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1. Introduction

LetM be a metric space with metric d that defines the distance between any pair of points inM .
For a finite setX⊂M , the set of distinct distances inX , defined as D(X)={d(x, y) :x ̸=y∈X},
is called a distance set ofX . We say thatX is an s-distance set inM if |D(X)| = s. For instance,
the eight vertices of a cube in R3 form a three-distance set.

Denote byA(M, s) the maximum cardinality of an s-distance set inM . If D = {a1, . . . , as}
is a set of allowed distances, then we may also use a more detailed notation A(M,D).When the
distances are specified explicitly, e.g., D = {a, b},we also writeA(M, {a, b}) for the maximum
size of s-distance sets in the space M with distances a and b.

The maximum size of s-distance sets has been studied for a range of metric spaces. The
first to study it were Einhorn and Schoenberg [ES66a], [ES66b] who addressed the case of the
n-dimensional Euclidean space M = Rn. This problem is still far from being resolved. As an
example, it was proved only recently that the only maximum three-distance set in R3 is formed
by the 12 vertices of a regular icosahedron, and thus A(R3, 3) = 12; similarly A(R3, 5) = 20,
attained by the vertex set of a dodecahedron (see [NS21], which also contains other examples).

The problem of bounding the maximum cardinality of s-distance sets has been actively
studied for the case of M = Sn−1(R), the unit sphere in the n-dimensional real space. Del-
sarte, Goethals, and Seidel [DGS77] proved a general upper estimate on the size of spherical
s-distance sets called the harmonic bound. Their results were improved in a series of recent
papers [Mus09, Noz11, BM11, MN11, BY13b, GY18, JTY+23, LY20] and other works that
focused in particular on the case of s = 2, 3, 4. The case of two-distance spherical codes is
the most studied one. Apart from being of interest in their own right, spherical 2-distance sets
exhibit deep connections with a number of well-known objects in algebraic combinatorics, no-
tably strongly regular graphs, tight frames, and spherical designs [DGS77, BB05, BGOY15].
Recently, the problem of bounding the maximum size of such codes was resolved for most val-
ues of the dimension n [GY18]. Bounds obtained in this paper form a starting point of one of our
theorems, and we provide more details on it in the main text below. Further narrowing down the
problem, many papers have addressed the maximum size of spherical 2-distance sets in which
every pair of vectors have inner product α or −α for some value α ∈ (0, 1), also known as sets
of equiangular lines. This problem also enjoys long history in the literature with a number of
links in algebraic combinatorics, and we refer the reader to [BY13a, GY18, BDKS18, JTY+21]
for recent advances and a general overview.

The maximum cardinality problem for s-distance sets has also been studied for metric spaces
commonly considered in coding theory, starting with the Hamming space Hn

q of n-dimensional
vectors over a finite field Fq. Linear two-distance codes in particular form a classic object in
coding theory because of their links to finite geometries, see for instance an early survey [CK86]
as well as recent works [SHS+21]; [BM22, Ch.7]. Linear codes with few weights are also often
constructed in the framework of cyclic codes and Boolean functions, in particular, bent func-
tions [Mes16]. This line of research is a subject of vast literature, starting with classical families
such as duals of 2-error-correcting BCH codes, Kerdock codes and their relatives [MS77] and
many other families. Some recent additions to the literature are [WZHZ15, Din16, LLHQ21]
(the reader is cautioned that this sample is far from complete in many respects).
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At the same time, most of the code families studied in the context of coding theory limit not
just on the number of distances but also aim at constructing codes with large minimum distance.
As a result, the codes thus obtained are of cardinality that is much smaller than the maximum
possible if the latter constraint is removed. It is this problem that we seek to resolve in this work:
what is the maximum size of a binary code with two distances (linear or not) when the minimum
separation between distinct codewords is unrestricted? In some cases, notably for binary codes
with two distances we give a complete answer, where previously the exact values were known
only for a range of small code lengths n.

In addition to Hn
2 we study codes in the binary Johnson space J n,w, formed of all binary

vectors of length n and Hamming weight w such that 2w ⩽ n. For two vectors x, y ∈ J n,w we
define the Johnson distance dJ(x, y) = (1/2)dH(x, y), where dH(x, y) = |{i : xi ̸= yi}| is the
Hamming distance. The problem of determining the maximum size of codes in J n,w with few
distances recently was the subject of several papers in coding theory literature [BM11, MN11].
This problem can also be phrased in different terms that highlight connections in extremal
combinatorics. A code C ⊂ J n,w can be thought of as a family of w-subsets of an n-set,
and |x ∩ y| = w − dJ(x, y), so disallowing some values of the distance is tantamount to for-
bidding some intersections of the subsets in the family. For instance, the celebrated Erdős–
Ko–Rado theorem [EKR61]; [FT18, GM16] is a statement about the maximum size of a code
in J n,w with D = {1, 2, . . . , w− t}, where t ⩾ 1 is some fixed number. Generally, the problem
of estimating the maximum size of families of finite sets with a prescribed set of intersections
has been the subject of a long line of works in combinatorics; we refer to recent overviews
in [FT18, Ell22].

Following the convention of coding theory, we call an s-distance set in the Hamming and
Johnson spaces an s-code. The maximum cardinality of an s-code can be bounded above using
Delsarte’s linear programming (LP) method [Del73a]; however, this approach typically does
not yield closed-form results. The same applies to Schrijver’s semidefinite programming (SDP)
method [Sch05, GMS12, KT13, Pol19] which represents a far-reaching extension of the LP
bound. Delsarte [Del73a, Del73b] also proved a general upper bound on the size of s-codes,
called the harmonic bound; see also the paper [NS10] for a recent improvement. Relying on
the harmonic bound, the authors of [BM11] determined the maximum cardinality A(Hn

2 , 2)
and A(J n,w, 2) in a number of cases, and paper [MN11] extended their results to s = 3 and 4.

Despite the described advances, the exact values of A(M, s) for M = Hn
2 or J n,w

were known only for a limited range of values of n. For instance, it was shown in [BM11]
that A(Hn

2 , 2) = 1 +
(
n
2

)
for 6 ⩽ n ⩽ 78 with a number of exceptions in that range left unre-

solved, and [MN11] showed that A(Hn
2 , 3) = n +

(
n
3

)
for 8 ⩽ n ⩽ 37 and n = 44, with the

exception of n = 23, 34, 35. See Sec. 6.1 below for more on these values of n.
As one of our main results, we prove

Theorem 1.1. A(Hn
2 , 2) = 1 +

(
n
2

)
for all n ⩾ 6.

The idea of the proof is to embed a binary code into a sphere Sn−1 and relate its size to
spherical two-distance sets and spherical equiangular sets, relying on bounds for them proved
recently in [GY18].
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w 4 5 6 5 6 7 6 7 any
s 2 2 2 3 3 3 4 4 w − 1

A(J n,w, s) =
(
n−2
2

) (
n−3
2

) (
n−4
2

) (
n−2
3

) (
n−3
3

) (
n−4
3

) (
n−2
4

) (
n−3
4

) (
n−1
w−1

)
for n ⩾ 9 12 35 12 16 20 15 20 2w

Thm/Cor 5.5(a) 5.5(b) 5.5(c) 5.7(b) 5.7(c) 5.7(d) 5.8(b) 5.8(c) 4.5

Table 1.1: Values of A(Jn,w, s).

Remark 1.2. The maximum size of 2-distance codes in Hn
q was recently studied in [BDZZ21]

which put forward a conjecture that

A(Hn
q , {2, 4}) = 1 +

(
n

2

)
for n ⩾ 6 and q = 2, 3, 4.

We note that for q = 2 this equality follows already from Theorem 2.2 (an independent different
proof was recently given in [LR21]). Our Theorem 1.1 below extends this result to all values of
the distances.

We further establish a number of exact general results for A(J n,w, s) for 3 ⩽ w ⩽ 7
and 2 ⩽ s ⩽ 4, detailed in Section 5. Here the main vehicle is application of the LP method.
We remarked above that general results based on it are difficult to come by; an observation that
makes our results possible is that a small subset of Delsarte’s inequalities suffice to constrain the
size of the code, and this small subset can be analyzed in a general form rather than numerically.
Outside the above range of values of s and w we obtain a few new exact results by computer
relying on LP as well as on Schrijver’s SDP bound.

