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PHOTOIONIZATION OF HELIUM ABOVE THE He+(n=2) THRESHOLD: 
AUTOIONIZATION AND FINAL-STATE SYMMETRY 

D. W. Lindle9 T. A. Ferrett 9 U. Becker 9* P. H. Kobrin 9 t 

C. M. Truesdale; H. G. Kerkhoff,* and D. A. Shirley 

Materials and Molecular Research Division 
Lawrence Berkeley Laboratory 

and 
Department of Chemistry 

University of California 
Berkeley, California 94720 

The energy dependences of the partial cross section, crn=2, the 

satellite branching ratio 9 R21 , and the angular distribution 

asymmetry parameter, an=2, for simultaneous photoionization and 
+ photoexcitation to the n=2 states of He have been measured in the 

range 67.5 eV < hv < 90 eV. In the non-resonance regions 

(67.5 eV < hv < 69.5 eV and 75 eV ~ hv ~ 90 eV), the measured an=2 

values and theoretical values of a2s and a2P have been used to 

determine the ratio of the 2p photoionization cross section to the 2s 

photoionization cross section. These results indicate that the 
+ 

He (n=2) satellite is predominantly 2p near threshold, in agreement 

with the other experimental and most of the theoretical results 

reported to date. In the resonance region leading to the n=3 threshold 

(69.5 eV ~ hv ~ 73.0 eV), the effects of a series of autoionizing 

Rydberg levels on crn=2 and an=2 have been measured, this being the 

first detailed measurement of the angular distribution of a satellite 
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over an autoionization resonance. In addition, the total cross section 

and the 1s partial cross section have been measured for the first 

member of this series (3s3p). The total cross-section data were found • 

to disagree with all previous experimental and theoretical results. 

Parameters defining all of the measured resonance profiles are 

presented. 

*Permanent address: Technische Universitat Berlin, Fachbereich Physik, 
1000 Berlin 12, West Germany. 

tPresent address: Department of Chemistry, Pennsylvania State 
University, University Park, PA 16802. 

*Present address: Corning Glass Works, Corning, NY 14831. 
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I. Introduction 

The photoionization of helium provides the simplest example of 

electron correlation in atomic physics. Because correlation cannot 

occur in the hydrogen-like final state, theoretical studies of initial-

state and continuum-state correlation effects are easier to interpret 

for the photoionization process. For this reason, helium is an 

important system for testing various theoretical approaches to the 

phenomenon of electron correlation. Past interest focused upon 

absolute cross-section measurements, as reviewed by Marr and West. 1 

Theoretical calculations2 of the total cross section, at least below 
+ the He (n=2) threshold, have proven to be very accurate. Recent 

. 3-10 h . 1nterest has centered upon the p oto1onization processes above 
+ this threshold, which can leave the residual He ion in the 2s or 2p 

excited states. Several calculations11- 17 of the partial 

photoionization cross section, the satellite and subshell branching 

ratios, and the angular distribution asymmetry parameter have been 
+ performed for the He (n=2) states, indicating that much is still to 

be learned from this simple system about the influence of correlation 

on measurable quantities. 

Figure 1 depicts the atomic and ionic states in helium relevant to 

this experiment. We have studied the photoionization processes 

(1) 
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as a function of photon energy and photoelectron ejection angle. The 

He+(2s) and He+(2p) states are effectively degenerate in a 

photoemission experiment, and thus comprise a single satellite line, 
+ which we designate He (n=2). We have measured the partial cross 

sections, a, and angular distribution asymmetry parameters, a, for the 

processes represented in Eq. (1) that leave the He+ ion in the 1s or 

the n=2 final states, as well as the branching ratio, R21 = an=2Ja1s' 

of the sate 11 i te intensity re 1 at i ve to that of the rna in 1 i ne. The 

threshold for production of the n=2 states from the ground state of the 

helium atom is 65.4 eV. We have taken photoelectron spectra for photon 

energies from 1.9 eV above this threshold to hv = 90 eV. This energy 

range can be divided into resonance and non-resonance regions. In the 

resonance region (69.5 eV ~ hv ~ 73.0 eV), it is possible to excite a 

series of Rydberg levels leading to the third ionization threshold at 

73.0 eV, with subsequent autoionization. 

The non-resonance data, taken with photon energies in the ranges 

67.5 eV < hv < 69.5 eV and 75 eV ~ hv ·~ 90 eV, show good agreement with 

. 3-6,8,10 d 1 1. . 11-17 f . 1 prev1ous measurements an ca cu at1ons o the part1a 

cross sections for both the n=1 and n=2 final states (processes DI in 

Fig. 1) and for the total (i.e. 2s plus 2p) satellite branching ratio. 

The ratio of the 2p cross section to the 2s cross section, R, which can 

be derived from Bn=2, provides a more sensitive test of theory. 

Discrepancies exist among the various experimental 7- 10 and 

theoretical 12- 17 values of R reported to date. Chang14 has predicted 

that near threshold the 2s contribution to an=2 is larger than that of 

.. .... 
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the 2p level, in contrast to several other predictions. 12 ,lJ,lS-l? 

Experimentally, the photoemission data of Bizau et. a1. 7 tend to 

support Chang•s calculation, but other photoemission9, 10 and 

fluorescence8 experiments d~ not. Our results support the conclusion 

that the He+(n=2) final state is predominantly 2p near threshold. This 

disagreement in the theoretical results indicates the need for a better 

understanding of the contributions of electron correlation to the 

photoionization process. 

A different perspective on correlation can be obtained in the 

analysis of autoionization resonances~ The interaction of various 

continuum-state wavefunctions with an excited Rydberg level determines 

the extent ana profile of the autoionization process. We have taken 

photoelectron spectra in the region of the lowest four Rydberg levels 

leading to the He+(n=3) ionization threshold at 73.0 eV. The four 

levels studied are shown in the left-hand portion of Fig. 1. Large 

variatiOns in an=2 and an=2 were found at these resonances. The 

partial cross section of the m,ain line, als' was also affected oy 

approximately the same magnitude as the satellite partial cross 

section, but proportionately this effect was much smaller. Our 

measured variation in an=2 agrees with the fluorescence data of 

Woodruff and Samson. 8 The detailed variation of sn=2 over the 

autoionization resonances is presented here for the first time. In 

addition, our measurements of the total cross section over the first 

member of this Rydberg series differ quite markedly with the previous 

experimental 18 and theoretical 19 , 20 results. 
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The experimental procedures are described in Section II. The non

resonance data are presented in Section III, and the behavior of the 

cross sections, branching ratios and asymmetry parameters over the 

autoionization resonances is discussed in Section IV. Conclusions are 

presented in Section V. 
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I I. Experimental 

Synchrotron radiation from the new 4° 'grasshopper• monochromator 

at the Stanford Synchrotron Radiation Laboratory (SSRL) was used to 

photoionize an effusive beam of helium atoms. The photoelectrons were 

detected at 0° and 54.7° with respect to the polarization vector of the 

photon beam by the double-angle time-of-flight (DATOF) method, 21 taking 

advantage of the pulsed time structure of the synchrotron radiation 

from the SPEAR storage ring. This configuration allowed us to measure 

simultaneously the partial cross sections and angular distribution 
.. + 

asymmetry parameters for both the main and satellite lines of He • 

The DATOF photoelectron spectrometer has been described 

previously. 22 It is ideally suited for studying low cross section 

satellite lines, such as in helium, because of its high signal-to-noise 

ratio and its ability to collect nearly all photoelectron energies 

simultaneously. The experimental chamber was isolated from the 

monochromator vacuum of -lo-10 torr by a 1500A thick aluminum window. 

