ·C · ξ)−1 ⊗ ξ

]
: C

= FS1 (ξ)− 1

1− ν
FS2 (ξ) +

ν

1− ν
FS3 (ξ), (5.159)

FS1 (ξ) = 2sym
(
ξ̄ ⊗ 1(2) ⊗ ξ̄

)
, (5.160)

FS2 (ξ) = ξ̄ ⊗ ξ̄ ⊗ ξ̄ ⊗ ξ̄, (5.161)

FS3 (ξ) = ξ̄ ⊗ ξ̄ ⊗ 1(2), (5.162)

ξ̄ =
ξ

ξ
=

ξ√
ξiξi

. (5.163)

FSP (ξ) in index notation form is as follows:

FSPijkl(ξ) = FS1
ijkl(ξ)−

1

1− ν
FS2

ijkl(ξ) +
ν

1− ν
FS3

ijkl(ξ), (5.164)



258

where

FS1
ijkl(ξ) =

1

2

{
ξ̄j
(
δilξ̄k + δikξ̄l

)
+ ξ̄i

(
δjlξ̄k + δjkξ̄l

)}
, (5.165)

FS2
ijkl(ξ) = ξ̄iξ̄j ξ̄kξ̄l, (5.166)

FS3
ijkl(ξ) = ξ̄iξ̄jδkl, (5.167)

ξ̄i =
ξi√
ξkξk

. (5.168)

Figure 5.9: A unit cell of composite with periodically-distributed and
uniaxially-oriented cylindrical inclusions
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Consider a unit cell, U of composite with periodically distributed and uni-

axially oriented cylindrical inclusions (Figure 5.9). M is matrix with the uniform

elasticity tensor C and Ω is inclusion with uniform elasticity tensor CΩ. The follow-

ing is the elasticity tensor of the composite:

CP (x) = H (x;M)C +H (x; Ω)CΩ, (5.169)

whereH (x;M) andH (x; Ω) are the Heaviside step functions associated with points

in M and Ω, respectively. For the equivalent homogeneous solid for homogenization,

the matrix elasticity C is used. Then, the eigenstrians are nonzero only in CΩ, i.e.,

ε∗ (x) = H (x; Ω) ε∗ (x). (5.170)

The consistency condition (equation 5.148) is now changed to the following equation:

CΩ : ε (x) = C : (ε (x)− ε∗ (x)) For x in Ω,

CΩ :
(
〈ε〉+ εP (x)

)
= C :

(
〈ε〉+ εP (x)− ε∗ (x)

)
. (5.171)

When a uniform overall strain, εo is prescribed on the boundary of the composite.

The volume average strain, 〈ε〉 is equal to εo. Equation 5.171 becomes:

CΩ :
(
εo + εP (x)

)
= C :

(
εo + εP (x)− ε∗ (x)

)
. (5.172)

We assume that the eigenstrain, ε∗ (x) in the inclusion Ω is constant and equal to

its average ε̄∗. The average consistency condition over the volume of phase Ω can be
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expressed as:

CΩ :
(
εo + ε̄P

)
= C :

(
εo + ε̄P − ε̄∗

)
in Ω, (5.173)

where ε̄P is average disturbance (periodic) strain over the inclusion phase. From

equation 5.158 and the assumption that ε∗ (x) is constant in Ω and zero outside, ε̄P

can be written as:

ε̄P =
1

VΩ

∫
Ω

εP (x)dVx

=
1

VΩ

∫
Ω

[∑
ξ 6=0

FSP (ξ) :

(
1

VU

∫
U

ei(x−y)·ξdVy

)
ε̄∗

]
dVx (5.174)

or

ε̄P = SP : ε̄∗, (5.175)

where

SP =
∑
ξ 6=0

fΩg (−ξ) g (ξ)FSP (ξ), (5.176)

g (ξ) =
1

VΩ

∫
Ω

eix·ξdVx, (5.177)

fΩ =
VΩ

VU
. (5.178)

This SP is a forth-order tensor equivalent to Eshelby’s tensor, except that it is for



261

periodic composite. The g (ξ) for the inclusion with cylindrical shape pointing in the

x1 direction is as follows [116].

g (ξ) =
2J1 (t)

t

(
sin z

2
z
2

)
, (5.179)

where

t = 2παn1, (5.180)

z =

√
4πfΩ

α

√
n2

2 + n2
3, (5.181)

α =
L

2a1

, (5.182)

fΩ =
πr2L

8a1a2a3

, (5.183)

J1 is the order 1 Bessel function of first kind, r and L are radius and length of the

cylindrical inclusion (see Figure 5.9). Substitute equation 5.175 into 5.173, we obtain:

CΩ :
(
εo + SP : ε̄∗

)
= C :

(
εo +

(
SP − 1(4S)

)
: ε̄∗
)
in Ω. (5.184)

Consider equation 5.148, average the consistency condition over the volume of unit
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cell, we arrive at:

CP : εo = C : (εo − fΩε̄
∗) . (5.185)

Substituting from equation 5.184 for ε̄∗ into equation 5.185, and in view of the fact

that εo is arbitrary, obtain an explicit expression for overall elasticity tensor as follows:

CP = C − fΩC :
((
C −CΩ

)−1
: C − SP

)−1

. (5.186)

Equation 5.186 with g (ξ) in equation 5.179 is predicting the effective elasticity tensor

of composite with periodically distributed and uniaxially oriented fibers. The fiber

axis in the x1 direction. However, this model can be modified to represent composites

with in-plane oriented fibers and with randomly oriented fibers (see Section 5.4).

Figure 5.10a shows composite with periodically distributed and uniaxially oriented

cylindrical inclusions.

Figure 5.10: (a) Composite with periodically distributed and uniaxially
oriented cylindrical inclusions (b) Composite with periodically distributed

spherical inclusion
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5.3.2 Composite with Periodically Distributed Spherical

Inclusions (P-SI)

By replacing g (ξ) in equation 5.179 with g (ξ) for inclusion with spherical

shape, equation 5.186 yield a model for composite with periodically distributed spher-

ical inclusions. g (ξ) for inclusion with spherical shape is [116]:

g (ξ) =
3

(Rξ)3 [(sin (Rξ)−Rξ cos (Rξ))] , (5.187)

where R is the radius of the spherical inclusion. Figure 5.10b shows composite with

periodically distributed spherical inclusion.

5.3.3 Composite with Periodically Distributed Two-Phase

Spherical Inclusions (P-2PSI)

The unbound elastic solid containing periodically distributed two-phase spher-

ical inclusions is considered. Two-phase spherical inclusion refers to the spherical-

shaped inclusion with spherical shell covering outside. By adjusting properties of

each phase, the inclusion can also represent hollow sphere, single-phase solid sphere,

and void. When each phase in the inclusion has the same properties, it is consid-

ered as uniform solid sphere. If the moduli of each phase are set to zero, the whole

inclusion turns into void, while if only the moduli of the inner phase is set to zero,

the inclusion turns into hollow sphere. A cubic unit cell containing two-phase spher-

ical inclusion at the center of the cube is considered as the representative volume

element of the composite with periodically distributed two-phase spherical inclusions

(see Figure 5.11). The composite consists of matrix M , shell Ω1, and core Ω2. C,
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C1, and C2 are elasticity tensors of matrix, shell, and core, respectively (see Fig-

ure 5.12a). Similar to the previous section, homogenization technique is used to

simplify the problem. The composite is replaced by the equivalent homogeneous solid

with elasticity tensor C (the same as elasticity of the matrix phase). To compensate

the mismatch between the elasticity tensor of the homogenized solid and the actual

periodic composite, eigenstrains ε∗1 (x) and ε∗2 (x) are introduced in the shell and

the core phases, respectively (see Figure 5.12b). The general idea of the model was

already discussed in Section 5.3.1. However, when each unit cell contains three-phase

elastic solids with different elastic moduli and geometries, some equations need to be

modified.

Figure 5.11: A unit cell of composite with periodically-distributed
two-phase spherical inclusions

The elasticity tensor of the composite with periodically distributed two-phase
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Figure 5.12: (a) Composite with periodically-distributed two-phase
spherical inclusions (b) An equivalent homogeneous solid

spherical inclusions can be presented as follows:

CP (x) = H (x;M)C +H (x; Ω1)C1 +H (x; Ω2)C2, (5.188)

whereH (x;M),H (x; Ω1), andH (x; Ω2) are the Heaviside step functions associated

with points in M , Ω1 and Ω2, respectively. The reference elasticity tensor of the

equivalent homogeneous solid is the matrix elasticity C. Then the eigenstrians are

nonzero only in Ω1 and Ω2, i.e.,

ε∗1 (x) = H (x; Ω1) ε∗1 (x), (5.189)

ε∗2 (x) = H (x; Ω2) ε∗2 (x). (5.190)
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The consistency condition, equation 5.171 is now changed to the following equations:

C1 :
(
〈ε〉+ εP (x)

)
= C :

(
〈ε〉+ εP (x)− ε∗1 (x)

)
For x in Ω1, (5.191)

C2 :
(
〈ε〉+ εP (x)

)
= C :

(
〈ε〉+ εP (x)− ε∗2 (x)

)
For x in Ω2. (5.192)

When a uniform overall strain, εo is prescribed on the boundary of the composite.