For convenience, we list the new bounds for A(J n,w, s) in Table 1 with references
to the statements proved in the main text. Earlier results [MN11] additionally show
that A(J n,6, 2) =

(
n−4
2

)
for 15 ⩽ n ⩽ 24. We discuss these as well as other previously known

and new numerical results in Sec. 6 below.
Based on our new results and known bounds (including the Erdős–Ko–Rado theorem), we

formulate a general conjecture for s-distance sets in the Johnson space.

Conjecture 1.3. For all w > s > 0 and sufficiently large n ⩾ n0(w, s),

A(J n,w, s) =

(
n− w + s

s

)
.

The Erdős–Ko–Rado theorem corresponds to the case of s consecutive distances
D = {1, 2, . . . , s}, see Sec. 4.2.

Note. Some of the routine calculations in this paper were omitted from the main text. They
are available in the Appendices included in the preprint (arXiv) version of the paper [BGK+22].
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2. The harmonic bound, its improvements and implications

2.1. The Hamming space

Recall that the set of polynomials

ϕk(x) =
k∑

j=0

(−1)j
(
x

j

)(
n− x

k − j

)
, k = 0, 1, . . . , n (2.1)

called the binary Krawtchouk polynomials, forms an orthogonal basis in the space of real func-
tions on {0, 1, . . . , n} with weight

(
n
i

)
, i = 0, . . . , n [Del73a], [MS77, Ch.5]. Any such function

has a unique expansion as a sum of Krawtchouk polynomials, namely f(x) =
∑

i⩾0 fiϕi(x),

where fi = 2−n
∑

j⩾0 f(j)ϕi(j)
(
n
j

)
.

Delsarte [Del73a, Del73b] proved an upper bound on A(Hn
2 , s), called the harmonic bound

(it is derived relying on the dimension of the space of spherical harmonics). In the next theorem
we quote this bound accounting for an improvement found in [NS10].

Theorem 2.1 ([NS10]). Let C ⊂ Hn
2 be an s-code with distances D = {d1, . . . , ds}. Consider

the polynomial f(t) =
∏

i
di−t
di

=
∑s

k=0 fkϕk(t). Then

A(Hn
2 ,D) ⩽

∑
k:fk>0

(
n

k

)
.

In [NS10] this theorem is proved for spherical codes, but it can be extended to other polyno-
mial metric spaces including Hn

2 and J n,w using standard tools.
A concrete form of Theorem 2.1 under the condition that the sum of the code’s distances

does not exceed 1
2
sn is as follows.

Theorem 2.2 ([BM11, Theorem 11]). Suppose that D={d1, . . . , ds} is such that
∑s

i=1di⩽
1
2
sn.

Then

A(Hn
2 ,D) ⩽

s−2∑
i=0

(
n

i

)
+

(
n

s

)
.

This inequality is proved by showing that the assumption
∑s

i=1 di ⩽
1
2
sn forces the coeffi-

cient fs−1 of the Krawtchouk expansion to be nonpositive, and thus the term
(

n
s−1

)
is missing

from the sum.
A lower bound on A(Hn

2 , s) follows by an easy construction of s-codes in Hn
2 which some-

times enables one to prove tight results.

Proposition 2.3 ([MN11, Eq.(3.1)]). For 2s ⩽ n, we have

A(Hn
2 , s) ⩾

⌊ s
2
⌋∑

i=0

(
n

s− 2i

)
.

Proof. For 2s ⩽ n, the set C of all binary vectors of Hamming weight k ⩽ s such
that k = s (mod 2) is an s-code with distance set D(C) = {2, 4, . . . , 2s}.
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2.2. The Johnson space

The results in the previous section have their analogs for the Johnson space J n,w. In this case
the relevant family of orthogonal polynomials are the Hahn polynomials, defined as

ψk(x) =
k∑

j=0

(−1)j

(
k
j

)(
n+1−k

j

)(
w
j

)(
n−w
j

) (
x

j

)
, k = 0, 1, . . . , w. (2.2)

The Hahn polynomials form an orthogonal basis in the function space f : {0, 1, . . . , w} → R
with weight

(
w
i

)(
n−w
i

)
, i = 0, 1, . . . , w.

The (improved) harmonic bound for the Johnson space has the following form.

Theorem 2.4 ([NS10]). Let C ⊂ J n,w be a constant weight s-code with distances {d1, . . . , ds}.
Consider the polynomial f(t) =

∏
i
di−t
di

. Suppose that the Hahn expansion of f(t) is
f(t) =

∑s
k=0 fkψk(t). Then

|C| ⩽
∑

k:fk>0

(
n

k − 1

)
n− 2k + 1

k
.

As remarked, this result appears in [NS10] for the case of spherical codes. Starting with this
theorem, one can prove the following upper bound on s-codes in the Johnson space.

Theorem 2.5 ([BM11, Theorem 8]). Let C ⊂ J n,w be an s-code with distances
D = {d1, . . . , ds}. Suppose that

s∑
i=1

(w − di) ⩾
s(w2 − (s− 1)(2w − n

2
))

n− 2(s− 1)
.

Then
|C| ⩽

(
n

s

)
−
(

n

s− 1

)
n− 2s+ 3

n− s+ 2
.

Similarly to Proposition 2.3, there is a general construction of s-codes in the Johnson space
that implies a lower bound on A(J n,w, s).

Proposition 2.6 ([EKR61]). For s ⩽ n− w we have

A(J n,w, s) ⩾

(
n− w + s

s

)
.

Proof. For s ⩽ n − w, consider the set of binary vectors in J n,w with ones in the first w − s
coordinates. Clearly, it forms an s-code of size

(
n−w+s

s

)
with distances {1, . . . , s}.
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3. The maximum size of 2–codes in the Hamming space: A proof of Theo-
rem 1.1

We will prove Theorem 1.1 by reduction to spherical codes. Let C ⊂ Hn
2 be a binary code of

length n. Our plan is to map C on the sphere Sn−1 and view the result as a spherical 2-distance
code. For that let f : Hn

2 → Sn−1 be a map given by x = (x1, . . . , xn) 7→ f(x) = (v1, . . . , vn),
where vi = 1√

n
(−1)xi for all i. Note that if dH(x, y) = d then for the Euclidean inner product we

obtain ⟨f(x), f(y)⟩ = 1− 2d
n

. Thus, if C is a binary 2-code with distances a and b, the set f(C)
forms a spherical 2-code with inner products α = 1− 2a

n
, β = 1− 2b

n
.

In the following subsection, we recall some known bounds for equiangular lines. The proof
itself is formed of two parts, presented in Sections 3.1, 3.2. The first part reformulates the
problem for spherical codes, connects it to families of equiangular lines, and then narrows down
the possible parameters by using the known results about them. This leaves behind a set of
exceptional values of the distances, which we handle in the second part.

3.1. Bounds from spherical equiangular sets

We will need a few known results concerning equiangular line sets in Rn.Any such set is a finite
collection of points on Sn−1 with pairwise inner products {α,−α}, α ∈ [0, 1). LetM(n) be the
size of the largest possible equiangular line set in n dimensions, and letMα(n) be the size of the
largest equiangular set with inner products {α,−α}.

Theorem 3.1.

(a) Mα(n) ⩽ 2n unless 1/α is an odd integer (Neumann, see [LS73]);

(b) M 1
3
(n) = 28 for 7 ⩽ n ⩽ 15, and M 1

3
(n) = 2n− 2 for n ⩾ 15 ([LS73]);

(c) Mα(n) ⩽
n(1−α2)
1−nα2 for all α and n ∈ N such that nα2 < 1 (Relative bound, [LS73]);

(d) M 1
a
(n) ⩽ (a2−2)(a2−1)

2
for all n and a such that n ⩽ 3a2 − 16 and a ⩾ 3 ([Yu17]);

(e) M 1
a
(n) ⩽ n

(
2
3
a2 + 4

7

)
+ 2 for all a ⩾ 3 and for all n ∈ N ([GY18, Theorem 3]).

Parts (a)–(c) of this theorem form classical results, while parts (d) and (e) represent recent
results on bounds for equiangular lines.

Lemma 3.2. M 1
a
(n) ⩽

(
n−1
2

)
for n ⩾ 7 unless a is an odd integer and n ∈ {a2 − 1, a2 − 2}.

Proof. The case-by-case proof below essentially follows the proof of [GY18, Theorem 2].

1. If a is not an odd integer, by Theorem 3.1(a), M 1
a
(n) ⩽ 2n ⩽

(
n−1
2

)
for all n ⩾ 7.

