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REVIEW

RENEWAL: REpurposing study to find 
NEW compounds with Activity for Lewy body 
dementia—an international Delphi consensus
John T. O’Brien1,2*, Leonidas Chouliaras1, Janet Sultana3, John‑Paul Taylor4, Clive Ballard3 and on behalf of the 
RENEWAL Study Group 

Abstract 

Drug repositioning and repurposing has proved useful in identifying new treatments for many diseases, which can 
then rapidly be brought into clinical practice. Currently, there are few effective pharmacological treatments for Lewy 
body dementia (which includes both dementia with Lewy bodies and Parkinson’s disease dementia) apart from cho‑
linesterase inhibitors. We reviewed several promising compounds that might potentially be disease-modifying agents 
for Lewy body dementia and then undertook an International Delphi consensus study to prioritise compounds. We 
identified ambroxol as the top ranked agent for repurposing and identified a further six agents from the classes of 
tyrosine kinase inhibitors, GLP-1 receptor agonists, and angiotensin receptor blockers that were rated by the majority 
of our expert panel as justifying a clinical trial. It would now be timely to take forward all these compounds to Phase II 
or III clinical trials in Lewy body dementia.

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Dementia clearly represents a global and growing health 
challenge, estimated to affect over 100 million people 
worldwide by 2050. Lewy body dementia (LBD), the sec-
ond commonest cause of degenerative dementia after 
Alzheimer’s disease (AD), accounts for around 10% of all 
clinically diagnosed cases [1, 2] and Lewy body pathol-
ogy is present in up to 25% of dementia cases at autopsy. 
LBD includes two closely related conditions, dementia 
with Lewy bodies (DLB) when dementia develops before 
or within a year of onset of motor symptoms, and Par-
kinson’s disease dementia (PDD) when dementia occurs 
during the course of established Parkinson’s disease 
(PD) [3]. Both DLB and PDD are associated with very 
poor outcomes in terms of diminished quality of life [4], 

more rapid functional decline, and increased mortality 
compared to other dementias [5]. Limited symptomatic 
treatments exist, primarily cholinesterase inhibitors and 
memantine, but there are no disease-modifying treat-
ments for LBD. Better treatments to improve these poor 
clinical outcomes are urgently needed.

The pathophysiology of LBD is complex. Alpha-synu-
clein deposition occurs intra-neuronally in the form of 
Lewy bodies and Lewy neurites, as in PD, and there are 
variable amounts of Alzheimer’s type pathology, particu-
larly non-neuritic amyloid plaques with a variable extent 
of tau tangle pathology. Other changes, such as neuro-
inflammation, are increasingly recognised to occur early 
in the disease [6, 7] and may impact the outcome, as has 
been shown for other dementias [8]. As such, potential 
strategies targeting disease modification may be directed 
at influencing α-synuclein deposition (either decreasing 
deposition, decreasing phosphorylation, or accelerating 
clearance), Alzheimer’s type amyloid and tau changes, or 
affecting the neuroinflammatory cascade.
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DLB and PDD potentially represent a spectrum of 
disease, rather than discreet conditions, and treatment 
approaches for these integrated disorders for pharma-
cological and non-pharmacological management share 
much in common [9]. With the identification of several 
new potential treatment targets for LBD, there has been 
renewed interest from the biopharmaceutical industry in 
LBD clinical trials with several ongoing and some prom-
ising early results reported. For example, a Phase 2 study 
of neflamapimod, a mitogen-activated protein kinase 
(MAPK) inhibitor, which may regulate the endosomal 
protein Rab5 and modulate neuroinflammation by shift-
ing microglial activation from a proinflammatory to a 
phagocytic state, has been shown to improve cognition 
in early reports [10, 11]. Despite this increased interest, 
there are only 14 ongoing Phase 2 or Phase 3 clinical tri-
als of pharmaceutical interventions registered for DLB 
and PDD on the clinicaltrials.gov trial registry (compared 
to 158 studies for AD and >1800 for cancer), emphasis-
ing the urgent need to enhance the emerging treatment 
pipeline (https://​clini​caltr​ials.​gov/​ct2/​home, accessed 
01/09/2022, search terms: Recruiting, Active, not recruit-
ing, Enrolling by invitation Studies | Parkinson’s disease 
dementia OR Lewy body dementia OR Lewy OR Par-
kinson’s disease with dementia OR Parkinson-Dementia 
syndrome OR Lewy Body Parkinson dementia | Phase 2, 
3).

