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EPIGRAPH

Decisions must often be taken in the face of the unknown. Actions decided upon in the present

will have consequences that can’t fully be determined until a later stage.

But there may be openings for corrective action later or even multiple opportunities for recourse

as more and more becomes known. . .

– Ralph Tyrrell Rockafellar
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ABSTRACT OF THE DISSERTATION

Data-Driven Online Optimization and Control with Performance Guarantees

by

Dan Li

Doctor of Philosophy in Engineering Sciences
(Mechanical Engineering)

University of California San Diego, 2021

Professor Sonia Martínez, Chair

This thesis considers the analysis and design of algorithms for the management and

control of uncertain intelligent systems which are observable through (limited) online-accessible

data. Examples include online equity trading systems under extreme price fluctuations, robotic

systems moving in unknown environments, and transportation systems subject to uncertain

drivers’ actions and other (accident) events.

To ensure safe, reliable, and resilient system behaviors, this thesis studies various

theoretical problem scenarios, which focus on reducing uncertainty with performance guarantees

via the assimilation of streaming data, the data-driven design of control, and online learning of
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system models, resilient operations in uncertain environments, and anomaly detection.

These formulations are largely rooted in two mechanisms: online optimization and

distributionally robust optimization, where the first enables online-tractable formulations of

the problem, and the latter accounts for systemic uncertainty with high confidence. Both

approaches are applicable beyond the particular systems of study, to virtually any type of

dynamic system where sensitive data is progressively available and may be exploited to the

advantage of management and control. This work is unique in that it brings together current

tools in optimization, control of dynamical systems, data-based modeling and probability theory,

significantly advancing the state of the art.
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Introduction

Uncertainty is ubiquitous in real-world complex systems, including financial markets [1],

human-robot mixed systems [31,78,125] or transportation networks [44,67,102]. Thanks to new

advances in computation, communication, and innovative infrastructure, large amounts of data

have become widely accessible, which can help reduce uncertainty in system design, control and

optimization [125]. Consequently, the state-of-art, robust and intelligent complex systems, which

enable data collection, uncertainty mitigation and as well as decision making, become possible

online. Examples include safe autonomous driving, multi-agent cooperative control, large-scale

transportation and smart energy systems. However, system performance guarantees typically

require large amounts of data processing which makes challenging the practical implementation

of such controllers.

This thesis concerns the analysis and design of algorithms for the robust intelligent-system

operations with high confidence. While designing such algorithms, we aim at contributing to

the theoretical foundations that can make a reality the safe deployment of intelligent system via

data-driven control, and enable non-asymptotic performance guarantees with finite amount of

data. This may be the case when data collection is costly or decisions need to be made before

a very large amount of data can be collected, because an adversary purportedly hides it. The

collected data are assumed to be realizations or samples of some random-variable distribution

which, in real-world applications, is unknown. Of special interest are online optimization

and control frameworks where the challenges are the finite, incremental availability of new

information in the scenario where large amounts of data were needed for safety. A main approach

we leverage is Distributionally robust optimization (DRO), which has attracted recent attention
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due to its capability to deal with uncertainty and provide out-of-sample performance guarantees

with a finite number of data. We apply DRO and recent measure-of-concentration results in

online optimization, learning for control and anomaly detection.

To achieve those objectives via DRO, the very first framework we consider involves the

minimization of time-varying convex loss functions, resulting into Online Convex Programming

(OCP). Typically, loss objectives in OCP are functions of non-stationary stochastic processes [49,

141]. Regret minimization aims to deal with nonstationarity by reducing the difference between an

optimal decision made with information in hindsight, and one made as information is increasingly

revealed. Thus, several online algorithms and techniques are aimed at minimizing various

types of regret functions [54, 94]. More recently, and with the aim of further reducing the cost,

regret-based OCP has integrated prediction models of loss functions [23, 46, 73, 109]. However,

exact models of evolving loss functions may not be available, while alternative data-based

approximate models may require large amounts of data that are hard to obtain. This motivates

the need of developing new frameworks and algorithms for loss functions that can employ finite

data sets, while guaranteeing a precise performance of the corresponding optimization, which is

the core of the responsive and intelligent systems.

In this regard, the thesis examines largely three problem scenarios:

(1): Loss functions are random, but they are determined explicitly by an uncertainty

distribution P. Even if P is unknown, samples of P are revealed incrementally over time. Thus,

Chapter 2 integrates streaming data sets into an online optimization framework, scrutinizes

data-assimilation capabilities, and meanwhile guarantees online-decision performance via DRO.

An Online Data Assimilation Algorithm is developed as a general framework, which enables

data-driven on-the-fly optimization with guarantees to minimize inaccessible loss functions.

(2): Loss functions are random and implicit, depending on the uncertainty behavior

which is governed by a given, uncertain dynamical system via control. Such a scenario

has natural connections with optimal control problems, including stochastic model predictive

control [22, 83, 130] and Kalman filtering [48]. Chapter 3 then aims to achieve tractable,
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data-driven predictive control for a class of control-affine systems which is subject to uncertainty.

An innovative solution approach is established and applied to a class of traffic control problems

as an example.

(3): Built upon the last scenario, the uncertain dynamical systems which govern

uncertainty behaviors are unknown as well. In such scenario, several techniques, from first-

principles system identification to, more recently, (deep) neural networks, have been successfully

used in various domains to capture uncertainty behaviors. However, as we mentioned, safe

performance usually depends upon the assimilation of vast amounts of data, which is mostly done

offline and prevents its application in real-time scenarios. Motivated by this, Chapter 4 investigates

the integration of recently-developed probabilistically-guaranteed system descriptions with

online, predictor-based learning algorithms. And further, in Chapter 5, a tractable, performance-

guaranteed online optimization framework is developed, leveraging DRO and the system learning

methodology in Chapter 4.

In these scenarios, there is a fundamental assumption on data-collection process: the

adversaries are absent. Otherwise, when there are attacks or corruptions in the procedure,

quantification of system performance remain elusive. In Chapter 6, a novel data-driven detection

mechanism is provided, which identifies attacks in real-time and, as the result, it serves as a

complement of frameworks developed.
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Chapter 1

Notation and Preliminaries

This chapter introduces standard notations whichever are not specified in the rest of the

thesis, and as well as the basic distributionally robust optimization framework.

1.1 Notation

Let Rm, Rm
≥0, Z

m
≥0 and R

m×n denote the m-dimensional real space, nonnegative orthant,

nonnegative integer space, and the space of m× n matrices, respectively. In particular, we

denote N := Z≥0. By x ∈ Rm we denote a column vector of dimension m, while x> represents

its transpose. We use the shorthand symbol 0m for the column vector (0, · · · ,0)> ∈ Rm, the

symbol 1m for the column vector (1, · · · ,1)> ∈ Rm, and Im ∈ R
m×m for the identity matrix. For

any vector x ∈ Rm, let us denote x ≥ 0m if all the entries are nonnegative. We use either

subscripts or parentheses superscripts to index vectors, i.e., xk ∈ R
m or x(k) ∈ Rm, for k ∈ N,

and we use xi to denote the ith component of x ∈ Rm. We use (x, y) ∈ Rm+d to indicate the

concatenated column vector from x ∈ Rm and y ∈ Rd . Let us denote by ‖x‖1, ‖x‖ := ‖x‖2

and ‖x‖∞ the 1-norm, 2-norm and ∞-norm, respectively. We define the m-dimensional

norm ball with center x ∈ Rm and radius ε ∈ R≥0 as the set Bε (x) := {y ∈ Rm | ‖y − x‖ ≤ ε}.

We denote by 〈·, ·〉 an inner product in the space of interest. Consider the space Rm, we

define 〈x, y〉 := x>y, x, y ∈ Rm. In particular, ‖x‖ :=
√
〈x, x〉. Consider Finsler manifold

R2 × [−π, π) � R× S1 where S1 stands for the unit circle. For (x, θ1), (y, θ2) ∈ R
2 × [−π, π),
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we define 〈(x, θ1), (y, θ2)〉 := x>y + cos(min{|θ1− θ2 |, 2π − |θ1− θ2 |}). In particular, we use

‖(x, θ)‖ :=
√
〈x, x〉+1. Given a norm ‖x‖, x ∈ Rm, we denote by ‖x‖? := sup‖ z‖≤1 〈z, x〉 the

corresponding dual norm. Notice that ‖x‖∗∗ = ‖x‖ and ‖x‖∞ ≡ (‖x‖1)?. Given a set of points

I ⊂ Rm, we let conv(I) indicate its convex hull. Let x ◦ y denote the component-wise product of

vectors x, y ∈ Rm. The component-wise square of vector x ∈ Rm is denoted by x2 := x ◦ x. In

addition, let x ⊗ y denote the Kronecker product of vectors x, y with the arbitrary dimension.

For matrices A1 ∈ R
m×d and A2 ∈ R

p×q, we let A1 ⊕ A2 denote their direct sum. The shorthand

notation ⊕m
i=1 Ai represents A1 ⊕ · · · ⊕ Am.

Notation Compression Rule: Any variable or letter x may have appended the following

indices and arguments: it may have the subscript xe with e ∈ N, the argument xe(t) with t ∈ N,

and finally a superscript l ∈ N as in x(l)e (t). Given a finite number of elements x(l)e (t) ∈ R

where e, t, l ∈ N, we define vectors x(l)(t) := (x(l)1 (t), x
(l)
2 (t), . . .), x(l) := (x(l)(1), x(l)(2), . . .), and

x := (x(1), x(2), . . .).

Convexity and Projection: The gradient of a real-valued function f : Rm→ R is written

as ∇ f (x) or ∇x f (x). The ith component of the gradient vector is denoted by ∇i f (x) or ∇xi f (x).

We use dom( f ) to denote the domain of the function f , i.e., dom( f ) := {x ∈ Rm | −∞ <

f (x) < +∞}. We call the function f proper if dom( f ) , �. A function ` : dom(`) → R is

M-strongly convex, if for any y, z ∈ dom(`) there exists g such that `(y) ≥ `(z)+ g>(y − z)+

M ‖y − z‖2/2, for some M ≥ 0. The function ` is convex if M = 0. We call the vector g a

subgradient of ` at z and denote by ∂`(z) the set of subgradients. Note that, if ` is differentiable

at z, then ∂`(z) = {∇`(z)}, i.e., ∂`(z) contains only the gradient of ` at z. A function ` is concave

if −` is convex. We say a function F : X ×Y → R is convex-concave on X ×Y if, for any

point (x̃, ỹ) ∈ X ×Y, x 7→ F(x, ỹ) is convex and y 7→ F(x̃, y) is concave. We use the notation

sgn : R→ R, x 7→ {−1,0,1} denote the sign function. Finally, the projection operation projU(X)

or ΠU(X) :X →U projects the set X ontoU under the Euclidean norm. In particular, we write

ΠU(x) := argminz ‖x− z‖
2/2+ χU(z), where x ∈ X, and χU(z) = 0 if z ∈ U, otherwise +∞.

Singular Value Decomposition (SVD): Given an A ∈ Rm×m, we write its SVD as
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A = UΣV>, where U, V ∈ Rm are orthonormal and Σ is diagonal with non-negative entries.

These entries are called singular values of A, and we denoted by σmax(A) and σmin(A) the

maximal and non-zero minimal singular value of A, respectively. We denote by A† :=VΣ†U> the

Moore–Penrose inverse of A, where Σ† is the same as Σ except the replacement of each positive

entry by its inverse.

Convex Conjugate Functions: Consider a bounded function f : X→ R where X ⊆ Rn.

The function f is lower semi-continuous on X if f (x) ≤ liminfy→x f (y) for all x ∈ X . Similarly,

the function f is lower semi-continuous on X if and only if its sublevel sets {x ∈ X | f (x) ≤ γ}

are closed for each γ ∈ R. We let f? : X→ R∪ {+∞} denote the convex conjugate of f , which

is defined as f?(x) := supy∈X 〈x, y〉 − f (y). Further, the infimal convolution of two functions f

and g on X is defined as ( f�g)(x) := infy∈X f (x − y)+ g(y). If f and g are bounded, convex,

and lower semi-continuous functions on X , we will have ( f +g)? = ( f?�g?). Consider a subset

A ⊂ X , and let χA : X→ R∪{+∞} denote the characteristic function of A, i.e., χA(x) is equal to

0 if and only if x ∈ A and +∞ otherwise. In addition, let σA : X→ R denote the support function

of A, which is defined as σA(x) := supy∈A 〈x, y〉. Notice that χA is lower semi-continuous if and

only if A is closed, and that σA(x) = [χA]
?(x) for all x ∈ X .

1.2 Distributionally Robust Optimization

This section introduces basic Probability Theory to describe the Distributionally Robust

Optimization (DRO) framework.

Let (Ω,F ,P) be a probability space, with Ω the sample space, F a σ-algebra on Ω, and

P the associated probability distribution. Let ξ : Ω→ Rm be an induced Rm-valued random

variable. We denote by Z ⊆ Rm the support of the random variable ξ and denote byM(Z)

the space of all probability distributions supported onZ with finite mean or first moment. In

particular, we assume P ∈M(Z). We define in the following a class of distributions considered.

Definition 1 (q-light-tailed distributions). For a random vector ξ such that ξ ∼ P, we say P is

6



q-light-tailed with a q = 1,2, . . ., if c := EP[exp(b‖ξ ‖a)] <∞ for some a > q and b > 0.

Remark 1 (Class of distributions satisfying Definition 1). Intuitively, Definition 1 is a refine-

ment of a class of distributions with a finite moment generating function. Any distribution with an

exponentially decaying tail satisfies this assumption, such as Gaussian, subGaussian, exponential,

and geometric distributions. Any distribution with a compact supportZ will trivially satisfy the

definition. In engineering problems, the values of random variables are usually truncated to a

compact set and hence Definition 1 is automatically satisfied.

To measure the distance between distributions, we use in this thesis theWasserstein metric.

LetMq(Z) ⊆ M(Z) denote the space of all q-light-tailed probability distributions supported

on Z ⊆ Rm. Then for any two distributions Q1, Q2 ∈ Mq(Z), the q-Wasserstein metric [115]

dW,q :Mq(Z)×Mq(Z)→ R≥0 is defined by

dW,q(Q1,Q2) :=
(
min
Π

∫
Z×Z

`q(ξ1, ξ2)Π(dξ1,dξ2)

)1/q
,

where Π is in a set of all the probability distributions onZ×Z with marginals Q1 and Q2. The

cost `(ξ1, ξ2) := ‖ξ1 − ξ2‖ is a norm on Z. The Wasserstein metric can be interpreted as an

optimal mass transport problem in the literature [115]. In this thesis, wherever q is not specified,

we consider q = 1 and denote directlyMlt and dW forM1 and dW,1, respectively. Or we denoteM1

byM in chapters where these definitions are customized and clarified for the particular problem

of interest. In addition, for some part of the thesis, we use the equivalent, dual characterization

of 1-Wasserstein metric [59, Kantorovich-Rubinstein Theorem] dW :Mlt(Z)×Mlt(Z)→ R≥0,

defined by

dW (Q1,Q2) := sup
f ∈L

∫
Z

f (ξ)Q1(dξ)−
∫
Z

f (ξ)Q2(dξ),

where L is the space of all Lipschitz functions defined onZ with Lipschitz constant 1. A closed

Wasserstein ball of radius ω ∈ R≥0 centered at a distribution P ∈M(Z) is denoted by Bω(P) :=

{Q ∈M(Z) | dW (P,Q) ≤ ω}. We denote the Dirac measure at x0 ∈ Ω as δ{x0} :Ω→ {0,1}. For
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any set A ∈ F , we let δ{x0}(A) = 1, if x0 ∈ A, otherwise 0. For an x ∈ Ω, we denote P ≡ Q+ x, if

P is a translation of Q by x.

Distributionally Robust Optimization (DRO) framework concerns a decision problem

under uncertainty, where each decision leads to a measurable, uncertain and R-valued loss

function `(ξ), with ξ ∈ Rm an uncertainty-related random vector governed by a distribution P.

We denote by L the feasible set of all available loss functions and consider the decision problem

inf
`∈L
EP[`(ξ)], (1.1)

where the distribution P, in most real life scenarios, is fundamentally unknown. However, P can

be observable through a-priori knowledge, e.g., the support of P from structural properties on the

problem of interest, or accessible and independently collected data, denoted by ξ1, ξ2, . . ., ξn.

These knowledge contribute to the interpretation of P empirically and, in practice, it is convenient

to construct an empirical distribution of P as P̂n := 1
n
∑n

k=1 δξk . In addition, P can be characterized

by a high-probabilistic set of distributions or ambiguity set, defined as a Wasserstein ball centered

at P̂n with a radius ε determined by measure concentration results [40, Theorem 2]. We denote

the ambiguity set by Pn := Bε (P̂n). In particular, for a given scalar β ∈ (0,1), the radius ε can be

selected such that Prob (P ∈ Pn) ≥ 1− β, where Prob := Pn is the probability defined on the space

of samples {ξ k}
n
k=1. With such characterization, we consider the DRO formulation of (1.1) as

follows

inf
`∈L

sup
Q∈Pn

EQ[`(ξ)], (1.2)

where, by construction, we have

Prob

(
EP[`(ξ)] ≤ sup

Q∈Pn

EQ[`(ξ)]

)
≥ 1− β, ∀` ∈ L.

Such a framework enables us to work on accessible Problem (1.2), which, in high probability

1− β, guarantees performance of (1.1) with a properly selected `. In following chapters, various

problem scenarios are tackled, and extensions of this framework will be addressed accordingly.
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Chapter 2

Data Assimilation and Online Optimiza-
tion

This chapter considers a class of real-time stochastic optimization problems dependent

on an unknown probability distribution. In the considered scenario, data is streaming frequently

while trying to reach a decision. Thus, we aim to devise a procedure that incorporates samples

(data) of the distribution sequentially and adjusts decisions accordingly. We approach this

problem in a distributionally robust optimization framework and propose a novel Online Data

Assimilation Algorithm (OnDA Algorithm) for this purpose. This algorithm guarantees out-of-

sample performance of decisions with high probability, and gradually improves the quality of the

decisions by incorporating the streaming data. We show that the OnDA Algorithm converges

under a sufficiently slow data streaming rate, and provide a criteria for its termination after certain

number of data have been collected.

2.1 Related Works

Optimization under uncertainty is a vast research area, and as such, available methods

include stochastic optimization [120] and robust optimization [10]. Recently, data-driven distri-

butionally robust optimization has regained popularity thanks to its out-of-sample performance

guarantees, see e.g. [36, 41] and [24, 25], for a distributed algorithm counterpart, and references

therein. In this setup, one defines a set of distributions or ambiguity set, which contains the
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true distribution of the data-generating system with high probability. Then, the out-of-sample

performance of the data-driven decision is obtained as the worst-case optimization over the

ambiguity set. An attractive way of designing these sets is to consider a ball in the space of

probability distributions centered at a reference or most-likely distribution constructed from

the available data. In the space of distributions, the popular distance metric is the Prokhorov

metric [35], φ-divergence [57] and the Wasserstein distance [36]. In particular, the work [36]

presents a tractable reformulation of DRO via Wasserstein balls, and is extended in [24] to a

distributed setting. However, the available problem reformulation in [36] and the distributed

algorithm in [24] do not consider the update of the decision over time and streaming data, which

is the focus of this chapter. To design a tractable algorithm incorporating streaming data, this

chapter connects to various convex optimization methods [12, 17] such as the Frank-Wolfe (FW)

Algorithm (e.g., conditional gradient algorithm), the Subgradient Algorithm, and their variants,

see e.g. [52, 58, 132] and references therein. Our emphasis on the convergence of the data-driven

decision obtained through a sequence of optimization problems contrasts with typical algorithms

developed for single (non-updated) problems.

Statement of Contributions

In this chapter, we propose a new Online Data Assimilation Algorithm (OnDA Algorithm)

to solve decision-making problems subject to uncertainty. The distribution of the uncertainty

is unknown and the algorithm adjusts decisions based on realizations of the stochastic variable

sequentially revealed over time. The new algorithm addresses four challenges: 1) the evaluation

of the out-of-sample performance of every possible online decision; 2) the adaptation to online,

increasingly-larger data sets to reach a decision with performance guarantees with increasingly

higher probabilities; 3) the availability of an online decision vector with performance guarantees

at any time; 4) the capability of handling sufficiently large streaming data sets.

To address 1), we start from a DRO problem setting. This leads to a worst-case
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optimization over an ambiguity set or neighborhood of the empirical distribution constructed

from a data set. To solve this intractable problem, we reformulate it into an equivalent convex

optimization over a simplex. This enables us to explore the simplex vertex set to find a certificate

(a value bounding the cost) of a given decision with certain confidence. When the data is

streaming, we consider a sequence of DRO problems and their equivalent convex reformulations

employing increasingly larger data sets. Thus, as the data streams, the associated problems are

defined over simplices of increasingly larger dimension. The similarities of the feasible sets allow

us to assimilate the data via specialized Frank-Wolfe Algorithm variants, thus solving 2) via a

Certificate Generation Algorithm (C-Gen Algorithm) described in Section 2.4. Further,

to seek for decisions that approach to the minimizers of the optimization problem, the OnDA

Algorithm adapts its iterations online via a Subgradient Algorithm as described in Section 2.5.

We show in Section 2.6 that the resulting OnDA Algorithm is finitely convergent in the sense

that the confidence of the out-of-sample performance guarantee for the generated data-driven

decision converges to 1 as the number of data samples increases to a sufficiently large but finite

value. Under this scheme, a data-driven decision with certain performance guarantee is also

available any time as soon as the algorithm finishes generating the first certificate for the initial

decision, which resolves the challenge 3). To expedite the algorithm and deal with challenge

4), we develop in Section 2.7 an Incremental Covering Algorithm (I-Cover Algorithm) to

obtain low-dimensional ambiguity sets. These new sets are based on a weighted version of the

empirical distribution and thus close to the full empirical distribution of the data. We finally

illustrate the performance of the proposed OnDA Algorithm in Section 2.8, with and without the

I-Cover Algorithm.
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2.2 Problem Description

Consider a decision-making problem under of the form

inf
x∈Rd
EP[ f (x, ξ)], (P)

where x ∈ Rd is the decision variable, the uncertainty random variable ξ :Ω→ Rm is induced by

the probability space (Ω,F ,P), and the expectation of f is taken w.r.t. the unknown distribution

P ∈M(Z). We aim to develop an Online Data Assimilation Algorithm (OnDA Algorithm) that

efficiently adapts iterations on decisions x of (P) with streaming data. The streaming data are

sequentially available iid realizations of the random variable ξ under P, denoted by ξn, n = 1,2, . . ..

This defines a sequence of streaming data sets, Ξn ⊆ Ξn+1, for each n. W.l.o.g. assume that each

Ξn+1 consists of just one more new data point, i.e., Ξn+1 = Ξn∪ {ξn+1} and Ξ1 = {ξ1}. In the

following, we refer to the time slot between the updates Ξn and Ξn+1 as the nth-time period and to

its rate of change as the data-streaming rate.

In practice, we cannot evaluate the objective function of (P) because P is unknown. We

call a decision x ∈ Rd a proper data-driven decision of (P), if its out-of-sample performance,

defined by EP[ f (x, ξ)], satisfies the performance guarantee

Pn(EP[ f (x, ξ)] ≤ Jn(x)) ≥ 1− βn, (2.1)

where the expected cost upper bound or certificate Jn(x) is a function that indicates the goodness

of x under the data set Ξn. If x is adopted during the nth time period, then EP[ f (x, ξ)] ≤ Jn(x)

is an event that depends on the n samples in Ξn, and Pn denotes the probability with respect to

these. The confidence 1− βn ∈ (0,1) ⊂ R governs the choice of x and the resulting certificate

Jn(x). In words, the inequality (2.1) establishes that, given finite data n, the performance of the

decision under the unknown distribution will not surpass the upper-bound certificate Jn(x) with

high probability. In the following section, we will determine the values Jn via the solution of a
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Figure 2.1. Time scales of Online Data Assimilation Algorithm.

parameterized maximization problem over x. Therefore, finding an approximate certificate will

be much easier than finding the exact one. Based on this, we call x ε1-proper, if it satisfies (2.1)

with Jε1
n (x) such that Jn(x) ≤ Jε1

n (x)+ ε1. Thus, the approximates Jε1
n (x) also provide upper

bounds to the optimal value of (P) with high confidence 1− βn.

To sum up, for any n, given a confidence level 1− βn, our goal is to approach to an

ε1-proper data-driven decision with a low certificate. Later in Section 2.5, we will show, under

assumptions on f , that both Problem (P) and these certificates Jn are convex. To find a decision

with a low certificate, we will call any proper data-driven decision ε2-optimal, labeled as xε2
n , if

Jn(x
ε2
n )− Jn(x) ≤ ε2 for all x ∈ Rd . Then, for any ε2-optimal and ε1-proper data-driven decision

xε2
n with certificate Jε1

n (x
ε2
n ) and ε1 � ε2, we have the guarantee

Pn(EP[ f (x
ε2
n , ξ)] ≤ Jε1

n (x
ε2
n )+ ε1) ≥ 1− βn. (2.2)

Then, any decision xε2
n ensures a high-confidence, potentially-low objective value of (P), upper

bounded by Jε1
n (x

ε2
n )+ ε1.

2.2.1 Motivating Example in Portfolio Optimization

Consider an agent who does short-term trading, i.e., she is to select a minute-based

portfolio weight x := (x,1− x), 0 ≤ x ≤ 1, for two risky assets that give random returns, with

return rates ξ := (ξ1, ξ2) following some unknown distribution P. The agent aims to select x such

that the expected profit is maximized, or equivalently, she seeks to solve

min
0≤x≤1

EP[−ξ1x− ξ2(1− x)]. (P0)
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Assume that P is unknown and independent from the selection of the portfolio and that, at every

minute, the agent has access to return rates, which are iid samples of P. Due to the independence

of P and x, Problem (P0) is equivalent to min
0≤x≤1

EP[−ξ1x− ξ2(1− x)− ξ>ξ]. To adapt this problem

to our unconstrained setting, we consider an approximation

min
x
EP[−ξ1x− ξ2(1− x)− ξ>ξ]− ρ (log(x)+ log(1− x)),

where ρ > 0 is some penalty for the constraint terms. This problem is in form (P), fitting in our

problem setting with

f (x, ξ) := −ξ1x− ξ2(1− x)− ρ (log(x)+ log(1− x))− ξ>ξ.

Our proposed algorithm allows the agent to make online decisions xε2
n that minimize the objective

with high confidence.

2.2.2 High-level Goal and Procedure

We describe now the goal of the OnDA Algorithm that handles a streaming sequence of

data sets with n ∈ {1, . . .,N}. Let tolerance parameters ε1 and ε2 be given and let us choose strictly

increasing confidence levels {1− βn}
N
n=1 such that

∑∞
n=1 βn <∞whenever N→∞. The algorithm

aims to find a sequence of ε2-optimal and ε1-proper decisions {xε2
n }

N
n=1 associated with the

sequence of the certificates {Jε1
n (x

ε2
n )}

N
n=1 so that (2.2) holds for all n ∈ {1, . . .,N}. Additionally,

as the data set streams to infinite cardinality, i.e., N→∞, there exists a large enough but finite n0

such that the algorithm returns a final xε2
n0 after processing the data set Ξn0 . The final decision

xε2
n0 guarantees performance almost surely, that is, Pn0(EP[ f (x

ε2
n0, ξ)] ≤ Jε1

n0 (x
ε2
n0)+ ε1) = 1, with a

certificate Jε1
n0 (x

ε2
n0) close to the optimal objective value of Problem (P).

To achieve this goal, the algorithm will output a sequence of decisions, {x(r)}∞r=1, on a

time scale that is faster than the data-streaming rate. We refer to this as the decision-update rate
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and we use a parenthetical superscript (r) to denote its iterations. New data arrival will reset

the OnDA Algorithm’s subroutines to update the sub-sequences of decisions in each nth time

period efficiently. We denote these sub-sequences as {x(r)}rn+1
r=rn , where x

(rn) is the initial decision

adapted from the the time period n−1. These updates will require the computation of certificates

(cost upper bounds) and the progressive reduction of these bounds.

The computation of certificates is carried out by the Certificate Generation Algorithm

(or C-Gen Algorithm, for short). Given a current decision value, x(r), and data set Ξn, the C-Gen

Algorithm finds an ε1 certificate Jε1
n (x

(r)) and a worst-case distribution associated with the data set.

It operates on a faster time scale than the decision-update rate, the so-called certificate-generation

rate. Upon the receipt of new data, this algorithm will reset as described in Section 2.4.

The second process of the OnDA Algorithm relies on iterating decisions to reduce the

values of the functions Jε1
n (x). This employs the Subgradient Algorithm and is described in

Section 2.5. A more thorough description of how new data triggers a reset in the algorithm

is described in the following sections. A summary of the OnDA Algorithm can be found in

Section 2.6 as well as a descriptive table.

2.3 Certificate Design

In this section, we present a tractable formulation of certificates Jn(x) and its approximation

Jε1
n (x) for a fixed x = x(r), as described in (2.1) and (2.2), respectively. To achieve this, we first

follow [24,25, 36] on DRO to find certificates Jn. This defines a parameterized maximization

problem for Jn, called Problem (P1n). Then we reformulate (P1n) as Problem (P2n), a convex

optimization problem over a simplex, for efficient solutions of approximated certificates Jε1
n in

the next section.

To design Jn, a reasonable attempt is to use the dataΞn to estimate an empirical distribution,

P̂n, and let EP̂n[ f (x, ξ)] be the candidate certificate for the performance guarantee (2.1). More

precisely, assume that the data set Ξn are uniformly sampled from P. The discrete empirical
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probability measure associated with Ξn is the following P̂n := 1
n
∑n

k=1 δ{ξk }, where δ{ξk } is the

Dirac measure at ξk . The candidate certificate is

Jsaen (x) := EP̂n[ f (x, ξ)] =
1
n

n∑
k=1

f (x, ξk).

The above approximation P̂n of P, also known as the sample-average estimate, makes Jsaen easy to

compute. However, such value only results in an approximation of the unknown out-of-sample

performance EP[ f (x, ξ)]. Following [24,36], we are to determine an ambiguity set Pn containing

all the possible probability distributions supported onZ ⊆ Rm that can generate Ξn with high

confidence. Then, one can consider the worst-case expectation of f (x, ξ) with respect to all

distributions contained in Pn. The solution to such problem offers an upper bound for the

out-of-sample performance with high probability in the form of (2.1), and we refer to this upper

bound as the certificate of the decision x.

In order to quantify the ambiguity set and certificate for an ε1-proper data-driven decision,

we denote by Mlt(Z) ⊂ M(Z) the set of light-tailed probability measures in M(Z), and

introduce the following assumption for P

Assumption 1 (Light tailed unknown distributions). It holds that P ∈Mlt(Z), i.e., there exists

an exponent a > 1 such that b := EP[exp(‖ξ‖a)] <∞.

Assumption 1 validates the following modern measure concentration result, which

provides an intuition for considering the Wasserstein ball Bε (P̂n) of center P̂n and radius ε as the

ambiguity set Pn.

Theorem 1 (Measure concentration [40, Theorem 2]). If P ∈Mlt(Z), then

Pn{dW (P, P̂
n) ≥ ε} ≤


c1e−c2nεmax{2,m}

, if ε ≤ 1,

c1e−c2nεa, if ε > 1,
(2.3)

for all n ≥ 1, m , 2, and ε > 0, where c1, c2 are positive constants that depend on m, a, and b. �
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Equippedwith this result, we are able to provide the certificate that ensures the performance

guarantee in (2.1), for any decision x ∈ Rd .

Lemma 1 (Certificate in performance guarantee (2.1)). Given Ξn := {ξk}
n
k=1, βn ∈ (0,1) and

x ∈ Rd , let

ε(βn) :=


(

log(c1β
−1
n )

c2n

)1/max{2,m}
, if n ≥ log(c1β

−1
n )

c2
,(

log(c1β
−1
n )

c2n

)1/a
, if n < log(c1β

−1
n )

c2
,

(2.4)

and Pn := Bε(βn)(P̂n). Then the following certificate satisfies the performance guarantee in (2.1)

for all x ∈ Rd

Jn(x) := sup
Q∈Pn

EQ[ f (x, ξ)]. (2.5)

Proof. Following [24,36] and from Theorem 1, we prove that Jn(x) is a valid certificate for (2.1).

Knowing that (2.4) is obtained by letting the right-hand side of (2.3) to be equal to a given βn, for

each nwe substitute (2.4) into the right-hand side of (2.3), yieldingPn{dW (P, P̂
n) ≥ ε(βn)} ≤ βn for

each n. Thismeans that a data setΞn we can construct an empirical probabilitymeasure P̂n such that

dW (P, P̂
n) ≤ ε(βn) with probability at least 1− βn. Namely, Pn{P ∈ Bε(βn)(P̂

n)} ≥ 1− βn. Thus, for

all x ∈ Rd , we have Pn{P ∈ Bε(βn)(P̂
n)} = Pn{EP[ f (x, ξ)] ≤ sup

Q∈Pn

EQ[ f (x, ξ)]} = Pn{EP[ f (x, ξ)] ≤

Jn(x)} ≥ 1− βn. �

To get Jn in (2.5), one needs to solve an infinite-dimensional optimization problem.

Luckily, Problem (2.5) can be reformulated into a finite-dimensional convex problem as follows.

Theorem2 (Convex reduction of (2.5) [36,Application ofTheorem4.4]). Under Assumption 1,

on P being light-tailed, for all βn ∈ (0,1) the value of the certificate in (2.5) for a given decision
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x under a data set Ξn is equal to the optimal value of the following optimization problem

Jn(x) := sup
y

1
n

n∑
k=1

f (x, ξk − yk),

s. t.
1
n

n∑
k=1
‖yk ‖1 ≤ ε(βn),

(P1n)

where each component of the concatenated variable y := (y1, . . ., yn) is in Rm, and the parameter

ε(βn) is the radius of Bε(βn) calculated from (2.4). Moreover, given any feasible point y(l) :=

(y(l)1 , . . ., y
(l)
n ) of (P1n), indexed by l, define a finite atomic probability measure at x in the

Wasserstein ball Bε(βn) of the form

Q
(l)
n (x) :=

1
n

n∑
k=1

δ
{ξk−y

(l)
k
}
. (2.6)

Now, denote by Q?n (x) the distribution in (2.6) constructed by an optimizer y? := (y?1, . . ., y
?
n )

of (P1n) and evaluated over x. Then, Q?n is a worst-case distribution that can generate the data

set Ξn with (high) probability no less than 1− βn. �

Remark 2. Theorem 2 provides a way of computing certificates of (2.1) as the solution to a

parameterized optimization problem for a decision x. In addition, it constructs a worst-case

distribution that achieves the worst-case bound.

To enable efficient online solutions of approximated certificates Jε1
n , let us define

parameterized functions hk : Rm→ R

hk(y) := f (x, ξk − y), k ∈ {1, . . .,n},

and consider the following convex optimization problem over a simplex

Jn(x) :=max
u,v

1
n

n∑
k=1

hk(uk − vk),

s. t. (u, v) ∈ nε(βn)∆2mn,

(P2n)
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where the concatenated variable (u, v) is composed of u := (u1, . . ., un) and v := (v1, . . ., vn) with

uk , vk ∈ R
m for all k ∈ {1, . . .,n}; and the scalar nε(βn) regulates the size of the feasible set via

scaling of the unit simplex ∆2mn := {(u, v) ∈ R2mn | 12mn
>(u, v) = 1, u ≥ 0, v ≥ 0}. We denote

by Λ2mn the set of all the extreme points for the simplex nε(βn)∆2mn.

The following lemma shows that Problem (P1n) and Problem (P2n) are equivalent. Thus,

we can approximately solve (P2n) to find Jε1
n (x) and Qε1

n (x).

Lemma 2 (Equivalence of the problem formulation). Solving (P1n) is equivalent to solv-

ing (P2n) in the sense that

1 For any feasible solution (ũ, ṽ) of (P2n), let ỹ := ũ− ṽ. Then ỹ is feasible for (P1n).

2 For any feasible solution ỹ of (P1n), there exists a feasible point (ũ, ṽ) of (P2n).

3 Assume that the point (ũ?, ṽ?) is an optimizer of (P2n). Then by letting ỹ? := ũ?− ṽ?, the

point ỹ? is also an optimizer of (P1n), with the same optimal value.

Proof. To prove 1, for any feasible solution (ũ, ṽ) of (P2n), we compute

1
n

n∑
k=1
‖ ỹk ‖1 =

1
n

n∑
k=1
‖ ũk − ṽk ‖1

≤
1
n

n∑
k=1
‖ ũk ‖1+

1
n

n∑
k=1
‖ ṽk ‖1 =

1
n

1mn
> ũ+

1
n

1mn
> ṽ =

1
n

12mn
>(ũ, ṽ) = ε(βn).

Therefore ( ỹ1, . . ., ỹn) is feasible for (P1n).

For 2, we exploit that any feasible solution ỹ of (P1n) is a linear combination of the extreme

points of the constraint set in (P1n). Let us denote the matrix An := [⊕n
i=1Im,−⊕

n
i=1 Im] ∈ R

mn×2mn.

By construction of Problem (P2n), we see that each column vector of the matrix nε(βn)An is

a concatenated vector of an extreme point of Problem (P1n), and that all the extreme points

of (P1n) are included. Then, any feasible solution of (P1n) can be written as ỹ = nε(βn)An(û, v̂)

where (û, v̂) is a vector of the convex combination coefficients of the extreme points of the
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constraint set in (P1n). Clearly, we have (û, v̂) ∈ ∆2mn, i.e., nε(βn)(û, v̂) is in the feasible set of

the Problem (P2n). Then, by construction (ũ, ṽ) := nε(βn)(û, v̂) is feasible for (P2n).

For 3, since (P1n) and (P2n) are the same in the sense of (1) and (2), then if (ũ?, ṽ?) is an

optimizer of (P2n), by letting ỹ?k := ũ?k − ṽ
?
k for each k ∈ {1, . . .,n} we know the objective values

of the two problems coincide. We claim that the optimum of (P1n) is achieved via the optimizer

ỹ?. If not, then there exists ŷ? , ỹ? such that the optimum is achieved with higher value. Then,

from the construction in (2) we can find a feasible solution (û, v̂) of (P2n) that results in a higher

objective value. This contradicts the assumption that (ũ?, ṽ?) is an optimizer of (P2n). �

2.4 Certificate Generation Algorithm

Given a tolerance ε1, sequentially available data sets {Ξn}
N
n=1 and decisions {x(r)}∞r=1, we

present in this section the Certificate Generation Algorithm (C-Gen Algorithm) to obtain

approximated certificates {Jε1
n (x

(r))}n,r and associated ε1-worst-case distributions {Qε1
n (x

(r))}n,r .

To achieve this, we first design for each fixed x = x(r) the C-Gen Algorithm to solve (P2n) to

Jε1
n (x) efficiently. This is developed via Frank-Wolfe Algorithm variants, e.g., the Simplicial

Algorithm [52] and the AFWA as described in the Appendix. Then we analyze the convergence

of the C-Gen Algorithm under {Ξn}
N
n=1.

2.4.1 The C-Gen Algorithm

For each fixed x = x(r) ∈ Rd the algorithm is run at a fast time scale (the certificate-update

rate), over iterations l = 0,1,2, . . . . The algorithm is then employed inside the OnDA Algorithm,

so its execution rate is the fastest within this algorithm. At each iteration l, the C-Gen Algorithm

generates (u(l), v(l)), the candidate optimizer of (P2n). Let the objective value of (P2n) at (u(l), v(l))

be J(l)n (x), and, equivalently, write the candidate optimizer in form of y(l) := u(l)− v(l) (exploiting

the equivalence in Lemma 2). Each candidate y(l) is associated with a set of search points

denoted by I(l)n := { ỹ[i] := ũ[i]− ṽ[i], i ∈ {1, . . .,T}}, where we use bracket superscript [i] to index
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C-Gen Algorithm 1. CG(x, {Ξn}
N
n=1, y

(0), I(0)n )

Require: Goes to Step 1 upon data arrival, i.e. Ξn← Ξn+1.
1: l← 0; . Procedure for Ξn
2: Update y(l), I(l)n , T and γε1; . Adapted from Ξn−1
3: repeat
4: l← l +1;
5: (Ω(l), η(l)) ← LP(x,Ξn, y

(l−1));
6: I(l)n ← I(l−1)

n ∪Ω(l), T ← |I(l)n |;
7: (γε1, J(l)n (x)) ← AFWA (CP(l)n );
8: y(l)←

∑T
i=0 γ

ε1
i ỹ[i], ỹ[i] ∈ I(l)n for each i;

9: until η(l) ≤ ε1
10: return Jε1

n (x) = J(l)n (x), yε1 = y(l), Qε1
n (x) =

1
n
∑n

k=1 δ{ξk−y
ε1
k
}
.

its elements. As we will see later, the set I(l)n plays a key role in generating the certificate when

assimilating data, and is called the candidate vertex set.

Given a data set Ξn, and until new data arrives, the C-Gen Algorithm solves the following

problems alternatively

max
u,v

1
n

n∑
k=1

〈
∇hk(y

(l−1)
k ) , uk − vk − y

(l−1)
k

〉
,

s. t. (u, v) ∈ nε(βn)∆2mn,

(LP(l)n )

max
γ∈RT

1
n

n∑
k=1

hk(

T∑
i=0

γi ỹ
[i]
k ),

s. t. γ ∈ ∆T .

(CP(l)n )

(Note how the solution to one problem parameterizes the other.) In this way, y(l−1) (the solution to

the CP(l−1)
n ) parameterizes the linear problem (LP(l)n ). The solution to (LP(l)n ) is then used to refine

the set point I(l)n = { ỹ
[i]}i, which spans the constraint set ∆T ≡ conv(I(l)n ) in problem (CP(l)n ). A

solution to (CP(l)n ) then determines the new y(l) of the next LP problem. This process corresponds

to lines 3: to 9: in the following C-Gen Algorithm table.

More precisely, at each iteration l = 1,2, . . ., the C-Gen Algorithm first solves (LP(l)n )
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Point Search Algorithm 2. LP(x,Ξn, y
(l−1))

1: Set Ω(l) := �;
2: Let H := {( j, k) | j ∈ {1, . . .,m}, k ∈ {1, . . .,n}};
3: Let S := argmax( j,k)∈H{±∇ j hk(y

(l−1)
k )};

4: while S , �, do
5: Pick (}, `) ∈ S and let ỹ = 0mn;
6: Update scalar ỹ}`← nε(βn)sgn(∇} h`(y

(l−1)
`
));

7: Update Ω(l)←Ω(l)∪ { ỹ};
8: Update S← S \ {(}, `)};
9: Pick any ỹ ∈ Ω(l) and,

10: set η(l) = 1
n
∑n

k=1

〈
∇hk(y

(l−1)
k ), ỹk − y

(l−1)
k

〉
;

11: return the set Ω(l) and the optimality gap η(l).

using the Point Search Algorithm, which returns the optimal objective value η(l) and the set of

maximizers Ω(l) such that η(l) ≥ Jn(x)− J(l)n (x) and Ω(l) ⊂ Λ2mn. The value η(l) is then used to

determine the ε1-suboptimality condition to the optimal objective of Problem (P2n) (see below).

