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INTRODUCTION

Nature of Problem

Many of the recent technological advancements have re-
quired the refined analysis and design of complex structural
systems. An important class of structure, which the analyst
must be prepared to cope with, 1s the arbitrary two-dimensional
structure subjected to ln-plane loads. Although the governing
differential equations have been known for over a century,
closed form solutions have been obtained only for a limited
number of practical structures. Thus, the engineer must often
rely on experimental or numerical procedures to solve this
problem,

Throughout the past fifty years experimental methods,
such as photoelasticlty, have proved to be versatile tools in
the analysis of arbitrary two-dimensional structures. However,
for structures with nonlinear material properties or with
body loading this approach becomes extremely difficult.

Within the past ten years the development of the digital
computer has motivated renewed and more extensive development
of numerical methods. The ultimate purpose of most numerical
procedures 1s to reduce the continuous problem into a model
with a finite number of degrees of freedom., In general,
this reduction involves either a physical or mathematical
approximation.

Collocation, Least Squares, Galerkin and Ritz methods
are examples of mathematical approaches which involve the
selection of the best solution from some assumed family of

trial solutions. Perhaps the finite difference method, which



involves the replacement of derivatives in the differential
equation and boundary conditions with difference equations,
is the most powerful of the mathematical approximatious.

In the physical approach,* the structure is approximated
by a finite number of discrete elements intercomnected at
a finite number of nodal points. Approximatlions are made on
the behavior of the elements in an attempt to approximate the
behavior of the continuous structure. DBased on these approx-
imations, equilibrium equations, in terms of unknown nodal
voint displacements, are developed for each nodal point., A
solution of this set of equations constitutes a solutlon of
the finite element system., This finite element approximation

1s the basis for the numerical work presented in this thesis.

Method of Analysis

From a historical standpoint, a one-dimensional finite
element was first introduced by Saint-Venant in his work on
torsion and flexure of beams. This work was of primary im-
portance in the basic development of the field of structural
analysis. Methods of structural analysis have been previously
applied to two-dimensional structures., McHenry (2), Grinter (3)
and Hrennikoff (4) have approximated two-dimensional elements
by systems of one-dimensional elements, Turner, Clough,

Martin and Topp (5) first introduced the two~dimensional
plate-element in the analysls of alrcraft structures. Clough

(6) has presented both rectangular and triangular plate-element

*This method has been considered by some (1) to be a type of
finite difference approach. Since 1t differs considerably
from normal finite-difference methods, the physical termin-
ology "finite element method" seems more appropriate,



models for plane stress structures. The triangular plate~-
element is the specific type of element used throughout this
investigation.

The finite element idealization of a two-dimensional
problem produces a highly indeterminate structural system,
Because of the tremendous number of numerical operatlons which
are inherent in such an analysis, the use of modern digital
computers is mandatory. Perhaps the matrix formulation of
structural analysis, as presented by Argyris (7), provides the
most general approach to the computer analysis of structural
systems. However, due to computer storage limitations, this
formal matrix procedure is modified in this study -- only the
non-zero coefficlients of the matrices are considered by the

computer program,

Purpose and Scope

The purpose of this dissertation is to generalize and
extend the finite element method as applied to two-dimensional
structures,

Pirst, the stiffness matrix for the general triangular
element is rederived and procedures for treating structures
with anisotropie material properties, body forces and mixed
boundary conditions are discussed, In additiomn, an iterative
method of solutlon 1s introduced which enables the finlte
element procedure to be applied to large practical problems
(over 500 elements in large computers). Also, in order to
eliminate previous difficulties in evaluating element stresses
a procedure to determine nodal point stresses 1s presented.

Second, the overall validity of the finite element



procedure is examined and several examples are presented to
indicate the practical application of the method to linear
systenms,

Finally, the finite element method 1s extended to include
structures with nonlinear material properties. Two solution
techniques, a step~by-step procedure and a sucéessive approxi-
mation approach, are given.

All work has been programmed for the IBM 7090 digital
computer. To enable others to use this procedure, a Fortran
listing of the computer program for linear systems is presented

in the Appendix,



METHOD OF ANALYSIS - LINEAR STRUCTURES

The "finlte element method" is a general method of struc-
tural analysis in which a continuous structure is replaced
by a finite number of elements interconnected at a finite
number of nodal points., (Such an idealization is inherent in
the conventional analysis of frames and trusses). In this in-
vestigation the finite element method is used to determine
the stresses and displacements developed in two-dimensional
elastic structures of arbltrary geometry and materlal proper=-
ties. An assemblage of triangular plate elements is used to
represent the contlnuous structure. Forces acting on the
actual structure are replaced by statically equivalent con-
centrated forces acting at the nodal points of the finite
element system. Flgure 1 illustrates a very coarse~mesh

ldealization of the cross-section of a gravity dam.

Bagilc Assumptions

Continuity between elements of the system 1s maintained
by requiring that within each element "lines initially straight

¥ i require-

remain straight in their displaced position,
ment 1s satisfied if the strains Eﬁ, é? and 0 are assumed to
be constant within each element. Therefore, the stresses T 5

g . and ?%y which act on the edges of each element are also

J
constant., These stresses are replaced by stress resultants
which act at the corners of the element. Based on these

assumptions, 1t 1s possible to determine the stiffness of a

*This is similar to the approximation made in classical beam
theory that "transverse sections, originally plane, remain
plane and normal to the longitudinal fibvers of the beam
after bending."
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a. ACTUAL DAM SECTION

b. ELEMENT AND LOAD APPROXIMATION

FIG.1- THE TRIANGULAR FINITE ELEMENT IDEALIZATION



typlcal element, which is an expression for the corner forces
resulting from unit corner displacements, After this relation-
ship 1s developed standard methods of structural analysis are

employed to solve the complete system of elements.

Stiffness of a Typical Element

Strain-Displacement Relationship - The first step in the
development of the stiffness of a typical element is to express
the three components of strain within each element in terms

of the six corner displacements., The geometry of a typlecal
element 1s defined in Fig. 2. The assumed displacement pattern
is illustrated in Fig. 3. This linear displacement field is
defined in terms of u(x,y) and V(X’y) by equations of the
following form:

=u, +C, x +C_y (1a)

Yx,¥) 1t % >

V(X’y) =V, + 03 X + C4 ¥ T (1v)

The congstants Cl’ 02, 055 and G4 can be expressed readily in

terms of the corner displacememts and the geometry of the

element: . |
o] b .- 0 b 0 =D ol |u
1 g»bk k hi i
Tf‘i
- O - 0 O
¢, "k K %5 u
— l j
aJ bk - ak b Vj (2)
] d 0 b.=~b O b 0 -D
3 J 'k k I 1y
k
¢ 0 8 =3 0 -3, 0 a Vi
e i ko J k ] L
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" FIG. 3 - ASSUMED DISPLACEMENT PATTERN



The strains within the element can be obtalned from the assumed

displacement field, Eg. 1, by considering the basic definitions

of strain:
Ex=d=0 (32)
ey==0, (30) 7
-0 -
=+ =0, 40 (3¢)

If Egs. 2 and 3 are combined, element strains in terms of

corner displacements are expressed by the followlng matrix

equation: - - -
L B ui
& b.=b 0 b 0 =b 0
X J ok k J v
. i
¢ = 1 0 a_ - 0 =-a 0 a
¥ - k ] k
aj by 8 bj J
YY a -a b . =b -3, b g, -b
] k ] j 'k k k b J

or in symbolic form

le] = [a] [£] (40)
Stregs~Strain Relationship - One important advantage of the
finite element method in two~dimensional elasticlty is that

structures with anisotropic material properties can be con=-

sldered. In general, the stress-strain relationship is of

the form
o _ L
“x 17 %2 %5 || %
| Txy | [ Ca1 €32 ®5 || 3 )
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or in symbolic form
o] = [e]l] 55)
For example, the stress-strain relationship for an isotropic

material in the state of plane strain is of the form

o (1-7 9 0 £,
- E > )
a3 T ) 1-7 0 Ey (6)
1-22
a 0 o BT

Stress~Resultants - The next step in the development of the
stiffness of a typical element is to replace the uniform
stresses acting on the edges of the element with stress-
resultants acting at the corners of the element. For an
element of unit thickness, Fig. 4 1llustrates a set of sta-
tically equivalent corner forces for each compounent of stress.
The corner forces expressed in terms of the three components

of stress are

1
|

1
SX 8y aj
gt 0 N b .=b

v k73 J k| _

) a-
54 b 0 - %

X k k

= % o (72)

EL 0 - b b

y k k ”
s~ ~D; 0 a, L XT

X J

Kk
S 0 a, -b
. | J J |

or in symbolic form

o] =[] )