The typical chamber pressure was 3-4 x 10-3 torr. For partial cross-

section measurements, the sample pressure was monitored by a 

capacitance manometer and the photon flux by a sodium salicylate 

scintillator and an optical photomultiplier tube (RCA 8850). 

Calibration of the analyzers was acc~mplished by the measurement of the 

known partial cross sections and asymmetry parameters of the 2s and 2p 

levels of Ne+. Typical count rates for the He+(n=2) satellite were 

<I 
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3-8 per second, with accumulation times of 1000 seconds for each 

spectrum. An example of a time-of-flight spectrum for helium from the 

0° detector is shown in Fig. 2. 

The angular distribution of photoelectrons ejected from a 

randomly-oriented sample by linearly-polarized radiation, in the dipole 

approximation, is given by 

da(E,e) 
dn = a( E) 

4w [1 + s(E)P2(cos e)] (2) 

where E is the photon energy, e is the angle between the propagation 

vector of the photoelectron and the polarization vector of the ionizing 

radiation, s(E) is the asymmetry parameter that completely describes 

the angular distribution, and P2(cos e) is the second Legendre 

polynomial. Photoelectron intensities measured ate= 54.7° (where 

P2(cos e) = 0) are directly proportional to a(E). The measurement of 

photoelectron intensities at one additional angle suffices to determine 

s(E). Throughout the remainder of this paper, explicit expression of 

the dependence of a and B on the photon energy has been omitted for 

clarity. 
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III. Non-Resonance Photoionization 

Our measurement of the branching ratio R21 is shown in Fig. 3, 

along with several theoretical curves and other experimental 

measurements. The present results show excellent agreement with the 

previous measurements. 3' 4' 6 We see, also, that the available 

theoretical calculations11- 15 , 17 agree reasonably well with one another 

and predict the branching ratio to within -25%. The absolute partial 

cross section of the n=2 satellite is also predicted well by these same 

calculations. We do not show our relative partial cross sections for 

the n=2 or ls' levels, but note that they also agree with the previous 

measurements. The ability to predict the energy dependence of R21 
appears to be nearly independent of the degree of configuration 

interaction (CI) included in the calculations. 

This is not true, however, when the individual partial cross 

sections for the 2s and 2p final states are considered. The 

measurement of these partial cross sections, or their ratio, is a more 

sensitive test of the theoretical calculations, because the energy 

dependences of a2s and a 2p are quite different. The reasons for 

these differences can be understood from a discussion of CI as it 

pertains to helium photoionization. 

For the case that CI is only important in the initial (eigen) 

state of the helium atom (ISCI), the initial state is properly written 

as an admixture of the ls2, 2s2, 2p2 and higher configurations. The 
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ground state is predominantly ls2• If we consider then that the ls2, 

2s2, 2p2, etc. configurations are not eigenstates (i.e. they are not 

orthogonal to each other), then the degree to which any one of the 

other configurations mixes into the ground state can be estimated by 

considering its overlap with the ls2 configuration. This estimate 

suggests that 2s2 plays a more important role in !SCI than does 2p2• 

Furthermore, if we assume that ionization from either the 2s2 or the 

2p2 configuration is equally probable, then the partial cross sections 

for the production of the 2s and 2p final states (by ionization from 

the 2s2 or 2p2 configuration, respectively} is dependent only on the 

mixing coefficients of 2s2 and 2p2 in the initial state. Therefore, we 

expect !SCI to lead to a predominance of He+(2s). We also can see that 

this result is valid for all photoelectron energies because the !SCI 

mixing coefficients are independent of energy. Thus, if CI were to 

occur only in the initial state, then the ratio R will be constant and 

less than unity. 

However, the effects of CI in the continuum state (CSCI) must also 

be considered. The continuum state includes both the ionic core left 

after photoionization and the photoelectron. For simplicity in this 

discussion, we will consider the initial state to be completely ls2• 

Configuration interaction in the continuum thus constitutes mixing of 

configurations such as 2S£P and 2p£S with ls£p. Again, we estimate the 

degree of mixing by examining the overlap of a given configuration with 

ls£p. Because the photoelectron is included in these wavefunctions, we 

can expect the mixing coefficients, and hence the 2s and 2p cross 
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sections, to be energy dependent. Because of the nature of continuum 

wavefunctions at low energy, the overlap between 2PES and 1SEP {which 

can be determined from< 1si£s> and <2pl£p>) is large near threshold, 

and quickly diminishes with increasing energy. The overlap between 

2SEP and 1SEP will not be strongly energy dependent, because of the 

similarity of the continuum part of these two configurations. The 

result of CSCI would then likely be a predominance of the 2p final 

state near threshold, this predominance decreasing as the energy 

increases. This discussion of CSCI is oversimplified to the extent 

that we have ignored the near degeneracy of the 2s and 2p final states. 

Their proximity in energy allows them to be strongly coupled in the 

continuum state. Despite this complication, we expect the conclusions 

to be qualitatively correct. 

To understand the complete picture for helium photoionization, it 

is necessary to combine the effects of ISCI and CSCI discussed above. 

Configuration interaction in the hydrogen-like final state is not 

possible, and does not need to be considered. Qualitatively, we 

conclude that at threshold the 2p final state will be maximally 

produced and may be more likely than the 2s final state, whereas in the 

high-energy limit, the 2s final state will be most important. At some 

intermediate energies, both final states will be equally important, and 

we can expect strong coupling between them. Similar conclusions can be 

derived from a different argument using shake theory. 15 Quantitatively, 

the degree of predominance of one final state over the other and the 

applicable energy ranges can only be determined by theoretical 
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calculations that accurately treat the effects of !SCI and CSCI. 

Comparison of such calculations with experimental results can yield 

information about the type and degree of CI present in the helium 

system, as well as important results concerning what treatments of CI 

are most accurate. 

Experimentally, two approaches have been taken. Woodruff and 

Samson8 measured R directly by taking advantage of the long lifetime 
+ of He (2s) to distinguish between fluorescence from the 2s and 2p 

levels. A second method, used by several groups, 7' 9, 10 including 

ours, relies on the measurement of the angular distribution asymmetry 

parameter, an=2, which is a weighted average of a2s and a2P: 

= 

By rearranging Eq. (3), and using the fact that a2s is always 2, R 

can be expressed in terms of an=2: 

R = = 

(3) 

(4) 

This latter approach, of course, must rely on the calculated values of 

a2P. Fortunately, the two available calculations7, 13 of a2P agree 

rather well. 

Our results for an=2 are presented in Fig. 4 along with the other 

experimental results7' 9, 10 for an=2 and theoretical calculations7, 13 of 

an=2 and a2P. Agreement among the experiments is excellent throughout 

the energy range shown. The region between 70 and 75 eV is blank 
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because of the presence of several strong autoionizing resonances (see 

Section IV). Figure 5 shows the values of R derived from the 

experimental data in Fig. 4 and the calculated values of a2P from 

Jacobs and Burke. 13 Also shown are five calculations12- 17 of this 

ratio and the direct measurements of R by Woodruff and Samson. 