Meanwhile, the set Ω(l) is used to update candidate vertex set to I(l)n := I(l−1)
n ∪Ω(l), which is

used in problem (CP(l)n ). In particular, the Point Search Algorithm computes all optimizers

by iteratively choosing a sparse vector with only a positive entry. That is, an extreme point

of the feasible set of (LP(l)n ), such that the nonzero component of (ũ(l), ṽ(l)) has the largest

absolute gradient component in the linear cost function of (LP(l)n ). Using the obtained I(l)n , the

algorithm solves the Problem (CP(l)n ) over the simplex ∆T := {γ ∈ RT | 1T
>γ = 1, γ ≥ 0}, where

T is the cardinality of I(l)n and each component γi of γ ∈ ∆T represents the convex combination

coefficient of a candidate vertex ỹ[i]∈ I(l)n . After solving (CP(l)n ) to ε1-optimality via the AFWA

(see Appendix), an ε1-optimal weighting γε1 ∈ ∆T with the objective value J(l)n (x) is obtained.

A new candidate optimizer y(l) is then calculated by y(l) =
∑T

i=0 γ
ε1
i ỹ[i]. The algorithm repeats

the process and increments l if the optimality gap η(l) is greater than ε1, otherwise it returns the

certificate Jε1
n (x) := J(l)n (x), an ε1-optimal solution yε1 := y(l) and an ε1-worst-case distribution

Qε1
n (x) := 1

n
∑n

k=1 δ{ξk−y
ε1
k
}
.

When new data arrives, the algorithm will reset by adapting the Problem (P2n+1) from
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Problem (P2n) (line 2: in the table of the C-Gen Algorithm (update from Ξn to Ξn+1). Note

that adapting the C-Gen Algorithm to online data sets {Ξn}
N
n=1 is inherently difficult due to the

changes in the Problems (P2n). As the size of Ξn grows by 1, the dimension of the Problem (P2n)

increases by 2m. To obtain Jε1
n (x) and Qε1

n (x) sufficiently fast, we exploit the relationship among

Problems (P2n), for different n, by adapting the candidate vertex sets I(l)n . Specifically, we

initialize the set I(0)n+1 for the new Problem (P2n+1) by I(l)n , constructed from the previous (P2n).

Suppose that the C-Gen Algorithm receives a new data set Ξn+1 ⊃ Ξn at some intermediate

iteration l with candidate vertex set I(l)n . At this stage, the subset conv(I(l)n ) has been explored

by the previous optimization problem, and the gradient information of the objective function

based on the data set Ξn has been partially integrated. Then, by projecting the set I(l)n onto the set

of extreme points of the new Problem (P2n), i.e., I(0)n+1 := projΛ2m(n+1)
({( ỹ[i],0m) | ỹ

[i] ∈ I(l)n }), the

subset conv(I(0)n+1) of the feasible set of (P2n) is already explored. Such integration contributes

to the reduction of the number of iterations in the C-Gen Algorithm for Problems (P2n). This

insight gives us a sense of the worst-case efficiency to update a certificate under streaming data.

2.4.2 Convergence Analysis

We make the following assumptions on the local strong concavity of the function f and

the computation of its gradient

Assumption 2 (Local strong concavity). For any x ∈ Rd and ξ ∈ Rm, the function h : Rm→ R,

y 7→ f (x, ξ − y) is differentiable, concave with a curvature constant Ch, and with a positive

geometric strong concavity constant µh on ∆2mN 1.

Assumption 3 ( Accessible gradients). For any decision x ∈ Rd , we denote by∇h(y) the gradient

of the function h : Rm→ R, y 7→ f (x, y) and assume it is accessible.

1 For a concave function h : Rm → R on ∆, we define Ch := sup−
2
γ2

(
h(y?)− h(y)−

〈
∇h(y), y?− y

〉)
,

s.t. y? = y + γ(s − r), γ ∈ [0,1], y, s, r ∈ ∆. and µh := inf
y∈∆

inf
y?∈∆
−

2
Γ(y, y?)2

×
(
h(y?)− h(y)−

〈
∇h(y), y?− y

〉)
,

s.t.
〈
∇h(y), y?− y

〉
> 0, where Γ(y, y?) is a step-size measure in AFWA. See, e.g., [58] for details. We say h is

locally strongly concave, if µh > 0.
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Figure 2.2. C-Gen Algorithm Procedure on a projected plane. At each particular time period
(n or n+ 1) and iteration l, the dots, shaded region and solid region represent the projection
of vertices of ∆, ∆ and conv(I), respectively. The solid region conv(I) implicitly expands for
solutions to various (P2n).

Under Assumptions 2 and 3, we show the convergence properties of the C-Gen Algorithm.

Theorem 3 (Convergence of the C-Gen Algorithm). Let a tolerance ε1 and a decision x be

given. Let us choose y(0) = 0m and I(0)1 = � as the initial candidate optimizer and candidate

vertex set for the C-Gen Algorithm, respectively. Consider the online data sets {Ξn}
N
n=1 and the

set of parameterized functions {hn}
N
n=1. Under Assumption 2 and Assumption 3, we have that for

all data set Ξn, there exists a parameter κ ∈ (0,1) ⊂ R such that the worst-case computational

bound φ(n) of the C-Gen Algorithm, depending on n, is

φ(n) ≤ (2mn)logκ(
ε1

Jn(x)− J(0)n (x)
).

Moreover, consider that data sets {Ξn}
N
n=1 are streaming and consider function JsaeN (x) defined

as in Section 2.3. Then there exists a parameter κ̄ ∈ (0,1) ⊂ R and a computational bound

φ̄(n) := (2mn)logκ̄(
ε1

JN (x)− JsaeN (x)
)

such that, if the data-streaming rate is slower or equal than (φ̄(1))−1, then the C-Gen Algorithm

is guaranteed to obtain the certificates {Jε1
n (x)}

N
n=1 and {Q

ε1
n (x)}

N
n=1.

Proof. Given tolerance ε1, decision x and any data set Ξn with n ∈ {1, . . .,N}, let Hn : Rmn→ R,
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Hn := 1
n
∑n

k=1 hk denote the objective function of (P2n) and let Sn denote the family of subsets of

Λ2mn. In the procedure of C-Gen Algorithm, let us consider a sequence of generated candidate

vertex sets: I(l)n ⊂ I(l+1)
n , l = 0,1,2, . . . with I(l)n ∈ Sn. We show the convergence of C-Gen

Algorithm for any data set Ξn, by two steps.

Step 1: (Finite algorithm iterations)Here we show that the sequence {I(l)n }l is finite and

the number of iterations is at most 2mn. For each l and candidate optimizer y(l−1), we generate a

nonempty set of search points Ω(l) with suboptimality gap η(l) via (LP(l)n ). If η(l) ≤ ε1, then we

solved (P2n) to ε1-optimality and l is therefore finite, otherwise we update I(l)n := I(l−1)
n ∪Ω(l).

Given that the maximal cardinality of each I(l)n ∈ Sn is bounded by 2mn, then it is sufficient

to show Ω(l) ∩ I(l−1)
n = �. Because y(l−1) is an ε1-optimal of (CP(l)n ) under conv(I(l−1)

n ), then

for any y ∈ conv(I(l−1)
n ), it holds that 1

n
∑n

k=1〈∇hk(y
(l−1)
k ), yk − y

(l−1)
k 〉 ≤ ε1. Since any element

in Ω(l) is such that η(l) > ε1, then for any y ∈ conv(I(l−1)
n ), we have y < Ω(l), which concludes

Ω(l)∩ I(l−1)
n = �. Further, the cardinality of Ω(l) is at least one for every iteration l, then after at

most 2mn steps the cardinality of I(l)n becomes 2mn, which implies the ε1-optimality of (P2n) by

the ε1-optimality of (CP(l)n ).

Step 2: (Quantification of the computational bound of C-Gen Algorithm) To see

this, consider the problems {(LP(l)n )}l and {(CP(l)n )}l . By Assumption 3 on the cheap access of the

gradients, the computation of (LP(l)n ) is negligible. Thus, the computational bound is given by the

sum of the steps to solve the {(CP(l)n )}l , where the number of iterations l is 2mn in the worst case.

For each (CP(l)n ) solved by AFWA, index the AFWA iterations by i = 0,1,2, . . ., let obj(l)i

be the objective value at each iteration, and assume the optimal objective value is obj(l)? . As in

Theorem 14, let κn,l ∈ (0,1) ⊂ R be the decay parameter related to local strong concavity of Hn

over conv(I(l)n ). Then using the linear convergence rate of the AFWA, each (CP(l)n ) achieves the

following computational bound

obj(l)? −obj(l)i ≤ κ
i
n,l(obj(l)? −obj(l)0 ),
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where the initial condition obj(l)0 results from an ε1-optimal optimizer of CP at iteration l −1, i.e.,

we can equivalently denote obj(l)0 by J(l−1)
n (x), for all l ∈ {1, . . .,2mn}.

Let us consider sequence {(CP(l)n )}l with feasible sets {conv(I(l)n )}l . Then we have

conv(I(0)n ) ⊂ conv(I(1)n ) ⊂ · · · ⊂ conv(I(2mn)
n ).

This results into monotonically decaying parameters and (ε1-)optimal objective values, as given

in the following

0 < κn,1 ≤ κn,2 ≤ · · · ≤ κn,2mn < 1,

J(0)n (x) ≤ J(1)n (x) ≤ · · · ≤ J(2mn)
n (x),

obj(0)? ≤ obj(1)? ≤ · · · ≤ obj(2mn)
? .

Using the previous notation, we can identify J(2mn)
n (x) ≡ Jε1

n (x), obj(0)? ≡ J(0)n (x), and obj(2mn)
? ≡

Jn(x). Let us denote κ :=maxn,l{κn,l}. Then, by solving each (CP(l)n ) to ε1-optimality, it leads

to the accumulated computational steps φ(n) :=
∑

l il , where each il is the computation step for

ε1-optimal (CP(l)n ) that satisfies the following inequality

κil (Jn(x)− J(0)n (x)) ≤ ε1, l ∈ {1, . . .,2mn}.

Finally, in the worst-case scenario, the computational bound of the C-Gen Algorithm is

φ(n) ≤ (2mn)logκ(
ε1

Jn(x)− J(0)n (x)
).

Next, we show the convergence of the C-Gen Algorithm under online data sets {Ξn}
N
n=1. Similarly

to the proof for the computational bound for a given n, we can compute the worst-case bound

under {Ξn}
N
n=1, by summing over the steps required to solve the {(CP(l)n )}n,l . This leads to

the stated bound φ̄(n), where the empirical cost JsaeN (x) serves as the cost of initial condition

y(0) := 02mN . In this way, when the data-streaming rate is slower or equal than (φ̄(1))−1, we claim

that C-Gen Algorithm can always find the certificate for each data set Ξn. This is because in each

26



time period n, we only have 2mn extreme points, and 2m(n−1) has been explored due to the

adaptation of the candidate vertex set I(0)n . �

Theorem 3 relates the worst-case computational bound of the C-Gen Algorithm, executed

on the certificate-update rate (the fastest of the time scales considered), to the data-streaming rate.

Note that, as ε1 decreases, the bound φ̄(1) increases and therefore the smaller the data-streaming

rate has to be so that the certificates can be generated by the algorithm. In practice, the C-Gen

Algorithm tends to find the smallest implicit feasible set that contains an optimal solution of (P2n).

This means that the computation of the C-Gen Algorithm generally performs better than its

worst-case bound as in Theorem 3 and so it can handle data-streaming rates faster than (φ̄(1))−1.

In the sequel, we assume that the C-Gen Algorithm converges with a rate that is faster than the

worst-case bound in Theorem 3.

Remark 3 (Effects of Assumption 2 and 3). The essential ingredients for convergence of

the Certificate Generation Algorithm are 1) the concavity of h, which ensures that (P2n) is

a convex problem, and 2) accessible gradients of h, which allows for computations to a solution

of (P2n). To obtain a fast, linear convergence rate as in Theorem 3, we assume that h is strongly

concave on the simplex ∆2mN located at each data point ξ ∈ Ξn. Intuitively, as Ξn comes from P,

Assumption 2 eventually requires h to be strongly concave on a subset of the support Z of P

where the high-probability outcomes are concentrated onto. Otherwise, if h is concave but not

locally strongly concave, or if the gradients of h are inaccessible (e.g., when only non-biased

gradient estimate of h are available), the convergence of AFWA, as described in Theorem 14,

reduces to a sublinear rate. This, in turn, reduces the computational bound φ̄(n) in Theorem 3 to

a bound of order O(1/ε1).

Remark 4 (Example in portfolio optimization). The portfolio problem in Section 2.2 results

in a strongly concave h which implies the local strong concavity as required by Assumption 2.
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Let y := (y1, y2) and, for any given data point ξk := (ξk,1, ξk,2), ∇h is accessible and computed by

∇h(y) :=
©­­­«

x+2(ξk,1+ ξk,2− y1− y2)

1− x+2(ξk,1+ ξk,2− y1− y2)

ª®®®¬ .

2.5 Sub-optimal Decisions with Guarantees

In this section, we aim to construct a sub-sequence of ε2-optimal data-driven decisions

{xε2
n }

N
n=1, associated with the ε2-lowest certificates {Jε1

n (x
ε2
n )}

N
n=1 over time. We achieve this by

means of the Subgradient Algorithm to derive an ε1-proper decision sequence {x(r)}rn+1
r=rn ; and the

concatenation of {x(r)}rn+1
r=rn for different n to obtain {xε2

n }
N
n=1. To construct an ε1-proper decision

sub-sequence {x(r)}rn+1
r=rn let us consider the following problem

J?n := inf
x∈Rd

Jn(x),

where the function Jn(x) is defined as in either (2.5) or (P1n), and we assume the approximation

of Jn(x), Jε1
n (x), can be evaluated as in Section 2.4. To solve this Problem to Jε1

n (x
ε2
n ), we have

the following assumption on the convexity of f

Assumption 4 (Convexity in x). The function fξ : Rd→ R x 7→ f (x, ξ) is convex for all ξ ∈ Rm.

Assumption 4 results in convexity of Jn(x) as follows.

Lemma 3 (Convexity of Jn(x)). If Assumption 4 (convexity in x) holds, then for each n ∈

{1, . . .,N} the certificate Jn(x) defined by (2.5) is convex in x.

Proof. For any x, y ∈ Rd and t ∈ [0,1] ⊂ R, we have z = tx + (1− t)y ∈ Rd and an optimizer
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of (2.5), Q?n (z), such that

Jn(z) ≤EQ?n(z)[t f (x, ξ)+ (1− t) f (y, ξ)]

=tEQ?n(z)[ f (x, ξ)]+ (1− t)EQ?n(z)[ f (y, ξ)]

≤t Jn(x)+ (1− t)Jn(y).

�

Lemma 3 allows us to apply the Subgradient Algorithm [13,112,123] to obtain xε2
n via

{x(r)}rn+1
r=rn and the following lemma.

Lemma 4 (Easy estimate of the ε-subgradients of Jn(x)). Let the tolerance ε1 and time period

n be given. For any decision x(r), we denote an ε1-optimal solution and ε1-worst-case distribution

of (P1n) by yε1 and Qε1
n (x

(r)), respectively. Let us consider the function gr
n : Rd→ Rd , defined as

gr
n(x) :=

d
dx
EQε1n (x(r))[ f (x, ξ)].

Denote an ε-subdifferential of Jn(x) at x, by ∂ε Jn(x). Then, for all ε ≥ ε1 we have the following

gr
n(x
(r)) ∈ ∂ε Jn(x

(r)),

or equivalently, for every z ∈ dom(Jn) and ε ≥ ε1, we have

Jn(z) ≥ Jn(x
(r))+gr

n(x
(r))
>
(z − x(r))− ε .

Moreover, for any x̃ ∈ Rd , there exists η > 0 such that for all ε ≥ η the following relation holds

gr
n(x̃) ∈ ∂ε Jn(x̃).
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Proof. Let us consider the function EQε1n (x(r))[ f (x, ξ)]. Using Assumption 4 on convexity of f in

x, we have for any z ∈ dom(Jn) the following relation

EQε1n (x(r))[ f (z, ξ)] ≥ Jε1
n (x

(r))+gr
n(x
(r))
>
(z − x(r)).

Knowing that Jε1
n (x

(r)) ≥ Jn(x
(r))− ε1 and Jn(z) ≥ EQε1n (x(r))[ f (z, ξ)], this concludes the first part

of the proof.

To show the second part, similarly, we have for any x̃, z ∈ dom(Jn) the following relation

EQε1n (x(r))[ f (z, ξ)] ≥ EQε1n (x(r))[ f (x̃, ξ)]+g
r
n(x̃)

>
(z − x̃).

Using Point Search Algorithm, we achieve an η > 0 such that EQε1n (x(r))[ f (x̃, ξ)] ≥ Jn(x̃) − η.

Finally, by similar statement as in the first part, we claim gr
n(x̃) ∈ ∂ε Jn(x̃). �

Note how Lemma 4 employs the discrete distribution Qε1
n generated from the C-Gen

Algorithm in the computation of an ε-subgradient function of Jn. Thus, the Subgradient

Algorithm can be employed to reach an ε1-proper data-driven decision with a lower certificate.

To do this, we make use of the scaled ε-subgradient direction for the update of decisions

{x(r)}rn+1
r=rn , as follows

x(r+1) = x(r)−α(r)
gr

n(x
(r))

max{‖gr
n(x(r))‖ , 1}

, (2.7)

where the nonnegative step size rule {α(r)}r is determined in advance. Later in the next subsection

we will see how the choice of a step size rule affects the convergence of the Subgradient Algorithm

to an xε2
n .

The Subgradient Algorithm requires access of {gr
n}

rn+1
r=rn , which are obtained from C-Gen

Algorithm. To reduce the number of computations, we estimate the candidate subgradient

functions {gr
n}

rn+1
r=rn as follows. Let εSA ≥ ε1 be a specified tolerance. At some iteration r ≥ rn,

assume that an ε1-optimizer yε1 and ε1-worst-case distribution Qε1
n (x

(r)) are obtained from
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the C-Gen Algorithm. Using Qε1
n (x

(r)), we calculate the function gr
n at x(r) and perform the

subgradient iteration (2.7). At iteration r +1 with x(r+1), we firstly check for the suboptimality of

Problem (P1(r+1)
n ) using the initial candidate optimizer y(0) := yε1 in the Point Search Algorithm.

If the optimality gap η(1) is less than εSA, we estimate the candidate subgradient function gr+1
n

using gr
n and proceed with the subgradient iteration. Otherwise, we obtain gr+1

n from the C-Gen

Algorithm, which is again an ε1-subgradient function at x(r+1). Thus, we construct a sequence of

εSA-subgradient functions {gr
n}

rn+1
r=rn that achieve an xε2

n efficiently.

Remark 5 (Effect of tolerance εSA). The tolerance εSA quantifies whether the function gr
n

generated by the current worst-case distribution can also provide a good estimate of the ε-

subgradient at the next iteration point. If the function gr
n is an ε-subgradient for ε small enough,

there is no need of employing the C-Gen Algorithm to obtain a new subgradient function, which

will be again an ε1-subgradient. In practice, we suggest to choose εSA � ε1 as it reduces the

number of computations from the C-Gen Algorithm.

2.5.1 Convergence Analysis

The following lemma follows from the convergence of the Subgradient Algorithm applied

to our problem scenario.

Lemma 5 (Convergence of εSA-subgradient algorithm). For each time period n with an initial

data-driven decision x(rn), assume that the subgradients defined in Lemma 4 are uniformly

bounded, i.e., there exists a constant L > 0 such that ‖gr
n‖ ≤ L for all r ≥ rn.

Given a predefined ε2 > 0, let the certificate tolerance ε1 and the subgradient tolerance

εSA be such that 0 < ε1 ≤ εSA < ε2/µ with µ := max{L, 1}. Let x?n ∈ argminx∈Rd Jn(x). Then,

there exists a large enough number r̄ , depending on εSA and the step size rule {α(r)}r , such that

the above designed Subgradient Algorithm in (2.7) has the following performance bounds

min
k∈{rn,...,r+rn}

{Jn(x
(k))} − Jn(x

?
n ) ≤ ε2, ∀ r ≥ r̄,
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and terminates at the iteration rn+1 := r̄ + rn with an ε2-optimal decision by choosing xε2
n ∈

argmin
k∈{rn,...,r̄+rn}

{Jn(x
(k))}. In particular, there exists a large enough parameter M such that we can

select 1) a constant step-size rule given by

α(i) :=
M
√

r̄ +1
, ∀i ∈ {rn, . . ., r̄ + rn},

where r̄ := M2
(
ε2
µ − εSA

)−2
; or 2) a divergent, but square-summable, step-size rule given by

α(i) :=
M

i− rn+1
, ∀i ∈ {rn, . . ., r̄ + rn},

where r̄ =min{r ∈ N | M(3− 1
r+1 ) ≤ 2( ε2

µ − εSA) ln(r +1)}.

Proof. In the nth time period, let us consider subgradient iterates i for all rn ≤ i ≤ r

‖x(i+1)− x?n ‖
2 = ‖x(i)− x?n −α

(i) gi
n(x
(i))

max{‖gi
n(x(i))‖ , 1}

‖2

= ‖x(i)− x?n ‖
2+ (α(i))2 min{‖gi

n(x
(i))‖2,1} −2α(i)

gi
n(x
(i))
>
(x(i)− x?n )

max{‖gi
n(x(i))‖ , 1}

.

From Lemma 4, we know that Jn(x
?
n ) ≥ Jn(x

(i))+gi
n(x
(i))
>
(x?n − x

(i))− εSA for all x(i). Then,

‖x(i+1)− x?n ‖
2 ≤ (α(i))2 min{‖gi

n(x
(i))‖2,1}+ ‖x(i)− x?n ‖2+

2α(i)(Jn(x
?
n )− Jn(x

(i))+ εSA)

max{‖gi
n(x(i))‖ , 1}

.

Combining the inequalities over iterations from rn to r gives

0 ≤ ‖x(rn)− x?n ‖2+
r∑

i=rn

(α(i))2 min{‖gr
n(x
(i))‖2 , 1}+

r∑
i=rn

2α(i)(Jn(x
?
n )− Jn(x

(i))+ εSA)

max{‖gr
n(x(i))‖ , 1}

≤ ‖x(rn)− x?n ‖
2+2εSA

r∑
i=rn

α(i)+

r∑
i=rn

(α(i))2+

r∑
i=rn

2α(i)(Jn(x
?
n )− Jn(x

(i)))

max{‖gr
n(x(i))‖ , 1}

.
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Then, using the fact that

r∑
i=rn

2α(i)(Jn(x
?
n )− Jn(x

(i)))

max{‖gr
n(x(i))‖ , 1}

≤

r∑
i=rn

−2α(i) min
k∈{rn,...,r}

{Jn(x
(k))− Jn(x

?
n )}

max{‖gr
n(x(i))‖ , 1}

≤ −2(
r∑

i=rn

α(i))

min
k∈{rn,...,r}

{Jn(x
(k))} − Jn(x

?
n )

µ
,

and the previous iteration, we have

min
k∈{rn,...,r}

{Jn(x
(k))} − Jn(x

?
n ) ≤

µ‖x(rn)− x?n ‖
2+ µ

∑r
i=rn (α

(i))2

2(
∑r

i=rn α
(i))

+ µεSA.

Next, it remains to select a step-size rule {α(i)}ri=rn
such that 1) the above right hand side term is

upper bounded by ε2, and 2) the number of subgradient iterations r̄ as described in the lemma is

bounded. Note that the selection procedure is not unique, so we propose two step-size rules to

obtain an explicit expression of r̄ .

For any data set Ξn, let us select a sufficiently large value M to be the diameter of the

decision domain of interest, i.e.,

‖x(rn)− x?n ‖ ≤ M, ∀n ∈ {1, . . .,N}.

Then the step size rule and r̄ has to satisfy the following

M2+
∑r̄+rn

i=rn
(α(i))2

2(
∑r̄+rn

i=rn
α(i))

+ εSA <
ε2
µ
. (2.8)

We first consider a constant step-size rule, and select the step size as follows

α(i) :=
M
√

r̄ +1
, ∀i ∈ {rn, . . ., r̄ + rn}.
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Then, to satisfy (2.8), we determine

r̄ := M2
(
ε2
µ
− εSA

)−2
.

Alternatively, consider the divergent but square-summable step-size rule, i.e.
∑∞

i=rn α
(i) =

∞,
∑∞

i=rn (α
(i))2 <∞. For this class of step-size rules, as r̄ increases to∞, we have the left-hand

side term of (2.8) goes to µεSA < ε2, then there exists a large enough but finite number r̄, such

that (2.8) holds. To see this explicitly, we select the step-size rule to be harmonic sequences as

follows

α(i) :=
M

i− rn+1
, ∀i ∈ {rn, . . ., r̄ + rn}.

Now we upper bound the numerator and lower bound the denominator of (2.8) using the fact

r̄+1∑
i=1

1
i2 ≤ 2−

1
r̄ +1

,

r̄+1∑
i=1

1
i
≥ ln(r̄ +1).

Then we determine r̄ to be the following

r̄ =min{r ∈ N | M(3−
1

r +1
) ≤ 2(

ε2
µ
− εSA) ln(r +1)}.

This concludes the proof. �

In other words, Lemma 5 specifies that there is a finite, large enough iteration step at

which the εSA-Subgradient Algorithm terminates using the estimated εSA-subgradient functions.

To quantify the effect of the subgradient estimation on the convergence rate under Ξn, we

have the following theorem.

Theorem 4 (Worst-case computational bound for an xε2
n ). For each time period n with an

initial x(rn), let us consider the algorithm setting as in Lemma 5. Then, there exist parameters
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κ ∈ (0,1), and t > ε1 such that the computational steps ϕ(n, r̄) to reach xε2
n are bounded by

ϕ(n, r̄) ≤ φ(n)+ r̄
(
logκ(

ε1
t
)+1

)
,

where r̄ are the subgradient steps of Lemma 5. The value φ(n) is the worst-case computational

bound as in Theorem 3 and one should use φ̄(1) in the bound in place of φ(n) if considering a

data-streaming scenario.

Proof. The computational bound to achieve an xε2
n strongly depends on the subgradient iterations

r̄ := rn+1− rn in Lemma 5 and the number of subgradient functions {gr
n}

rn+1
r=rn constructed via the

C-Gen Algorithm. To characterize this bound, we quantify computational steps for {gr
n}

rn+1
r=rn next.

For each time period n, let us assume the C-Gen Algorithm has explored the feasible set

of (P2n) when obtaining the initial certificate Jε1
n (x

(rn)). This procedure consumes a worst-case

computational time φ(n), (or φ̄(1) if a data-streaming scenario), as stated in Theorem 3. After

this initial step, every time the Subgradient Algorithm needs to execute C-Gen Algorithm at

some r ≤ rn+1, C-Gen Algorithm will solve a unique (CP(l)n ) and return Qε1
n for an ε1-subgradient

function gr
n at x(r). Let CPr denote the unique (CP(l)n ) solved at x(r). Then, to quantify the

computational steps for {gr
n}

rn+1
r=rn , we compute the sum of the steps to solve {CPr}r .

Let us denote the number of steps solving CPr by ir , for all r ∈ {rn, . . .,rn+1}. Then, we

aim to quantify ir+1 for gr+1
n . To achieve this, let us assume a subgradient function gr

n is computed

at an iteration r . Then we perform a subgradient iteration (2.7) and obtain an x(r+1). By using a

subgradient estimation strategy, we obtain the optimality gap η(1) via Point Search Algorithm,

denoted by η̄r+1 := η(1). This gap η̄r+1 enables us to quantify the distance between the initial

objective value and the optimal objective value of CPr+1. When η̄r+1 ≤ εSA, the algorithm uses

the estimated subgradient function and ir+1 = 0. Otherwise, the computational steps can be

calculated via convergence of AFWA for CPr+1, by κir+1 η̄r+1 ≤ ε1, where κ, or using κ̄ for the
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data-streaming case, is determined as in Theorem 3. Let us consider a threshold value tr

tr :=


ε1, if η̄r ≤ εSA,

η̄r, o.w.

Then we can represent each value ir by ir = logκ(
ε1
tr
), r ∈ {rn, . . .,rn+1}. Let us denote t :=maxr{tr}.

Then, the computational steps for {gr
n}

rn+1
r=rn ,

∑
r ir , are bounded by

∑
r ir ≤ r̄logκ(

ε1
t ). Finally, the

computational steps to achieve an xε2
n , denoted by ϕ(n, r̄) := φ(n)+

∑
r ir + r̄, are bounded as

ϕ(n, r̄) ≤ φ(n)+ r̄
(
logκ(

ε1
t )+1

)
. Again, one should use φ̄(1) in the bound in place of φ(n) if

considering a data-streaming scenario. �

Theorem 4 integrates together the obtained bounds for the Subgradient Algorithm as

well as the C-Gen Algorithm. As the result, a worst-case computational bound for the OnDA

Algorithm, executed on the decision-update rate (the second time scale in (r)), is related to the

data-streaming rate. Whenever the data-streaming rate is greater than the worst-case bound, the

OnDA Algorithm provides an xε2
n decision together with its estimated certificate Jε1

n (x
ε2
n ), ∀n.

From the Subgradient Algorithm, we provide, for each Ξn, a sequence {x(r)}rn+1
r=rn that

approaches an xε2
n . If the new data set Ξn+1 is received before reaching xε2

n , we initialize the

next sub-sequence obtained by applying the Subgradient Algorithm, using the best decision at

current iteration r, i.e., x(rn+1) := xbestn ∈ argmink∈{rn,...,r}{J
ε1
n (x

(k))}. Then by connecting these

sequences over n, our goal is achieved.

2.6 Data Assimilation via OnDA Algorithm

This section summarizes and analyzes our Online Data Assimilation Algorithm (OnDA

Algorithm) for online data sets {Ξn}
N
n=1. Specifically, we present the algorithm procedure, its

transient behavior and the convergence result.

The OnDA Algorithm starts from some random initial decision x(r) ∈ Rd and a data set Ξn,
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OnDA Algorithm 3
Require: Goes to Step 3 upon data arrival, i.e. Ξn← Ξn+1.
1: Set ε1, ε2, εSA, Ξ1, x(0) ∈ Rd , y(0) = 0m and I(0)1 = �;
2: n← 1, r← 1;
3: rn← r;
4: (Jε1

n (x
(r)), yε1 , Qε1

n (x
(r))) ← C-Gen Algorithm;

5: repeat
6: x(r+1)← (x(r),gr

n) as in (2.7), r← r +1;
7: η← Point Search Algorithm;
8: if η > εSA, then
9: Goes to Step 4;

10: else
11: Update gr

n← gr−1
n ;

12: if Jε1
n (x

(r)) < Jε1
n (x

best
n ), then

13: Update and post (xbestn , Jε1
n (x

best
n ));

14: until ‖x(r)− x(r−1)‖ < ε2;
15: rn+1← r;
16: Post xε2

n := xbestn , Jε1
n (x

ε2
n ) := Jε1

n (x
best
n );

17: Wait for Ξn+1, or Termination if n = n0.

with r = 1 and n = 1. Then, it first generates the certificate Jε1
n (x

(r)) via C-Gen Algorithm, then

it executes the Subgradient Algorithm to obtain the decisions {x(r+1), x(r+2), . . .} with lower and

lower certificates {Jε1
n (x

(r+1)), Jε1
n (x

(r+2)), . . .}. This algorithm has the anytime property, meaning

that the performance guarantee is provided anytime, as soon as the first ε1-proper data-driven

decision with certificate Jε1
n (x

(r)) is found. If no new data set Ξn+1 comes in, the algorithm

terminates as soon as the Subgradient Algorithm terminates at iteration rn+1. Otherwise, the

algorithm resets the C-Gen Algorithm and the Subgradient Algorithm to update the decision

using more data. This achieves lower certificates with higher confidence until we obtain the

lowest possible certificate and guarantee the performance almost surely. The details of the whole

algorithm procedure are summarized in the table of OnDA Algorithm.

The transient behavior of the OnDA Algorithm is affected by the data-streaming rate and

the rate of convergence of the intermediate algorithms (decision-update rate and certificate-update

rate). To further describe these effects in each time period n, we say that the data-streaming rate

is slow with respect to the decision-update rate, if we can find an xε2
n via the OnDA Algorithm,
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where the worst-case scenario is described in Theorem 4. Further, we call it slow with respect to

the certificate-update rate, if we can find at least one certificate during this time period, where the

worst-case scenario is described in Theorem 3. When the data-streaming rate is slow w.r.t. the

decision-update rate for all time periods, the OnDA Algorithm guarantees to find {xε2
n }

N
n=1. When

the data-streaming rate is slow w.r.t. the decision-update rate for at least one time period n0, it

guarantees to find an xε2
n0 . When the data-streaming rate is slow w.r.t. the certificate-update rate

for at least one time period n0, the OnDA Algorithm guarantees to find a Jε1
n0 for an x(r) and

r ≥ rn0 . When the data-streaming rate is not slow w.r.t. the certificate-update rate for any time

period, the OnDA Algorithm will hold on the newly streamed data set, to make the data-streaming

rate slow w.r.t. the decision-update rate and achieve a better data-driven decision efficiently.

Next, we state the convergence result of the OnDA Algorithm when the data streams are

slow w.r.t. the decision-update rate for all time periods.

Theorem 5 (Finite convergence of the OnDA Algorithm). Consider tolerances ε1, ε2 > 0 and

streaming data sets {Ξn}
N
n=1 with N <∞ for a decision making problem (P). Assume that the data

streams are slow w.r.t. the to decision-update rate for all n, i.e., assume the length of each time

period n is no shorter than ϕ(1, r̄), where ϕ and r̄ are described as in Theorem 4 and Lemma 5,

respectively. Then, the OnDA Algorithm guarantees to find a sequence of ε2-optimal ε1-proper

data-driven decisions {xε2
n }

N
n=1 associated with the sequence of the certificates {J

ε1
n (x

ε2
n )}

N
n=1 so

that the performance guarantee (2.2) holds for all n. Furthermore, the values of these certificates

are guaranteed to be low in high probability. That is, for each n

Pn(Jε1
n (x

ε2
n ) ≤ J?+ ε1+ ε2+2L̂ε(βn)) ≥ 1− βn (2.9)

holds, where J? := inf
x∈Rd
EP[ f (x, ξ)] is the optimal objective value for the original problem (P),

the parameter L̂ depends on steepness of the function f , and the parameter ε(βn) is determined

as in Lemma 2.5.

In addition, given any tolerance ε3, data stream that is slow w.r.t. the decision-update
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rate for all n ∈ {1, . . .,N} with N →∞, and
∑∞

n=1 βn <∞, there exists a large enough number

n0(ε3) > 0, such that the algorithm terminates in finite time with a guaranteed ε2-optimal and

ε1-proper data-driven decision xε2
n0 and a certificate Jε1

n0 (x
ε2
n0) such that the performance guarantee

holds almost surely. That is,

Pn0(EP[ f (x
ε2
n0, ξ)] ≤ Jε1

n0 (x
ε2
n0)+ ε1) = 1, (2.10)

and meanwhile the quality of the designed certificate Jε1
n0 (x

ε2
n0) is guaranteed. In other words, for

all the rest of the data sets {Ξn}
∞
n=n0 , any element in the desired certificate sequence {J

ε1
n (x

ε2
n )}
∞
n=n0

satisfies

sup
n≥n0

Jε1
n (x

ε2
n ) ≤ J?+ ε1+ ε2+ ε3. (2.11)

Proof. The first part of the proof is an application of Theorem 3 and Theorem 4. For any data set

Ξn and the initial data-driven decision x(rn), by Theorem 3 we can show x(rn) to be ε1-proper, via

finding Jε1
n (x

(rn)) such thatPn(EP[ f (x(rn), ξ)] ≤ Jε1
n (x

(rn))+ε1) ≥ 1− βn. Then using Theorem 4, an

ε2-optimal ε1-proper data-driven decision xε2
n with certificate Jε1

n (x
ε2
n ) can be achieved. Therefore

the performance guarantee (2.2) holds for xε2
n , i.e., Pn(EP[ f (x

ε2
n , ξ)] ≤ Jε1

n (x
ε2
n )+ ε1) ≥ 1− βn.

In the following, we show the certificate Jε1
n (x

ε2
n ) can be upper bounded in high probability,

for each n.

First, let xδ denote the δ-optimal solution of (P), i.e., EP[ f (xδ, ξ)] ≤ J? + δ. By

construction of the certificate in the algorithm we have Jε1
n (x

ε2
n ) ≤ Jn(x

ε2
n ) ≤ Jn(x

?
n )+ ε2 ≤

Jn(x
δ)+ ε2 ≤ Jε1

n (x
δ)+ ε1+ ε2 for all n, where the first inequality holds because Jn is the function

that achieves the supreme of Problem (2.5) while Jε1
n (x

ε2
n ) is the objective value for a feasible

distribution Qε1
n (x

ε2), the second inequality holds because xε2
n is ε2-optimal, the third inequality

holds because x?n is a minimizer of the certificate function Jn, the last inequality holds because

the C-Gen Algorithm for certificate generation guarantees the existence of Jε1
n (x

δ) such that
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Jn(x
δ) ≤ Jε1

n (x
δ)+ ε1, with an distribution Qε1

n (x
δ) satisfying dW (P̂

n,Qε1
n (x

δ)) ≤ ε(βn).

Next, we exploit the connection between Jε1
n (x

δ) and J?. By Assumption 2 on the

concavity of f in ξ, there exists a constant L̂ > 0 such that f (x, ξ) ≤ L̂(1+ ‖ξ‖1) holds for

all x ∈ Rd and ξ ∈ Z. Then by the dual representation of the Wasserstein metric from

Kantorovich and Rubinstein [36, 59] we have Jε1
n (x

δ) := EQε1n (xδ)[ f (x
δ, ξ)] ≤ EP[ f (xδ, ξ)]+

L̂dW (P,Q
ε1
n (x

δ)). In order to quantify the last term, we apply the triangle inequality, which

gives us dW (P,Q
ε1
n (x

δ)) ≤ dW (P, P̂
n)+ dW (P̂

n,Qε1
n (x

δ)). Then by the performance guarantee we

have Pn{dW (P, P̂
n) ≤ ε(βn)} ≥ 1− βn, and by the the way of constructing Qε1

n (x
δ) we have

dW (P̂
n,Qε1

n (x
δ)) ≤ ε(βn). These inequalities result in Pn{dW (P,Q

ε1
n (x

δ)) ≤ 2ε(βn)} ≥ 1− βn. We

use now this bound to deal with the last term in the upper bound of Jε1
n (x

δ). In particular, we

have Pn{Jε1
n (x

δ) ≤ EP[ f (xδ, ξ)]+ 2L̂ε(βn)} ≥ 1− βn for all n. Using the obtained inequality

Jε1
n (x

ε2
n ) ≤ Jε1

n (x
δ)+ ε1+ ε2 and knowing δ can be arbitrary small, we achieved the goal as in (2.9).

Now, it remains to find an n0, associated with an ε2-optimal and ε1-proper data-driven

decision xε2
n0 , such that the almost sure guarantee (2.10) and bound (2.11) of the certificate

Jε1
n0 (x

ε2
n0) can be guaranteed for the termination of the OnDA Algorithm as N→∞. We achieve

this by two steps.

First, we show the almost sure performance guarantee when the data set is sufficiently large.

For any time period n, the algorithm finds xε2
n with the performance guarantee (2.2), which can be

equivalently written asPn(EP[ f (x
ε2
n , ξ)] ≥ Jε1

n (x
ε2
n )+ε1) ≤ βn. As

∑∞
n=1 βn <∞, from the 1st Borel-

Cantelli Lemma we have that P∞{EP[ f (xε2
n , ξ)] ≥ Jε1

n (x
ε2
n )+ ε1 occurs infinitely many often} = 0.

That is, almost surely we have that EP[ f (xε2
n , ξ)] ≥ Jε1

n (x
ε2
n )+ ε1 occurs at most for finite number

of n. Thus, there exists a sufficiently large n1, such that for all n ≥ n1, we have EP[ f (xε2
n , ξ)] ≤

Jε1
n (x

ε2
n )+ ε1 occurs almost surely, i.e., Pn(EP[ f (x

ε2
n , ξ)] ≤ Jε1

n (x
ε2
n )+ ε1) = 1 for all n ≥ n1. Later

if we pick n0 ≥ n1, then the almost sure performance guarantee holds for such xε2
n0 and Jε1

n0 (x
ε2
n0).

Second, we show a tight certificate bound can be achieved almost surely. Consider

performance bound (2.9). As ε(βn) decreases and goes to 0 as n→∞, there exists n2 such that

2L̂ε(βn) ≤ ε3 holds for all n ≥ n2. Therefore, we have Pn{Jε1
n (x

ε2
n ) ≤ J?+ ε1+ ε2+ ε3} ≥ 1− βn
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for all n ≥ n2, or equivalently, Pn{Jε1
n (x

ε2
n ) ≥ J?+ ε1+ ε2+ ε3} ≤ βn. As

∑∞
n=1 βn <∞, then the

1st Borel-Cantelli Lemma applies to this situation. Thus we claim that there exists a sufficiently

large n3 such that for all n ≥ max{n2,n3} we have almost surely, Jε1
n (x

ε2
n ) ≤ J?+ ε1+ ε2+ ε3.

Then, by letting n0 :=max{n1,n2,n3} we have almost sure performance guarantee (2.10)

and almost surely, the bound (2.11). �

Theorem 5 quantifies the goodness of the certificates that are achievable via the OnDA

Algorithm, under the condition that the data-streaming rate is slow w.r.t. the decision-update

rate. Intuitively, the smaller the tolerances εi are, the lower the certificates become. Further, as

N →∞, the smaller the parameter ε(βN ) is and the higher the confidence 1− βN → 1. When

infinitely many data are streamed in, the theorem implies that we can get arbitrarily close to the

optimal decision with probability one.

Remark 6 (Selection of tolerances ε2, ε1 and εSA). In practice, the tolerance ε2 determines the

performance bound of Jn, which governs the whole algorithm. With a given ε2, tolerance ε1 and

εSA can be chosen following the rule in Lemma 5. Intuitively, ε1 can be chosen to be two orders

of magnitude smaller than ε2, while εSA can be an order of magnitude smaller than ε2. These

tolerances can also be chosen in a data-driven fashion, to achieve asymptotic convergence, or a

better transient behavior of the algorithm.