FIG. 4 - STRESS RESULTANTS
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Element Stiffness ~ Element stresses can be expressed in
terms of corner displacements by substituting Egq. 4b into
Eg. 5b. Or

o] = [o] [+] [F] (&)

The substitution of Eq. 8 into Eq. Tb yields
] - [ [¢] B [

Eg. 9, which 1s an expression for corner forces in terms of

corner displacements, can be rewritten in the following form:

[s] = [x] [=] (10)
where [k] 1s the 6x6 stiffness matrix’ for the element

and is given by

(] =[] [] [4] a1a

It should be pointed out that the algebraic manipulation
necessary to establish the individual terms of this stiffness
matrix for a typical element is not required, since within
the computer programlthese stiffness matrices are numerically

formed by standard matrix subroutines,

*This stiffness matrix could have been derived without the
development of a force transformation matrix [B], The more
direct approach involves energy considerations and leads to
the following equation:

] = (Dol e e

Where the integral is evaluated over the volume of the
triangle. The only purpose of selecting the stress resultant
approach 1s to glve a physical interpretation of the method,
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Bouilibrium Fouations For Complete Structure

The equilibrium of the complete system of elements, which
ls an expression for nodal point loads in terms of nodal point
displacements, can be expressed by the following matrix

equation:

(2] = [x][=] (12)

where the stiffness of the complete structure [K:] can be
found by a systematic addition of the stiffnesses of all
elements in the system. This addition can best be illustrated

1f Eq. 10 is rewritten in terms of a typical element g

B N B ] ]
(q) (a) (q) (@) | [

Si kii kij kik ri
(a) | _ (a) (q) (q)

Sj = kji kjj kjk rj (13)
(q) (q) (q) (q)

e | [ 53 fae || Tx

where, in terms of arbitrary nodal points 1 and m, qu) and

:m are vectors of the form

l'S (CI)
) x
Sg.q = (143)
3
L Y4
r (q)
X
la) (141)
m
r
| Ym
and the stiffness coefficlent kgg) ig a 2x2 submatrix of the
form _ (qa)
k k
(q) XX Xy
klm = (140)
k k

xy YV 11lm
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The term kig) represen&s the forces developed on element
g at nodal poiﬁtrl due to unit displacements at nodal point
m. Therefore, the general stiffness term, Klm’ for the com-
plete structure, which is the sum of the forces acting on all

elements at nodal point 1 due to unit displacements at nodal

point m, is given by

_ (a)
Kig = Z ko (15)
q

It should be pointed out that K exists only 1f 1 equals m,

1m
or if 1 and m are adjacent nodal points in the physical systenm,

Solution of Equilibrium Eguations

For most practical problems, Eq. 12 represents a system

of several hundred equations. Three major difficulties are

encountered in a direct solution of such a large set of equa-
tions, Plrst, the storage required by the complete stiffness
matrix is equal to NE, where N 1s the number of equations,
Second, the time required for solution is proportional to NBQ
Third, accuracy of solution can be a serious problem. Even

on a large computer, such as the IBM 7090, these problems still
exlst; however, these difficulties can be minimized by the use

of iterative methods,

Iterative Procedure - The specific iterative method used is a
modification of the well-known Gauss-Seidel iteration proce=-
dure which, when applied to Eg. 12, involves the repeated
calculation of new displacements from the equation,*

xR, - Yk = e ] (6

i=l,n-1 1=n+1,N

¥*The stiffness matrix [K] is positive definite; therefore, the
method will always converge (1).
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where n is the number of the unknown and s 1s the cycle of
iteration,.

The only modification of the procedure introduced in this
analysis 1s the application of Eq. 16 simultaneously to both
components of displacement at each nodal point. Therefore,

?n and Rn become vectors wilith x and y components, and the
stiffness coefficients may be expressed in the 2x2 submatrix

form of Eq. lic.

Over-Relaxation Factor - The rate of convergence of the Gauss=-

Seidel procedure can be greatly increased by the use of an
over-relaxation factor (8). However, in order to apply this
factor it is first necessary to calculate the change in the

displacement of nodal point n between cycles of iteration:

eréS) - rés+l) _ rés) (17)

The substitution of Eq. 16 into Egq. 17 yields for the change

in displacement

() _ g-1 (s+1 (8)
Arns =K [Rn - j;ggg} ry 5% )- ign%i risj (18)

The new displacement of nodal point n is then determined from

the following equation:

p(st1) o () g pp(s) (19)

n n

where ;3 is the over-relaxation factor.

The selection of an over-relaxation factor, which gives
the best convergence, depends on the characteristics of the
particular problem. However, experience has indicated that for
most two~-dimensional structures the optimum over-relaxation

factor is between 1.8 and 1.95.
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Group Relaxation - Southwell (9) has i1llustrated the advantage
of block and group relaxation techniques. However, these
methods are based on 2z physicalvintuition of the specific
structure belng analyzed, The incorporation of such an approach
into a general computer program does not seem practical, Thefew
fore,a group relaxation method, which does not depend on a
specific property of the structure, is developed. This pro-
cedure is similar to Rayleigh's energy method (10) which is
used in the calculation of critical loads and frequencies.

After s cycles of iteration, it is assumed that 6{%(52
represents a good approximation of the final displacements
of the system., In order to solve for § it is necessary to
consider the energy of the system when subjected to this
deformation pattern. The energy which is supplied externally

to the system 1s given by
U_ = S[r(s)] [R] (20)

The energy stored elastically within the elements of the

system will be
o, = 52 [ "] et

Now, if the internal and external eunergy is equated, O is

found to be
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Therefore, before the start of the next cycle of iteration,

the displacements may be modified as follows:
. .
E.(Sj 25[1.(5)] (23)

The determination of S involves approximately the same
number of numerical operations as one ¢ycle of Gauss-Seidel
iteration. However, this "group relaxation” need only be

applied once every several cycles.
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Physical Interpretation of Method - There i1s important phy-

sical significance in the terms of Bq. 18. The term (knn)"l

is the flexibility of nodal point n. This represents the nodal
point displacements resulting from unit nodal point forces,

and can be written in the form of =z submatrix

-1 Txx fxy

XK = = (24)
nn f f
Jx Y

The summation terms in Eq. 18 represent the elastic forces
acting at nodal point n due to the deformations of the plate

elements:

QI(ls-r-l) ;{:Kn r (s+1) zz:K . ris (25)

_n+ s N
The difference between these elastic forces and the

applied loads 1s the total unbalanced force which in cub-

matrix form may be written:

(s+1) (s+1)
X R
H = | *| & i (26)

n e PR L

Eq. 19, which gives the new displacement of nodal point n,

T

may now be rewritten in the following sub-matrix form:

1 ( (s+1)
TX}(M) =] R (27)

H

+
r /9 f £ Y

. n Tln JX vy

J.
With £ equal to one, the applicatlon of this equation is
physically equivalent to releasing nodal point n and permitting
it to move freely to a new equilibrium position. With /9
greater than one, the nodal point 1s moved beyond its equil-
ibrium position before proceeding to the next point.

It is important to note that any desired nodal point

displacement rn(o) may be assumed for the first cycle of
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iteration. A good choice of these displacements will
greatly speed the convergence of the solution. In fact, if
all displacements were assumed correctly, the unbalanced
forces given by Eq. 26 would be zero and no iteration would
be necessary. However, in a practical case there always
will be unbalanced forces in the system at first, and the

iteration process continually reduées them toward zero.

Boundary Conditions
Bquation 27 1s valid for all nodal points which are free

to move in both the x and y directions; however, in order for
it to be applied to boundary nodal points the flexibility
coefficients must be modified to account for the specific
types of restraint which may exist. Since these flexibility
coefficients are independent of the cycle of iteration, this
modification is performed before the start of iteration.

For a general boundary nodal point that is free to move
along a line which makes an angle @ with the x-axis, Fig. 5
illustrates the forces and displacements agsoclated with the
application of Egq. 23. The unbalanced forces X znd Y are
determined from Eq. 26, The unknown reaction is represented
by R.