The strong energy dependence of R below 100 eV can be understood 

from the above discussion of !SCI and CSCI. Because CSCI is more 

important at lower energies, we expect a 2P to make a stronger 

contribution to an=2 near threshold, as confirmed by the data. Also, 

since !SCI is nearly energy-independent, we expect the ratio a2s!a1s 

to be fairly constant for all photon energies. Direct measurements8 of 

a2s support this conclusion about a2s!a1s for the first 60 eV above 

threshold. At the high-energy -limit the n=2 peak should be mostly 2s, 

though no experimental confirmation is available. The satellite 

branching ratio, R21 , in this limit has been calculated11 , 13 to be 

4.8%, which can be compared to the value of 6% from the highest-energy 

measurements (-190 eV) to date. 4 

The theories used in the calculation of R differ significantly in 

sophistication. The calculation of Richards and LarkinslS,ll used 

Hartree-Fock (HF) wavefunctions in which the effects of relaxation have 

been included, but not CI. The calculation by Chang14 also used HF 

wavefunctions, but included CI in both the initial state and the 

continuum states. Jacobs12 and Jacobs and Burke13 used a 56-term 

Hylleras initial-state wavefunction, which is a nearly exact 

approximation of the He(1s2) ground state, and a close-coupling 
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calculation for the final state, which is similar to CSCI. The latest 

calculation by Berrington et a1. 16 is an improvement on the earlier 

close-coupling calculations in which care was taken to use the same 

configurations in the expansions for both the initial and continuum 

states. All of the calculations used final-state wavefunctions that 

are purely hydrogenic. 

Above 85 eV, all of the calculations show the same behavior and 

they all agree with experiment to within the errors. Below 85 eV, 

however, Chang's curve deviates significantly from the rest and 

predicts a predominance of 2s near threshold. The experimental results 

show clearly that this is not correct, and we conclude that the 2p 
+ 

final state is the major component of He (n=2) at threshold, being more 

than twice as likely as the 2s final state. The calculation of 

Berrington et al. shows the best overall agreement with the present 

results. 

The three close-coupling calculations (Jacobs, Jacobs and Burke 

and Berrington et al.) and the calculation of Richards and Larkins 

behave similarly at low energy, despite the fact that the latter is a 

much less sophisticated calculation. Richards and Larkins have 

concluded that CI and exchange are unimportant to their calculation 

except near threshold, and they cite this as the reason their 

calculation does so well. 23 Furthermore, they suggest that the 

discrepancy in Chang's calculation may be the result of the use of CI 

wavefunctions that do not accurately take into account the direct 

interaction of the outgoing channels, which the other calculations 
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do. 12 , 13, 16 This may ultimately be the result of cancellation 

between large terms in the calculation of the transition amplitude. 14 

This example illustrates that much is still to be learned about 

the effects of CI on the calculation of the energy dependence of 

satellite cross sections. Except for isolated calculations on the Ne 

K-shell, 24 the Li K-shell, 15, 17 and the valence shell of Fe, 25 the 

helium calculations are the only such theoretical studies completed to 

date. Helium thus appears to be a good candidate for further studies 

of electron-correlation effects in atomic photoionization. 

At the photon energy of 80 eV (see Fig. 2), we were able to detect 
+ . photoelectrons from the He (n=3) f1nal state. We determine its 

branching ratio relative to the main line, R31 , to be 1.8 = 0.2% and 

its asymmetry parameter to be -0.2 = 0.2. This value for R31 is in 

agreement with previous estimates6,15 , 26 at this energy and the data 

of Bizau et a1. 27 The negative value for an=J indicates that the 3s 

final state is not the major component of this peak. In fact, a3PJa3s 
+ must be greater than 2 at 80 eV if the He (3d) final state has a 

negligible contribution, as predicted by Richards. 15 
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IV. Resonance Photoionization 

Madden and Codling28 first observed the Rydberg levels leading 

to the n=3 ionization threshold in helium in the energy range 

69.5 < hv < 73.0 eV. Of the five possible Rydberg series in this 

region, only one has been found to be significant. It is designated 

(sp, 3n+) 1P0

, which is a positive admixture of 3snp 1Po and 3pns 1P0

• 

It has also been given29 the notation 1n, which we shall use here 

except when the 13 resonance is discussed alone: then we shall refer to 

it as the 3s3p resonance. The (sp, 3n-) 1Po (or -ln) series, the 

negative admixture of 3snp 1Po and 3pns 1Po, has also been observed, 

but it is small enough to be neglected in the present analysis. The 

other possible 1Po series (with major component 3pnd, 3dnp or 3dnf) 

·have not been observed. To discuss the effects of the first four 

members of the 1n series on the photoionization of helium, a summary 

of several theoretical descriptions of autoionization is necessary. 

A. Theoretical Background 

The effect of an isolated resonance, such as a Rydberg level, on 

the total photoabsorption or total photoionization cross section was 

originally derived by Fano. 30 The presence of a discrete level 

embedded in one or more continua causes an interference in the photon 

absorption process because of the indistinguishability of the two 
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pathways, direct ionization and autoionization, leading to the final 

state. Fano derived the following expression for the total cross 

section, at' for the case of a single discrete state interacting 

with one or more continuum states: 

at = "a [ / 
(g + &)2 

+1- ·2] 
1 + E 

2 

_..~-·· 

E - E0 
E = 

f/2 

where the Fano parameters q and p
2 are assumed constant over the 

(5a) 

(5b) 

resonance, a0 is the cross section far from the resonance, r and Eo are 

the full-width at half-maximum (FWHM) and the position of the resonance, 

respectively, and E iS a redUCed energy. 

2 The quantities q, P , a0 and r can all be expressed in terms of 

the dipole matrix elements for transitions from the ground state, g, to 

the discrete state, ., and to the continua, p, togther with the Coulomb 

interaction matrix elements coupling the discrete state to the 

continua. The q parameter, which governs the shape of the total cross 

section, is given by 

q = 
1r I < •I vllJ> < lllrl g> 

(6) 

lJ 

and the correlation coefficient, p
2, which is a measure of the 

strength of the resonance, is given by 
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l: I<~IVI~><~I;Ig>l 2 

2 
p = ~ 

' (7) 

-+ where r and V represent the dipole and Coulomb operators, respectively, 

and ¢ is the discrete state modified by an admixture of the continuum 

states. The degree to which ¢ is different from ~ is dependent upon 

the energy variations of the continuum wavefunctions in the vicinity of 

the resonance. The linewidth of the resonance is given by 

r = 211' ' (8) 

and the non-resonance, background cross section is given by 

(9) 

While the matrix elements in Eqs. (6) and (7) are not strictly energy-

independent, they are slowly-varying functions of energy, and q and 

p
2 are therefore assumed to be constant over the energy range of the 

resonance. 

The Fano parametrization [Eqs. (5)-(9)] can explain the many 

different shapes measured for autoionization resonances. For example, 

the sign of the q parameter determines whether the resonance profile of 

the total cross section reaches its minimum on the low-energy side 

(q > 0) or the high-energy side (q < O) of the resonance. This 

property will be referred to as the •phase• of the resonance profile. 

Other shapes can also be obtained from these expressions, such as a 
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window resonance (q = 0) or a non-interfering Lorentzian peak added to 

the background cross section ( lql >> 0). 

The parametrization shown above is most applicable to the effect 

of an isolated resonance on the total photoabsorption cross section • 

In general, however, atomic.Rydberg levels form a series whose members 

are not well-separated in energy and thus cannot be considered 

isolated.· Equation (Sa) is not easily adaptaole to such a series of 

non-interacting, closely-spaced resonances because the background cross 

section appears as a multiplicative factor for each resonance, making a 

simple summation unsatisfactory. Shore31 has derived an equivalent 

expression that is better suited for a series of closely-spaced 

resonances because it is mathematically simpler to work with. His 

expression is 

(10) 

where C is the background cross section for the series of resonances, 

the summation is over the k resonances, €k is as defined in Eq. (Sb) 

for each resonance, and Ak and Bk are the shape parameters for the kth 

resonance, which we shall refer to as the 11 Shore parameters ... The 

value C is understood to be a slowly~varying function of the photon 

energy. As with the Fane parameters, q and p
2, the Shore parameters, 

A and B, are assumed constant in the resonance region. 