Remark 7 (Asymptotic behavior of the OnDA Algorithm). Theorem 5 claims the convergence

of the OnDA Algorithm to a decision with a desired certificate using large but a finite data

set. The smaller ε3 is, the larger data set is needed to achieve the desired certificate. Because

tolerances ε1,ε2 and ε3 can be chosen arbitrarily small, the certificate can indeed approach to J?.

However, ε1,ε2 may affect the transient behavior of the algorithm and the data-streaming rate.

In practice, to reach J?, these tolerances can be chosen in a data-driven fashion, for example

diminishing sequences.
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2.7 Data Incremental Covering

In this section, we aim to handle large streaming data sets for efficient Online Data

Assimilation Algorithm (OnDA Algorithm). To achieve this, we firstly propose an Incremental

Covering Algorithm (I-Cover Algorithm). This algorithm leverages the pattern of the data

points to obtain a new ambiguity set, denoted by P̃n. Then, we adapt P̃n for a variant of the

OnDA Algorithm. The resulting algorithm enables us to construct subproblems which have a

lower dimension than those generated without it, and we verify its capability of handling large

data sets in simulation.

2.7.1 The I-Cover Algorithm

Let ζ and ω denote the center and radius of the Euclidean ball Bω(ζ), respectively. For

each data set Ξn and a given ω, let Cn ⊂ Ξn denote the set of points such that Ξn ⊂ ∪ζ∈CnBω(ζ).

Let p := |Cn | denote the number of these Euclidean balls. To account for the number of data

points that are covered by a specific ball, we associate each ball Bω(ζk) a weighting parameter

θk . We denote by Qn := {θk}
p
k=1 the set of these parameters. Then, as data sets {Ξn}

N
n=1 are

sequentially accessible, we are to incrementally cover data sets by adapting Cn and Qn.

Formally, the I-Cover Algorithm works as follows. Let C0 = � and Q0 = �. For the

nth time period with set Ξn, we initialize sets as Cn := Cn−1 and Qn := Qn−1. To generate a

random cover for Ξn, we randomly and sequentially evaluate each newly streamed data point. Let

ς ∈ Ξn \Ξn−1 denote the data point under consideration. If ς < Bω(ζk) for all ζk ∈ Cn, we update

Cn←Cn∪ {ζp+1 := ς}, Qn←Qn∪ {θp+1 := 1} and p← |Cn |. If ς is covered by some (at least

one) Euclidean balls, i.e., ς ∈ Bω(ζk) for some k with ζk ∈ Cn, we only update Qn. Let `ς denote

the number of the balls that cover ς and let Iς ⊂ {1, . . ., p} denote the index set of these balls.

Then we update elements of Qn via θk ← θk + `
−1
ς for all k ∈ Iς . After all the new data points

have been evaluated in this way, we achieve a cover of Ξn. Then, as the data set streams over time,

the algorithm incrementally updates the cover and weights. By construction, we see that |Cn | ≤ n.
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Next, we use Cn and Qn to construct a new ambiguity set that results in potentially low

dimensional subproblems in the OnDA Algorithm.

2.7.2 Integration of I-Cover Algorithm

Following the I-Cover Algorithm, we consider a distribution P̃n associated with Ξn, as

follows

P̃n :=
1
n

p∑
k=1

θkδ{ζk }, (2.12)

where δ{ζk } is a Dirac measure at the center of the covering ball Bω(ζk) and θk is the associated

weight of Bω(ζk). We claim the distribution P̃n is close to the empirical distribution P̂n under the

Wasserstein metric, using the following lemma.

Lemma 6 (Distribution P̃n is a good estimate of P̂n). Let the radius ω of the Euclidean ball be

chosen. Then the distribution P̃n constructed by the I-Cover Algorithm on Ξn is close to P̂n under

the Wasserstein metric, i.e., dW (P̂
n, P̃n) ≤ ω.

Proof. The proof is an application of the dual characterization of the Wasserstein distance. Let

us consider

dW (P̂
n, P̃n) = sup

f ∈L
{

∫
Z

f (ξ)P̂n(dξ)−
∫
Z

f (ξ)P̃n(dξ)},

=
1
n

sup
f ∈L
{

n∑
k=1

f (ξk)−

p∑
k=1

θk f (ζk)}.

By partitioning the data set Ξn into Cn and Ξn \Cn for each summation term, we have

n∑
k=1

f (ξk) =
∑
ς∈Cn

f (ς)+
∑

ς∈Ξn\Cn

f (ς),

p∑
k=1

θk f (ζk) =

p∑
k=1

f (ζk)+
∑

ς∈Ξn\Cn

`−1
ς

∑
k∈Iς

f (ζk).
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Canceling the first summation term gives us the following

dW (P̂
n, P̃n) =

1
n

sup
f ∈L
{

∑
ς∈Ξn\Cn

`−1
ς

∑
k∈Iς

f (ς)− f (ζk)},

≤
1
n

sup
f ∈L
{

∑
ς∈Ξn\Cn

`−1
ς

∑
k∈Iς

| f (ς)− f (ζk)|},

≤
1
n

∑
ς∈Ξn\Cn

`−1
ς

∑
k∈Iς

‖ς − ζk ‖1,

≤
1
n

∑
ς∈Ξn\Cn

`−1
ς

∑
k∈Iς

ω =
n− p

n
ω ≤ ω,

where the first inequality is derived taking component-wise absolute values; the second inequality

is due to f being in the space of Lipschitz functions defined onZ with Lipschitz constant 1; and

the third inequality is due to ς ∈ Bω(ζk). �

Then equipped with Lemma 6 and Theorem 1 on the measure of concentration result, we

can provide the certificate that ensures the performance guarantee in (2.1).

Lemma 7 (Tractable certificate generation for x with performance guarantee (2.1) using

P̃n). Given Ξn := {ξk}
n
k=1, βn ∈ (0,1), x ∈ Rd , and the radius ω of the covering balls. Define the

new ambiguity set P̃n := Bε̃(βn)(P̃n) where the center of the Wasserstein ball P̃n is defined in (2.12)

and the radius ε̃(βn) := ε(βn)+ω. Then the following certificate satisfies (2.1) for all x ∈ Rd

Jn(x) := sup
Q∈P̃n

EQ[ f (x, ξ)]. (2.13)

Further, under the same assumptions required in Theorem 2 we have the new version of (P1n) as

follows

Jn(x) := sup
y1,...,yp∈R

m

1
n

p∑
k=1

θk f (x, ζk − yk),

s. t.
1
n

p∑
k=1

θk ‖yk ‖1 ≤ ε̃(βn),

(P̃1n)

and the associated worst-case distribution Q̃?n (x) is a weighted version of Q?n (x) in Theorem 2,
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i.e.,

Q̃?n (x) :=
1
n

p∑
k=1

θkδ{ζk−y?k }
,

where y? := (y?1, . . ., y
?
p) is an optimizer of (P̃1n).

Proof. From Lemma 1 we have Pn{dW (P, P̂
n) ≤ ε(βn)} ≥ 1− βn for each n. Then using the

result from Lemma 6 we have Pn{dW (P, P̃
n) ≤ dW (P̃

n, P̂n)+ dW (P, P̂
n) ≤ ε(βn)+ω} ≥ 1− βn, i.e.,

Pn{dW (P, P̃
n) ≤ ε̃(βn)} ≥ 1− βn for each n. The rest of the proof follows directly from that in

Lemma 1 and Theorem 2. �

Remark 8 (New version of (P2n)). The equivalent formulation of Problem (P̃1n) is a new version

of (P2n), defined as follows

Jn(x) := max
u1,...,up∈R

m

v1,...,vp∈R
m

1
n

p∑
k=1

h̃k(
uk − vk

θk
),

s. t. (u, v) ∈ nε̃(βn)∆2mp,

(P̃2n,p)

where for each k ∈ {1, . . ., p}, ζk ∈ Cn and x ∈ Rd , we define h̃k : Rm→ R as

h̃k(y) := θk f (x, ζk − y).

With the constructed ambiguity set P̃n and certificate function Jn, the the developed

algorithms in Section 2.4 and Section 2.5 are valid to solve Problem (P̃2n,p). And the main

Theorem 5 on the finite convergence of the OnDA Algorithm is valid for the certificate function

Jn where the only difference is that the quality of the certificate for xε2
n in (2.11) is replaced by

sup
n≥n0

Jε1
n (x

ε2
n ) ≤ J?+ ε1+ ε2+ ε3+2(1−

pn0

n0
)L̂ω,

where n0 is the number of the data set in Ξn0 and pn0 indicates the number of Euclidean balls that

cover Ξn0 .
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2.8 Case Studies

In this section, we demonstrate the application of the proposed algorithms on two case

studies, with a potentially large streaming data set.

2.8.1 Study 1: The Effect of the I-Cover Algorithm

In order to visualize the effect of the I-Cover Algorithm, here we solve a toy problem in

form of (P) using OnDA Algorithm, with and without the I-Cover Algorithm respectively. Let

x ∈ R be the variable for Problem (P). Assume there are N = 200 data points {ξk}
N
k=1 streaming

into the algorithm. Assume each time period is one second, and for each second k we only stream

in one data point ξk ∈ R
3, where ξk is a realization of the unknown distribution P. The P we use

for simulation is a multivariate weighted Gaussian mixture distribution with three centers, where

each center has mean µ1 = (2,−4,3), µ2 = (−3,5,0), µ3 = (0,0,−6), variance
∑

1 = diag(1,3,2),∑
2 = 2 · I3,

∑
3 = I3, and weights 0.25, 0.5, 0.25, respectively. Let the cost function to be

f (x, ξ) := x2− ξ>ξ, the confidence be 1− βn := 1−0.95e1−
√

n and we use the parameter c1 = 2,

c1 = 1 to design the radius ε(βn) of the Wasserstein ball in (2.4). The radius of the Euclidean

ball for the I-Cover Algorithm is w = 1.5. We sample the initial decision x(0) from the uniform

distribution [−10,10]. The tolerance for the algorithm is ε1 = 10−5, ε2 = 10−4.

Figure 2.3a and Figure 2.3b demonstrate the effect of the I-Cover Algorithm in the

OnDA Algorithm. Specifically, Figure 2.3a shows the incremental data covering at the end of the

200th time period in the (ξ1, ξ2, ξ3) coordinates. The large shaded area are 59 Euclidean balls Bω

with their centers {ζk}
59
k=1 denoted by some of the small circles, where all these small circles

constitute the streamed data set Ξ200 := {ξk}
200
k=1. In Figure 2.3b, the gray dashed line represents

the number of the data points used as centers of the empirical distribution P̂n over time and the

black dashed line is that for distribution P̃n. Clearly as the data streams over time, the number

p := |Cn | is significantly smaller than n := |Ξn |, which results in the size of Problem (P̃2n,p)

being much smaller than that of (P2n). Further, the gray solid line counts the total number of
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subproblems (CP(l)n ) solved to generate certificates over time and the black solid line represents

that for subproblems (C̃P(l)n ) in solution to (P̃2n,p). These subproblems search the explicit solution

for the ε1-worst-case distribution and consume the major computing resources in the OnDA

Algorithm. It can be seen that the number of (C̃P(l)n ) solved over time is on average only half of

the (CP(l)n ) in each time period. Together, the dimension and total number of subproblems (C̃P(l)n )

solved with the I-Cover Algorithm is significantly smaller than that without it.

(a)Data set cover at 200th time period.
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(b) Size of P̃n (P̂n) and count of C̃P(l)n
(CP(l)n ) solved with(out) I-Cover Al-
gorithm.

(c) Relative error of Jε1
n (x

(r)) over
time, with the I-Cover Algorithm.

(d) Relative error of Jε1
n (x

(r)) over
time, without the I-Cover Algorithm.
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(e) Size of P̂n (P̃n) indicated by |Ξn |
(|Cn |) and count of C̃P(l)n solved.

(f) Relative error of Jε1
n (x

(r)) over
time, with the I-Cover Algorithm.

Figure 2.3. Simulation results of the Online Data Assimilation Algorithm, with and without the
Incremental Covering Algorithm.

To evaluate the quality of the obtained ε1-proper data-driven decision with the streaming

data, we estimate the optimizer of (P), x?, by minimizing the average value of the cost function f

for a validation data set of Nval = 104 data points randomly generated from the distribution P (in

the simulation case P is known). We take the resulting objective value as the estimated optimal

objective value for Problem (P), i.e., J? := J?(x?). We calculate J?(x?) using the underline

distribution P, serving as the true but unknown scale to evaluate the goodness of the certificate
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obtained throughout the algorithm.

Figure 2.3c and Figure 2.3d show the evolution of the certificate sequence {Jε1
n (x

(r))}
N,∞
n=1,r=1

with the I-Cover Algorithm and that without the I-Cover Algorithm, respectively. Here, the

optimal decision of (P) is trivially x? = 0, and for both algorithms the subgradient counterpart of

the OnDA Algorithm returns the optimal decision after the first data point ξ1 is used. Therefore,

after a very short period within the first second, both figures start reflecting the certificate

evolution under the decision sequence {x(r) ≈ 0}∞r=r2 . The gray solid line in both Figure 2.3c

and Figure 2.3d show the relative goodness of the certificates for the currently used ε1-proper

data-driven decision x(r) ≈ 0 calibrated by the estimated optimal value J? over time. The black

segments on the gray solid line indicate that the C-Gen Algorithm is executing for certificates

update, while at these time intervals the old certificate Jε1
n (x

ε2
n ), associated with the ε2-optimal

and ε1-proper data-driven decision xε2
n , is still valid to guarantee the performance under the old

confidence 1− βn. This situation commonly happens when a new data set Ξn+1 is streamed in

and a new certificate Jε1
n+1(x

(r)) is yet to be obtained. It can be seen that after a few samples

streamed, both the obtained certificate becomes close (within 10%) to the estimated true optimal

value J?. In Figure 2.3d however, as the data streams over 50 seconds, the computing cost for

updating certificates becomes significant for the algorithm without the I-Cover Algorithm. After

100th data point has been assimilated, the certificate Jε1
n (x

(r)) stops updating for all n ≥ 100. And,

further, after all the data points streamed (in 200 seconds), the algorithm took about 70 seconds

to terminate the algorithm with certificate Jε1
200(x

(r)). This is a clear disadvantage compared to

the algorithm with the I-Cover Algorithm, which terminates as soon as all the data points were

taken in.

2.8.2 Study 2: OnDA Algorithm with Large Streaming Data Sets

Here, we are to find an ε2-optimal, ε1-proper decision x ∈ R30 for Problem (P). We

consider N = 500 iid sample points {ξk}
N
k=1 streaming randomly in between every 1 to 3 seconds

with each data point ξk ∈ R
10 a realization of P. We assume that the unknown distribution is a
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multivariate Gaussian mixture distribution with three centers where the components of the mean

of each center are uniformly chosen between [−10,10], and the variance matrix is Im for each

center. We assume the cost function f : R30×R10→ R to be f (x, ξ) := x>Ax + x>Bξ + ξ>Cξ

with random values for the positive semi-definite matrix A ∈ R30×30, B ∈ R30×10 and negative

definite matrix C ∈ R10×10. The radius of the Euclidean ball for the I-Cover Algorithm is w = 5.

Similarly to Figure 2.3b, Figure 2.3e demonstrates the incremental construction of the

distribution P̃n and the accumulated number of Problem (P̃2n,p) solved over time. Clearly, after

certain amount of data have been assimilated, the structure of the data set was inferred by the

I-Cover Algorithm and the number of Euclidean balls used to cover the data set is about 20.

Also, after the 100th time period (from 100 to 200 seconds in this case), the algorithm can

validate new certificate without solving any Problem (P̃2n,p). This feature dramatically improves

the performance of the OnDA Algorithm and makes the algorithm flexible for online settings.

Similarly to Figure 2.3c, Figure 2.3f shows the evolution of the certificate sequence

{Jε1
n (x

(r))}
N,∞
n=1,r=1 for the decision sequence {x

(r)}∞r=1. In the same way as in the last case study,

the obtained certificate becomes close to the estimated true optimal value J? (within 10%) after

about 25 seconds with the assimilation of 10 data sets. Also, as more data sets are assimilated,

the update of the certificate Jε1
n (x

ε2
n ) remains fast and the algorithm terminates within a second

after the last data set was streamed in.

Chapter 2, in full, is a reprint of Data Assimilation and Online Optimization With

Performance Guarantees, D. Li and S. Martínez, IEEE Transactions on Automatic Control,

(66)5:2115-2129, 2021. A preliminary version appeared in the proceddings of IEEE International

Conference on Decision and Control, pp. 1961-1966, Miami, FL, USA, 2018, as Online data

assimilation in distributionally robust optimization, D. Li and S. Martínez. The dissertation

author was the primary investigator and author of these papers.
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Chapter 3

Data-driven Predictive Control

This chapter studies a data-driven predictive control for a class of control-affine systems

which is subject to uncertainty. With the accessibility to finite sample measurements of the

uncertain variables, we aim to find controls which are feasible and provide superior performance

guarantees with high probability. This results into the formulation of a stochastic optimization

problem, which is intractable due to the unknown distribution of the uncertainty variables.

By developing a distributionally robust optimization framework, we present an equivalent and

yet tractable reformulation. Further, we propose an efficient algorithm that provides online

suboptimal data-driven solutions and guarantees performance with high probability. To illustrate

the effectiveness of the proposed approach, we consider a highway speed-limit control problem.

We then develop a set of data-driven speed controls that allow us to prevent traffic congestion

with high probability. Finally, we employ the resulting control method on a traffic simulator to

illustrate the effectiveness of this approach numerically.

3.1 Related Works

Motivated by the need of developing finite-data-driven predictive control methods, we

consider the application of a Distributionally Robust Optimization (DRO) framework to a class

of Model Predictive Control (MPC) problems. Stochastic MPC is a general framework that

can handle broad types of system uncertainty in a tractable manner [39, 84, 86, 95, 110]. In
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general, the effectiveness of MPC depends on the particular problem of interest, roughly classified

according to three criterion: 1) the class of systems to be controlled, e.g., linear [37, 108] or

nonlinear systems [80,87,106,118]; 2) the way uncertainty is handled, e.g., stochastic [19,82,117]

or bounded uncertainty [20]; and 3) the solution method, e.g., quadratic programming [110],

stochastic programming [62, 87], or nonconvex optimization [79, 86]. In practice, system

performance guarantees typically require large amounts of data processing which, for online

settings such as MPC, may become specially challenging. DRO has attracted recent attention

due to its finite-sample performance guarantees [36, 41], problem tractability via Wasserstein

ambiguity sets [16, 45, 136], its distributed formulation [24, 25] and online implementation as in

Chapter 2. These characteristics provide a novel mechanism to deal with uncertainty in MPC,

while allowing for the tractability of the associated nonconvex optimization problems. In practice,

the efficacy of the DRO framework depends on the explicit system structure. Here, our proposed

approach applies to a problem class whose dynamics can be nonlinear, but affine both in control

and states, and constraints can be linear or bi-linear.

Highway Speed-Limit Control: For illustration purposes, we apply our solution method

to toy examples related to highway speed-limit control, focusing our discussion on its performance

with respect to uncertainty. As the highway congestion significantly affects system operations [60],

a variety of congestion mitigation strategies have been proposed, including those based on

optimization [55, 56, 135], logic-based control [27], extremum seeking control [139], and

autonomous-vehicle scheduling [134]. More recently, Speed-Limit Control has been proposed as

an effective mechanism in transportation [121,137]. In particular, optimization-based speed-limit

control has successfully demonstrated the containment of traffic congestion. For example, [50]

proposed a discrete macroscopic second-order model, METANET, and used it in optimization

problems for speed limit. However, at that time, the robustness analysis with respect to the

system uncertainty was absent. Later in [47], a linear model predictive control of speed limit was

developed for congestion mitigation. This chapter exploited the celebrated Cell Transmission

Model (CTM) [33] or its extension for inhomogeneous traffic, the Link Transmission Model
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(LTM), to capture the deterministic distribution of traffic densities along a highway, and the

dynamic properties of highways are characterized for congestion reduction, with relative low

online computational costs. In addition, [75] proposed a scenario-based optimization to account

for the bounded uncertainty of transportation systems. However, an explicit treatment of the

system uncertainty, such as unknown drivers actions, vehicle arrival and departures, and as well

as random events that happen on highways, are yet to be fully explored.

With increasing accessibility of real-time traffic data [51, 133] for uncertainty reduction,

congestion mitigation and traffic control under uncertainty can become practical. As a first step

into developing a novel data-driven traffic control methods, we consider a problem related to

highway transportation, formulated by way of an extended CTM and controlled by speed limit,

and customize our proposed framework with the following question in mind: Can we find an

efficient approach for the computation of data-driven controls with guarantees on congestion

elimination? We would like to note that, while the particular problem we look at is inspired by

traffic-congestion mitigation, the main emphasis of this chapter is on the solution approach.

Statement of Contributions

This chapter presents the following contributions: 1) We first provide a general framework

for data-driven predictive control under uncertainty. To demonstrate our approach explicitly,

we consider a problem inspired by highway speed-limit control which extends the CTM to

account for random events (due to drivers actions) as well as vehicle arrival and departures. This

provides an analytical framework and a stochastic optimization problem formulation for the

computation of speed limit using the available flowmeasurements (in Section 3.2). 2) We propose

an optimization-based data-driven control approach that extends DRO to account for system

dynamics. The resulting approach guarantees congestion elimination with high probability, using

only finite flow measurements (in Section 3.3). 3) As the proposed data-driven optimization

problem is infinite dimensional and intractable, we propose an equivalent reformulation that
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reduces the proposed problem into a finite-dimensional optimization problem (in Section 3.3).

4) Yet this problem is non-convex and difficult to solve, so we find an equivalent reformulation

via a binary representation technique, and propose a computationally efficient algorithm to

provide online sub-optimal speed limits that ensure congestion elimination and guarantee of

highway throughput with high probability (in Section 3.5). 5) We propose in Section 3.6 an

optimization tool to analyze the performance of the proposed algorithm offline. This tool is

developed via a second-order cone relaxation technique and we show that, under mild conditions,

the resulting Mixed-Integer Second-Order Cone Problem (MISOCP) is exact, and can be handled

by commercial solvers. 6) We numerically demonstrate the effectiveness of our data-driven

approach with performance guarantees, in Section 3.7 and 3.8. We claim that the proposed

approach is suitable for problems which are subject to control-affine constraints.

3.2 Problem Formulation

We first present our data-driven predictive control approach in a general setting with

the main goal of control design employing a finite data set. We then focus on an one-way

highway speed-limit control as an application. This problem leverages a traffic model based

on the Lighthill-Whitham-Richards (LWR) discretization [32,61,127,138]. Finally, we adapt

the proposed predictive control approach for our control problem, resulting into a stochastic

optimization problem that can be used to find speed limits with performance guarantees.

3.2.1 General Framework

The goal of the proposed framework is to address system uncertainty explicitly and find a

control law which satisfies system constraints and optimizes the expected objective in uncertainty.

To achieve this, let us denote by t ∈ N, x(t) ∈ Rn and u(t) ∈ Rm the time, system state and control

at time t, respectively. We consider the control law u to be solutions of the following T-long
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receding-horizon stochastic predictive control problem:

sup
u
EP(u) [`(u, x)], (P)

s. t. x ∼ P(u) characterized by

x(t +1) = F(x(t),u(t), ξ(t)), t = 0,1, . . .,T −1,

x ∈ Z(u), u ∈ U, ξ ∼ Pξ,

where u is a concatenated variable of u(0),u(1), . . .,u(T −1) and x is that of those x(t). Notice

that x is a stochastic process and we denote by P(u) the distribution of x given u. The objective is

to maximize the expectation of a given reward function ` : RmT ×RnT → R taken under P(u). We

denote by F : Rn×Rm×Rd→ Rn the given system dynamics where ξ represents the uncertainty.

We assume that the process x is constrained in a given setZ(u) and so does u inU. We denote

by Pξ the unknown distribution of the uncertainty process.

Due to the unknown Pξ , Problem (P) cannot be solved exactly. To find a control law

that solves (P), we propose a distributionally robust optimization (DRO) framework. By means

of this, we will employ a finite set of realizations or samples of the random variables ξ to

approximate the unknown distribution and compute a set of feasible u. The main appeal of this

robust method is that it can provide out-of-sample probabilistic guarantees of performance [36].

In particular, at each t, let us assume that N samples of x(0) and ξ := (ξ(0), . . ., ξ(T − 1)) are

accessible. Under some mild conditions on these samples, we will show in Section 3.3 that a

tractable optimization-based function J(u) can be constructed using those state and uncertainty

samples. The function J(u) is a surrogate objective of (P) which accounts for the system dynamics

as well as constraints on the states. In addition, given a confidence value β ∈ (0,1), we provide

the out-of-sample performance guarantee in the sense that the probability of the true objective
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Algorithm 4. Data-driven predictive control with guarantees.
1: Initialize t = 0
2: while True do
3: Take N measurements x(l)(t) and ξ(l), l = 1, . . .,N
4: Adapt an approach to optimize J(u) over u
5: Apply performance-guaranteed u to the system
6: t← t +1

function in (P) being greater than J(u) is greater than 1− β. In other words, we have

ProbN (
EP(u) [`(u, x)] ≥ J(u)

)
≥ 1− β,

where ProbN := PN is the product probability over N sample trajectories of the system. Thus,

with high probability, the choice of samples to approximate the problem will provide a minimum

lower value for the original problem. As Problem (P) needs to be solved in a moving horizon

fashion, the surrogate functions J(u) is optimized similarly, as in Algorithm 4. Notice that, the

functions J(u) depend on samples as wells as the system structure, and the solution to J(u) is

nontrivial.

To enable the proposed tractable optimization method for J(u) as in Section 3.5, we

assume the following system structures.

Assumption 5 (Control-and-state-affine systems with bi-linear constraints). The system dy-

namics F(x,u, ξ) is continuous, affine in x and affine in u. In addition, the setZ(u) is composed

of constraints which are linear and bi-linear in (x,u). And the setU is a finite set.

Assumption 5 covers a wide class of dynamical systems, including linear systems and

bi-linear systems. Furthermore, with a minor modification of the proposed reformulation

techniques in Section 3.4, the proposed solution method can be extended to control-affine systems.

We leave the extension as the future work. Next, we consider a traffic speed-limit control problem

and design a set of speed controls using the proposed framework.
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3.2.2 Highway Traffic Model

In order to introduce our discrete traffic model, we start by describing our time and space

discretization, respectively. Let δ be a sufficiently small time-discretization step, then we let

T = {1, . . .,T −1} denote the set of time slots, where we identify time by index t ≡ tδ. Further,

let us consider a one-way highway of length L, and divide the highway into n segments. The

topology of the highway can be described by a directed graph G = (V,E), whereV = {0,1, . . .,n}

and each node v ∈ V corresponds to the junction between two consecutive road segments. The

fictitious node 0 represents the mainstream inflow into the highway. The graph edge set is

E = {(0,1), · · · , (n−1,n)} with each element e = (v,v+1) ∈ E corresponding to the road segment

between nodes v and v+1 for all v ∈ {0,1, . . .,n−1}. To illustrate this, the reader is referred to

Fig. 3.1. Nodes 0 and n are the source and sink nodes of the graph G, respectively. Further,

node v ∈ V \ {0} is called an arrival node if there exists an on-ramp at node v. Similarly, node

v ∈ V \ {n} is called a departure node if there exists an off-ramp at node v. Let VA and VD

denote the set of arrival and departure nodes, respectively. By convention, we set node 0 <VA

and node n <VD. For each edge e = (v,v+1) ∈ E with starting node v, let e′ denote the on-ramp

of edge e if node v ∈ VA and let e′′ denote the off-ramp of edge e if node v+1 ∈ VD. For each

e ∈ E, we denote by lene and lanee the segment length and the number of lanes on e, respectively.

In particular, the highway length L =
∑

e∈E lene.

At each time t ∈ T , macroscopic models of traffic use aggregated variables to describe

the behavior of traffic. We start presenting constraints that relate the state variable ρe(t), the

average traffic density in segment e and period t, with the average traffic flow fe(t) on segment e,

as well as the average traffic velocity se(t) on segment e.

A first relationship is given by the traffic-flow definition

fe(t) = se(t)ρe(t),
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Figure 3.1. Segment of highways and its graph representation. The symbol e indicates a highway
segment, and s is its preceding segment. The on-ramp and off-ramp of e are denoted by e′ and e′′,
respectively. The variable ω, f and roe represents the mainstream inflow, edge flows and fraction
of outflows, respectively.

where se(t) is taken to be a function of speed limit as follows. Let ue(t) denote the speed limit set

on e and assume that the majority of drivers comply with it. Then,

se(t) =min{se(ρe(t)),ue(t)},

where se(ρe(t)) is the maximal admissible speed on e when the traffic density is ρe(t). In

practice, the non-negative values of se monotonically decrease as ρe(t) increases, reflecting the

safe-driving behavior.

Further, the fundamental diagram is a plot of the nonlinear relationship between traffic

flow and traffic density at a location of a highway. In this plot, the density at which the traffic

flow attains its maximum value, f e, is called the critical density, ρc
e. The density at which the

traffic flow is zero is the traffic jam density ρe. The traffic flow is an increasing function of ρe on

(0, ρc
e), and a strictly decreasing function of ρe on (ρc

e, ρe).

How speed limits affect the fundamental diagram has been a subject of debate [121, 137].

Following [121], we will assume that in the presence of speed limits, the flow rate and traffic

density still hold a similar relationship, however the critical density will be a function of the

velocity limit ue(t). Let ue be the free flow velocity corresponding to a maximum value of flow
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under no speed limits.1 A comparison of two fundamental diagrams with constant speed limits ue

and ue are shown in Fig. 3.2. Notice that the reduction of the speed limit from ue to ue increases

the critical density and decreases the maximal flow rate on edge e.

To model the fundamental diagram in the presence of speed limits, consider edge e ∈ E,

and let ρc
e(ue(t)) denote the critical density of edge e at speed limit ue(t). That is, the critical

density ρc
e(ue(t)) determines the traffic density at which themaximum edge flow fe(t) is achievable.

Given speed limit ue(t), we will work with an approximation of the fundamental diagram of edge

e ∈ E given as follows

fe(t) =


ue(t)ρe(t), if ρe(t) ≤ ρc

e(ue(t)),

τeue
(
ρe − ρe(t)

)
, otherwise,

(3.1)

with2

ρc
e(ue(t)) :=

(
τeρeue

)
/(τeue +ue(t)),

where the parameter τe := f e/

(
ueρe − f e

)
. To illustrate this, we refer the reader to Fig. 3.2.

Each segment e is congested when its density is higher than its critical density (see,

e.g., [43, 137]). Since critical densities are determined by speed limits, we select the speed limits

such that the following constraint is satisfied at all time slots t ∈ T

0 ≤ ρe(t) ≤ ρc
e(ue(t)), ∀e ∈ E . (3.2)

The constraint above ensures that the highway is not congested regardless of the flow rates. Using

the constraint above and the fundamental diagram approximation in (3.1), we obtain

fe(t) = ue(t)ρe(t), ∀e ∈ E, t ∈ T . (3.3)

1Given drivers behavior se, the value ue =maxρe se(ρe), ρe admits se(ρe) = 0 and f e maximizes fe over any ue
and ρe ∈ (0, ρe). On the other hand, the function se is highly dependent on the physical structure of the segment e as
well as random events, such as accidents and temporary lane closures (see, e.g., [34, 61]).

2The parameter τeue is known as the backward wave speed (see, e.g., [74]).
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Figure 3.2. Flow rate as a function of traffic density of edge e for two speed limits ue and ue
such that ue ≥ ue. The two nonlinear curves are the fundamental diagrams corresponding to each
speed limit, while the straight lines are piece-wise linear approximations of these. The slope
of linear approximations at the origin represents the speed limits ue and ue, respectively. The
light and dark shaded region guarantees no congestion of edge e under speed limit ue and ue,
respectively. (That is, under speed limit ue, a density such that ρe(t) ≤ ρc

e(ue), for all t, guarantees
no congestion.) The slashed area reflects the compliance of drivers with speed limit ue. A higher
compliance of drivers results in a smaller area.

Finally, based on the physical principle of conservation of mass, the discretized LWR

model provides a set of difference equations for each road segment e which enable us to analyze

the dynamics of traffic flows on highways [26, 138]. For each segment e = (v,v +1) ∈ E, the

dynamics of ρe are determined by the demand flow f De (t) from v and the supply flow f Se (t) to

v+1 as follows:

ρe(t +1) = ρe(t)+ he( f De (t)− f Se (t)), ∀t ∈ T ,

where he := δ/lene. For numerical stability, δ must be selected such that he ≤ 1/maxt∈T {ue(t)},

∀e ∈ E [55].

The supply flow f Se (t) denotes the maximal flow that can be transferred through edge e,

and is given by

f Se (t) =


ue(t)ρe(t), if ρe(t) ≤ ρc

e(ue(t)),

ue(t)ρc
e(ue(t)), otherwise,

Notice that f Se (t) = fe(t) when the highway segment e is not congested, i.e., the constraint in (3.2)
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is satisfied. Consider junction v ∈ VD, i.e., the junction v is a departure node of the preceding

edge of e or that of some edge s. Since v ∈ VD, a fraction of the supply f Ss (t) will depart the

highway through an off-ramp edge s′′ and the rest will enter into succeeding segment e. Let

ros (t) ∈ [0,1) denote the fraction of the supply f Ss (t) that departs the system. Hence, the flow

through the off-ramp edge s′′ is fs′′(t) := ros (t) f
S
s (t). Notice that the fraction ros (t) is determined by

the drivers’ actions. Therefore, ros is random, and its value is unknown to the system operator in

advance. Each random variable ros (t) will have a nonempty support set denoted byZros (t) ⊂ R≥0.

The traffic demand f De (t) depends on the supply of its preceding edge s ∈ E as well as

the ramp flows on their connected junction v. At each v ∈ VA, a fraction of the traffic demand

f De (t) is originated from the on-ramp edge e′. Let r ine (t) ∈ [0,1) denote the fraction of the traffic

demand f De (t) originated from the on-ramp edge e′. Hence, the on-ramp traffic flow is given by

fe′(t) := r ine (t) f
D

e (t). Notice that the ratio r ine (t) is an exogenous parameter that depends on the

traffic flow at the on-ramp edge e′. Hence, each ratio r ine (t) can be modeled as a random variable

with nonempty support Zr ine (t) ⊂ R≥03. Then, by the conservation of flows, at each time slot t,

the traffic demand f De (t) must satisfy the following constraint:

f De (t) = f Ss (t)− fs′′(t)+ fe′(t), ∀ t ∈ T .

At edge e = (0,1), we have f De (t) :=ω(t)which is a random mainstream with supportZω(t) ⊂ R≥0.

At each edge e, the demand f De (t) must be admissible to edge e, i.e.,

f De (t) ≤ min{ f e, τeue
(
ρe − ρe(t)

)
}. (3.4)

Notice that, the constraints (3.4) allows for transient speed of f De (t) higher than speed limit ue(t),

as long as the mean speed se(t) complies with ue(t).

Let ρ(0) = (ρ1(0), . . ., ρn(0)) denote the traffic density of the highway with support

3For v <VD or v <VA, the value of ros (t) or r ine (t) is zero, respectively.
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Zρ(0) ⊂ R
n
≥0. Using the constraints above, the traffic density dynamics at each time slot t ∈ T are

given by

ρe(t +1) = ρe(t)+ he
1− ros (t)
1− r ine (t)

fs(t)− he fe(t), ∀e ∈ E \ {(0,1)},

ρe(t +1) = ρe(t)+ he(ω(t)− fe(t)), e = (0,1).
(3.5)

Recall that fe(t) = ue(t)ρe(t). For each e ∈ E \ {(0,1)} and t ∈ T , the constraint in (3.4) can be

written as
1− ros (t)
1− r ine (t)

fs(t) ≤ min{ f e, τeue
(
ρe− ρe(t)

)
}, (3.6)

where s is the preceding edge of edge e.

Our goal is to design a set of speed limits for drivers. To achieve this goal, we consider a

finite set of speed limits, and then approximate the fundamental diagram of each segment e with

a finite set of piece-wise linear functions, as shown in Fig. 3.2. Let Γ be a finite set of feasible

speed limits for the highway segments. More precisely, the speed limit of each edge e ∈ E must

satisfy

ue(t) ∈ Γ :={γ(1), . . ., γ(m)}, t ∈ T . (3.7)

The set of real values Γ is determined by the physical structure of the highway as well as its

maximal free flow speed and traffic jam density. As mentioned earlier, random events, such as

traffic incidents or lane closure, can change these values.

3.2.3 Traffic-Control-Problem Formulation

We aim at maximizing the expected flow rate of highway segments while reducing

congestion via speed limits. To compute the average flow, let P$ denote the distribution of the

concatenated random variable$ := (ω, ρ(0),r in,ro). Given the parameters { f e}e∈E , {ρe}e∈E , and

Γ, the problem of computing speed limits which maximize the expected flow, can be formulated
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as follows:

max
u,ρ

EP$

[
1
T

∑
e∈E,t∈T

ρe(t)ue(t)

]
, (P)

s. t. (3.2), (3.3), (3.5), (3.6), (3.7),

where ρ and u are the concatenated variables of {ρe(t)}e∈E,t∈T 4 and {ue(t)}e∈E,t∈T , respectively.

Problem (P) is nonconvex. In addition, the probability distribution P$ is unknown, i.e.,

it is impossible to compute the expected flow (i.e., the objective function) exactly. Our goal

is to compute a set of speed limits that are feasible to Problem (P) and guarantee a minimum

achievable expected flow in the presence of uncertainty on P$. To achieve this goal, we adapt

the proposed framework to compute the desired speed limits. In this way, given an optimal

speed limit u and a set of N samples, we obtain J(u), an achievable average flow rate—let us

call it certificate. In particular, J(u) is a function of the N random samples. This certificate

is a minimum with confidence β ∈ (0,1) in the sense that the probability of the true objective

function being greater than J(u) is greater than 1− β. In other words, let ProbN denote the

product probability distribution over N samples. Under certain conditions on P$, the proposed

approach guarantees that the following out-of-sample performance constraint is satisfied:

ProbN

(
EP$

[
1
T

∑
e∈E,t∈T

ρe(t)ue(t)

]
≥ J(u)

)
≥ 1− β. (3.8)

The probabilistic guarantee (3.8) enables us to evaluate the performance of a feasible solution u

to Problem (P) via only finite samples of $ and a lower bound J(u). We call a solution u with

the probabilistic guarantee (3.8) a data-driven Speed-Limit control.

Remark 9 (Implementation of data-driven control). With online-accessible samples of$ and

parameters ( f , ρ,u) which are related to real-time highway random events, the data-driven control

u can be achieved via online solutions to (P) in a moving horizon fashion. Fig. 3.3 demonstrates

4ρ := (ρ1(0), ρ2(0), . . ., ρn(0), ρ1(1), . . ., ρn(T −1)).
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Figure 3.3. Data-driven speed-limit control on highways under random ramp flows and system
events.

how to implement the proposed approach in real-world applications.

Remark 10 (Admissible operation zone). In this chapter, we propose a set of speed-limit

controls that prevents congestion with probabilistic guarantees. Note that the existence of such

controls is highly dependent on the feasibility of Problem (P). When traffic demands are higher

than the highway capacity in a sufficiently long time, congestion is inevitable. Therefore, there is

no hope to prevent congestion via the speed-limit control in the presence of high traffic demands.

In such scenarios, we set speed limits to a set of predefined values.

3.3 Performance Guaranteed Speed-Limit Design

Our goal is to compute a set of speed limits with certain out-of-sample performance

guarantees. To achieve this goal, we follow a four-step procedure. First, we reformulate

Problem (P) into an equivalent problem (call it Problem (P1)). Second, we propagate the

admissible sample trajectories using the N measurements of$. Third, we adopt a distributionally

robust optimization approach to (P1). The first three steps enable us to obtain a distributionally

robust optimization framework for computing speed limits with guarantees equivalent to (3.8).

Finally, we obtain a tractable problem reformulation.

Step 1: (Equivalent reformulation of (P)) Traffic densities ρe(t), for all e ∈ E and

t ∈ T , are random since traffic inflows and outflows are random in each segment e. Using this

observation, we now consider the variable ρ in Problem (P) as a random variable, and derive an
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equivalent Problem (P1) via a reformulation of the constraints in (P).

Given a speed limit u that satisfies the constraint (3.7), let P(u) and Z(u) denote the

probability distribution of variable ρ and the support of ρ, respectively.5 Recall that in Problem (P),

constraints (3.2) ensure no congestion on the highway. Hence, the given u should be such that

Z(u) ⊆ {ρ ∈ RnT | (3.2)}. Without loss of generality, we consider the largest possible support

Z(u) := {ρ ∈ RnT | (3.2)}. To fully characterize random variable ρ, the distribution of P(u)

needs to be determined. Using the traffic density dynamics in (3.5), flow representation in (3.3)

and sustainability constraints in (3.6), the probability distribution P(u) can be represented as a

convolution of the distribution P$.

LetM(Z(u)) denote the space of all probability distributions supported onZ(u). Let us

write the objective function of Problem (P) compactly as

H(u; ρ) :=
1
T

∑
e∈E,t∈T

ρe(t)ue(t),

and reformulate (P) as follows

max
u

EP(u) [H(u; ρ)], (P1)

s. t. P(u) characterized by (3.3), (3.5), (3.6) and P$,

P(u) ∈ M(Z(u)), (3.7).

Notice that Problems (P) and (P1) are equivalent. Hence, we obtain the performance guarantee

of (P1) by considering the induced out-of-sample performance on P(u), written as EP(u) [H(u; ρ)].

For all problems derived later, we use the performance guarantees equivalent to (3.8), as follows

ProbN (
EP(u)[H(u; ρ)] ≥ J(u)

)
≥ 1− β. (3.9)

5The supportZ(u) is the smallest closed set such that P(ρ ∈ Z(u)) = 1.
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Recall that ProbN denotes the probability that the event EP(u)[H(u; ρ)] ≥ J(u) happens on the N

product of the sample space that defines ρ, the value J(u) is the certificate to be determined, and

β ∈ (0,1) is the desired confidence value. Next, we characterize the probability distribution P(u)

using the N sample measurements of $.