Y;Arygry




Applying BEq. 18 to this nodal point, the displacements

erX and Zﬁry are expressed in the forn

Ar f f X~-Rsin g
X XX Xy

AN f f Y + R cos
v JX g ¢

Eliminating the unknown reactlon R yields

NAr = Tyg =X fyy X + foy —&X f5y e
2~ 1 - tan @ 1 -~ X tan @

where

x
X = F%am g - t
xy JY

Also, by definition,

[&ry :[XIX tan @

Therefore, the effective flexibility coefficients are given

by
* fXX X fX
xx = 1 - X tan
& Ly = % fyy
Xy 1 -&Xtan @
* *
fyx =-tan /@ fXX
%
fyy = tan @ fxy

For points fixed in both x and y directions,
Arx =1;\ry = 0, the modified flexibility coefficlients will

be

20

(29a)

(29b)

(30a)

(30D)
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Nodal Polnt ILoads

Three types of loadings will be discussed here--dead
loads, live loads and thermal loads. In all cases loads nust
be reduced to concentrated nodal point forces.
Dead Loads =~ The dead welght of each plate element 1s gilven
by the product of its area, its thickness (which i1s taken as
unity) and its unit weight., It 1s assumed that the element's
welght is distributed equally to each of the three nodal
points to which the element 1s attached. Therefore, the total
dead load at any nodal polint 1s taken as one-third of the
welghts of all elements attached at that polnt, applied in a
downward, or negative "y", direction.
Live Loads - Forces actlng on the boundary of the structure
are replaced by statically equivalent concentrated forces
acting at the nodal points of the finite element system.
Thermal Loads - The thermal stress analysis of a finlte
element system is divided into two parts. First, assuming
all nodal points are restrained, the stresses developed within
all elements due to temperature changes are determined. 1In
a plane strain system these stresses for a typilcal element

are glven by

_ _ _ B X
Oy =0y =0y = TToN-29) 27T (51)
where K= thermal coefficlent of expansion

AT = change of temperature
For a typical element the corner forces which are necessary

to maintain these stresses are determined from Eg. 7b.
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o
RX bk—bj
i
R a ,=-a
y J k
J 3
RX . Dk
s - =g Ovt ( 32 )
R3 a
N k
k
Rx bj
k
-y ™3

Second, in order to eliminate these forces the system is
analyzed for nodal point loads which are equal in magnitude
but opposite in sign to these restraining forces. The final
thermal stress distribution is the sum of stresses due to
these thermal loads and the initial stresses in the restrain-

ed systen.

Element Stregses

Equation 8 expresses the three components of stress Oys
0y and Z%y within a typical element in terms of the six
corner displacements of the element. Therefore, after Eq, 12
is solved for the nodal point displacements of the finite
element system, the stresses within each element are determined
by the direct application of Eq. 8 to all elements of the
system,

Although the ﬁbrmal and shear stresses (Gi’ 6&5 & Z%y)
completely define the state of stress in the elements, it
frequently 1s of interest to know the principal stresses 05,
and Ué and their directions 6. These principal stress values
are determined from the stress values related to the x, ¥y

coordinate axes by the standard transformation formulas of

elementary mechanics.,
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Nodal Point Stresses

Practical spplication of the method indicates that the
computed nodal point displacements are realistic but, unless
a very fine mesh is used, conslderable difficulty may be
encountered in plotting and evaluating element stresses.
Furthermore, 1t 1is often deslrable to obtain nodal point
stresses, since maximum stresses normally are developed on
the boundaries of a structure. Therefore, the purpose of this
section 1s to introduce a method of determining nodal point
stresses.

It has been shown that nodal point stresses, obtained by
averaging the element stresses of all elements connected to
the nodal point, produce good results for interior nodal
points; however, this approach breaks down when applied to
boundary nodal points (11).

BExperience hag indicated that the three components of
element stresses do not represent the state of stress at any
one point within the element., For example, consider the

element shown in Pig., 6. Since stresses must be consistent

s Ty

3* 7l

FPig. 6 TYPICAL ELEMENT n ATTACHED TO NODAL POINT i



with the nodal point displacements, G& approximates the hori-

zontal stress of point A, G& gpproximates the vertical stress
at point B, and Z%Y approximates the shearing stress at

some interior point C. For this case, in determining stresses
at nodal point 1, it is apparent that the horizontal stress

at A must be welghted more heavily than the vertical stress

at B. Therefore, a "weighted average" method, which reflects

this behavior, is used to determine nodal point stresses.

The method involves the following calculations to deter-

mine the three components of stress at point 1.

(n)
oL = § 2 o () (33a)
T =g ?_ p(2) o (n) (330 )
sy _ a(n)+ b(n) v
Y;y = %1' >T @;y(n) (33c)
where

(
g 23
X{E:: a(n)+ b(n)

(n)
b
Sy:jg: a(n)+ b(n)

The summation is performed on all N elements connected at

nodal point 1i.
‘The method is illustrated by several examples in the

next section of this dissertation. In general, the procedure

24
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yields results which agree very closely with the direct
averaging method for interior nodal points but differ con-

siderably for boundary nodal points.

Solution of Complete Problem

The complete analysis of a two-dimensional structure by
the finite element method involves three separate phases.
First, the structure must be idealized by a system of tri-
angular elements. Second, this gystem of elements must be
solved for displacements and stresses. Third, the displace-
ments and stresses must be illustrated in a graphical form
in order to be evaluated conveniently.

The selection of the finite element system for a parti-
cular problem is completely arbiﬁrary; therefore, structures
with practically any shape boundaries may be considered. If
all elements and nodal points are numbered, in any convemiént
manner, it is possible to define the system in the form of
three ﬁumerical arrays--nodal point array, element array and
boundary point array. The nodal point array contalns the
coordinates and the loads or displacements that are assoclated
with each nodal point of the system. The element array
contalns, for each element in the system, the location of the
element (the three nodal point numbers where the element is
attached) and other possible‘parameters which are assoclated
with the element (i.e. elastic constants, density and temper=-
ature changes). The boundary array indicates the type of
restraint that exists at bouﬂdary nodal points.

These three arrays, along with some basic control

information, constitute the numerical input for the digital



computer program, which determines the displacements and
stresses of the finite element system. The most important
characteristic of this program 1s that only the non-zero
coefficients of the gtiffness matrix are developed and re-
tained; therefore, it is possible to treat large systems
without exceeding the storage capacity of the computer, In
addition to nodal point displacements, the three coordinate
stresses ((Ti,(;&, Z;y) and the principal stresses and direc-
tions ( 61’ Ué’ ©) for each element and nodal point of the
system are generated by the program. The details ilnvolved in
the use of this program and a Fortran listing of the program
are included in the Appendix.

The computer output may be plotted in two forms--stress
vectors at various points in the structure, which illustrate
the magnitudes and directions of the principal stresses; or
stress contours, for any compounent of stress, which are lines
connecting points of equal stress. In general, it is this
phase, the plotting and evaluation of results, which 1s the

most time consuming part of the complete analysis of a

structure.
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VALIDITY OF METHOD AND APPLICATION TO LINEAR SYSTEMS

Before the finite element method 1is extended to non-
linear problems, several basic questions regarding its appli-
cation to linear systems must be answered. Pirst, in
approximating a continuous structure by a system of triangular
elements, does the behavior of the finite element system
converge to the behavior of the continuous structure as the
dimensions of the elements become infinitesimal? Second,
what 1s the order of magnitude of the errors which are inherent
in the finite element approximation? Third, for a given struc-
ture, how does the finite element solution compare with an
exact solution? In this sectlon these questlons are discussed
and the overall validity of the method is illustrated by

several examples.

Convergence

In order to compare the behavior of an element system of
infinitesimal dimensions to the behavior of a continuous
structure, it 1s necessary to examine separately the equili-
brium conditions, stress-strain relationships and compatibility
requlrements which are imposed on = system of finlite elements.

Based on stregs-resultants, equilibrium 1s satisfled only
at the nodal points of the finite element system. However, it
is apparent that the errors ilntroduced by approximating
stresses by stress~resultants are reduced to zero as the dimen=-
sionskof the elements become infinitesimal, It should be
pointed out the overall statics (summation of forces across

any section) are satisfied, regardless of the mesh size.



The stress-strain relationship, Eq.ggéfVis independent
of the element size, ©Since this is not a source of error in
the finite element approximation, the method can be readily
extended to structures with nonlinear material properties.

Since the sides of the finite elements remain straight
after deformation, continuity of u and v is always maintained,
regardless of the slze of the finite elements. Compatibility
of the continuous problem is normally obtained by requiring

that the following equation be satisfied:

¥ i, e _nY
g n >

This is a restriction on the strains, or the derivatives of
u and v; therefore, for certain types of problems (multiply-

connected bodies) this requirement has been found to be

insufficient to establish a unique solution, due to the pos=-
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silbility of discontinuities in the displacements., It is apparent

that the finite element solution does not have such sz limits-

tion.

