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Poisson-Boltzmann (PB) electrostatics is a well established model in biophysics,
however its application to large scale biomolecular processes such as protein-protein
encounter is still limited by the efficiency and memory constraints of existing numer-
ical techniques. In this paper, we present an efficient and accurate scheme which
incorporates recently developed numerical techniques to enhance our computational
ability. In particular, a boundary integral equation (BIE) approach is applied to
discretize the linearized PB equation; the resulting integral formulas are well con-
ditioned and are extended to systems with arbitrary numbers of biomolecules. The
solution process is accelerated by Krylov subspace methods and a new version of
the fast multipole method (FMM). In addition to the electrostatic energy, fast cal-
culations of the forces and torques are made possible by using an interpolation pro-
cedure. Numerical experiments show that the implemented algorithm is asymptoti-
cally optimal O(N) in both CPU time and required memory, and application to the
acetylcholinesterase-fasciculin complex is illustrated.

In recent years, due to the rapid advances in biotechnology, both
the temporal and spatial scales of biomolecular studies have been in-
creased significantly: fromsinglemolecules to interacting molecular
networksin a cell, and from thestatic molecular structures at differ-
ent resolutions to thedynamicalinteractions in biophysical processes.
In these studies, the electrostatics modeled by the well-established
Poisson-Boltzmann (PB) equation has been shown to play an impor-
tant role under physiological solution conditions. Therefore, its ac-
curate and efficient numerical treatment becomes extremely impor-
tant, especially in the study of large scale dynamical processes such as
protein-protein association and dissociation in which the PB equation
has to be solved separately during a simulation.

Traditional numerical schemes for PB electrostatics include the fi-
nite difference methods, where difference approximations are used on
structured grids describing the computational domain, and finite ele-
ment methods in which arbitrarily shaped biomolecules are discretized
using elements and the associated basis functions. The resulting alge-
braic systems for both are commonly solved using multigrid or do-
main decomposition accelerations for optimal efficiency. However, as
the grid number (and thus the storage, number of operations, and con-
dition number of the system) increases proportionally to the volume
size, finite difference and finite element methods become less efficient
and accurate for systems with large spatial sizes, e.g. as encountered
in protein association and dissociation. Alternative methods include
the boundary element (BEM) and boundary integral equation (BIE)
methods. In these methods, only the surfaces of the molecules are
discretized, hence the number of unknowns is greatly reduced. Unfor-
tunately, in earlier versions of BEM, the matrix is stored explicitly and
the resulting dense linear system is solved using Gauss elimination, so
thatO(N2) storage andO(N3) operations are required, whereN is the
number of nodes defined on the surface to discretize the integrals as
discrete summations using appropriate quadrature. Even with the ac-
celeration afforded by Krylov subspace methods, direct evaluation of
the N(N−1)/2 pairs of interactions in the summations still requires
prohibitiveO(N2) operations.

In the last twenty years, novel numerical algorithms have been de-
veloped to accelerate the calculation of thisN-body problem from
the originalO(N2) direct method to theO(N logN) hierarchical “tree
code”1,2 and fast Fourier transform (FFT) based algorithms including
the particle-mesh Ewald (PME) method,3 and later to the asymptoti-
cally optimalO(N) fast multipole method (FMM),4 and eventually to
a new version FMM with an optimized prefactor.5 For the PB equa-
tion, however, only the original FMM and FFT based techniques have
been introduced into the BEM/BIE formulations. Numerical experi-
ments show that the original FMM,4 although asymptotically optimal
and well suited for multiscale time stepping schemes, is less efficient
for problem sizes of current interest when compared with the tree code
and FFT basedO(N logN) techniques, due to the huge prefactor in
O(N).