It is clear that for the case of a single, isolated resonance, 

the Fane and Shore parametrizations can be expressed in the same 
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mathematical fonn, as follows: 

(11) 

where c1 and c2 can be expressed in terms of either q and P
2 or A and 

B. We note that although the Shore formalism is to be preferred for 

multiple resonances, the parameters A and B are not dimensionless 

quantities as are q and p
2• Because of this, the Fano formalism is 

more descriptive in the isolated-resonance case. 

The formalisms presented so far were derived for the total cross 

section. In a photoemission experiment, however, partial cross 

sections are commonly measured. Starace32 has addressed the problem 

of several outgoing channels in the vicinity of an autoionization 

resonance. Davis and Feldkamp33 and Combet Farnoux34 have derived 

equivalent expressions. We shall use the notation of Starace. His 

expression for the partial cross section of each of the observable 

photoemission channels, ~, is 

a(~) = [•
2 

+ 21qRe(u") - Im(u")!• + 1 

- 2qlm(a)- 2Re(a) + (q2 + l)la 1
2], (12) 

~ ~ ~ 

where a0 (~) is the off-resonance partial cross section for the ~th 

observable final state and£ and q are defined in Eqs. (5b) and (6), 

respectively. The complex parameter, a , is given by35 
~ 
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<~lvlll> 2'1r 2 + 
Cl = < g I r Ill >< ll I v I ~ > ' (13) ll <glrlll> r ll 

with r given by Eq. (8). The term in brackets is conmon to all 

channels. The e1 -parameters can be thought of as replacing p
2 as the ll . 

correlation coefficient for each channel when partial cross sections 

are measured. It is important to note that each ll represents an 
+ observable photoionization channel (eg. He (1s&p112)). This 

restriction was not necessary in the Fano and Shore derivations of the 

resonance behavior of the total cross section, because the individual 

photoemission channels only appeared in summations over ll• It is clear 

that Eq. (12) has the same form as Eq. (11), because it describes the 

characteristic behavior of a cross section in the vicinity of an 

autoionization resonance. We will refer to c1(ll) and c2(ll) as the 

"Starace parameters". B~cause all of the preceding formalisms, whether 

for total or partial cross sections, have the same mathematical form, 

it is possible to equate the parameters of the various formalisms, 

keeping in mind that expression of the parameters in terms of the 

appropriate matrix elements is only possible if the proper formalism 

for any given experiment is used. For example, although effective Fano 

prameters can be derived for the autoionization profile of a partial 

cross section, it is misleading to report them as. the appropriate 

resonance parameters, because the expressions given by Fano for q and 

p
2 are not directly applicable to a partial cross section. They can be 

used in a descriptive context, however. This point will be discussed 

further in the next section. 
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An additional complication, discussed in Ref. (36), occurs because 

every peak, m, in a photoemission spectrum contains more than one of 

the channels, ~, such as the He+(1s) peak, which has contributions from 

two outgoing channels; 1s&p112 and 1s&p312• Thus, the partial cross 

section for each photoelectron peak, a(m), is the sum of several a(~). 

The expression for a(m) is of the same form as Eq. (12), but with a0 (~) 
replaced by the off-resonance partial cross section for the unresolved 

channels, a0 (m), and Re(a ), Im(a) and Ia 1
2 replaced by Re<a>, Im<a> 

~ ~ ~ m m 

and< lal 2 >m, which are averaged quantities weighted by the a0 (~). The 

Schwartz inequality requires that 

(14) 

so that the modified Eq. (12) contains three unknown quantities. 

Because a fit to the form of Eq. (11) only provides two parameters, it 

is, in general, impossible to solve for all three unknowns. 

The angular distribution asymmetry parameter, a, can also show 

effects of autoionization. Kabachnik and Sazhina37 have shown that, 

for photoionization in the region of an isolated resonance, a is given 

by 

a = 
X'& 2 + Y'& + z• 
A'& 2 + B'e: + C' 

where A', B' and c• are defined in terms of the parameters for the 

(15) 

cross section over the resonance, and x•, Y' and z• are new parameters 

that depend on the same matrix elements presented earlier, as well as 
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their relative phases. Equation (15) was obtained by the division of 

two functions of the form of Eq. (11). 

The parameters .in Eq. (15) have been expressed37 in terms of 

the same dipole and Coulomb matrix elements used in the description of 

the resonance behavior of total and partial cross sections. The 

expressions derived by Kabachnik and Sazhina describe the resonance 

effect upon the angular distribution asymmetry parameter, at' for 

the total photoelectron flux from a given sample. Except possibly for 

the special case of no interchannel coupling .in the continuum, these 

expressions cannot describe the resonance behavior of the asymmetry 

parameter, a , for an individual photoemission channel in terms of 
lJ 

these matrix elements. This is especially true for helium, because as 

we have seen from the discussion in Sect. III, continuum interactions 

are important. While the form of Eq. (15) correctly describes these 

11 partial a's 11
, no interpretation of the resulting parameters is yet 

possible. 

B. Data Analysis 

In the present experiment, the resonance behavior of the He+(ls) 
+ and He (n=2) partial cross sections and angular distribution asymmetry 

parameters in the region below the n=3 threshold was measured. The 1s 

partial cross section is shown in Fig. 6, and the data for the n=2 

satellite are shown in Figs. 7 and 9. The sum of the two partial cross 

sections yields the total cross section (not shown), and their ratio 
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yields R21 shown i~ Fig. 8. The resonance effects on the 1s partial 

cross section and the total cross section are proportionately much 

smaller than those on an=2• The remainder of this section is devoted 

to a discussion of the fitting techniques and assumptions used to 

describe analytically the cross-section and asymmetry-parameter data in 

the resonance region. 

The total cross-section data were scaled to the data of Marr and 

West1 at the off-resonance energy of 68.9 eV, and the absolute partial 

cross sections were then scaled from the satellite branching ratio. 

The total cross-section data, as well as the 1s partial cross-section 

data, show relatively small changes in the resonance region. For this 

reason, only the first resonance (3s3p) was discernible from the 

scatter (2-3%) in the cross-section data, and only this resonance was 

fitted. The 3s3p resonance was assumed to be isolated for this 

analysis, because the effect of the next member of the series is less 

than 1% at the energy of the 3s3p resonance. Both the total cross 

section and the 1s partial cross section were least-squares fitted to 

the form of Eq. (5). The position, E0, and width, f; of the resonance 

were taken from fits by Woodruff and Samson8 to their data on an=2• 

For convenience, the monochromator bandpass function was taken to be a 

Lorentzian with FWHM = 0.17 eV, so that convolution with the resonance 

width was straightforward. The background intensities for both the 

total and 1s cross-section data were taken to be linear functions of 

the photon energy. The Fano parameters from the computer fit to the 

total cross-section data are listed in Table I. 
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While the Fano parametrization can be used to interpret the total 

cross section, it cannot be used to interpret the 1s partial cross 

section. As discussed in Section IV-A, however, the parameters for the 

various formalisms can be equated mathematically. Having done so, we 
+ 

report the Starace parameters for photoionization to He (1s) over the 

3s3p resonance in Table II. The fit to a1s is shown in Fig. 6. 

Despite the scatter exhibitea by our data, we have confidence in the 

fit because of the good agreement between it and the data of Morin et 

al., 10 after accounting for the different photon-energy resolutions 

used in the two experiments. 

The effect of the autoionizing levels on an=2' shown in Fig. 7, is 

much more pronounced than for either a1s or at. These data were fitted 

to the Shore formula, Eq. (10), convolutea with a truncated triangular 

function of full-width equal to 0.17 eV to account more accurately for 

monochromator broadening. The off-resonance cross section, C, was 

taken to be a linear function of energy. The positions and widths of 

the four resonances were again taken from Woodruff and Samson. The 

Shore parameters derived in this way are presented in Table III. Note 

that the values for the fourth resonance were held fixed. The solid 

curve in· Fig. 7 shows this fit, whereas the dashed curve is the same 

fit, but with the monochromator broadening removed. 