Error Term

Equatlon 4a, which can be thought of as a finite differ-
ence operator, expresses element strains (derivatives of
displacements) in terms of nodal point dlsplacements. The

derivation of this equation is based on physical compatibil~
ity requirements; however, the same equation could have been

developed from a mathematical approach.
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A Taylor series expansion, in the case of a function

f(x v)? is written in the following symbolic form:
3

Tlxom,yex) = L(x,y) + (B ek D) £ 55

1 2 i > 5 11 .
P (Rgp r )T L oy 4

Now, 1f second and higher order derivatives are neglected,
the application of this equation at nodal point 1 of a typical

triangle, Pig. 2, yields the following equations:

u, = u, +a, 94 4+ p. 24
J 1 J ox J oy

U = u, +a QU 4+ p M

oot kex ok Oy (36)
s

= o+ —— b@l

vj v, aj =L+ b, 2
X4+ p, Q¥

et e TR % T Tk oy

Egs. 3 and 36 are now combined to yleld Eq. 4a.
The importance of this approach is that the errors which
are inherent in the approximation are apparent. Typically,

the error term for the displacement u is of the form

2 2 2
E :_L(ag?‘) U4 2a, b, 200 4 p° QU (37)
(u) = 37 \%; D 22 3 7 5x3y aa2y2>

It is evident that near stress concentrations, where the
rate of change of strain (second derivative of displacement)
is large compared with the strain, errors may be large,
unless the mesh size 1s small, Also, from a numerical anal-
ysls standpoint it can be sald that the triangular finite
element approximation is a "first order method with an error

term of order h-."



It is of practical importance to note that errors in
stresses for structural problems do not appear to accumulate.
The overall stress distribution is not affected by loecal

errors at stress concentrations.

Examples - Linear Structures

Thick=Walled Cylinder - A thick-walled cylinder subjected to
uniform internal pressure 1s selected to illustrate the gen-
eral application of the method. A segment of the cylinder,
as shown in Fig. 7a, was idealized as a system of 13 elements
and 15 nodal points. The internal pressure was approximated
by concentrated forces acting at nodal points 1 and 2. 3By
utilizing the procedure suggested by Egs. 30 the boundary
points were allowed to move only in a radial direction,.

The tangential and radial stresses are glven in Figs, 7b
and Tc, Considering the very coarse mesh idealization, there
1s good agreement with the exact solution. As expected, the
errors are largest near the application of the loads. The
radial displacement at the point of load application was in
error by approximately .5%.

This example, when treated by classical methods, is
best formul?ted in polar coordinates. However, the finite
element procedure, which is basically formulated in rectan~
gular coordinates, 1s readily applied to this class of
problems., This ability of the finite element method to
handle arbitrary boundary conditions is an important ad-

vantage over other numerical techniques.
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a., SEGMENT OF THICK~-WALLED CYLINDER !

b. TANGENTIAL STRESSES

o Finite Element Solution
- BExact Solution

RADIAL STRESSES

PIG. 7 THICK-~-WALLED CYLINDER



Infinite Plate With Elliptic Hole -~ A square plate, with 2

central elliptic hole, subjected to uniform tensile stresses
as shown in Flg. 8a was analyzed by the finite element method.
The ratio of major principal axis to minor principal axis is
three. The ratio of length of major axis to the length of the
plate is 12, The finite element layout for one-fourth the
plate is illustrated in Fig. 8b. This idealization involves
384 elements and 224 nodal points. Therefore, a solution of
over 400 equations is required. A solution, accurate to three
significant figures, was obtained in 65 cycles of Gauss~Seidel
lteration with an over-relaxation factor of 1.87. The total
computer time required to form the stiffness matrix and solve
for the unknown displacements and stresses was 50 seconds for
the IBM T7090.

Since the dimensions of the plate are large, compared to
the size of the elliptic hole, the solution is comparable
with the exact solution for the infinite plate. Figure 9
shows stress contours for major and minor principal stresses
and normal stress on the x and y axes. Again, agreement with
the infinite plate solutlon is good, except at the stress con-
centration near the hole where the finite element method
yields 564,as compared with the exact value of 700,

This example demonstrates another advantage of the finite
element method--flexibility in mesh layout. In this case, in
order to reduce errors, the elements are small near points of
expected stress concentrations and large where the rate of
change of stresses is expected to be small. Therefore,
"engineering judgment” in selectlng the mesh layout for a

particular problem may be utilized effectively.
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) Finite,Elément Solution

- Infinite Plate Solution
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SECTION A-A
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FIG. 9 - STRESS DISTRIBUTION- INFINITE PLATE WITH ELLIPTIC HOLE



Gravity Dam - An extensive investigation, utilizing the

finite element method of analysis, has been made to determine

35

the effect of a vertical crack on the displacements and stresses

of a gravity dam. A complete report of this study, which

involves 27 separate analyses, 1s given in Reference (12).

Analyses were performed for various combinations of live loads,

dead loads and thermal loads, for several crack heights, and
for two types of foundation material (isotropic and ortho-
tropic). For the purpose of demonstrating the application
of the filnite element method to a practical problem only one
of these two analyses will be included here,

The dam, a 230 foot high concrete structure, was ideal-
ized by two systems of triangular finite elements, as shown
in Fig. 10, ©Each analysis was divided into two parts--a
coarse mesh analysis to determine foundation displacements
(along the dashed line in the base) and a fine mesh analysis
with these foundation displacements applied as boundary condi-
tions., In thils way the effects of foundation deformations
were included in the fine mesh analysis without the need of
additlonal elements.

The specific analysis considered here is for a section
cracked to 7/9 of its height and subjected to live load and
dead load. The principal stresses within each element, plot-
ted in vector form, are given in PFig, 11, Perhaps a more
readable form of the resulis is given by Fig. 12 in the form

of stress contours which are lines connecting points of equal

stress., A statlcs check, which is the only form of engineering

check that can readlily be performed on 2 problem of this nature,

yields errors in base forces of legss than two per cent.
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In addition to the practical significance, this example
illustrates another favorable characteristic of the finite
element approach--the combining of analyses of different mesh
size, Therefore, in the region of stress concentrations,
points where the errors from one analysis may be large, separate
fine mesh studies may be made utilizing the results from a
previous coarse mesh analysis.

Cantilever Beam - A very coarse finite element idealization

of a cantilever beam 1s shown in Fig, 13a, This example was
selected to illustrate the effect of over-relaxation and group
relaxation on the convergences of the iterative procedure,
Since the overall displacements of the beam are large, compared
to the individual element deformations, the system is "poorly
conditioned" from an iteration standpoint.

In general, the Gauss-Seidel procedure tends to converge
at a fixed number of significant figures per cycle., This rate
of convergence vs, over-relaxation factor is plotted in
Pig. 13b. The same over-relaxation factor is used throughout
any one iterative solution. In the case of straight over-
relaxation the rate of convergence is extremely dependent on
the over-relaxation factor and for this problem the optimum
value of A is approximately 1.93. If a group relaxation, 2as
previously described, 1s performed every 10 cycles of iteration
the rate of convergence 1is lmproved considerably and the op-
timum value of the over-relaxation factor I? is reduced to
approximately 1.80. Another important effect of group relax-
ation is that the rate of convergence 1s not as dependent on
the over-relaxation factor. For practical purposes, any value

of f? between 1.6 and 1,9 produces adequate convergence, For
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this example group relaxation was also applied every 5 cycles
and every 15 cycles of iteration; this produced only minor
changes 1in the convergence rates obtained by applying group
relaxation every 10 cycles.

Since the group relaxation approach has been used only
in thelatter part of this investigation, it is impossible to
draw any general conclusion as to 1ts effectiveness. However,
it should be pointed out that the baslc formulation of the
group relaxation procedure 1s independent of the type of struc-
ture. Therefore, 1t may be applied to structures such as plate
and shells where difficulty has been traditionally encountered
with relaxation procedures. Experience to date indicates that
it may prove to be a very powerful adjunct of the iteration

solution.
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EXTENSION TO NONLINEAR STRUCTURES

The analysis of practical two-dimensional structures with
nonlinear behavior 1s virtually impossible by classical methods.
However, the finite element method may be extended to include
structures with both nonlinear geometry and nonlinear material
properties. Two possible solutlon techniques by which these
problems may be treated are discussed here. PFirst, the analysis
of a nonlinear structure may be accomplished by a step-by-step
procedure., This involves replacing the nonlinear analysis by
the sum of linear analyses of separate structures, each sub-
Jected to a small increment of load. Second, the equilibrium
position of a structure subjected to a given set of loads may
be determined by a trial and error procedure. In this case the
structure is solved repeatedly until the final geometry and
stresses agree with the assumed geometry and stresses.

In Reference (11) a step-by-step matrix procedure, which
includes the effect of large displacements, is presented for
finite element systems. A disadvantage of this 1s that it
is necessary to perform a complete linear analysis for each
increment of load. Another form of geometry noanlinearity was
encountered in the analysis of a cracked gravity dam. The dam,
idealized as a system of triangular plate elements, was analyzed
by a step~by-step procedure in which the water load was applied
incrementally. SBince the crack closed during the application
of load, the behavior of the structure was nonlinear. The
computer program for linear analysis, which is given in the
Appendix, was modified to perform this analysgis. A éomplete

report of this study is given in Reference (12).
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In the step~by-step approach, 1f a direct solution tech-
nique is employed for each increment of load the procedure may
be numerically inefficient. It is possible to reduce this
difficulty if an iterative solution is used, since the solution
from the previous load increment serves as a good 1nitial
approximation for the next load increment. In fact, if the
nonlinear effects are small, compared to the previous incre-
ment of load, a solution may be found in only a few additional
cycles of iteration.

