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Improving the Translation of Animal Ischemic Stroke Studies to 
Humans

Glen C Jickling and Frank R Sharp
Department of Neurology and MIND Institute, University of California at Davis

Abstract

Despite testing more than 1026 therapeutic strategies in models ischemic stroke and 114 therapies 

in human ischemic stroke, only one agent tissue plasminogen activator has successfully been 

translated to clinical practice as a treatment for acute stroke. Though disappointing, this immense 

body of work has led to a rethinking of animal stroke models and how to better translate therapies 

to patients with ischemic stroke. Several recommendations have been made, including the STAIR 

recommendations and statements of RIGOR from the NIH / NINDS. In this commentary we 

discuss additional aspects that may be important to improve the translational success of ischemic 

stroke therapies. These include use of tissue plasminogen activator in animal studies; modeling 

ischemic stroke heterogeneity in terms of infarct size and cause of human stroke; addressing the 

confounding effect of anesthesia; use of comparable therapeutic dosage between humans and 

animals based on biological effect; modeling the human immune system; and developing outcome 

measures in animals comparable to those used in human stroke trials. With additional study and 

improved animal modeling of factors involved in human ischemic stroke, we are optimistic that 

new therapies for the treatment of acute ischemic stroke will be developed.
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Introduction

The translation of acute ischemic stroke therapies from animals to patients with ischemic 

stroke has been challenging. With over 1026 agents tested in models of ischemic stroke and 

114 tested in humans, only one medical therapy, tissue plasminogen activator (tPA), has 

received approval by the FDA for the acute treatment of ischemic stroke (O’Collins et al. 

2006)(Tissue plasminogen activator for acute ischemic stroke. The National Institute of 

Neurological Disorders and Stroke rt-PA Stroke Study Group 1995). The reasons for this 

failure to translate has been the subject of numerous meetings (STAIR recommendation) and 

reviews (Stroke Therapy Academic Industry 2001; Fisher and Stroke Therapy Academic 

Industry 2003; Fisher et al. 2005; Fisher et al. 2007; Fisher et al. 2009; Saver et al. 2009; 
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Albers et al. 2011; Lapchak et al. 2013; Feuerstein et al. 2008). In addition, the NIH/NINDS 

have published criteria regarding the rigor of animal stroke studies (Landis et al. 2012; 

Lapchak et al. 2013). Proposed recommendations to improve the translation of acute stroke 

therapies have included evaluation of agents in the therapeutic time window of ischemic 

stroke, need to assess dose response, need to assess aged animals of both sexes with vascular 

risk factors, therapy not acting on the intended therapeutic target, importance of 

randomization and blinding, defining inclusion and exclusion criteria, ensuring studies are 

adequately powered, replication of studies by independent groups, declaration of conflicts of 

interests, and need to evaluate therapies in multiple animal models of stroke including 

gyrencephalic species.

The goal of the current commentary is not to review prior recommendations with which we 

agree, but to discuss additional aspects that may be important to the translational success of 

ischemic stroke therapies. Frequently many of the aspects incorporated in the design of a 

human stroke trial are not incorporated into animal studies of acute ischemic stroke. 

However, modeling features of a clinical stroke trial in animals may be essential to 

determine whether a therapy will ultimately translate to human ischemic stroke. Presented 

below is a discussion of several factors that may advance preclinical stroke models, 

including use of tissue plasminogen activator, modeling ischemic stroke heterogeneity in 

terms of infarct size and cause of human stroke, addressing the confounding effect of 

anesthesia, dosing therapeutics based on biological effect, modeling the human immune 

system, and developing methods to assess animal stroke outcomes similar to measures used 

in human stroke trials.

Implications of tPA for Animal Studies

tPA is standard of care for patients acute ischemic stroke (Tissue plasminogen activator for 

acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rt-PA 

Stroke Study Group 1995). Thus, in human clinical trials evaluating new treatments for 

acute ischemic stroke, patients treated with tPA are likely to be enrolled. As a result, animal 

stroke models evaluating acute stroke therapies should also include a group of animals 

treated with tPA. The inclusion of a tPA treated animal group has several advantages. It 

permits evaluation of the interaction between the new treatment and tPA, including 

assessing the impact on thrombolytic activity and adverse events. In addition, tPA treated 

animals can be used as a positive control as discussed below.