The validity of using the Shore parametrization is dependent upon 

the assumption that the resonances are not coupled in any way, or 

equivalently, that the series of discrete levels, ~., do not perturb 
1 

each other via Coulomb interactions. Shore31 has indicated that this 
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is a good approximation provided that the radiative widths of the 

resonance states are small compared to their overall widths. Typical 

radiative lifetimes for allowed dipole transitions are in the range 

10-8 - 10-9 sec, 38 so the radiative widths are several orders of 

magnitude smaller than the resonance widths. 

The equivalent Starace parameters for an=2 are also presented in 

Table III, because they are the most interpretable parameters for a 

partial cross section. From the approximation in the previous 

paragraph, we know that the Shore parameters derived from the fit to 

the an=2 data represent isolated-resonance parameters and can be 

equated to the Starace parameters. Use of the Shore formula is simply 

a mathematical construct to derive the appropriate Starace parameters. 

The n=2 satellite branching ratio relative to the 1s main line 

also shows strong resonance effects, as can be seen in Fig. 8, mainly 

due to the changes in an=2• The branching-ratio data were fitted to a 

ratio of the two cross sections, an=2 and a1s, each written as in 

Eq. (10). The parameters for the function in the numerator were taken 

directly from the fit to an=2• For the denominator, als' the 

background cross section was taken as a polynomial of second order in 

energy, and the resonance parameters were varied to get the best fit. 

The numerator and denominator. were convoluted separately with the same 

monochromator bandpass function used for the fit to the an=2 data. The 

parameters for als for the 3s3p resonance from this fit agree with 

those derived from the fit to the ls partial cross-section data alone. 

The uncertainties in the a1s parameters for the higher-lying resonances 
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derived from the branching-ratio fit are too large for these parameters 

to be reported with confidence. 

The asymmetry parameter for the n=2 satellite is strongly affected 

by autoionization, because the peak includes contributions from two 

satellites with very different off-resonance asymmetry parameters. Our 

results are shown in Fig. 9. We have also measured s1s in the resonance 

region and found it to be 2.00 = 0.05, as expected. The sn=2 data were 

fitted in a manner identical to the fit to the branching-ratio data, 

except the parameters in the denominator were taken from the fit to 

an=2 (Table III). The function used was 

+ z 

= L Bk + Ak£k 

k 1 + £~ 
+ c 

(16) 

The background value, Z, was assumed to be a second-order polynomial in 

energy. The resonance parameters, Xk and Yk, are presented in Table IV, 

where they have been used to determine xk•, yk• and Zk • as in Eq. (15). 

As with the n=2 partial cross-section fit, we have equated the 

parameters in the fit to the numerator of sn=2 with the corresponding 

single-resonance parameters described by Kabachnik and Sazhina. 37 The 

parameters Ak•, Bk• and ck• are not shown, but can easily be derived 

from the values in Table III and Eqs. (15) and (16). We present these 

11Kabachnik-Sazhina parameters .. for sn=2, with the caveat that the 

definitions given in Ref. (37) do not allow easy interpretation for an 

individual photoemission line. 
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The fit to the Bn=2 data, including monochromator broadening, 

is shown in Fig. 9. The problem of deconvolution of instrumental 

broadening from the measured asymmetry parameters is not straight-

forward, especially when the monochromator bandpass is on the order of, 

or larger than, the resonance linewidth. The method used here is the 

same as that described for the fit to R21 , but using Eq. (16). This 

method was chosen because the form of Eq. (16) is more amenable to 

fitting a series of closely-spaced resonances, and because the measured 

asymmetry parameters are derived from the ratio of peak intensities in 

two analyzers. The deconvoluted curve is also shown in Fig. 9. 

As we have noted above, the derivation by Kabachnik and Sazhina 

yields parameters that describe the asymmetry parameter, at' for the 

total photoelectron flux from the helium atom as a function of the 

photon energy, which is given by 

0 1sBls + 0 n=2Bn=2 
0 1s + 0 n=2 

, (17) 

with a1s = 2, and a 1s, crn=2 and Bn=2 given by Eqs. (11) and (16) for 

the 3s3p resonance only. We have restricted this determination of at 

to the first resonance, because a 1s has not been determined accurately 

for the others. The resulting at has the same form as Bn=2, and the 

Kabachnik-Sazhina parameters describing it are given in Table V. The 

off-resonance value of at is approximately 1.8, with deviations due 

to autoionization of only -0.1, as expected because the dominant 1s 

channel shows no effect in a1s. 
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C. Results - Total Cross Section 

The results for the total photoionization cross section of helium 

for the 3s3p resonance are presented in Table I, along with the 

parameters for the only other measurement18 of at over this resonance. 

Both Fano and Shore parameters are presented, although the following 

discussion considers only the Fano parameters. The order-of-magnitude 

discrepancy in the strength of the resonance, indicated by p
2, between 

these two measurements is immediately apparent. Although the only 

argument we can put forth that the present result is correct is that 

the total cross-section data are necessarily self-consistent with the 

data we have measured for als and an=2, we can give two reasons why 

we believe the previous measurement to be inadequate. The first 

argument is an empirical one. The phase of als over the 3s3p resonance 

that is required by the shape of at as measured by Dhez and Ederer18 

combined with the shape of an=2 from the present results (the latter 

being in agreement with the fluorescence measurements of Woodruff and 

Samson8 over the same region) would necessarily have to be opposite of 

the phase for an=2• This is because the effect on at measured by Dhez 

and Ederer is so small that when the two partial cross sections are 

added to get the total cross section, their effects have to cancel. 

This requires that als reach a maximum below the resonance energy and 

a minimum above that energy (compare to a1s in Fig. 6). This 

conclusion was first reached by Woodruff and Samson, 8 but is 

inconsistent with our results, as well as other measurements. 10 
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Because this cancellation does not occur, the strength of the effect on 

at (as measured by p
2) must be significantly larger than that measured 

by Dhez and Ederer. The second argument requires reference to Table I 

in Ref. (18). This table lists the Shore parameters for a series of 

five transmission scans taken at three different pressures; 50, 90 and 

120 torr. Calculating q and p
2 for each scan shows a definite pressure 

dependence of p
2 (0.009 at 120 torr, 0.013 at 90 torr, and 0.018 at 50 

torr). Apparently, this pressure range is too high for the quantitative 

absorption measurement of this autoionization profile. This may be due 

to the fact that at these relatively high pressures, most of the photons 

(>98% at 120 torr) are being absorbed, and an experimental deviation 

from Beer's Law is occurring. In any case, one of three factors in 

Eq. (2) of Ref. (18) must be changing with pressure; the path length, 

t, the cross section, a, or the effective number of atoms, n. An 

order-of-magnitude change in t can be ruled out. The cross section is 

not likely to be significantly affected at this pressure, because 

pressure broadening is on the order of a millivolt. Doppler broadening 

is of the same order and can also be ignored. The value of n, of 

course, does change with pressure, but it should do so linearly. 

However, a variation in the exponent of n of only 5% (from 1.0 to 0.95) 

can account for a factor of 10 in p
2• Exactly what can cause such a 

non-linearity for this exponent is unclear, but it seems the most 

plausible explanation of the pressure dependence of p
2• 

Our value of q also disagrees with the previous result. While 

this may be due to the same problem as discussed above, it could also 
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be the result of the normalization procedure used in the earlier work. 