The volume average strain, 〈ε〉 is equal to εo. Equations 5.191 and 5.192 become:

C1 :
(
εo + εP (x)

)
= C :

(
εo + εP (x)− ε∗1 (x)

)
For x in Ω1, (5.193)

C2 :
(
εo + εP (x)

)
= C :

(
εo + εP (x)− ε∗2 (x)

)
For x in Ω2. (5.194)

Then we assume that the eigenstrain ε∗1 (x) and ε∗1 (x) are constants and equal to

their averages ε̄∗1 and ε̄∗2, respectively. From equations 5.193 and 5.194, The average

consistency conditions in Ω1 and Ω2 can be written as:

C1 :
(
εo + ε̄P1

)
= C :

(
εo + ε̄P1 − ε̄∗1

)
in Ω1, (5.195)

C2 :
(
εo + ε̄P2

)
= C :

(
εo + ε̄P2 − ε̄∗2

)
in Ω2, (5.196)

where ε̄P1 and ε̄P1 are the average isturbance (periodic) strains in Ω1 and Ω2, re-
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spectively. From equations 5.158 and 5.174, ε̄P1 and ε̄P2 can be expressed as:

ε̄Pα = SP (α, β) : ε̄∗β (α, β = 1, 2) , (5.197)

where

SP (α, β) =
∑
ξ 6=0

fβgβ (−ξ) gα (ξ)FSP (ξ), (5.198)

gα (ξ) =
1

VΩα

∫
Ωα

eix·ξdVx, (5.199)

fα =
VΩα

VU
, (5.200)

VΩ1 , VΩ2 and VU are volumes of shell, core and entire unit cell, respectively. The

gα (ξ) for the composite with periodically distributed two-phase spherical inclusion

model in Figure 5.11 can be calculated by:

g1 (ξ) =
3

ξ3 (r3
1 − r3

2)
3 (sin (r1ξ)− r1ξ cos (r1ξ))

− 3

ξ3 (r3
1 − r3

2)
3 (sin (r2ξ)− r2ξ cos (r2ξ)) , (5.201)

g2 (ξ) =
3

(r2ξ)
3 [(sin (r2ξ)− r2ξ cos (r2ξ))] . (5.202)
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With equation 5.197, equations 5.195 and 5.196 can be rewritten as:

C1 :
(
εo + SP (1, 1) : ε̄∗1 + SP (1, 2) : ε̄∗2

)
= C :

(
εo +

(
SP (1, 1)− 1(4S)

)
: ε̄∗1 + SP (1, 2) : ε̄∗2

)
, (5.203)

C2 :
(
εo + SP (2, 1) : ε̄∗1 + SP (2, 2) : ε̄∗2

)
= C :

(
εo + SP (2, 1) : ε̄∗1 +

(
SP (2, 2)− 1(4S)

)
: ε̄∗2

)
. (5.204)

From equation 5.148, average the consistency condition over the volume of unit cell,

we arrive at

CP : εo = C :
(
εo − f1ε̄

∗1 − f2ε̄
∗2) , (5.205)

where CP is the overall elasticity tensor of composite with periodically distributed

two-phase spherical inclusion. ε̄∗1 and ε̄∗2 can be obtained from the solution of the

set of two linear tensorial equations 5.203 and 5.204.

P Model VS Experiment

The P model for composite with periodically distributed cylindrical inclusion

was used to predict the overall mechanical properties of milled glassed reinforced

polyurea composites at different volume fractions. The result and discussion are

shown in Section 5.4. The P-SI and P-2PSI models were used to estimate the longi-

tudinal and shear complex moduli of phenolic microballoon filled polyurea composites.

The result of these two models will be compared with the result of CS model in Sec-
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tion 5.1.1. The experimental data were obtained from ultrasonic longitudinal and

shear measurements at 1 MHz, 20 ◦C, and ambient pressure. The longitudinal storage

and loss moduli were calculated from the measured longitudinal wave speed and at-

tenuation in the materials, while The shear storage and loss moduli were calculated

from the measured shear wave speed and attenuation. The experiment detail and

procedure can be found in Section 3.3. Discussion on the experimental result was

already done in the Section 5.1.1. So in this section, we will just compare the results

of periodic models to that of the CS model.

Table 5.3: Properties of phenolic microballoon obtained from CS model
(volume fraction of void in the microballoon is 0.81)

Phenolic Microballoon
L′ (GPa) 0.6961
L′′ (GPa) 0.0292
G′ (GPa) 0.1904
G′′ (GPa) 0.0092

With regard to calculation, two model based on periodic distribution of in-

clusion are used. One is composite with periodically distributed two phase spherical

inclusions (P-2PSI) and the other one is composite with periodically distributed sin-

gle phase spherical inclusions (P-SI). The inputs for P-2PSI model are the same as

inputs for CS-model (see Section 5.1.1). The inputs for P-SI model are a little dif-

ferent. The properties of the matrix phase in P-SI are the same as CS-model. Since

P-SI model also requires the mechanical properties of the whole phenolic microballoon

(shell+core). Therefore the overall properties of the microballoon were not calculated

using CS model with the properties of phenolic, and geometries of the microballoon

shown in Tables 5.1 and 5.2, respectively. From the apparent density of phenolic mi-

croballoon (in Table 5.2) and density of phenolic polymer (in Table 5.1), the volume
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fraction of the void in the phenolic microballon can be calculated and found to be

0.81. The CS model was used to estimated the overall properties of the microballoon

because the model was developed based on spherical geometry which is identical to

the shape of the microballoon. The overall longitudinal and shear complex moduli

of the microballoon are the average between the results from CS-εo and CS-σo and

are shown in Table 5.3. Properties of polyurea in Table 5.1 and properties of the

microballoon in Table 5.3 were used as inputs for P-SI model.

Figure 5.13: P and CS models: (a) Storage longitudinal modulus, L′ of
PUPMB versus volume fraction (b) Loss longitudinal modulus, L′′ of

PUPMB versus volume fraction

Figure 5.13a shows L′ of PUPMB versus volume fraction. P-2PSI poorly

underestimate L′ while P-SI agrees with experimental result and CS model. The

reason might be the P-2PSI directly and strongly take into account the effect of the

periodic distribution of the void phase, leading to the drop in the longitudinal storage
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modulus. Figure 5.13b shows L′′ of PUPMB versus volume fraction. Interestingly,

the result from P-2PSI is in very good agreement with experimental result, while

P-SI underestimates experimental result but agrees with CS model. As discussed

previously in section 5.1.1, we do not have accurate input properties of the phenolic

polymer, the better prediction of P-2PSI for L′′ might be an artifact and cannot be

concluded at the moment.

Figure 5.14: P and CS models: (a) Storage shear modulus, G′ of PUPMB
versus volume fraction (b) Loss shear modulus, G′′ of PUPMB versus

volume fraction

Figure 5.14a shows G′ of PUPMB versus volume fraction. P-2PSI poorly

underestimate G′ at 0.4 volume fraction of the microballoon, while P-SI agrees with

experimental result and the CS model. For G′′ in Figure 5.13b, P-2PSI is worst in

estimation, while the result from P-SI agrees with CS-εo model but underestimate

the experimental result.



272

It seems that the greater drop in moduli predicted by P-2PSI suggests that

the model did account for the effect of the presence of the void in the microballoon,

while P-SI model take into account the interaction between the microballoons but

in the softer manner since the mismatch properties between the shell and the core

of the microballoon was homogenized and averaged using CS model. It is difficult

to conclude which model is the best since we do not have accurate input for the

phenolic phase. To find the best model, we might need to replace the viscoelastic

phenolic microballoon with other elastic particles with known mechanical properties

and geometries. This will be future work.

5.4 Dynamic Properties of Polyurea-Milled Glass

Composites Part II: Micromechanical Modeling

In Part I, the results of experimental evaluation of the mechanical properties

of pure polyurea (PU) and polyurea with milled glass composites (PU-MG) in low (1-

20 Hz) and high (0.5-1.5 MHz) frequency ranges [73] have been reported, focusing on

the dependence of these properties on frequency, temperature, and the milled glass

volume fraction. Here, we report the results of the corresponding micromechanical

modeling. The models are developed, based on three different approximations: (1)

dilute random, (2) non-dilute random, and (3) non-dilute periodic distributions of

inclusions. Different orientation distributions of fibers, e.g. uniaxial parallel, in-

plane random, and 3D random are considered and their results are compared with

experimentally measured data presented in [73]. Moreover, the computational results

are used to construct master curves of dynamic Young’s storage and loss moduli and



273

compare these with those constructed from experimental data. Three dimensional

random and in-plane random calculation results are compared with the dynamic

longitudinal and shear moduli of PU-MG composites obtained from ultrasonic wave

measurements. These comparisons demonstrated that, as expected, the orientation

distribution of the short fibers was affected by the thickness of the composite sample,

and this effect was manifested in overall elasticity tensor of the composite.

5.4.1 Introduction

Polyurea with milled glass composites (PU-MG) are introduced and their me-

chanical behavior was experimentally characterized and reported in an accompanying

paper [73]. In this paper, micromechanical models that describe their behavior with

varying geometrical and mathematical complexity are presented.

One of the first models for short-fiber composites is the shear lag model de-

veloped by Cox [125]. Later, Eshelby solved the elasticity problem of an ellipsoidal

inclusion embedded in infinitely large matrix for the elastic stress field in and around

the inclusion [114, 115]. In these celebrated works, he showed that within an ellip-

soidal inclusion the strain field is uniform, and is related to a uniform transformation

strain through a tensor now commonly referred to as Eshelby’s tensor. The tensor

depends only on the inclusion aspect ratios and the matrix elastic constants [117].

By letting the inclusion be a prolate ellipsoid, one can use Eshelby’s results to find

the stiffness of a composite with cylindrical fibers at dilute concentrations [116,126].

