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Animal social groups are complex systems that are likely to exhibit tipping

points—which are defined as drastic shifts in the dynamics of systems that

arise from small changes in environmental conditions—yet this concept

has not been carefully applied to these systems. Here, we summarize the

concepts behind tipping points and describe instances in which they are

likely to occur in animal societies. We also offer ways in which the study

of social tipping points can open up new lines of inquiry in behavioural ecol-

ogy and generate novel questions, methods, and approaches in animal

behaviour and other fields, including community and ecosystem ecology.

While some behaviours of living systems are hard to predict, we argue that

probing tipping points across animal societies and across tiers of biological

organization—populations, communities, ecosystems—may help to reveal

principles that transcend traditional disciplinary boundaries.
1. Introduction
Many animals are social, and behaviours that occur within social groups can

affect individuals, their immediate neighbours, and the overall performance

of the society. In some cases, even small changes in external environmental con-

ditions can cause large and abrupt changes to individuals’ behaviours,

interactions among group members, and therefore how the group functions

as a whole. Examples of changing environmental conditions include food

deprivation, heat/cold stress, predation risk, or various anthropogenic stres-

sors. Uncovering how and why small perturbations can cause marked and

abrupt shifts in group dynamics is important for understanding group func-

tioning, cohesion, and responsiveness to the environment. Here, we introduce
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the idea of tipping points, which have been used to better

understand the dynamics of complex systems in many fields.

The term tipping point was first used in the academic lit-

erature by Morton Grodzins to describe racial segregation

in US cities [1]. Ecologists and climate scientists have since

used tipping points to better understand shifts in lake eutro-

phication [2], forest-grass transitions [3], and coral reef states

[4]. Although the idea of tipping points has been used as a

popular analogy for sudden changes in social systems, the

conceptual framework underlying tipping points has not

been widely applied to questions in behavioural ecology. In

this article we explain what tipping points are, how they

have been studied in other contexts, and how the tipping

point framework could provide new insights and predictive

power into the study of animal behaviour.
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Figure 1. A hysteresis window between an environmental condition (e.g.
temperature) and group behaviour (e.g. degree of infighting). This figure
is modelled after a study on within-group conflict in response to heat
stress in social spiders. Groups that have been in an agitated state (red)
tend to remain agitated, whereas calm groups (blue) tend to remain
calm. Therefore, there exists a set of intermediate environmental conditions
(T1 , T , T2) where a group can be either calm or agitated depending on
its historical dynamics. In the lower panel, solid lines represent stable equili-
bria states and the shaded regions show their basins of attraction. The dashed
line is an unstable equilibrium, which demarks the boundary between the
basins of attraction. The upper panels (A – E) provide an alternate abstraction
of this system: for a given environmental condition, the group response tends
to a low point on the ‘landscape’. The bottoms of the troughs in the upper
panels are therefore stable equilibria and correspond to the locations of the
solid red and blue lines in the lower panel (see ‘Y’ label for an example).
Tipping points occur when a stable equilibrium (solid line/trough) collides
with an unstable equilibrium (dashed line/peak) and is eliminated—at
this point the system transitions suddenly to the alternate remaining equili-
brium. In this system the tipping points are at T1 (when the system is in the
agitated state and temperature is decreasing) and at T2 (when the system is
in the calm state and temperature is increasing).
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(a) What are tipping points?
Tipping points are drastic shifts in the behaviour of systems

as a result of small changes to the environment. In ecology,

tipping points are often referred to as ecological thresholds
[5–7]. For example, a small change in the temperature of a

lake can lead to large shifts in the composition of the lake’s

community. Other commonly cited examples of ecological

tipping points include sudden shifts in species dominance

or population collapse [8,9].

Similarly, in a social context, social tipping points occur

when small changes to the physical or social environment

result in qualitative changes to group behaviour or dynamics

[10]. In animal societies, tipping points could be used to

explain social transitions such as the onset of collective move-

ments, shifts in group behaviour from calm to agitated states,

the emergence and disappearance of wars between neigh-

bouring societies, the formation or disbandment of

cooperation, or the diffusion of new innovations. For

instance, African desert locusts rapidly shift between

their little-observed solitary state to a swarming plague phe-

notype. The transition between these states is density-

mediated and catalysed by positive feedback loops between

population density, individual activity level, and serotonin-

mediated gregariousness [11–13]. Thus, small changes in

population density can cause large and abrupt changes in

both individual state and group dynamics in these locusts.
2. Core concepts of social tipping points
There are several concepts that are needed to apply the con-