By nonnalizing the data at 177.22A, which is an energy near the center 

of the resonance, that point is forced to lie on the background curve, 

fixing the shape of the resonance with respect to the background cross 

section and thus affecting q. 

The present results are also to be compared with previous 

estimates of the resonance parameters. Fano and Cooper19 estimated q 

and p
2 to be 1.7 and 0.01, respectively. Calculations by Senashenko 

and Wague20 using the diagonalization approximation yielded q = 1.31 

2 and p = 0.019~ Both of these calculations disagree with the .values 

measured here. For the first estimate, however, it may be possible to 

trace the reasons for this disagreement. In calculating q, Fano and 

Cooper assumed that the matrix elements involving the 1S£P continuum 

state for the 3s3p resonance are not significantly different than 

similar matrix elements for the 2s2p resonance. This assumption seems 

to imply, at least, that a1s has the same phase for both the 2s2p and 

the 3s3p resonances. However, a 1s has opposite phases for these two 

resonances. After consideration of this point, the value of q 

calculated by Fano and Cooper may be more in line with the present 

result. For their estimated value of p
2 = 0.01, part of the 

discrepancy may be due to the neglect of autoionization into the 
+ He (1s) continuum. Their estimate from Eq. (6.11) of Ref. (19) is that 

the effect on a1s should be -6% for the 3s3p resonance. This effect is 

similar in absolute magnitude to the effect on an=2• This estimate 

agrees rather well with our result of an effective p
2 = 0.046 (Table 
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II). The low estimate of r (0.072 eV) may also be improved by 

inclusion of the 1s contribution. One other calculation39 of at for 

the 3s3p resonance has also been performed that reproduces the correct 

qualitative shape of the resonance, but no parameters were extracted 

because of the small number of points evaluated. 

The oscillator strength,/, for the 3s3p resonance can be obtained 

from the Fano parameters for the fit to the total cross section. It is 

given by40 

/= ' {18) 

with r expressed in Rydbergs and at expressed in Mb. Using the values 

in Table I, we find/= 2.0 x 10-4, which agrees well with the previous 

estimate19 of 1.2 x 10-4• A similar, but possibly more descriptive, 

expression for /is obtained41 by replacing q2 in Eq. {18) with (q2 - 1). 

The result fcir this case is -8.1 x 10-5, indicating that at in the 

vicinity of the 3s3p resonance exhibits a net loss in oscillator 

strength compared to the background cross section. The latter value 

of /is more descriptive of autoionization in the sense that it is a 

measure of the spectral repulsion part of the autoionization profile. 

D. Results - Partial Cross Sections 

+ The results for the He (1s) partial cross section for the 3s3p 

resonance are presented in Table II. Effective Fano parameters are 

listed in Table II because that formalism was used to fit the a1s data. 



-33-

The Starace parameters are the most descriptive representation of the 

data. They can be used, along with similar values for an~2 , to derive 

a -parameters and, ultimately, matrix elements describing the 
l.l 

autoionization process. 

This work represents the first measurement of these parameters for 

the 3s3p resonance. Again, we note that the a1s profile has the same 

phase as at and as an=2 (see Figs. 6 and 7). The parameters for an=2 

for the first four members of the Rydberg series leading to the n=3 

threshold are listed in Table III, along with the results of Woodruff 

and Samson. 8 The Shore parameters were found by fitting the data to 

Eq. (10) as described in Section IV-B, and the Starace parameters were 

then derived. The parameters for each member of the Rydberg series are 

fairly similar, as originally predicted by Fano and Cooper. 19 The 

energy and width of each resonance were taken from the work of Woodruff 

and Samson. 8 Results of several calculations20 , 29 ,39 ,42- 46 of these 

positions and widths are summarized in Ref. (8). Differences in the 

background cross sections (C and a0 in Table III) are due to differences 

in the scaling of the present data and the data in Ref. (8). 

Although, as we have pointed out, it is generally impossible to 

determine all three unknowns in Eq. (14), the simplicity of the helium 

system allows us to do so in a manner similar to the method described 

in an earlier paper. 36 The following discussion is limited to the 3s3p 

resonance, but similar results are expected for the higher-lying 
+ 

resonances. For He (ls) production, there are only two outgoing 

channels, 1.1: lse:p112 and lse:p312 . The dipole and Coulomb matrix 
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elements for these two channels help determine two of the a -parameters: 
ll 

a1 and a1 • 
S£p1/2 S£P3/2 

Of course, both of these channels are present 
. + 1n the He (1s) peak (m=1s). In this case, however, because the spin-

orbit interaction in the £P continuum is small, and because B1s is 

identically 2.0 over the resonance, the Schwartz inequality, Eq. (14), 

becomes an equality. Equations (11), (12) and (14) and the Starace 

parameters in Table II may then be used to obtain Re<a>1s' Im<a>1s and 

< lal 2>1s. The solution involves a complicated quadratic equation for 

Re<a >1s. The solution with< Ia 1
2>1s > 2 is dismissed, because it would 

require that the total cross section have p
2 > 1. The parameters for 

the correct solution are given in Table VI. It is also possible to 

determine the non-averaged quantities, Re(a1S£P·), Im(alS£P·) and 
J J 

lals£p.J 2, where j can have the values 1/2 or 3/2, because our earlier 
J 

assumption that Eq. (14) is an equality means that the matrix elements 

for the two outgoing channels in the 1s peak are identical for the 

dipole and Coulomb interactions. The averaged quantities. for the ls£p 

final state in Table VI are then just averages of identical quantities. 

The resulting non-averaged a-parameters are not listed because their 

values are identical to the averaged quantities listed in Table VI. 

From Eqs. (15) and (16) in Ref. (36), we can determine the partial 

linewidths, r1s and rn=2' for the two final states. Both of these 

partial widths are included in Table VI. The large difference in the 

partial widths illustrates why the effect of the resonance on als is 

small relative to the effect on an=2, even though a0(1s) is an order of 

magnitude larger than a0(n=2). The partial widths can be interpreted 
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as an additional measure(< lai 2 >m is the other one) of the strength of 

the resonance effect on an individual final state. As we did with the 

a-parameters for the ls level, we can break down the contributions to 

r1s into partial widths for each outgoing channel, being careful to 

account for the multiplicities of the two outgoing channels. The 

results are r1s P tr = 0.004 and r1s P /f = 0.009. The partial 
£ l/2 £ 3/2 

widths (in percent) derived here agree very well with previous 

calculations. 20 , 29 

Because we have already found < Ia 1
2 \s' we can use Eq. (17) in 

Ref. (35) to find ( Ia 1
2 )n=2" Having done this, cl (n=2) and C2(n=2) for 

the 3s3p resonance from Table III can be used with Eqs. (11) and (12) 

to find Re<a>n=2 and Im<a>n=2• These values are also presented in 

Table VI. We note that for the a-parameters for an=2, Eq. (14) appears 

to be a true inequality. Because the satellite peak containing the 2s 

and 2p final states includes seven possible outgoing channels, no 

further information can be obtained. 

A check of the a -parameters can be made as described in Ref. 
1.1 

(36). The results in Table VI satisfy this check to well within the 

statistical errors, suggesting that no major systematic errors are 

present in the data analysis. 

Some interpretation of the a -parameters can be made. The 
1.1 

positive values of Re<a k for both the ls and n=2 levels indicate that 

these two resonance profiles should have the same phase over the 

resonance, as we have observed. The approximately zero values for 

Im<a ls and Im<a ~=2 show that the a~.~-parameters are essentially real 
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numbers. This result seems fortuitous, because it probably does not 

imply, as discussed by Combet Farnoux,34 that interchannel coupling in 

the continuum is weak. In fact, because the n=2 peak is a satellite of 

the 1s peak, interchannel coupling in this case is important (see Sect. 