For non-dilute discontinuous fiber composite models, the interaction between fibers is

taken into account either directly or indirectly. Mori and Tanaka proposed that the

average strain in the fiber should be proportional to the average strain in the matrix.
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This idea was used to treat non-dilute composite materials [121]. Taya and Mura ap-

plied Eshelby’s and Mori-Tanaka’s ideas to create models to predict the longitudinal

modulus of a short-fiber composite containing fiber-end cracks in resin [127]. Another

approach to account for finite fiber volume fraction is the self-consistent method. In

the self-consistent method, one has to numerically find the properties of a composite

in which a single particle is embedded in an infinite matrix that has the, yet unknown,

average properties of the composite. The solution of the self-consistent approach for

some composites may require using iterative scheme [128, 129]. Nemat-Nasser and

coworkers [116, 123, 124] developed a method based on the periodic distribution of

inclusions, in which the inclusion can be void or solid and can have various shapes.

At high volume fraction, this method accounts for the interaction between particles in

a more direct manner than either Mori-Tanaka or self-consistent methods. However,

this method might not appropriately represent the microstructure of a composite ma-

terial that has inclusions randomly distributed in the matrix. Despite this concern,

the assumption of periodicity has been proved very powerful in predicting mechanical

properties of composites with high inclusion-interaction effects and random distribu-

tion of inclusions [116,123,124]. Another method that accounts for the interaction be-

tween inclusion and their surrounding matrix material in a direct manner is the double

inclusion model (or three-phase model) developed by Hori and Nemat-Nasser [130].

It is the generalized version of the Mori-Tanaka method. The model uses averaging

scheme and produces the overall moduli of two-phase composites with greater flex-

ibility and effectiveness than the self-consistent and the Mori-Tanaka method. The

average stress and strain in a typical inclusion is estimated by embedding the typical

inclusion in a finite ellipsoidal region of matrix elasticity and then this double inclu-
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sion is embedded in an infinite uniform solid with the yet-unknown overall elasticity

of the composite [116, 130]. By replacing the yet-unknown overall elasticity with the

elasticity of the matrix, the model gives the Mori-Tanaka or two-phase model, while

setting it as the unknown composite value gives the self-consistent estimate in the

case both inclusions are coaxial. In general, other estimates may be achieved by any

choice of combination of inclusion, matrix, and composite material properties. For

other interesting methods, Tucker III and Liang have provided a thorough literature

review [118].

In this study, micromechanical models were developed based on 3 different

methods: (1) dilute random, (2) non-dilute random, and (3) non-dilute periodic dis-

tributions of inclusions. The first method implements Eshelby’s works [114–117].

The second method uses Mori-Tanaka averaging method [116, 118, 121, 127]. The

third method follows Nemat-Nasser and coworkers’ works [116,123,124]. In contrast

with method 1, methods 2 and 3 take into account the effect of particles interaction

in two different unit cell structures. Each method has its own advantage. The dilute

random distribution is the least complex approach and takes less computational time,

but it is less accurate for high volume fractions of inclusions. The non-dilute random

distribution of inclusions improves the accuracy of method 1, while it takes the same

computational time. The non-dilute periodic distribution of inclusions requires more

computational time due to the calculation of Fourier series representation of field

variables [116, 123, 124], but it provides the most accurate results among the three-

presented methods. In each method, three models with different fiber orientations;

uniaxial, in-plane random, and 3D random orientations were addressed using proper

averaging techniques. Originally, these models were created for estimating mechan-
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ical properties of elastic composites; however Hashin showed that by replacement

of the real elastic moduli by their complex counterparts (including storage and loss

components), they can be directly utilized for viscoelastic composites [111].

5.4.2 Theory

Consider the applied uniform strain εo (linear displacement) or uniform stress

σo on boundary of a composite. The average strain ε̄ or stress σ̄ over total volume of

the composite will be:

ε̄ = εo, (5.206)

σ̄ = σo, (5.207)

respectively [116]. The overall constitutive tensors for the composite can be written

as:

C̄ : εo = Cm : εo + fΩ

(
CΩ −Cm

)
: ε̄Ω, (5.208)

D̄ : σo = Dm : σo + fΩ

(
DΩ −Dm

)
: σ̄Ω, (5.209)

based on the calculated average stress and strain tensors, respectively. fΩ is the

volume fraction of the fiber, C̄, CΩ, and Cm are the (to be determined) overall

elasticity tensor of the composite, the elasticity tensor of the fiber, and the elasticity

tensor of the matrix, respectively, D̄, DΩ, and Dm are the (to be determined)

overall compliance tensor of the composite, the compliance tensor of the fiber and

the compliance tensor of the matrix, respectively, ε̄Ω and σ̄Ω are the average strain
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and stress over the fiber volume. εo and σo are arbitrary. For a fundamental proof,

see [116]. If the relation between ε̄Ω (σ̄Ω) and εo (σo) is known, one could solve for

C̄ (D̄). ε̄Ω and σ̄Ω may be related to εo and σo as:

ε̄Ω = PΩ : εo, (5.210)

σ̄Ω = QΩ : σo, (5.211)

where PΩ and QΩ are introduced as tensors to transform εo and σo to ε̄Ω and σ̄Ω,

respectively. Note that in [118, 120], these tensors are denoted by letters A and B.

Substitute equations 5 and 6 into 3 and 4,to write C̄ and D̄ as:

C̄ = Cm + fΩ

(
CΩ −Cm

)
: PΩ, (5.212)

D̄ = Dm + fΩ

(
DΩ −Dm

)
: QΩ. (5.213)

The three methods listed earlier provide different approximations to tensors

PΩ and QΩ. Since micromechanical models for composites with short fibers based on

dilute random, non-dilute random, and non-dilute periodic distributions of inclusions

are well established in literatures [114–118, 123, 124], only the important theoretical

aspects and the necessary modifications of the models will be discussed here.
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Dilute Random Distributions of Inclusions (DD Model)

This model considers an infinitely extended matrix with uniform-sized prolate

spheroid inclusions in the matrix. Due to the low volume fraction (dilute model) the

inclusions do not interact with the adjacent particles. Therefore the far-field strain

(stress) experienced by any inclusion equals to the globally applied strain (stress).

The average strain (stress) in the inclusion is proportional to the applied strain

(stress) [116]. The shape of the prolate spheroid differs from the actual shape of

the milled glass fiber. However, the prolate spheroid has a relatively long semi-major

axis compared to the two equal semi-minor axes (l/r >> 1) and could be considered

a reasonable representation of the milled glass fibers. Geometry and dimensions of

the prolate spheroid are shown in Figure 5.17a and Table 5.4.

Figure 5.15a represents the structure of a uniaxial composite. The super-

scripted DD will be used to indicate all models developed from the method based

on dilute random distribution of inclusions. Tensors PΩ−DD and QΩ−DD for the

composite can be written as [116]:

PΩ−DD =
(
Cm −CΩ

)−1
: Cm :

((
Cm −CΩ

)−1
: Cm − SΩ

)−1

, (5.214)

QΩ−DD =
(
Dm −DΩ

)−1
: Dm :

((
Dm −DΩ

)−1
: Dm

−
(
14S −Dm−1 : SΩ : Dm

) )−1

, (5.215)

where 1(4s) is forth-order symmetric identity tensor (see [116], section 15.5), SΩ is the

Eshelby’s tensor (see [116], section 7.3), Cm and CΩ can be expressed in the index

notation forms as shown in [116] section 15.6 and [124], Dm and DΩ can be found
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by taking inverse of Cm and CΩ, respectively. Note that since Eshelby’s tensor is

constant over the volume of an ellipsoid, the point-wise and average expressions are

identical. Substitute equations 9 and 10 into 7 and 8, to obtain the overall elasticity

and compliance tensor C̄DD and D̄DD for composite with dilute randomly distributed

and uniaxially oriented prolate spheroid inclusions (see [116], section 7.4):

C̄DD = Cm − fΩC
m :

((
Cm −CΩ

)−1
: Cm − SΩ

)−1

, (5.216)

D̄DD = Dm − fΩD
m :

((
Dm −DΩ

)−1
: Dm

−
(
14S −Dm−1 : SΩ : Dm

) )−1

. (5.217)

Note that based on equations 5.216 and 5.217, C̄DD and D̄DD are not exact

inverse of each other [116]. The error involved here is only acceptable up to around

10% volume fraction of inclusion. So, C̄DD and D̄DD can only be used at low volume

fractions. In this work, C̄DD Dwill be used for computation. Due to the anisotropy

of the prolate spheroid inclusion, C̄DD is transversely isotropic, while Cm and CΩ

are isotropic.

While equation 5.216 gives the overall elasticity tensor for a uniaxial orienta-

tion distribution, it can also be used to give the overall elasticity tensor for a composite

with dilute randomly distributed and in-plane randomly oriented prolate spheroid in-

clusions (see Figure 5.15b) through integration. The modification can be made by

calculating various elasticity tensors at all in-plane fiber-angle orientations, θβ, using

a second order rotational tensor Qβ, which is defined in [116] as Qα in Section 6.4

for 2D problem, with Qβ
33 = 1 and Qβ

13 = Qβ
31 = Qβ

23 = Qβ
32 = 0, and averaging the
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Figure 5.15: Models based on dilute and non-dilute random distributions
of inclusions: (a) Uniaxially-oriented distribution, where semi-major axis is

always parallel to X1 axis (b) In-plane randomly oriented distribution,
where semi-major axis always lies on X1X2-plane (c) 3D randomly oriented

distribution

elasticity tensors of all in-plane orientation angles. The overall elasticity tensor for

this composite, C̄DD−in−plane, can be expressed as:

C̄DD−in−plane =

{
1

2π

∫ 2π

0

C̄DD
pqrsQ

β
ipQ

β
jqQ

β
krQ

β
lsdθβ

}
ei ⊗ ej ⊗ ek ⊗ el, (5.218)

where Qβ
ip, Q

β
jq, Q

β
kr, and Q

β
ls are the ip, jq, kr, and ls components of Qβ (i, j, k, l, p,

q, r, s = 1, 2, 3), C̄DD
pqrs is the pqrs component of C̄DD in equation 5.216, ei, ej , ek,

and el are unit normal vectors. Similarly, equation 5.216 can be used for 3D randomly

oriented distributions (see Figure 5.15c). We use Qγ , which is defined in [116] as Qα

in Section 6.6 with index permutation 1→ 2→ 3→ 1 due to the different orientation

between the crack (in [116]) and the fiber (for our case), and average the elasticity

tensors of all orientations in three-dimensional space. The overall elasticity tensor for

this composite, C̄DD−3D, can be written as:

C̄DD−3D =

{
1

4π

∫ 2π

0

∫ π

0

C̄DD
pqrsQ

γ
ipQ

γ
jqQ

γ
krQ

γ
ls sinϕγdϕγdθγ

}
ei⊗ej⊗ek⊗el, (5.219)
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where Qγ
ip, Q

γ
jq, Q

γ
kr, and Q

γ
ls are the ip, jq, kr, and ls components of Qγ .