An alternative to developing pharmacological agents 
de novo, at substantial cost and long lead-in time before 
clinical use, is to consider repositioning or repurposing 
of existing clinically available agents for new indications. 
This has been advocated for several conditions including 
cancer and other types of dementia [12, 13]. Many drugs, 
though developed for one target mechanism, have mul-
tiple pharmacological actions that may offer benefit in 
other conditions. Drugs that have already been approved 
by regulatory authorities or whose development was dis-
continued prior to approval have established dosing, tol-
erability, safety and side effect and well as manufacturing 
challenges, offering a significant reduction in develop-
ment time for clinical trials. Many are off or nearing end 
of patent, thus offering the prospect of a widely available 
low-cost agent [12]. Drug repurposing has been defined 
as the application of established drug compounds to new 
therapeutic indications and offers a route to drug devel-
opment that is accessible to academic institutions, gov-
ernment and research council programmes, charities 
and not-for-profit organisations thus complementing the 
work of pharmaceutical and biotechnology companies. 
Drug repositioning occurs within the biopharma industry 
during drug development and refers to the development 
of an agent for an indication other than the indication 
it was originally intended for. This new indication is 

prioritised during the development process and before 
approval [14]. Our study focused on drug repurposing.

With many potential candidates for repurposing, a key 
question is how to choose a compound or compounds 
with sufficient evidence to move forwards to clinical tri-
als guiding both the scientific community and funders. A 
prioritisation process is important to achieve this and to 
gain both consensus and scientific credibility; such a pro-
cess has been used in Alzheimer’s disease as previously 
prioritised compounds have been taken forward to clini-
cal trials [15].

The aim of this study was, therefore, to undertake a 
robust prioritisation exercise to identify potential agents 
that might be suitable for repurposing for LBD (either 
DLB or PDD or both) and to assemble an international 
expert panel to provide a view on (a) whether there was 
sufficient evidence for a compound(s) to be taken for-
ward into clinical trials and (b) if so, the compound’s 
priority order for further study. The intention was to 
develop an international consensus on the pathway for-
wards for clinical studies of repositioned and repurposed 
agents for LBD.

Methods
We followed a Delphi consensus process to evaluate 
drugs with potential for repurposing for LBD. The Del-
phi consensus process has the advantage of combining 
targeted review of the evidence available with rigorous 
expert interpretation, including blinded input to avoid 
group think and bias, with a consensus approach to reach 
agreement. Therefore, it allows a standardised review of 
the evidence with a rating of priorities by the panel of 
experts to shortlist compounds for trials [13]. This review 
prioritised compounds for LBD comprising of both DLB 
and PDD through two rounds of a formal Delphi consen-
sus development. The panel consisted of 35 international 
members with expertise from academia (31), the phar-
maceutical industry (2) and the charity sector (2), includ-
ing the authors of this review; participants are listed as 
study group authors.

In the first phase of the process, each panel member 
was asked to nominate up to ten candidate compounds, 
either licensed for use in other diseases or under devel-
opment, for which they considered evidence supporting 
their potential to be therapeutically useful in LBD. For 
each compound, further questions included whether they 
would be useful for DLB, PDD or both. A full scoping 
review of the literature was prepared for compounds that 
were identified as high priority and were nominated by at 
least two panel members. The key factors included in the 
reviews included pharmacology, toxicology, brain pene-
tration, preclinical, clinical and epidemiological data indi-
cating potential for therapeutic use in LBD. The expert 

https://clinicaltrials.gov/ct2/home
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reviews utilised various resources and databases available 
such as the Drug Bank (https://​go.​drugb​ank.​com/), the 
Electronic Medicines Compendium, the Food and Drug 
Administration, the Health Products Regulatory Agency 
and the Italian Drug Agency electronic resources. Infor-
mation on the ability of the various drugs to cross the 
blood-brain barrier (BBB) and putative mechanisms were 
searched for in DrugBank, PubChem (https://​pubch​em.​
ncbi.​nlm.​nih.​gov) and also using a broader literature 
search in PubMed. Drug Safety information was taken 
from the Summary of product characteristics available 
for each compound. Information concerning clinical tri-
als was obtained from www.​clini​caltr​ials.​gov.