ceptual framework of tipping points to social systems. We

describe these concepts here using an example. Social

spider colonies exhibit a tipping point towards violent

infighting in response to heat stress (figure 1) [14]. When

colonies have been in cool temperatures (less than 278C)

they are generally calm and cooperative but transition into

infighting at higher temperatures (greater than 318C). How-

ever, when the temperature cools, colonies do not

immediately return to their calm state upon reaching the criti-

cal 30–318C, but require much cooler temperatures (less than

27–288C) to return to their prior state. Thus, at an equivalent

temperature, say 298C, a colony can be characterized by high

levels of infighting or calm cooperation, depending on its his-

tory. Notably, the shift between calm and agitated colony

behaviour is mediated by temperature (the external
environmental parameter), and this shift is conspicuously

abrupt, which is diagnostic of social tipping points (figure 2).
(a) Behavioural states and environmental parameters
Many animal social systems are capable of exhibiting mul-

tiple qualitatively distinct states. We refer to these as

behavioural states, such as the calm (blue) and agitated (red)

colony states in the spiders in figure 1. The behavioural

state expressed is dictated by the system’s dynamics as well

as environmental parameters such as humidity or temperature

(figure 1, x-axis) and internal parameters such as metabolic

or cognitive factors. For social tipping points, we deem

forces acting from outside the group to be environmental
parameters and forces emerging from within the group as

internal parameters.

Environmental parameters can be abiotic or biotic. Most

studies on tipping points have examined abiotic drivers

[3,6,14], whereas relatively few have examined biotic drivers,

social or otherwise. Abiotic parameters include temperature,
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Figure 2. Social tipping points are characterized by an abrupt change in behaviour state caused by small changes in environmental parameters. Here, groups of
territorial damselfish (brown fishes) may respond with vigilance and inspection (top image) towards intruders or not (bottom image) depending on whether food is
limited. One sign of a possible tipping point is a change point in the data, where the data suddenly appear to be nonstationary. In the plot, this is depicted as a
sudden change in the mean of aggressiveness ( y-axis). If a model for aggressiveness is built for conditions where food supply is low, but then applied to cases
where food supply is high, the model will have very large error. This reinforces the point that the old model is no longer valid for the new data if a tipping point
has occurred. The three functions fitted to the identical data above have all been used to estimate the position of tipping points along environmental gradients,
though the centre panel reinforces the point that entirely new models may be required to explain system properties before versus after a tipping point.
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light, precipitation, oxygen levels, pH, aridity, anthropogenic

noise, tides, and terrain [3,6,8]. Biotic parameters can be

social (e.g. the number or collective phenotypes of nearby

groups) or nonsocial (e.g. predation threat, food availability,

or presence of parasites/disease). It is worth noting that

many tipping points may be driven by changes in several

environmental parameters, such as the combination of heat

and UV exposure. Because of the potential combined effects,

it is important to consider to what degree phenomena

like priming, enhanced lethality of multiple stressors, or

cross-tolerance affect group behaviour [15–18]. Multiple

interacting environmental parameters could be grouped

into functionally similar groups based on their properties or

because of the shared effects that they have on social groups.
(b) Attractors and basins of attraction
Up to this point we have presented behavioural states as cat-

egorical (such as calm and agitated), but behaviours can

actually be more fluid. For example, a spider may be slightly

irritated, but not fully agitated. As time progresses, the spider

may become calm or agitated, depending on environmental

parameters. In this example, the categorical states of calm

and agitated are referred to as attractors and the set of fluid

states that tend towards these categorical states are these

attractors’ basins of attraction. In figure 1, the solid red and

blue lines depict the agitated and calm attractors for a

range of environmental parameters (here, temperature). The

lighter shaded areas in figure 1 are the basins of attraction

for these two attractors. For intermediate environmental par-

ameters, two attractors exist. At very low temperatures, there

is only one attractor, the calm state, while at very high temp-

eratures, only the agitated attractor exists. It is important to

emphasize that attractors can appear and disappear, depending

on environmental parameters.

In some cases, environmentally driven tipping points

may be irreversible. For example, events such as the onset

of sex change in sequential hermaphrodites [19], the onset

of epidemic spawning in marine invertebrates [20], or the
emergence of sexual alates in social insects [21] can be

one-way transitions in behavioural state driven by minor

perturbations to environmental parameters. In these cases,

the former attractors have vanished as a consequence of the

system undergoing a tipping point.