Step 2: (Admissible sample trajectory propagation) Let L = {1, . . .,N} denote

the index set for the N realizations of the random variable $, and let {$(l)}l∈L , where

$(l) := (ω(l), ρ(l)(0),r in,(l),ro,(l)), denote the set of independent and identically distributed (i.i.d.)

realizations of$. Given a speed limit u and measurement$(l), a unique traffic density trajectory

ρ(l) can be computed by using (3.3), (3.5). Notice that this trajectory is unique since density

dynamics (3.5) is linear (in ρ) for a given speed limit u and measurement $(l). Further, the

resulting ρ(l) is an admissible traffic trajectory if the given u achieves the flow sustainability

constraints (3.6). Given these realizations {$(l)}l∈L , the admissible sample trajectories {ρ(l)}l∈L

of the random traffic flow densities for each edge e ∈ E with its precedent s ∈ E ∪�, are given by

ρ
(l)
e (t +1) = he

1− ro,(l)s (t)

1− r in,(l)e (t)
us(t)ρ

(l)
s (t)− heue(t)ρ

(l)
e (t)+ ρ

(l)
e (t), ∀e ∈ E \ {(0,1)},

ρ
(l)
e (t +1) = ρ(l)e (t)+ he(ω

(l)(t)−ue(t)ρ
(l)
e (t)), e = (0,1),

1− ro,(l)s (t)

1− r in,(l)e (t)
us(t)ρ

(l)
s (t) ≤ min

{
f e, τeue

(
ρe − ρ

(l)
e (t)

)}
, ∀e ∈ E \ {(0,1)},

(3.10)

for all t ∈ T , l ∈ L. The following lemma establishes that {ρ(l)}l∈L are i.i.d. samples from P(u).

Lemma 8 (Independent and identically distributed sample generators of ρ). Given a speed

limit u and a set of i.i.d. realizations of $, the system dynamics (3.10) generate i.i.d. admissible

sample trajectories {ρ(l)}l∈L of P(u).

Proof. Continuous functions of i.i.d. random variables generate i.i.d. random variables. Thus,

the admissible sample trajectories {ρ(l)}l∈L generated by (3.10) are i.i.d. realizations of P(u). �

Let Mlt(Z$) ⊂ M(Z$) denote the space of all light-tailed probability distributions
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supported onZ$ 6. We make the following assumption on the probability distribution P$:

Assumption 6 (Light-tailed unknown distributions). The distribution P$ satisfies P$ ∈

Mlt(Z$), i.e., there exists an exponent a > 1 such that b := EP$
[
exp(‖$‖a1 )

]
<∞.

Remark 11 (Accessible light-tailed i.i.d. samples of $). The random variable $ essentially

represents the random flows and densities on the highway. This results into an unknown compact

support of P$, indicating that P$ is also light-tailed. Further, online samples of $ can come

from various independent system monitors, e.g., Traffic Performance Measurement Systems

(T-PeMS), or real-time GPS systems, which provide online i.i.d. samples of $.

The following lemma establishes that the probability distribution of traffic densities is

light-tailed when P$ is light-tailed.

Lemma 9 (Light-tailed distribution of ρ). Let Assumption 6 hold, then P(u) ∈ Mlt(Z(u)).

Proof. The proof consists of two steps. First, we explore the boundedness property of ρe(t)

w.r.t. $, for all e ∈ E and t ∈ T . Second, we claim that there exists an a > 1 such that

EP(u)[exp(‖ρ‖a1 )] <∞.

Step 1: (Boundedness of ρ) Consider for each speed limit u and time t ∈ T \ {0}. Let

A(u, t) denote the matrix that is consistent with the highway system G, let B(t) denote the column

vector that encodes the mainstream flow ω, and write the density ρ(t) in the following compact

form

ρ(t) = Φ(t,0)ρ(0)+
t−1∑
τ=0
Φ(t, τ+1)B(τ),

where

Φ(t, τ) :=


In, if t = τ,

A(u, t −1)A(u, t −2) · · · A(u, τ), if t > τ,

6For any setZ, we useMlt(Z) to denote the space of all light-tailed probability distributions supported onZ.
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A(u, t) =



m1(t)

n1(t)
. . .

. . .
. . .

nn−1(t) mn(t)



,B(t) =



h(0,1)ω(t)

0

...

0


,

with
mi(t) = 1− heue(t), ∀i ∈ {1, . . .,n}, e = (i−1, i),

n j(t) =min

{
1− ros (t)
1− r ine (t)

heus(t),
f e

ρs(t)
, τeue

ρe − ρe(t)
ρs(t)

}
,

∀ j ∈ {1, . . .,n−1}, s = (i−1, i), e = (i, i+1).

Given that each component of A(u, t) is bounded for fixed u and t, the induced norm of A(u, t) is

also bounded and we denote their universal bound by A0. Similarly, we denote by h the upper

bound on he, e ∈ E. Then for every t we can bound the infinity norm of ρ(t) as follows

‖ρ(t)‖∞ ≤ ‖Φ(t,0)‖∞‖ρ(0)‖∞+ h
t−1∑
τ=0
‖Φ(t, τ+1)‖∞‖ω(τ)‖∞,

≤ At
0‖ρ(0)‖∞+ h

t−1∑
τ=0

At−τ−1
0 ‖ω(τ)‖∞,

≤ M1(t)

(
‖ρ(0)‖∞+

t−1∑
τ=0
‖ω(τ)‖∞

)
,

≤ (t +1)M1(t)‖$‖∞,≤ (t +1)M1(t)‖$‖1,

where M1(t) :=max{At
0, h, hAt

0}.

Step 2: (Light-tailed distribution)Given an u, consider a t? ∈ argmaxt∈T\{0}{‖ρ(t)‖∞}.
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Then by norm equivalence we have

‖ρ‖1 ≤ n‖ρ‖∞ = n max
t∈T\{0}

{‖ρ(t)‖∞},

= n‖ρ(t?)‖∞,≤ n(t?+1)M1(t?)‖$‖1.

Then for any a > 1 with EP$ [exp(‖$‖a1 )] <∞, let M2 = [n(t?+1)M1(t?)]a <∞ and we have

EP(u)[exp(‖ρ‖a1 )] ≤ EP$ [exp(M2‖$‖
a
1 )],

= exp(M2)
a ·EP$ [exp(‖$‖a1 )] <∞.

That is, P(u) is light tailed. �

The above Lemmas 8 and 9 enable the application of the proposed framework to (P1) in

the next step.

Step 3: (Performance-guarantee certificate) Given a speed limit u, we design a

certificate J(u) that satisfies the performance guarantee condition (3.9). To achieve this goal, the

proposed approach consists of solving a robust version of the problem over a set of distributions.

In particular, we will consider a set of distributions P(u) that is small, tractable and yet rich

enough to contain P(u) with high probability. Then by evaluating (P1) under the worst-case

distribution in P(u), the performance of (P1) in the form of (3.9) can be guaranteed.

Consider the Wasserstein ball7 Bε (P̂(u)) of center P̂(u) := (1/N)
∑

l∈L δ{ρ(l)} and radius ε .

Notice that the center P̂(u) is obtained using the point mass operator δ under i.i.d. admissible

sample trajectories {ρ(l)}l∈L . These trajectories are distributed according to P(u) which is a

function of the controlled system dynamics (3.10) and samples of$. Then we propose certificates

7LetM(Z) denote the space of all probability distributions supported onZ. Then for any two distributions Q1,
Q2 ∈M(Z), the Wasserstein metric [59] dW :M(Z)×M(Z)→ R≥0 is defined by

dW (Q1,Q2) :=min
Π

∫
Z×Z

‖ξ1− ξ2‖1Π(dξ1,dξ2),

where Π is in a set of all distributions onZ×Z with marginals Q1 and Q2. A closed Wasserstein ball of radius ε
centered at a distribution P ∈M(Z) is denoted by Bε (P) := {Q ∈M(Z) | dW (P,Q) ≤ ε}.
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J(u) of (P1) in the following theorem.

Theorem 6 (Performance guarantees of (P1)). Let us assume that N i.i.d. samples of $ are

given, together with a speed limit u, and confidence value β, and that Assumption 6 on light-tailed

distributions of $ holds. Further, let us define the set of distributions P(u) as follows:

P(u) := Bε(β)(P̂(u))∩Mlt(Z(u)).

Then, there exists a Wasserstein radius ε := ε(β), depending on the confidence value β and

Assumption 6, such that P(u) is in the set of distributionsP(u) as described in (P1)with probability

at least 1− β, i.e.,

ProbN (P(u) ∈ P(u)) ≥ 1− β.

Further, the following proposed certificate J(u) of (P1) satisfies guarantee (3.9)

J(u) := inf
Q∈P(u)

EQ [H(u; ρ)].

Proof. We prove the result in two steps. First, we show the proposed set P(u) contains the

unknown distribution P(u) with high probability. Then, we show that the proposed certificate

J(u) provides performance guarantees as in (3.9).

Step 1: (Tractable set containing P(u)) Under Assumption 6 and using N i.i.d. samples

of $, we obtain i.i.d. samples {ρ(l)}l∈L of P(u) via Lemma 8. Then, with the distribution

P̂(u) :=
1
N

∑
l∈L

δ{ρ(l)},

we quantify the relation between P̂(u) and P(u) via Lemma 9 and the following theorem:
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Theorem 7 (Measure concentration [40, Theorem 2]). If P(u) ∈ Mlt(Z(u)), then

ProbN {dW (P(u), P̂(u)) > ε} <


c1e−c2Nεmax{2,` }

, if ε ≤ 1,

c1e−c2Nεa, if ε > 1,

for all N ≥ 1, ` , 2, and ε > 0, where the parameter ` is the dimension of ρ, and parameters c1,

c2 are positive constants that only depend on `, a and b as in Assumption 6. �

Let us select ε := ε(β) to be the following

ε(β) :=


(

log(c1β
−1)

c2N

)1/max{2,`}
, if N ≥ log(c1β

−1)
c2

,(
log(c1β

−1)
c2N

)1/a
, if N <

log(c1β
−1)

c2
,

then Theorem 7 leads to

ProbN
(
dW (P(u), P̂(u)) > ε(β)

)
< β,

or, equivalently,

ProbN
(
dW (P(u), P̂(u)) ≤ ε(β)

)
≥ 1− β.

From the definition of the Wasserstein ball Bε(β)(P̂(u)) and the fact that P(u) ∈ Mlt(Z(u)), we

have
ProbN

(
P(u) ∈ Bε(β)(P̂(u))

)
≥ 1− β,

ProbN (P(u) ∈ Mlt(Z(u))) = 1,

which results in

ProbN (P(u) ∈ P(u)) ≥ 1− β,

with

P(u) := Bε(β)(P̂(u))∩Mlt(Z(u)).

Step 2: (Certificate of (P1)) From the previous reasoning, for a given u we have
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P(u) ∈ P(u) with probability at least 1− β. Then, with probability at least 1− β the objective

value of (P1) satisfies the following

EP(u) [H(u; ρ)] ≥ inf
Q∈P(u)

EQ [H(u; ρ)].

Let J(u) be

J(u) := inf
Q∈P(u)

EQ [H(u; ρ)],

which results in

ProbN (
EP(u)[H(u; ρ)] ≥ J(u)

)
≥ 1− β.

Then the proposed certificate J(u) of (P1) satisfies guarantee (3.9), which completes the proof. �

Remark 12 (Effect of Assumption 6 on J(u)). The certificate J(u) highly depends on the set

P(u) and the Wasserstein radius ε(β). In Theorem 6, the value ε(β) is calculated via the

parameters a and b in Assumption 6. As these parameters may not be known, one can determine

ε(β) in a data driven fashion via Monte-Carlo simulations. That is, we start by setting ε(β) = 0

and gradually increase it until the performance guarantees (3.9) hold with that given β for a

sufficiently large number of simulation runs.

Theorem 6 provides each feasible solution u of (P1) with a certificate J(u) that guarantees

performance as in (3.9). This motivates a tractable reformulation of (P1) as follows.

Step 4: (Tractable reformulation of (P1)) Our goal is to obtain a speed limit u that

maximizes the average flow through the highway as in (P1) while ensuring that the performance

guarantee condition (3.9) is satisfied. Given a set of inflow-and-outflow-related samples {$(l)}l∈L ,

a speed limit u that provides the highest J(u) (i.e., the best objective lower bound), can be

computed by solving the following optimization problem:

sup
u s.t. (3.7)

J(u). (P2)
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Problem (P2) is an infinite-dimensional optimization problem, and, hence, it is hard to solve.

The following theorem, provides a finite-dimensional reformulation of Problem (P2), called (P3),

and shows that problems (P2) and (P3) are equivalent for (u, J).

Theorem 8 (Tractable reformulation of (P2)). Consider

max
u,ρ,λ,µ,ν,η

−λε(β)−
1
N

∑
e∈E,t∈T ,l∈L

f eρeη
(l)
e (t)+

1
N

∑
l∈L

〈
ν(l), ρ(l)

〉
, (P3)

s. t. [ f ⊗ 1T + (ρ− ρ
c(u)) ⊗ 1T ◦u] ◦η(l)− µ(l) ≥ 0nT, ∀ l ∈ L,

ν(l) = µ(l)+
1
T

u, ∀ l ∈ L,

‖ν(l)‖? ≤ λ, ∀ l ∈ L,

η(l) ≥ 0nT, ∀ l ∈ L,

(3.7), (3.10),

where decision variables (u, ρ, λ, µ, ν,η) are concatenated versions of ue(t), ρ(l)e (t), λ, µ
(l)
e (t),

ν
(l)
e (t), η

(l)
e (t) ∈ R, for all l ∈ L, t ∈ T , and e ∈ E. The value ρc(u) := f /u is the vector of critical

densities under the free flow, and ρ is the jam density vector. The norm ‖ · ‖? := ‖ · ‖∞.

Problem (P2) is equivalent to (P3) in the sense that their optimal objective values coincide

and the set of optimizers of (P2) are the projection of that of (P3). Further, for any feasible

point (u, ρ, λ, µ, ν,η) of (P3), let Ĵ(u) denote the value of its objective function. Then the pair

(u, Ĵ(u)) gives a data-driven solution u with an estimate of its certificate J(u) by Ĵ(u), such that

the performance guarantee (3.9) holds for (u, Ĵ(u)).

Proof. We achieve it by three steps. First, we show that Problem (P2) can be equivalently reduced

to a finite-dimensional problem. Then we equivalently reformulate the resulting problem into a

maximization problem. Finally, we show the performance guarantees of (P3).
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Step 1: (Finite-dimensional reduction of (P2)) We express J(u) as follows

J(u) =


inf
Q

∫
Z(u)H(u; ρ)Q(dρ),

s. t. Q ∈Mlt(Z(u)), dW (Q, P̂(u)) ≤ ε(β),

=



inf
Q,Π

∫
Z(u)H(u; ρ)Q(dρ),

s. t.
∫
Z(u)×Z(u) ‖ρ− ρ

′‖1Π(dρ,dρ′) ≤ ε(β),

Π is a distribution of ρ and ρ′

with marginals Q and P̂(u) ∈ Mlt(Z(u)),

=



inf
Q(l), l∈L

1
N

∑
l∈L

∫
Z(u)H(u; ρ)Q(l)(dρ),

s. t. 1
N

∑
l∈L

∫
Z(u) ‖ρ− ρ

(l)‖1Q
(l)(dρ) ≤ ε(β),

(3.10), Q(l) ∈Mlt(Z(u)), ∀l ∈ L,

=


inf

Q(l), l∈L
sup
λ≥0

1
N

∑
l∈L

∫
Z(u)H(u; ρ)Q(l)(dρ)+λ

(
1
N

∑
l∈L

∫
Z(u) ‖ρ− ρ

(l)‖1Q
(l)(dρ)− ε(β)

)
,

s. t. (3.10), Q(l) ∈Mlt(Z(u)), ∀l ∈ L,

where the first equality applies the definition of the expectation operation; the second equality uses

the definition of Wasserstein metric; the third equality exploits the fact that the joint distribution

Π can be characterized by the marginal distribution P̂(u) of ρ′ and the conditional distributions

Q(l) of ρ given ρ′ = ρ(l), l ∈ L, written as

Π :=
1
N

∑
l∈L

δ{ρ(l)} ⊗Q
(l),

where admissible sample trajectories {ρ(l)}l∈L come from (3.10) and each conditional distribution

Q(l) is supported onMlt(Z(u)); and, on the other hand, the fourth equality applies the Lagrangian

representation of the problem.
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Then, with an extended version of the strong duality results for the moment problem [119,

Lemma 3.4], the order of the inf-sup operator in the resulting representation of J(u) can be

switched, resulting in the following expression

J(u) =


sup
λ≥0

inf
Q(l), l∈L

−λε(β)+ 1
N

∑
l∈L

∫
Z(u)

(
λ‖ρ− ρ(l)‖1+H(u; ρ)

)
Q(l)(dρ),

s. t. (3.10), Q(l) ∈Mlt(Z(u)), ∀l ∈ L,

Move the inf operator into the sum operator, we have

J(u) =


sup
λ≥0
−λε(β)+ 1

N
∑

l∈L

{
inf

Q(l)∈Mlt(Z(u))
EQ(l)

[
λ‖ρ− ρ(l)‖1+H(u; ρ)

]}
,

s. t. (3.10).

For each l ∈ L, we claim that

inf
Q(l)∈Mlt(Z(u))

EQ(l)
[
λ‖ρ− ρ(l)‖1+H(u; ρ)

]
= inf
ρ∈Z(u)

(
λ‖ρ− ρ(l)‖1+H(u; ρ)

)
.

The above claim can be clarified as the following

(a) Let p? denote the value of the second term. Then, for any ρ ∈ Z(u), we have

p? ≤ λ‖ρ− ρ(l)‖1+H(u; ρ),

implying

p? ≤ EQ(l)
[
λ‖ρ− ρ(l)‖1+H(u; ρ)

]
,

holds for any probability distribution Q(l) ∈ M(Z(u)), so does for Q(l) ∈ Mlt(Z(u)).

Therefore, we have

p? ≤ inf
Q(l)∈Mlt(Z(u))

EQ(l)
[
λ‖ρ− ρ(l)‖1+H(u; ρ)

]
.
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(b) Next, we claim that the setMlt(Z(u)) contains all the Dirac distributions supported on

Z(u). Then, for any ρ′ ∈ Z(u), we have

δ{ρ′} ∈Mlt(Z(u)),

resulting in

inf
Q(l)∈Mlt(Z(u))

EQ(l)
[
λ‖ρ− ρ(l)‖1+H(u; ρ)

]
≤ λ‖ρ′− ρ(l)‖1+H(u; ρ′), ∀ρ′ ∈ Z(u),

which implies

inf
Q(l)∈Mlt(Z(u))

EQ(l)
[
λ‖ρ− ρ(l)‖+H(u; ρ)

]
≤ p?.

Therefore, we equivalently write J(u) as

J(u) = sup
λ≥0
−λε(β)+

1
N

∑
l∈L

inf
ρ∈Z(u)

(
λ‖ρ− ρ(l)‖1+H(u; ρ)

)
,

s. t. (3.10).

Finally, we write Problem (P2) as follows

sup
u,λ≥0

−λε(β)+
1
N

∑
l∈L

inf
ρ∈Z(u)

(
λ‖ρ− ρ(l)‖1+H(u; ρ)

)
, (P2′)

s. t. (3.7), (3.10).

Step 2: (Equivalent reformulation of (P2′)) Using the definition of the dual norm and
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moving its sup operator we can write Problem (P2′) as

sup
u,λ≥0

−λε(β)+
1
N

∑
l∈L

inf
ρ∈Z(u)

sup
‖ν(l)‖?≤λ

(〈
ν(l), ρ− ρ(l)

〉
+H(u; ρ)

)
,

s. t. (3.7), (3.10).

Given λ ≥ 0, the sets {ν(l) ∈ RnT | ‖ν(l)‖? ≤ λ} are compact for all l ∈ L. We then apply the

minmax theorem between inf and the second sup operators. This results in the switch of the

operators, and by combining the two sup operators we have

sup
u,λ,ν
−λε(β)+

1
N

∑
l∈L

inf
ρ∈Z(u)

(〈
ν(l), ρ− ρ(l)

〉
+H(u; ρ)

)
,

s. t. (3.7), (3.10), λ ≥ 0,

‖ν(l)‖? ≤ λ, ∀l ∈ L.

The objective function can be simplified as follows

−λε(β)+
1
N

∑
l∈L

〈
−ν(l), ρ(l)

〉
+

1
N

∑
l∈L

h(l)(u),

where

h(l)(u) := inf
ρ∈Z(u)

(〈
ν(l), ρ

〉
+H(u; ρ)

)
, ∀l ∈ L.

For each l ∈ L, we rewrite h(l)(u) by firstly taking a minus sign out of the inf operator, then

exploiting the equivalent representation of sup operation, and finally using the definition of

conjugate functions. The function h(l)(u) results in the following form

h(l)(u) =− sup
ρ∈Z(u)

(〈
−ν(l), ρ

〉
−H(u; ρ)

)
,

=− sup
ρ

(〈
−ν(l), ρ

〉
−H(u; ρ)− χZ(u)(ρ)

)
,

=−
[
H(u; ·)+ χZ(u)(·)

]?
(−ν(l)).
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Further, we apply the property of the inf-convolution operation and push the minus sign back

into the inf operator, for each h(l)(u), l ∈ L. The representation of h(l)(u) results in the following

relation
h(l)(u) =− inf

µ

(
[H(u; ·)]? (−µ(l)− ν(l))+

[
χZ(u)(·)

]?
(µ(l))

)
,

=sup
µ

(
−[H(u; ·)]? (−µ(l)− ν(l))−

[
χZ(u)(·)

]?
(µ(l))

)
.

By substituting −ν(l) by ν(l), the resulting optimization problem has the following form

sup
u,λ,µ,ν

−λε(β)−
1
N

∑
l∈L

(
[H(u; ·)]? (−µ(l)+ ν(l))+

[
χZ(u)(·)

]?
(µ(l))−

〈
ν(l), ρ(l)

〉)
,

s. t. (3.7), (3.10), λ ≥ 0,

‖ν(l)‖? ≤ λ, ∀l ∈ L.

Given u, the strong duality of linear programs is applicable for the conjugate of the function

H(u; ·) and the support function σZ(u)(µ(l)). Using the strong duality and the definition of the

support function, we compute, for each l ∈ L, the following

[H(u; ·)]?(ν(l)− µ(l)) :=


0, ν(l) = µ(l)+ 1

T u,

∞, o.w.,

and [
χZ(u)(·)

]?
(µ(l)) = σZ(u)(µ

(l))

=


sup
ξ(l)

〈
µ(l), ξ(l)

〉
,

s. t. 0 ≤ ξ(l)e (t) ≤ ρc
e(ue(t)), ∀e ∈ E, ∀t ∈ T ,

=



inf
η(l)

∑
e∈E,t∈T

f eρeη
(l)
e (t),

s. t. [ f ⊗ 1T + (ρ− ρ
c(u)) ⊗ 1T ◦u] ◦η(l)− µ(l) ≥ 0nT,

η(l) ≥ 0nT,
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We substitute these parts for that in the objective function, take the above inf operator out of a

minus sign, and obtain (P3).

Given that all the reformulations in this step hold with equalities, we therefore claim

that the above problem is equivalent to (P2). Finally, we claim that the sup operation is indeed

achievable, because 1) each component of the variable u is in a finite set Γ and 2), for any u that is

feasible to the above problem, the above problem with that fixed u satisfies the Slater’s condition,

which implies that the above problem is achievable. We therefore claim (P2) is equivalent to (P3).

Step 3: (Performance guarantees of (P3)) Given any feasible point (u, ρ, λ, µ, ν,η)

of (P3), we denote its objective value by Ĵ(u). The value Ĵ(u) is a lower bound of (P3) and

therefore a lower bound for (P2), i.e., Ĵ(u) ≤ J(u). Thus Ĵ(u) is an estimate of the certificate for

the performance guarantee (3.9). Therefore, (u, Ĵ(u)) is a data-driven solution and certificate

pair for (P1). �

Remark 13 (Formulation (P3) depends on data). Problem (P3) is parameterized by the

variables ( f , ρ,u), which are related to the highway infrastructure and random events, and the data

{$(l)}l∈L , which are related to the traffic system initial state, {ρ(l)(0)}l∈L , on-ramp, and off-ramp

flows. The decision variables include future states of the density ρ(l)(t), t > 0, the speed limits,

and other multipliers to make the constraints hold. In particular, note that the ambiguity-ball

constraint is enforced via the λ multiplier and maximization in ρ. In practice, highway random

events such as accidents are monitored in real time, which provides particular information about

( f , ρ,u). On the other hand, data {$(l)}l∈L is accessible from various independent monitors as

mentioned in the previous remark on data-driven control implementation.

Problem (P3) is inherently difficult to solve due to the discrete decision variables u,

bi-linear terms u ◦ η(l) in the first group of constraints, and the nonlinear admissible sample

trajectories {ρ(l)}l∈L , which motivates our next section.
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3.4 Equivalent Reformulation

Our goal is to compute exact solutions to Problem (P3). To achieve this goal, we focus

on the feasibility set of Problem (P3), and transform a group of its non-convex quadratic terms,

which are comprised of a continuous variable and a binary variable, into a set of mixed-integer

linear constraints. We call the new equivalent formulation, Problem (P4).

Binary representation of speed limits: Let O := {1, . . .,m} be the index set of the speed

limit set Γ. For each edge e ∈ E, time slot t ∈ T and speed limit value γ(i) ∈ Γ, let us define the

binary variable xe,i(t) to be equal to one if ue(t) = γ(i); otherwise xe,i(t) = 0. We will then have

ue(t) =
∑

i∈O γ
(i)xe,i(t) for each edge e ∈ E. Using this representation, we can reformulate the

speed limit constraints (3.7) as follows

γ(1) ≤
∑
i∈O

γ(i)xe,i(t) ≤ γ(m), ∀e ∈ E, ∀t ∈ T ,∑
i∈O

xe,i(t) = 1,∀e ∈ E, ∀t ∈ T ,

xe,i(t) ∈ {0, 1}, ∀e ∈ E, i ∈ O, t ∈ T ,

(3.11)

and we update the admissible sample trajectories formula (3.10) for all t ∈ T and l ∈ L as follows

ρ
(l)
e (t +1) = he

1− ro,(l)s (t)

1− r in,(l)e (t)

∑
i∈O

γ(i)xs,i(t)ρ
(l)
s (t)+ ρ

(l)
e (t)− he

∑
i∈O

γ(i)xe,i(t)ρ
(l)
e (t), ∀e ∈ E \ {(0,1)},

ρ
(l)
e (t +1) = ρ(l)e (t)+ heω

(l)(t)− he

∑
i∈O

γ(i)xe,i(t)ρ
(l)
e (t), e = (0,1).

1− ro,(l)s (t)

1− r in,(l)e (t)

∑
i∈O

γ(i)xs,i(t)ρ
(l)
s (t) ≤ min

{
f e, τeue

(
ρe − ρ

(l)
e (t)

)}
, ∀e ∈ E \ {(0,1)},

(3.12)

We are particularly interested in two groups of bi-linear terms: 1) the bi-linear terms

xe,i(t)ρ
(l)
e (t) in the admissible sample trajectories formula (3.12) and 2) the bi-linear terms∑

i∈O γ
(i)xe,i(t)η

(l)
e (t) which appear in the first set of constraints, e.g., u ◦ η(l). Each of these

bi-linear terms is comprised of a continuous variable and a binary variable. We represent each of
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these bi-linear terms with a set of linear constraints using the following linearization technique.

Let us introduce variables y(l)e,i (t) and z(l)e,i (t) for all e ∈ E, i ∈ O, t ∈ T and l ∈ L as follows

y
(l)
e,i (t) = xe,i(t)ρ

(l)
e (t),

z(l)e,i (t) = xe,i(t)η
(l)
e (t).

(3.13)

We further make the following assumption

Assumption 7 (Bounded dual variable η). There exists a positive constant η such that for any

optimizers of (P3), the components η(l)e (t) ≤ η for all e ∈ E, t ∈ T and l ∈ L.

We achieve Assumption 7 by selecting η large enough. This enables the following lemma

to represent the non-convex equality constraint in (3.13) with a set of linear constraints.

Lemma 10 (Linearization technique). Let Assumption 7 hold. Then for all e ∈ E, i ∈ O, t ∈ T

and l ∈ L, the non-convex equality constraint in (3.13) can be equivalently represented with the

following set of linear constraints

0 ≤ z(l)e,i (t) ≤ ηxe,i(t),

η
(l)
e (t)−η(1− xe,i(t)) ≤ z(l)e,i (t) ≤ η

(l)
e (t), (3.14)

0 ≤ y
(l)
e,i (t) ≤ ρexe,i(t),

ρ
(l)
e (t)− ρe(1− xe,i(t)) ≤ y

(l)
e,i (t) ≤ ρ

(l)
e (t).

(3.15)

Proof. The proof follows by the application of the following proposition on each bi-linear term

in (3.13):

Proposition 1 (Equivalent reformulation of bi-linear terms [42, Section 2]). Let Y ⊂ R be

a compact set. Given a binary variable x and a linear function g(y) in a continuous variable
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y ∈ Y, z equals the quadratic function xg(y) if and only if

gx ≤ z ≤ gx,

g(y)−g · (1− x) ≤ z ≤ g(y)−g · (1− x),

where g =miny∈Y{g(y)} and g =maxy∈Y{g(y)}. �

Remark 14 (Regularization technique). In a later program, we add the following extra con-

straints to speed up the internal computation of solvers

∑
i∈O z(l)e,i (t) = η

(l)
e (t), ∀e ∈ E, t ∈ T \ {0}, l ∈ L,∑

i∈O y
(l)
e,i (t) = ρ

(l)
e (t), ∀e ∈ E, t ∈ T \ {0}, l ∈ L.

These are adapted from the binary representation (3.11) and the definition of y(l)e,i (t) and z(l)e,i (t).

�

In particular, we let y(l)e,i (0) = xe,i(0)ρ(l)e (0) for each e ∈ E, i ∈ O and l ∈ L. Then using

the new variables y(l)e,i (t) and z(l)e,i (t), we can now reformulate the admissible sample trajectories

formula (3.12) as follows

ρ
(l)
e (t +1) = he

1− ro,(l)s (t)

1− r in,(l)e (t)

∑
i∈O

γ(i)y
(l)
s,i (t)+ ρ

(l)
e (t)− he

∑
i∈O

γ(i)y
(l)
e,i (t), ∀e ∈ E \ {(0,1)},

ρ
(l)
e (t +1) = ρ(l)e (t)+ heω

(l)(t)− he

∑
i∈O

γ(i)y
(l)
e,i (t), e = (0,1).

1− ro,(l)s (t)

1− r in,(l)e (t)

∑
i∈O

γ(i)y
(l)
s,i (t) ≤ min

{
f e, τeue

(
ρe − ρ

(l)
e (t)

)}
, ∀e ∈ E \ {(0,1)},

(3.16)
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Problem (P3) can now be equivalently reformulated as the following optimization problem

max
x,y,z,ρ,
λ,µ,ν,η

−λε(β)−
1
N

∑
e,t,l

f eρeη
(l)
e (t)+

1
N

∑
e,t,l

ν
(l)
e (t)ρ

(l)
e (t), (P4)

s. t.
∑
i∈O

γ(i)(ρ− ρc(u)) ⊗ 1T ◦ z(l)i − µ
(l)+ f ⊗ 1T ◦η

(l) ≥ 0nT, ∀ l ∈ L, (3.17)

ν(l) = µ(l)+
1
T

∑
i∈O

γ(i)xi, ∀ l ∈ L, (3.18)

‖ν(l)‖? ≤ λ, ∀ l ∈ L, (3.19)

0nT ≤ η
(l) ≤ η, ∀ l ∈ L, (3.20)

speed limits (3.11), dual variable (3.14),

sample trajectories{(3.15), (3.16)}.

Remark 15 (Performance guarantee (3.9) in the setting of Problem (P4)). Let Ĵ(u) denote

the value of the objective function of (P4) at a computed feasible solution (x, y, z, ρ, λ, µ, ν,η).

Then, the resulting speed limits u :=
∑

i∈O γ
(i)xi provide a data-driven solution such that (u, Ĵ(u))

satisfies the performance guarantee (3.9) of (P1). This result exploits the fact that Problem (P4)

is equivalent to (P3) and (P3) is equivalent to (P2) as in Theorem 8.

3.5 Computationally Efficient Algorithms

We propose a decomposition-based, integer-solution search algorithm which computes

online-tractable, high-quality feasible solutions to (P4) with performance guarantees. Similar

algorithms have been proposed in the literature [69, 72]. Such methods allow us to compute sub-

optimal solutions to mix-integer nonlinear programs efficiently. The proposed integer-solution

search algorithm is shown in Algorithm 5. This algorithm iteratively computes sub-optimal
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Algorithm 5. Integer solution search algorithm
1: Initialize k = 0
2: repeat
3: k← k +1
4: Solve Problem (UBPk), return x(k) and UBk
5: Generate admissible sample trajectories {ρ(l,k)}l∈L
6: Solve Problem (LBPk), return objk and LBk
7: until UBk −LBk ≤ ε , or (UBPk) is infeasible, or a satisfactory sub-optimal solution is found

after certain running time Trun
8: return data driven solution ubest := u(q) with certificate Ĵ(u(q)) such that q ∈

argmaxp=1,...,k{objp}

solutions to (P4) until a stopping criteria is met. At each iteration, the algorithm solves an

upper-bounding problem to (P4), and then solves a lower-bounding problem to (P4). The

upper-bounding Problem (UBPk) is obtained through McCormick relaxations of the bi-linear

terms {ν(l) ◦ ρ(l)}l∈L . This upper bounding problem is a mixed-integer linear program and its

solution provides us with an upper bound on Problem (P4) and a candidate speed limits x(k).

Notice that x(k) respects the sustainability constraints in (3.16). We then use the computed speed

limit x(k) to construct a set of admissible sample trajectories {ρ(l,k)}l∈L and equivalently reduce

Problem (P4) to a linear lower-bounding Problem (LBPk) for potential feasible solutions of (P4).

If (LBPk) is feasible, then the candidate speed limits together with the objective value of (LBPk)

provide guarantee (3.9) for (P4). Next, we present the upper-bounding and lower-bounding

problems in detail.

3.5.1 Upper-bounding Problem

Problem (UBPk) is constructed in two stages:

Stage 1: We use a standard McCormick relaxation to handle the non-convex quadratic

terms {ν(l)e (t)ρ
(l)
e (t)}e∈E,t∈T ,l∈L in the objective function of (P4). Notice that the McCormick

envelope [85] provides relaxations of bi-linear terms, which is stated in the following remark.

Remark 16 (McCormick envelope). Consider two variables x, y ∈ R with upper and lower

bounds, x ≤ x ≤ x, y ≤ y ≤ y. The McCormick envelope of the variable s := xy ∈ R is
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characterized by the following constraints

s ≥ xy+ xy− xy, s ≥ xy+ xy− xy,

s ≤ xy+ xy− xy, s ≤ xy+ xy− xy.

To construct a McCormick envelope for (UBPk), let us denote νe := ue
(
T−1+ ρeη

)
for

each edge e ∈ E. We have 0 ≤ ν(l)e (t) ≤ νe, 0 ≤ ρ(l)e (t) ≤ ρe for all e ∈ E, t ∈ T , and l ∈ L.

Therefore, the McCormick envelope of s(l)e (t) := ν
(l)
e (t)ρ

(l)
e (t) is given by

s(l)e (t) ≥ νeρ
(l)
e (t)+ ν

(l)
e (t)ρe − νeρe,

s(l)e (t) ≥ 0,

s(l)e (t) ≤ νeρ
(l)
e (t),

s(l)e (t) ≤ ν
(l)
e (t)ρe.

(3.21)

Stage 2: We identify appropriate canonical integer cuts to prevent (UBPk) from choosing

examined candidate variable speed limits {x(p)}k−1
p=1 . LetΩ

(p) := {(e, i, t) ∈ E ×O×T | x(p)e,i (t) = 1}

denote the index set of x for which the value x(p)e,i (t) is 1 at the previous iteration p. In addition,

let c(p) := |Ω(p) | and Ω
(p)

:= (E ×O ×T) \Ω(p) denote the cardinality of the set Ω(p) and the

complement of Ω(p), respectively. Therefore, the canonical integer cuts of Problem (UBPk) at

iteration k are given by

∑
(e,i,t)∈Ω(p)

xe,i(t)−
∑

(e,i,t)∈Ω
(p)

xe,i(t) ≤ c(p)−1, ∀p ∈ {1, . . ., k −1}. (3.22)
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Upper-bounding Problem (UBPk) can be formulated as follows

max
x,y,z,s,ρ,
λ,µ,ν,η

−λε(β)−
1
N

∑
e,t,l

(
f eρeη

(l)
e (t)− s(l)e (t)

)
, (UBPk)

s. t. speed limits (3.11), sample trajectories {(3.15), (3.16)},

no congestion {(3.14), (3.17), (3.18), (3.19), (3.20)},

McCormick envelope (3.21), integer cuts (3.22).

Let UBk denote the optimal objective value of (UBPk), and let x(k) denote the integer part of the

optimizers of (UBPk). Then UBk is an upper bound of the original non-convex Problem (P4).

We use x(k) as a candidate speed limit in the lower-bounding problem LBPk .

3.5.2 Lower-bounding Problem

Problem (P4) can be equivalently written as

max
x,y,z,ρ,
λ,µ,ν,η

−λε(β)−
1
N

∑
e,t,l

(
f eρeη

(l)
e (t)− ν

(l)
e (t)ρ

(l)
e (t)

)
,

s. t. (z, λ, µ, ν,η) ∈ Φ(x), (y, ρ) ∈ Ψ(x), x ∈ X .

where

Φ(x) := {(z, λ, µ, ν,η) | no congestion},

Ψ(x) := {(y, ρ) | sample trajectories},

X := {x | speed limits}.

The solution x(k) to (UBPk) at iteration k provides us with a candidate speed limit u(k) :=∑
i∈O γ

(i)x(k)i which respect the sustainability constraints. For each l ∈ L with the given u(k), the

admissible sample trajectory ρ(l) is uniquely determined by (ω(l), ρ(l)(0),r in,(l),rout,(l)) using the
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uniqueness solution of the linear time-invariant systems. Therefore, the element (y, ρ) ∈ Ψ(x(k))

is unique. Using the constraints set Ψ(x(k)), we then construct the unique admissible sample

trajectories {ρ(l,k)}l∈L . The unique admissible sample trajectories allow us to reduce (P4) to the

following lower bounding problem8

max
z,λ,µ,ν,η

−λε(β)−
1
N

∑
e,t,l

(
f eρeη

(l)
e (t)− ν

(l)
e (t)ρ

(l,k)
e (t)

)
, (LBPk)

s. t. (z, λ, µ, ν,η) ∈ Φ(x(k)).

Note that (LBPk) is a linear program and much easier to solve than the non-convex Prob-

lem (P4). Let objk denote the optimal objective value of (LBPk). If Problem (LBPk) is

solved to optimum with a finite objk , we will then obtain a feasible solution of (P4) with

speed limit u(k) :=
∑

i∈O γ
(i)x(k)i and certificate Ĵ(u(k)) := objk ; otherwise, Problem (LBPk) is

either infeasible or unbounded, i.e., objk = −∞. The lower bound of (P4) can be calculated by

LBk =maxp=1,...,k{objp}. The stopping criterion of the algorithm can be determined by one of

the following criteria

1. UBk −LBk ≤ ε ,

2. (UBPk) is infeasible,

3. A satisfactory sub-optimal solution is found after certain running time Trun.

In [72], it is shown that such algorithms convergence to a global ε-optimal solution after finite

number of iterations when we use the first and second stopping criteria. The third solution

8Given u(k) and {ρ(l,k)}l∈L , the equivalent dual of (LBPk) is

min
ρ(l),l∈L

1
NT

∑
e,t,l

u(k)e (t)ρ
(l)
e (t)

s. t. 0 ≤ ρ(l) ≤ ρc(u(k)), ∀l ∈ L,∑
l∈L

‖ρ(l)− ρ(l,k)‖1 ≤ ε(β),

which results in more efficient online solutions.
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criterion allow us to find a potentially good performance-guaranteed feasible solution within

certain running time Trun.

Remark 17 (Online tractable solutions to (P4)). The data-driven control requires to solve a

sequence of (P4) online. We achieve this by an online “warm start” of Algorithm 5, which

employs an assimilation set It := {u(s)}s that contains the historically-generated speed-limit

candidates, where s indexes these candidates. In particular, at each time solving a problem (P4),

the candidates in It can be explored by the solution to (LBPk) of each u(s) ∈ It . Notice that

these (LBPk) can be executed in parallel. Then, these examined candidates contribute to integer

cuts in (UBPk) when executing Algorithm 5. At the termination of the current (P4), a new set of

candidates are updated to It+1 for later evaluation of (P4).

3.6 Analysis via Second-order Cone Problems

This section provides a tool to analyze the efficacy of the proposed algorithm for the

nonconvex Problem (P4). In particular, we propose a second-order cone relaxation for the

non-convex quadratic terms {ν(l) ◦ ρ(l)}l∈L in (P4), and a second-order cone relaxation for it. We

then present the conditions under which this convex relaxation is exact. To enable the tool for

analysis, we assume the following:

Assumption 8 (Highway densities are nontrivial). For all e ∈ E, t ∈ T and l ∈ L, we assume

ρ
(l)
e (t) ≥ ε(β), where the parameter ε(β) is the radius of the Wasserstein ball.

Remark 18 (On nontrivial highway densities). Assumption 8 depends on the radius of the

Wasserstein ball, which is selected as in Remark 12. In reality, we could select the value ε(β) to be

sufficiently small, even if it potentially sacrifices confidence on performance guarantees. In any

case, there are three cases to consider: 1) the density on each segment of highway is just zero, 2)

there are zero density values ρ(l)e (t), for some (e, t, l), while the rest of ρ(l)e (t) are upper bounded by

a value that is smaller than the maximal critical density maxue(t)∈Γ ρ
c
e(ue(t)), and 3) there are some
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values ρ(l)e (t) that go beyond the maximal critical density, e.g., ρ(l)e (t) > ε(β)+ argmaxu∈Γ ρ
c
e(u).

In the first case, no congestion would happen and there is no need for speed-limit control. The

second case can be handled by tuning ε(β) to be small enough. In the third case, with a given

small ε(β), there is already congestion on some segment of the highway and no feasible speed

limit would eliminate that congestion.

Assumption 8 enables us to explore properties of the optimizers of (P4) as in the following

Proposition 2 (Optimizers in a cone). Let sol? := (x?, y?, z?, ρ?, λ?, µ?, ν?, η?) be any optimizer

of Problem (P4). If Assumption 8 holds, we have ν? ◦ ρ? ≥ 0nT N .

Proof. Knowing that ρ? ≥ 0nT N by constraints (3.15), we only need to show ν? ≥ 0nT N . To

prove this, let us assume there exists an optimizer sol? such that, for at least one ε ∈ E, τ ∈ T

and ` ∈ L, it holds ν(`),?ε (τ) < 0. Then, using constraint (3.18), we claim µ
(`),?
ε (τ) < 0. Next, we

show the contradiction to an optimizer by constructing a feasible solution that gives us higher

objective value than that resulted from sol?. To achieve this, we perturb variables λ?, µ(`),?ε (τ)

and ν(`),?ε (τ), and leave other components the same as that in sol?. With such perturbation, only

constraints (3.17), (3.18), and (3.19) are varied.