Similarly, in the successlve approximation approach the
ilterative solution technique offers a distinct advantage.
The solution from the previous approximatlion serves as a good
initial guess for the next approximation. Therefore, as the
procedure converges fewer and fewer cycles of iteration are
required per solution.

The discussion in this sectlion will be restricted to
structures with nonlinear material properties., Examples of
both the step-by-step and the successive approximation techni-

ques are presented.

Step~By~-Step Analvsls

A step-by-step procedure has been successfully applied to
the analysis of frames and trusses with nonlinear material
properties (13). It is possible to use a similar approach in
the analysis of systems composed of triangular plate elements.
In this approach the effect of nonlinear material propertiles
on the behavior of a structure subjected to load [3] is
approximated by the sum of a serles of linear structures, each

subjected to a load increment [;SR] . These structures have
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different stiffness characteristics due to the previously
applied loads., For triangular finite element systems the stiff-
ness properties are contalined in the stress-strain relationship,
Eq. 5. Therefore, the first step in the procedure is to deter-
mine the incremental stiffness for the element. The stiffness,
which represents the changes 1in corner forces due to small
changes in corner deformations, i1s a function of the magnitude
of stresses within the element. For one-dimensional elements
these incremeﬁtal stiffnesses, in terms of a few basic para-
meters, are easlly developed. However, for two-dimensional
elements, because of the lack of experimentsal data, the pro-
cedure is more difficult. For this reason only a very ldealized
material will be considered here., However, i1t should be em-
phasized that this is not a limitation of the step-by-step
approach, for any material can be considered if its bilaxial
stress—-strain relationship is known.

After the incremental element stiffnesses are determined
for step i, the analysis involves the following sequence of
operations:

Formation of Complete Stiffness - The incremental stiffness
EKji for the complete structure is developed by the direct
application of Eq. 15.

Determination of Incremental Displacements - The following
equation is solved, by the previously described iterative

procedure, for the incremental nodal point displacements:

Laz]y = [x)y[aq] (38)
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Determination of Incremental Element Siresses - The change in

element stresses 1ls determined from the incremental nodal point

displacements by applying Eqg. 8,
(adl, = [, IR, (39)

where [b]i is the i1lncremental stress-strain relationship for
step 1.

Determination of Total Displacements and Stresses -~ The total
nodal polint displacements and element stresses are added to
the displacements and stresses that were determined in the

previous step.
(e, =[], | +lad, (402.)

[_Oﬂi 'F I:Cﬂi*-l + AGE} i (40b)

Based on these element stresses, a new lancremental stress-
strain relationshlp may be approximated for the next increment
of load. This procedure may be repeated untlil any desired
magunitude of load 1s applied to the structure.

It is apparent that any deslired degree of accuracy may be
obtained simply by decreasing the magnitude of the load incre-
ments., Also, the problem of unigueness of solution is avolded
since the incremental load approach aubtomatically forces the
structure into its most reasonable position,

The computer program for linear analysis, which is given
in the Appendix, was modified to perform step-by-step analyses
of finite element systems with nonlinear material properties.
Since this is 2 simple modification that depends on the speci-
fic class of material that 1s being considered, the details

of this mnonlinear program will not be given,.
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Successive Approximations

Perhaps the most direct solution to structures with
nonlinear material properties 1s one of successive approxi-
mations. Basically, this involves the repeated solution of

‘the following equation for the displacements of the system:

2] =[x]__, [4 (41)

where [B]: the external loads acting on the system
[K]n-l = the effective stiffness of the system

=],

resulting from the previous approximation

the displacements of the system for approxi-

i

mation =n

The effectlve stiffness must be based bn the results that
were obtained in the previous approximation (n-1). Since
deformations are assumed to be small, the development of the
effective stiffness depends only on the estimation of an
effective stress-strain relationship for each element in the
structure, v

It is apparent thét this approach has several disadvan-
tages. First, the procedure has no guarantee of converging.
However, experience has indicated that for structures where
the nonlinear effects are small, compared to the initial
linear analyslis, the procedure does converge. Second, in order
to obtain a unique solution the method is restricted to elastiq
materials; or, in other words, materials with single-valued
stress~strain relationships. This will insureva strain energy
function which will be positive fof all values of strain.
Therefore, for small deformations, the classical proof (14)

for uniqueness of solution can be applied. Third, stresses
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and displacements are determined for only one load magnitude,
whereas the step-by-step analysis yields the complete behav-
ior of the structures during the application of loads.

In spite of these limitatlons, the method of successive
approximations can be applied to certain types of problems
for which the step-by-step approach fails., An example of such
a structure is one made of a material with bilinear proper-
ties-~a material with different properties in tenslon and
compression, In this case the stress-strain relationship is
a function of the signs and directlons of the principal stresses,
rather than thelr magnitudes. The method of successive approx-
imation was applied only to this type of material in this
study.

Again, since each approximation involves a sclution to
a linear problem, the computer program for linear analysis 1is
reédily modified to include the effects of bilinear material
properties. It 1s only necessary to reform the stiffness
matrix after each approximation and to resolve the structure.
In order to develop this stiffness matrix for the next
approximation the sign and direction of the principal stresses
must be examined and a new bilinear stress-strain relationship
approximated.

Bilinear Stress~3train Relationship -~ For s bilinear materiasl

there are three possible stress-strain relationships which

depend on the state of stress.

Type 1 - Both 61 and Gé are compression

Type II - Both a1 and Gé are tension

Type III - Gi is tenslon and cTé is compression
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For Type I and II conditions the stress-strain relationghips,
in the reference coordinate system x-y, are of the normal
form. For Type III condition the stress-strain relationship
is a function of the angle of the principal stresses €, There-
fore, this must be consldered as a special case.

In terms of the principal coordinate system the stress-
strain relationship is written in the form

5] = [ol[z] o (42)

In the case of Type III material this must be of the ortho-
tropic form.

The principal strains are expressed in terms of strains

in the z-y coordinate system by the following standard trans-

formation:
”51_ g2 52 5.0 | rgx'"
£, | = g2 c2 ~5-0 £ (43a)
| T leescc —zesec 82402 |0

where C = ¢os &

3 = gin ©

or symbolically

2]= [3][e] (430)
It is of interest to polnt out that i? must be gero for all
elements 1n the final solution of the structure; however,
in order to maintain three degrees of freedom within each
element 1t is necessary to retain it as a possible strain com-

ponent. The final solution will be independent of the shear

modulus which is assoclated with this shear strain.
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Stresses in the x~y coordinate system are expressed in
terms of principal stresses by the transformation
T —
(o] = (2" [7] (44)
After combining Eqgs. 42, 43 and 44 the stress-strain

relationship in the x-y coordinate system for a bilinear

material is found to be

9] = [2]" [c][2)[€] | (45)

Examples of Nonlinear Structures

Step-by-Step Analysis of Sguare Plate - A square plate, with

a central circular hole, subjected to a uniform tensile stress
1s shown in Fig. 14a, It is assumed that the plate is made of
a material whlch has a stress-strain relationship of the follow-
ing form: +the material behaves linearly with a modulus El
until some yield condition is reached; beyond this condition:
the material behaves linearly with a reduced modulus E2. For
any one element this yleld condition is defined as the point
when the strain energy densitylreaohes a predetermined value,.
When the ratio El/E2 1s large this reduces to the normal
assumption which 1s made in ideal plasticity. In this example
El/Ee is set equal to 500,

The finite element 1dealization of one-fourth the plate
1s given by Fig. 14b. It is important to point out that it
was posslible to reduce the mesh size in the reglon of the plate
where the nonllinear behavior was expected.

Elghteen equal load increments were applled to the struc-
ture. The displacement of point B vs. load increment is shown
in Plg. l4c. The stress distributions on section A-A for

various load conditions are shown in Fig, 14d. Since solutions
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to plane stress problems with nonlinear materlial properties
do not exist, it was impossible to verify the method by com=-
paring results with previous solutions. However, for this
example the results do seem reasonable., The minor irregular-
ity in yield stress across section A-A i1s due to the discrete
nature of the loading. These inconsistencles can be reduced
by decreasing the magnitudes of the load increments.

It should be pointed out that the finite element method
does not lose any of its flexibility when extended to struc-
tures with nonlinear material properties., It is still
possible to treat structures of arbitrary geometry and load-
ing. In addition, each element in the structure may have
different nonlinear characteristics.