In addition to the presence and number of attractors, the

landscape of attraction can vary. In figure 1, this is depicted

with the landscape slices above the main figure which

show how the geometry of the basins of attraction are

modified as environmental parameters change. In each

case, the blue or red balls indicate the attractors at the

bottom of wells symbolizing the basins of attraction. The

steepness of the walls of these basins of attraction determine

the strength of the feedback mechanisms keeping the system

in a given state—the steeper the walls of the wells, the quicker

the system returns to the attractor state and the more resistant

the state is to noise. When the wells are shallow, the system

returns to the attractor more slowly and drifts more widely

in response to noise [9,22,23].
(c) Perturbations
There are two fundamentally different ways that a system can

be perturbed. Either the behavioural state or the environ-

mental parameters can be perturbed. To think about the

effect of perturbations to the behavioural state, consider a

single slice of the landscape of attractors in figure 1. When

the behavioural state is perturbed, envision the system as

one of the coloured balls that are subject to that particular

landscape. If the ball is perturbed enough that it moves to

another basin of attraction then the system undergoes a be-

havioural state change. However, this kind of perturbation

is not technically classified as a tipping point because the

transition was not caused by changes to the external environ-

ment. In contrast, when an environmental parameter

changes, the landscape itself changes, which can alter the

existence of attractors and the shapes of their basins of attrac-

tion. In figure 1, this is depicted by the series of slices

showing the landscapes governing the basins of attraction.
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The society moves through a tipping point when a small

change to environmental parameters results in a drastic

enough modification to the attractor landscape that the

society is now in an alternative basin of attraction. A critical

difference between the two types of perturbations is that

when a tipping point occurs, the underlying dynamics have

changed and thus the previous regime’s models and data

are no longer effective in describing the new regime.

Attractor states are not necessarily advantageous or dis-

advantageous. For example, social groups might proceed

from a relatively calm cooperative stable state to disband-

ment or collapse due to infighting or cheating [14,24].

However, a system might also switch between two states

that perform equally well. The alternative states might even

be part of a system’s life history. Thus, attractor states are

not necessarily evolutionary stable states (ESS) nor adaptive

peaks in a fitness landscape, nor do they necessarily have

negative consequences for social groups.
181282
3. Tipping points: frequently asked questions
(a) How can we recognize tipping points?
It can be difficult to recognize that a tipping point has

occurred from observational data alone, especially if obser-

vations are noisy. However, there are some signatures of

tipping points that one may recognize in their system of inter-

est. One signature is that when a tipping point occurs, small

environmental changes alter system dynamics so that pre-

vious models explaining the behaviour of the system built

under one regime are no longer predictive when the regime

has shifted. Although there are many reasons a model may

not explain data, assuming an equilibrium state, a potential

indication of a tipping point is when a model explains

the data well under some conditions but then fails

when environmental parameters change. Other possible

signatures of tipping points include flickering between

behavioural states and delayed recovery to prior states

following perturbation [10].

(b) Are critical points and tipping points equivalent?
While the terms tipping point and critical point are often used

interchangeably in the literature, there are distinctions.

Loosely, a critical point occurs when the stability of attractors

changes. Tipping points require a quantifiable change in

behavioural state as a result of minor changes in environ-

mental parameters. This makes all tipping points critical

points, but not all critical points tipping points. For example,

a system moving through a critical point could have a con-

tinuous behavioural state as environmental parameters

change, but a system with a tipping point would have a dis-

continuity in the behavioural state as a function of the

environmental parameters (figure 2).

(c) Is there hysteresis?
The existence of multiple behavioural states allows for the

possibility of hysteresis—a concept often linked to tipping

points in the literature [25–27]. Hysteresis is a system’s lack

of reversibility as environmental parameters are varied. A

system exhibits hysteresis if reverting the environmental par-

ameters in a system that has passed through a tipping point

to the parameters immediately preceding the change does not
cause the system to revert to the previous behavioural state.

For example, once agitated, spider societies require cooling

to far lower temperatures to return them to a calm state

(figure 1). However, not all tipping points will exhibit hyster-

esis. Tipping points and hysteresis are important to consider

because it changes the way that systems should be modelled.

In particular, researchers may assume that their systems as

reversible in parameter space but, if hysteresis is present,

this is not the case.