Non-Dilute Random Distributions of Inclusions (MT Model)

In Mori-Tanaka approach and contrary to the dilute models, the inclusions may

interact with each other through modifications in far-field strain to average strain in

the matrix [116, 118,121]. The superscripted MT will be used to indicate all models

developed from the method based on non-dilute random distribution of inclusions.

Tensors PΩ−MT for the composite can be written as (see [118], AMT and AEshelby

are equivalent to our PΩ−MT and PΩ−DD, respectively. Our equation 5.214 yields

the same result as equation 35 in [118]):

PΩ−MT = PΩ−DD :
[
(1− fΩ) 14S + fΩP

Ω−DD]−1
, (5.220)

Substitute equation 5.220 into equation 5.212, to obtain the overall elasticity tensor

C̄MT of the composite with non-dilute randomly distributed and uniaxially oriented

inclusions:

C̄MT = Cm − fΩ

(
CΩ −Cm

)
: PΩ−DD :[

(1− fΩ) 14S + fΩP
Ω−DD]−1

. (5.221)

The same averaging approach as the one used in Section 5.4.2 may be used to estimate

the properties for the other configurations shown in Figures 5.15b and 5.15c.
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Periodic Distributions of Inclusions (P Model)

The composite models based on this method may be regarded as a collection of

infinite unit cells of identical dimensions, each containing one inclusion. The inclusion

could have any geometric shape, e.g. cubic, sphere, cylinder, and etc [116,123]. In this

case for PU-MG composite, the inclusion has cylindrical shape, which has the same

dimensions as those of the milled glass fiber. The orientation of the inclusion can

be chosen arbitrary. The overall elasticity (or compliance) of the composite with the

chosen orientation of the inclusion can then be calculated using the overall elasticity

(or compliance) of the composite with the uniaxially aligned inclusions and a rotation

tensor that corresponds to the orientation of the inclusion [116]. Figure 5.17b shows

a unit cell or representative volume element (RVE) of the composite with uniaxially

aligned short fiber.

Figure 5.16a represents the structure of a uniaxially oriented periodic compos-

ite. The superscripted P will be used to indicate all models developed based on the

periodic distribution of inclusions. The tensors PΩ−P can be written as (for complete

detail, please see [116], Chapter 12):

PΩ−P =
(
Cm −CΩ

)−1
: Cm :

((
Cm −CΩ

)−1
: Cm − SP

)−1

, (5.222)

where SP is a fourth order tensor equivalent to Eshelby’s tensor [116]. Substituting

equation 5.222 into 5.212, the overall elasticity tensor C̄P of the composite with

periodically distributed and uniaxially oriented cylindrical inclusions is obtained [116]:

C̄P = Cm − fΩC
m :

((
Cm −CΩ

)−1
: Cm − SP

)−1

. (5.223)
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Due to the periodicity and geometry of the unit cell, C̄P has cubic symmetry, while

Cm and CΩ are isotropic. Note that in this case the overall compliance tensor D̄P

and C̄P are exactly each other’s inverse [116].

Figure 5.16: Models based on periodic distribution of inclusions: (a)
Uniaxially oriented distribution, where fiber axis is always parallel to X1

axis (b) In plane oriented distribution, where fiber axis always lies on
X1X2-plane (c) 3D randomly oriented distribution

Similar integration in equation 5.218 can be used to calculate C̄P−in−plane,

shown in Figure 5.16b. However, for the configuration in Figure 5.16c, an intermediate

step is required. Due to that the C̄P in equation 5.223 has cubic symmetry, we

have to modify C̄P to be transversely isotropic as is the case of C̄DD and C̄MT

in equations 5.216 and 5.221. The modification can be done, using a second order

rotation tensor Qδ defined similar to Qβ presented above with index permutation

1→ 2→ 3→ 1. The resulting tensor C̄P−tr includes the effect of interaction of the

inclusions in a periodic matrix, but, keeping the orientation of semi-major axis of the

inclusions fixed, it averages over all other possible lattice orientations:

C̄P−tr =

{
1

2π

∫ 2π

0

C̄P
pqrsQ

δ
ipQ

δ
jqQ

δ
krQ

δ
lsdθδ

}
ei ⊗ ej ⊗ ek ⊗ el, (5.224)

where Qδ
ip, Qδ

jq, Qδ
kr, and Qδ

ls are the ip, jq, kr, and ls components of Qδ. Note
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that, both C̄P−tr and C̄P−in−plane are transversely isotropic. However, the differ-

ence is that C̄P−in−plane has axial symmetry around X3 axis of the model shown in

Figure 5.16b; while C̄P−tr has axial symmetry around X1 axis of the model shown

in Figure 5.16a. Then the overall elasticity tensor of the composite shown in Fig-

ure 5.16c, C̄P−3D, can be calculated as:

C̄P−3D =

{
1

4π

∫ 2π

0

∫ π

0

C̄P−tr
pqrs Q

γ
ipQ

γ
jqQ

γ
krQ

γ
ls sinϕγdϕγdθγ

}
ei ⊗ ej ⊗ ek ⊗ el, (5.225)

5.4.3 Computation Parameters

All models based on dilute random, non-dilute random, and non-dilute periodic

distributions of inclusions require similar material and geometric input parameters,

i.e. geometry of the inclusion, volume fraction, and two mechanical properties of each

phase in the composites. However, the periodic distribution model also requires the

dimensions of unit cell.

Geometries of The Inclusions

To use the constant Eshelby’s tensor, prolate spheroid shape is used to model

the milled glass fiber in all random distribution models (see Figure 5.17a). The volume

of the prolate spheroid is taken equal to the average volume of the milled glass fibers.

The semi-major axis a1 is equated to half of the average length L of the milled glass

fibers, the semi-minor axes a2 = a3 are then calculated based on the volume equation.

For all models based on periodic approximation, the actual cylindrical shape is used,

with the same dimensions as those of the average milled glass fiber (see Figure 5.17b).
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Table 5.4 shows geometries of inclusions in micromechanical models.

Figure 5.17: (a) Geometry of a prolate spheroid (b) Geometry of a
periodic unit cell and short cylindrical fiber

Table 5.4: Geometries of inclusions used in the micromechanical models

Inclusion L or 2a1 r or a2 = a3 Volume
(µm) (µm) (µm3)

Prolate Spheroid 200 9.8 40212
Cylinder 200 8 40212

Dimensions of The Periodic Unit Cell

The exact dimensions of the unit cell in the periodic model have to be estimated

since the microstructure is not in fact periodic. Consider the geometry of a unit cell

shown in Figure 5.17b. We assume that each fiber in the PU-MG composites is

equal-distant apart from the unit cell wall in the X1, X2, and X3 directions. With

the known dimensions of the cylindrical inclusion at the center of the cell, the unit cell

dimensions 2A1, 2A2, and 2A3 can be calculated for each volume fraction. Table 5.5

shows the dimensions of unit cell for three volume fractions.

For the analysis of DMA results, the volume fractions of inclusion are 0.1, 0.15,

and 0.20. The volume fractions are 0.05, 0.1, and 0.2 for ultrasonic wave tests.



286

Table 5.5: Dimensions of the periodic unit cells

Volume Fraction 2A1 2A2 = 2A3

(µm) (µm)
0.05 241.69 57.69
0.1 226.17 42.17
0.15 218.99 34.99
0.2 214.61 30.61

Mechanical Properties for Computation to Compare with DMA Experi-

ment

Shear storage modulus, G, and Poisson’s ratio, ν, of the fully elastic milled

glass fiber are listed in Table 5.6 and assumed to be constants in all calculations.

For polyurea matrix phase, we have the complex dynamic Young’s modulus obtained

from the DMA measurement as shown in the accompanying experimental paper [73],

Figure 4. We also use the quasi-static longitudinal moduli obtained from confined

compression tests. In the confined compression test, polyurea sample is laterally

confined in a steel compression cell under applied uniaxial load. The sample contrac-

tion and applied force were recorded. Quasi-static longitudinal modulus L can be

calculated from the slope of the curve in the linear region [41]. The quasi-static longi-

tudinal moduli from -50 to 30 ◦C with 10 ◦C increments are shown in Table 5.7. Other

data points can be calculated, using interpolation (and extrapolation above 30 ◦C).

In the modeling, the properties of polyurea are complex numbers. The Young’s

storage modulus is a real number and the Young’s loss modulus is an imaginary num-

ber. The quasi-static longitudinal modulus is considered real (neglecting small loss,

L′′/L′ << 1), and assumed frequency-insensitive within 0-20 Hz. With these two

moduli, other viscoelastic properties of polyurea can be found using regular elastic
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modulus interrelation for isotropic material.