Let sol := (x?, y?, z?, ρ?, λ̂, µ̂, ν̂, η?) denote the feasible solution we are to construct.

We denote by h̄? :=
∑

i∈O γ
(i)(ρ− ρc(u)) ⊗ 1T ◦ z(l),?i + f ⊗ 1T ◦ η

(l),? the unperturbed part in

constraint (3.17) and construct µ̂ as follows

µ̂
(l)
e (t) =


µ
(l),?
e (t), if (e, t, l) , (ε, τ, `),

min{h̄(`),?ε (τ), −µ
(`),?
ε (τ)}, o.w.

The above construction ensures the feasibility of constraints (3.17) and furthermore, because

h̄(`),?ε (τ) ≥ 0 and µ(`),?ε (τ) < 0, we claim µ̂
(`)
ε (τ) ≥ 0. Then let us denote by g? := 1

T
∑

i∈O γ
(i)x?i
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the unperturbed part of constraints (3.18) and construct variable ν̂ as follows

ν̂
(l)
e (t) =


ν
(l),?
e (t), if (e, t, l) , (ε, τ, `),

µ̂
(`)
ε (τ)+g

?
ε (τ), o.w.

Again, we have ν̂(`)ε (τ) ≥ 0. Then by letting λ̂ :=max{λ?, ν̂(`)ε (τ)}, constraints (3.19) are satisfied.

In this way, a feasible solution sol is constructed.

Next, we evaluate the difference of the objective values of (P4) resulting from sol and

sol? in the following

objective(sol)−objective(sol?)

=
(
−λ̂+λ?

)
ε(β)+

(
ν̂
(`)
ε (τ)− ν

(`),?
ε (τ)

)
ρ
(`),?
ε (τ),

≥

(
−λ̂+λ?+ ν̂

(`)
ε (τ)− ν

(`),?
ε (τ)

)
ε(β),

=
(
min{−λ?, −ν̂(`)ε (τ)}+λ?+ ν̂

(`)
ε (τ)

)
ε(β)− ν

(`),?
ε (τ)ε(β),

> 0,

where the first equality cancels out unperturbed terms; the second inequality applies Assumption 8

and the fact that ν̂(`)ε (τ) ≥ 0 and ν(`),?ε (τ) < 0; the third equality applies construction of λ̂; and the

last one is achieved by summing the nonnegative first term and the strict positive second term.

By the above computation, we constructed a feasible solution sol with a higher objective

value than that of sol?, contradicting the assumption that sol? is an optimizer. �

Proposition 2 allows us to explore structure of the bi-linear terms {ν(l) ◦ ρ(l)}l∈L via

second-order cone constraints. This is achieved by introducing variables ϑ(l)e (t) and writing

Problem (P4) as follows

max
x,y,z,ρ,
λ,µ,ν,η,ϑ

−λε(β)−
1
N

∑
e,t,l

f eρeη
(l)
e (t)+

1
N

∑
e,t,l

(
ϑ
(l)
e (t)

)2
, (P4′)
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s. t. ϑ2 ≤ ν ◦ ρ, (3.23)

speed limits (3.11), sample trajectories {(3.15), (3.16)},

no congestion {(3.14), (3.17), (3.18), (3.19), (3.20)}.

For each e ∈ E, t ∈ T and l ∈ L, the constraint (3.23) can be equivalently written as the following

second-order cone: √(
ν
(l)
e (t)

)2
+

(
ρ
(l)
e (t)

)2
+2

(
ϑ
(l)
e (t)

)2
≤ ν
(l)
e (t)+ ρ

(l)
e (t). (3.24)

Problem (P4) and (P4′) are equivalent as the following:

Lemma 11 (Equivalent optimizer sets of (P4) and (P4′)). Problem (P4′) is equivalent to (P4)

in the sense that their optimal objective values are the same and the set of optimizer of (P4)

is the projection of that of (P4′). Further, any feasible solution of (P4′) can give us a valid

performance guarantee (3.9) with certificate to be objective function of (P4′) evaluated at that

feasible solution.

Proof. Let us denote by (P4′′) the Problem (P4) with an extra set of constraints ν ≥ 0nT N . We

prove the lemma in two steps.

Step 1: (Equivalence of optimizers sets) First, we use Proposition 2 to claim that the

set of optimizers of (P4) is the same as that of (P4′′). Second, we claim that for any optimizer

of (P4′), all the constraints in (3.23) are active. This means that the set of optimizers of (P4′′) are

the same as the projection of that of (P4′). Therefore, the optimizers set of (P4) and (P4′) are

equivalent.

Step 2: (Performance guarantees) First, any feasible solution of (P4′) correspond to

a feasible solution of (P4). This holds because any feasible solution of (P4′) satisfies all the

constraints of (P4). Next, the objective value of (P4′) gives a lower bounds of that of (P4). This
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can be verified using constraints (3.23). Finally, the performance guarantees (3.9) of feasible

solution of (P4′) can be derived from that of (P4) as in Remark 15. �

Problem (P4′) is still non-convex. To approximate the quadratic terms in the objective,

we will first show that variables ϑ(l)e (t) are bounded.

Lemma 12 (Bounded variable ϑ). Let Assumption 7 on bounded η hold, then there exists large

enough scalar ϑ such that |ϑ(l)e (t)| ≤ ϑ for all e ∈ E, t ∈ T and l ∈ L.

Proof. We construct ϑ by showing boundedness of ν ◦ ρ. It’s known for each e ∈ E, t ∈ T and

l ∈ L, the density ρ
(l)
e (t) is nonnegative and bounded above by maxe∈E{ρe}. Then we only

need to find the upper bound of ν(l)e (t). By Assumption 7, the variable η(l)e (t) is bounded. Then

computations via constraints (3.17) and (3.18) result in upper bound of ν(l)e (t) as the following

ν
(l)
e (t) ≤ max

e∈E,ue(t)∈Γ

{(
f e +ue(t)(ρe− ρ

c
e(ue))

)
η+

1
T

ue(t)
}
,

=max
e∈E

{
ueρeη+

1
T

ue

}
.

By letting ϑ =
√

maxe∈E

{
ueρ

2
eη+

1
T ueρe

}
, we complete the proof. �

Lemma 12 enables us to approximate each component of ϑ by a finite set of points within

its range. Let (sufficiently large) K denote the number of points and let us denote the set of these

points by Q := {π1, . . ., πK} ⊂ R. We use the set Q := {1, . . .,K} to index these points. For each

edge e ∈ E, time t ∈ T and sample l ∈ L, let us define the binary variable q(l)e,k(t) to be equal to

one if ϑ(l)e (t) is approximated by πk ; otherwise q(l)e,k(t) = 0. Then for each e ∈ E, t ∈ T and l ∈ L,

we will then represent ϑ(l)e (t) by the following constraints

ϑ
(l)
e (t) =

∑
k∈Q

πk q(l)e,k(t),
∑
k∈Q

q(l)e,k(t) = 1, ∀e ∈ E, t ∈ T , l ∈ L,

q(l)e,k(t) ∈ {0, 1}, ∀e ∈ E, t ∈ T , l ∈ L, k ∈ Q.

(3.25)
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Using this representation, we find approximated solutions of (P4′) by solving the following

max
x,q,y,z,ρ,
λ,µ,ν,η,ϑ

−λε(β)−
1
N

∑
e,t,l

f eρeη
(l)
e (t)+

1
N

∑
e,t,l,k

(πk)
2 q(l)e,k(t), (P5)

s. t. level approximation (3.25), second-order cone (3.24),

speed limits (3.11), sample trajectories {(3.15), (3.16)},

no congestion {(3.14), (3.17), (3.18), (3.19), (3.20)}.

Problem (P5) is an SOCMIP and can be solved to optimum by commercial solvers, such as

GUROBI and MOSEK. Note that for any feasible solution of (P5), it is feasible for (P4′) and its

objective value is a valid lower bound for that of (P4′). Thus, any feasible solution of (P5) together

with its objective value provide performance guarantees (3.9) via Lemma 11. Further, as the

number of partition points K→∞, Problem (P5) is computationally equivalent to Problem (P4′),

and therefore the same as Problem (P4). Notice that online solutions to Problem (P5) are

inaccessible and (P5) serves as a tool for the performance analysis of the proposed algorithm. In

the following section, we leverage this tool to analyze the performance of the algorithm in an

academic example.

3.7 Case Study 1: Effectiveness of the Approach

In this section, we demonstrate in an example how to efficiently find a solution to (P4)

that results in a robust data-driven variable-speed limit u with performance guarantee (3.9). The

analysis of the results are twofold. First, we verify the effectiveness of the proposed integer solution

search algorithm by comparing it with the monolith approach that solves an approximation to (P4),

Problem (P5). Second, to verify the robustness of the solution and performance guarantees in

probability, we compare the resulting distributionally robust data-driven control with the control

obtained from the sample-averaged optimization problem. Both controls are applied on a naive

highway simulator developed via the standard cell transmission model [33].
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Simulation setting: We consider an 8-lane highway with length L = 10km and we

divide it into n = 5 segments with equal length. Let the unit size of each time slot δ = 30sec

and consider T = 20 time slots for a 10min planning horizon. For each edge e ∈ E, we

propose a traffic jam density of ρe = 1050vec/km, a capacity of f e = 3.1× 104vec/h9 and a

maximal speed limit of ue = 140km/h. Let us consider m = 5 different candidate speed limits

Γ = {40km/h, 60km/h, 80km/h, 100km/h, 120km/h}. On the 4th edge e := (3,4) ∈ E, we assume

an accident happens during T with parameters f e = 2.7×104vec/h. To evaluate the effect of the

proposed algorithm, samples of the random variables ρ(0), w, r in and ro are needed. In real-case

studies, samples {ρ(l)(0)}l∈L can be obtained from highway sensors (loop detectors), while

samples of the uncertain mainstream flows {ω(l)}l∈L and flow fractions {r in,(l), ro,(l)}l∈L can be

constructed either from a database of flow data on the highway, or from current measurements of

ramp flows with the assumption that the process {ω(t), r in(t), ro(t)}t∈T is trend stationary.

Fictitious datasets: In this simulation example, the index set of accessible samples is

given by L = {1,2,3}. For each l ∈ L, let us assume that each segment e ∈ E initially operates

under a free flow condition with an initial density ρ(l)e (0) = 260vec/km. To ensure significant

inflows of the system, we let the samples {ω(l)(t)}l∈L,t∈T of the mainstream inflow to be chosen

from the uniform distribution within interval [2×104,2.4×104]vec/h. For each edge e ∈ E and

time t ∈ T , we further assume that samples {r in,(l)(t)}l∈L and {ro,(l)(t)}l∈L are generated from

uniform distributions within interval [0,5%] and [0,3%], respectively. We also let the confidence

value be β = 0.05 and the radius of the Wasserstein Ball ε(β) = 0.985 as calculated in [70].

Effectiveness of the algorithm: To generate feasible solutions that can be carried out

for a real time transportation system, we allocate Trun = 1min execution time for control design

and run algorithms on a machine with two core 1.8GHz CPU and 8G RAM. In this allocated 1

minute, we consider the speed limit design in 2 approaches: 1) we run the proposed Algorithm 5

to solutions of the Problem (P4), and 2) we run optimization solver MOSEK to solutions of the

9The unit “vec” stands for “vehicles”. Notice the proposed capacity is about 50% higher than the actually
highway capacity in order to leverage the actual fundamental diagram for control.
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Table 3.1. The efficiency of the proposed Algorithm 5.

Algorithm 5a Monolith

# of feasible cand.b 2 1
# of infeasible cand. 17 NA
LB (vec/h) 1.17×105 3.93×104

UB (vec/h) 1.55×105 1.55×105

a: Subproblems (UBPk) and (LBPk) are solved via MOSEK.
b: Candidate speed limit.

monolith Problem (P5). The partition number K = 5 is selected for the monolith approach.

We present in Table 3.1 the comparison of the mentioned two approaches. In 1 minute,

the Algorithm 5 executed 19 candidate speed limits where 2 feasible speed limits were found

at time 6.7sec and 28.7sec. We verified that Ĵ(u(2)) = 1.17×105vec/h is the highest certificate

obtained, i.e., Ĵ(u(2)) ∈ argmaxp=1,2{ Ĵ(u
(p)) | u(p) is feasible}, and the desired speed limits are

u(2) = [120,100,80,80,100]km/h.

Comparedwith the proposed algorithm, themonolith approach returned a feasible solutionwith the

speed limits umon = [120,120,120,40,40]km/h and an approximated throughput 3.93×104vec/h.

It can be seen that 1) the gap (difference between UB and LB) obtained from the Algorithm 5 is

tighter than that obtained from the monolith approach, and 2) the implementable speed limits

proposed by the Algorithm 5 results in higher throughput than that achieved by the monolith.

In the following subsection, we use the speed limits u(2) to verify the guarantees on

congestion elimination with high probability.

Distributionally robust decisions: To demonstrate the distributional robustness of our

approach, we compare the performance of our speed limits design u(2) with the performance of

the speed limits developed from a sample average optimization problem, which is also known

as the dual version of the scenario-based approach, such as in [75]. In particular, the sample

averaged version of (P) (equivalently, (P1)) is the one substitutes the unknown distribution P(u)
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with its empirical distribution P̂(u). The resulting tractable formulation of the sample average

problem, analogous to (P4), is the following

max
x,y,z,ρ,
µ,ν,η

−
1
N

∑
e,t,l

f eρeη
(l)
e (t)+

1
N

∑
e,t,l

ν
(l)
e (t)ρ

(l)
e (t),

s. t.
∑
i∈O

γ(i)(ρ− ρc(u)) ⊗ 1T ◦ z(l)i − µ
(l)

+ f ⊗ 1T ◦η
(l) ≥ 0nT, ∀ l ∈ L,

ν(l) = µ(l)+
1
T

∑
i∈O

γ(i)xi, ∀ l ∈ L,

0nT ≤ η
(l) ≤ η, ∀ l ∈ L,

speed limits (3.11), dual variable (3.14),

sample trajectories{(3.15), (3.16)}.

Note that the difference between the previous sample average problem and (P4) is that the former

has a Wasserstein Ball radius ε(β) = 0 and, thus, unlike (P4), it does not provide a performance

guarantee on congestion. We solve the above sample average problem to a suboptimal solution

via the Algorithm 5 with the same setting as in solution to u(2). The resulting speed limit design

is the following

usav = [60,60,80,60,100]km/h.

To verify the performance of u(2) and usav, we generated Nval = 103 validation samples of random

variables ρ(0), w, r in and ro that are from the distributions described in the Fictitious datasets

paragraph. The speed limit design u(2), usav as well as the validation dataset are integrated into

a highway simulator with the highway parameter settings described in the Simulation setting

paragraph.

Due to space limitations we cannot showcase all admissible sample trajectories for 103

scenarios, therefore in Fig. 3.4 we show an average of the admissible sample trajectories, i.e., the
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Figure 3.4. Density evolution of each segment e, with speed limits u(2) and usav. Each trajectory
corresponds to a segment e ∈ {(1), (2), . . ., (5)}. For simplicity we only label segment (4), which
happens to have an accident during the planning horizon.

function 1
Nval

∑
l∈{1,...,Nval} ρ

(l)
e (t) for each segment e, with speed limits u(2) and usav, and present

an arbitrarily chosen scenario 638 in Fig. 3.5. We select the simulation time horizon to be

twice of that the planning horizon’s in order to see the effect of the design clearly. We verified

that the density evolution under speed limits u(2), and, in particular, the density trajectory of

accident edge (4), did not exceed the critical density values (ρc
4(80km/h) = 335vec/km) for each

sample. Thus the highway G is kept free of congestion in this planning horizon T with high

probability. However, the same robust behavior can not be guaranteed under speed limits usav, as

vehicles accumulate significantly on edge (4) for too many samples (contrast to its critical density

ρc
4(60km/h) = 403vec/km), see Fig. 3.4. We claim the robustness of our design compared

to the design from sample average problem, as the latter does not ensure such out-of-sample

performance guarantees.

3.8 Case study 2: Speed-Limit Control on San Diego High-
way

In this section, we illustrate the proposed data-driven speed-limit control on a highway

system located in San Diego, California, USA. The purpose of this simulation is to show the good

96



0 5 10 15 20
150

200

250

300

350

400

450

500

550

(4)

(4)

Figure 3.5. A representative density evolution of segments, with speed limits u(2) and usav. The
sample 638 was arbitrarily chosen for demonstration purpose.

behavior of the proposed method under uncertainty as compared with that of the current traffic

speed limits on the highway. While this is a first good indication, more work would be required

to assess the behavior of the method over different traffic indices. However, our main focus is the

theoretical development of the algorithm itself and so these questions are left for future work.

Highway system: We selected a highway section from Encinitas to Del Mar on the I-5

San Diego Freeway with length L ≈ 11 km, as shown in Fig. 3.6. The highway was divided into

n = 26 segments with various lengths {lene}e∈E ranging from 200 m to 2 km. These segments

have a number of lanes {lanee}e∈E ranging from 4 to 8, and there are 7 on-ramps and 5 off-ramps

distributed on the highway. We obtained real-time traffic data with 30 seconds precision from the

California Highway Performance Measurement System (PeMS), and used it to reproduce the

actual traffic flow features via the software Simulation of Urban MObility (SUMO) [77], which

is a microscopic and continuous traffic simulation package. We calibrated the simulator using

PeMS data which were collected between 12pm and 2pm on a particular day, and the speed limit

on San Diego Freeway was 105 km/h or 65 mph.

Data-driven control: The data-driven control to solve (P) considered T = 80 time slots

dividing 4-minutes planning horizon, with a unit size of each time slot δ = 3 seconds. The

infrastructure-related parameters (n, L, len, lane) were selected to be the same as that of the
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Figure 3.6. Highway section from Encinitas to Del Mar, San Diego, US.

highway system, only that ramp-related ultra-short lanes were excluded. We considered m = 6

different candidate speed limits Γ = {30, 50, 70, 90, 110, 130} (km/h). The control u was

obtained by implementing Algorithm 5 that solves the equivalent (P4), taking a Trun = 1 minute

and executing Algorithm 5 every 2 minutes. To achieve realistic driving instructions, we added

extra speed limit constraints to ensure constant u over each 1 minute interval.

System monitor: We assume the existence of a system monitor which provides infor-

mation of the real-time traffic flow data {$(l)}l∈L as well as the random events parameters

( f , ρ,u). Practically, these parameters can be calibrated in advance from PeMS historical data. In

particular, at each time when Algorithm 5 is to be executed, we consider N = 2 accessible samples

with the set L = {1,2}. Precisely, values of$(1) were constructed and propagated using real-time

highway sensor measurements (loop detectors data in PeMS) and values of$(2) were obtained as

the 7-day average data corresponding to the same time period (12pm to 2pm). This results in a

radius for the Wasserstein Ball ε(β) ≈ 5, given the confidence value β = 0.05. Notice that more

samples can be added to reduce the radius if various source of measurements are accessible,

e.g., such as real-time GPS data. On the other hand, the infrastructure and event-related data

{( f e, ρe,ue)}e∈E are determined theoretically, where values { f e}e∈E have range [1.1,2.3]×104

(vec/h), {ρe}e∈E with values in [0.5,1]×103 (vec/km/edge), and {ue}e∈E are assumed 200 (km/h).

Benchmarks: We consider a 2-hour scenario, from 12pm to 2pm, and assume a temporary
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Figure 3.7. Time-space profile of traffic average density.
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Figure 3.8. Time-space profile of traffic average flow.

lane closure on the 15th segment between 1pm to 1 : 20pm, which introduces a capacity and jam

density drop by 35% on that particular segment, located at 4.5 km from the entry. Further, we

implement the proposed data-driven control between 12 : 30pm to 2pm, and compare the resulting

performance with that of the highway system without control, i.e., with constant speed limit 105

km/h. Notice that, if congestion is inevitable, namely, the data-driven control problem (P) is

infeasible under the admissible regime, we implement the default speed limit (105 km/h) instead.

Performance analysis: Fig. 3.7 shows the traffic density profile in time and space, where

the origin indicates the entry of the highway at the initial time, i.e., Encinitas at time 12pm. The

x-axis indicates the time (number of hours) passed from 12pm and the y-axis is the distance
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Figure 3.9. Time-space profile of traffic average speed.
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Figure 3.10. Time-space profile of congestion ratio ρ(t)/ρc(u(t)).
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to the highway entry. Similarly, Fig. 3.8 and Fig. 3.9 demonstrate the flow and average speed

profiles of those, respectively. For comparison, subfigures (a) are profiles without control and

subfigures (b) are those with the data-driven control. It can be observed that, during the period 0h

to 0.5h (12pm to 12 : 30pm), the two profiles were statistically identical. During period 0.5h to

1h (12 : 30pm to 1pm), as the mainstream flows were moderate, the speed-limit control assigned

a higher speed limit (130 km/h) than the default 105 km/h on the majority of the segments.

See Fig. 3.11 for the speed limit profile. After 1h (1pm), a significant capacity drop occurs on

the middle of the highway due to a temporary lane closure. This event leads to congestion on

the preceding segment and backward congestion waves start to transmit on the highway, see,

e.g., subfigures (a). The darker parts on the profiles indicate congestion and notice how the

congestion was transmitted to the entry of the highway over time. In addition, during the lane

closure period (1pm to 1 : 20pm), the data-driven control then took effect to cancel/reducing the

congestion transmission by dynamically assigning low speed limits on the upper stream of the

highway. See, e.g., Fig. 3.11 on the speed limit assignment during 1h to 1.4h, which regulates

the highway average speed as in Fig. 3.9(b). These actions eliminated the congestion waves

and reduced the effect of the random events. See, e.g., Fig. 3.7 and 3.8 for comparison of the

effect of the congestion elimination, Fig. 3.10 for the significant reduction of the congestion

ratio ρ(t)/ρc(t), and Fig. 3.11 for the assignment of the variable speed limit. When the random

event ended, the speed-limit control then resumed to normal operation, which, during 1.4h to

2h, dynamically assigned speed limits to account for uncertainties on random ramp flows. See,

e.g., the scattered speed restrictions in Fig. 3.11. Furthermore, notice in Fig. 3.10(b) how the

actual highway density ρ(t) violated the prediction-and-assignment critical density ρc(u) via

speed limits u. These are the original driving forces to update speed limits. Notice that, during

this whole scenario, the data-driven control problem (P) is feasible. Otherwise, the speed limit

would be set to the default 105 km/h at some time later than 0.5h in Fig. 3.11. This indicates

a successful containment of the congestion. When the congestion is too heavy, (P) could be

infeasible for some time period due to the extreme-high density on some of the segments. In
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Figure 3.11. Time-space profile of speed limits u(t).

those scenarios, to handle the congestion, small enough candidates can be added to the candidate

speed limit set Γ in order for larger, admissible operation zone of (P). Otherwise, the congestion

is inevitable as (P) is infeasible, and we simply select the default, pre-selected speed limits. At

last, notice that the control performance relies heavily on the selection of the objective function

of (P) as well as on the available information on the flow and random events data. We leave

the questions regarding other traffic performance metrics and the improvement of the controller

employing more accurate traffic models for the future work.

Chapter 3, in full, is under review for publication in International Journal on Robust and

Nonlinear Control, entitled asData-driven predictive control for a class of uncertain control-affine

systems, D. Li, D. Fooladivanda, and S. Martínez. A motivating work appeared in the proceddings

of European Control Conference, pp. 1055-1061, Napoli, Italy, 2019, as Data-driven variable

speed limit design for highways via distributionally robust optimization, D. Li, D. Fooladivanda,

and S. Martínez. The dissertation author was the primary investigator and author of these papers.
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Chapter 4

Online Learning of Uncertain System Dy-
namics

This chapter presents a novel online learning algorithm for a class of unknown and

uncertain dynamical systems or environments that are fully observable. First, we obtain a novel

probabilistic characterization of systems whose mean behavior is known but which are subject

to additive, unknown subGaussian disturbances. This characterization relies on concentration

of measure results and is given in terms of ambiguity sets. Second, we extend the results to

systems whose mean behavior is also unknown but described by a parameterized class of possible

mean behaviors. The proposed algorithm adapts the ambiguity set dynamically by learning the

parametric dependence online, and retaining similar probabilistic guarantees with respect to the

additive, unknown disturbance. We illustrate the results on a differential-drive robot subject to

environmental uncertainty.

4.1 Related Works

Fundamentally, the online learning of uncertain dynamical systems exploits input-output

data to identify the representation of the system that best captures its behavior. In this way, first-

principles system identification has been a success. The system identification literature broadly

encompasses linear [76, 128] and non-linear systems [89, 103], with asymptotic performance

guarantees. More recently, finite-sample analysis of identification methods have been proposed
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for linear systems [38, 104, 116, 126]. These methods leverage modern measure-of-concentration

results [40,129] for non-asymptotic guarantees of the identification error bounds. Measure-of-

concentration results are also used in [14,16]. However, the goal of [14,16] is to learn an unknown

initial distribution evolving under a known dynamical system while assimilating data via a linear

observer. This characterization is given in terms of ambiguity sets, which are constructed via

multiple system trajectories or realizations. In contrast, here we employ Wasserstein metrics

to develop an online learning algorithm for uncertain dynamical systems with similar-in-spirit

probabilistic guarantees.

Statement of Contributions

This chapter proposes an online learning algorithm that characterizes a class of unknown

and uncertain dynamical systems with probabilistic guarantees using a finite amount of online

data. To achieve this, we first assume that the mean behavior of the stochastic system is known

but the system states are subject to an additive, unknown subGaussian distribution, characterized

by a set of distributions or ambiguity set. Then, we extend the results to systems whose mean

behavior is unknown but belongs to a parameterized class of behaviors. In this regard, we propose

a time-varying parameterized ambiguity set and a learning methodology to capture the behavior

of the environment. We show how the proposed online learning algorithm retains desirable

probabilistic guarantees with high confidence. A differential-drive robot subject to environmental

uncertainty is provided for an illustration.

4.2 Problem Statement

This section presents the description of the uncertain dynamical environment which we

aim to learn, with a problem definition. Let t ∈ Z≥0 denote time discretization. For each t, the

uncertain system is characterized by a random variable x ∈ Rn which evolves according to an
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unknown, discrete-time, stochastic and, potentially, time-varying system

xt+1 = f (t, xt, dt)+wt, with some x0 ∼ P0. (4.1)

The distribution Pt+1 characterizing xt+1 is determined by the current state’s distribution, the

unknown mapping f : R≥0×R
n×Rm→ Rn, and random vectors wt that cannot be captured by f .

We further assume that dt is an exogenous signal that is selected in advance or revealed online,

which can play the role of an external reference or control. Let us denote byWt the distribution

of the random vector wt ∈ R
n.

Assumption 9 (Independent and stationary subGaussian distributions). Consider random

vectors wt ∈ R
n, t ∈ Z≥0. It is assumed that: (1) The random vectors wt are component-wise and

time-wise independent, i.e., wt,i and wk, j are independent, for all t , k, i , j, (t, k) ∈ Z2
≥0 and

(i, j) ∈ {1, . . .,n}. (2) For each t, wt is a zero-mean σ-subGaussian, i.e., for any a ∈ Rn we have

E
[
exp(a>wt)

]
≤ exp(‖a‖2σ2/2).

Example 1 (σ-subGaussian distributions). A trivial example is aW ≡N(0,Σ) with σmax(Σ) ≤

σ2. As any random vector supported on a compact set belongs to the subGaussian class, in

particular, the following are σ-subGaussian distributions: (1) any zero-mean uniform distribution

w ∼ U(Ω) supported over Ω ⊂ Bσ(0); (2) any zero-mean discrete distribution with support

Ω ⊂ Bσ(0).

This paper aims to obtain a tractable characterization of the unknown distribution Pt+1

of the immediate-future environment state xt+1 online, ∀ t. This is to be done by employing

historical measurements, x̂k , k ≤ t, and data d̂k , k ≤ t.

Remark 19 (On finite-horizon learning of (4.1)). Our learning problem can be extended over

finite horizons as follows. Let N be a learning horizon, then for each t the goal is to characterize the

dynamical environment over the next N time slots, {t +1, . . ., t +N}, with the previous knowledge

of d := (d(1), . . ., d(N)). In other words, the objective is to characterize the joint distribution
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Q := Pt+1 ⊗ · · · ⊗ Pt+N of the stochastic process x := (x(1), . . ., x(N)), where Pt+i, i ∈ {1, . . .,N},

are marginal distributions of those random state variables.

4.3 System Characterization with Perfect Information

We aim to provide a description the random dynamical system (4.1) via ambiguity

sets. More precisely, given knowledge d, and system data x̂, we look for a set of distributions

Pt+1 := Pt+1(d, x̂) characterizing Pt+1 via

Prob (Pt+1 ∈ Pt+1) ≥ 1− β, (4.2)

for some β ∈ (0,1). Observe that the probability Prob is taken wrt the historical random data

outcomes. To do this, let T0 ∈ Z>0 and T :=min{t,T0} ≥ 1, and consider the historical data, x̂k

and d̂k , for k ∈ T := {t −T, . . ., t −1}. Particularly, Prob := PT
t+1. Assuming a perfect knowledge

of f , we show first how to use the data set I := { x̂t, x̂k, d̂k, k ∈ T } to construct Pt+1, ∀ t ≥ 0.

Let us denote by Qt+1 ≡Qt+1(d) the empirical distribution of xt+1 and define it as follows

Qt+1 :=
1
T

∑
k∈T

δ{ξk (d)},

where ξk(d) := f (t, x̂t, d)+ x̂k+1 − f (k, x̂k, d̂k), ∀k ∈ T . The following result enables us to

construct the ambiguity set Pt+1 that satisfies (4.2).

Lemma 13 (Asymptotic dynamic ambiguity set). Let us assume that the system f is known at

each time t. Given a confidence level β ∈ (0,1), parameter T0 ∈ Z>0, and horizon T =min{t,T0},

let us assume wk is i.d. for k ∈ T . Then, there exists a positive scalar ε := ε(T, β) such that (4.2)

holds by selecting

Pt+1 := Bε (Qt+1) = {P | dW (P,Qt+1) ≤ ε},
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a Wasserstein ball centered at Qt+1 with radius

ε :=

√
2nσ2

T
ln(

1
β
)+O(T−1/max{n,2}),

where n is the dimension of x and σ is as in Assumption 9. Further, if T0 =∞, then as t→∞,

ε → 0, i.e., the set Pt+1 shrinks to the singleton Pt+1 at a rate O(1/T−1/max{n,2}).

Proof. We prove this in two steps. First, we exploit the properties of wt . Then, we show the

probabilistic guarantees of the dynamic ambiguity set.

Step 1: (SubGaussian Wasserstein distances): Given Assumption 9, on the subGaus-

sianWt , the following holds:

(a) Following [101, Lemma 1], the distributionWt satisfies

dW (Ŵt,Wt) ≤

√
2nσ2D(Ŵt |Wt), ∀ Ŵt ∈M(R

n), (4.3)

where dW and D denote the 1-Wasserstein metric and the KL divergence of two distributions Ŵt

andWt , respectively; and the setM(Rn) is the space of all probability distributions supported on

Rn with a finite first moment.

(b) Let us denote Ŵt := 1
T
∑

k∈T δ{ x̂k+1− f (k,x̂k,d̂k )}
. Note that, by the assumption that

wk is i.d. for k ∈ T , Ŵt is the empirical distribution of wt . Then, following [101, Theorem

6], we claim that the equation (4.3) holds if and only if the random variable dW (Ŵt,Wt) is
√

nσ/
√

T-subGaussian for all t. Equivalently, for all t and any λ ∈ R, we have

E
[
exp

(
λ · (dW (Ŵt,Wt)−E[dW (Ŵt,Wt)])

)]
≤ exp(

nλ2σ2

2T
). (4.4)

(c) At each t, let us consider Ct := E[dW (Ŵt,Wt)]. Following [40, Theorem 1] and [64,

Theorem 3.1], we claim that, for n , 2, there exists a constant c, depending on Assumption 9,
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such that

Ct ≤ c ·T−1/max{n,2} .

In particular, we have c = 33.5×210×σ3 when n = 1. When n > 3, the parameter c is calculated

by1

c := (1+
√

2)(1+
√

3)×33.5−1/n×27×σ3×n1.5.

Step 2: (Probabilistically-guaranteed dynamic ambiguity sets): Knowing that the distribu-

tions Pt+1 andWt obey the environment dynamics (4.1), in other words, Pt+1 ≡ f (t, xt, dt)+Wt ,

holds for any deterministic f . Similarly, we have Qt+1 ≡ f (t, xt, dt)+ Ŵt . Therefore, by the

definition of the Wasserstein metric, we claim that

dW (Qt+1,Pt+1) ≡ dW (Ŵt,Wt), ∀d, ∀t,

where the empirical distribution Qt+1 is described as in the statement of the lemma. Then by the

Markov inequality, for any γ ≥ 0 and λ ≥ 0, we have

Prob (dW (Qt+1,Pt+1) ≥ γ) = Prob
(
dW (Ŵt,Wt) ≥ γ

)
= Prob

(
exp(λ · dW (Ŵt,Wt)) ≥ exp(γλ)

)
,

≤ exp (−γλ)E
[
exp

(
λ · dW (Ŵt,Wt)

)]
.

Then by the property (4.4), we have

Prob (dW (Qt+1,Pt+1) ≥ γ) ≤ exp
(
−(γ−Ct)λ+

nλ2σ2

2T

)
,

1 These parameters are obtained based on 1−Wasserstein metric and the third moment ofW; the bound is slightly
different when using the moment information with different order. For the case n = 2, the bound introduces logarithm
term of T ,e.g., Ct ≤ c(T/log(T))−1/max{n,2}, we refer reader to [40] and [64] for details.
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where Ct := E[dW (Ŵt,Wt)]. The optimal λ ∈ R≥0 that results in the tightest bound is taken to be

λ :=


(γ−Ct )T

nσ2 , if γ > Ct,

0, if γ ≤ Ct,

resulting in, when γ > Ct ,

Prob (dW (Qt+1,Pt+1) ≥ γ) ≤ exp
(
−
(γ−Ct)

2T
2nσ2

)
.

Finally, let γ > Ct be

γ = ε := ε(T, β) =

√
2nσ2

T
ln(

1
β
)+ c ·T−1/max{n,2},

where c is determined as in step 1. This results in

Prob (dW (Qt+1,Pt+1) ≥ ε) ≤ β,

and further, we have

Prob (dW (Qt+1,Pt+1) ≤ ε) ≥ 1− β.

Equivalently, we have (4.2) by selecting Pt+1 := Bε (Qt+1). If we take T0 =∞, we have T = t with

t→∞. Then, it obviously follows that Pt+1 shrinks to Pt+1 as t→∞. �

In practice, T0, and β need to be selected empirically, in order to efficiently address the

particular problem that leverages the characterization of (4.1).

4.4 Characterization in a Parameterized Family

The construction of the empirical distribution Qt+1 of the previous section relies on the

knowledge of f . When f is unknown, one may represent f as belonging to a parameterized class
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of functions. Such as the approach adopted in the neural networks field and Koopman operator

theory. Here, we focus on the case that f is approximated by a linear combination of a class of

functions or “predictors” as follows.

Assumption 10 (Environment predictor class). There exists a set of predictors f (i) :R≥0×R
n×

Rm→ Rn, (t, x, d) 7→ f (i)(t, x, d), i ∈ {1, . . ., p}, such that: (1) The vector fields f (1), f (2), . . ., f (p)

are linearly independent almost everywhere. (2) There exists potentially time-varying coefficients

α? := (α?1 , . . ., α
?
p ) ∈ R

p such that

f (t, x, d) =
p∑

i=1
α?i f (i)(t, x, d).

As the selection of the predictors is not the subject of this study, we assume that the

predictors are found in advance, and hence they are known to the learning algorithm.

The construction of an effective ambiguity set now depends on learning the dynamical

environment mapping. Let us denote by α ≡ αt the estimated value of the parameter α? at time

t. To construct Pt+1, consider T predictions of xt+1 using f (i), denoted by ξ(i)k (α, d). For each

k ∈ T , i ∈ {1, · · · , p}, and given d := dt , we define

ξ
(i)
k (α, d) := f (i)(t, x̂t, d)+

x̂k+1
α>1p

− f (i)(k, x̂k, d̂k).

Now, we select the empirical P̂t+1 ≡ P̂t+1(α, d), as follows:

P̂t+1 :=
1
T

∑
k∈T

δ
{

p∑
i=1

αiξ
(i)
k
(α,d)}

. (4.5)

The following result enables the construction of the ambiguity set Pt+1, relying on both d and α,

which satisfies (4.2).

Theorem 9 (Adaptive dynamic ambiguity set). Assume that the data set I is accessible, ∀ t.

Further, let Assumption 10, on the environment predictor class, hold for some α? at time t ∈ T .
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Then, given a confidence level β ∈ (0,1), horizon parameter T0, and a learning parameter

α ≡ αt ∈ R
p, there exists a scalar ε̂ := ε̂(t,T, β,α, d) such that (4.2) holds by selecting

Pt+1 := Bε̂ (P̂t+1) = {P | dW (P, P̂t+1) ≤ ε̂},

where ε̂ = ε + ‖α?−α‖∞H(t,T, d), with

H(t,T, d) :=
1
T

p∑
i=1

∑
k∈T

‖ f (i)(k, x̂k, d̂k)− f (i)(t, x̂t, d)‖,

and the radius ε is selected as in Lemma 13.

Proof. From the triangular inequality,

dW(Pt+1, P̂t+1) ≤ dW(Pt+1,Qt+1)+ dW(Qt+1, P̂t+1),

where by Lemma 13, we have

Prob (dW(Pt+1,Qt+1) ≤ ε) ≥ 1− β.

To evaluate the second term above, we apply the definition of Wasserstein metric, given as

dW(Qt+1, P̂t+1) = sup
h∈L

∫
Z

h(ξ)Qt+1(dξ)−
∫
Z

h(ξ)P̂t+1(dξ),

where the set Z is the support of the random variable xt+1 and the set L is the space of all
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Lipschitz functions defined onZ with Lipschitz constant 1. Then, we equivalently write

dW(Qt+1, P̂t+1) = sup
h∈L

{
1
T

∑
k∈T

(
h(ξk)− h(

p∑
i=1

αiξ
(i)
k )

)}
,

≤ sup
h∈L

{
1
T

∑
k∈T

|h(ξk)− h(
p∑

i=1
αiξ
(i)
k )|

}
≤

1
T

∑
k∈T

‖ξk −

p∑
i=1

αiξ
(i)
k ‖

=
1
T

∑
k∈T

‖

p∑
i=1
(αi −α

?
i )( f

(i)(k, x̂k, d̂k)− f (i)(t, x̂t, d))‖,

≤

p∑
i=1

��α?i −αi
�� [ 1

T

∑
k∈T

‖ f (i)(k, x̂k, d̂k)− f (i)(t, x̂t, d)‖

]
,

≤ ‖α?−α‖∞H(t,T, d),

where the first line comes from the Wasserstein distance between discrete distributions Qt+1 and

P̂t+1; the second line is followed by adding absolute operation and applying triangular inequality;

the third line comes from the definition of the set L; the fourth line is from the definition of the

environment predictions and Assumption 10, on the representation of unknown environment f ;

the fifth one applies triangular inequality, and the last line uses the Hölder’s inequality. Note

that the derived bound of dW(Qt+1, P̂t+1) holds true with probability one. Then, by summing the

probability bounds of the two terms, we obtain

Prob
(
dW(Pt+1, P̂t+1) ≤ ε̂

)
≥ 1− β,

which can be written as (4.2) with Pt+1 := Bε̂ (P̂t+1). �

Theorem 9 indicates that, if we select α wisely, i.e., α ≡ α?, then the adaptive dynamic

ambiguity set is identical to that of Lemma 13.

To estimate an unknown α? while preserving the probabilistic guarantees, we propose an

online learning algorithm that attempts to bring α close to α? with high probability. Intuitively,
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our approach is based on the comparison of new obtained data with updates given by a predictor

combination.

Theorem 10 (Learning of α?). Let the data setI and predictors { f (i)}i be given. For each k ∈ T

and i ∈ {1, . . ., p}, let us denote f (i)k := f (i)(k, x̂k, d̂k). Consider the data matrix A ≡ At ∈ R
p×p

with

A(i, j) :=
1
T

∑
k∈T

〈 f ( j)k ,Pk f (i)k 〉, i, j ∈ {1, . . ., p},

where Pk is an online regularization matrix at time k, and let us consider the data vector

b ≡ bt ∈ R
p, with components

b(i) :=
1
T

∑
k∈T

〈x̂k+1,Pk f (i)k 〉, i ∈ {1, . . ., p}.

Given η > 0, we select Pk such that ‖Pk f (i)k ‖ ≤ η for all i ∈ {1, . . ., p}, k ∈ T , and select α ≡ αt

to be

α = A†b, (4.6)

where A† denotes the Moore–Penrose inverse of A. Let Assumption 9 and Assumption 10 hold,

and take

c := σeη
√

npσ−1
min(A),

where σ is that in Assumption 9, the constant e ≈ 2.718, and σmin(A) is the minimal non-zero

principal singular value of A. Then by selecting γ ≥ nc, the parameter α is ensured to be close

to α? with high probability in the following sense:

Prob
(
‖α−α?‖∞ ≤ γ

)
≥ 1− exp

(
−

(nc−γ)2T2

2
[
(2T −1)cγ+nc2

] ) .
In particular, selecting γ ≥ nc/e, we obtain a non-trivial bound with a slow confidence growth
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rate as follows

Prob
(
‖α−α?‖∞ ≤ γ

)
≥ 1−

1
γ

nση
√

npσ−1
min(A).

Proof. To see this, first, we will bound ‖α − α?‖∞ by samples of wk , k ∈ T , then we apply

concentration results for probabilistic bounds on ‖α−α?‖∞.

Step 1: (Bound on ‖α−α?‖∞): At each k ∈ T , let us denote by ŵk a sample of wk

represented by

ŵk := x̂k+1−

p∑
j=1

α?j f ( j)k .

Then, we project the data x̂k+1 on the direction of each regularized predictor i ∈ {1, . . ., p},

〈x̂k+1,Pk f (i)k 〉 = 〈

p∑
j=1

α?j f ( j)k + ŵk,Pk f (i)k 〉,

where, given a scalar η > 0, the time-dependent regularization matrix is selected so that

‖Pk f (i)k ‖ ≤ η, for all i ∈ {1, . . ., p}. Averaging the above equalities over k ∈ T , we have for each

component i:

b(i) =
p∑

j=1
α?j A(i, j)+

1
T

∑
k∈T

〈ŵk,Pk f (i)k 〉,

where

b(i) :=
1
T

∑
k∈T

〈x̂k+1,Pk f (i)k 〉, i ∈ {1, . . ., p},

A(i, j) :=
1
T

∑
k∈T

〈 f ( j)k ,Pk f (i)k 〉, i, j ∈ {1, . . ., p}.