(d) Are there early warning signs of tipping points?
One of the most challenging aspects of tipping points is

anticipating when and where they are likely to occur

[22,23,28]. There are two general predictors whose presence

is thought to anticipate an impending tipping point. First,

increased variance in a system’s internal dynamics is pre-

dicted to warn of an approaching tipping point [9,29].

Destabilized dynamics, large swings and oscillations, or flick-

ering between states all potentially convey that the feedback

that keeps a system at one attractor state is weakening, which

allows the system to wander farther from the attractor.

Second, the speed of recovery to baseline conditions is pre-

dicted to decrease when a system is approaching its tipping

point [2,9]. This is because the strength of the feedback that

maintains systems in one state decreases as a system moves

toward a tipping point, and therefore the rate of recovery is

slower. In behaviour, there may be other warning signs

based on individual-level characteristics, or early behavioural

outcomes prior to more dramatic state shifts.
4. Applying tipping points to animal societies
(a) What can be learned?
Tipping points can inform our understanding of animal

societies in a variety of ways. First, documenting tipping

points aids our ability to forecast dramatic state shifts in

animal behaviour [29]. This, in turn, can help us to predict

how societies will change in response to environmental par-

ameters, which is required for conservation [30–32].

Second, tipping points convey information about societies’

comparative sensitivity to environmental parameters. The

presence of abrupt tipping points, pronounced hysteresis,

an inability to recover to baseline dynamics following pertur-

bation, and large differences in behavioural states all convey

that the internal dynamics driving a system are strongly non-

linear. Additionally, in the presence of tipping points, a

system’s responsiveness to the environment could appear

deceptively small, save for the regions immediately around

the tipping point. Many systems therefore may appear decep-

tively stable, unless one specifically interrogates the limited

set of conditions that trigger the system to tip. Third, scruti-

nizing tipping points and their adaptive function may shed

light on how social groups are capable of incredible behav-

ioural flexibility. For example, there is evidence that

societies may self-organize or evolve to keep themselves

near tipping points, so that they can respond dynamically

to new information or environmental challenges [27,33] and

potentially maximize the adaptive advantages of both order

and disorder [33]. Fourth, scrutinizing tipping points across

tiers of biological organization may help us to determine

whether there are generalizable features about their
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dynamics that bridge tiers of biological organization. Fifth,

knowledge of tipping points can help guide researchers

as to when a new modelling paradigm may be necessary to

predict system behaviour.
(b) How can social properties affect tipping points in
social systems?

Many social properties could influence whether tipping

points occur in a society. These include relatedness and

group size, presence of keystone individuals, within-group be-

havioural diversity, group social organization, and groups’

prior experience. In this section, we present a hypothetical

example and then use it as a lens to pose how social properties

might impact tipping points.

Consider a hypothetical situation where the activity level

of a group of marmosets depends on the level of predation

risk (figure 3). When predation risk is low, groups are

socially active and have a chance of entering distracted

social states. Distracted states may emerge when one indi-

vidual steals fruit or chases another individual, resulting in

a competitive tit-for-tat game. Once initiated, social activity

can keep a group in an active and distracted state despite

mild to moderate increases in predation risk. However, at

a tipping point, even a distracted group will detect heigh-

tened risk, and activity will decrease in favour of

vigilance. Returning back to social activity will then require

a large decrease in predation risk because vigilance renders

a group sensitive to even moderate risk. Thus, under some

conditions, whether a group will be active or inactive will
depend on its prior state (distracted versus vigilant), creating

a hysteresis window.

(i) Relatedness and group size
Group relatedness and size likely influence tipping points.

Relatedness has an impact on a variety of social outcomes,

including increased prosocial behaviour and decreased

exploitation among group members [34,35]. Thus, social feed-

back driven by competitive interactions may be less stable

between relatives [36]. Kin groups may also be more likely

to share information about predation risk even at risk to

themselves, for instance, via alarm calls [37,38]. Group size

is also likely to impact the above scenario. Increasing group

size could augment competitive interactions and keep indi-

viduals in a distracted state for longer. Larger groups may

also compete more [39] and this could increase group distrac-

tion. Yet, larger groups also have more individuals with

which to detect changes in the environment and share infor-

mation [27,40]. The net effect of group size may therefore

depend on the degree to which social interactions impede

individuals’ probability of detecting risk and the degree of

information sharing.