Therefore, below we will assume that a is an odd integer.

2. Let a2 ⩽ n ⩽ 3a2 − 16. By Theorem 3.1(d),

M 1
a
(n) ⩽

(a2 − 1)(a2 − 2)

2
⩽

(
n− 1

2

)
.
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3. For n ⩽ a2 − 3, by Theorem 3.1(c),

M 1
a
(n) ⩽

n(a2 − 1)

a2 − n
= n+

n2 − n

a2 − n
⩽ n+

n2 − n

3
⩽

(
n− 1

2

)
for all n ⩾ 13. If 7 ⩽ n ⩽ 12, then a ⩾ 5 (recall that a is odd) and, again using
Theorem 3.1(c), we obtain

M 1
a
(n) ⩽ n+

n2 − n

a2 − n
⩽ n+

n2 − n

13
⩽

(
n− 1

2

)
.

4. For the last remaining case, consider n ⩾ 3a2 − 15. By Theorem 3.1(e),

M 1
a
(n) ⩽ n

(
2

3
a2 +

4

7

)
+ 2 ⩽ n

(
2

3
· n+ 15

3
+

4

7

)
+ 2 ⩽

(
n− 1

2

)
for all n ⩾ 20. For 12 ⩽ n ⩽ 19 we have a = 3, and by Theorem 3.1(b)

M 1
a
(n) = 28 ⩽

(
n− 1

2

)
.

Recall that A(Hn
2 , {a, b}) is the maximum size of 2-codes in the Hamming space with dis-

tance set {a, b} and a > b, and let g(n, α, β) be the maximum size of a spherical 2-code with
inner products α, β ∈ [−1, 1).

Lemma 3.3. Suppose that −1 ⩽ α < β < 1 and α+ β < 0. Let γ = 2−(α+β)
β−α

. Then for n ⩾ 6,

g(n, α, β) ⩽

(
n

2

)
unless γ is an odd integer and n ∈ {γ2 − 2, γ2 − 3}.

Proof. Consider a 2-code C = {x1, . . . , xN} ⊂ Sn−1 with inner products α, β. Let
t =

√
2

2−(α+β)
and let y ∈ Sn be the unit vector orthogonal to all xi ∈ C. Then the set

{txi +
√
1− t2y : 1 ⩽ i ⩽ N}

is an equiangular set in Sn with inner product 1
γ
= β−α

2−(α+β)
. Thus,

g(n, α, β) ⩽M 1
γ
(n+ 1) ⩽

(
n

2

)
unless γ is one of the exceptional values in the statement of the Lemma 3.2.

Theorem 3.4. For n ⩾ 6,

A(Hn
2 , {a, b}) ⩽ 1 +

(
n

2

)
unless there is a positive integer m such that a = (m + 1)(2m + 1), b = m(2m + 1)
and n ∈ {(2m+ 1)2 − 2, (2m+ 1)2 − 3}.
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Proof. If a + b ⩽ n, by Theorem 2.2, A(Hn
2 , {a, b}) ⩽ 1 +

(
n
2

)
. Now we assume a + b > n

and consider the corresponding spherical 2-code with scalar products α = 1− 2a
n

, β = 1− 2b
n

.
Then α + β < 0. By Lemma 3.3,

A(Hn
2 , {a, b}) ⩽ g(n, α, β) ⩽

(
n

2

)
unless γ = 2−(α+β)

β−α
is an odd integer and n ∈ {γ2 − 2, γ2 − 3}. Write γ = 2m + 1 for some

integer m and observe that

γ =
a+ b

a− b
= 2m+ 1

implies a
b
= m+1

m
. Denoting k = gcd(a, b), we get a = (m+ 1)k and b = mk.

By a result of Rankin [Ran55], the size of a spherical code whose scalar products are all
negative cannot be larger than n + 1. Since n + 1 ⩽

(
n
2

)
, it is sufficient to consider the case

when β ⩾ 0, that is, when b ⩽ n/2. Note that α + β < 0 so α must be negative and a > n/2.
Using n ∈ {(2m+1)2− 2, (2m+1)2− 3}, we see that b ⩽ 2m2+2m− 1 and a ⩾ 2m2+2m.
Since b = mk, k < 2m+2. Since a = (m+1)k, k ⩾ 2m. The only possible choices are k = 2m
and k = 2m+ 1.

Note that α + β < 0 is equivalent to a + b > n. If k = 2m, a + b = 2m(m + 1) + 2m2 =
4m2+2m ⩽ (2m+1)2−3 ⩽ n so this condition is not satisfied. Therefore, the only remaining
choice for k is 2m+ 1 and a = (m+ 1)(2m+ 1), b = m(2m+ 1).

3.2. Exceptional cases

Here we show that the exceptional cases in Theorem 3.4 cannot give rise to spherical 2-codes of
large size. The main instrument in the proof is a bound on spherical 2-codes from [GY18].

Theorem 3.5 ([GY18, Corollary 4]). Let X ⊂ Sn−1 be a spherical code with inner products
α, β. Then

|X| ⩽ n+ 2

1− n−1
n(1−α)(1−β)

,

if the right-hand side is positive.

Lemma 3.6. For all n ⩾ 6,

A(Hn
2 , {a, b}) ⩽

(
n

2

)
,

given that a = (m+ 1)(2m+ 1), b = m(2m+ 1) and n ∈ {(2m+ 1)2 − 2, (2m+ 1)2 − 3} for
some positive integer m.

Proof. Using the same mapping to the sphere as above, we consider spherical 2-codes with
scalar products α = 1− 2a

n
and β = 1− 2b

n
. Note that

n(1− α)(1− β) =
4ab

n
=

(2m+ 1)4 − (2m+ 1)2

n
.
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Since (2m+ 1)2 is either n+ 2 or n+ 3,

n(1− α)(1− β) ⩾
(n+ 2)2 − (n+ 2)

n
=

(n+ 2)(n+ 1)

n
.

Therefore, by Theorem 3.5, the size of the set is no larger than

n+ 2

1− (n−1)n
(n+2)(n+1)

=
(n+ 1)(n+ 2)2

4n+ 2
<

(
n

2

)
+ 1

for all n ⩾ 7. One can also check that the upper bound in Theorem 3.5 is less than
(
n
2

)
when n = 6, m = 1.

Now Theorem 1.1 follows by combining Proposition 2.3, Theorem 3.4 and Lemma 3.6.
Remark 3.7. Another way to rule out the existence of large-size codes for the exceptional sets
of parameters is to rely on the LP method. This route relies on combining the Delsarte inequal-
ities (5.2) for degrees k = 2, n − 2, n − 1, n, but it results in a longer argument, so we do not
present it here. Similar (yet different) arguments are used to bound A(Jn,w, s) in Section 5.
Remark 3.8. As follows from [JTY+23], for large n the valueA(Hn

2 , {d1, d2}) for some distance
pairs d1, d2 is at most linear in n. These results rely on certain technical conditions related to
spectral radius of some graphs, which we do not cite here. To give an example, for large n the
value A(Hn

2 , {3n
10
, 3n

5
}) ⩽ 3n+O(1), see [JTY+23, Thm. 1.12].

4. Bounds for s–codes in the Johnson space

4.1. Implications of the harmonic bound

In this section, we derive some general bounds forA(J n,w, s) based on a refining of Theorem 2.5,
which we state and prove next.

Theorem 4.1. LetC ⊂ J n,w be an s-code with distance set D = {d1, . . . , ds}, wherew ⩾ s+1
and s ⩾ 2. Suppose that

n ⩾ sw2 − 2s(s− 1)w + s(s− 1)2 + 2(s− 1). (4.1)

Then |C| ⩽
(
n
s

)
−

(
n

s−1

)
+
(

n
s−2

)
.

Proof. From (4.1) we conclude that

sw(n− 2(s− 1))− s(w2 − (s− 1)(2w − n
2
))

n− 2(s− 1)
⩾

s−1∑
i=0

(w − i)− 1.

By Theorem 2.5, if
s∑

i=1

di ⩽
sw(n− 2(s− 1))− s(w2 − (s− 1)(2w − n

2
))

n− 2(s− 1)
,
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|C| ⩽
(
n
s

)
−

(
n

s−1

)
n−2s+3
n−s+2

=
(
n
s

)
−

(
n

s−1

)
+

(
n

s−2

)
. This proves our claim, except for the case

of D = {w,w − 1, . . . , w − s + 1}. However, for this choice of the distances the Johnson
bound [Joh62], [MS77, p. 528] implies that

|C| ⩽
s−1∏
i=0

n− i

w − i
⩽

(
n

s

)
−
(

n

s− 1

)
+

(
n

s− 2

)
.