Analysis of Plate With Bilinmear Properties - A square plate,

with a central circular hole, which is made of 2 materlal

with different properties in tension and compression, was
selected to illustrate the method of successive approximations.
This plate, as shown in Fig. 15a, 1s subjected to ecual and
opposite compressive forces and its edges are confined later-~
ally (at x = % 3R, u = 0)., It was assumed that the ratio of
elastic modulus in compression to elastic modulus in tension
was 20,

The finite element layout for one~fourth the plate is
shown in Pig. 14b. PFor the first approximation the plate was
assumed %o be completely in compression; this solution requir-
ed 90 cycles of iteration. After 20 solutions znd a total
of 450 cycles of iteration, the difference in stresses and
displacements obtalned in successive approximations was

negligible,
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For purposes of comparison, a solution of the isotropilc
problem, EC/ET = 1, was also obtalned. Figure 15b illustrates
the comparison of normal stresses on sectlons AA and BB. The
effect of the low tenslle modulus only slightly increases the
compressive stresses on section AA but alters radically the
tension stresses on section BB, The overall effect of the
bllinear analysis on the major principal stresses (maximum
tensile stresses) 1s found by comparing the stress contours
which are given in Figs., 15c and 15d; in general, the tensile
stresses are reduced by approximately a factor of 10. Again,
because of the lack of previous work, no comparison with
other solutlons 1s possible.

Since concrete, rocks and many other materials can be
approximated by a bilinear model, this analysis represents
an important initial step in predicting the behavior of a
large class of practical structures. In addition, it may be
possible to utilize the bilinear model in the analysis of tapes
and belts-~due to buckling, these structures have a low
effective modulus in compression compared to thelr modulus

in tension.



FINAL REMARKS

This dissertation has demonstrated the general applica-~
bility and validity of the finite element analysis of two-
dimensional structures., Since the method encompasses several
classes of practical englineering structures its importance
as a tool in analysis 1s evident. Due to the general avail-
ability of large computers the method may be immediately used
by members of the engineering profession., This approach
reduces the analysis of a two~dimensional structure to a
simple procedure that may be carried out without a detailed
knowledge of the method or of the computer program. In order
to use the program it is onl& necessary for the engineer to
select an element idealization of the structure and to supply
the computer program with data that numerically defines the
system of elements. Thils information, which is in the form
of three arrays of numbers, may be assembled by an engineer
for large practical structures in only a few hours. 4n
example of such an application 1s a recent investigation of
the stress distribution of underground structures (15).

In a2ddition, this investigation has stimulated supple-
mentary development of the finite element approach,

Presently, it is necessary for the individual to select
the finite element idealization of a structure. It is apparent
that this involves a certain amount of routine work and =
large amount of input data. It may be possible to eliminate
some of this work by building into the computer program this
"mesh generation” from more fundamental geometric data,

However, 1t should be remembered that the finite element
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method derives much of its flexibility from the ability of the
user arbitrarily to select the element layout., Similarly, it
1s now necessary for the user to evaluate and plot the computer
output, which is always a time consuming task. This may
eventually be eliminated if automatic plotting equipment be-
comes more widely available,

The analysis of certain problems in plate bending is
another possible application of the present computer program.
The differential equations for both plate bending and plane
stress (in terms of the stress function) problems are of the
same form. Therefore, it may be possible to determine the solu-
tion of the homogeneous part of the differential equation for
the plate bending problem by solving a plane stress problem
with equivalent boundary conditions. The final solution to the
plate bending problem would then be the sum of this homogeneous
solution and the particular solution which is readily obtain-
able for most problems,

Perhaps the next logical step in the extension of the
finite element method to two-dimensionsal problems 1s its appli=
cation to time dependent effects (viscous or inertia fo?ces),
In this case a step~by-step approach, with respect to time, may
be a feasible solution technique (16). Since in this approach
a complete linearAaﬁalysis is required for each increment of
time, the necessity of utilizing group and over=-relaxation
factors is apparent,

Another extension of finite element procedures and the
numerical technigues present here is the axial-gymmetric prob=-
lems in three-dimensional elasticity. Only a segment of ﬁhe

symmetric problem needs to be considered. The thickness of
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each element depends on its distance from the axial of symmetry,
As in the plane problem only two degrees of freedém are possible
at each nodal point. The only modification in the procedure
is in the determination of the 6x6 element stiffness matrix,

Eg. 11. This involves including the tangential component of
stress 1n the stress-strain relationship, which expands [C] in
Bq. 5 to a 4x4 matrix. Of course, the tangential strain, which
varies uniformly over the area of the element, must be included
in the displacement transformation matrix; this expands [A]

to a 4x6 matrix. BEach term in the element stiffness matrix is
then obtalmed by integrating over the volume of the element

as suggested by Eg. 1llb. To include the effects of - nonlinear
material properties for axial symmetric problems, it is only
necessary to know the nonlinear triaxial stress-strain beha&ior
of the material; then it ié possible to apply the same solution

techniques which have been used in two-dimensional problenms.
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COMPUTER PROGRAM

The digital computer program performs three major tasks
in the complete analysis of a system of two-dimensional trian-
gular plate elements, Pirst, the equilibrium equations for the
system are formed from a basic numerical description of the
system., Second, thls set of equations is solved for the disg=-
placements of the nodal points by an iteration procedure. Third
the internal stresses are determined from these displacements.

The program which is given here is coded in the FORTRAN:
language and has been used with both the IBM 704 and IBM 7090
computers, This program 1s restricted to plane stress struc-
tures.* Gravity loads, temperature loads, non-homogeneous
material properties and arblitrary boundary conditlons are
possible, The maximum size system that can be analyzed is
governed by the avallability of computer storage. For computers
with 32K (32768) storage the maximum number of elements is 550
and the maximum number of nodal points is 340. Only the main
sequence of operations of the computer program will be described

the details of coding will be omitted.

*The program may also be used for plane strain analysis if the
elastic constants, which are used by the program, are modified
as follows:

Ef = B
1-72
_v-)% Y.
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Sequence of Operations

Input Data - For the purpose of numerically defining a structure,
all nodal points and elements are numbered as illustrated in

Fig. 16. The following sequence of punched cards numerically
defines the structure.

A. Title Card (72H)
Columns 2 to 72 of this card contain information to be
printed with result. :

B. Control Card (614, 2El2.5, 1I1)
Cols. 1-4  HNumber of elements

5-8 Number of nodal points

9-12 HNumber of restralned boundary points

13-16 Cycle interval for the print of the force unbalance

17-20 Cycle interval for the print of displacements

and gstresses

21-24 Maximum number of cycles problem may run

25-36 Convergence limit for unbalanced forces

37-48 Over-relaxation factor

49 Non-zero punch to suppress printing of input data

C. Element array - 1 card per element (4I4, 4E12.4, F8.4)
Cols. 1-4  Element number
5-=8 Nodal point number 1
9-12 HNodal point number j
13-16 HNodal point number k
17-28 Modulus of elastilcity
29-40 Density of element
41-52 Poisson's Ratio
5%=-64 Coefficient of thermal expansion
65-72 Temperature change within element

D. Nodal point array - 1 card per nodal point (1I4, 4F8.1,
2F12.8)
Cols. 1-4  Nodal point number
5-12 X-ordinate
13~20 Y-ordinate
21-28 X=-load
29=36 Y-load
37-48 X-displacement on free nodal points, these are
initial guesses, on
49-60 Y-displacement restrained nodal points, these
are specified displacements.

E. Boundary array - 1 card per point (2I4,IF6)
Cols. 1-4 Nodal polnt number
5-8 0 if Nodal point is fixed in both directions
1 if Nodal polnt is fixed in X-direction.
;; 2 1f Nodal point 1s free to move along a line
| of slope 3.
| 9~-16 Slope S (type 2 boundary polnt only)
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o

—=——=— ASSUMED DEFORMED SHAPE

INITIAL X - DISPLACEMENT ELEMENT NUMBER 4

i=z8
I=9

X - ORDINATE
- k= 7

INITIAL

Y- DISPLACEMENT
NODAL POINT
NUMBER

7

Y -~ ORDINATE

FIG. 16 NUMBERING SYSTEM FOR ELEMENTS AND NODAL POINTS
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It should be noted that for a fixed boundary point, the initial
displacement 1s the final displacement of the point, since it
1s not altered by the iteration procedure.

Formation of Element Stiffness Matrices - The stiffness matrix

for each element 1s determined from Eq, 11. The basic element
dimensions are calculated from the coordinates of the connect-

ing nodal points:

aj = Xj - Xi
bj = Yj - Yi
g, = Xk - Xi
bk = Yk - Yi

where 1, J and k are the nodal point numbers of the three
connecting polnts and are given in the element array.