(ii) Keystone individuals
The presence of influential individuals impacts social tipping

points. For instance, the presence of leaders or reconciliatory

individuals may prevent tit-for-tat feedback loops from ever

starting [41,42]. In contrast, the presence of particularly

aggressive, hungry, or bold individuals could increase

within-group conflict [43], thus changing the environmental
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parameter values that result in a tipping point and the feed-

back strength that underlies them.

(iii) Behavioural diversity
More phenotypically diverse systems are predicted to be

more resistant to and resilient from environmental stress

[44,45]. This, in turn, will shift the timing of tipping points

or cause a more linear collective response to environmental

changes, i.e. eliminating tipping points altogether. The so-

called portfolio effect predicts that more diverse groups will

have increased odds that at least some constituents can

endure novel environments, and therefore, maintain group-

level properties [46]. In contrast, homogeneous groups run

the risk of all individuals possessing the same sensitivities,

making abrupt collective state shifts more likely. However,

even for diverse groups, there will be some environmental

parameters that cause tipping points in spite of any benefits.

(iv) Social organization
The social structure of our marmoset groups and the space in

which the interactions occur also likely affect tipping points

[29]. In groups that live in or build structures, such as nests,

the geometry of these spaces can determine the kinds of inter-

actions that individuals engage in, the degree of competition

among group members, risk of predation, environmental sen-

sitivity, and so on [47]. Nests also provide some homeostatic

benefits to their residents [48], which will likely impact the

susceptibility of groups to changes in environmental par-

ameters. For groups that live in more open environments,

geographical constraints such as rivers, matrix habitat, and

localized resources such as fruit trees will impact individ-

uals’ position in space and therefore the structure of social

networks [49]. Networks, in turn, will shape whether

and how individuals interact and influence each other’s

behaviour [50].

(v) Prior experience
Whether or not social groups have previously been exposed

to specific environmental parameters will likely impact

their future tipping points [2,6]. For instance, prior experience

with anthropogenic noise might prime a marmoset group

and desensitize it to subsequent noise exposure [51]. In the

related concept of cross-tolerance [52], experience with one

stressor can increase the system’s resistance to other stressors.

The predicted outcome is similar to that of priming but dif-

fers in that stressors can appear interchangeable. A final

stressor query is whether the social context of prior experi-

ence matters. For instance, the effects of prior experience

may depend on whether individuals acquired their experi-

ence in isolation, in a group setting, or in a group setting

that differs from their present group. The effects of such

experiences will likely not be equivalent.

(c) Organizing social tipping points
(i) Social scale
Social tipping points can be the additive outcome of tipping

points occurring within each individual (individual-level) or

the synergistic outcome of interactions among individuals

(group-level). For instance, in Polistes paper wasps, colonies

may proceed nonlinearly from a quiescent state to responsive

state related to increases in disturbance. This could be an
additive process, whereby the group response is the sum of

each individual wasp’s threshold—beyond which it moves

from inaction to agitation [53]. Alternatively, a group-level

response can be an emergent property, mediated by synergis-
tic interactions between group members. For instance, the

probability of each wasp entering an agitated state may not

be independent from other wasps. The threshold to enter

an agitated state may, for example, decrease when neigh-

bours become agitated. Experiments that evaluate

individual responses in isolation versus group settings, in

groups of various sizes, or in groups with contrasting abilities

to interact will be helpful for demonstrating the social scale at

which tipping points operate.

(ii) Metabolic tipping points
A system may pass through a tipping point if environmental

parameters drive individuals into alternative metabolic states

that affect individuals’ behaviour. For example, excessive

heat can force social ectotherms into collective activity

either to cool themselves, like collective fanning behaviour

in honeybees [54], or to evacuate a nest site entirely. Another

potential example of a metabolic tipping point is when exces-

sive cold or aridity causes collective huddling to preserve

heat and water in small bodied animals [55]. Metabolic tip-

ping points can be additive or synergistic. For instance,

collective huddling behaviour may enable groups of home-

otherms to remain socially active in environments that

exceed the thresholds of each individual in isolation [56].

In contrast, social ectotherms may exhibit a more additive

response because constituents cannot share metabolic heat

[57]. Other examples of metabolic tipping points can occur

because of contrasting hunger levels, fat stores, hypoxia,

exposure to contaminants, infection status, microbiomes,

and so on.