Compounds being considered for clinical trials may benefit from having preclinical animal 

data comparing the compound of interest to tPA. The rationale is that tPA is the only drug 

where the observed beneficial effect in animal ischemic stroke has translated to a benefit in 

human ischemic stroke. If a test compound can demonstrate a beneficial effect similar to the 

effect of tPA in animals, then it may have an increased probability to be effective in humans. 

For example, a lead compound could be compared to tPA and vehicle control in a blood clot 

embolic model. To move forward, the test compound should be as effective as tPA in treated 

animals. The blood clot ischemic stroke model is suggested because of its prior success in 

translating tPA to stroke patients, and thrombosis/clot embolism is an important feature of 

all three human stroke subtypes (Hsia et al. 2003; Tissue plasminogen activator for acute 
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ischemic stroke. The National Institute of Neurological Disorders and Stroke rt-PA Stroke 

Study Group 1995).

Use of Anesthesia

In patients with ischemic stroke anesthesia is generally not used, and most strokes do not 

occur while a patient is anesthetized. However, in the majority of animal stroke models 

cerebral ischemia is induced while animals are under anesthesia. Though some studies have 

suggested anesthesia may not affect outcomes, this may depend on type of anesthetic and 

possibly the cause of stroke (Gelb et al. 2002; Head and Patel 2007; Kirsch et al. 1996; 

Koerner and Brambrink 2006; Wang et al. 2008; Zivin et al. 1985). Stroke models without 

anesthesia are needed to evaluate lead compounds being considered for clinical stroke trials. 

Alternatively, one might question whether anesthesia should be used in patients with acute 

ischemic stroke. Anesthesia may have neuroprotective effects and may be an important 

factor to help translate certain compounds with identified benefit in animal stroke models to 

patients (Gakuba et al. 2011). However, the routine use of anesthetics in patients with 

ischemic stroke has a number of limitations, including loss of neurological exam to monitor 

response to therapy, effects on blood pressure and cerebral perfusion, association with worse 

outcomes in endovascular treated patients, and need for intensive care that is not widely 

available in all centers treating patients with ischemic stroke (Froehler et al. 2012; Flexman 

et al. 2012; Davis et al. 2012; Abou-Chebl et al. 2010).

Importance of Stroke Cause

Ischemic stroke in humans is heterogeneous. Clinical stroke trials generally enroll stroke 

patients of diverse age, gender, ethnicity, and importantly, stroke cause. The value of 

modeling age and gender in animal stroke studies has been addressed in the STAIR criteria. 

However, the importance of modeling stroke cause warrants further consideration, as it too 

may influence the translational success of an acute stroke therapy. Given most stroke trials 

include multiple causes of stroke, having preclinical data demonstrating effectiveness in 

multiple animal stroke models that emulate the major causes of human ischemic stroke may 

be important to translational success.

The three major causes of human ischemic stroke are large vessel atherosclerosis, 

cardioembolism, and lacunar small vessel disease. Each has a different pathogenesis. Large 

vessel stroke is due to atherosclerotic plaque rupture and embolization; cardioembolic stroke 

is due to cardiac clot formation and embolization; and lacunar stroke is due to a disease of 

the small penetrating cerebral vessels. It is not known if the mechanisms of brain injury 

differ between these three major causes of human stroke. However, different prognosis, 

mortality, and stroke prevention treatment highlight that differences among cardioembolic, 

large vessel, and lacunar stroke exist and potentially may influence acute ischemic stroke 

treatment. We have found molecular differences in inflammation and gene response among 

the three major causes of ischemic stroke in humans (Jickling et al. 2011; Jickling et al. 

2010). This suggests that aspects of the immune response are different for each major cause 

of stroke. Though further study is required, it is possible that the molecular response to brain 
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ischemia and neuroinflammation may differ for each cause of stroke. Thus, certain acute 

stroke treatments may have greater therapeutic effect for certain causes of stroke.

If cause of stroke is important to the treatment of acute ischemic stroke, then animal studies 

should be performed in models of the three major causes of human stroke (large vessel 

atherosclerotic, cardioembolic, and small vessel lacunar). Currently most preclinical animal 

studies use a filament stroke model, which models cerebral ischemia well but does not 

replicate any of the three major causes of human stroke. This is emphasized by the fact that 

very few genes regulated in the blood of rats following filament induced stroke are regulated 

in the blood of human ischemic stroke (Tang et al. 2006; Tang et al. 2001; Stamova et al. 