Formation of Complete Stiffness of System - Because of the large
matrices that are developed in the solution of practical prob-
lems, the stiffness matrix used in Eg. 12 is not formed., Since
the complete stiffness matrix contains many zero elements, only
the non-zero elements are developed and retained by the program;
thus, it 1s possible to treat large plane stress systems without
exceedling the storage capacity of the computer.

polnts are composed of live loads, dead loads, and temperature
loads. The equations which are used to determine these loads

have been presented in the preceding sections of this report.

Formation of Nodal Flexibilities ~ The nodal point flexibilities

are determined from the previously developed stiffness coeffi-
cilents., The flexibilities associated with the boundary nodal
points are modified by the application of Egs. 30, as

required.
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Iterative Solution -~ The repeated application of Eg. 27 at
all nodal points constitutes the iterative procedure. The sum
of the absolute magnitude of the unbalanced forces at all nodal
points (gilven by Eq. 26) 1is also computed for each cycle; this
sum, when compared to the covergence limit, serves as a check
on the convergence of the procedure. In all analyses presented
in this report, this sum was reduced to less than 1/10000 of
the value obtained in the first cycle of iteration.
Calculation of Stresses -~ From the nodal point displacements,
with the aid of Eq. 8 and Eq. 33, the stresses (g, Ty and
2%y are calculated for all element and nodal points. As
added information, the principal stresses 7 and g, and
directions © are also calculated,

Qutput Information - At desired points in the iteration pro-

cedure, nodal displacements, element stresses and nodal point
stresses are printed. Flg. 17 illustrates the form of the

computer output, in a typical case.

Timing

For the IBM 7090 the, computational time required by the
program is approximately equal to 0.006 n.m seconds, wWhere n
equals the number of nodal points and m equals the number of
cyeles of iteration., The number of cycles required depends on
the accuracy of the inltially assﬁmed displacements and on the

desired degree of convergence,
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65



66
Program Listing - For the sake of completeness, a Fortran listing
of the basic computer program for linear analysis 1s included.
Thlis will enable others who may wish to utilize this approach
to avoid some of the ;edious details of programming. It also
should be pointed out that the porﬁions of the program which are
assoclated with the formation and solution of the stiffness
matrix are independent of the type of structure and therefore

may be used for other problems in structural analysis.
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PROGRAM LISTING

PLANE STRESS ITERATION=~JUNE 1962
DIMENSION AND COMMON STATEMENTS

DIMENSION NPNUM(340)3XORD(340)9sYORD{340)
1DSX(340)eDSY(340) ¢ XLOAD{340) s YLOAD(340)sNP(340510)sSXX(34009)»
2SXY(34049)9SYX(34009)9SYY(34009)sNAP(340)

DIMENSION NUME({550)sNPI(550) sNPJ(550)sNPK(550) sET(550)sXU(550)
1RO(550) sCOED(550) +DT(550) s THERM(550) 9+AJ(550) #BJI(550) sAK(550) s
2BK(550) +SIGXX{550) »SIGYY(550)sSIGXY(550)+SLOPE(340)

DIMENSION NPB(340) sNFIX{340)sLM(3)sAl6+6)9B(696)9S(696)

COMMON SXX3SXYsSYX9SYY

EQUIVALENCE (SIGXX»ROsNPB)» (SIGYYsCOEDsNFIX)s (SIGXYsDToSLOPE)

READ AND PRINT OF DATA

READ 100

PRINT 99

PRINT 100

READ 19 NUMEL sNUMNP sNUMBCoNCPINsNOPINsNCYCMs TOLERsXFACHT1
PRINT 101 sNUMEL

PRINT 102 sNUMNP

PRINT 103 sNUMBC

PRINT 104sNCPIN

PRINT 105sNOPIN

PRINT 106 sNCYCM

PRINT 107sTOLER

PRINT 108 XFAC

READ 29 (NUME(N) s NPT(N) sNPJIN)oNPKIN)sETIN)sRO(N)s XU(N)sCOEDIN)o»
IDT(N) sN=1 sNUMEL)

READ 3 (NPNUM(M) s XORD(M)sYORD(M) s XLOAD(M) s YLOAD(M)»
IDSX(M)sDSY (M) sM=1 s NUMNP)

IF (T1) 16041555160

PRINT 110

PRINT 29 (NUME(N) sNPT(N)osNPJIN) s NPKIN}sETIN)sROIN) s XUIN)oCOEDI(N)>»
IDT(N) o N=1 o NUMEL)

PRINT 111

PRINT 1099 (NPNUM(M)sXORD(M)sYORD (M} s XLOADIM) sYLOAD(M)»
1DSX{M)sDSY (M) sM=1 g NUMNP)

INITIALIZATION

NCYCLE=0
NUMPT=NCPIN
NUMOPT=NOPIN .
DO 175 L=13NUMNP
DO 170 M=149
SXX(LeM) =040
SXY(LeM)=0,0
SYX(LoM)=20a0
SYY(LsM)=0e0
NP(LsM)=0
NP(Ls10)=0
NP(Lsl)=L
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MODIFICATION OF LOADS AND ELEMENT DIMENSIONS

DO 180 N=1sNUMEL

ET(N)=ABSF(ET(N})

I=NPI(N)

J=NPJIN)

K=NPK(N)

AJIN)=XORD(J)~XORD(1I)

AK(N)=XORD(K)~XORD(TI)

BJ(N)=YORD(J)=YORD(I)

BK{N)=YORD(K)~YORDI(I)
AREA=(AJ(N)*BK{N)=~BJ(N)*AKIN)}/24

IF (AREA) 70197015177
THERM(N)=ET(N)*COED(N}I*DT (N} /(XU{(N}~14)
DL=AREA*RO(N) /3.
XLOAD(T)=THERM({N)*(BK{N}=~BJ(N))/2+XLOAD(1)
XLOAD(J)=~THERM(N} #BK (N) /2 ¢ +XLOAD {J)
XLOAD(K)=THERM(N)*BJ(N)/2¢+XLOAD(K)
YLOADII)=THERM(N)}*(AJ{N)=AK(N})/2++YLOAD(])~DL
YLOAD(J)=THERM{N)#AK(N)/2++YLOAD(J)~DL
YLOAD(K)=~THERM{N)*AJ(N)/2¢+YLOAD (K} =~DL

FORMATION OF STIFFNESS ARRAY

DO 200 N=1sNUMEL
AREA={AJ(N)*BK(N)=AK(N)#BJ(N))#,45
COMM=o25%ETIN)/( (1a~XU{N)*%2)*AREA)
Alls1)=BJI(N)=BKIN)

Al192)=0.0
A(193)=BK(N)
All94)=040
Al{195)==BJ(N)
Al196)=040
Al291)=040
Al292)=AKIN)=AJ(N)}
A(293)=0e60
Al2s4)==AK{N)
Al(235)1=040
A(296)=AJ(N)

A(391)=AK{N)~AJ(N)
Al392)=BJ(N)~BK(N)
Al393)==AK(N)
A(3s4)=BK(N)
Al345)=AJ(N)
Al346)=~BJIN)
B(1s1)=COMM
B(1s2)=COMM*¥XU(N)
B(l1s3)=040
B(2s1)=COMM®XU(N)

"B(292)=COMM

B(2s3)=040
B(3s1)=040
Bl342)=2040
Bl3¢3)=COMM*{1e=XU{N))%*g5

DO 182 J=146
DO 182 I=143
S(19J)=040
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DO 182 K=1143
S(IsJ1=S{TsJ)+B(IsKI*A(KsJ)

DO 183 J=146

DO 183 I=1+2

BlJr»1i=S(1sJ)

DO 184 J=196

DO 184 I=1946

S(1sJ)=060

DO 184 K=193
SUTe)=S{TsJ)+BlTsKI*A(KsJ)

LM{1)=NPI (N}

LM{2)=NPJIN)

LM{3)=NPK(N)

DO 200 L=1s3

DO 200 M=1+3

LX=LM(L)

MX=0

MX=MX+1

IF(NP(LXsMX}=LM(M)) 19091959190
IF(NP({LXsMX}) 18541954185

NP (LX sMX ) =LM{M)

IF (MX=10) 19697029702

SXX(LXaMX ) =SXXILXoMX)+S( 2#L~192%M=1)
SXY(LXIMX ) =SXY{LXyMX)+S({2%#L~192%M)
SYX(LXaMX )=SYX{LXyMX ) +S{ 2% 9 2#M~1)
SYYLLXSMX)=SYYILXsMX)+S{ 2% 9 2%M)