III). It might prove interesting to measure the a-parameters for the 

individual final states, 2s and 2p. The strong coupling between 2S£P 

and 2p£S may result in a-parameters tnat are complex. A detailed 

flourescence experiment, similar to that done by Woodruff and Samson, 8 

could measure these parameters. 

To this point, we have only derived parameters which depend on 

sev~ral of the dipole and Coulomb matrix elements. It is possible, 

however, for the case of the 3s3p resonance, to determine directly the 

squares of three of the matrix elements, including all of those 

describing autoionization into the 1S£P continuum. The Coulomb matrix 

elements 1< 3s3piVI1s£pj>i 2, with j=1/2 or 3/2, can be obtained from 

Eq. (8) for the partial decay width, r1s = 0.0023 eV, by properly 

accounting for the multiplicity of the 1s£pj states. The dipole matrix 

elements for continuum absorption, i< 1s£pj lrl1s2 >1 2, can be determined 

from a 1s as described in Ref. (19) and again considering the 

multiplicities. The dipole matrix elements can also be expressed as 

oscillator strengths. The dipole matrix element for the discrete 

transition 1s2 
+ 3s3p can be determined 19 from the oscillator strength, 

;/,derived in Section IV-C. All of these results are listed in Table 

VII, along with estimates of two of the matrix elements by Fano and 
19 Cooper. Their results agree with ours to within a factor of 2. 
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One additional parameter can also be derived. The square of the term 

in brackets in Eq. (14) can be determined by using< lal 2 >1s from 

Table VI and the matrix elements in Table VII. We find this term to 

have the value 36 Mb/Ry2• 

E. Results - Asymmetry Parameters 

The data in Fig. 9 mark the first detailed measurement of a 

satellite asymmetry parameter over autoionization resonances. The 

accompanying parameters in Table IV vary only slightly over the 

members of the Rydberg series, as first predicted by Dill. 47 

Because the angular distributions of all Qf the helium photo-

emission peaks (there are only 2) were measured in this experiment, it 

is possible to derive parameters from the at data that have been 

expressed in terms of the appropriate dipole and Coulomb matrix 

elements. The formalism and data analysis method were discussed in 

earlier sections, and the results are listed in Table v. It is hoped 

that these results, as well as those for sn=2, will spur further 

theoretical development regarding the detailed behavior of angular 

distributions of individual photoemission lines in the vicinity of 

autoionization resonances. Complete understanding of this phenomenon 

awaits further theoretical and experimental work. 

In Section III we were able to derive the ratio R=a2P!a2s from the 

measured off-resonance s 2 data and calculated values of a2 • We are n= p 
unable to do this in the resonance region because the resonance behavior 
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of a2P is unknown, but certain qualitative statements can be made 

concerning the effects on R of the 3s3p resonance. For the following 

discussion, the reader is referred to the deconvoluted curves in Figs. 

7 and 9. 

Figure 7 shows that the n=2 partial cross section drops nearly to 

zero at the minimum of the 3s3p resonance. From Fig. 5, the background 

value of R at 70 eV is -2.2. To account for the minimum in an=2' 

both a 2p and a 2s must be going through a minimum at the energy of the 

minimum in an=2• Furthermore, both of these minima occur on the low

energy side of the 3s3p resonance. In other words, we can conclude 

that both a 2P and a2s are affected by the resonance and that they have 

the same phase. The question then arises of whether or not these 

effects manifest themselves in an effect on R. If R is left unaffected, 

then the measured change in an=2 (see Eq. {3)) must be due solely to 

changes in a2P (assuming that a2s is always 2.0, just like a1s). 

However, examination of the minimum in an=2 on the high-energy side of 

the resonance shows that even if a2P = -1 at this energy, a value of 

R = 2.2 is not large enough to yield (see Eq. (4)) the deconvoluted 

value of an=2 = -0.25 from Fig. 9. The values of R = 2.2 and a2P = -1 

yield an=2 = -0.06. The uncertainty in the minimum of the deconvoluted 

curve for an=2 is -0.1. Therefore, our value of an=2 = -0.25 suggests 

that R shows a positive deviation from its background value of 2.2 on 

the high-energy side of the 3s3p resonance. Because R must have the 

same shape as the satellite branching-ratio over an autoionization 

resonance, it must reach a minimum on the low-energy side of the 3s3p 
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resonance as well. No limits can be placed on the value of this 

minimum. The conclusion then, is that R drops to a minimum on the low-

energy side and rises to a maximum on the high-energy side of the 3s3p 

resonance. This behavior is most likely caused by a2P and a2s having 

similar profiles, but with a2P reaching its minimum at a slightly lower 

energy than a
2
s. This implies that the Starace parameters, c1(2p) and 

c2(2p) are slightly larger than c1(2s) and c2(2s), respectively. We 

expect the higher members of this series to have similar effects on R, 

because partial cross sections tend to retain the same shape over a 

Rydberg series. 19 
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V. Conclusion 

The photoionization of helium to the n=2 excited state of the 

helium ion has provided several interesting results. The off-resonance 

measurements of a 2 have shown additional clear evidence that the n= 

n=2 satellite is mainly comprised of the 2p final state near threshold. 

Furthermore, the strong energy dependence of R has given some insight 

into the understanding of electron correlation in atomic systems: the 

helium case being especially useful because of, its relative simplicity. 

A new measurement of the total cross section over the 3s3p 

resonance has been performed. The correlation coefficient, p
2, is an 

order of magnitude larger than in the previous study, but the new value 

has been shown to be consistent with measurements of a1s over this 

resonance. The new Fano q parameter also differs from the previous 

result.· More work at higher resolution on the the total cross section 

of helium above the n>2 thresholds is recommended to verify our 

conclusions. 

We have presented the first detailed measurement of a 1s for the 

3s3p resonance, allowing us to extract parameters describing the 

autoionization process to the 1S£P continuum. In particular, we were 

able to derive the squares of individual matrix elements governing the 

interactions of the discrete autoionizing state with the ground and 

continuum levels. 
+ For the He (n=2) satellite, the partial cross-section and 

asymmetry-parameter behavior has been measured over the major Rydberg 
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series leading to the n=3 threshold. These angular-distribution 

measurements are the first of their kind for a satellite line. 

Parameters describing all of these resonance effects have been 

presented. From the angular-distribution results, the qualitative 

behavior of R over the resonances has been inferred. 
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Table I. Parameters for the total cross section of helium for the 

3s3p resonance. The background cross section, a
0 

(Mb), was taken to 

be 3.08- 0.0300(E), where E is the photon energy in eV. The numbers 

in parentheses represent statistical errors only. 

Fano parameters Shore parameters(Mb) 

This work DE a This work DE a 

q 0.84(30) 1.36(20) A 0.18(8) 0.032(6} 
2 0.11(3) 0.012(3) B -0.032(56) 0.010(5) p 

a0(Mb) 0.989(20) 0.957(30) c 0.989(20) 0.957(30) 

r(eV) 0.178(12)b 0.132(14) . 

E0 ( ev) 69.917(12)b 69.919(7) 

aDhez and Ederer, Ref. (18). 

°From Ref. (8). Same for all fits in this work. 

~· 
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Table II. Parameters for the He+(ls) partial cross section for the 

3s3p resonance. The background cross section, a0 (Mb), was taken to 

be 2.87 - 0.0283{E), where E is the photon energy in eV. Numbers in 

parentheses represent statistical errors only. 