This theorem implies the following bounds.

Corollary 4.2.

A(J n,w, 2) ⩽

(
n

2

)
− n+ 1 =

(
n− 1

2

)
, w ⩾ 3 and n ⩾ 2w2 − 4w + 4, (4.2)

A(J n,w, 3) ⩽

(
n

3

)
−

(
n

2

)
+ n =

(
n− 1

3

)
+ 1, w ⩾ 4 and n ⩾ 3w2 − 12w + 16, (4.3)

A(J n,w, 4) ⩽

(
n

4

)
−

(
n

3

)
+

(
n

2

)
=

(
n− 1

4

)
+ n+ 1, (4.4)

w ⩾ 5 and n ⩾ 4w2 − 24w + 42.

By fixing the value of w we can obtain specific bounds for the maximum size of s-codes.
For instance, taking into account numerical results of Propositions 6.2, 6.3, and 6.4 below, we
obtain the following results:

A(J n,3, 2) =

(
n− 1

2

)
, n ⩾ 6 (4.5)(

n− 1

3

)
⩽ A(J n,4, 3) ⩽

(
n− 1

3

)
+ 1, n ⩾ 11. (4.6)(

n− 1

4

)
⩽ A(J n,5, 4) ⩽

(
n− 1

4

)
+ n+ 1 n ⩾ 15. (4.7)

These estimates in fact relate to a special situation when the code is allowed to have all but one
distances, or using the language of intersecting families, forbidding a single intersection. In the
next subsection, we further explore this point of view, removing the gap in last two of these
estimates. Further, in Sec. 5 we show how these improved bounds can be obtained using the
Delsarte inequalities.

4.2. EKR and forbidden intersections

As already mentioned, constant weight codes with a specified set of distances can be equivalently
described as families of finite sets with restricted intersections. Switching to this language, in this
subsection we prove one simple corollary of the Erdős–Ko–Rado theorem that implies bounds
for s-codes with w = s + 1. We will use the following notation. A family F of w-subsets
of [n] is called intersecting if F1 ∩ F2 ̸= ∅ and it is called t-intersecting if |F1 ∩ F2| ⩾ t for
any F1, F2 ∈ F . Let m(n,w, t) be the maximum size of a t-intersecting family.
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Theorem 4.3 ([EKR61]). For 1 ⩽ t < w and n ⩾ n0(w, t)

m(n,w, t) =

(
n− t

w − t

)
. (4.8)

If t = 1 and w ⩽ n/2, then m(n,w) ⩽
(
n−1
w−1

)
. If w < n/2 then equality holds if and only if

there is an i ∈ [n] such that F = {F ⊂
(
[n]
w

)
: i ∈ F}.

Clearly the family F = {F ∈
(
[n]
w

)
: {1, 2, . . . , t} ⊂ F} has cardinality

(
n−t
w−t

)
and therefore

is optimal for n ⩾ n0(w, t). The value of n0(w, t) was found in a series of papers culminating
with Wilson’s theorem [Wil84] stating that for all t we have

n0(w, t) = (w − t+ 1)(t+ 1).

Rephrasing this for s-codes in J n,w, the largest size of a code with distances D = {1, 2, . . . , s =
w − t} is

A(J n,w,D) =

(
n− w + s

s

)
for all s ⩽ w − 1, n ⩾ (s+ 1)(w − s+ 1).

We will now prove a related result for s = w − 1 (any single missing distance) through a
connection with families with forbidden intersections. Denote by m(n,w, l̄) the maximum size
of a family F of w-subsets of [n] such that |F ∩ F ′| ≠ l for any F, F ′ ∈ F . The well-known
Frankl–Füredi theorem [FF85] asserts that for w ⩾ 2l + 2 and sufficiently large n,

m(n,w, l̄) ⩽

(
n− l − 1

w − l − 1

)
. (4.9)

We first establish a simple (weaker) upper bound form(n,w, l̄) that applies for all n ⩾ 2w− l 1.

Theorem 4.4. Let 1 ⩽ l ⩽ w − 1 and n ⩾ 2w − l, then m(n,w, l̄) ⩽ w−l
n−l

(
n
w

)
.

Proof. Let F be a family of w-subsets of [n] no two of which intersect on l elements. Every
set F ∈ F contains

(
w
l

)
l-subsets, so the total number of l-subsets in all sets F is |F|

(
w
l

)
.

Thus on average every l-subset is contained in E :=
|F|(wl )
(nl)

sets F . Now fix an l-subset S
that is contained in at least E subsets of F . By F∗ ⊆ F denote the set of all subsets in F
containing S. For any F, F ′ ∈ F∗, |F ∩ F ′| ̸= l and thus (F\S) ∩ (F ′\S) ̸= ∅. This means
that the collection {F\S : F ∈ F∗} forms an intersecting family in [n]\S, and so E ⩽

(
n−l−1
w−l−1

)
by the EKR theorem. The last inequality implies that

|F| ⩽
(
n
l

)(
w
l

)(n− l − 1

w − l − 1

)
=

1(
w
l

)w − l

n− l

(
n

l

)(
n− l

w − l

)
=
w − l

n− l

(
n

w

)
.

1In all likelihood, it is available in the literature, although we could not find an immediate reference. The proof
technique we use is similar to the kernel method of Hajnal and Rothschild, see e.g., [GM16, p. 283].



combinatorial theory 4 (1) (2024), #7 13

Corollary 4.5. A(J n,w, w − 1) =
(
n−1
w−1

)
for n ⩾ 2w.

Proof. We have

A(J n,w, w − 1) ⩽ max
l

w − l

n− l

(
n

w

)
⩽

(
n− 1

w − 1

)
.

At the same time, a (w − 1)-code all of whose vectors contain a fixed point is of size
(
n−1
w−1

)
,

hence the equality.

Concluding this section, note that the problem of determining the largest size of codes
with one forbidden intersection in the q-ary Hamming space, q ⩾ 3, was recently resolved
in [KLLM23]. Turning to the Johnson space, we note that the question of forbidding a sin-
gle intersection was raised in Erdős’s paper [Erd75] and is known as the Erdős–Sós problem.
The first major result for this problem was the Frankl–Füredi bound (4.9), implying
that m(n,w, t− 1) =

(
n−t
w−t

)
if w ⩾ 2t and n = n0(w, t) is sufficiently large. Very recently,

Ellis, Keller, and Lifshitz [EKL16] proved that m(n,w, t− 1) ⩽ m(n,w, t) for fixed t, large n,
andw ∈ [o(n), n/2−o(n)]. They also proved that equality holds only if each set in the family F
contains a fixed t-subset.

5. Using the Delsarte inequalities: Bounds for small w

5.1. Preliminaries

A powerful tool to estimate the maximum size of a code is provided by Delsarte’s linear pro-
gramming bound. We state this bound for Hn

2 and J n,w in the following theorem, adapting the
statements to s-codes.

Theorem 5.1 ([Del73a]). (a) Let C ⊂ Hn
2 be an s-code with distances D = {d1, . . . , ds}.

Then |C| is bounded above by the value of the linear program LPH(D) given by

1 +
s∑

j=1

fj → max, (5.1)

where fj ⩾ 0 for j = 1, . . . , s and

s∑
j=1

fjϕk(dj) ⩾ −
(
n

k

)
, k = 0, . . . , n, (5.2)

and ϕk are the Krawtchouk polynomials (2.1).

(b) Let C ⊂ J n,w be a constant weight s-code with distances D = {d1, . . . , ds}. Then |C| is
bounded above by the value of linear program LPJ(D) given by

1 +
s∑

j=1

fj → max, (5.3)
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where fj ⩾ 0 for j = 1, . . . , s and
s∑

j=1

fjψk(dj) ⩾ −1, k = 0, 1, . . . , w, (5.4)

and ψk are the Hahn polynomials (2.2).

Relations (5.2) and (5.4) are called the Delsarte inequalities.
The linear programming bounds have been one of the main tools in estimating the value

of A(M, s) for M = Hn
2 , J n,w as well as for spherical codes. Direct application of these

bounds is difficult because of the need to exhaust all possible subsets D ; however, it is possible
to restrict the search by using the integrality conditions quoted in the next theorem.