Table 5.6: Mechanical properties of milled glass fiber [131]

Milled Glass
G ν

(GPa)
30.34 0.2

Table 5.7: Quasi-static longitudinal modulus of pure polyurea [41]

Temperature L
(◦C) (GPa)
-50 3.8223
-40 3.3925
-30 3.1351
-20 2.8624
-10 2.8213
0 2.7802
10 2.6066
20 2.4575
30 2.2405

Mechanical Properties for Computation to Compare with Ultrasonic Wave

Experiment

The two mechanical properties of milled glass are constants for all calculations

and are listed in Table 5.6. Two viscoelastic properties (longitudinal and shear mod-

uli) of pure polyurea for ultrasonic-wave-test modeling are given in [73], Figure 9.

Other mechanical properties can be found using typical interrelations between elastic

moduli.
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5.4.4 Results and Discussion

DMA Result

We calculated the viscoelastic properties of PU-MG composites under DMA

measurement, using the models shown previously and compared them with the ex-

perimental results reported in part I of this paper [73]. Scanning electron microscopy

revealed that milled glass fibers are randomly distributed and oriented in the all

PU-MG composite samples for DMA measurement. Thus, 3D random orientation

models are used to calculate the overall dynamic Young’s moduli of the PU-MG

composites. Hashin has showed that by replacing the real elastic moduli of each

phase in micromechanical models of elastic composites with their complex counter-

parts (storage and loss components), one can directly utilize them for viscoelastic

composites [111]. Shear G∗ and bulk K∗ moduli for each model are calculated as:

G∗ = G′ +G′′i = M̄3D
2323 = M̄3D

3131 = M̄3D
1212, (5.226)

K∗ = K ′ +K ′′i =
M̄3D

ijkl

9
, (5.227)

where M̄3D
2323, M̄3D

3131, and M̄3D
1212 are the 2323, 3131, and 1212 components of the tensor

C̄DD−3D (equation 5.219) or C̄MT−3D or C̄P−3D (equation 5.225), depending on

what model is used. M̄3D
ijij is the summation of the components with repeated indices

(i, j = 1, 2, 3). K ′ and K ′′ are bulk storage and loss moduli. Then dynamic Young’s
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moduli E∗ can be calculated as:

E∗ = E ′ + E ′′i =
9K∗G∗

3K∗ +G∗
, (5.228)

where E ′ and E ′′ are Young’s storage and loss moduli.

Within the typical testing frequency range (1-20 Hz) of DMA measurement,

the dynamic Young’s moduli of PU-MG composites are not strong functions of the

frequency, therefore only the experimental and the computational values at 1 and

20 Hz are compared over the temperature range of -50 to 50 ◦C and shown in Fig-

ure 5.18. We can see that the calculations from the three models are able to predict

the trends of both storage and loss moduli of PU-10%MG (see Figures 5.18a and

5.18d). As expected the three models agree very well with the experimental results.

Since the volume fraction of milled glass is very small, the particle interaction does not

significantly affect the mechanical properties of the composite. As volume fraction of

milled glass increases to 15% (see Figures 5.18b and 5.18e), we observe that among the

three models, the dilute distribution (DD-3D) model underestimates Young’s storage

modulus. The non-dilute model based on Mori-Tanaka (MT-3D) approach slightly

underestimates the Young’s storage modulus while the periodic model (P-3D), agrees

very well with experiment for both the Young’s storage and loss moduli. As the

volume fraction of milled glass increases up to 20% (see Figures 5.18c and 5.18f),

calculations of Young’s storage modulus of the PU-MG composite from DD-3D and

MT-3D models are significantly lower than experiments (around 20%-50% lower),

while the calculations of the Young’s loss modulus are around 15% higher at temper-

ature below −40 ◦C and around 30% lower above −40 ◦C . It is noteworthy that the

prediction of the P-3D model is always closer to experimental results than both other
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models. This observation proves that the method based on periodic distribution of

inclusions is very powerful in predicting the mechanical properties of composites with

randomly distributed inclusions at high volume fraction of inclusions, even though

the model does not appropriately represent the actual random micro-structure of the

composites. The reason may be that it takes into account directly the interaction

between adjacent particles through the evaluations of stress and strain fields in the

particles, which dominates and has high influence on the mechanical properties of the

composites [116,123].

Figure 5.19 shows the comparison between master curves and shift factors

constructed using experimental data and the computational master curves and shift

factors constructed using calculation data based on the P-3D model for PU-10%MG,

PU-15%MG, and PU-20%MG. The procedure to construct a master curve for a PU-

MG composite is discussed in the accompanying paper [73]. We can see that for all

three volumes, the computational master curves are able to track the trends of DMA

data. They agree excellently with each other, especially at 10% and 15% volume frac-

tions. The discrepancy between computation and DMA data becomes larger at 20%

volume fraction (see Figure 5.19c). At this volume fraction, the P-3D model slightly

underestimates the experimental Young’s storage modulus master curve. The esti-

mation improves as frequency increases. The loss master curves also show reasonable

agreement. The largest deviation happens at the very low frequency range. This may

be due to two factors (1) we assumed that the quasi-static longitudinal loss modulus

of the polyurea is zero in our calculations and (2) extrapolation was performed to

calculate the quasi-static longitudinal modulus at high temperature (above 30 ◦C )

which corresponds to low frequency in the master curve.
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Figure 5.18: logE ′R and logE ′′R versus temperature: (a) PU-10%MG at
1 Hz (b) PU-15%MG at 1 Hz (c) PU-20%MG at 1 Hz (d) PU-10%MG at

20 Hz (e) PU-15%MG at 20 Hz (f) PU-20%MG at 20 Hz

Figure 5.19: (a) master curves of PU-10%MG versus angular frequency
(b) master curves of PU-15%MG versus angular frequency (c) master

curves of PU-20%MG versus angular frequency (d) log aT of PU-10%MG
versus temperature (e) log aT of PU-15%MG versus temperature (f) log aT

of PU-20%MG versus temperature

Ultrasonic Wave Testing Result

From our previous study, scanning electron microscopy revealed that milled

glass fibers are randomly distributed and oriented in all longitudinal-wave-test sam-
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ples but tend to lie parallel to the surfaces of the shear-wave-test samples since the

shear-wave-test samples are much thinner than longitudinal-wave-test samples and

were compressed between two glass sheets during the fabrication process [73]. Cor-

responding to this observation, micromechanical models are used to investigate and

confirm the observation. All the three 3D random orientation models and the three

in-plane orientation models were used in order to calculate the overall dynamic longi-

tudinal and shear moduli of the PU-MG composites. They were compared with the

results of ultrasonic wave experiments at 1 MHz from -50 to 30 ◦C with 10 ◦C step for

PU-5%MG, PU-10%MG and PU-20%MG composites.

The computational longitudinal and shear moduli (L∗ and G∗) for the models

with the 3D random orientation of fiber can be found as:

L∗ = L′ + L′′i = M̄3D
1111 = M̄3D

2222 = M̄3D
3333, (5.229)

G∗ = G′ +G′′i = M̄3D
2323 = M̄3D

3131 = M̄3D
1212, (5.230)

where M̄3D represents any of the tensors C̄DD−3D, C̄MT−3D, or C̄P−3D. For the

in-plane orientation:

L∗ = L′ + L′′i = M̄ in−plane
3333 , (5.231)

G∗ = G′ +G′′i = M̄ in−plane
2323 = M̄ in−plane

3131 , (5.232)

where M̄ in−plane represents any of the tensors C̄DD−in−plane, C̄MT−in−plane, or
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C̄P−in−plane.

Figure 5.20 shows experimental and computational dynamic longitudinal mod-

uli of PU-5%MG, PU-10%MG, and PU-20%MG at 1 MHz. Unlike comparisons of

Young’s storage and loss moduli in the previous section, there is no significant differ-

ence among the results calculated from the three different models (DD, MT , and P ).

The difference between the orientations is nevertheless significant with 3D random

cases performing much better than in-plane cases. At 20% volume fraction, the 3D

(and in-plane) models underestimate longitudinal loss modulus, while they precisely

estimate longitudinal storage modulus (see Figures 5.20c and 5.20f).

The experimental and computational dynamic shear moduli of PU-5%MG,

PU-10%MG, and PU-20%MG at 1 MHz are shown in Figure 5.21. Similarly, there

is no significant difference among the results calculated from three different models

based on the three approaches (DD, MT , and P ). The models deviate based on

the orientation of fibers. The experimental results generally lie between the two

distributions. In most cases, they tend to be closer toward the results of the in-

plane orientation models, especially when we consider the shear storage modulus or

for the lower volume fractions. The exception is for the loss modulus at the highest

volume fraction, 20% (see Figure 5.21f). The storage modulus at 20% and lower

temperatures also is a case where the experimental results appear to be in the middle

of both models (see Figure 5.21c). It is possible that at higher volume fractions, the

fibers are not permitted to align in plane to the fullest extent, considering they may

prevent each other from rotation, while at lower volume fractions, the fluid flow and

pressure induces this preferential plane alignment.
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Figure 5.20: (a) L′ of PU-5%MG versus temperature (b) L′ of
PU-10%MG versus temperature (c) L′ of PU-20%MG versus temperature
(d) L′′ of PU-5%MG versus temperature (e) L′′ of PU-10%MG versus

temperature (f) L′′ of PU-20%MG versus temperature

Figure 5.21: (a) G′ of PU-5%MG versus temperature (b) G′ of
PU-10%MG versus temperature (c) G′ of PU-20%MG versus temperature
(d) G′′ of PU-5%MG versus temperature (e) G′′ of PU-10%MG versus

temperature (f) G′′ of PU-20%MG versus temperature
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5.4.5 Conclusion