By selecting α as in (4.6), the relation b(i) =
∑p

j=1α j A(i, j) holds, for each i. By subtracting the

above equation from the one related to α?, we have

p∑
j=1
(α j −α

?)A(i, j) =
1
T

∑
k∈T

〈ŵk,Pk f (i)k 〉.
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By taking the Moore–Penrose inverse of A, we obtain

α−α? = A†c,

where the vector c is
1
T

∑
k∈T

(
〈ŵk,Pk f (1)k 〉, . . ., 〈ŵk,Pk f (p)k 〉

)>
.

Take the∞-norm operation on both sides, we have

‖α−α?‖∞ ≤ ‖A†‖∞‖c‖∞,

where we can write ‖c‖∞ as the following

‖c‖∞ : =
1
T

max
i∈{1,...,p}

{�����∑
k∈T

〈ŵk,Pk f (i)k 〉

�����
}
,

≤
1
T

max
i∈{1,...,p}

{∑
k∈T

|〈ŵk,Pk f (i)k 〉|

}
,

≤
1
T

max
i∈{1,...,p}

{∑
k∈T

(
‖ŵk ‖ · ‖Pk f (i)k ‖

)}
,

≤
1
T

∑
k∈T

(
‖ŵk ‖ · max

i∈{1,...,p}

{
‖Pk f (i)k ‖

})
,

≤
η
√

n
T

∑
k∈T

‖ŵk ‖∞,

where we achieve the first inequality by moving the absolute operation into the sum operation;

the second inequality uses Hölder’s inequality; the third inequality is achieved by moving max

operation into sum operation; the forth one is achieved by the norm equivalence and the fact that

‖Pk f (i)k ‖ ≤ η for all i ∈ {1, . . ., p}. Then, we achieve the following bound

‖α−α?‖∞ ≤ η
√

n‖A†‖∞

[
1
T

∑
k∈T

(‖ŵk ‖∞)

]
. (4.7)
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Note that, by the equivalence of the matrix norm, we have

‖A†‖∞ ≤
√

p‖A†‖2 =
√

p σmax(A†) ≤
√

p σ−1
min(A),

where σmax(A†) and σmin(A) denote the maximal singular value of A† and the minimal principal

non-zero singular value of A, respectively.

Step 2: (Measure concentration on ‖α−α?‖∞): In this step, we find the probabilistic

bound of ‖α−α?‖∞ by developing that of ‖wk ‖∞. Equivalently, given any γ > 0, we compute

the following term

Prob

(
1
T

∑
k∈T

(‖wk ‖∞) ≥ γ

)
. (4.8)

There are two options to obtain the bound.

(1) (A naive bound via Markov inequality): By the Markov inequality, we obtain a

bound (4.8) as

Prob

(
1
T

∑
k∈T

(‖wk ‖∞) ≥ γ

)
≤

1
γT

∑
k∈T

E [‖wk ‖∞] .

By Lemma 23, we have E [‖wk ‖∞] ≤ nσ, resulting in

Prob
(
‖α−α?‖∞ ≤ γ

)
≥ 1−

1
γ

nση
√

npσ−1
min(A),

with non-trivial bound if we take γ > nση
√

np σ−1
min(A).

(2) (A bound with exponential decay over T): For any λ ≥ 0, the probability (4.8) is

equivalent to

Prob

(
exp

(∑
k∈T

(
λ

T
‖wk ‖∞

))
≥ exp (γλ)

)
.

By the Markov inequality to the above probablity, we have

Prob

(
1
T

∑
k∈T

(‖wk ‖∞) ≥ γ

)
≤ exp (−γλ)E

[∏
k∈T

exp
(
λ

T
‖wk ‖∞

)]
.
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By Assumption 9 on independence of wk , we have

E

[∏
k∈T

exp
(
λ

T
‖wk ‖∞

)]
=

∏
k∈T

E

[
exp

(
λ

T
‖wk ‖∞

)]
.

For each k ∈ T , we write each exp operation in its power series form as the following

E

[
exp

(
λ

T
‖wk ‖∞

)]
= E

[
1+

∞∑
l=1

(
λ
T

) l
‖wk ‖

l
∞

l!

]
,

= 1+
∞∑

l=1

(
λ
T

) l
E

[
‖wk ‖

l
∞

]
l!

.

By Lemma 23, we have

E
[
‖wk ‖

l
∞

]
≤ nσl l

l
2+1, ∀l = 1,2, . . . .

This gives2

E

[
exp

(
λ

T
‖wk ‖∞

)]
≤ 1+n

∞∑
l=1

(
λσe

T

) l

.

To tighten the previous upper bound, consider any λ such that λ ∈ [0, T
σe ). Then the following

bound holds3

E

[
exp

(
λ

T
‖wk ‖∞

)]
≤ 1+

λσne
T −λσe

≤ exp
(
λσne

T −λσe

)
.

Finally, we achieve

Prob

(
1
T

∑
k∈T

(‖wk ‖∞) ≥ γ

)
≤ exp

(
−γλ+

∑
k∈T

λσne
T −λσe

)
.

Finding an optimal bound is hard, and therefore we find a sub-optimal bound by selecting λ to be

λ =


T

2σe −
nT
2γ , if γ ≥ σne,

0, if γ < σne.

2We use two facts: 1) l! ≥ (l/e)l and 2) l1− l
2 ≤ 1, for all l ∈ Z≥0, where the constant e = 2.71828....

3We use the fact: 1+ x ≤ exp(x) for x ∈ R.
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Then, we have the following

Prob

(
1
T

∑
k∈T

(‖wk ‖∞) ≥ γ

)

≤


exp

(
−

(σne−γ)2T2

2[(2T−1)γσe+n(σe)2]

)
, if γ ≥ σne,

1, if γ < σne.

In words, the probability bounds on the quality of α is

Prob
(
‖α−α?‖∞ ≤ γ

)
≥ 1− exp

(
−

(nc−γ)2T2

2
[
(2T −1)cγ+nc2

] ) ,
with any γ ≥ nc, where c := σeη

√
np σ−1

min(A). �

Theorem 10 provides an online computation of a real-time α that is close to α? within a

time varying distance γ with arbitrary high probability, where this distance γ depends only on the

environment predictors as well as on the data sets. Note that, the confidence of selecting γ > nc

as a bound of ‖α−α?‖∞ increases exponentially as we increase the length T of the data sets.

This motivates us to propose a computable dynamic ambiguity set, described as in Theorem 9,

by selecting its dynamic radius as

ε̂ =ε +γH(t,T, d), (4.9)

where ε , γ > nc and H are chosen as in Lemma 13, Theorem 10, and Theorem 9, respectively.

Such selection results in modified guarantees of (4.2) as follows

Prob (Pt+1 ∈ Pt+1) ≥ (1− β)

(
1− exp

(
−

(nc−γ)2T2

2
[
(2T −1)cγ+nc2

] )) , (4.10)

where as time t increases with a selection of T0 =∞ (or T = t), the confidence value on the right

hand side increases to 1− β exponentially fast. Fig. 4.1 compares the adaptation of the ambiguity
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Figure 4.1. Online characterization of Pt+1, with (without) f . The dark line is the trajectory of
x and the gray part is yet to be revealed. At t, we obtain Pt+1 with its elements supported on
T0 = 3 shaded regions with high probability. Each region k has center ξk (

∑
i αiξ

(i)
k ) and radius

proportional to ε (ε̂). Note the centers of these regions are related to a known (learned) point
f (t, x̂t, d) (

∑
i αi f (i)(t, x̂t, d)), they are close if the learning is effective.

set with and without knowing f .

Remark 20 (Data-driven selection of the radius). The radius of the adaptive ambiguity set (4.9)

depends on the unknown, noise-related parameter σ, the regularization constant η, and on the

online parameters σmin(A). In many engineering problems, an upper bound σ of the noise-related

parameter can be determined a-priori or empirically. The parameter η, together with the

regularization matrices P, are introduced to ensure that (4.6) is well posed. In particular, P can be

a diagonal matrix with each diagonal term scaling its corresponding components. At each t, the

computation (4.6) needs an additional online regularization matrix, denoted by Pt−1. For example,

Pt−1 can be a diagonal matrix with the j th diagonal term equal to 1/(√pmaxi∈{1,...,p} | f
(i)

t−1( j)|),

where f (i)t−1( j) is the j th component of f (i)t−1, which results in η = 1. Finally, σmin(A) relies on the

selection of the model set { f (i)}i as well as the other two parameters η and σ. In practice, all

the zero singular values of A is perturbed by the noise with a factor of σ. One could select the

minimal non-zero principal singular value to be σmin(A) =min{σi(A) | σi(A) > σ, i ∈ {1, . . ., p}}.

Online procedure: To summarize, our online learningmethodology is given inAlgorithm

table 6. Our approach leverages the adaptation of a dynamic ambiguity set, together with a-priori

knowledge of d, and learns model parameter α, and characterizes the unknown f online via P.
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P-Learning 6. Learn(I, d)
Require: { f (i)}i, β, T0, σ, θ and t = 1;
Ensure: Online α, P̂, ε̂ ;
1: repeat
2: Update data set I := It and knowledge d := dt ;
3: Compute α := αt as in (4.6);
4: Select P̂t+1 as in (4.5) and ε̂ := ε̂t as in (4.9);
5: Leverage (P̂t+1, ε̂) as characterization of f ;
6: t← t +1;
7: until time t stops.

4.5 Case Study: Vehicles in Unknown Road Conditions

In this section, we illustrate the previous results on a simple vehicle example. Consider

a vehicle driving under various road conditions, where its control signal is derived in advance,

according to a path-planner in an ideal environment.

Our goal is to learn the real-time environment and estimate the system states via our

adaptive P-Learning algorithm. Our vehicle is modeled as a differential-drive robot subject to

uncertainty, see [63]:

x+1 =x1+ h cos(x3)u1+ hw1,

x+2 =x2+ h sin(x3)u1+ hw2,

x+3 =x3− hu2+ hw3,

u1 =
r
2
(vl + vr + e1),

u2 =
r

2R
(vl − vr + e2),

(4.11)

where x := (x1, x2, x3) ∈ R
2×[−π, π) � R×S1 stands for vehicle position and orientation on the

2-D plane. We denote by x+ the state at the next time step and w := (w1,w2,w3) a zero-mean,

mixture of Gaussian and Uniform distributions, which are subGaussian uncertainties with σ = 0.5.

We assume x0 = (0,0,0) and h = 10−3. The velocity u := (u1,u2) is determined by a wheel

radius r = 0.15 m, the distance between wheels R = 0.4 m, the given wheel speed d := (vl , vr)

and an unknown parameter e := (e1, e2), which depends on the wheel and road conditions. For
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simulation purposes, we assume that the vehicle may move over three road zones, a slippery zone

with e(1) = (4,0), a sandy zone with e(2) = (−6,0), and a smooth, regular zone with e(3) = (0,0), as

described in Fig. 4.2. The vehicle executes the following left and right wheel speed plan (rad/s):

vl = 10−0.5sin(20hπt),

vr = 10+0.5sin(20hπt).

Now we employ our adaptive learning algorithm for the characterization of the uncertain vehicle

states and learning of the unknown road-condition parameter e in real time. To do this, we take

p = 3 predictors as in (4.11) with w ≡ 0, and

i = 1, e1 = 0, e2 = 0,

i = 2, e1 = 10, e2 = 0,

i = 3, e1 = 0, e2 = 10.

Note that Assumption 10 holds with α? := (0.6,0.4,0) in the slippery zone, α? := (1.6,−0.6,0)

in the sandy zone and α? := (1,0,0) in the smooth zone. We select T0 = 300, and, at each time

t, we have access to model sets { f (i)}i as well as the real-time data set It and d. Note that the

notions of inner product and norm are those defined on the vector space T(R2×S) ≡ R3. Recall

that h = 10−3, so a T0 = 300 corresponds to a time window of order 0.3sec. We select online

diagonal regularization matrices P with diagonal (1/(
√

3maxi=1,2,3 | f (i)( j)|) for j = 1,2 and 1 for

j = 3, resulting in η =maxi,k∈T ‖Pk f (i)k ‖.

Fig. 4.3 demonstrates the real-time parameter learning of α1 and α2. It can be seen

that these unknown parameters are effectively learned and tracked over time. Fig. 4.4 shows

the quality of the learned parameter α and its effect on the determination of the radius of the

adaptive ambiguity set. We note that, for a particular noise realization sequence, the estimated

value γ = nσeη
√

npσ−1
min(A)+ θ, with θ = 0.01, upper bounds ‖α −α?‖∞ in high probability.

The large spikes in the figure are due to the change of zone, resulting in a large error. This is
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Figure 4.2. Path plan and actual trajectory in various R2 road zones.
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Figure 4.3. Real-time learning parameter α1 and α2.
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Figure 4.4. Quality of α and the estimated radius ε̂ .
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Figure 4.5. Online guarantee (4.10) and samples of (4.10) with various T0.

expected, as the true α? changed discontinuously. Meanwhile, the estimated radius ε̂ of the

adaptive ambiguity set, calculated as in (4.9), is a conservative estimate of the unknown a-priori

ε̂ as in Theorem 9. The true ε̂ captures exactly the ambiguity set over the time sequence T , for a

β = 0.05. Over time, we empirically see the difference between the approximated ε̂ via γ and the

true one become close. In practice, the radius ε̂ can be selected in a data-driven fashion, e.g., as

in Remark 20, to serve as a way for less conservative estimation of the radius in probability. We

show in Fig. 4.5 the online guarantee (4.10) of this particular case study, and various samples

of (4.10), obtained by taking different time horizon T0.

Chapter 4, in full, is a reprint of Online learning of parameterized uncertain dynamical

environments with finite-sample guarantees, D. Li, D. Fooladivanda, and S. Martínez, IEEE

Control Systems Letters, 5(4):1351-1356, 2021, which was presented at American Control

Conference, New Orleans, LA, US, 2021. The dissertation author was the primary investigator

and author of this paper.
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Chapter 5

Online Optimization with Learned Sys-
tems

This chapter presents a new framework to solve online optimization and learning problems

with unknown and uncertain dynamical systems or environments. This framework enables us

to simultaneously learn the uncertain dynamical system while making online decisions in a

quantifiably robust manner. The main technical approach relies on the theory of distributional

robust optimization that leverages adaptive probabilistic ambiguity sets. However, as defined,

the ambiguity set usually leads to online intractable problems, and the first part of this chapter

is directed to find reformulations in the form of online convex problems for two subclasses of

objective functions. To solve the resulting problems in the proposed framework, we further

introduce an online version of the Nesterov’s accelerated-gradient algorithm. We determine how

the proposed solution system achieves a probabilistic regret bound under certain conditions. Two

applications illustrate the applicability of the proposed framework.

5.1 Related Works

This chapter aims to refine online optimization techniques, e.g., Online Convex Program-

ming (OCP), with control-theoretic techniques, including Model Predictive Control [22, 83] and

Kalman Filtering [48]. Intuitively, control-theoretic approaches implicitly aim to learn models

of loss functions of OCP in connection with an underlying and uncertain dynamical system of
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interest. However, the effective characterization of loss functions requires strong assumptions

on the type of systems as well as uncertainty. Clearly, approximate system models result in

inaccurate loss-function predictions, which further leads to performance degradation of OCPs.

To deal with such challenges, data-driven approaches have regained attention. These

methods are originated from system identification literature [76, 103,128], which learn models

from sufficient amount of properly collected data. More recently, Willem’s fundamental lemma

in Behavioral System Theory has been leveraged for system learning [81, 131], as well as

estimation [30, 81] and predictive control [2, 11, 29, 107]. These approaches approximate models

well using only data, however the size of the data can be very large. In the light of recent

developments on the measure-of-concentration results [40] and its applications to distributionally

robust optimization [36, 114], linear systems [38, 104, 116, 126] and stochastic processes [15, 16],

new online-tractable and performance-guaranteed solutions to OCPs under unknown systems

or environments are possible. In Chapter 4, we proposed a method for the online learning of

unknown system dynamics, which provided a guaranteed, probabilistic characterization of the

system behavior using tight sets of distributions, or online ambiguity sets. Here, we further

consider an associated online optimization problem, where the objective functions explicitly

depend on an unknown and uncertain dynamical system or environment. Further, we assume that

imperfect models are accessible for online learning using ambiguity sets. The integration of such

learning procedure achieves accurate predictions of the loss functions and enables the solution to

OCPs a similar-in-spirit, worst-case guarantees in high probability.

Statement of Contributions

The contributions of this chapter are the following: 1) We formulate a class of online

optimization problems in which the dynamical environment is uncertain, as an optimization with

respect to worst-case-environment characterization using ambiguity sets. We show that such

formulations provide guarantees in performance while maintaining online-problem tractability
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under some conditions. 2) To derive the tractable formulation explicitly, two application scenarios

are considered. The first formulation refers to an optimal control problem for an uncertain

dynamical system. The second formulation is an online resource allocation under uncertainty,

where the proposed formulation results in online and non-smooth convex optimization problems.

3)We propose an online solution technique which extends Nesterov’s accelerated-gradient method

achieving an optimal first-order convergence rate for smooth and offline convex problems. These

algorithms allow us to solve the derived online non-smooth problems. 4) We analytically quantify

the dynamic regret of online decisions subject to unknown environments with a probabilistic

regret bound. In particular, we characterize an interplay between the derived probabilistic regret

bound and the learning parameters. 5) We numerically quantify our analytical results using two

examples to demonstrate the effectiveness of the proposed framework.

5.2 Problem Statement

Here, we introduce a class of online optimization problems, where the objective function

is time-varying according to an unknown dynamical environment. At every time instant t ∈ Z≥0,

we characterize the dynamical environment via an unknown random variable xt ∈ R
n which is

subject to a distribution Pt . Let ut ∈ U ⊂ R
m be the online decision at time t and denote by

` : Rm×Rn→ R, (u, x) 7→ `(u, x) a priori selected, measurable loss function. We assume that

the setU is compact, and we are interested in making an online decision or control ut ∈ U that

minimizes the following expected loss function

min
ut∈U

{
EPt [`(ut, xt)] :=

∫
Rn
`(ut, xt) Pt(dxt)

}
.

Note that the objective value is inaccessible since Pt is unknown, and its evolution is highly

dependent on the environment dynamics as well as on the decisions taken. We assume that the
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environment is described as an unknown stochastic system

xt+1 = f (t, xt, ut)+wt, from a given x0, (5.1)

where the distribution Pt+1 of xt+1 is determined by the online decision ut , the unknown but

measurable environment evolution f : R≥0×R
n×Rm→ Rn , and additive disturbance vectors

wt ∈ R
n. In particular, let us denote by Wt the distribution of wt and make the following

assumption.

Assumption 11 (Independent and stationary subGaussiandistributions). (1)Randomvectors

wt := (w>t,1, . . .,w
>
t,n)
>, t ∈ Z≥0, are time-and-component-wise independent, i.e., wt,i and wk, j are

independent, for all t , k, i , j, (t, k) ∈ Z2
≥0 and (i, j) ∈ {1, . . .,n}. (2) The process {wt}t is

stationary and, for each t, the vector wt is zero-mean and σ-subGaussian, i.e., for any a ∈ Rn we

have E
[
exp(a>wt)

]
≤ exp(‖a‖2σ2/2).

In this chapter, we aim to propose an effective online optimization and learning algorithm

which tracks minimizers of the time-varying, environment-dependent objective function with

low regret in high probability. In particular, at each time t, we aim to find an online decision

u := ut that minimizes the loss in the immediate future environment at t +1, as follows

min
u∈U
EPt+1 [`(u, xt+1)],

s. t. Pt+1 is characterized by (5.1).
(P)

Remark 21 (Finite-time horizon version of (P)). Problem (P) can be extended to a N-finite-time

horizon problem. In this way, at each time t, we aim to find an online decision u := (u(1), . . ., u(N))

that minimizes the loss over the next N time steps {t +1, . . ., t +N}. In this scenario, we

characterize the unknown dynamical environment via a stochastic process x := (x(1), . . ., x(N))

under the unknown product distribution Q := Pt+1 ⊗ · · · ⊗ Pt+N . Similarly, we consider the loss
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function ` : RmN ×RnN → R, (u, x) 7→ `(u, x), and solve the following problem online

min
u∈U
EQ [`(u, x)],

s. t. Q is characterized by (5.1).

Several types of problems fall under this finite-time horizon formulation, such as data-driven

control, stochastic model predictive control, and stochastic state estimation problems. In Chapter 3,

we have leveraged the structure of this finite-time horizon formulation (P) for a traffic control

problem in which the system dynamics were known. In contrast, in this chapter, we seek to learn

the dynamical environment f and make online decisions altogether. We leave the consideration

of finite-time horizon problems for future work.

5.3 Online Learning of Unknown System Dynamics

To obtain online solutions of Problem (P), we employ the dynamic ambiguity set Pt+1

proposed in Chapter 4. The set Pt+1 contains a class of distributions, which is, in high probability,

large enough to include the unknown Pt+1 under certain conditions. Thus, we can use it to

formulate a robust version of the problem at each time instant. In the following section, we leverage

the probabilistic characterization Pt+1 := Pt+1(α, u) of the distribution Pt+1 for online-tractable

solutions to (P).

5.4 Tractable Reformulation

This section presents an online-tractable formulation of Problem (P) by leveraging the

adaptive ambiguity set Pt+1. To achieve this, we first consider the expectation of the loss over the

worst-case distribution in Pt+1 and reformulate (P) to a problem called (P1). The solution of (P1)

provides guarantees on performance of (P). Then, we propose a tractable reformulation (P2)

which is equivalent to (P1) under certain conditions.
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Formally, let us consider

inf
u∈U

sup
Q∈Pt+1(α,u)

EQ [`(u, x)], (P1)

where, for a fixed α := αt and u := ut ∈ U, it holds that Pt+1 ∈ Pt+1(α, u) with high probability.

This results in

Prob

(
EPt+1 [`(u, x)] ≤ sup

Q∈Pt+1

EQ [`(u, x)]

)
≥ ρ,

where the confidence bound ρ = (1− β)
(
1− exp

(
− θ2T2

2[(2T−1)cγ+nc2]

))
, with parameters the same

as in (4.10). Notice that, the value ρ increases exponentially to the given (1− β) as we increase θ

or the data-set sizes T . In practice, these parameters need to be selected empirically, in order to

efficiently address the particular problem of interest. We refer reader to Chapter 4, for a guide on

how to select these parameters.

The solution u and the objective value of (P1) ensure that, when we select u to be the

decision for (P), the expected loss of (P) is no worse than that from (P1) with high probability.

The formulation (P1) still requires expensive online computations due to its semi-infinite inner

optimization problem. Thus, we propose an equivalent reformulation of (P1) for a class of loss

functions as in the following assumption.

Assumption 12 (Lipschitz loss functions). Consider the loss function ` :Rm×Rn→R, (u, x) 7→

`(u, x). There exists a Lipschitz function L : Rm→ R≥0 such that for each u ∈ Rm, it holds that

‖`(u, x)− `(u, y)‖ ≤ L(u)‖x− y‖ for any x, y ∈ Rn.

With this, we obtain the following upper bound:

Lemma 14 (An upper bound of (P1)). Let Assumption 12 hold. Then, for each u, α, β, T and

t, we have

sup
Q∈Pt+1(α,u)

EQ [`(u, x)] ≤ EP̂t+1(α,u)
[`(u, x)]+ ε̂(t,T, β,α, u)L(u),
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where the empirical distribution P̂t+1(α, u) and scalar ε̂(t,T, β,α, u) are described as in Chapter 4.

Proof. By the definition of the ambiguity set, we have that, for any distribution Q ∈ Pt+1(α, u)

dW(Q, P̂t+1) ≤ ε̂,

which is equivalent to

∫
Z

h(x)Q(dx)−
∫
Z

h(x)P̂t+1(dx) ≤ ε̂, ∀h ∈ L,

where L is the set of functions with Lipschitz constant 1. For a given u, let us select h to be

h(x) :=
`(u, x)

L(u)
,

where L is the positive Lipschitz function as in Assumption 12. Substituting h to the above

inequality, we have

∫
Z

`(u, x)Q(dx)−
∫
Z

`(u, x)P̂t+1(dx) ≤ ε̂L(u),

or equivalently

EQ [`(u, x)] ≤ EP̂t+1(α,u)
[`(u, x)]+ ε̂L(u).

As the inequality holds for every Q ∈ Pt+1, therefore

sup
Q∈Pt+1(α,u)

EQ [`(u, x)] ≤ EP̂t+1(α,u)
[`(u, x)]+ ε̂(t,T, β,α, u)L(u).

�

Next, we claim that the upper bound in Lemma 14 is tight if the following assumption
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holds.

Assumption 13 (Convex and gradient-accessible functions). The loss function ` is convex in x

for each u. Further, for each time t with given u ∈U andα ∈Rp, there is an environment prediction∑p
i=1αiξ

(i)
k (α, u) for some k ∈ T such that ∇x` exists and L(u) = ‖∇x`‖ at (u,

∑p
i=1αiξ

(i)
k (α, u)).

The above statement enables the following theorem.

Theorem 11 (Equivalent reformulation of (P1)). Let Assumptions 12 and 13 hold. Let Ξt+1

denote the support of the distribution Pt+1. Then, if Ξt+1 = R
n, (P1) is equivalent to the following

problem

min
u∈U
EP̂t+1(α,u)

[`(u, x)]+ ε̂(t,T, β,α, u)L(u). (P2)

Proof. We show this by constructing a distribution in the ambiguity set. By Assumption 13 on

convex and gradient-accessible functions, there exist an index j ∈ T such that the derivative

∇x`(u, x) at (u, x̄( j)), x̄( j) :=
∑p

i=1αiξ
(i)
j (α, u), satisfies

‖∇x`(u, x̄
( j))‖ = L(u).

Now using this index j, we construct a parameterized distribution as follows

Q(∆x) =
1
T

∑
k∈T ,k, j

δ
{

p∑
i=1

αiξ
(i)
k
(α,u)}

+
1
T
δ{ x̄(j)+∆x},

where ∆x ∈ Rn with ‖∆x‖ ≤ T ε̂ . By the definition of the ambiguity set and, since the support of

the distribution P is Ξt+1 = R
n, we have Q(∆x) ∈ Pt+1(α, u).

Next, we quantify the lower bound of the following term

EQ(∆x) [`(u, x)]−EP̂t+1(α,u)
[`(u, x)] =

1
T

(
`(u, x̄( j)+∆x)− `(u, x̄( j))

)
.
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By Assumption 13 on the convexity of ` on x, we have

`(u, x̄( j)+∆x)− `(u, x̄( j)) ≥ ∇x`(u, x̄
( j))
>
∆x.

Then, by selecting

∆x :=
T ε̂∇x`(u, x̄( j))
‖∇x`(u, x̄( j))‖

,

we have

∇x`(u, x̄
( j))
>
∆x = T ε̂L(u).

These bounds result in

EQ(∆x) [`(u, x)]−EP̂t+1(α,u)
[`(u, x)] ≥ ε̂L(u).

As Q(∆x) ∈ Pt+1(α, u), therefore

sup
Q∈Pt+1(α,u)

EQ [`(u, x)] ≥ EP̂t+1(α,u)
[`(u, x)]+ ε̂L(u).

Finally, with Assumption 12 on Lipschitz loss functions and Lemma 14 on an upper bound

of (P1), we equivalently write Problem (P1) as

inf
u∈U
EP̂t+1(α,u)

[`(u, x)]+ ε̂(t,T, β,α, u)L(u),

which is the Problem (P2). �

Notice that the tractability of solutions to (P2) now depend on: 1) the choice of the loss

function ` and the associated Lipschitz function L, and 2) the decision spaceU. To be able to

further analyze (P2) and further evaluate Assumption 13 on gradient-accessible functions, we

will impose further structure on the system as follows:

Assumption 14 (Locally Lipschitz, control-affine environment and predictors). The environ-
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ment f is locally Lipschitz in (t, x, u) and affine in u, i.e.,

f (t, x, u) := f1(t, x)+ f2(t, x)u,

for some unknown f1 : R≥0×R
n→ Rn, f2 : R≥0×R

n→ Rn×m, u ∈ U and t ∈ Z≥0. Similarly, for

each i ∈ {1, . . ., p}, the predictor f (i) is selected to be

f (i)(t, x, u) := f (i)1 (t, x)+ f (i)2 (t, x)u,

for some given locally Lipschitz functions f (i)1 and f (i)2 .

Assumption 15 (Convex decision oracle). The setU is convex and compact, and, in addition,

the projection operation of any u ∈ Rm ontoU, ΠU(u), admits O(1) computation complexity.

Remark 22 (U examples). Examples ofU include the following: 1) the non-negative orthant

as {u | u ≥ 0m}, 2) an m-cell as {u | u ≤ u ≤ u}, for some constant vectors u and u, 3) a unit

simplex as {u | u>1m = 1, u ≥ 0m}, or 4) a ball {u | ‖u‖ ≤ 1}.

For simplicity of the discussion, we rewrite (P2) as

min
u∈U

G(t, u),

where G represents the objective function of (P2), depending on `, L and Pt+1. Then, Assump-

tion 14 allows an explicit expression of G w.r.t. u := ut and Assumption 15 characterizes the

convex feasible set of (P2). Note that G(t, u) is locally Lipschitz in t.1

5.5 Two Application Scenarios

We consider two scenarios in form of (P2): 1) an optimal control problem under the

uncertainty; 2) an online resource allocation problem with a switch. These problems leverage

1This can be verified by the local Lipschitz condition on f (i), `, and finite composition of local Lipschitz functions
are locally Lipschitz.
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the probabilistic characterization of the environment and common loss functions `. Then, we

propose an online algorithm to achieve tractable solutions with a probabilistic regret bound in the

next section.

Problem 1: (Optimal control under uncertainty)We consider a problem in form (P),

where the environment is a system to be optimally controlled. In particular, we employ the

following separable loss function

`(u, x) := `1(u)+ `2(x), `1 : Rm→ R, `2 : Rn→ R,

with `1 the cost for the immediate control and `2 the optimal cost-to-go function. We assume that

both `1 and `2 are convex, and in addition, `2 is Lipschitz continuous with a constant Lip(`2),

resulting in L(u) ≡ Lip(`2). Then, by selecting the ambiguity radius of Pt+1 as in (4.9), the

objective function of (P2) is the following

G(t, u) = `1(u)+
1
T

∑
k∈T

`2(pk,t)+Lip(`2)ε +
γLip(`2)

T

p∑
i=1

∑
k∈T

‖H(i)k ‖,

where pk,t and H(i)k are affine in u, for each i, k, as

pk,t :=
p∑

i=1
αi

(
f (i)1 (t, x̂t)− f (i)(k, x̂k, uk)

)
+ x̂k+1+

( p∑
i=1

αi f (i)2 (t, x̂t)

)
u,

H(i)k (u) := f (i)(k, x̂k, uk)− f (i)1 (t, x̂t)− f (i)2 (t, x̂t)u,

and parameters α, ε and γ are as in Theorem 9. Notice that the objective function G is convex in

u and therefore online problems (P2) are tractable. In addition, if `2 has a constant gradient

almost everywhere, then Assumption 13 on accessible gradients holds and (P2) is equivalent

to (P1).

Problem 2: (Online resource allocation) We consider an online resource allocation

problem with a switch, where a decision maker aims to make online resource allocation decisions
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in an uncertain environment. This problem is in form (P) and its objective is

`(u, x) =max{0,1− 〈u, φ(x)〉}, φ : Rn→ Rm,

where φ is an affine feature map selected in advance. The decision maker updates the decision u

online when 〈u, φ(x)〉 < 1, otherwise switches off. Notice that this type of objective functions

appears in many classification problems. In particular, we assume that the environment f is

independent from the allocation variable, i.e., f2 ≡ 0. See Example 5.7.2 for a more explicit

problem formulation involving online resource allocation with an assignment switch.

Then, problem (P2) has the objective function

G(t, u) =
1
T

∑
k∈T

max{0,1− 〈u, φ(pk,t)〉}+ qt L(u),

with the time-dependent parameters

pk,t = x̂k+1+

p∑
i=1

αi

(
f (i)1 (t, x̂t)− f (i)1 (k, x̂k)

)
, ∀ k, t,

qt = ε +
γ

T

p∑
i=1

∑
k∈T

‖ f (i)1 (k, x̂k)− f (i)1 (t, x̂t)‖, ∀ t,

where α, ε and γ are as in Theorem 9. We characterize the function L(u) by subgradients of the

loss function `.

Lemma 15 (Quantification of L). Consider `(u, x) := max{0,1− 〈u, φ(x)〉}, where φ(x) is

differentiable in x. Then, the function L(u) is

L(u) = sup
g∈∂x`(u,x), x∈Rn

‖g‖,

135



where the set ∂x`(u, x) contains all the subgradients of ` at x, given any u in advance, i.e.,

∂x`(u, x) := h(x, u) ·
∂φ

∂x
(x)u,

where

h(x, u) =



−1, if 〈u, φ(x)〉 < 1

0, if 〈u, φ(x)〉 > 1

[−1,0], o.w.

.

In particular, if φ(x) := Jx for some matrix J, then L(u) = ‖J>u‖. If x is contained in a compact

set X , then L(u) = Lip(φ)‖u‖,where Lip(φ) is the Lipschitz constant of φ on X .

Proof. This is the direct application of the definition of the local Lipschitz condition. �

Lemma 15 indicates that, given a properly selected feature mapping φ, the objective G is

convex in u and therefore online problems (P2) are convex and tractable. In addition, if φ is a

linear map almost everywhere, then Assumption 13 on accessible gradients holds and (P2) is

equivalent to (P1).

5.6 Online Algorithms

The online convex problems (P2) are non-smooth due to the normed regularization terms

in G. To achieve fast, online solutions, we propose a two-step procedure. First, we adapt an

approach in [9,99] to obtain a smooth version of (P2), called (P2′). Then, we extend theNesterov’s

accelerated-gradient method [100]—known to achieve an optimal first-order convergence rate

for smooth and offline convex problems—to solve the problem (P2′). Finally, we quantify the

dynamic regret [141] of online decisions w.r.t. solutions of (P1) in probability.

Step 1: (Smooth approximation of (P2)) To simplify the discussion, let us use the

generic notation F : U → R for a convex and potentially non-smooth function, which can

represent any particular component of the objective function G(t, u) of (P2) at time t.
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Definition 2 (Smoothable function). We call a convex function F(u) smoothable onU if there

exists a > 0 such that, for every µ > 0, there is a continuously differentiable convex function

Fµ :U→ R satisfying

(1) Fµ(u) ≤ F(u) ≤ Fµ(u)+ aµ, for all u ∈ U.

(2) There exists b> 0 such that Fµ has a Lipschitz gradient overU with Lipschitz constant b/µ, i.e.,

‖∇Fµ(u1)−∇Fµ(u2)‖ ≤
b
µ
‖u1− u2‖, ∀ u1, u2 ∈ U .

To obtain a smooth approximation Fµ of F, we follow theMoreau proximal approximation

technique [9], described as in the following lemma.

Lemma 16 (Moreau-Yosida approximation). Given a convex function F :U → R and any

µ > 0, let us denote by ∂F(u) the set of subgradients of F at u, respectively. Let D :=

supg∈∂F(u),u∈U ‖g‖
2 < +∞. Then, F is smoothable with parameters (a,b) := (D/2,1), where the

smoothed version Fµ :U→ R is the Moreau approximation:

Fµ(u) := inf
z∈U

{
F(z)+

1
2µ
‖ z − u‖2

}
, u ∈ U .

In addition, if F is M-strongly convex with some M > 0, then Fµ is M/(1+ µM)-strongly convex.

And further, the minimization of F(u) over u ∈ U is equivalent to that of Fµ(u) over u ∈ U in

the sense that the set of minimizers of two problems are the same.

Proof. First, we have

Fµ(u) ≤ F(u)+
1

2µ
‖u− u‖2 = F(u), ∀ u ∈ U .
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Then, we compute

F(u)−Fµ(u) = sup
z∈U

{
F(u)−F(z)−

1
2µ
‖ z − u‖2

}
,

≤ sup
z∈U

{
g(u)>(u− z)−

1
2µ
‖ z − u‖2

}
,

≤
µ

2
g(u)>g(u) ≤

D
2
µ,

where the equality comes from the definition of Fµ(u), the first inequality leverages the convexity

of F, the second one applies the achieved optimizer z? = u− µg(u), and the last one is from the

boundedness of subgradients.

Further, given F as described, it is well-known (see, e.g., [7, Proposition 12.15] for

details) that Fµ is convex and continuously differentiable where its gradient ∇Fµ is Lipschitz

continuous with constant 1/µ. In addition, the minimizer z?(u) of Fµ is achievable and unique,

resulting in an explicit gradient expression of Fµ as follows

∇Fµ(u) =
1
µ
(u− z?(u)).

In addition, we claim that, if F is M-stronly convex, Fµ is M/(1+ µM)-strongly convex,

following [65, Theorem 2.2]. Finally, we equivalently write the minimization problem as follows

min
u∈U

Fµ(u) = min
u∈U

min
z∈U

{
F(z)+

1
2µ
‖ z − u‖2

}
=min

z∈U
min
u∈U

{
F(z)+

1
2µ
‖ z − u‖2

}
=min

z∈U
F(z),

where the first line applies the achievability of the minimizer of the problem that defines Fµ, the

second line switches the minimization operators, the third line applies the fact that u = z solves

the inner minimization problem. This concludes that any u that minimizes Fµ also minimizes F,

and vice versa. �
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From the definition of the smoothable function, we know that: 1) a positive linear

combination of smoothable functions is smoothable2, and 2) the composition of a smoothable

function with a linear transformation is smoothable3. These properties enable us to smooth each

component of G, i.e., h, `1, `2 and ‖ · ‖, which results in a smooth approximation of (P2) via the

corresponding Gµ as follows

min
u∈U

Gµ(t, u). (P2′)

Note that Gµ is locally Lipschitz and minimizers of (P2′) are that of (P2). We provide in the

following lemma explicit expressions of (P2′) for the two application scenarios.

Lemma 17 (Examples of (P2′)).

Problem 1: Consider the following loss function

`(u, x) :=
1
2
‖u‖2+Fµ(x), given some µ > 0,

where Fµ :Rn→R is the smoothed `2-norm function defined as in Appendix C.1, with Lip(Fµ) = 1.

Then, the objective function Gµ(t, u) is

1
2
‖u‖2+

1
T

∑
k∈T

Fµ(pk,t)+ ε +
γ

T

p∑
i=1

∑
k∈T

Fµ(H
(i)
k ),

where p, H are affine in u, defined as in Section 5.5. In addition, we have the smoothing

parameter of Gµ(t, u), (a,b) := ((1+ pγ)/2, µ+ s0+γ
∑

i si), where

s0 = σmax

(( p∑
i=1

αi f (i)2 (t, x̂t)

)> ( p∑
i=1

αi f (i)2 (t, x̂t)

))
,

2If F1 is smoothable with parameter (a1,b1) and F2 with parameter (a2,b2), then c1F1+ c2F2 is smoothable with
the parameter (c1a1+ c2a2,c1b1+ c2b2), for any c1,c2 ≥ 0.

3Let A :U →X be a linear transformation and let b ∈ X. Let ` : X → R be a smoothable function with the
parameter (a,b). Then, the function F :U→ R, u 7→ `(Au+ b) is smoothable with the parameter (a,b‖A‖2), where
‖A‖ :=max‖u ‖=1 ‖Au‖. If X = R, the norm ‖A‖ becomes `∞ norm.
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with σmax denoting the maximum singular value of the matrix, and

si = σmax

(
f (i)2 (t, x̂t)

>
f (i)2 (t, x̂t)

)
, i ∈ {1, . . ., p}.

Problem 2: Let us select the feature map φ to be the identity map with the dimension m = n, and

consider

`(u, x) :=max{0,1− 〈u, x〉}, with L(u) = ‖u‖,

resulting in

Gµ(t, u) =
1
T

∑
k∈T

FS
µ (〈u, pk,t〉)+ qt Fµ(u),

where µ > 0, parameters p, q are as in Section 5.5, and functions FS
µ and Fµ are the smoothed

switch function and `2-norm function as in Appendix C.1, respectively. Note that Gµ has the

smoothing parameter (a,b) := ((1+ qt)/2,qt +1/T
∑

k∈T ‖pk,t ‖
2
∞).

Step 2: (Solution to (P2′) as a dynamical system) To solve (P2′) online, we propose a

dynamical system extending the Nesterov’s accelerated-gradient method by adapting gradients of

the time-varying objective function. In particular, let ut , t ∈ Z≥0, be solutions of (P2′) and let us

consider the solution system with some u0 ∈ U and y0 = u0, as

ut+1 = ΠU(yt − εt∇Gµ(t, yt)),

yt+1 = ut+1+ηt(ut+1− ut),

(5.2)

where εt ≤ µ/bt with positive parameters µ and bt := b being those define Gµ(t, u). We denote

by ∇Gµ the derivative of Gµ w.r.t. its second argument and denote by ΠU(y) the projection of y

ontoU as in Assumption 15 on convex decision oracle. We derive the gradient function ∇Gµ as

in Appendix C.2 and select the moment coefficient ηt as in Appendix C.3. In the following, we

leverage Appendix C.3 on the stability analysis of the solution system (5.2) for a regret bound

between online decisions and optimal solutions of (P1).
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Theorem 12 (Probabilistic regret bound of (P1)). Given any t ≥ 2, let us denote by ut and u?t

the decision generated by (5.2) and an optimal solution which solves the online Problem (P1),

respectively. Consider the dynamic regret to be the difference of the cost expected to incur if we

implement ut instead of u?t , defined as

Rt := EPt+1 [`(ut, x)]−EPt+1

[
`(u?t , x)

]
.

Then, the regret Rt is bounded in probability as follows

Prob
(
Rt ≤

4Wt

(t +2)2
+TFt + aµ+ L(u?t )ε̂

)
≥ ρ,

where Wt depends on the system state at time t−T , and Ft depends on the variation of the optimal

objective values in T , i.e.,

Ft =max
k∈T

{
|G?

k+1−G?
k |
}
+ L̄,

where G?
k :=G(k, u?k ) is the optimal objective value of (P2), or equivalently that of (P1). Further,

L̄ is the Lipschitz constant of G w.r.t. time, and the rest of the parameters are the same as before.

Proof. Let us consider the solution system (5.2). At each time t, let us select ε := εt = 1/Lip(Gµ),

or equivalently, µ/b with b =maxk∈T bk . Let ηt satisfy

δ−1 = 1, δt+1 :=
1+

√
1+4δ2

t

2
, ηt :=

δt−1−1
δt

.