In this paper, we present an efficient algorithm to further acceler-
ate the solution of the PB equation. By proper coupling of single and
double layer potentials as discussed by Rokhlin,6 we derive a Fred-
holm second kind integral equation formulation for systems with an
arbitrary number of domains (molecules). Similar formulations are
used for single domain problems by Juffer et al.,7 Liang and Subra-
maniam,8 and Boschitsch et al.9 Compared with “direct” formula-
tions where Green’s second identity is applied, the condition num-
ber of our system does not increase with the number of unknowns,
hence the number of iterations in the Krylov subspace based methods
is bounded. For the matrix vector multiplications in each iteration,
we use the new version FMM developed for the screened Coulombic
interaction (Yukawa potential) by one of the authors and collabora-
tors.10 Compared with the original FMM, the plane wave expansion
based diagonal translation operators dramatically reduce the prefactor
in theO(N) new version FMM, especially in three dimensions where
a break-even point of approximately 600 for 6 digits precision is nu-
merically observed.

Whereas most previous PB electrostatics algorithms have mainly
focused on the energy calculations, calculations of the PB forces and
torques are also essential in many cases such as in dynamics simula-
tions. In this algorithm, we introduce anO(N) interpolation scheme in
the post-processing stage for calculating the forces and torques. This
scheme improves previousO(N2) results based on BEM.11,12

Boundary integral equation formulations.
When Green’s second identity is applied, traditional BIEs for the lin-
earized PB equations for a single domain (molecule) take the form
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whereφint
p is the interior potential at surface positionp of the molecu-

lar domainΩ, S= ∂Ω is its boundary, i.e., solvent-accessible surface,
φext

p is the exterior potential at positionp, Dint is the interior dielec-
tric constant,qk is thekth source point charge of the molecule,κ is
the reciprocal of the Debye-Ḧuckel screening length determined by
the ionic strength of the solution,n is the outward normal vector,t
is an arbitrary point on the boundary, andPV represents the principal
value integral to avoid the singular point whent → p in the integral

equations. In the formulas,Gpt = 1
4π|rt−rp| andupt = exp(−κ|rt−rp|)

4π|rt−rp| are

the fundamental solutions of the corresponding Poisson and Poisson-
Boltzmann equations, respectively. These equations can be easily ex-
tended to multi-domain systems in which Eq. 1 is enforced for each
individual domain and the integration domain in Eq. 2 includes the
collection of all boundaries.

To complete the system, the solutions in the interior (Eq. 1) and ex-
terior (Eq. 2) are matched by the boundary conditionsφint = φext and

Dint
∂φint

∂n = Dext
∂φext

∂n . Using these conditions, we can definef = φext

andh = ∂φext

∂n as the new unknowns and recover other quantities us-
ing boundary integrals off andg. Unfortunately, theoretical analy-
sis shows that the corresponding equation system forf and h is in
general a Fredholm integral equation of the first kind and hence ill-
conditioned. i.e., when solved iteratively using Krylov subspace meth-
ods, the number of iterations increases with the number of unknowns,
and the resulting algorithm becomes inefficient for large systems. In-
stead of this “direct formulation”, in our method, we adapt a technique
introduced by Rokhlin6 where the single and double layer potentials
are combined in order to derive an optimized second kind Fredholm

1



integral equation. Similar techniques have been used by Juffer et al.7

and others in engineering computations,13–15 however most of them
focus on single molecule cases. In the following, we present a well-
conditioned derivative BIE formulation (second kind Fredholm equa-
tion) for multiple biomolecule systems, in whichj = 1, · · · ,J repre-
sents the separated molecules:
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As our formulas have the same integrands on different domain sur-
faces, FMM calculation is convenient and the same as in the single
molecule case. Also, due to the small number of iterations for con-
vergence, the solution of an arbitrary system is directly obtained by
solving the PB equations only once, which differs from previous ”per-
turbation” scheme for two-domain systems.11,16

New version fast multipole method.
When Eqs. (3)-(4) are discretized, the resulting linear system is well-
conditioned and can be solved efficiently using Krylov subspace meth-
ods. As the number of iterations is bounded, the most time consuming
part becomes the convolution type matrix vector multiplication in each
iteration. In this section, we discuss how this can be accelerated by the
new version FMM.