Theorem 5.2 ([MN11]). Let C ⊂ J n,w be an s-code with distances {d1, . . . , ds}.
Let N(J n,w, s) =

(
n

s−1

)
and

Ki =
∏
j ̸=i

dj
dj − di

for i = 1, . . . , s.

If |C| ⩾ 2N(J n,w, s), then Ki is an integer and

|Ki| ⩽

⌊
1

2
+

√
N(J n,w, s)2

2N(J n,w, s)− 2
+

1

4

⌋
for i = 1, . . . , s.

This statement forms an analog of a much earlier result for few-distance sets inRn, namely the
Larman–Rogers–Seidel theorem [LRS77]. A similar set of necessary conditions is also known
for the Hamming space [MN11].

5.2. Bounds for s–codes with small weight

The following theorem is proved by considering a subset of inequalities in the LP bound. It
allows us to calculate an upper bound of an s-code with fixed distance sets. To obtain an upper
bound on A(J n,w, s), we exhaust all possible s-tuples, aided by the conditions in Theorem 5.2.

Theorem 5.3. Let C ⊂ J n,w be a 2-code with distances d1, d2. Suppose that for some
k1, k2 ∈ {1, . . . , w}

ψk1(d1) ⩽ ψk1(d2) and ψk2(d2) ⩽ ψk2(d1), (5.5)∣∣∣∣ψk1(d1) ψk2(d1)
ψk1(d2) ψk2(d2)

∣∣∣∣ > 0, (5.6)

then

|C| ⩽

∣∣∣∣∣∣
1 1 1
1 ψk1(d1) ψk2(d1)
1 ψk1(d2) ψk2(d2)

∣∣∣∣∣∣∣∣∣∣ψk1(d1) ψk2(d1)
ψk1(d2) ψk2(d2)

∣∣∣∣ . (5.7)
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Proof. Let (f1, f2) be an optimal solution of Delsarte’s linear program LPJ (5.3)–(5.4),
then |C| ⩽ 1 + f1 + f2. The coefficients f1, f2 satisfy the Delsarte inequalities (5.4). Con-
sider the inequalities for a pair of degrees k = k1, k2. Adding them and using (5.5) we obtain

0 ⩾ (ψk2(d2)− ψk2(d1))(1 + ψk1(d1)f1 + ψk1(d2)f2)

+ (ψk1(d1)− ψk1(d2))(1 + ψk2(d1)f1 + ψk2(d2)f2)

=

∣∣∣∣∣∣
0 −1 −1
1 ψk1(d1) ψk2(d1)
1 ψk1(d2) ψk2(d2)

∣∣∣∣∣∣+
∣∣∣∣ψk1(d1) ψk1(d2)
ψk2(d1) ψk2(d2)

∣∣∣∣ (f1 + f2)

=

∣∣∣∣∣∣
−1 −1 −1
1 ψk1(d1) ψk2(d1)
1 ψk1(d2) ψk2(d2)

∣∣∣∣∣∣+
∣∣∣∣ψk1(d1) ψk1(d2)
ψk2(d1) ψk2(d2)

∣∣∣∣ (1 + f1 + f2).

Now using (5.6) we obtain the claimed bound.

This theorem enables us to prove a number of exact estimates of A(J n,w, 2) for small w.
Before proceeding let us point out a simple corollary for the case of d1 = 1, d2 = 2. This is
a known result, which follows from Erdős–Ko–Rado (Thm. 4.3) supplemented with Wilson’s
theorem; see Sec. 4.2 for details and references.

Corollary 5.4. If n ⩾ 3w − 3 then

A(J n,w, {1, 2}) =
(
n− w + 2

2

)
. (5.8)

Proof. Take in Theorem 5.3 k1 = w, k2 = w − 1. From (2.2) we find

ψw(1) = − 1

n− w
, ψw(2) =

2

(n− w)(n− w − 1)

ψw−1(1) =
n− 3w + 2

w(n− w)
, ψw−1(2) = − 2(2n− 5w + 4)

w(n− w)(n− w − 1)
.

Then ψw(2) − ψw(1) = n−w+1
(n−w)(n−w−1)

⩾ 0 and ψw−1(1) − ψw(2) = (n−3w+3)(n−w+2)
w(n−w−1)(n−w)

⩾ 0, so
conditions (5.5) are satisfied. Further,

ψw(1)ψw−1(2)− ψw(2)ψw−1(1) =
2(n− 2w + 2)

w(n− w − 1)(n− w)2
> 0,

so bound (5.7) applies. Evaluating it, we find that A(J n,w, {1, 2}) is at most the right-hand side
of (5.8). Finally, Proposition 2.6 implies that (5.8) holds with equality.

While Wilson’s original proof also relies on the general linear programming method, our
proof uses only two Delsarte inequalities (5.4), for Hahn polynomials of degrees w and w − 1,
and thus appears to be different from Wilson’s approach.

Similar considerations enable one to recover some other known bounds for A(J n,w,D).
For instance, for D = {w − 1, w} we can take k1 = 2, k2 = 1 and check that (5.5), (5.6)
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are satisfied. This yields A(J n,w, {w − 1, w}) ⩽ n(n − 1)/w(w − 1), which coincides with
the Johnson bound. Similarly, the inequality A(J n,w, {1, 2, 3}) ⩽

(
n−w+3

3

)
can be proved by

taking k1 = w, k2 = w−1, k3 = w−2 and recovering the EKR upper bound for all n ⩾ 4w−8,
which is Wilson’s condition.

In the next theorem we use bound (5.7) to estimate the maximum size of constant weight
codes with 2 distances irrespective of the values of the distances; however, we will have to
assume that the weight w is small.

Theorem 5.5.

(a) A(J n,4, 2) =
(
n−2
2

)
for n ⩾ 9.

(b) A(J n,5, 2) =
(
n−3
2

)
for n ⩾ 12.

(c) A(J n,6, 2) =
(
n−4
2

)
for n ⩾ 35.

Proof. We will use Theorem 5.3 with ki = w+ 1− di, i = 1, 2. The scheme of the proof is the
same for each of the three cases. We illustrate it in detail for Part (a).

(a) Theorem 5.2 restricts the possible values of distance pairs d1, d2. Namely, since for n ⩾ 9,
2N(J n,4, 2) = 2n ⩽

(
n−2
2

)
, we only need to consider the pairs {1, 2}, {2, 3}, {2, 4},

and {3, 4}. Now let us use Theorem 5.3. For D = {1, 2} we have k1 = 4, k2 = 3. De-

note E1 = ψk2(d1)− ψk2(d2), E2 = ψk1(d2)− ψk1(d1), E3 =

∣∣∣∣ψk1(d1) ψk1(d2)
ψk2(d1) ψk2(d2)

∣∣∣∣, then we

obtain

E1 =
(n− 2)(n− 9)

4(n− 4)(n− 5)
, E2 =

n− 3

(n− 4)(n− 5)
, E3 =

n− 6

2(n− 4)2(n− 5)
.

These fractions are nonnegative for all n ⩾ 9, and thus from (5.7) we get

|C| ⩽ (n− 2)(n− 3)

2
=

(
n− 2

2

)
.

The remaining three cases are checked in a similar way. The obtained expressions are listed
in Appendix A.12. Altogether this argument proves that for n ⩾ 12 the value
of A(J n,4, 2) ⩽

(
n−2
2

)
. Together with the construction of Proposition 2.6 and Proposi-

tion 6.2, we obtain the desired result.

(b) Since 2N(J n,5, 2) = 2n ⩽
(
n−3
2

)
for n ⩾ 10, by Theorem 5.2, we only need to consider the

distance pairs {1, 2}, {2, 3}, {2, 4}, {3, 4}, {4, 5}. The expressions listed in Appendix A.2
show thatA(J n,5, 2) ⩽

(
n−3
2

)
for n ⩾ 18. Along with the construction given in Proposition

2.6 and Proposition 6.2, we obtain the desired result.
2This and other appendices appear in the arXiv version of this paper [BGK+22].
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(c) Since 2N(J n,6, 2) = 2n ⩽
(
n−4
2

)
for n ⩾ 12, by Theorem 5.2, we only need to consider

the distance pairs {1, 2}, {2, 3}, {2, 4}, {3, 4}, {3, 6}, {4, 5}, {4, 6}, {5, 6}. The expres-
sions listed in Appendix A.3 show that A(J n,6, 2) ⩽

(
n−4
2

)
for n ⩾ 35. Along with the

construction of Proposition 2.6 we obtain the desired result.