In the second phase of the Delphi process, the expert 
reviews were circulated to the panel asking for views on 
whether there was sufficient evidence to justify a clinical 
trial in LBD, if so for DLB, PDD or both, and if not, what 
further evidence was needed before such a trial could 
be justified. The experts were also asked to rank the 
candidates in order of priority based on the strength of 
the evidence with lower ranking score meaning higher 
priority for repurposing. General and compound-spe-
cific comments and views were recorded. All survey 
phases were conducted using an online survey plat-
form (https://​www.​onlin​esurv​eys.​ac.​uk/) for systematic 
recording and analysis of the responses. Reviews were 
prepared for compounds that were recommended for 
repurposing by at least two members of the panel at the 
first round of the process, and compounds that were 
recommended by at least 50% of the panel at the second 
round are discussed here.

Results
Delphi process
In the first round of the consensus process, a total of 70 
approved compounds were recommended by the expert 
panel for repurposing disease-modifying trials. Nine 
candidate compounds or classes of compounds were pri-
oritised by at least two members of the panel and were 
taken forward for expert reviews. These were ambroxol, 
the tyrosine kinase inhibitors nilotinib and bosutinib, the 
glucagon-like peptide-1 (GLP-1) receptor agonists lira-
glutide and exenatide, metformin, the angiotensin recep-
tor blockers (ARBs) candesartan and telmisartan, fasudil, 
etanercept, rasagiline and salbutamol.

In the second round of the consensus process, 
ambroxol was ranked at the top of the priority list with 
68% of panel members reporting that there was suffi-
cient evidence for it to be taken forwards for a clinical 
trial in both DLB and PDD and an additional 11% sug-
gesting that there was enough evidence for PDD only 
(see Table 1). From the remaining compounds, nilotinib/
bosutinib, liraglutide/exenatide, metformin, candesartan/

telmisartan and fasudil were ranked very closely in the 
list of priorities with a majority (50–60%) of the experts 
in the panel suggesting that there was sufficient evidence 
to justify a clinical trial with these compounds in both 
DLB and PDD.

Summary of evidence reviews
Ambroxol

Mechanism and preclinical work  Ambroxol is a muco-
lytic agent used to break phlegm in respiratory infec-
tions as well as for relief of throat pain and is marketed 
in several European countries [16]. There is a growing 
body of preclinical evidence from cell and animal mod-
els of PD (6-hydroxydopamine-injected rats, transgenic 
mouse models and transgenic fly models) showing that 
ambroxol has neuroprotective effects through upregu-
lation of glucocerebrosidase (GCase), which leads to 
reduction of α-synuclein pathology, and improvement of 
mitochondrial function [17].

Ambroxol has been found to act as a chaperone to 
GCase, is linked with the upregulation of GCase through 
the transcription factor EB pathway and acts by blocking 
autophagy, activating the secretory pathway and stimu-
lating lysosomal exocytosis [18–22]. Ambroxol may pro-
mote correct post-translational protein folding, attenu-
ate the unfolded protein response and rescue apoptosis 
by modulating cytochrome-C, caspase-9 and caspase-3 
expression [20, 23, 24]. Ambroxol improves behavioural 
and motor deficits in animal models of PD and these 
improvements appear to be mediated by the attenuation 

Table 1  Results of the panel prioritisation

The table provides the list of compounds prioritised by the Delphi consensus 
panel with the highest preference at the top. The consensus panel members 
were asked to nominate a list of up to ten compounds, rank them in order of 
preference and specify whether they believe the would be suitable for dementia 
with Lewy bodies (DLB), Parkinson’s disease dementia (PDD) or both. Ranking 
ranged from 1 to 9. Please note that in the average ranking the lowest the score 
reflects the highest preference for the compound to be taken forwards