2010). Different patterns of infarct evolution have also been observed in embolic compared 

to filament stroke models in rodents (Henninger et al. 2006). Furthermore, Hossmann has 

argued that the filament model is a poor model of human stroke that should be abandoned to 

test therapies for human ischemic stroke because the pathophysiology of ischemic brain 

injury induced by mechanical vascular occlusion is different from the thromboembolic 

occlusion that occurs in humans (Hossmann 2012).

A therapy shown to be effective in the filament stroke model should have additional 

evaluation performed in stroke models that have greater similarity to the human causes of 

cerebral ischemia. The blood clot / embolic stroke model emulates aspects of human 

cardioembolic and arterial embolism. This model has been applied in rodents and rabbits, 

and as discussed below has the benefit of producing variable infarct size (Lapchak 2010, 

2009; Meyer et al. 2013; Chapman et al. 2001). Large vessel atherosclerotic stroke has been 

modeled in apolipoprotein E deficient mice and in rabbits fed a high fat diet (Zhang et al. 

2010; Daugherty et al. 2009; Verbeuren 2006; Russell and Proctor 2006; Yanni 2004). Small 

vessel ischemic lacunar stroke has been modeled using the Spontaneous Hypertensive Rat 

(SHR), though additional models of cerebral small vessel disease are needed (Bailey et al. 

2011a; Bailey et al. 2009; Bailey et al. 2011b; Yao and Nabika 2012; Hainsworth and 

Markus 2008). In both atherosclerotic and SHR stroke models, the occurrence of cerebral 

ischemia is spontaneous and requires monitoring for ischemic stroke occurrence. There are 

many other stroke models not mentioned here, including a photocoagulation model, the in 

situ thrombin administration model (Orset et al. 2007), and the ferric chloride application 

model (Karatas et al. 2011). The relationship of these models to three major causes of stroke 

in humans is requires further study.

Infarct Size, Is Heterogeneity Desirable in Animal Models

Infarct size of patients enrolled in clinical stroke trials is usually quite variable, ranging from 

small infarcts causing minor disability to very large infarcts that result in marked disability 

and death (Lansberg et al. 2012; Lansberg et al. 2011; Kidwell et al. 2013). In contrast, in 

animal stroke studies an infarct of consistent size is usually sought as this facilitates 

determination of infarct size reduction in response to treatment (Takano et al. 1997; Belayev 

et al. 1996). Given the variability in human infarct size, animal stroke studies may better 

translate to patients if treatments are assessed across a range of infarct sizes. Such a design 

would require a larger numbers of animals and thus be more difficult and expensive. 

However, given the expense of human trials these larger animal studies that mimic clinical 
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stroke trials may be warranted. This might be considered over modeling but strokes of 

different volume may have different degrees of blood brain barrier damage, inflammatory 

response, and potentially therapeutic response. The clot stroke model is one model that does 

produce variable infarct size. In the rabbit blood clot model cerebral infarcts of different 

sizes have been used to construct treatment response curves to assess therapeutic effect 

(Lapchak et al. 2002b; Lapchak et al. 2002a).

What is the appropriate behavioral outcome in animal stroke studies

In clinical studies of acute ischemic stroke the modified Rankin Scale (mRS) is used to 

assess functional status at 90 days following the index event (Huybrechts and Caro 2007; 

Banks and Marotta 2007). Frequently it is the primary outcome measure in clinical stroke 

trials, thus the features assessed by the mRS should also be important in animal studies of 

ischemic stroke (Kidwell et al. 2013; Hacke et al. 2008; Ginsberg et al. 2013; Broderick et 

al. 2013). The mRS is a simple six point scale that does not provide a comprehensive 

assessment of functional status but does provide an index of a person’s disability related to 

the stroke (Fearon et al. 2012; Weisscher et al. 2008). This simplicity permits reasonable 

inter-rater reliability, which is essential in multicenter clinical trials (Banks and Marotta 

2007; Quinn et al. 2009; Zhao et al. 2010). Furthermore, the mRS is validated and familiar 

to stroke investigators worldwide. Thus, the mRS is likely to remain an important outcome 

measure in clinical trials of ischemic stroke.

How the mRS scale relates to functional outcomes in animal stroke models remains unclear. 