Then, by Theorem 15 with t ≥ 2, the following holds

Gµ(t, ut)−Gµ(t, u?t ) ≤
4Wt

(t +2)2
+TFt, (5.3)

where u?t is a solution to (P2′), T = min{t −1,T0} with some horizon parameter T0 ∈ Z>0, the

time-varying parameter Wt depends on the initial objective discrepancy and the accumulated
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energy storage in the considered time horizon T , and Ft is the variation bound of the optimal

objective values in T . Specifically, we have

Ft =max
k∈T

{
|Gµ(k +1, u?k+1)−Gµ(k, u?k )|

}
+ L̄,

with L̄ the Lipschitz constant of Gµ(t, ut) w.r.t. time t. Let us consider the storage function

Vt(zt) := zt
>Ht zt , where zt := (ut − u

?
t , ut−1− u

?
t−1, u

?
t − u

?
t−1) and

Ht :=
1

2εt−1



δt−1

1− δt−1

δt−1


[
δt−1 1− δt−1 δt−1

]
� 0.

Then we have
Wt = Vt−T (zt−T )−Vt(zt)−

∑
k∈T

(1−
εk−1
εk
)Vk(zk)

+ (t −T −1+ δ0)
2( ft−T (xt−T )− ft−T (x

?
t−T )),

where the first two term is the energy decrease in the horizon T ; the third sum term indicates

the instantaneous energy change, which depends on the online, estimated Lipschitz constant;

the last term depends on the goodness of the initial decision at the beginning of the current

T . Note how the selection of εt and T affects Gt . In the most conservative scenario, we select

εt :=min{εt−1, µ/bt} and T0 =∞, which results in a constant upper bound of Wt as follows

Wt ≤ V1(z1)+ δ
2
0( f1(x1)− f1(x?1 )),

therefore, in this case, the bound (5.3) essentially depends on the growing term (t −1)Ft . A less

conservative way is to use moving horizon strategy, with εt := min{εt−1, µ/bt} but a finite T0.
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Then, as t is sufficiently large, we have

Wt ≤ Vt−T (zt−T )+ t2( ft−T (xt−T )− ft−T (x
?
t−T )),

where, in this case, the bound (5.3) essentially depends on Ft and ft−T (xt−T )− ft−T (x
?
t−T ).

Now, we consider for any t ≥ 2. By Definition 2, there exists a constant a > 0 such that

G(t, ut)− aµ ≤ Gµ(t, ut),

and by Lemma 16, we have that u?t is a minimizer of (P2′) if and only if it is that of (P2), and

Gµ(t, u?t ) ≡ G(t, u?t ).

This results in

G(t, ut)−G(t, u?t ) ≤
4Wt

(t +2)2
+TFt + aµ, (5.4)

with an equivalent expression of Ft as

Ft =max
k∈T

{
|G?

k+1−G?
k |
}
+ L̄,

where G?
k := G(k, u?k ) is the optimal objective value of (P2) or, later we see, equivalent to that

of (P1).

Next, by Theorem 11 on the equivalence of (P1) and (P2), u?t is a minimizer of (P2) if

and only if it is also that of (P1), and

G(t, u?t ) ≡ sup
Q∈Pt+1(α,u

?
t )

EQ
[
`(u?t , x)

]
.

By Assumption 12 on local Lipschitz of ` and the Wasserstein metric presentation from
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Kantorovich and Rubinstein [59, 71], for every u, we have

sup
Q∈Pt+1(α,u)

EQ [`(u, x)] ≤ EPt+1 [`(u, x)]+ L(u)ε̂,

where ε̂ is selected as in (4.9). Take u := u?t , we have

G(t, u?t ) ≤ EPt+1

[
`(u?t , x)

]
+ L(u?t )ε̂ .

Further, as in Section 5.4, we claim that, Problem (P1) provides a high probabilistic bound for

the objective of (P), resulting in

Prob
(
EPt+1 [`(ut, x)] ≤ G(t, ut)

)
≥ ρ,

with

ρ = (1− β)

(
1− exp

(
−

(nc−γ)2T2

2
[
(2T −1)cγ+nc2

] )) .
We summarize the above two inequalities and substitute them into (5.4), resulting in

EPt+1 [`(ut, x)]−EPt+1

[
`(u?t , x)

]
≤

4Wt

(t +2)2
+TFt + aµ+ L(u?t )ε̂,

with the probability at least ρ, holds for any t ≥ 2. �

Theorem 12 quantifies the dynamic regret of online decisions u w.r.t. solutions to (P1)

in high probability. Notice that, the regret bound is dominated by terms: TFt , aµ and L(u?t )ε̂ ,

which mainly depend on three factors: the data-driven parameters ε, η and µ of the solution

system (5.2), the variation Ft over optimal objective values, and the parameters T , β, γ and ε̂ that

are related to the environment learning. In practice, a small regret bound is determined by 1)

an effective learning procedure which contributes to small ε̂ ; 2) a proper selection of the loss

function ` which results in smoothing procedure with a small parameter aµ; and 3) the problem

144



structure leading to small variations Ft of the optimal objectives values.

Online Procedure: Our online algorithm is summarized in the Algorithmic table 7.

Online Optimization and Learning 7. Opal(I)
1: Select { f (i)}i, `, β,U, u0, µ, and t = 1;
2: repeat
3: Update data set I := It ;
4: Compute α := αt as in (4.6);
5: Select P̂t+1 as in (4.5) and ε̂ := ε̂t as in (4.9);
6: Run dynamical system (5.2) for u := ut ;
7: Apply u to (P) with the regret guarantee;
8: t← t +1;
9: until time t stops.

5.7 Case Studies

In this section, we apply our algorithm to an optimal control problem which stabilizes

an uncertain periodic system to certain desired period. Then, we consider a resource allocation

problem in which a decision maker aims to make online decisions while learning its dynamical

environment.

5.7.1 Study 1: Optimal Control of an Uncertain Periodic System

We consider a periodic system which is subject to the uncertainty, and our goal is to make

an one-step prediction of the system state using the ambiguity set Pt+1. In particular, at time

t, we consider a periodic system with the state x ∈ R2, control u ∈ R2 and uncertainty w ∈ R2,

characterized by

x+ = A(x)x+ hu+ hw, with x0 ∈ R
2, (5.5)

A(x) :=
©­­­«
1+ a0h(1− x>x) b0h

−b0h 1+ a0h(1− x>x)

ª®®®¬,
where the state at the next time step is denoted by x+, the parameter a0 > 0 governs the rate of

convergence to the limit cycle of the system and b0 > 0 determines the period of the system. Note
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that h = 10−3 and the period of the system is 2π/b0. In particular, we assume the true periodic

system has the parameter a0 = 0.1, b0 = 0.5π and the random vector w is zero-mean subGaussian

with σ = 1. Further, we assume the parameter a0 is known while our goal is to learn the period

of the system in real time (the parameter b0). Therefore, we propose the following predictors

f (i)(x, u) = A(i)(x)x+ hu, i ∈ {1,2},

A(i)(x) :=
©­­­«
1+ a0h(1− x>x) bih

−bih 1+ a0h(1− x>x)

ª®®®¬,
where b1 = 0 and b2 = 1. We denote by α? the true underline parameter which represents f .

Note that α? := (1−0.5π,0.5π). At each time t > 0, we assume that the model set { f (i)}i=1,2 and

0.5 second online data set It = { x̂t, x̂τ, uτ, τ ∈ T , |T | = 500} are available for the computation of

adaptive ambiguity sets.

Let us consider the learning and control problem (P)

min
u∈U
EPt+1

[
1
2
‖u‖2+Fµ(xt+1− x̄t+1)

]
,

s. t. Pt+1 of xt+1 is characterized by (5.5),

where µ = 0.1,U := [−0.6,0.6]2, and the reference signal x̄ is generated by the system

x̄+ =
©­­­«
1+ a0h(1− x̄> x̄) h

−h 1+ a0h(1− x̄> x̄)

ª®®®¬ x̄,
with the period 2π. Using the proposed technique, we reformulate the above problem into

form (P2′), where its objective function at each t is

1
2
‖u‖2+

1
T

∑
k∈T

Fµ(pk,t)+ ε +
γ

T

p∑
i=1

∑
k∈T

Fµ(H
(i)
k ),
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Figure 5.1. The estimated bound γ and radius ε̂ in probability, where γ is an online-accessible
indicator for the quality of learned α in dynamic environments, and ε̂ is a time-varying radius of
adaptive ambiguity sets constructed online.
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Figure 5.2. System trajectory and evolution of x1 without control.

with

pk,t :=
p∑

i=1
αi

(
A(i)(x̂t)x̂t − A(i)(x̂k)x̂k − huk

)
− x̄t+1+ x̂k+1+

( p∑
i=1

αi

)
hu,

H(i)k (u) := A(i)(x̂k)x̂k + huk − A(i)(x̂t)x̂t − hu,

where its Lipschitz gradient constant, at each t, is

Lip(Gµ) = 1+ (
p∑

i=1
αi)

2h2/µ+γph/µ,

and the parameter ε , γ and α are determined as in Theorem 9. We compute the online solution

ut using the solution system (5.2), with the time-dependent step-size ε := 1/Lip(Gµ).
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Figure 5.3. Controlled system trajectory and evolution of x1.

0 10 20 30 40 50

1

1.2

1.4

1.6

1.8

2

0 10 20 30 40 50

-1

-0.5

0

0.5

1

Figure 5.4. Estimated period b and control u.
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To demonstrate the learning effect of the algorithm, let us first characterize adaptive

ambiguity sets. Fig. 5.1(a) shows the quality of the learned parameter α, computed as in (4.6),

and its estimated bound γ, which is used for the estimation of the radius of ambiguity sets [68].

In reality, the vector α? is unknown and the value γ verifies the quality of its estimate α in

probability, as described in Chapter 4. When the learning procedure (4.6) is effective, i.e., the

value ‖α−α?‖∞ is close to zero, then the parameter γ is small with high probability. In this case

study, the selected α is indeed a reasonable estimate of α?, even if the estimation introduces

ambiguity and enlarges the radius of ambiguity sets as illustrated in Fig. 5.1(b).

Fig. 5.2 and Fig. 5.3 demonstrate the system trajectory under uncertainty, with and without

control from (P). It can be seen that, the system is stabilized to the desired frequency, and the

trajectory follows the reference signal in high probability. When there is no control, the system is

dominated by the uncertainty. Fig. 5.4(a) shows the estimated parameter b0, which is calculated

from α. The estimation of b0 is unbiased from its true value, which helps solution system (5.2) to

obtain control with performance guarantees. We show in Fig. 5.4(b) the online control obtained

from (5.2). The proposed algorithm accounts for the imposed constraints on control and tracks

the optimal solution of (P) in high probability.

5.7.2 Study 2: Online Resource Allocation Problem

We consider an online resource allocation problem where an agent or decision maker

aims to 1) achieve at least target profit under uncertainty, and 2) allocate resources as uniformly

as possible. To do this, the agent distributes available resources, e.g., wealth, time, energy or

human resources, to various projects or assets. In particular, let us consider that the agent tries

to make an online allocation u ∈ U of a unit wealth to three assets. At each time t, the agent

receives random return rates x ∈ R3
≥0 of assets, following some unknown and uncertain dynamics

x+ = x+ hA(t)+ hw, with some x0 ∈ R
2, (5.6)
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where h = 10−3 is a stepsize, the vector A(t) is randomly generated, unknown and piecewise

constant, and the uncertainty vector w is assumed to be subGaussian with σ = 0.1. Note that

this model can serve to characterize a wide class of dynamic (linear and nonlinear) systems. In

addition, we assume that the third asset is value preserved, i.e., the third component of A(t) and

w are zero and x3 ≡ 1. An example of the resulting unit return rates x is demonstrated in Fig. 5.5.

Then, we denote by r0 = 1.3 and 〈u, x〉 the target profit and the instantaneous profit, respectively.

Note that the decision maker aims to obtain at least a 30% profit and allocate resources online for

this purpose. In particular, the decision maker implements an allocation online if 〈u, x〉 ≤ r0,

otherwise does nothing. This results in (P) with the loss function

`(u, x) =max{0,1−
1
r0
〈u, x〉},

and setU a unit simplex. We propose p = 3 predictors

f (1) = x, f (2) = x+0.1he1, f (3) = x+0.1he2,

where e1 = (1,0,0)> and e2 = (0,1,0)>. At each t, we assume that only historical data are available

for online resource allocations. Applying the proposed probabilistic characterization of xt+1 as

in (P1), we equivalently write it as in form (P2′), where

Gµ(t, u) =
1
T

∑
k∈T

FS
µ (〈u,

pk,t

r0
〉)+

qt

r0
Fµ(u), µ = 0.01,

with real-time data pk,t and qt determined as in Problem 2. We claim that Gµ(t, u) has a time-

dependent Lipschitz gradient constant in u given by Lip(Gµ) = qt/r0 +1/(r2
0T)

∑
k∈T ‖pk,t ‖

2
∞,

and we use ε := 1/Lip(Gµ) in the solution system (5.2) to compute the online decisions.

Fig. 5.6 shows the real-time evolution α1 of the parameter α := (α1, α2, α3), while the

behavior of α2 and α3 can be similarly characterized. In this figure, black line α?1 is determined

by the unknown signal A(t) while gray line α1 is that computed as in (4.6). Note that α?
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Figure 5.5. An example of random returns x = (x1, x2, x3), where returns of the first two assets
x1, x2 ∈ [0,+∞) are highly fluctuated and the third is value-preserved with return x3 ≡ 1.
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Figure 5.6. The component α1 of the real-time parameter α := (α1, α2, α3) in learning, where the
value α?1 is the online-inaccessible ground truth. Notice the responsive behavior of the proposed
learning algorithm.
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Figure 5.7. The estimated bound γ and radius ε̂ , where the online-accessible parameter γ upper
bounds the quality degradation of α w.r.t. α? in high probability. The bound γ contributes to
tight radius ε̂ of ambiguity sets.
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Figure 5.8. Real-time resource allocation u and profit 〈u, x〉. Notice how the decision
u = (u1,u2,u3) respects constraints and how the allocation is balanced when the goal profit r0 is
achieved.

represents the unknown dynamics f and they are not accessible in reality. It can be seen that the

proposed method effectively learns α?. More precisely, we verify the quality of the estimated α

in probability by an upper bound γ of ‖α−α?‖∞, as shown in Fig. 5.7(a). Fig 5.7(b) shows the

estimated radius of adaptive ambiguity sets, calculated as in (4.9), and we compare it with its true

value, which is calculated using α? as in Theorem 9. Note that, in these figures, a spike appears

when the unknown α? changes, and the proposed learning method immediately reduces it back.

Fig. 5.8 demonstrates the online resource allocation obtained by implementing (5.2)

and the achieved real-time profit 〈u, x〉. The decision u starts from the uniform allocation

u0 = (1/3,1/3,1/3) and is then adjusted to approach the target profit r0 = 1.3. Once the target is

achieved, the agent then maintains the profit while trying to balance the allocation if possible.

When the return rate x is low/unbalanced, the agent tries to improve and achieve the target profit

by allocating resources more aggressively. In case that the return rate is high and the target profit

value is achieved, the agent focuses on balancing the allocation while maintaining the profit. If

both requirements are achieved, then the agent stops re-allocating resources and monitors the

return rate x until switch turns on, e.g., when the future profit prediction drops below r0 again.

Chapter 5, in full, is under revision for publication in Automatica, as Online optimiza-

tion and learning in uncertain dynamical environments with performance guarantees, D. Li,
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D. Fooladivanda, and S. Martínez. The dissertation author was the primary investigator and

author of this paper.
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Chapter 6

Data-driven High-Confidence Attack De-
tection

This chapter considers a sensor attack and fault detection problem for linear cyber-physical

systems, which are subject to system noise that can obey an unknown light-tailed distribution. In

this chapter, we propose a new threshold-based detection mechanism that employs theWasserstein

metric, and which guarantees system performance with high confidence employing a finite number

of measurements. The proposed detector may generate false alarms with a rate ∆ in normal

operation, where ∆ can be tuned to be arbitrarily small by means of a benchmark distribution

which is part of our mechanism. Thus, the proposed detector is sensitive to sensor attacks and

faults which have a statistical behavior that is different from that of the system noise. We quantify

the impact of stealthy attacks—which aim to perturb the system operation while producing false

alarms that are consistent with the natural system noise—via a probabilistic reachable set. To

enable tractable implementation of our methods, we propose a linear optimization problem that

computes the proposed detection measure and a semidefinite program that produces the proposed

reachable set.

6.1 Related Works

Cyber-Physical Systems (CPS) are physical processes that are tightly integrated with

computation and communication systems for monitoring and control. These systems are usually
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complex, large-scale and insufficiently supervised, making them vulnerable to attacks [21,105]. A

significant literature has studied various denial of service [3], false data-injection [6,88], replay [92,

140], sensor, and integrity attacks [90, 91, 93, 96] in a control-theoretic framework, by comparing

estimation and measurements w.r.t. predefined metrics. However, attacks could be stealthy, and

exploit knowledge of the system structure, uncertainty and noise information to inflict significant

damage on the physical system while avoiding detection. This motivates the characterization of

the impact of stealthy attacks via e.g. reachability set analysis [5,93,98]. To ensure computational

tractability, these works assume either Gaussian or bounded system noise. However, these

assumptions fall short in modeling all natural disturbances that can affect a system. When

designing detectors, an added difficulty is in obtaining tractable computations that can handle

these more general distributions. More recently, novel measure of concentration has opened the

way for online tractable and robust attack detection with probability guarantees under uncertainty.

A first attempt in this direction is [111], which exploits the Chebyshev’s inequality to design a

detector, and characterizes stealthy attacks on stable systems affected by bounded system noises.

With the aim of obtaining a less conservative detection mechanism, we leverage an alternative

measure-concentration result via Wasserstein metric. This metric is built from data gathered on

the system, and can provide significantly sharper results than those stemming from the Chebyshev

inequality. In particular, we address the following question for linear CPSs: How to design an

online attack-detection mechanism that is robust to light-tailed distributions of system noise while

remaining sensitive to attacks and limiting the impact of the stealthy attack?

Statement of Contributions

To address the previous question in this chapter: 1) We propose a novel detection

measure, which employs the Wasserstein distance between the benchmark and a distribution of

the residual sequence obtained online. 2) We propose a novel threshold-detection mechanism,

which exploits measure-of-concentration results to guarantee the robust detection of an attack
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Figure 6.1. Cyber-Physical System Diagram.

with high confidence using a finite set of data, and which further enables the robust tuning of

the false alarm rate. The proposed detector can effectively identify real-time attacks when its

behavior differs from that of the system noise. In addition, the detector can handle systems noises

that are not necessarily distributed as Gaussian. 3) We propose a quantifiable, probabilistic

state-reachable set, which reveals the impact of the stealthy attacker and system noise on open loop

stable systems with high probability. 4) To implement the proposed mechanism, we formulate

a linear optimization problem and a semidefinite problem for the computation of the detection

measure as well as the reachable set, respectively. We illustrate our methods in a two-dimensional

linear system with irregular noise distributions and stealthy sensor attacks.

6.2 Cyber-Physical Systems

A remotely-observed, cyber-physical system subject to sensor-measurement attacks, as in

Fig. 6.1, is described as a discrete-time, stochastic, linear, and time-invariant system

x(t +1) = Ax(t)+Bu(t)+w(t),

y(t) = Cx(t)+ v(t)+γ(t),
(6.1)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp denote the system state, input and output at time t ∈ N,

respectively. The state matrix A, input matrix B and output matrix C are assumed to be known in

advance. In particular, we assume that the pair (A,B) is stabilizable, and (A,C) is detectable. The

process noise w(t) ∈ Rn and output noise v(t) ∈ Rp are independent zero-mean random vectors.
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We assume that each w(t) and v(t) are independent and identically distributed (i.i.d.) over time.

We denote their (unknown, not-necessarily equal) distributions by Pw and Pv, respectively. In

addition, we assume that Pw and Pv are light-tailed1, excluding scenarios of systems operating

under extreme events, or subject to large delays. In fact, Gaussian, Sub-Gaussian, Exponential

distributions, and any distribution with a compact support set are admissible. This distribution

class is sufficient to characterize the uncertainty or noise of many practical problems.

An additive sensor-measurement attack is implemented via γ(t) ∈ Rp in (6.1), on which

we assume the following

Assumption 16 (Attack model). It holds that 1) γ(t) = 0 whenever there is no attack; 2)

the attacker can modulate any component of γ(t) at any time; 3) the attacker has unlimited

computational resources and access to system information, e.g., A, B, C, u, Pw and Pv to decide

on γ(t), t ∈ N.

6.2.1 Normal System Operation

Here, we introduce the state observer that enables prediction in the absence of attacks

(γ(t)= 0). Since the distribution of system noise is unknown, we identify a benchmark distribution

to capture this unknown distribution with high confidence.

To predict the system behavior, we employ a Kalman filter

x̂(t +1) = Ax̂(t)+Bu(t)+ L(t) (y(t)− ŷ(t)),

ŷ(t) = C x̂(t),

where x̂(t) is the state estimate and L(t) ≡ L is the steady-state Kalman gain matrix. As the pair

(A,C) is detectable, the gain L is selected to bring the eigenvalues of A− LC inside the unit circle.

1 See Definition 1 for details. All examples listed have a moment generating function, so their exponential
moment can be constructed for at least q = 1.
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This ensures that the estimation error e(t) := x(t)− x̂(t) satisfies

E[e(t)] → 0 as t→∞, for any x(0), x̂(0).

We additionally consider the estimated state feedback u(t) = K x̂(t), where K is selected to make

the next system stable2

ξ(t +1) = Fξ(t)+Gσ(t), (6.2)

where ξ(t) := (x(t), e(t))>, σ(t) := (w(t), v(t)+γ(t))>,

F =


A+BK −BK

0 A− LC

 ,G =

I 0

I −L

 and some ξ(0).

Remark 23 (Selection of L and K). In general, the selection of the matrices L and K for the

system (6.1) is a nontrivial task, especially when certain performance criteria are to be satified,

such as fast system response, energy conservation, or noise minimization. However, there are

a few scenarios in which the Separation Principle can be invoked for a tractable design of L

and K . For example, 1) when there is no system noise, matrices L and K can be designed

separately, such that each A+ BK and A− LC have all eigenvalues contained inside the unit

circle, respectively. 2) when noise are Gaussian, the gain matrices L and K can be designed

to minimize the steady-state covariance matrix and control effort, via a separated design of a

Kalman filter (as an observer) and a linear-quadratic regulator (as a controller). The resulting

design is referred to as a Linear-Quadratic-Gaussian (LQG) control [4].

Consider the system initially operates normally after selecting L and K , and assume that

the augmented system (6.2) is in steady state, i.e., E[ξ(t)] = 0. In order to design our attack

detector, we need a characterization of the distribution of the residue r(t) ∈ Rp, evaluating the

2System (6.2) is input-to-state stable in probability (ISSp) relative to any compact set A which contains the
origin, if we select K such that eigenvalues of the matrix A+BK are inside the unit circle, see e.g. [124].
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difference between what we measure and what we expect to receive:

r(t) := y(t)− ŷ(t) = Ce(t)+ v(t)+γ(t).

When there is no attack, it can be verified that r(t) is zero-mean, and light-tailed3. Let us denote

its unknown distribution by Pr . We assume that a finite, but large number N of i.i.d. samples

of Pr , are accessible, and acquired by collecting r(t) for a sufficiently large time. We call

these i.i.d. samples a benchmark data set, ΞB := {r (i) = y(i)− ŷ(i)}Ni=1, and construct the resulting

empirical distribution Pr,B by

Pr,B :=
1
N

N∑
i=1

δ{r (i)},

where the operator δ is the mass function, and the subscript B indicates that Pr,B is the benchmark

distribution of the data. We claim that Pr,B provides a characterization of the effect of the noise

on (6.2) via the following result:

Theorem 13 (Measure of concentration [40, Application of Theorem 2]). If Pr is a q-light-

tailed distribution for some q ≥ 1, then for a given β ∈ (0,1), the following holds

Prob
(
dW,q(Pr,B,Pr ) ≤ εB

)
≥ 1− β,

where Prob denotes the Probability of the samples in Pr,B, dW,q denotes the q-Wasserstein metric4,

and the parameter εB is selected as

εB :=


(

log(c1β
−1)

c2N

)q/a
, if N <

log(c1β
−1)

c2
,

ε̄, if N ≥ log(c1β
−1)

c2
,

(6.3)

3This can be checked from the definition in footnote 1, and follows from r(t) being a linear combination of
zero-mean q-light-tailed distributions.

4 See Section 1.2 for the definition.

159



for some constant5 a > q, c1, c2 > 0, and ε̄ is such that c2N(ε̄)max{2,p/q} = log(c1β
−1), if p , 2q,

or ε̄
log(2+1/ε̄) =

(
log(c1β

−1)
c2N

)1/2
, if p = 2q, where p is the dimension of r . �

Theorem 13 provides a probabilistic bound εB on the q-Wasserstein distance between

Pr,B and Pr , with a confidence at least 1− β. It indicates how to tune the parameter β and the

number of benchmark samples N that are needed to find a sufficiently good approximation of Pr ,

by means of Pr,B. In this way, given an ε , we can increase our confidence (1− β) on whether

Pr and Pr,B are within distance ε , by increasing the number of samples. We assume that Pr,B

has been determined in advance, selecting a very large (unique) N to ensure various very small

bounds εB associated with various β. Later, we discuss how the parameter β can be interpreted

as a false alarm rate in the proposed attack detector. The resulting Pr,B, with a tunnable false

alarm rate (depending on β), will allow us to design a detection procedure which is robust to the

system noise.

6.3 Threshold-based Robust Detection of Attacks, and
Stealthiness

This section presents our online detection procedure, and a threshold-based detector

with high-confidence performance guarantees. Then, we propose a tractable computation of

the detection measure used for online detection. We finish the section by introducing a class of

stealthy attacks.

Online Detection Procedure (ODP): At each time t ≥ T , we construct a T-step detector

distribution

Pr,D :=
1
T

T−1∑
j=0

δ{r(t− j)},

where r(t− j) is the residue data collected independently at time t− j, for j ∈ {0, . . .,T −1}. Then

5The parameter a is determined as in the definition of Pr and the constants c1, c2 depend on q, m, and Pr (via a,
b, c). When information on Pr is absent, the parameters a, c1 and c2 can be determined in a data-driven fashion
using sufficiently many samples of Pr . See [40] for details.
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with a given q and a threshold α > 0, we consider the detection measure

z(t) := dW,q(Pr,B,Pr,D), (6.4)

and the attack detector


z(t) ≤ α, no alarm at t : Alarm(t) = 0,

z(t) > α, alarm at t : Alarm(t) = 1,
(6.5)

with Alarm(t) the sequence of alarms generated online based on the previous threshold. The

distribution Pr,D uses a small number T of samples to ensure the online computational tractability

of z(t), so Pr,D is highly dependent on instantaneous samples. Thus, Pr,D may significantly

deviate from the true Pr , and from Pr,B. Therefore, even if there is no attack, the attack detector

is expected to generate false alarms due to the system noise as well as an improper selection of

the threshold α. In the following, we discuss how to select an α that is robust to the system noise

and which results in a desired false alarm rate. Note that the value α should be small to be able

to distinguish attacks from noise, as discussed later.

Lemma 18 (Selection of α for robust detectors). Given parameters N , T , q, β, and a desired

false alarm rate ∆ > β at time t, if we select the threshold α as

α := εB+ εD,

where εB is chosen as in (6.3) and εD is selected following the εB-formula (6.3), but with T and
∆−β
1−β in place of N and β, respectively. Then, the detection measure (6.4) satisfies

Prob (z(t) ≤ α) ≥ 1−∆,

for any zero-mean q-light-tailed underlying distribution Pr .
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Proof. To prove this, z(t) ≤ dW,q(Pr,B,Pr )+ dW,q(Pr,D,Pr ) follows from the triangular inequality.

Then we apply Theorem 13 for each dW,q term, and the fact that Prob
(
dW,q(Pr,D,Pr ) ≤ εD

)
≥

1− ∆−β1−β . Note also that samples of Pr,B and Pr,D are collected independently. �

Lemma 18 ensures that the false alarm rate is no higher than ∆ when there is no attack,

i.e.,

Prob(Alarm(t) = 1 | no attack) ≤ ∆, ∀ t.

Note that the rate ∆ can be selected by properly choosing the threshold α. Intuitively, if we fix all

the other parameters, then the smaller the rate ∆, the larger the threshold α. Also, large values of

N , T , 1− β contribute to small α.

Remark 24 (Comparison with χ2-detector). Consider an alternative detection measure

zχ(t) := r(t)>Σ−1r(t),

where Σ is the constant covariance matrix of the residue r(t) under normal system operation. In

particular, if r is Gaussian, the detection measure zχ(t) is χ2-distributed and referred to as χ2

detection measure with p degree of freedom. The detector threshold α is selected via look-up

tables of χ2 distribution, given the desired false alarm rate ∆. To compare z(t) with zχ(t), we

leverage the assumption that r is Gaussian with the given covariance Σ. This gives explicitly the

expression of z(t) the following

z(t) :=
(
Eξ∼N(r(t),Σ)[‖ξ‖

q]
)−1/q

.

By selecting q = 2, we have

z(t) :=
(
r(t)>r(t)+Tr(Σ)

)−1/2
.

Note that, the measure-of-concentration result in Theorem 13 is sharp when r is Gaussian, which
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in fact results in the threshold α as tight as that derived for χ2-detector.

Computation of detection measure: To achieve a tractable computation of the detection

measure z(t), we leverage the definition of the Wasserstein distance (see footnote 4) and the fact

that both Pr,B and Pr,D are discrete. The solution is given as a linear program.

The Wasserstein distance dW,q(Pr,B,Pr,D), originally solving the Kantorovich optimal

transport problem [115], can be interpreted as the minimal work needed to move a mass of

points described via a probability distribution Pr,B(r), on the spaceZ ⊂ Rp, to a mass of points

described by the probability distribution Pr,D(r) on the same space, with some transportation

cost `. The minimization that defines dW,q is taken over the space of all the joint distributions Π

onZ×Z whose marginals are Pr,B and Pr,D, respectively.

Assuming that both Pr,B and Pr,D are discrete, we can equivalently characterize the joint

distribution Π as a discrete mass optimal transportation plan [115]. To do this, let us consider

two setsN := {1, . . .,N} and T := {0, . . .,T −1}. Then, Π can be parameterized (by λ) as follows

Πλ(ξ1, ξ2) :=
∑
i∈N

∑
j∈T

λi jδ{r (i)}(ξ1)δ{r(t− j)}(ξ2),

s. t.
∑
i∈N

λi j =
1
T
, ∀ j ∈ T ,

∑
j∈T

λi j =
1
N
, ∀ i ∈ N, (6.6)

λi j ≥ 0, ∀ i ∈ N, j ∈ T . (6.7)

Note that this characterizes all the joint distributions with marginals Pr,B and Pr,D, where λ is

the allocation of the mass from Pr,B to Pr,D. Then, the proposed detection measure z(t) in (6.4)

reduces to the following

(z(t))q :=min
λ

∑
i∈N

∑
j∈T

λi j ‖r
(i)− r(t − j)‖q,

s. t. (6.6), (6.7),

(P)

which is a linear program over a compact polyhedral set. Therefore, the solution exists and (P)
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can be solved to global optimal in polynomial time by e.g., a CPLEX solver.

6.3.1 Detection and Stealthiness of Attacks

Following from the previous discussion, we now introduce an Erroneous Detection

Quantification Problem, then specialize it to the Attack Detection Problem considered in this

chapter. In particular, we analyze the sensitivity of the proposed attack detector method for the

cyber-physical system under attacks.

Problem 1: (Erroneous detection quantification problem) Given the augmented

system (6.2), the online detection procedure in Section 6.3, and the attacker type described in

Assumption 16, compute the erroneous detection probability

Prob(erroneous detection at t) :=

Prob(Alarm(t) = 1 | no attack)Prob(no attack)+Prob(Alarm(t) = 0 | attack)Prob(attack).

Problem 1, on the computation of the erroneous detection probability, requires prior information

of the attack probability Prob(attack). In this chapter, we are interested in stealthy attacks, i.e.,

attacks that can avoid detection by (6.5). These attacks, in the worst case, can induce significant

system damage before notice. We are led to the following problem.

Problem 2: (Attack detection problem) Given the setting of Problem 1, provide

conditions that characterize stealthy attacks, i.e., attacks that contribute to Prob(Alarm(t) =

0 | attack), and quantify their potential impact on the system.

To remain undetected, the attacker must select γ(t) such that z(t) is limited to within the

threshold α. To quantify the effects of these attacks, let us consider an attacker sequence backward

in time with length T . At time t, denote the arbitrary injected attacker sequence by γ(t − j) ∈ Rp,

j ∈ {0, . . .,T −1} (if t − j < 0, assume γ(t − j) = 0). This sequence, together with (6.2), results

in a detection sequence {r(t − j)} j that can be used to construct detector distribution Pr,D and

detection measure z(t). We characterize the scenarios that can occur, providing a first, partial
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answer to Problem 2. Then, we will come back to analyzing the impact of stealthy attacks in

Section 6.4.

Definition 3 (Attack detection characterization). Assume (6.2) is subject to attack, i.e., γ(t), 0

for some t ≥ 0.

• If z(t) ≤ α, ∀ t ≥ 0, then the attack is stealthy with probability one, i.e., Prob(Alarm(t) =

0 | attack) = 1.

• If z(t) ≤ α, ∀t ≤ M , then the attack is M-step stealthy.

• If z(t) > α, ∀t ≥ 0, then the attack is active with probability one, i.e., Prob(Alarm(t) =

0 | attack) = 0.

For simplicity and w.l.o.g., let us assume that γ(t) is in form

γ(t) := ŷo(t)− yo(t)+ γ̄(t) = −Ce(t)− v(t)+ γ̄(t), (6.8)

where ŷo(t), yo(t) are online noisy measurements of ŷ(t), y(t), and γ̄(t) ∈ Rp is any vector

selected by the attacker.6

Lemma 19 (Stealthy attacks leveraging system noise). Assume (6.2) is subject to attack that

leverages measurements ŷo(t) and yo(t) as in form (6.8), where γ̄(t) is stochastic and distributed

as Pγ̄. If Pγ̄ is selected such that dW,q(Pγ̄,Pr,B) ≤ εB, then the attacker is stealthy with (high)

probability at least 1−∆
1−β , i.e., Prob(Alarm(t) = 0 | attack) ≥ 1−∆

1−β . 7

Proof. Assume (6.2) is under attack. Leveraging the measure concentration result,

Prob
(
dW,q(Pγ̄,Pr,D) ≤ εD

)
≥ 1−

∆− β

1− β
,

6Note that, when there is no attack at t, we have γ(t) = 0, resulting in selection γ̄(t) = yo(t) − ŷo(t). Similar
techniques are in, e.g., [93, 97].

7Note that α > εB, which allows the attacker to select Pγ̄ with εB < dW,q(Pγ̄,Pr,B) ≤ α. However, the probability
of being stealthy can be indefinitely low, with the range [0, 1−∆

1−β ].
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which holds as Pr,D is constructed using samples of Pγ̄. This together with the triangular

inequality z(t) ≤ dW,q(Pr,B,Pγ̄)+ dW,q(Pr,D,Pγ̄), results into z(t) ≤ α with probability at least
1−∆
1−β . �

6.4 Stealthy Attack Analysis

In this section, we address the second question in Problem 2 via reachable-set analysis.

In particular, note that the CPS (6.1) is resilient to stealthy attacks only when (6.1) is open-loop

stable. Under this assumption, we achieve an outer-approximation of the finite-step probabilistic

reachable set, quantifying the effect of the stealthy attacks and the system noise in probability.

Consider an attack sequence γ(t) as in (6.8), where γ̄(t) ∈ Rp is any vector such that the

attack remains stealthy. That is, γ̄(t) results in the detected distribution Pr,D, which is close to

Pr,B as prescribed by α. This results in the representation of (6.2) as

ξ(t +1) =


A+BK −BK

0 A

︸               ︷︷               ︸
H

ξ(t)+


I 0

I −L

︸    ︷︷    ︸
G


w(t)

γ̄(t)

 . (6.9)

We provide in the following remark an intuition of how restrictive the stealthy attacker’s action

γ̄(t) has to be.

Remark 25 (Constant attacks). Consider a constant offset attack γ̄(t) := γ0 for some γ0 ∈ R
p,

∀t. Then by (P),

z(t) = N1−1/q‖γ0−C(ΞB)‖, C(ΞB) :=
1
N

∑
i∈N

r (i).

To ensure stealth, we require z(t) ≤ α, this then limits the selection of γ0 in a ball centered

at C(ΞB) with radius α/N1−1/q. Note that the radius can be arbitrarily small by choosing the

benchmark size N large.
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To quantify the reachable set of the system under attacks, prior information on the process

noise w(t) is needed. To characterize w(t), let us assume that, similarly to the benchmark Pr,B,

we are able to construct a noise benchmark distribution, denoted by Pw,B. As before,

Prob
(
dW,q(Pw,B,Pw) ≤ εw,B

)
≥ 1− β,

for some εw,B. Given certain time, we are interested in where, with high probability, the state of

the system can evolve from some ξ0. To do this, we consider the M-step probabilistic reachable

set of stealthy attacks, defined as follows

Rx,M :=


x(M) ∈ Rn

system (6.9) with ξ(0) = ξ0,

∃ Pw 3 dW,q(Pw,Pw,B) ≤ εw,B,

∃ Pγ̄ 3 dW,q(Pγ̄,Pr,B) ≤ α,


,

then the true system state x(t) at time M , x(M), satisfies

Prob
(
x(M) ∈ Rx,M

)
≥ 1− β,

where 1− β accounts for the independent restriction of the unknown distributions Pw to be “close”

to its benchmark.

The exact computation of Rx,M is intractable due to the unbounded support of the

unknown distributions Pw and Pγ̄ , even if they are close to their benchmark. To ensure a tractable

approximation, we follow a two-step procedure. First, we equivalently characterize the constraints

on P by its probabilistic support set. Then, we outer-approximate the probabilistic support by

ellipsoids, and then the reachable set by an ellipsoidal bound.

Step 1: (Probabilistic support of Pγ̄ 3 dW,q(Pγ̄,Pr,B) ≤ α)We achieve this by leveraging

1) theMonge formulation [115] of optimal transport, 2) the fact that Pr,B is discrete, and 3) results
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from coverage control [18, 28]. W.l.o.g., let us assume Pγ̄ is non-atomic (or continuous) and,

consider the distribution Pγ̄ and Pr,B supported onZ ⊂ Rp. Let us denote by f : Pγ̄ 7→ Pr,B the

transport map that assigns mass overZ from Pγ̄ to Pr,B. The Monge formulation aims to find an

optimal transport map that minimizes the transportation cost ` as follows

dM,q(Pγ̄,Pr,B) :=
(
min

f

∫
Z

`q(ξ, f (ξ))Pγ̄(ξ)dξ
)1/q

.

It is known that if an optimal transport map f? exists, then the optimal transportation plan Π?

exists and the two problems dM,q and dW,q coincide8. In our setting, for strongly convex `p,

and by the fact that Pγ̄ is absolutely continuous, a unique optimal transport map can indeed be

guaranteed9, and therefore, dM,q = dW,q. Let us now consider any transport map f of dM,q, and

define a partition of the support of Pγ̄ by

Wi := {r ∈ Z | f (r) = r (i)}, i ∈ N,

where r (i) are samples in ΞB, which generate Pr,B. Then, we equivalently rewrite the objective

function defined in dM,q, as

H(Pγ̄,W1, . . .,WN ) :=
N∑

i=1

∫
Wi

`q(ξ, r (i))Pγ̄(ξ)dξ,

s. t.
∫

Wi

Pγ̄(ξ)dξ =
1
N
, ∀ i ∈ N, (6.10)

where the ith constraints come from the fact that a transport map f should lead to consistent

calculation of set volumes under Pr,B and Pγ̄ , respectively. This results in the following equivalent

8This is because the Kantorovich transport problem is the tightest relaxation of the Monge transport problem.
See e.g., [115] for details.

9The Monge formulation is not always well-posed, i.e., there exists optimal transportation plans Π? while
transport map does not exist [115].
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problem to dM,q as

(dM,q(Pγ̄,Pr,B))
q := min

Wi,i∈N
H(Pγ̄,W1, . . .,WN ),

s. t. (6.10).
(P1)

Given the distribution Pγ̄, Problem (P1) reduces to a load-balancing problem as in [28]. Let us

define the Generalized Voronoi Partition (GVP) ofZ associated to the sample set ΞB and weight

ω ∈ RN , for all i ∈ N , as

Vi(ΞB,ω) := {ξ ∈ Z | ‖ξ − r (i)‖q −ωi ≤ ‖ξ − r
( j)‖q −ω j, ∀ j ∈ N}.

It has been established that the optimal Partition of (P1) is the GVP [28, Proposition V.1].

Further, the standard Voronoi partition, i.e., the GVP with equal weights ω̄ := 0, results in a lower

boundof (P1), when constraints (6.10) are removed [18], and therefore that of dM,q. We denote

this lower bound as L(Pγ̄,V(ΞB)), and use this to quantify a probabilistic support of Pγ̄. Let us

consider the support set

Ω(ΞB, ε) := ∪i∈N

(
Vi(ΞB)∩Bε (r

(i))

)
,

where Bε (r (i)) := {r ∈ Rp | ‖r − r (i)‖ ≤ ε}.

Lemma 20 (Probabilistic support). Let ε > 0 and let Pγ̄ be such that L(Pγ̄,V(ΞB)) ≤ ε
q. Then,

for any given s > 1, at least 1−1/sq portion of the mass of Pγ̄ is supported on Ω(ΞB, sε), i.e.,∫
Ω(ΞB,sε)

Pγ̄(ξ)dξ ≥ 1−1/sq.

Proof. Suppose otherwise, i.e.,
∫
Rp\Ω(ΞB,sε)

Pγ̄(ξ)dξ = 1−
∫
Ω(ΞB,sε)

Pγ̄(ξ)dξ > 1/sq. Then,

L(Pγ̄,V(ΞB)) ≥

∫
Rp\Ω(ΞB,sε)

‖ξ − r (i)‖qPγ̄(ξ)dξ,

≥ sqεq
∫
Rp\Ω(ΞB,sε)

Pγ̄(ξ)dξ > εq, contradiction.

�

In this way, the support Ω(ΞB,2α) contains at least 1− 1/2q of the mass of all the
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distributions Pγ̄ such that dW,q(Pγ̄,Pr,B) ≤ α. Equivalently, we have Prob (γ̄ ∈ Ω(ΞB,2α)) ≥

1−1/2q, where the random variable γ̄ has a distribution Pγ̄ such that dW,q(Pγ̄,Pr,B) ≤ α. We

characterize Pw similarly. Note that in practice, one can choose ball radius factor s large in order

to generate support which contains higher portion of the mass of unknown P. However, it comes

at a cost on the approximation of the reachable set.