We have developed micromechanical models, based on three assumptions: (1)

dilute random (DD), (2) non-dilute random (MT), and (3) periodic (P) distributions

of inclusions. In each method, three models with different fiber orientations: uniaxial,

in-plane, and 3D, were developed. The models were used to study the dynamic be-

haviors of PU-MG composites at 5%, 10%, 15%, and 20% volume fractions of milled

glass. The DD and MT models require less computational cost compared to P model,

but are less accurate for high volume fractions of inclusions. Comparison with the ex-

perimental results from DMA measurement proves that the models based on periodic

distribution of inclusions is the most accurate in predicting mechanical properties

of composites with randomly distributed inclusions at higher volume fractions. The

periodic model was used to calculate and construct the master curves of the Young’s

storage and loss moduli. The computations were compared with the master curves

from DMA experiment with very good agreement at 10% and 15% volume fractions

of milled glass. At 20% volume fraction, the discrepancy between computations and

experimental data becomes larger as expected. The reason might be that (1) we

assumed that the quasi-static longitudinal loss modulus of the polyurea is zero in

our calculations and (2) extrapolation was performed to calculate the quasi-static

longitudinal modulus of polyurea matrix phase at higher temperatures (above 30 ◦C)

which correspond to lower frequencies in the master curve. All models were used

to estimate the dynamic longitudinal and shear moduli of PU-MG composites under

ultrasonic wave measurement. The computational results were compared with exper-

imental results. The comparisons are able to reveal the orientation of fibers in the

tested samples with the models in general able to distinguish between the aligned
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distributions of particulates for the thinner samples compared to 3D random orien-

tations in thicker samples. All the models developed in this study could be used

for other polymer-based composites with the similar microstructure to the PU-MG

composite.
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5.A Eshelby’s Tensors

The components of Eshelby’s tensor SΩ for prolate spheroid (see Figure 5.22)

with respect to a rectangular Cartesian coordinate system are listed below [116,117].

All calculation and proof detail can be found in reference [114–117].

SΩ
1111 =

3

8π (1− ν)
a2

1I11 +
1− 2ν

8π (1− ν)
I1 (5.233)

SΩ
1122 =

1

8π (1− ν)
a2

2I12 −
1− 2ν

8π (1− ν)
I1 (5.234)
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SΩ
1133 =

1

8π (1− ν)
a2

3I13 −
1− 2ν

8π (1− ν)
I1 (5.235)

SΩ
1212 =

(a2
1 + a2

2)

16π (1− ν)
I12 +

1− 2ν

16π (1− ν)
(I1 + I2) (5.236)

All other non-zero components are obtained by cyclic permutation of (1, 2, 3). The

components which cannot be obtained by cyclic permutation are zero; for instance

SΩ
1112 = SΩ

1223 = SΩ
1232 = 0

I2 = I3 =
2πa1a

2
3

(a2
1 − a2

3)
3
2

[
a1

a3

(
a2

1

a2
3

− 1

) 1
2

− cosh−1 a1

a3

]
(5.237)

I1 = 4π − 2I2 (5.238)

I12 = I13 = I21 = I31 =
I2 − I1

(a2
1 − a2

2)
(5.239)

3I11 =
4π

a2
1

− 2I12 (5.240)

I22 = I33 = I23 = I32 (5.241)

I22 =
π

a2
2

− I2 − I1

4 (a2
1 − a2

2)
(5.242)
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Figure 5.22: Prolate spheroid (a2 = a3 < a1) and its geometry

Eshelby’s tensor SΩ for sphere in term of its components is given by:

SΩ
ijkl =

5ν − 1

15 (1− ν)
δijδkl +

4− 5ν

15 (1− ν)
(δikδjl + δilδjk) (5.243)



Chapter 6

Design of One-Dimensional Periodic

Layered Composites for Acoustic

Applications

In this chapter, the analysis of acoustic wave propagation in a one- dimensional

periodic layered composite is discussed. To design the periodic layered composite,

there are three components needed to be considered: (1) acoustic band structure, (2)

effective dynamic properties, and (3) energy reflection and transmission coefficients.

The acoustic band structure shows the relation between frequency and wavenumber.

An acoustic wave with a given frequency would be allowed to pass the periodic layered

composite if it has at least one wavenumber associated with the given frequency in

the band structure plot. This is also called pass band. On the other hands, if there is

no wavenumber associated with the given frequency, the periodic layered composite

does not allow any acoustic wave to pass at that frequency. This phenomenon shows

up in the acoustic band structure as a gap. Therefore it is referred to as a band

299
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gap. A transfer of energy of an acoustic wave propagating from a medium to another

medium depends on acoustic impedances of the two media. If the impedances of

the two media are matched, the energy of the propagating acoustic wave will be

completely transferred from the first medium to the second medium. If there is a

mismatch, certain amount of energy will get reflected back, depending on the degree

of the mismatch. The impedance of a homogeneous material is the square root of

its density multiplied by its dynamic modulus. For a periodic layered composite,

it consists of many homogeneous constituents each of which has it own dynamic

properties. Therefore the effective or overall dynamic properties of the periodic layer

composite is required in order to characterize it as a whole. In this research, the

dynamic homogenization using field variable averaging method is used to calculate

effective impedance of the periodic layered composite. In addition, transfer matrix

method is used to provide an exact solution for calculating the energy reflection

and transmission at the interfaces between the periodic layered composite and two

surrounding homogenous half-spaces (see Figure 6.1).

6.1 Band Structure Calculation for One-

Dimensional Periodic Layer Composites

In this section the band structure calculation based on transfer matrix method

is discussed [62,83]. Consider a one-dimensional periodic layered composite consisting

of an infinite number of identical repeated unit cells shown in Figure 6.2. The wave
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Figure 6.1: A one-dimensional periodic layered composite with two
surrounding homogenous half-spaces

equation for the longitudinal waves that propagate in the x-direction is:

∂2u (x, t)

∂t2
= c2

(j)

∂2u (x, t)

∂x2
, (6.1)

where u is the displacement, x and t are spatial and time variables, c(j) is the lon-

gitudinal wave speed in the j-th layer of the composite. The general solution for

displacement in each layer can be expressed as the superposition of two longitudinal

waves traveling in opposite directions.

u (x, t) =
[
A

(j)
+ eik(j)x + A

(j)
− e
−ik(j)x

]
e−iωt, (6.2)

where

k(j) =
ω

c(j)

, (6.3)

ω is angular frequency, A(j)
+ and A

(j)
− are the amplitudes of the waves traveling in

positive and negative x-direction in j-th layer, respectively. k is the wavenumber in



302

the j-th layer. The stress, σ in the periodic layered composite can be written as:

σ (x, t) = E(j)
∂u (x, t)

∂x
, (6.4)

where

E(j) = ρ(j)c
2
(j), (6.5)

ρ(j) is density of the j-th layer, E(j) is the modulus of the j-th layer. Substitute

equation 6.2 into 6.4, we obtain:

σ (x, t) =
[
A

(j)
+ Q(j)ie

ik(j)x − A(j)
− Q(j)ie

−ik(j)x
]
e−iωt, (6.6)

where

Q(j) = E(j)k(j) = Z(j)ω, (6.7)

Z(j) = ρ(j)c(j) is the impedance of the j-th layer. The displacement and stress in the

j-th layer can be expressed in the matrix form as:

 u (x)

σ (x)

 = B(j)

 A
(j)
+ eik(j)x

A
(j)
− e
−ik(j)x

 , (6.8)

where

B(j) =

 1 1

iQ(j) −iQ(j)

 . (6.9)
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Let x(j)L and x(j)R denote the left and right boundaries of j-th layer in the unit cell,

respectively. x(j)L and x(j)R for each layer are related through:

x(j)R = x(j)L + d(j), (6.10)

where d(j) is the thickness of the j-layer. Using equations 6.8 and 6.10, the dis-

placement and stress on the left and the right boundaries of the j-layer are related

by:

 u
(
x(j)R

)
σ
(
x(j)R

)
 = B(j)D(j)

(
d(j)

)
B−1

(j)

 u
(
x(j)L

)
σ
(
x(j)L

)
 , (6.11)

where

D(j)

(
d(j)

)
=

 eik(j)d(j) 0

0 e−ik(j)d(j)

 . (6.12)

The product of B(j)D(j)

(
d(j)

)
B−1

(j) is a 2X2 matrix which can be simplified as:

B(j)D(j)

(
d(j)

)
B−1

(j) =

 cos
(
k(j)d(j)

) sin(k(j)d(j))
Q(j)

−Q(j) sin
(
k(j)d(j)

)
cos
(
k(j)d(j)

)
 = T (j), (6.13)

where T(j) is called the transfer matrix for j-th layer. Due to the continuity of

displacement and stress between each two adjacent layers, the displacement and stress

at the left boundary of the first layer (1) in the unit cell (shown in Figure 6.2) are
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related to those at the right boundary of the (N)-th layer by:

 u
(
x(N)R

)
σ
(
x(N)R

)
 = T

 u
(
x(1)L

)
σ
(
x(1)L

)
 , (6.14)

where

T = T (N)T (N−1)...T (1), (6.15)

T is the cumulative transfer matrix of the unit cell. For Bloch type waves the dis-

placement and stress at a given point of the unit cell are related to the corresponding

point in the adjacent unit cell by:

y (x+ d) = eikdy (x) , (6.16)

where

y (x) =

 u (x)

σ (x)

 , (6.17)

k is the Bloch wavenumber and d is the length of the unit cell shown in Figure 6.2.