A mRS score ≤2 is generally considered a good outcome; a score >2 is a poor outcome with 

a score of 6 indicating death. The mRS evaluates disability, with a focus on ability to walk, 

attend to bodily needs, and carry out activities of daily life. These functions are a reflection 

of impairment in various aspects of the motor, sensory, visual and cognitive systems. Using 

behavioral measures in animal stroke models that are reflective of the mRS in humans may 

help improve therapeutic translation in stroke. Determining which features to assess in 

animal stroke models that are most reflective of features assessed by the mRS requires 

further investigation. In a mouse MCAO stroke model, Rosell et al. found that no specific 

behavioral test reliably assessed long-term functional outcome (Rosell et al. 2013). The 

optimal time to assess outcome in animal stroke also warrants consideration. Human trials 

often assess mRS at 90 days after the onset of ischemic stroke. Thus, treatment effects in 

animals should also be evaluated at time points beyond 24 hours. Given the shorter lifespan 

of rodents, a timeframe of 21-28 days has been suggested, though sustained benefit at longer 

time points may be desirable in some studies. Outcome assessment of these later time points 

permits identification of treatment effects that may be transient or decline with time and 

would thus be less relevant to the ultimate stroke outcome.

Another difference between human clinical trials and animal studies is the analysis of 

mortality as an outcome. Mortality is an important outcome in human studies of ischemic 

stroke. However, in experimental stroke studies animals that die are often excluded from 

analysis (Sicard and Fisher 2009). To improve preclinical stroke studies, mortality should be 

among the outcomes measured. Furthermore, stroke severity could be modulated so that 

animal mortality is similar to that expected in a human stroke trial.
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Immune Differences between Animal and Human Ischemic Stroke

The immune system is increasingly viewed as important in acute ischemic stroke. Humans 

and rodents have a number of differences in their immune systems that may be relevant to 

acute ischemic stroke and the evaluation of certain therapies. In humans, 70% of circulating 

leukocytes are neutrophils, whereas in rodents only 20-30% of leukocytes are neutrophils 

(Fox 1985). Thus, the baseline number and types of immune cells are very different. 

Immune responses to ischemic stroke may also differ between rodents and humans. We have 

found the circulating leukocytes have a very different gene expression profile in rodent 

MCAO stroke compared to that in patients with acute ischemic stroke (Stamova et al. 2010; 

Tang et al. 2001; Tang et al. 2006). Primates and rabbits have a leukocyte composition 

closer to that of humans. Potentially, these or other stroke models may be preferred in the 

evaluation of certain stroke therapies in which the immune system is deemed important.

How to translate Dose from Animal Models to Humans

Knowing how to translate the dose of a therapy used in an animal stroke model to an 

effective dose in patients with ischemic stroke is challenging. A variety of methods and 

formulas have been developed to aid in this process (Reagan-Shaw et al. 2008; Singh 2006). 

Many of these methods do not address biological differences between rodents and humans 

that may be very important to drug delivery and activity on its therapeutic target.

One possible solution is to develop an assay to measure a drug’s effect on its biological 

target. Dosage could then be based on target response and calibrated to achieve a similar 

response in humans as achieved in animal stroke models (Liou et al. 2012; Plenge et al. 

2013). A surrogate blood biomarker of biological effect may be very useful in this regard. 

Drug levels may also be useful, though a drug level alone may not necessarily indicate 

biological activity. In some cases evaluation of cerebral spinal fluid may necessary if entry 

into the central nervous system is required for biological activity. Importantly, this should be 

performed in both animal and human studies, as a compound’s ability to cross the blood 

brain barrier in rodent ischemic stroke does not necessarily imply it can cross the blood 

brain barrier of a patient with ischemic stroke.

Conclusions

Animal stroke studies are performed for a variety of reasons. Many are proof of concept 

studies evaluating aspects of ischemic stroke biology or identifying treatment targets for 

further investigation. This is important work that is essential to better understand and 

develop novel approaches to treat stroke. However, given the many studies that have not 

translated to humans, we need to be mindful that promising results in proof of concept 

stroke studies require additional evaluation prior to human study. For the field to advance 

and translate more therapies to human stroke we need new ideas, stroke models, and 

approaches. In this commentary we have emphasized several differences between 

experimental animal stroke and human clinical stroke trials. Though the suggestions made 

may be contentious, discussion is essential to determine the factors and experimental 
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protocols needed to better model human ischemic stroke in animals and improve the 

translation of therapies to patient with ischemic stroke.
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