The fundamental observation in the multipole expansion based
methods is that the numerical rank of the far field interactions is rela-
tively low and hence can be approximated byP terms (depending on
the prescribed accuracy) of the so-called “multipole expansion”
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whereYm
n are the spherical harmonics andMm

n the multipole coeffi-
cients. For arbitrary distribution of particles (meshes), a hierarchical
oct-tree (in 3D) is generated so each particle is associated with dif-
ferent boxes at different levels, and a divide-and-conquer strategy is
applied to account for the far field interactions at each level in the
tree structure. In the “tree code” developed by Appel,1 and Barnes
and Hut,2 as each particle interacts with 189 boxes in its “interaction
list” throughP terms of multipole expansions at each level and there
areO(logN) levels, the total amount of operations is approximately
189P2N logN. The tree code was later improved by Greengard and
Rokhlin in 1987.4 In their original FMM, local expansions (under a
different coordinate system)
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N
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are introduced to accumulate information from the multipole expan-
sions in the interaction list whereLm

n are local expansion coefficients.
As the particles only interact with boxes and other particles at the finest
level, and information at higher levels is transferred using a combi-
nation of multipole and local expansions as explained in Fig. 1, the
original FMM is asymptotically optimalO(N). However, because the
multipole to local translation requires a prohibitive 189P4 operations

Figure 1: Schematic showing the source points~ρ and evaluation point~R in the new
version FMM. In BEM implementation, the source points are centered at the surface tri-
angular elements.

for each box, the huge prefactor makes the original FMM less com-
petitive with the tree code and other FFT based methods.

In 1997, a new version of FMM was introduced by Greengard and
Rokhlin5 for the Laplace equation. Compared with the original FMM,
a plane wave expansion based diagonal translation operator is intro-
duced and the original 189P4 operations were reduced to 40P2 +2P3.
In our algorithm, we adapt the new version of FMM for the screened
Coulomb interactions (corresponding to the linearized PB kernel) de-
veloped by one of the authors and his collaborators.10 Preliminary
numerical experiments show that the overall break even point of the
new version FMM becomes 600 with 6-digit accuracy, and about 400
for 3-digit. However, the new version FMM is more complicated than
the original FMM in programming and theory, and we are unaware of
any previous implementations for the linearized PB equation.
Krylov subspace methods and mesh generation
In our algorithm, a parallel iterative methods package for systems of
linear equations PIM2317 is used. Several iterative schemes are avail-
able in the package including the GMRES method, biconjugate gradi-
ents stabilized (BiCGStab) method, and transpose-free quasi-minimal
residual (TFQMR) algorithm. Preliminary numerical experiments
show that the GMRES method converges faster than other methods,
which agrees with existing analyses. Because the memory required
by the GMRES method increases linearly with the iteration numberk,
and the number of multiplications scales like1

2k2N, for largek, the
GMRES procedure becomes very expensive and requires excessive
memory storage. For these reasons, instead of a full orthogonaliza-
tion procedure, GMRES can be restarted everyk0 steps wherek0 < N
is some fixed integer parameter. The restarted version is often denoted
as GMRES(k0). Currently a detailed comparison of different Krylov
subspace methods is being performed and results will be reported in
later papers.

To discretize the boundary integral equations, a triangular mesh is
generated using the package MSMS,18 and zero and extremely small
area elements are modified by a mesh checking procedure in our algo-
rithm. A typical mesh is shown in the Fig. 2 (top right).
Force and torque calculations
In addition to energy calculation, an improved procedure is imple-
mented to calculate the force and torque. Compared with previous
O(N2) schemes,11,12 the complexity of the new procedure isO(N). In
the calculation, the full stress tensor on the boundary includes contri-
butions from conventional Maxwell stress tensor as well as the ionic
pressure is given by19