Equations 6.14-6.17 lead to the following eigenvalue problem:

T (ω)y
(
x(1)L

)
= λy

(
x(1)L

)
, (6.18)
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where

λ = eikd, (6.19)

λ is the eigenvalue and y
(
x(1)L

)
is the eigenvector. The solutions of equation 6.18

yield the band structure for longitudinal wave propagation in an infinitely extended

one-dimensional periodic layered composite.

Figure 6.2: Unit cell of a one-dimensional periodic layered composite

6.2 Dynamic Homogenization for One-Dimensional

Periodic Layer Composites

The effective dynamic properties of one-dimensional periodic layered compos-

ites can be calculated using dynamic homogenization. In this study, a method based
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on integration of field variables will be discussed [132, 133]. Consider Bloch waves

in an infinitely extended periodic layered composite consisting of identical repeated

unit cells Ω = {x : 0 ≤ x ≤ d}. The unit cell is shown in Figure 6.2 For harmonic

waves traveling in the layered composite with wavenumber k and frequency ω, the

field variables can be expressed as:

u (x, t) = U (x) ei(kx−ωt), (6.20)

u̇ (x, t) = U̇ (x) ei(kx−ωt), (6.21)

ε (x, t) = E (x) ei(kx−ωt), (6.22)

σ (x, t) = Σ (x) ei(kx−ωt), (6.23)

p (x, t) = P (x) ei(kx−ωt), (6.24)

where u and u̇ are the displacement and velocity fields, ε and σ are strain and stress

fields, and p is the linear momentum filed, The capital variables, U , U̇ , E, Σ, and

P represent the periodic parts of displacement, velocity, strain, stress, and linear

momentum, respectively. The equation of motion and kinetic relation are given by:

ρ (x)
∂2u (x, t)

∂t2
=
∂σ (x, t)

∂x
, (6.25)
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ε (x, t) =
∂u (x, t)

∂x
. (6.26)

Equation 6.25 can be written in term of linear mentum as:

∂p (x, t)

∂t
=
∂σ (x, t)

∂x
, (6.27)

where the linear momentum p is:

p (x, t) = ρ (x) u̇ (x, t) . (6.28)

Differentiate equation 6.26 with respect to time give the strain-rate/velocity relation

as:

∂ε (x, t)

∂t
=
∂u̇ (x, t)

∂x
. (6.29)

Substitute equations 6.23 and 6.24 into 6.27 and equations 6.21 and 6.22 into 6.29

and multiply them with e−kX , we obtain:

∇
(
Σ (x) eik(x−X)

)
+ iωP (x) eik(x−X) = 0, (6.30)

∇
(
U̇ (x) eik(x−X)

)
+ iωE (x) eik(x−X) = 0, (6.31)
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where ∇ = ∂
∂x

+ ik. Introduce the change of variable y = x−X in the equations 6.30

and 6.31 to obtain:

∇y

(
Σ (X + y) eik(y)

)
+ iωP (X + y) eik(y) = 0, (6.32)

∇y

(
U̇ (X + y) eik(y)

)
+ iωE (X + y) eik(y) = 0. (6.33)

Average the two equations above with respect to X over the unit cell to arrive at

∇y

(
Σ̄eik(y)

)
+ iωP̄ eik(y) = 0, (6.34)

∇y

(
¯̇Ueik(y)

)
+ iωĒeik(y) = 0, (6.35)

where any of the barred quantities are the averages of the unbarred and defined by:

Ḡ =
1

d

∫ x=d

x=0

G (x) dx. (6.36)

It is worth pointing out that the overall field variables defined according to equa-

tion 6.36 satisfy the overall field equations 6.34 and 6.35, from which we have:

Σ̄ +
ω

k
P̄ = 0, (6.37)

¯̇U +
ω

k
Ē = 0. (6.38)
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The mean constitutive relations can be defined as:

Σ̄ = Ceff Ē, (6.39)

P̄ = ρeff
¯̇U, (6.40)

where Ceff and ρeff are the effective or overall dynamic stiffness and density, respec-

tively. It is worth noting that for the four linear and homogeneous equations 6.37-6.40

to admit nontrivial solutions for the overall effective field quantities, Σ̄, P̄ , ¯̇U , and Ē

we must have:

Ceff
ρeff

=
(ω
k

)2

. (6.41)

Equation 6.41 gives the dispersion relations or the acoustic band structure as discussed

previously. The effective acoustic impedance of the periodic layered composite, Zeff

can be calculated from:

Zeff =
√
ρeffCeff . (6.42)
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6.3 Transfer Matrix Approach For Analysis of

Energy Reflection, Transmission, and

Dissipation

In this section, transfer matrix method is discussed. It provides an exact

solution for calculating the energy reflection, transmission, and dissipation coefficients

at the interfaces of a one-dimensional finite periodic layered composite sandwiched

by two homogenous half-spaces. Consider m unit cells of a one-dimensional periodic

layered composite in which each of unit cell consists of N individual layers. The

unit cell is shown in Figure 6.2. The periodic layered composite is sandwiched by

two homogenous half-spaces, as shown in Figure 6.3. Consider an incoming harmonic

wave with amplitude A(0)
+ moving from the medium, M(0) toward the composite in

positive x-direction, and a reflected wave with amplitude A(0)
− , moving away from the

composite to the incident medium, M(0). The displacement in the incident medium,

can be expressed as

u (x, t) =
[
A

(0)
+ eik(0)x + A

(0)
− e
−ik(0)x

]
e−iωt, (6.43)

where k(0) is wavenumber in the incident medium M(0). The displacement in each

layer of the composite can be given by equation 6.2. In the transmission medium

M(mN+1), there is a harmonic wave with amplitude A(mN+1)
+ moving out from the

composite in the positive x-direction. The displacement in the transmission medium
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M(mN+1) can be given by:

u (x, t) =
[
A

(mN+1)
+ eik(mN+1)x

]
e−iωt, (6.44)

where k(mN+1) is wavenumber in the transmission medium M(mN+1). Similar to Sec-

tion 6.1, the displacement and stress at the left boundary of the first layer in the first

unit cell of the composite are related to those at the right boundary of the N-th layer

in the m-th unit cell by:

 u
(
x(N)R,m

)
σ
(
x(N)R,m

)
 = Tm

 u
(
x(1)L,1

)
σ
(
x(1)L,1

)
 , (6.45)

where u
(
x(N)R,m

)
and σ

(
x(N)R,m

)
are the displacement and stress, respectively, at the

right boundary of the N-th layer in the m-th unit cell, while u
(
x(1)L,1

)
and σ

(
x(1)L,1

)
are the displacement and stress, at the left boundary of the first layer in the first

unit cell, T is the cumulative transfer matrix of a unit cell (see equation 6.15). From

equations 6.8 and 6.12 and the continuity of displacement and stress at the interfaces

between the composite and the surrounding media, M(0) and M(mN+1), we can write:

 u
(
x(N)R,m

)
σ
(
x(N)R,m

)
 = B(Nm+1)D(Nm+1) (L)

 A
(nM+1)
+

0

 , (6.46)

 u
(
x(1)L,1

)
σ
(
x(1)L,1

)
 = B(0)D(0) (0)

 A
(0)
+

A
(0)
−

 , (6.47)
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where L is the total length of the composite, Matrices B and D are defined in equa-

tions 6.9 and 6.12, respectively. Substitute equations 6.46 and 6.47 into equation 6.45,

we obtain:

 A
(nM+1)
+

0

 = K

 A
(0)
+

A
(0)
−

 , (6.48)

where

K = D−1
(Nm+1) (L)B−1

(Nm+1)T
mB(0)D(0) (0) . (6.49)

From equation 6.48, A(0)
− and A(mN+1)

+ can be written in term of A(0)
+ as:

Figure 6.3: A finite one-dimensional periodic layered composite
sandwiched by two homogenous half-spaces

A
(0)
− = −K21

K22

A
(0)
+ , (6.50)
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A
(Nm+1)
+ =

(
K11 −

K12K21

K22

)
A

(0)
+ , (6.51)

where Kij is component ij (i, j = 1, 2) of the matrix K. Since the energy of acoustic

wave is proportional to the square of its amplitude, we then define energy reflection

and transmission coefficients, RC and TC as:

RC =

∣∣∣∣∣A(0)
−

A
(0)
+

∣∣∣∣∣
2

=

∣∣∣∣−K21

K22

∣∣∣∣2 , (6.52)

TC =

∣∣∣∣∣Z(Nm+1)

Z(0)

(
A

(Nm+1)
+

A
(0)
+

)∣∣∣∣∣
2

=

∣∣∣∣Z(Nm+1)

Z(0)

(
K11 −

K12K21

K22

)∣∣∣∣2 . (6.53)

The ratio, Z(Nm+1)

Z(0)
accounts for when the media M(0) is different from M(Nm+1). The

energy dissipation coefficient is then defined as:

DC = 1−RC − TC (6.54)

If there is no energy dissipation in the composite, DC will be zero. In general, if the

composite consists of layers of elastic materials, DC will be zero. However, this is

not true when the composite has one or more viscoelastic layers.

6.4 Towards Active Acoustic Metamaterial

In this section, the calculation tools presented in Sections 6.1-6.3 will be used

to design an active acoustic metamaterial. Due to the limitation in time, the exper-

imental validation of the design will be future work. The definition of the so-called
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active acoustic metamaterial (AAM) in this study is a one-dimensional periodic lay-

ered composite that can absorb, measure, dissipate, generate and transmit acoustic

waves. For the sake of experimental validation in the future, the incident and trans-

mission media in the design are chosen to be aluminum bars. The AAM is divided

into two sequential sections (see Figure 6.4). The incident wave is coming from left

to right. The wave will hit section A first. Section A is a periodic layered composite

designed with the objective that it can absorb and measure or generate and transmit

acoustic waves in the 1st acoustic branch (longitudinal vibration mode). Section B

is another periodic layered composite designed with the objective that it can absorb

and dissipate the acoustic waves.