Theorem 5.3 affords a generalization for the case of s-codes with s ⩾ 2.

Theorem 5.6. LetC⊂J n,w be a s-code with distance {d1, . . . , ds}. Let k1, . . . , ks∈{1, . . . , w}
and ψ̄k = (ψk(d1), . . . , ψk(ds))

⊤ for k = 0, . . . , w. Suppose that

(−1)s ψ̄k1 . . . ψ̄kj−1
ψ̄0 ψ̄kj+1

. . . ψ̄ks ⩽ 0 for j = 1, . . . , s, (5.9)

(−1)s+1
∣∣ψ̄k1 . . . ψ̄ks

∣∣ < 0. (5.10)

Then

|C| ⩽

∣∣∣∣1 1 . . . 1
1 ψ̄k1 . . . ψ̄ks

∣∣∣∣∣∣ψ̄k1 . . . ψ̄ks

∣∣ . (5.11)

Proof. Let (f1, . . . , fs) be an optimal solution of Delsarte’s linear program LPJ (5.3)–(5.4),
then |C| ⩽ 1 + f1 + · · ·+ fs. By the Delsarte inequalities (5.4),

1 +
s∑

i=1

ψk(di)fi ⩾ 0, k = 0, . . . , w.

We will use a subset of these inequalities for the degrees k1, . . . , ks. On account of (5.9) we
obtain

0 ⩾(−1)s
s∑

j=1

ψ̄1 . . . ψ̄kj−1
ψ̄0 ψ̄kj+1

. . . ψ̄ks

(
1 +

s∑
t=1

ψkj(dt)ft

)
=(−1)s

∣∣∣∣ 0 −1 . . . −1
ψ̄0 ψ̄k1 . . . ψ̄ks

∣∣∣∣+ (−1)s
∣∣ψ̄k1 . . . ψ̄ks

∣∣ s∑
t=1

ft.

Now recalling that ψ0 ≡ 1 and using assumption (5.10) we obtain

1 + f1 + · · ·+ fs ⩽

∣∣∣∣1 1 . . . 1
1 ψ̄k1 . . . ψ̄ks

∣∣∣∣∣∣ψ̄k1 . . . ψ̄ks

∣∣ .

In the next two statements, we examine a number of implications of this theorem. For the
remainder of this section, let ki = w + 1− di for all i as appropriate.

Theorem 5.7.

(a) A(J n,4, 3) =
(
n−1
3

)
for n ⩾ 11.
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(b) A(J n,5, 3) =
(
n−2
3

)
for n ⩾ 12.

(c) A(J n,6, 3) =
(
n−3
3

)
for n ⩾ 16.

(d) A(J n,7, 3) =
(
n−4
3

)
for n ⩾ 20.

Note that Corollary 4.5 implies Part (a), with a stronger bound n ⩾ 6.

Proof. We follow the pattern of Theorem 5.5, supplying details for a part of the proof and moving
the rest to the Appendix.

(a) Begin by noting that Theorem 5.2 restricts the possible values of d1, d2, d3. Namely,
since 2N(J n,4, 3) = 2

(
n
2

)
⩽

(
n−1
3

)
for n ⩾ 11, we only need to consider the distance

sets {1, 2, 3}, {1, 3, 4}, {2, 3, 4}. Now let us use Theorem 5.6. For D = {1, 2, 3} we
have k1 = 4, k2 = 3, k3 = 2. Let

E1 = − ψ̄0 ψ̄k2 ψ̄k3 , E2 = − ψ̄k1 ψ̄0 ψ̄k3 ,

E3 = − ψ̄k1 ψ̄k2 ψ̄0 , E4 = ψ̄k1 ψ̄k2 ψ̄k3 .

We compute

E1 = −(n− 1)(n− 2) (n2 − 14n+ 51)

24(n− 4)(n− 5)2(n− 6)
, E2 = − (n− 1)(n− 3)(n− 8)

6(n− 4)2(n− 5)(n− 6)
,

E3 = − (n− 2)(n− 3)

2(n− 4)2(n− 5)2
, E4 = − 1

4(n− 4)2(n− 5)
.

These fractions are nonpositive for all n ⩾ 8, and thus from (5.11) we get

|C| ⩽ (n− 1)(n− 2)(n− 3)

6
=

(
n− 1

3

)
.

The remaining two cases are checked in a similar way. The obtained expressions are listed in
Appendix A.4. Altogether this argument proves that for n ⩾ 11 the value
of A(J n,4, 3) ⩽

(
n−1
3

)
. Together with the construction of Proposition 2.6, we obtain the

desired result.

(b) Since 2N(J n,5, 3) = 2
(
n
2

)
⩽

(
n−2
3

)
for n ⩾ 13, by Theorem 5.2, we only need to consider

the distance triples {1, 2, 3}, {1, 3, 4}, {2, 3, 4}, {2, 3, 5}, {3, 4, 5}. The expressions listed
in Appendix A.5 show that A(J n,5, 3) ⩽

(
n−2
3

)
for n ⩾ 21. Along with the construction in

Proposition 2.6 and Proposition 6.3, we obtain the desired result.

(c) Since 2N(J n,6, 3) = 2
(
n
2

)
⩽

(
n−3
3

)
for n ⩾ 15, by Theorem 5.2, we only need to con-

sider the distance triples {1, 2, 3}, {1, 3, 4}, {2, 3, 4}, {2, 3, 5}, {2, 4, 6} {3, 4, 5}, {3, 4, 6},
{3, 5, 6}, {4, 5, 6}. The expressions listed in Appendix A.6 show that A(J n,6, 3) ⩽

(
n−3
3

)
for n ⩾ 31. Now Propositions 2.6 and 6.3 imply the desired result.
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(d) Since 2N(J n,7, 3) = 2
(
n
2

)
⩽

(
n−4
3

)
for n ⩾ 17, by Theorem 5.2, we only need to con-

sider the distance triples {1, 2, 3}, {1, 3, 4}, {2, 3, 4}, {2, 3, 5}, {2, 4, 6} {3, 4, 5}, {3, 4, 6},
{3, 4, 7} {3, 5, 6}, {4, 5, 6}, {4, 6, 7}, {5, 6, 7}. The expressions listed in Appendix A.7
show that A(J n,7, 3) ⩽

(
n−4
3

)
for n ⩾ 50. As above, Propositions 2.6 and 6.3 imply the

desired result.

Theorem 5.8.

(a) A(J n,5, 4) =
(
n−1
4

)
for n ⩾ 15.

(b) A(J n,6, 4) =
(
n−2
4

)
for n ⩾ 15.

(c) A(J n,7, 4) =
(
n−3
4

)
for n ⩾ 24.

Note that Corollary 4.5 implies Part (a), with a stronger bound n ⩾ 8.

Proof. We again follow the pattern of Theorem 5.5 in writing the proof.

(a) Since 2N(J n,5, 4) = 2
(
n
3

)
⩽

(
n−1
4

)
for n ⩾ 15, by Theorem 5.2, we only need to consider

the distance tuples {1, 2, 3, 4}, {2, 3, 4, 5}. Now let us use Theorem 5.6. For D = {1, 2, 3, 4}
we have k1 = 5, k2 = 4, k3 = 3, k4 = 2. Denote

E1 = ψ̄0 ψ̄k2 ψ̄k3 ψ̄k4 , E2 = ψ̄k1 ψ̄0 ψ̄k3 ψ̄k4 , E3 = ψ̄k1 ψ̄k2 ψ̄0 ψ̄k4 ,

E4 = ψ̄k1 ψ̄k2 ψ̄k3 ψ̄0 , E5 = − ψ̄k1 ψ̄k2 ψ̄k3 ψ̄k4 ,

then we obtain

E1 = −(n− 1)(n− 2)(n− 3)(n− 4)(n− 10) (n2 − 15n+ 60)

500(n− 5)2(n− 6)2(n− 7)2(n− 8)
,

E2 = −(n− 1)(n− 2)(n− 4)2 (n2 − 17n+ 78)

100(n− 5)3(n− 6)2(n− 7)(n− 8)
,

E3 = −(n− 1)(n− 3)(n− 4)(n− 10)

25(n− 5)2(n− 6)2(n− 7)2
, E4 = − 3(n− 2)(n− 3)(n− 4)

25(n− 5)3(n− 6)2(n− 7)
,

E5 = − 6(n− 4)

125(n− 5)3(n− 6)(n− 7)
.