Ti j = DextEiE j −
1
2

DextE
2δi j −

1
2

Dextκ2φ2δi j , (7)

whereE is the electrostatic field andδi j the Kronecker delta func-
tion. For the gradient of the potential, an interpolation scheme is used
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Figure 2:(a) The surface potential map of AChE and Fas2 at separation of 14Å. The
two green arrows indicated asF andM show the force (0.10, -0.03, -0.69) and torque
(-0.35, -1.03, -2.8), respectively, which are scaled for visualization. (b1) The electrostatic
potential profiles as functions of separations along a predefined direction: the total elec-
trostatic interaction potential U, electrostatic desolvation energies due to AChE and Fas2
cavities, respectively.Uuhbd-typemeans the interaction energy obtained in a similar way as
that in UHBD where the ligand polarization is not present.Unonpolar is a nonpolar contri-
bution from a simple surface term. (b2) Thex−,y−,z− components of forces, and torques
as functions of the separation distances along a predefined direction.

to construct a trivariate function in the vicinity of the molecular sur-
face. For each triangular element on the surface, we construct a small
three-sided prism as shown in Fig. 3. In the prism, the potential is
linearly interpolated, and the total PB forceF and torqueM acting on
each molecule are calculated by integrations ofF =

R
ST(x) ·dS(x) and

M =
R

Src(x)× [T(x) ·dS(x)], whererc(x) represents a vector from the
center of mass of the target molecule to the surface pointx, and the
dot and cross vector multiplications are applied to the vector and ten-
sor quantities.
Computational performance.
To assess the accuracy of the algorithm, we first consider a spherical
cavity of radius 50̊A with one positive charge located at its center, and
compare the numerical solutions with analytical ones. The surface is
discretized at various resolution levels (from 320 to 81, 920 elements)
by recursively subdividing an icosahedron. Numerical results show
that the relative potential error decreases with increased number of
elements, from∼ 8% (320 BEs) to less than 0.01% (81,920 BEs).

As for the efficiency, we noticed that regardless of the surface reso-
lution, the GMRES iteration steps never exceed 10, which numerically
confirms that the derivative BEM formulation is well-conditioned.

Figure 3: The prism constructed on a triangular element. The shadowed triangle is
one of the boundary elements,n1,n2,n3 are three unit normal vectors at the three nodes,λ
is a parameter to describe the third dimensional position of the prism.

Further, in each iteration, we compare the new version of FMM with
direct method for different resolutions (up to 81,920 BEs). Numerical
results in Fig. 4 show that the CPU time (on a Dell dual 2.0 GHz P4
desktop with 2 GB memory) for the new version of FMM scales lin-
early with the number of BEs with correlation coefficient 0.984, and
quadratically for the direct integration method with correlation coeffi-
cient 0.999. For a system with 81,920 surface elements, theO(N) new
version FMM is approximately 40 times faster than direct method.

Figure 4:Log-log plot of CPU time vs. the number of elements for the calculation on
a sphere case.

The memory requirements of our methods are tested on large
biomolecule systems withNatom atoms. Numerical experiments show
that the overall memory requirement scales linearly with the number
of surface elements. Compared with existing finite difference and fi-
nite element schemes, orders of magnitude reduction in memory us-
age has been observed in simulations on a nicotinic receptor (30, 385
atoms) with 194, 428 elements and 97, 119 vertices. In our algorithm,
we noticed that the majority of computer memory is allocated to store
the neighboring list and the corresponding near-field coefficients, the
size of which mainly relies on the total number of BEs and the level
for box subdivision. Depending on a tradeoff between memory and
speed, at each iterative step these coefficients can either be saved as
in a memory-intensive mode or be discarded as in a memory-saving
mode. We note that without sacrificing the accuracy, the number of
near-field elements for each vertex can normally be up-bounded by a
fixed numbers. Hence, the size of neighboring list is also up-bounded
by sN, which leads toO(N) overall memory usage.