Figure 6.4: Two sequential sections in the active acoustic metamaterial

Table 6.1: Section A: material parameters

Kapton Copper Piezoelectric Material
E (GPa) 2.5 120 84
ρ (kg m−3) 1420 8193 7900

Z (MPa s m−1) 1.88 31.36 25.76
Thickness (mm) 0.1 0.2 2

From the design objective of section A, it needs to have a layer in a unit cell
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Figure 6.5: (a) Dimensions of a unit cell in the periodic layered composite
section A (b) Total number of unit cells in section A

Table 6.2: Material parameters for aluminum

Aluminum
E (GPa) 69
ρ (kg m−3) 2700

Z (MPa s m−1) 13.6

that can sense or measure the incident acoustic wave and later generate, if and when

necessary, a wave similar to the measured incident wave. Therefore, a piezoelectric

material, which can convert mechanical stress/strain to electrical voltage and vice

versa, is chosen as one of the components in a unit cell. To drive the piezoelectric

material, we need two electrical conductor layers: one at the front and another one at

the back of the piezoelectric material. Therefore, two copper shim stocks are chosen

as electric conductor layers. Two polyimide films (Kapton) are chosen to cover both

front and back side of the unit cell. These two polyimide layers help electrically
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Figure 6.6: (a) Band structure of the periodic layered composite section A
(b) Frequency versus effective impedance of the periodic layered composite

section A

insulate the unit cell and prevent the unit cell from short circuit. Figure 6.5a shows a

design of a unit cell in the section A that has the effective acoustic impedance, Zeff

matches with the impedance of the surrounding aluminum, ZAl. Figure 6.5b shows the

total number of unit cell in the composite. The materials parameters for the section

A composite and aluminum are shown in Tables 6.1 and 6.2. Figure 6.6a shows the

acoustic band structure of the section A composite. The vertical axis is frequency,

while the horizontal axis is the normalized wavenumber kd. To be noted, k is the Bloch

wavenumber and d is the length of the unit cell. The first acoustic branch is from 0

to 245 kHz, followed by stop band from 245 kHz to 666 kHz. In this stop band, there

is no acoustic wave passing through the section A composite. From 666 to 759 kHz is

the second acoustic branch. The band structure in Figure 6.6a was calculated using
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Figure 6.7: Composite section A: Energy reflection and transmission
coefficients versus frequency

equation 6.18. Figure 6.6b shows the frequency versus effective acoustic impedance

of the section A composite. As we can see, the effective impedance, Zeff of the

composite matches the impedance of aluminum (13.6 MPa s m−1 ) from 0 up to 135

kHz within 5% difference. The effective impedance was calculated using equation 6.42.

If Zeff really matches ZAl, there should not be acoustic waves reflected from the

interface between the composite and the surrounding aluminum. To prove this, the

energy reflection and transmission coefficients, RC and TC were calculated using

equations 6.52 and 6.53, respectively. RC and TC of the section A composite as

functions of frequency are shown in Figure 6.7. It can be seen that within 0 to

135 kHz RC is zero and TC is 100%, meaning that there is no reflection of the

acoustic waves in this frequency range. Therefore, this confirms that the design of

section A is reliable. Next step will be experimental proof. This will be future work.
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Figure 6.8: (a) Dimensions of a unit cell in the periodic layered composite
section B (b) Total number of unit cells in section B

From the design objective of section B, it needs to have a layer in a unit cell

that can dissipate the energy of the incident acoustic wave. Therefore, a viscoelastic

material, which has high loss modulus, should be used as one of the components in a

unit cell. In this work, PU-20%MG is chosen. Mechanical properties of PU-20%MG

composite as functions of frequency are reported in Section 3.4, and micromechanical

models for PUMG composites are shown in Section 5.4. Since PU-20%MG is a soft

viscoelastic material, it has low E ′, E ′′, and density, leading to low impedance com-

pared to aluminum (see Tables 6.2 and 6.3). Since we want to match the effective

impedance of the composite to that of aluminum, two stiff materials with high den-

sities are used for the two remaining components of the section B composite in order

to compensate for the low impedance of the PU-20%MG layer. Therefore, steel and
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Figure 6.9: (a) Band structure of the periodic layered composite section B
[Assume: E ′′ of PU-20%MG is 0] (b) Frequency versus effective impedance
of the periodic layered composite section B [Assume: E ′′ of PU-20%MG is

0] (c) Band structure of the periodic layered composite section B (d)
Frequency versus effective impedance of the periodic layered composite

section B

copper are chosen. In this work, three phase periodic layered composite is preferred.

However there is no restriction to use higher or lower number of phases. Further study

is required in order to understand the benefits of the composites with higher or lower

number of phases. For our design, the stiffest material (Steel) is placed at the center

of the unit cell and sandwiched by the two soft viscoelastic layers (PU-20%MG). The

second stiffest material (Copper) is placed at both ends of the unit cell. Figure 6.8a

shows a design of a unit cell of the section B composite that has the effective acoustic

impedance, Zeff matches with the impedance of the surrounding aluminum, ZAl. Fig-
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Figure 6.10: Composite section B: Energy reflection and transmission
coefficients versus frequency

ure 6.8b shows the total number of unit cell in the composite. As we can see, the total

length of the composite is quite long. This is due to the fact that the impedance of the

surrounding medium (aluminum) is quite high. If the surrounding medium is a mate-

rial with lower impedance (for example water), then the steel and copper phases can

be redesigned with thinner thicknesses. Figure 6.9c shows the acoustic band structure

of the section B composite. Due to the effect of the complex viscoelastic modulus of

the PU-20%MG phase, the band structure of the section B becomes complicated. It

is more difficult to locate the boundaries of first and second acoustic branches (see

Figure 6.9c). To aid the separation of the two acoustic branches, another band struc-

ture of the section B composite was calculated with the assumption that E ′′ of the

PU-20%MG is zero (see Figure 6.9a) and compared with the actual one in Figure 6.9c.

From Figures 6.9a and 6.9c, the first acoustic branch is from 0 to 43 kHz, followed by
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a very tiny stop band from 43 kHz to 50 kHz. The second acoustic branch is from 50

to 67 kHz. After that, there is a large stop band that goes beyond 200 kHz. The band

structures in Figures 6.9a and 6.9c were calculated using equation 6.18. The materials

parameters for the section B composite are shown in Table 6.3. To be noted, E ′ and

E ′′ of PU-20%MG depend on frequency. Since the composite is designed for the first

acoustic branch which covers low frequency range, we use E ′ and E ′′ of PU-20%MG

obtained at 10 kHz and 20 ◦C using the acoustic ball impact measurement discussed

in Section 3.5. The more appropriate E ′ and E ′′ would be the numbers at the mid

frequency of the operating frequency range of the designed composite. Figure 6.9d

shows the frequency versus effective acoustic impedance of the section B composite.

As we can see, the real part of the effective impedance, Re(Zeff ) of the composite

matches impedance of aluminum (13.6 MPa s m−1) from 0 up to 40 kHz within 5%

difference. To be noted, the imaginary part is small and negligible for this case. The

effective impedance was calculated using equation 6.42. Clearly, the design of section

B has effective impedance that matches with impedance of aluminum. If this is true,

there should not be acoustic waves reflected from the interface between the composite

and the surrounding aluminum. To prove this, the energy reflection and transmission

coefficients, RC and TC were calculated using equations 6.52 and 6.53. RC and TC

of the section B composite as functions of frequency are shown in Figure 6.10. It

can be seen that within 0 to 40 kHz RC is zero and TC is less than 100%, meaning

that there is no reflection of the acoustic waves in this frequency range while there

is energy dissipation occurs in the composite. Interestingly, at 40 kHz, the energy

dissipation coefficient, DC is as high as 90% (see equation 6.54).

The final step is to combine sections A and B to create the active acoustic
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Table 6.3: Section B: material parameters

Copper PU-20%MG Steel
E ′ (GPa) 120 0.636 200
E ′′ (GPa) 0 0.132 0
ρ (kg m−3) 8193 1445 7850

Z (MPa s m−1) 31.35 0.964+0.099i 39.62
Thickness (mm) 3.5 0.2 10

Figure 6.11: Section A and section B together: Energy reflection and
transmission coefficients versus frequency

metamaterial (AAM). Figure 6.11 shows the energy reflection and transmission co-

efficients of AAM versus frequency. It is obvious that TC and RC of AAM are the

combinations of TC and RC of sections A and B. At the current stage, the section

A composite was already made. The composite has cylindrical shape. Each layer has

3/4 inch diameter (see Figure 6.12). This composite will be tested using the acoustic

ball impact setup shown in Section 3.5. At this point, the Section B composite has not
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Figure 6.12: Components in a unit cell of section A composite

been made yet. If the experimental validation of this AAM shows promising result,

further step will be to create an active acoustic metamaterial for applications under

water, using the same design tools and method. One of the possible applications is a

skin of a submarine which it can help hide the submarine from detection by SONAR

(SOund Navigation And Ranging), imitate, and generate the sensed SONAR signal

if and when necessary. In this case, the surrounding medium will be water which has

lower impedance than aluminum, therefore the composite needs to be redesigned and

the total length of the redesigned composite would be a lot shorter and more practi-

cal than the one discussed previously. It is worth noting that this is just preliminary

study since it is one-dimensional problem. The real application concerns acoustic

waves traveling in a three-dimensional space. The angle of the impact of acoustic

waves on the surface of the composite must be considered. In this work, acoustic

waves perpendicularly strike the surface of the composite.
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