Step 2: (Outer-approximation of Rx,M) Making use of the probabilistic support, we

can now obtain a finite-dimensional characterization of the probabilistic reachable set, as follows

Rx,M :=


x(M) ∈ Rn

system (6.9), ξ(0) = ξ0,

w ∈ Ω(Ξw,B,2εw,B),

γ̄ ∈ Ω(ΞB,2α)


,

and the true system state x(t) at time M , x(M), satisfies Prob
(
x(M) ∈ Rx,M

)
≥ (1− β)(1−1/2q)2.

Note that, if the CPS (6.1) is open-loop unstable, so does (6.9). This leads to vulnerable CPS

to stealthy sensor attacks. That is, almost surely any stealthy attack γ(t) in form (6.8) inflicts

significant damage of the system with an unbounded reachable set, i.e., ∃ x(M) ∈ Rx,M such

that x(M) →∞ as M→∞. Many works focus on the tractable evolution of geometric shapes

when (6.1) is stable and resilient to stealthy attacks10, e.g. [93, 98]. Here, we follow [98] and

propose outer ellipsoidal bounds for Rx,M . Let Qw be the positive-definite shape matrix such

that Ω(Ξw,B, εw,B) ⊂ Ew := {w | w>Qww ≤ 1}. Similarly, we denote Qγ̄ and Eγ̄ for that of γ̄. We

now state the lemma, that applies [98, Proposition 1] for our case.

Lemma 21 (Outer bounds of Rx,M). Given any a0 ∈ (0,1), we claim Rx,M ⊂ E(Q) := {x ∈

10If (6.1) is unstable, we either need extra protected sensors or benchmark data of the state estimate x̂, Px̂,B, to
ensure effective stealthy attack detection.
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Rn | ξ>Qξ ≤ aM
0 ξ0

>Qξ0+
(2−a0)(1−aM

0 )

1−a0
}, with Q satisfying

Q � 0,



a0Q H>Q 0

QH Q QG

0 G>Q W


� 0, (6.11)

where H, G are that in (6.9) and

W =


(1− a1)Qw 0

0 (1− a2)Qγ̄

 ,
for some a1+ a2 ≥ a0, a1,a2 ∈ (0,1).

(6.12)

A tight reachable set bound can be now derived by solving

min
Q,a1,a2

− logdet(Q),

s. t. (6.11), (6.12),
(P2)

which is a convex semidefinite program, solvable via e.g., SeDuMi [122]. Note that the

probabilistic reachable set is

Rx := ∪∞M=1Rx,M,

which again can be approximated via Q? solving (P2) for11

Rx ⊂ E(Q?) = {x ∈ Rn | ξ>Q?ξ ≤
(2− a0)

1− a0
}.

11The set Rx is in fact contained in the projection of E(Q?) onto the state subspace, i.e., Rx ⊂ {x | x
>
(
Qxx −

QxeQ−1
eeQxe

>
)
x ≤ (2−a0)

1−a0
} with Q? :=

[
Qxx Qxe

Qxe
> Qee

]
. See, e.g., [98] for details.
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6.5 Simulations

In this section, we demonstrate the performance of the proposed attack detector, illustrating

its distributional robustness w.r.t. the system noise. Then, we consider stealthy attacks as in (6.8)

and analyze their impact by quantifying the probabilistic reachable set and outer-approximation

bound.

Consider the stochastic system (6.2), given as

A =


1.00 0.10

−0.20 0.75

 , B =


0.10

0.20

 , L =


0.23

−0.20

 ,
C =

[
1 0

]
, K =

[
−0.13 0.01

]
, n = 2, m = p = 1,

w1 ∼ N(−0.25,0.02)+U(0,0.5), v ∼U(−0.3,0.3),

w2 ∼ N(0,0.04)+U(−0.2,0.2),

where N and U represent the normal and uniform distributions, respectively. We consider

N = 103 benchmark samples for Pr,B and T = 102 real-time samples for Pr,D. We select q = 1,

β = 0.01 and false alarm rate ∆ = 0.05. We select the prior information of the system noise via

a = 1.5, c1 = 1.84×106 and c2 = 12.5. Using the measure-of-concentration results, we determine

the detector threshold to be α = 0.158. In the normal system operation (no attack), we run the

online detection procedure for 104 time steps and draw the distribution of the computed detection

measure z(t) as in Fig. 6.2. We verify that the false alarm rate is 3.68%, within the required

rate ∆ = 5%. When the system is subject to stealthy attacks, we assume ξ0 = 0 and visualize

the Voronoi partitionV(Ξw,B) (convex sets with blue boundaries) of the probabilistic support

Ω(Ξw,B, εw,B) and its estimated ellipsoidal bound (red line) as in Fig. 6.3. Further, we demonstrate

the impact of the stealthy attacks (6.8) with a0 = 0.85, as in Fig. 6.4. We used 104 empirical

points of Rx as its estimate and provided an ellipsoidal bound of Rx computed by solution of (P2).

It can be seen that the proposed probabilistic reachable set effectively captures the reachable set
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Figure 6.2. Statistics of z.

in probability. Due to the space limits, we omit the comparison of our approach to the existing

ones, such as the classical χ2 detector in [93] and the CUMSUM procedure [90]. However,

the difference should be clear: our proposed approach is robust w.r.t. noise distributions while

others leverage the moment information up to the second order, which only capture sufficient

information about certain noise distributions, e.g., Gaussian.

Chapter 6, in full, is a reprint of High-confidence attack detection via Wasserstein-metric

computations, D. Li and S. Martínez, IEEE Control Systems Letters, 5(2):379-384, 2020, which

was presented at IEEE International Conference on Decision and Control, Jeju Island, Korea,

2020. The dissertation author was the primary investigator and author of this paper.
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Figure 6.3. Probabilistic Support of Pw.

Figure 6.4. Empirical and Bound of Rx .
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Chapter 7

Conclusion

In this thesis, we proposed theoretical and algorithmic foundations to support a class

of uncertain systems which integrate optimization and control where rigorous performance

guarantees are made available. In particular, we developed five finite-online-data-driven

frameworks, focusing on online data-assimilation capabilities, data-driven control design, online

learning of system models, resilient operations in uncertain environments, and anomaly detection.

Each framework was approached with theoretical analysis, explainable proofs, and as well as

numerical validations on efficacy via various case studies. More specific, chapter-by-chapter

conclusions and future works are as the following:

In Chapter 2, we have proposed the Online Data Assimilation Algorithm (the OnDA

Algorithm) to solve the problem in the form of (P), where the realizations of the unknown

distribution (i.e., the streaming data) are collected over time in order for the real-time data-driven

decision of (P) to have guaranteed out-of-sample performance. The data-driven decision with

the certificate that guarantees out-of-sample performance are available any time during the

execution of the algorithm, and the optimal data-driven decision are approached with a (sub)linear

convergence rate. The algorithm terminates after collecting a sufficient amount of data to make

good decision. To facilitate the decision making, an enhanced version of the proposed algorithm

is further constructed, by using an Incremental Covering Algorithm (the I-Cover Algorithm)

to estimate new ambiguity sets over time. We provided sample problems and showed the actual
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performance of the proposed OnDA Algorithm with the I-Cover Algorithm over time. Future

work may generalize the results for weaker assumptions of the problem and potentially extend

the algorithm to scenarios that include system dynamics.

Chapter 3 formulates a data-driven predictive control problem with probabilistic per-

formance guarantees as a distributionally optimization problem. We equivalently reformulate

this intractable Problem (P) into a non-convex but tractable Problem (P4), or Mixed Integer

Second Order Cone Problem (P5). This is achieved by: 1) extending Distributionally Robust

Optimization theory to account for system dynamics; 2) reformulation and relaxation techniques.

Finally, we adapt the idea of decomposition and propose an integer-solution search algorithm for

efficient solutions of Problem (P4), or commercial solvers for that of Problem (P5). The proposed

approaches provide performance guarantee (3.8) for Problem (P). To explicitly demonstrate

the proposed approach, we consider a highway speed-limit control problem that accounts for

random inflows, outflows and events. Finally, we demonstrate the theoretical effectiveness of

this work via simulations and we simulate traffic flows on a highway in San Diego, showing

the effectiveness of the designed speed limits numerically. Future work is on considering more

complex traffic networks and the use of the framework for other complex systems.

In Chapter 4, we proposed an approach for online learning of unknown and uncertain

dynamical systems or environments in a parameterized class. The proposed method allows

us to learn the system, while providing an online characterization of the approximation via

online-quantifiable probabilistic guarantees. The approach opens a way for the robust integration

of the online learning with control design.

Chapter 5 extends results of Chapter 4, which proposes a unified solution framework for

online learning and optimization problems in form of (P). The proposed method allows us to

learn an unknown and uncertain dynamic environment, while providing a characterization of the

environment with online-quantifiable probabilistic guarantees that certify the performance of

online decisions. The approach provides tractable, online convex version of (P), via a series of

equivalent reformulation techniques. We explicitly demonstrate the framework via two problem
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scenarios conforming to (P): an optimal control problem under uncertainty and an online

resource allocation problem. These two scenarios result in explicit, online and non-smooth

convex optimization problems. We extend Nesterov’s accelerated-gradient method to an online

fashion and provide a solution system for online decision generation of (P). The quality of

the online decisions are analytically certified via a probabilistic regret bound, which reveals its

relation to the learning parameters and ambiguity sets.

Finaly, in Chapter 6, a novel detection measure is proposed to enable distributionally

robust detection of attacks w.r.t. unknown, and light-tailed system noise. The proposed detection

measure restricts the behavior of the stealthy attacks, whose impact is quantified via reachable-set

analysis. Future work may focus on more extensive comparision of the proposed approach with

other methods under various types of attacks.
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Appendix A

Numerical Methods used in Chapter 2

There are mainly two types of Numerical methods that serve as the main ingredients

of our OnDA Algorithm. One type is given by Frank-Wolfe Algorithm (FWA) variants and

another is the Subgradient Algorithm. In this Section, we describe FWA and the Away-step

Frank-Wolfe Algorithm (AFWA) for the sake of completeness. We combine AFWA with another

variant, the Simplicial Algorithm, in Section 2.4. For the Subgradient Algorithm, please refer

to [100,112,123].

A.1 Frank-Wolfe Algorithm over a Unit Simplex

To solve convex programs over a unit simplex, we introduce the FWA and AFWA

following [52, 58]. Let us denote the m-dimensional unit simplex by ∆m := {λ ∈ Rm | 1m
>λ =

1, λ ≥ 0}. Let Λm be the set of all extreme points for the simplex ∆m. Consider the maximization

of a concave function f (x) subject to x ∈ ∆m; we refer to this problem by (?) and denote by x?

an optimizer of (?). We call xε an ε-optimal solution of (?), if xε ∈ ∆m and f (x?)− f (xε ) ≤ ε .

The classical FWA solves problem (?) to an xε via the iterative process as follows. Let

x(0) ∈ ∆m denote a random initial point for FWA. For each iteration k with an x(k) ∈ ∆m,

the concavity of f enables f (x?) ≤ f (x(k))+∇ f (x(k))
>
(x? − x(k)), which implies f (x?) ≤

f (x(k))+maxx∈∆m ∇ f (x(k))
>
(x − x(k)). Using this property, we define a FW search point s(k)

by an extreme point such that s(k) ∈ argmaxx∈∆m ∇ f (x(k))
>
(x− x(k)). With this search point we

178



define the FW direction at x(k) by d(k)FW := s(k)− x(k). The classical FWA then iteratively finds a

FW direction and solves a line search problem over this direction until an ε-optimal solution

xε := x(k) is found, certified by η(k) := ∇ f (x(k))
>

d(k)FW ≤ ε .

It is known that the classical FWA has linear convergence rate if the cost function f is

µ-strongly concave and the optimum is achieved in the relative interior of the feasible set ∆m.

If the optimal solution lies on the boundary of ∆m, then this algorithm only has a sublinear

convergence rate, due to a zig-zagging phenomenon [58]. AFWA is an extension of the FWA

that guarantees the linear convergence rate of the problem (?) under some conditions related to

the local strong concavity. The main difference between AFWA and the classical FWA is that the

latter solves the line-search problem after obtaining a ascent direction by considering all extreme

points, while the AFWA chooses a ascend direction that prevents zig-zagging. We summarize

the convergence properties of the AFWA here. For complete descriptions of the AFWA, we refer

the reader to [58]. The detailed FWA and AFWA are shown in Algorithm tables.

Algorithm 8. Classical FWA for (?): FW(x(0),∆m, ε).
Ensure: ε-optimal xε ;
1: Set k← 0, η(k)← +∞;
2: repeat
3: Pick s(k) ∈ argmax

x∈Λm

∇ f (x(k))
>
(x− x(k));

4: d(k)FW← s(k)− x(k);
5: η(k)←∇ f (x(k))

>
d(k)FW;

6: Pick γ(k) ∈ argmax
γ∈[0,1]

f (x(k)+γd(k)FW);

7: x(k+1)← x(k)+γ(k)d(k)FW;
8: k← k +1;
9: until η(k) ≤ ε ;
10: Return x(k).

Theorem 14 (Linear convergence of AFWA [58, Theorem 8]). Suppose the function f has

a curvature constant C f and a geometric strong concavity constant µ f on ∆m, as defined in

footnote 1 Let us define the decay rate κ := 1− µ f /(4C f ) ∈ (0,1) ⊂ R. Then the suboptimality
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Algorithm 9. AFWA for (?): (xε,objε ) ← AFW( f (x),∆m, ε).
Ensure: ε-optimal xε with objective objε ;
1: Set k← 0, η(k)← +∞;
2: Pick x(k) ∈ Λm, I(k)Act := {x(k)}, p = |I(k)Act |;

3: Let α(k)v =

{
1/p, if v ∈ I(k)Act,

0, if v ∈ Λm− I(k)Act,
4: repeat
5: Pick s(k) ∈ argmax

x∈Λm

∇ f (x(k))T (x− x(k));

6: d(k)FW← s(k)− x(k);
7: Pick v(k) ∈ argmin

x∈I
(k)
Act

∇ f (x(k))T (x− x(k));

8: d(k)A ← x(k)− v(k); . Away-step direction
9: if

〈
∇ f (x(k)),d(k)FW

〉
≥

〈
∇ f (x(k)),d(k)A

〉
, then

10: d(k)← d(k)FW;
11: flag← True, γmax← 1;
12: else . AFW direction has larger potential ascent
13: d(k)← d(k)A ;
14: γmax← α

(k)

v(k)
/(1−α(k)

v(k)
);

15: Pick γ(k) ∈ argmax
γ∈[0,γmax]

f (x(k)+γd(k));

16: if flag is True, then
17: if γ(k) = 1, then . Hit extreme point
18: I(k+1)

Act ← {s
(k)};

19: else
20: I(k+1)

Act ← I(k)Act∪ {s
(k)};

21: α
(k+1)
s(k)
← (1−γ(k))α(k)

s(k)
+γ(k);

22: α
(k+1)
v ← (1−γ(k))α(k)v , ∀v ∈ I(k)Act− {s

(k)};
23: else
24: if γ(k) = γmax, then . Hit ∆m boundary
25: I(k+1)

Act ← I(k)Act− {v
(k)};

26: else
27: I(k+1)

Act ← I(k)Act;
28: α

(k+1)
v(k)

= (1+γ(k))α(k)
v(k)
−γ(k);

29: α
(k+1)
v = (1+γ(k))α(k)v , ∀v ∈ I(k)Act− {v

(k)};
30: x(k+1)← x(k)+γ(k)d(k);
31: k← k +1;
32: until η(k) ≤ ε ;
33: Return xε ← x(k) and objε ← f (xε ).

bound at the iteration point x(k) of the AFWA decreases geometrically as f (x?)− f (x(k+1)) ≤

κ( f (x?)− f (x(k))). �
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Appendix B

SubGaussian Properties used in Chapter 4

We adapt these two subGaussian properties for proofs in Chapter 4.

Lemma 22 (∞−norm of subGaussian vectors have subGaussian tails [129]). If Assumption 9

holds, then for each k = 0,1,2, . . . and any η ≥ 0, we have

Prob (‖wk ‖∞ ≥ η) ≤ 2nexp
(
−
η2

2σ2

)
.

Proof. Lemma 22 Let wk,i denote the ith component of wk where i ∈ {1, . . .,n}. We apply the

definition of∞−norm as the following

Prob (‖wk ‖∞ ≥ η) = Prob
(

max
i∈{1,...,n}

|wk,i | ≥ η

)
= 1−Prob

(
|wk,i | ≤ η, ∀i ∈ {1, . . .,n}

)
.

By the independence of wk,i as in Assumption 9, we have

Prob
(
|wk,i | ≤ η, ∀i ∈ {1, . . .,n}

)
= Prob

(
|wk,1 | ≤ η

)
· · ·Prob

(
|wk,n | ≤ η

)
.

Then for each i ∈ {1, . . .,n}, we have1

Prob
(
|wk,i | ≤ η

)
= 1−Prob

(
|wk,i | ≥ η

)
≥ 1−2exp

(
−
η2

2σ2

)
,

1An equivalent representation of Assumption 9: For any η ≥ 0, Prob
(
|a>wt | ≥ η

)
≤ 2exp

(
−

η2

2‖a ‖2σ2

)
.
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which results in

Prob
(
|wk,i | ≤ η, ∀i ∈ {1, . . .,n}

)
≥

[
1−2exp

(
−
η2

2σ2

)]n

.

Finally, we have2

Prob (‖wk ‖∞ ≥ η) ≤ 1−
[
1−2exp

(
−
η2

2σ2

)]n

≤ 2nexp
(
−
η2

2σ2

)
.

�

Lemma 23 (Bounded moments of normed-subGaussian vectors [129]). If Assumption 9

holds,

E
[
‖wk ‖

l
∞

]
≤ nσl l

l
2+1, ∀ l ∈ Z≥0.

Proof. Lemma 23 The moments can be equivalently computed by

E
[
‖wk ‖

l
∞

]
=

∞∫
0

Prob (‖wk ‖∞ ≥ η) lηl−1dη.

Applying the result of Lemma 22, we have

E
[
‖wk ‖

l
∞

]
≤ 2nl

∞∫
0

exp
(
−
η2

2σ2

)
ηl−1dη.

By the variable substitute η̄ := η2

2σ2 , the above bound becomes

E
[
‖wk ‖

l
∞

]
≤ nl(2σ2)

l
2

∞∫
0

exp (−η̄) η̄
l
2−1dη̄.

2Bernoulli’s inequality: (1+ x)n ≥ 1+nx for ∀n ∈ Z>0, ∀x ≥ −2.
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By the definition of Γ function and its property3, we have

E
[
‖wk ‖

l
∞

]
≤ nσl l

l
2+1.

�

3The property of the Γ function: Γ( l2 ) :=
∞∫
0

exp (−η̄) η̄ l
2−1dη̄ ≤ ( l2 )

l
2 .
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Appendix C

Solution Analysis used in Chapter 5

C.1 Smooth Approximation of Standard Functions

Example 2 (`2-norm function). (1) Consider x ∈ Rn, F : x 7→ ‖x‖, and µ > 0. Clearly, F is

differentiable almost everywhere, except at the origin. Then,

Fµ(x) :=min
z∈Rn

{
‖ z‖+

1
2µ
‖ z − x‖2

}
,

=min
r≥0

min
‖ z‖=r

{
r +

1
2µ

(
r2−2z>x+ ‖x‖2

)}
,

=min
r≥0

{
r +

1
2µ

(
r2−2r ‖x‖+ ‖x‖2

)}
,

=


‖x‖2

2µ , if ‖x‖ ≤ µ,

‖x‖ − µ
2 , o.w.,

with the smoothing parameter (1/2,1).

Example 3 (`1-norm function). (2) Consider u ∈ Rm, G : u 7→ ‖u‖1, and µ > 0. Then, using

the fact that ‖u‖1 :=
∑

i |ui |, we have Gµ(u) :=
m∑

i=1
Fµ(ui), with the parameter (m/2,1).

Example 4 (Switch function). Consider u ∈ R, FS : u 7→max{0,1−u}, which is differentiable
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almost everywhere. For a given µ > 0, we compute

FS
µ (u) :=min

z∈R

{
max{0,1− z}+

1
2µ
‖z−u‖2

}
,

=min
{
min
z≤1

1− z+
1

2µ
‖z−u‖2,min

z≥1

1
2µ
‖z−u‖2

}
.

Given that

min
z≤1

1− z+
1

2µ
‖z−u‖2 =


1

2µ ‖1−u‖2, if u > 1− µ,

1−u− µ
2 , if u ≤ 1− µ,

and

min
z≥1

1
2µ
‖z−u‖2 =


1

2µ ‖1−u‖2, if u < 1,

0, if u ≥ 1,

resulting in

FS
µ (u) :=



1−u− µ
2 , if u ≤ 1− µ,

1
2µ ‖1−u‖2, if 1− µ ≤ u < 1,

0, if u ≥ 1,

with the smoothing parameter (1/2,1).

C.2 Computation of the Objective Gradients

Let `, G and Gµ be those in Lemma 17 on examples of (P2′). We now derive ∇Gµ :=

∇uGµ(t, u) as follows.

Problem 1: (Optimal control under uncertainty)

∇uGµ(t, u) =
1
µ
u+

1
T

∑
k∈T

∇uFµ(pk,t)+
γ

T

p∑
i=1

∑
k∈T

∇uFµ(H
(i)
k ),
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where, for each k ∈ T , the term ∇uFµ(pk,t) is


1
µ

(
p∑

i=1
αi f (i)2 (t, x̂t)

)>
pk,t, if ‖pk,t ‖ ≤ µ,

1
‖ pk,t ‖

(
p∑

i=1
αi f (i)2 (t, x̂t)

)>
pk,t, o.w.,

and, for k ∈ T , i ∈ {1, . . ., p}, the term ∇uFµ(H
(i)
k ) is


− 1
µ( f
(i)

2 (t, x̂t))
>

H(i)k , if ‖H(i)k ‖ ≤ µ,

− 1
‖H(i)

k
‖
( f (i)2 (t, x̂t))

>
H(i)k , o.w. .

Problem 2: (Online resource allocation)

∇uGµ(t, u) =
1
T

∑
k∈T

∇uFS
µ (〈u, pk,t〉)+ qt∇uFµ(u),

where

∇uFµ(u) :=


1
µu, if ‖u‖ ≤ µ,

1
‖u‖ u, o.w.,

and, for each k ∈ T , the gradient ∇uFS
µ (〈u, pk,t〉) is



−pk,t, if 〈u, pk,t〉 ≤ 1− µ,

−
1−〈u,pk,t 〉

µ pk,t, if 1− µ ≤ 〈u, pk,t〉 < 1,

0, if 〈u, pk,t〉 ≥ 1.

These explicit expressions provide ingredients for the solution system. With different selections

of the norm, the expression varies accordingly.
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C.3 Stability Analysis of the Solution System

Here, we adapt dissipativity theory to address the performance of the online solution

system (5.2). This part of the work is an online-algorithmic extension of the existing Nesterov’s

accelerated-gradient method and its convergence analysis in [8, 53, 66]. Our extension (5.2)

inherits from the work in [66], where the difference is that gradient computations in (5.2) are

from time-varying objective functions in (P2′). To simplify the discussion, the notation we used

in this section is different from that in the main body of Chapter 5. Consider the online problem,

analogous to (P2′), defined as follows

min
x∈X

ft(x), t = 0,1,2, . . . (C.1)

where ft(x) is locally Lipschitz in t with the parameter h(x) and, at each time t, the objective

function ft are mt-strongly convex and Lt-smooth, with mt ≥ 0 and Lt > 0. The convex set

X ⊂ Rn is analogous to that in Assumption 15 on convex decision oracle. The solution system

to (C.1), analogous to (5.2), is

xt+1 = Π(yt −αt∇ ft(yt)),

yt+1 = xt+1+ βt (xt+1− xt),

with some y0 = x0 ∈ X,

(C.2)

where αt ≤ 1/Lt and βt is selected iteratively, following

δ−1 = 1, δt+1 :=
1+

√
1+4δ2

t

2
, βt :=

δt−1−1
δt

.

Note that δ2
t − δt = δ

2
t−1, t = 0,1,2, . . .. The projection Π(x) at each time t is equivalently written

as

Π(x) = argmin
z∈Rn

1
2
‖ z − x‖2+αt`(z),

187



with `(z) = 0 if z ∈ X, otherwise +∞. Note that the projection operation is a convex problem with

the objective function being strongly convex. Thus, Π(x) is a singleton (the unique minimizer)

and satisfies the optimality condition [113]

x−Π(x) ∈ αt∂`(Π(x)),

where the r.h.s. is the sub-differential set of ` at Π(x). Equivalently, we write the above condition

as

Π(x) = x−αt∂`(Π(x)).

We apply this equivalent representation to the solution system (C.2), resulting in

xt+1 = yt −αt∇ ft(yt)−αt∂`(wt),

yt+1 = xt+1+ βt (xt+1− xt),

wt =xt+1.

(C.3)

Note that (C.3) is not an explicit online algorithm, as the state xt+1 is determined implicitly.

However, we leverage this equivalent reformulation for the convergence analysis of solutions

to (C.2) to a sequence of optimizers of (C.1), denoted by {x?t }. To do this, let zt := (xt −

x?t , xt−1 − x
?
t−1) denote the tracking error vector and represent (C.3) as the error dynamical

system

zt+1 = At zt +Bu
t ut +Bv

t vt,

with z1 = (x1− x
?
1, x0− x

?
0 ),

(C.4)

with the gradient input ut := ∇ ft(yt)+ ∂`(wt), the reference signal vt := (x?t − x?t−1, x
?
t+1− x

?
t ),

the matrices

At =


1+ βt −βt

1 0

 , Bu
t =


αt

0

 , Bv
t =


βt −1

0 0

 ,
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and the auxiliary variables

yt − x
?
t =

[
1+ βt −βt

]
zt +

[
βt 0

]
vt,

wt − x
?
t =

[
1 0

]
zt+1+

[
0 1

]
vt .

We provide the following stability analysis of the system.

Theorem 15 (Stability of (C.2)). Consider the solution algorithm (C.2), or equivalently (C.3).

(1) For each t ≥ 1, we have the following

ft(xt)− ft(xt+1) ≥ ξ t
>X1,t ξ t,

ft(x?t )− ft(xt+1) ≥ ξ t
>X2,t ξ t .

Here, ξ t := (zt, ut, vt), and

X1,t :=
1
2

©­­­­­­­­­­­­­­­«

mβ2 −mβ2 −β mβ2 0

−mβ2 mβ2 β −mβ2 0

−β β α(2− Lα) −β 0

mβ2 −mβ2 −β mβ2 0

0 0 0 0 0

ª®®®®®®®®®®®®®®®¬

,

X2,t :=
1
2

©­­­­­­­­­­­­­­­«

m(1+ β)2 −η −(1+ β) η 0

−η mβ2 β −mβ2 0

−(1+ β) β α(2− Lα) −β 0

η −mβ2 −β mβ2 0

0 0 0 0 0

ª®®®®®®®®®®®®®®®¬

,
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with η = m(1+ β)β and the parameters (m, L, α, β) are a short-hand notation for (mt, Lt, αt, βt).

(2) Given the horizon parameter T0 ∈ Z>0 with T =min{t −1,T0}. Then, for any t ≥ 2,

the solution xt from (C.2) achieves

ft(xt)− ft(x?t ) ≤
4Gt

(t +2)2
+TFt +TKt +

4(t −T −1+ δ0)
2

(t +2)2
( ft−T (xt−T )− ft−T (x

?
t−T )).

where the time-dependent parameters Gt , Ft and Kt are determined by ft , αt and βt .

Proof. (1) By the m-strong convexity and L-smoothness of f , we have

f (x)− f (y) ≥ ∇ f (y)>(x− y)+
m
2
‖x− y‖2, (C.5)

f (y)− f (x) ≥ ∇ f (y)>(y − x)−
L
2
‖y − x‖2. (C.6)

(1a) Consider (C.5) with (x, y) ≡ (xt, yt). We leverage yt = xt + β (xt − xt−1) and the distributive

law1 for

f (xt)− f (yt) ≥ β∇ f (yt)
>(xt−1− xt)+

mβ2

2
‖xt−1− xt ‖

2,

= β(∇ f (yt)+ ∂`(wt))
>(xt−1− xt − x

?
t−1+ x

?
t )+

mβ2

2
‖xt−1− xt − x

?
t−1+ x

?
t ‖

2

+ β(∇ f (yt)+ ∂`(wt))
>(x?t−1− x

?
t )− β∂`(wt)

>(xt−1− xt)

+mβ2(xt−1− xt − x
?
t−1+ x

?
t )
>
(x?t−1− x

?
t )+

mβ2

2
‖x?t−1− x

?
t ‖

2,

=
1
2
δt
>

©­­­­­­­­­­­«

mβ2 −mβ2 −β mβ2

−mβ2 mβ2 β −mβ2

−β β 0 −β

mβ2 −mβ2 −β mβ2

ª®®®®®®®®®®®¬
δt − β∂`(wt)

>(xt−1− xt),

1Apply 1) a>c = (a+ b)>(c− d)+ (a+ b)>d − b>c and 2) c>c = (c− d)>(c− d)+ 2(c− d)>d + d>d, with a =
∇ f (yt ), b = ∂`(wt ), c = xt−1− xt , d = x?

t−1− x
?
t ,
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with δt
> := (xt − x

?
t , xt−1− x

?
t−1,∇ f (yt)+ ∂`(wt), x

?
t − x

?
t−1).

(1b) Consider (C.6) with (x, y) ≡ (xt+1, yt). We leverage xt+1 = yt −α∇ ft(yt)−α∂`(wt)

and the distribution law, resulting in

f (yt)− f (xt+1) ≥ α∇ f (yt)
>(∇ f (yt)+ ∂`(wt))−

Lα2

2
‖∇ f (yt)+ ∂`(wt)‖

2,

=
α(2− Lα)

2
‖∇ f (yt)+ ∂`(wt)‖

2−α∂`(wt)
>(∇ f (yt)+ ∂`(wt)).

Now, we sum the terms involving ∂`(wt) in the r.h.s. of inequalities in (1a) and (1b), leverage (C.3),

and then apply the convexity of `, xt ∈ X and wt = xt+1 ∈ X, to obtain the following

−β∂`(wt)
>(xt−1− xt)−α∂`(wt)

>(∇ f (yt)+ ∂`(wt)) = −∂`(wt)
>(xt −wt),

≥ `(wt)− `(xt) = 0,

which results in

f (xt)− f (xt+1) ≥ ξ t
>X1,t ξ t .

Note that we have identified ( f ,m, L, α, β) with ( ft,mt, Lt, αt, βt), and notice ∇ ft(x?t )+∂`(x
?
t ) = 0.

(1c) Similarly, consider (C.5) with (x, y) ≡ (x?t , yt). From yt = xt + β (xt − xt−1) and the
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distributive law,

f (x?t )− f (yt) ≥ ∇ f (yt)
>(x?t − yt)+

m
2
‖x?t − yt ‖

2,

= (∇ f (yt)+ ∂`(wt))
>(x?t − yt + βx

?
t − βx

?
t−1)− ∂`(wt)

>(x?t − yt)

− β(∇ f (yt)+ ∂`(wt))
>(x?t − x

?
t−1)+

m
2
‖ − (1+ β)(xt − x

?
t )+ β(xt−1− x

?
t−1)‖

2

−mβ[−(1+ β)(xt − x
?
t )+ β(xt−1− x

?
t−1)]

>
(x?t − x

?
t−1)+

mβ2

2
‖x?t − x

?
t−1‖

2,

=
1
2
δt
>

©­­­­­­­­­­­«

m(1+ β)2 −η −(1+ β) η

−η mβ2 β −mβ2

−(1+ β) β 0 −β

η −mβ2 −β mβ2

ª®®®®®®®®®®®¬
δt − ∂`(wt)

>(x?t − yt),

with η = m(1+ β)β. We add this inequality to that in (1b) and leverage

−∂`(wt)
>(x?t − yt)−α∂`(wt)

>(∇ f (yt)+ ∂`(wt)) = −∂`(wt)
>(x?t −wt),

≥ `(wt)− `(x
?
t ) = 0,

resulting in f (x?t ) − f (xt+1) ≥ ξ t
>X2,t ξ t . By the definition of the m-strong convexity and

L-smoothness of ft , ∀t, we have

ft(x)− ft(y) ≥ ∇ ft(y)>(x− y)+
m
2
‖x− y‖2, (C.7)

ft(y)− ft(x) ≥ ∇ ft(y)>(y − x)−
L
2
‖y − x‖2, (C.8)

Consider (C.7) with (x, y) 7→ (xt, yt), we leverage yt = xt + β (xt − xt−1) and the distribution
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law2 for

ft(xt)− ft(yt) ≥ β∇ ft(yt)
>(xt−1− xt)+

mβ2

2
‖xt−1− xt ‖

2,

=
1
2
ξ t
>



©­­­­­­­«
mβ2 −mβ2 −β

−mβ2 mβ2 β

−β β 0

ª®®®®®®®¬
⊗ In


ξ t + β(∇ ft(yt)+ ∂`(wt))

>(x?t−1− x
?
t )

− β∂`(wt)
>(xt−1− xt)+mβ2(xt−1− xt)

>(x?t−1− x
?
t )−

mβ2

2
‖x?t−1− x

?
t ‖

2,

where ξ t
> :=

(
xt − x

?
t , xt−1− x

?
t−1, ∇ ft(yt)+ ∂`(wt)

)
.

Now, we consider (C.8) with (x, y) 7→ (xt+1, yt), leverage xt+1 = yt −α∇ ft(yt)−α∂`(wt)

and add-subtract terms that are related to ∂`(wt), resulting in

ft(yt)− ft(xt+1) ≥ α∇ ft(yt)
>(∇ ft(yt)+ ∂`(wt))−

Lα2

2
‖∇ ft(yt)+ ∂`(wt)‖

2,

=
α(2− Lα)

2
‖∇ ft(yt)+ ∂`(wt)‖

2−α∂`(wt)
>(∇ ft(yt)+ ∂`(wt)).

We add the above two inequalities and leverage (C.3) for the following fact

β(∇ ft(yt)+ ∂`(wt)) =
β

α
(xt − xt+1)+

β2

α
(xt − xt−1),

and by convexity of `, xt ∈ X and wt = xt+1 ∈ X,

− β∂`(wt)
>(xt−1− xt)−α∂`(wt)

>(∇ ft(yt)+ ∂`(wt)) = −∂`(wt)
>(xt −wt) ≥ 0,

2Apply 1) a>c = (a+ b)>(c− d)+ (a+ b)>d− b>c and 2) c>c = (c− d)>(c− d)+2c>d− d>d, with a = ∇ ft (y),
b = ∂`(wt ), c = xt−1− xt , d = x?

t−1− x
?
t ,
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resulting in

ft(xt)− ft(xt+1) ≥
1
2
ξ t
>



©­­­­­­­«
mβ2 −mβ2 −β

−mβ2 mβ2 β

−β β α(2− Lα)

ª®®®®®®®¬
⊗ In


ξ t

+
1
2
ηt
>



©­­­­­­­«
0 0 −( 1α −m)β2

0 0 β
α

−( 1α −m)β2 β
α −mβ2

ª®®®®®®®¬
⊗ In


ηt,

where ηt
> :=

(
xt − xt−1, xt+1− xt, x?t − x

?
t−1

)
.

Similarly, we consider (C.7) with (x, y) 7→ (x?t , yt), leverage yt = xt + β (xt − xt−1) and

the distribution law, resulting in

ft(x?t )− ft(yt) ≥ ∇ ft(yt)
>(x?t − yt)+

m
2
‖x?t − yt ‖

2,

=
1
2
ξ t
>



©­­­­­­­«
m(1+ β)2 −m(1+ β)β −(1+ β)

−m(1+ β)β mβ2 β

−(1+ β) β 0

ª®®®®®®®¬
⊗ In


ξ t

− β(∇ ft(yt)+ ∂`(wt))
>(x?t − x

?
t−1)− ∂`(wt)

>(x?t − yt)

−mβ(x?t − yt)
>
(x?t − x

?
t−1)−

mβ2

2
‖x?t − x

?
t−1‖

2,
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and we add this inequality to the one related to ft(yt)− ft(xt+1), resulting in

ft(x?t )− ft(xt+1) ≥
1
2
ξ t
>



©­­­­­­­«
m(1+ β)2 −m(1+ β)β −(1+ β)

−m(1+ β)β mβ2 β

−(1+ β) β α(2− Lα)

ª®®®®®®®¬
⊗ In


ξ t

+
1
2
ηt
>



©­­­­­­­«
0 0 −( 1α −m)β2

0 0 β
α

−( 1α −m)β2 β
α −mβ2

ª®®®®®®®¬
⊗ In


ηt

+mβ(xt − x
?
t )
>
(x?t − x

?
t−1).

(2) Let us define the time varying function

Vt(zt) :=


zt

x?t − x
?
t−1


>

Ht


zt

x?t − x
?
t−1

 ,
where we take

Ht :=
1

2αt−1



δt−1

1− δt−1

δt−1


[
δt−1, 1− δt−1, δt−1

]
,

with {αt}t those in the solution system (C.2) and {δt}t the sequence of scalars which defines

{βt}t . Now, verify

Vt+1(zt+1)−
αt−1
αt

Vt(zt) = ξ t
>Jtξ t,

where ξ t := (zt, ut, vt), which are those define (C.4), resulting in ξ t := (xt − x?t , xt−1 −
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x?t−1,∇ ft(yt)+ ∂`(wt), x
?
t − x

?
t−1, x

?
t+1− x

?
t ) and

Jt =
1

2αt

©­­­­­­­­­­­­­­­«

0 0 −αtδtδt−1 −δt−1 0

0 0 αtβtδ
2
t βtδt 0

−αtδtδt−1 αtβtδ
2
t α2

t δ
2
t −αtβtδ

2
t 0

−δt−1 βtδt −αtβtδ
2
t 1−2δt−1 0

0 0 0 0 0

ª®®®®®®®®®®®®®®®¬

.

Let us compute

Mt :=δ2
t−1X1,t + δt X2,t

=
1
2

©­­­­­­­­­­­­­­­«

mt(δ
2
t −1) −mtβtδtδt−1 −δtδt−1 mtβtδtδt−1 0

−mtβtδtδt−1 mβ2
t δ

2
t βtδ

2
t −mtβ

2
t δ

2
t 0

−δtδt−1 βtδ
2
t αt(2− Ltαt)δ

2
t −βtδ

2
t 0

mtβtδtδt−1 −mtβ
2
t δ

2
t −βtδ

2
t mtβ

2
t δ

2
t 0

0 0 0 0 0

ª®®®®®®®®®®®®®®®¬

,

and then achieve

ξ t
>(Jt −Mt)ξ t =


zt

x?t − x
?
t−1


>

N1,t


zt

x?t − x
?
t−1


+


zt

x?t − x
?
t−1


>

N2,t


zt

x?t − x
?
t−1

 −αt(1− Ltαt)ut
>ut,
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with, for each t ≥ 1,

N1,t :=
1
2

©­­­­­­­«
−mt(δ

2
t −1) mtβtδtδt−1 −mtβtδtδt−1

mtβtδtδt−1 −mtβ
2
t δ

2
t mtβ

2
t δ

2
t

−mtβtδtδt−1 mtβ
2
t δ

2
t −mtβ

2
t δ

2
t

ª®®®®®®®¬
,

�
mt

2

©­­­­­­­«
−(δ2

t −1) βtδtδt−1 0

βtδtδt−1 −β2
t δ

2
t 0

0 0 0

ª®®®®®®®¬
� 0,

and, using the fact that δt > (t +1)/2, ∀ t ≥ 0, we have

N2,t :=
1
2

©­­­­­­­«
0 0 −δt−1

0 0 βtδt

−δt−1 βtδt 1−2δt−1

ª®®®®®®®¬
� 0.

Then, if we select αt ≤ 1/Lt , it results in

ξ t
>(Jt −Mt)ξ t ≤ 0.

We rewrite it as

Vt+1(zt+1)−
αt−1
αt

Vt(zt) ≤ ξ t
>Mtξ t,

≤ δ2
t−1( ft(xt)− ft(xt+1))+ δt( ft(x?t )− ft(xt+1)),

= −δ2
t ( ft(xt+1)− ft(x?t ))+ δ

2
t−1( ft(xt)− ft(x?t )).
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As ft being locally Lipschitz in t, there exists a non-negative function h(x) such that

ft+1(xt+1)− ft(xt+1) ≤ h(xt+1),

resulting in

Vt+1(zt+1)−
αt−1
αt

Vt(zt) ≤ −δ
2
t ( ft+1(xt+1)− ft+1(x

?
t+1))+ δ

2
t−1( ft(xt)− ft(x?t ))

− δ2
t ( ft+1(x

?
t+1)− ft(x?t ))+ δ

2
t h(xt+1), ∀ t.

Summing up above set of inequalities over the moving horizon window t ∈ T = {t −1, . . ., t −T},

where T =min{t −1,T0} with some T0 ∈ Z>0, we obtain

Vt(zt)+
∑
k∈T

(1−
αk−1
αk
)Vk(zk)−Vt−T (zt−T ) ≤ −δ

2
t−1( ft(xt)− ft(x?t ))

+ δ2
t−T−1( ft−T (xt−T )− ft−T (x

?
t−T ))

−
∑
k∈T

δ2
k( fk+1(x

?
k+1)− fk(x?k ))+

∑
k∈T

δ2
k h(xk+1).

Let us denote by Gt , Kt , and Ft , respectively, the horizon accumulated potential, the bound of the

locally Lipschitz function h, and the variation bound of the optimal objective values. That is,

Gt :=Vt−T (zt−T )−Vt(zt)−
∑
k∈T

(1−
αk−1
αk
)Vk(zk),

Kt :=max
k∈T
{h(xk+1)} ,

Ft :=max
k∈∈T

{
| fk+1(x

?
k+1)− fk(x?k )|

}
.

Then, using the fact that (1) δt−1 ≥ (t + 2)/2, for all t ≥ 0; (2) δt−T−1 ≤ t −T − 1+ δ0 with

δ0 = (1+
√

5)/2, and (3) δt is monotonically increasing, we have

ft(xt)− ft(x?t ) ≤
4Gt

(t +2)2
+TFt +TKt +

4(t −T −1+ δ0)
2

(t +2)2
( ft−T (xt−T )− ft−T (x

?
t−T )).
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Note that, when t ≤ T0+1, we have T = t −1. This gives

ft(xt)− ft(x?t ) ≤
4Gt

(t +2)2
+ (t −1)Ft + (t −1)Kt +

4δ2
0

(t +2)2
( f1(x1)− f1(x?1 )).

�
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