To further illustrate the performance of our fast BIE technique on
protein electrostatic calculations, we computed the electrostatic sol-
vation energies of FasciculinII, a 68 residue protein, and compared
the algorithm performance with the multigrid finite difference algo-
rithm, as implemented in the widely used software APBS.20 For all
calculations, the AMBER atomic charges and radii were assigned.
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A probe radius of 1.5Å was used to define the dielectric interface.
The dielectric constants were taken as 2.0 for solute and 80.0 for sol-
vent. We want to mention that the two program codes employ very
different algorithms and data structures, hence an exact comparison
between them would be difficult. Also, APBS is designed primarily
for massively parallel computing, it has an integrated mesh genera-
tion routine, and it solves the PB equations twice to obtain the solva-
tion energy. Nevertheless, the preliminary results given below show
that present algorithm provides better speed and memory performance
than the current version of APBS. For APBS calculations, when using
a 161×129×161 grid with grid spacing of 0.25̊A, the computed elec-
trostatic solvation energy is -525.5 kcal/mol, and the calculation takes
250.8 seconds of total CPU time and 742.8 megabytes of memory on
our desktop machine. When using a finer grid of 225× 161× 225,
the total CPU time is increased to 599.9 seconds, memory increased
to 1784.6 megabytes and the total solvation energy is -522.8 kcal/mol.
For our calculation to achieve the same level of accuracy, the surface
mesh was generated with vertex density of 3Å−2, which results in a
total of 21, 430 triangular elements and 10, 717 vertices. In this case,
the computed solvation energy is -522.0 kcal/mol, and the calculation
takes 129 seconds requiring only 90 megabytes of memory if running
in a memory-saving mode while the job completes in 44 seconds re-
quiring 486 megabytes of memory if running in a memory-intensive
mode.

Protein-protein interaction of the acetylcholinesterase (AChE)
and fasciculinII (Fas2). Many experimental and theoretical studies
have established that electrostatic interactions dominate the AChE-
Fas2 binding process, and increase the binding rate by about two or-
ders of magnitude.21,22 However, in the initial Brownian dynamics
(BD) simulations of AChE-Fas2 encounter, the methods for solving
electrostatics are not rigorous in the sense that the polarization and
electrostatic desolvation effects are neglected to reduce the compu-
tational cost. Using these approximate methods, the calculated en-
counter rates tend to be overestimated especially at high ionic concen-
tration. In seeking to demonstrate the energetic discrepancies that may
occur by using our BEM-based method as compared to the previous
one, we calculate the interaction energies, forces and torques for a se-
ries of structures at different separation distances between AChE and
Fas2. These structures are generated by displacing Fas2 away from
the binding site, along a selected direction with possibly least clashes.
The AChE-Fas2 distance in bound complex is about 28.3Å. In all
calculations, the ion concentration is set to 50 mM, which is equiva-
lent to a Debye-Ḧuckel screening length of 13.8̊A. The meshes are
generated at a density of 1.0̊A−2. A single mesh is generated if two
molecular surfaces are separated by less than 3Å, while for the further
separations the system is treated as two separate domains with two
meshes.

Fig. 2 (a) shows the mutually polarized electrostatic potentials
mapped to the molecular surfaces of AChE and Fas2 at a∼ 14Å dis-
placement of Fas2. Not surprisingly, the potential surfaces exhibit
qualitative electrostatic complementarity at the binding interface. Fig.
2 (b1) shows the electrostatic interaction energy and electrostatic des-
olvation profiles for the AChE-Fas2 complex as a function of center-
center distances. Although the data at short range may not be quanti-
tatively accurate due to the atomic and mesh clashes when AChE and
Fas2 are close in (from∼29.0 Å to 33.0Å), Fig. 2 shows some in-
teresting results that will not be expected from previous approximate
models. Clearly, the electrostatic interaction energy (black line) is
favorable for binding at separations further than 33Å, but becomes in-
creasingly positive at closer separations. The long-range electrostatic
attraction is the dominant driving force for Fas2-AChE binding, which
accounts for the observed electrostatic enhancement of the binding
rate in experiments. However, given the fact that the AChE-Fas2 com-
plex has a high binding affinity, the unfavorably high positive electro-

static energies at closer distances seem to be surprising. This should
be balanced by the non-polar interactions. If we take a simple model to
add the surface termUnonpolar= γ∆S, γ = 0.058 kcal·mol−1 · Å−2,23 to
account for the nonpolar contributions, the total binding energy profile
(the purple line shown in Fig. 2 (b1)) will show favorable interactions
for the AChE-Fas2 complex.