These fractions are nonpositive for all n ⩾ 10, and thus from (5.11) we get

|C| ⩽ (n− 1)(n− 2)(n− 3)(n− 4)

24
=

(
n− 1

4

)
.

The remaining tuple {2, 3, 4, 5} is checked in a similar way. The obtained expressions are
listed Appendix A.8 Altogether this argument proves that for n ⩾ 15 the value
of A(J n,5, 4) ⩽

(
n−1
4

)
. Together with the construction of Proposition 2.6, we obtain the

desired result.
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(b) Since 2N(J n,6, 4) = 2
(
n
3

)
⩽

(
n−2
4

)
for n ⩾ 17, by Theorem 5.2, we only need to consider

the distance sets {1, 2, 3, 4}, {1, 4, 5, 6}, {2, 3, 4, 5}, {2, 3, 4, 6}, {2, 4, 5, 6}, {3, 4, 5, 6}.
The expressions listed in Appendix A.9 show that A(J n,6, 4) ⩽

(
n−2
4

)
for n ⩾ 30. Now

Proposition 2.6 and Proposition 6.4 imply the desired result.

(c) Since 2N(J n,7, 4) = 2
(
n
3

)
⩽

(
n−3
4

)
for n ⩾ 20, by Theorem 5.2, we only need to

consider the distance sets {1, 2, 3, 4}, {1, 4, 5, 6}, {2, 3, 4, 5}, {2, 3, 4, 6}, {2, 4, 5, 6},
{3, 4, 5, 6}, {3, 4, 6, 7}, {4, 5, 6, 7}. The expressions listed in Appendix A.10 show
that A(J n,7, 4) ⩽

(
n−3
4

)
for n ⩾ 45. As above, Proposition 2.6 and Proposition 6.4 im-

ply the desired result.

Numerical results obtained in Sec. 6.2 relying on the SDP method imply that the approach
considered in this section generally is not strong enough to tighten the gap between the lower
and upper bounds. The limited scope of Theorem 5.6 is highlighted already by the case
of w = 7, s = 2, where the obtained upper bound falls short of reaching

(
n−2
2

)
for large n. In-

deed, consider d1 = 2, d2 = 4 in this case. This pair cannot be ruled out by Theorem 5.2,
while Theorem 5.3 can only give an upper bound of c(7, 2, 4) · n2(1 + o(1)) = 35

64
n2(1 + o(1))

asymptotically. In general, our methods cannot deal with any pairs (d1, d2) such that d2 − d1
divides d1 and c(w, d1, d2) ⩾ 1

2
.

5.3. Upper bounds on 2–codes for large n.

From the preceding results it is clear that for large n the size of maximum 2-codes in the John-
son space J n,w is proportional to n2, namely A(J n,w, 2) ⩽ cn2 + o(n2). In this section we
make the first term of the asymptotics more precise by evaluating the behavior of the bound in
Theorem 5.3. As a result, we will compute the coefficient c = c(w, d1, d2).

We need some asymptotic estimates for the Hahn polynomials. More precise results are
abundant in the literature (e.g., [LW13]); however, the simple bound that stated below is easier
to use to compute bounds on codes.

Proposition 5.9. Let k, x ∈ {1, 2, . . . , w}. As n → ∞, the Hahn polynomial has the or-
der ψk(x) =

1

(wx)
(A+Bn−1 + Cn−2) +O(n−3), where

A =

(
w − k

x

)
,

B = −kx
(
w − k + 1

x

)
,

C = −kxw
(
w − k + 1

x

)
+
k(k − 1)x(x− 1)

2

(
w − k + 2

x

)
.

The proof of this proposition appears in the end of this section.
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Corollary 5.10. As n→ ∞,

ψk(x) ∼
(
w−k
x

)(
w
x

) if x ⩽ w − k

ψk(x) ∼
−kx(

w
x

) · n−1 if x = w − k + 1

ψk(x) ∼
k(k − 1)x(x− 1)

2
(
w
x

) · n−2 if x = w − k + 2

ψk(x) = O(n−3) if x ⩾ w − k + 3.

The main result of this section is stated next.

Theorem 5.11. As n→ ∞, A(J n,w, {d1, d2}) ⩽ c(w, d1, d2)n
2(1 + o(1)), where

c(w, d1, d2) =


2
(
w
d2

)
d1d2(w + 1− d1)(w + 1− d2)

if d1 = d2 − 1(
d2−1
d1

)(
w
d2

)
d1d2(w + 1− d1)(w + 1− d2)

if d1 < d2 − 1.

(5.12)

Proof. First we analyze the case of d1 + 1 = d2. We have ψk1(d1) ∼ −k1d1

(w
d1
)

· n−1, ψk1(d2) ∼
k1k2d1d2
2(w

d2
)

·n−2, ψk2(d1) ∼ 1

(w
d1
)
, ψk2(d2) ∼ −k2d2

(w
d2
)
·n−1. For sufficiently large n, assumptions (5.5)

of Theorem 5.3 hold. The order of the 2 by 2 determinant is

∣∣∣∣ψk1(d1) ψk2(d1)
ψk1(d2) ψk2(d2)

∣∣∣∣ ∼
∣∣∣∣∣∣

−k1d1

(w
d1
)
· n−1 1

(w
d1
)

k1k2d1d2
2(w

d2
)

· n−2 −k2d2

(w
d2
)
· n−1

∣∣∣∣∣∣ = k1k2d1d2

2
(
w
d1

)(
w
d2

) · n−2,

which is positive for sufficiently large n, so we can apply the bound (5.7). The order of the 3 by 3
determinant is∣∣∣∣∣∣

1 1 1
1 ψk1(d1) ψk2(d1)
1 ψk1(d2) ψk2(d2)

∣∣∣∣∣∣ ∼
∣∣∣∣∣∣∣
1 1 1
1 Θ(n−1) 1

(w
d1
)

1 Θ(n−2) Θ(n−1)

∣∣∣∣∣∣∣ =
1(
w
d1

)(1 + o(1)),

so the order of the upper bound is
2(w

d2
)

d1d2(w+1−d1)(w+1−d2)
· n2.

Now suppose that d1+1 < d2, then the orders of ψk1(d1) and ψk2(d2) are the same as above,

ψk2(d1) ∼ (d2−1
d1

)
(w
d1
)

, and ψk1(d2) = O(n−3). Similar calculations show that assumptions (5.5)

and (5.6) of Theorem 5.3 hold, and the bound (5.7) gives the order (d2−1
d1

)(w
d2
)

d1d2(w+1−d1)(w+1−d2)
·n2.
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Remark 5.12. The bound of Theorem 5.11 is tight in two notable cases. The case d1 = 1
and d2 = 2, where the correct constant is c = 1

2
, is already covered by Corollary 5.4. In the

case d1 = w − 1 and d2 = w, Theorem 5.11 implies that c ⩽ 1
w(w−1)

. On the one hand, this
coincides with the Johnson bound [Joh62] already mentioned above. On the other hand, the
existence of 2-distance sets of this size for sufficiently large n immediately follows from the
celebrated work of Wilson on the existence of balanced incomplete block designs [Wil75].

Proof of Proposition 5.9. Recall the expression for ψk(x) in (2.2). We begin with finding the
order of (

n+1−k
j )

(n−w
j )

. By taking logarithms, we have

log

(
n+1−k

j

)(
n−w
j

) = log
(n+ 1− k) . . . (n+ 2− k − j)

(n− w) . . . (n− w − j + 1)

=

j−1∑
r=0

(
log

(
1− k + r − 1

n

)
− log

(
1− w + r

n

))

=

j−1∑
r=0

(
(w + r)− (k + r − 1)

n
+

(w + r)2 − (k + r − 1)2

2n2

)
+O(n−3)

= j(w − k + 1) · n−1 +
j(w − k + 1)(j + w + k − 2)

2
· n−2 +O(n−3).