Effective Fane parametersa 

q = 1.1(3) 

p
2 = 0.046(30) 

a0 = 0.892{20) Mb 

Starace parametersa 

c1 = 1.01(3) 

c2 = o.1o(7) 

a0 = 0.892(20) Mb 

aE0 = 69.917(12) eV and r = 0.178(12) eV from Ref. (8). 
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+ Table III. Parameters for the He (n=2) partial cross section for 

the first 4 members of the 1n Rydberg series. The background cross 

section, a0 {Mb), was taken to be 0.216- 0.0017(E), where E is the 

photon energy in eV. Numbers in parentheses represent statistical 

errors only. 

Shore parameters{Mb) Starace parameters 

Resonance This work wsa This work wsa 

13 A 0.120(2) 0.081(14) c1 0.55(2) 0.24{11) 

E0=69.917 ev a B -0.044(2) --0.065(8) c2 1.24( 2) 0.94(18) 

r=0.178 eva c 0.097(1) 0.086(7) a0{Mb) 0.097(1) 0 .086{ 7) 

A 0.086(5) o .079( 17) c1 0.35{5) 0.23{13) 

E0=71.601 eva B --0.061(5) -0.066{10) c2 0.92(5) 0.92{21) 

f=0.096 eVa C 0.094(1) 0.086(7) a0(Mb) 0.094(1) 0.086(7) 

15 A o.o8o(7) o.088(21) c1 o.45(8) o.49(15) 

E0=72.181 eva B --0.051(7) --0.044(12) c2 0.86(8) 1.02(26) 
a r=D.067 ev 

a E0=72.453 ev 
a f=0.038 eV 

c 0.093{1) 0 .086( 7) a0(Mb) 0.093(1) 0.086(7) 

A 0.080(fix) 0.085(28) c1 0.45{fix) 0.23(20) 

0.86{fix) 0.99{34} 

0.093(1) 0.086{7) 

B -0.051(fix) -0.066(16) 

c 0.093(1} 0.086(7) 

aWoodruff and Samson, Ref. (8). 
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Table IV. Parameters for Bn=2 for the first 4 members of the 1n Rydberg 

series. The background value, Z (Mb), was taken to be 

2.28 + 0.0103(E) - 0.00061(E2), where E is the photon energy in eV • 

Numbers in parentheses represent statistical errors only. 

Resonance X 

Fit parameters(Mb) 

y z 

13 -0.030(6) -0.037(5) 0.021(1) 

14 -0.031(9) -0.037(9) 0.036(2) 

15 -0.031(14) -0.040(14) 0.041(3) 

16 -0.031(fix) -0.040(fix) 0.043(3) 

~abachnik and Sazhina, Ref. (37). 

KS parameters(Mb)a 

0.021(1) -0.030(6) -0.016(5) 

0.036(2) -0.031(9) -0.001(9) 

0.041(3) -0.031(14) 0.001(14) 

0.043(3) -0.031(fix) 0.003(fix) 
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Table V. Kabachnik-Sazhina parameters for the angular distribution of 

the total photoelectron flux from helium for the 3s3p resonance. The 

numbers in parentheses represent statistical errors only. 

X I = 1.81( 4) 

y• = 0.15(13) 

z• = 1.79(7) 

A1 = 0.99(2) 

s• = o.18(8) 

c• = o.96(6) 

• 
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Table VI. a-parameters and partial linewidths for the 3s3p resonance. 

Final state Re(a}m lm<a>m I (a> 21m (fm/f)xlOO 
"" 

'\ 1S£P 0.023(21) -0.03(4) 0 0016 +0.0020 1.3 +1.7 
• -0.0016 -1.3 

2S£P} n=2 0.99(15) 0.2(3) 1.1(3) 98.7 +1.3 
2p£S -1.7 
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Table VII. Matrix elements for the 3s3p resonance. 

Matrix element This work 

1.1 X 10-3 Mb 

0.10 Mb/Ry 

4.5 X 10-6 Ry 

Amplitude 

Fane and Cooper19 

6.8 X 10-4 Mb 

aThe corresponding oscillator strength, g;1dE, is 0.0014 ev-1. 

bj = 1/2, 3/2. 

cThe value given by Fane and Cooper is for the sum over all the 

channels contributing to the 1s peak. We have divided their value by 

6 for comparison. 
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Figure Captions 

Fig. 1 Energy-level diagram for helium. DI =direct ionization. AI 

= autoionization. The energy scale above the break is 

expanded four times relative to the energy scale below the 

break. 

Fig. 2 TOF photoelectron spectrum of helium taken at a photon energy 

of 80 eV at e = 0°, converted to a kinetic-energy scale. 

Fig. 3 Branching ratio, R21 = an=2ta1s, for the He+(n=2) 

satellite relative to the 1s main line. Experimental 

results; e- present results; •- Samson, Ref. 3; 0- Krause 

artd Wuilleumier, Ref. 4; X - Wuilleumier et al., Ref. 6. 

Theoret ica 1 curves;·-- Sa 1 peter and Zaidi, Ref. 11;- · 

Jacobs, Ref. 12;- Jacobs and Burke, Ref. 13;---Chang, 

Ref. 14;--- Richards, Ref. 15. Where applicable, we have 

plotted only the velocity results for consistency. 12- 15 

Fig. 4 Asymmetry parameter of the He+(n=2) satellite as a function 

of photon energy. Experimental results; e- present 

results; 0- Bizau et al., Ref. 7; X- Schmidt et al., Ref. 

9; o- Morin et al., Ref. 10. Some error bars have been 

omitted for clarity. Theoretical curves;- Jacobs and 

Burke, Ref. 13;--Chang from Bizau et al., Ref. 7. Also 

shown are calculations of the asymmetry parameter for the 2p 

final state by Jacobs and Burke13 and Chang. 7 The 

velocity forms of the calculations have been plotted in all 

cases. 
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Fig. 5 The subshell branching ratio, R = a2P!a2s' for the 
+ He (n=2) satellite as a function of photon energy. 

Experimental results; e- present results; • - Woodruff and 

Samson, Ref. 8; 0- Bizau et al., Ref. 7; X- Schmidt et al., 

Ref. 9; o- Morin et al., Ref. 10. Some error bars have been 

omitted for clarity. Theoretical curves;---· Jacobs, Ref. 

12;-Jacobs and Burke, Ref. 13;--Chang, Ref. 14;--

Richards and Larkins, Ref. 17;-- Berrington et al., Ref. 

16. From Berrington et al. we show the length form of their 

calculation, which the authors predict to be more accurate 

than the velocity form. The remainder of the curves are 

velocity forms. 
+ Fig. 6 Partial cross section of the He (1s) main line in the 

Fig. 7 

vicinity of the 3s3p resonance, scaled to the data of Marr and 

West1 at hv = 68.9 eV. The solid curve is a fit to the data 

using Eq. (Sa). The dashed curve represents the data of Morin 

et al. (Ref. 10) taken with a monochromator bandpass of 

0.44 eV. The data of Ref. 10 show scatter of 3-4% about this 

curve. We have shifted tneir data along both axes for ease of 

comparison. 
+ Partial cross section of the He (n=2) satellite in the 

resonance region below the n=3 threshold, scaled as for the 

a 1s data in Fig. 6. The solid curve is a fit to the data 

using the form of Eq. (10). The dashed curve is the same fit 

with the monochromator broadening of 0.17 eV removed. 
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+ 
Fig. 8 Branching ratio, R21 = an=2tals' for the He (n=2) 

satellite relative to the ls main line in the resonance region 

below the n=3 threshold. The solid and dashed curves are fits 

to the data with and without monochromator broadening, 

respectively, as described in the text. 

Fig. 9 Asymmetry parameter of the He+(n=2) satellite in the 

resonance region below the n=3 threshold. The solid curve is 

a fit to the data using the form of Eq. (16). The dashed 

curve is the same fit with the monochromator broadening 

removed by trie method described in the text. 
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