COUNT OF ADJACENT NODAL POINTS

DO 206 M=1sNUMNP

MX =1

MX=MX+1

IF {NP(MsMX}) 206412064205
NAP (M) =MX=1

INVERSION OF NODAL POINT STIFFNESS

DO 210 M=1sNUMNP
COMM=SXX(Ms1)%#SYY(Mp1)=SXY{My1)%#SYX(Ms1l)
TEMP=SYY(Ms»1) /COMM
SYY(Ms1)=SXX(Msl)/COMM

SXX{Ms1)=TEMP

SXY(Ms1)=~SXY(Ms1)/COMM
SYX{Msl)==SYX(Ms1)/COMM

MODIFICATION OF BOUNDARY FLEXIBILITIES

PRINT 112

READ 4s (NPB{L)ZNFIX(L)sSLOPE(L)sL=1sNUMBC)
PRINT 4 (NPBI(L)SNFIX(L)9sSLOPE(L)sL=1sNUMBC)
DO 240 L=1sNUMBC

M=NPB(L)

NP(Msl)=0

IFINFIX{L)=1) 22542204215
C=(SXX(My1)*SLOPE(L)=SXY(Ms1))/(SYX{Ms1)*SLOPE(L)~SYY{Ms1)])
R=]s=~C#SLOPE(L)
SXX(Msl)=(SXX(Ms1)=C*SYX(Ms1))/R
SXY{Ms1l)=(SXY(Ms1)=~C*SYY(Ms1))/R
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SYX(Ms1)=SXX(Ms1)*SLOPE(L)
SYY{Ms1)=SXY(Ms1)*SLOPE(L)

GO TO 240
SYY{(Ms1)=SYY(Ms1)=SYX(Mp1)%SXY(Ma1)/8XX(Msl)
GO TO 230

SYY(Ms1)=0.0

SXX{Ms1)=0e0

SXY({Ms1)=040

SYX(Ms1}=0.0

CONTINUE

ITERATION ON NODAL POINT DISPLACEMENTS

PRINT 119

SUM=040

DO 290 M=1sNUMNP

NUM=NAP (M)

IF (SXX({Ms1)4+SYY(Msl)) 27592909275
FRX=XLOAD (M)

© FRY=YLOAD (M)

280

285
290

300

305
310
315
320

400

1

DO 280 L=2sNUM

N=NP (MsL)
FRX=FRX=SXX{MsL)*DSX{N)=SXY{MsL}*DSY(N)
ERY=FRY=SYX(MsL ) ¥DSX{N)}=SYY{MsL)*#DSY{N)
DX=SXX{Ms 1} ¥FRX+SXY (Ms 1) #FRY~DSX (M)
DY=SYX{Ms1) #FRX+SYY{Ms1) #FRY~DSY (M)
DSX(M)=DSX{M) +XFAC*DX
DSY{M)=DSY (M) +XFACH#DY

IF (NP(Ms1)) 28592904285
SUM=SUM+ABSF(DX/SXX{Ms1) ) +ABSF(DY/SYY{Ms1})
CONT INUE

CYCLE COUNT AND PRINT CHECK

NCYCLE=NCYCLE +1

IF (NCYCLE=NUMPT) 305+3009300
NUMP T=NUMPT+NCPIN

PRINT 120 sNCYCLE s SUM

IF (SUM-TOLER) 40094009310
IF(NCYCM-NCYCLE) 40094009315
IF (NCYCLE=NUMOPT) 24443209320
NUMOPT=NUMOPT+NOPIN

PRINT OF DISPLACEMENTS AND STRESSES

PRINT 99

PRINT 100

PRINT 121

PRINT 1223 (NPNUM{M)}sDSX{M)sDSY (M) sM=1 s NUMNP)
PRINT 123

DO 420 N=1sNUMEL

I=NP1(N)

J=NPJ(N)

K=NPK(N)

EPX=(BJ(N)=~BK(N))#DSX(1)+BKI(N)*¥DSX{J)~BJ(N)*DSX(K)
EPY={AK(N)-AJ(N) ) #DSY(T)~AK(N)*DSY(J)+AJ(N)%DSY(K)
GAM= (AK(N)=AJ(N))#DSX (T )=AK(N)*DSX{J)+AJIN)*¥DSX(K)
+(BJ(N)=BK(N) ) #DSY (1) +BKINJ#DSY(J)=BJ(N)*#DSY(K)
COMM=ET(N)/({{1a=XU(N)#*¥2)*(AJIN)*BKIN)=AKIN}*¥BJI(N)))
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403
410

418
420

830
835
840

845

850

860

805

X=COMM*{ EPX+XU{N) *EPY )+ THERM(N
Y=COMM* { EPY+XU (N) *EPX )+ THERM(N
XY=COMM*GAM* (1 +=XU(N) ) %45
SIGXX(N)=X

SIGYY(N)=Y

SIGXY (N)=XY

C=(X+Y) /240

R=SQRTF ({ (Y=X)/240) #¥2+XY*%2)
XMAX=C+R

XMIN=C=R

PA=0.5%57 429578 %ATANF ( 2¢% XY/(Y=X})

IF (2¢%X=XMAX~XMIN) 40594209420

IF (PA) 41094209415

PA=PA+90.0

GO TO 420

PA=PA=9040

PRINT 1245 (NUME(N)sXsYsXYsXMAXsXMINIPA)

)
)

PRINT 823
DO 900 M=1sNUMNP
X=0.0
Y=0.0
XY=0e0
SRX=0+0
SRY=0.0
R=040
DO 860 N=1sNUMEL
I=NPI(N)
J=NPJ(N)
K=NPK{N)
IF (M=1}) 830:+8509830
IF (M=J} 83598459835
IF (M=K) B860+840+860
I=NPKI(N)
K=NPTI (N}
GO TO 850
I=NPJ{N)
J=NP T (N)
A=ABSF(XORD(J)+XORD(K}=2¢*XORDI{1))
B=ABSF{YORD{J)+YORD{K)~2+*YORD(I})
RY=B/(A+B)
SRY=SRY+RY
Y=Y+SIGYY (N) *¥RY
RX=A/(A+B)
SRX=SRX+RX
X=X+SIGXX(N)#RX
R=R+1e0
XY=XY+SIGXY(N)
CONT INUE
X=X/5RX
Y=Y /SRY
XY=XY/R
C={X+Y) /20
R=SQRTF(( (Y=X)/2es0) %#2+XY¥*%2 )
XMAX=C+R
XMIN=C~R
PAS0.5%5T7 429578 #ATANF ( 20% XY/{Y=X))
IF (2a#%=-XMAX=XMIN} 80508201820
IF (PA) 810+8204815
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810 PA=PA+9040
GO TO 820

815 PA=PA=9040

820 PRINT 1245(MsXsYsXYsXMAX 9 XMINSPA)

900 CONTINUE

IF (SUM-TOLER} 44034405430
430 IF (NCYCM=NCYCLE) 44094409243

440 GO TO 150
PRINT OF ERRORS IN INPUT DATA

701 PRINT 711 s(N)
GO TO 440

702 PRINT 712s(LX)
GO TO 440

FORMAT STATEMENTS

FORMAT {(61492E12459411)
FORMAT (41494E12449F80o4)
FORMAT (114+4F8s192F1248)
FORMAT (21491FBe3)

FORMAT (3E1548)

99 FORMAT (1H1)

100 FORMAT (72H BCD INFORMATION
1 )

LS R T N

101 FORMAT(29HONUMBER OF ELEMENTS =l14/)

102 FORMAT(29H NUMBER OF NODAL POINTS =114/)

103 FORMAT(29H NUMBER OF BOUNDARY POINTS =114/)

104 FORMAT(29H CYCLE PRINT INTERVAL =114/)

105 FORMAT(29H QUTPUT INTERVAL OF RESULTS =114/)

106 FORMAT(29H CYCLE LIMIT =114/)

107 FORMAT(29H TOLERANCE LIMIT =1E1244/)

108 FORMAT(29H OVER RELAXATION FACTOR =1F643)

109 FORMAT (118s4F124192F1248)

110 FORMAT (74H1EL. I J K E DENSITY POISSON
1 ALPHA DELTA T) ‘

111 FORMAT (80H1 NP X=0RD Y-ORD X=LOAD Y~-LOA
1D X=DISP Y=~-DISP)

112 FORMAT (20H BOUNDARY CONDITIONS)

119 FORMATI{34HO CYCLE FORCE UNBALANCE)

120 FORMAT (1112s1E2046)

121 FORMAT (42HONODAL POINT X~DISPLACEMENT Y=DISPLACEMENT)

122 FORMAT (1112+2E1546)

123 FORMAT(120H1 ELEMENT X-STRESS Y=STRESS
1 XY~STRESS MAX-STRESS MIN=STRESS DIRECTION)

124 FORMAT (1110+3F20e435X93F1542)

711 FORMAT (32HOZERO OR NEGATIVE AREAs ELe NOe=ll4)

712 FORMAT (33HOOVER 8 NePes ADJACENT TO NePe NOelI4)

823 FORMAT(120H1 N-~POINT X-STRESS Y=STRESS \
1 XY~STRESS MAX-STRESS MIN~STRESS DIRECTION)

END