Expanding exp
(
log

(n+1−k
j )

(n−w
j )

)
into a power series, we obtain

(
n+1−k

j

)(
n−w
j

) = 1 + j(w − k + 1) · n−1 +
j(w − k + 1)(j + w + k − 2) + j2(w − k + 1)2

2
· n−2

+O(n−3)

= 1 + j(w − k + 1) · n−1 + jw(w − k + 1)n−2

+
j(j − 1)(w − k + 1)(w − k + 2)

2
· n−2 +O(n−3),

and

ψk(x) = α+ (w− k+1)βn−1 +w(w− k+1)βn−2 +

(
w − k + 2

2

)
γn−2 +O(n−3), (5.13)
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where

α =
k∑

j=0

(−1)j
(
k

j

)(
x
j

)(
w
j

) =
1(
w
x

) k∑
j=0

(−1)j
(
k

j

)(
w − j

w − x

)
=

(
w−k
x

)(
w
x

)
β =

k∑
j=0

(−1)jj

(
k

j

)(
x
j

)(
w
j

) =
k(
w
x

) k∑
j=0

(−1)j
(
k − 1

j − 1

)(
w − j

w − x

)
= −k

(
w−k
x−1

)(
w
x

)
γ =

k∑
j=0

(−1)jj(j − 1)

(
k

j

)(
x
j

)(
w
j

) =
k(k − 1)(

w
x

) k∑
j=0

(−1)j
(
k − 2

j − 2

)(
w − j

w − x

)

= k(k − 1)

(
w−k
x−2

)(
w
x

) ,

where the last step in each of these three equalities is a version of the Vandermonde convolution.

6. Numerical results

In this section we list some new numerical results for the size of s-codes with small s together
with the previously known results of [BM11, MN11]. While many of them for large values
of n are superseded by the general results listed in Table 1, for small n the methods used in
the previous section are not strong enough to yield exact values. Here the numerical results are
useful in that they enable us to decrease the values on the code length n starting with which
the general bounds apply. Further, the numerical results also extend to values of w that could
not be handled by the approach of Section 5. The results cited below combine the calculations
performed in [BM11, MN11] with several new sets of parameters found here. The new sets were
obtained by using either LP or Schrijver’s semidefinite programming bounds (for reference, their
statements are listed in Appendix B; see [Sch05] for a complete treatment).

6.1. Bounds for 3-codes in the Hamming space

Unlike the case of s = 2, for 3 distances we are able to obtain exact values of A(Hn
2 , 3) only for

a set of small values of n. Namely, the following is true.

Proposition 6.1. For 8 ⩽ n ⩽ 22, 24 ⩽ n ⩽ 37 and n = 44, A(Hn
2 , 3) = n+

(
n
3

)
.

Most of these results were established in [BM11] and [MN11], and our contribution is the
values n = 34, 35. Calculations are simplified by the observation that the triples of distances in
a 3-code satisfy certain integrality conditions of LRS type similar to those listed in Theorem 5.2
for the Johnson space [MN11]. Using them, we computed the upper bounds by implementing
the semidefinite program of Theorem B.1 (Appendix B) and performing the calculations for the
allowable triples. As a final note, the case n = 23 is special since the dual Golay code G⊥

23 has 3
distances and is of size 2048 = 1+23+

(
23
2

)
+
(
23
3

)
[MS77, p. 621], meeting Delsarte’s harmonic

bound with equality and yielding A(H23
2 , 3) = 2048.
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6.2. Bounds for s–codes in the Johnson space

Previously known explicit bounds for A(J n,w, 2), cited from [BM11, MN11], are as follows.
Note that the results for w = s + 1 are now fully covered by our Corollary 4.5. The other
cited results either augment our bounds for small n, or simply remain the best known where our
methods are not powerful enough.

Proposition 6.2. A(J n,w, 2) =
(
n−w+2

2

)
if n and w satisfy one of the following conditions:

1. w = 3 and 6 ⩽ n ⩽ 46;

2. w = 4 and 9 ⩽ n ⩽ 46;

3. w = 5 and 12 ⩽ n ⩽ 46;

4. w = 6 and 15 ⩽ n ⩽ 24 or 35 ⩽ n ⩽ 46.

These results supplement the LP proof of Theorem 5.5 by lowering the smallest value of n
for which the claims in the theorem apply. For w = 4, 5, 6 the added lengths are 9 ⩽ n ⩽ 11,
12 ⩽ n ⩽ 17, and 15 ⩽ n ⩽ 24, respectively.

Similarly, for 3-codes we have the following statement due to [MN11] except for the
case (n,w) = (12, 5) which is new.

Proposition 6.3. A(J n,w, 3) =
(
n−w+3

3

)
if n and w satisfy one of the following conditions:

1. w = 4 and 11 ⩽ n ⩽ 58;

2. w = 5 and 12 ⩽ n ⩽ 58;

3. w = 6 and 16 ⩽ n ⩽ 58;

4. w = 7 and 20 ⩽ n ⩽ 58;

5. w = 8 and 25 ⩽ n ⩽ 58.

As above, Part (a) is completely covered by Cor 4.5. For w = 5, 6, 7 these results add
a number of small values of n to the LP proofs of Theorem 5.7: namely, the added lengths
are 12 ⩽ n ⩽ 20, 16 ⩽ n ⩽ 30, and 20 ⩽ n ⩽ 49, respectively. For w = 8 the LP argument
does not yield any results, so part (4) above remains the state of the art.

To obtain the result for the new pair (12, 5) we sharpened the calculation of [MN11] as
follows. Recall that the generalized LRS theorem (Theorem 5.2) gives necessary integrality
conditions for the distances of an s-code of sufficiently large size. For the distances that satisfy
these conditions, the authors of [MN11] used the LP and harmonic bounds, arriving at their
results. At the same time, for the other cases, i.e., when the conditions are not satisfied, they used
a trivial upper bound 2N(J n,w, s) − 1 on the size of the code. We examined all the possible
distance sets when the bound 2N(J n,w, s) − 1 is larger than

(
n−w+s

s

)
in Proposition 2.6 and

managed to rule them out using the LP bound. Moreover, we observed that the LP bound applies
for n ⩽ 58 while [MN11] has n = 50 as the upper limit in their statement.

Using the same approach for s = 4, we managed to add two new sets of parameters (n,w) =
(15, 6), (16, 6) to the results of [MN11]. These results are collected in the next statement.
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Proposition 6.4. A(J n,w, 4) =
(
n−w+4

4

)
if n and w satisfy one of the following conditions:

1. w = 5 and 15 ⩽ n ⩽ 70;

2. w = 6 and 15 ⩽ n ⩽ 70;

3. w = 7 and 20 ⩽ n ⩽ 70;

4. w = 8 and 25 ⩽ n ⩽ 70;

5. w = 9 and 30 ⩽ n ⩽ 70;

6. w = 10 and 35 ⩽ n ⩽ 40 or 48 ⩽ n ⩽ 70;

7. w = 11 and 60 ⩽ n ⩽ 70.

Forw = 6 these results augment our LP proof in Theorem 5.8 ton in the segment 15⩽n⩽29,
and for n = 7 they contribute the values 20 ⩽ n ⩽ 44. For larger w these results remain the best
known.

In solving LP problems we relied on Mathematica, while for SDP problems we used MAT-
LAB with CVX toolbox [GB08],[GB14] and the MOSEK solver. All of our source codes can
be found on github:

https://github.com/PinChiehTseng/s-distance-set.
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[FF85] P. Frankl and Z. Füredi. Forbidding just one intersection. J. Combin. Theory Ser.
A, 39:160–176, 1985. doi:10.1016/0097-3165(85)90035-4.

https://doi.org/10.1016/j.jcta.2011.01.002
https://doi.org/10.1017/9781009057226
https://doi.org/10.1080/10586458.2013.767725
https://doi.org/10.1112/blms/18.2.97
https://doi.org/10.1007/BF03187604
https://doi.org/10.1016/j.disc.2016.03.029
http://arxiv.org/abs/1604.06135
https://doi.org/10.1093/qmath/12.1.313
https://doi.org/10.1016/s1385-7258(66)50054-3
https://doi.org/10.1016/s1385-7258(66)50055-5
https://doi.org/10.1016/0097-3165(85)90035-4


combinatorial theory 4 (1) (2024), #7 27

[FT18] P. Frankl and N. Tokushige. Extremal problems for finite sets, volume 86 of Student
Mathematical Library. American Mathematical Society, Providence, RI, 2018.

[GB08] M. Grant and S. Boyd. Graph implementations for nonsmooth convex programs. In
V. Blondel, S. Boyd, and H. Kimura, editors, Recent Advances in Learning and Con-
trol, Lecture Notes in Control and Information Sciences, pages 95–110. Springer-
Verlag Limited, 2008. doi:10.1007/978-1-84800-155-8_7.

[GB14] M. Grant and S. Boyd. CVX: MATLAB software for disciplined convex program-
ming, version 2.1. http://cvxr.com/cvx, 4 2014.
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