The origin of the large unfavorable electrostatic interaction at closer
separations can be attributed to the electrostatic desolvation, an effect
due to the unfavorable exclusion of the high dielectric solvent around
one protein when the other one approaches (Elcock et al.22). The green
and red lines in Fig. 2 (b1) show the electrostatic desolvation energies
of AChE and Fas2 respectively. When AChE and Fas2 stay close,
there are large desolvation penalties, but the electrostatic desolvation
energies decrease rapidly when two molecules are separated by∼5 Å
or further.

Another interesting observation is that the electrostatic interaction
energy profile shows a minimum at the distance of∼ 33Å (Fig. 2
(b1)), which corresponds to a 5̊A displacement of Fas2 from the com-
plex structure. The presence of this energy minimum arises from the
polarization effects that tend to minimize the total interaction energy
when Fas2 is close to AChE.

The present BEM method gives the full PB interaction energy that
inherently takes into account both the desolvation and polarization
contributions from two proteins. In conventional electrostatic inter-
action calculations as in the UHBD package24 for protein-substrate
systems, the reaction field of only one molecule (usually protein) is
computed, and then acts on the atomic charges of the other one. The
blue line in Fig. 2 (b1) shows the interaction energies obtained with
this type of calculation. Whereas it is in good agreement with the full
PB energies at large separations (> 8Å), it deviates greatly at short dis-
tances, which emphasizes the importance of using more rigorous PB
electrostatics in simulating the AChE-Fas2 encounter process.

Although more work is presently underway to combine this code
with BD simulations for calculating association rates of enzyme-
substrate or protein-protein encounters, we show some early results on
the force and torque calculations in Fig. 2 (b2). The forces and torques
are more sensitive to the atom/mesh clashes, which exhibit very large
fluctuations at short ranges below 5Å(data not shown). Across the
whole separation range, the forces along x and y directions are close to
zero, while the z component varies from -1.0 to -0.65 kcal·mol−1 ·Å−1.
Since the direction of the Fas2 displacement is close to the z-axis (-0.4,
0.2, 0.89), the force results are consistent with the energy calculations,
and also suggest that this direction may be close to one of the real as-
sociation pathways within this spatial range. Fig. 2 (b2) also shows
torque calculation in all three x, y and z directions. Those significant
values suggest that the molecular orientation will be adjusted along
this association pathway.
Conclusions and discussion
In this paper, an efficient algorithm with optimal computational com-
plexity is presented for the numerical solution of the linearized PB
electrostatics. It uses a BIE formulation with unknowns defined only
on the surface, and is accelerated by the new version of FMM and
Krylov subspace methods. The algorithm enables the computational
study of relatively large biological systems (∼ hundreds of thousands
atoms) on a PC computer, and has been applied to the simulation of
AChE and Fas2 protein-protein interactions.

Unfortunately, all-atom molecular dynamics and BD simulations
with full PB calculation for large systems still exceed the presently
available computer capability. To overcome this hurdle, several tech-
niques are being pursued to further increase the efficiency of the
present algorithm for dynamical simulations, including (a) paralleliza-
tion of the present code and (b) a new multiscale time stepping method
which utilizes the efficiency of our algorithm for electrostatics calcula-
tions. For (a), previous studies show that the BIE method and new ver-
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sion of FMM have excellent scalability for parallel computation; and
for (b), as different temporal scales are readily available in the FMM
structures, larger time step sizes can be used for the slowly varying far
field interactions represented by the local and multipole expansions,
and smaller step sizes for the rapid local interactions. In addition, the
present fast BIE framework can be readily extended to solving other
equations, such as the diffusion equations arising from the study of
ion permeation and ligand diffusion processes. Results along these
directions will be reported in the future.
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ing Resource, the NSF Center for Theoretical Biological Physics,
SDSC, the W. M. Keck Foundation, and Accelrys, Inc. The work of
JH was supported in part by the NSF under grants DMS0411920 and
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