(iii) Social or cognitive tipping points
Tipping points can also be mediated by social or cognitive

parameters, which arise because individuals’ perception of

their environment has changed. For instance, cautious or

flight-prone behaviour in one group member might catalyse

that behaviour in another individual [58]. Alternatively,

observer individuals may copy the successful foraging strat-

egies of innovative group mates [59] or the migration routes

of older individuals [42,60]. The key ingredient for these tran-

sitions is that actors are capable of observing their

environment, and then adjusting their behaviour accordingly.

In principle, social or cognitive state transitions can occur at

different social scales as well. For example, each individual

may independently learn about its environment, and there-

fore, the group’s behaviour changes as the sum of these

individual assessments. However, social interactions will

often result in a synergistic shift [61].
5. Why study tipping points in social behaviour?
Many disciplines already use the ideas and terminology of

tipping points to explore the properties of complex systems.

This leads one to ask: what strengths can behavioural ecologists

bring to the broader study of tipping points?

First, animal social systems provide us with the opportu-

nity to observe interactions between individual-level and

group-level tipping points. Although this review pertains to
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social tipping points in the dynamics of whole societies, indi-

vidual organisms are themselves complex living systems

with metabolic processes that can undergo tipping points in

response to environmental parameters [62,63]. One can there-

fore probe the scale at which tipping points occur by

evaluating behavioural dynamics in response to environ-

mental drivers when individuals are in isolation versus

group settings or across groups of various size. Linking

tiers of multilevel tipping points is a problem already faced

by the tipping point literature on communities and ecosys-

tems [6,63,64], but one fears that the problem of scale

(individual versus population versus community versus eco-

system) might be intractably great in such systems. Social

tipping points in animal societies might therefore serve as a

convenient intermediate ground in which to develop and cri-

tically evaluate theory on multilevel tipping points. Such

individual versus group-level comparisons do not have

clear analogues in the application of tipping points in the

physical sciences. This opens the door to new lines of empirical

inquiry and theory.

Second, behavioural ecologists have the ability to create

large numbers of experimental systems [65,66] and manip-

ulate environmental parameters thought to cause tipping

points [13], thus allowing cause-effect inferences that elude

purely theoretical studies or correlative studies on other

living systems. General ecologists have used the tipping

point framework to explore contrasting ecosystem dynamics

[2], shifts in community composition and functioning [4,8],

and decreases in the viability of imperilled wildlife popu-

lations [31,32]. Engineering such systems or altering them

experimentally with a high degree of replication is often

impossible or unethical. For many social systems, this is

not so.

Third, using the tipping point framework has the poten-

tial to foster crosstalk between the kinds of questions asked

by behavioural ecologists and investigators interested in

other kinds of complex systems. The notion that similar prin-

ciples might underlie the presence, severity, timing, and

recoverability of tipping points across contrasting physical

and living systems is intriguing, and behavioural ecologists

are poised to enter this dialogue with precision.

Finally, animal societies raise our consciousness to the

presence of asymmetrical interaction rules, and therefore

promise to inspire new kinds of tipping point models,

which often assume that interaction rules are simple, sym-

metrical, and invariant. In animals, we know that

individuals differ from each other in their attributes, the
ways in which they interact, and the social influence they

exert over their groups. While behavioural ecologists have

potentially much to gain from the tipping point literature,

the intellectual exchange promises to be bidirectional.
6. Conclusion
Many living systems exhibit drastic state shifts in response to

small changes in environmental parameters. We argue here

that animal societies—like other kinds of living systems—

can be subject to tipping points and that a better understanding

of tipping point dynamics can help us to predict changes in

sociality and behaviour. Behavioural ecologists interested in

such dynamics are poised to contribute novel insights, both

theoretically and empirically. The insights gleaned from

such studies have the potential to generate crosstalk between

fields of ecology that typically operate independently. The

tipping point framework in turn offers us (behavioural

ecologists) a variety of opportunities. First, the tipping point

framework asks us to re-examine familiar topics—

information spread, collective action, group formation/

disbandment, etc.—from a new perspective, which opens

up new flavours of inquiry. Second, tipping points draw

our attention to possible connections between the dynamics

of social systems and other kinds of complex living

systems—highlighting the opportunity for generalizing

principles across tiers of biological organization. Third, the

tipping points framework draws our attention to ideas from

other subdisciplines of ecology and allows us to critically

evaluate these ideas in a new context. Finally, understanding

tipping points is of conservation importance for multiple tiers

of biological organization, which permits basic researchers to

probe tipping points while simultaneously collecting data

that could prove useful for applied scientists. This incipient

field is therefore ripe for creation and entry, and there is

much for us to discover together.
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