Compound Average 
ranking

Yes for 
DLB and 
PDD

Yes only 
for DLB

Yes only 
for PDD

Ambroxol 2.6 68% 11%

Nilotinib/Bosutinib 2.7 60% 3% 3%

Liraglutide/Exenatide 3.3 58% 8% 8%

Metformin 3.7 54% 3% 8%

Candesartan/Telmisartan 3.8 57% 5% 8%

Fasudil 4.0 61% 6%

Etanercept 5.4 38% 3% 3%

Rasagiline 5.6 27% 14%

Salbutamol 5.9 30%

https://go.drugbank.com/
https://pubchem.ncbi.nlm.nih.gov
https://pubchem.ncbi.nlm.nih.gov
http://www.clinicaltrials.gov
https://www.onlinesurveys.ac.uk/
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of the effects of α-synuclein pathology and the recov-
ery of the dopaminergic system [25–29]. Considering 
ambroxol’s effects on GCase, it has been studied in Gau-
cher’s disease. This is an autosomal recessive inherited 
disorder caused by homozygous mutations in the GCase 
encoding gene (GBA1) affecting multiple organs, and 
in some cases causing parkinsonism [30], whereas het-
erozygous GBA1 mutations are the commonest genetic 
risk factor for PD [30]. In a study that used cultured 
macrophages from 14 Gaucher’s disease patients and PD 
patients with mono-allelic GBA1 mutations, treatment of 
cultured macrophages with ambroxol augmented GCase 
activity in both patient groups [31].

Clinical studies  An open-label clinical trial of 17 
patients with PD taking an escalating dose of 1.26 g 
of ambroxol daily for 186 days found that ambroxol 
crossed the blood-brain barrier and was detected 
in the cerebrospinal fluid (CSF) [20]. In the CSF, 
ambroxol was associated with a mean decrease in the 
activity of GCase by 19%, mean increase of GCase 
enzyme protein levels by 35% and mean increase of 
α-synuclein levels by 13% in patients with and without 
GBA1 gene mutations [20]. The reduction in activity 
of GCase and increase in α-synuclein in the CSF may 
appear paradoxical; however, it is consistent with a 
decrease in activity of GCase in extracellular fluid due 
to the binding of ambroxol to the active site of GCase 
protein, enabling transportation to lysosomes within 
tissues where ambroxol will increase intracellular 
GCase activity [21, 29]. The increase of α-synuclein 
in the CSF may be interpreted as an increase of extra-
cellular export of the protein from the brain tissues 
[20]. Ambroxol was found to be well tolerated and 
produced no serious adverse events. Considering that 
it penetrates the CSF and engages the treatment tar-
gets, the majority of the expert panel opined that this 
study provided evidence that ambroxol warrants fur-
ther investigation in placebo-controlled trials to exam-
ine whether it can be a disease-modifying treatment in 
synucleopathies.

An observational study using an investigator-initiated 
registry followed off-label treatment with ambroxol of 38 
patients with Gaucher’s disease and 3 PD patients with 
GBA1 mutations for a median duration of 19 months 
(median dose of 435 mg/day) [32]. The investigators 
found that ambroxol in this group is safe and well toler-
ated [32]. It also showed preliminary evidence of clinical 
benefits including stable or improved neurological status, 
increased physical activity and reduced fatigue; however, 
these were based on subjective reports and not on stand-
ardised assessments [32].

Ongoing trials  At present, there are three ongoing 
Phase 2 placebo-controlled trials in LBD aiming to test 
the potential of ambroxol as a disease-modifying treat-
ment. A trial aiming to recruit 75 participants with PDD 
[33] was expected to be completed in December 2021 
[34] while there are two further clinical trials aiming to 
recruit 15 patients with LBD [35] and 172 patients with 
DLB [36] respectively that are ongoing.

Through the Delphi process, it was noted that while 
ambroxol shows excellent potential for future studies, 
it is likely that additional studies on pharmacokinetics 
and a better understanding of its mechanisms of action 
are needed. It is important to carry out more work in 
α-synuclein-driven mouse models for a more thorough 
investigation of the target and mechanisms. Interest-
ingly, ambroxol has shown promise in animal models of 
amyotrophic lateral sclerosis (ALS) and is considered as a 
potential treatment for ALS as well [17, 37].

Nilotinib/bosutinib

Mechanism and preclinical studies  Nilotinib and bosuti-
nib are tyrosine kinase inhibitors. They are both available 
on the market in the USA and the UK and licensed for 
chronic myelogenous leukaemia. Their putative mecha-
nism of action in LBD is related to evidence showing that 
tyrosine kinases are upregulated in the brains of people 
with AD and PD [38]. Nilotinib and bosutinib have shown 
promising results in animal models of synucleinopathies, 
amyloidosis and tau hyperphosphorylation [39–41]. They 
improve behavioural and motor deficits in such models 
by increasing the clearance of α-synuclein, amyloid and 
hyperphosphorylated tau and by stimulating autophagy 
[42–45]. Tyrosine kinase inhibitors have an anti-inflam-
matory effect through modulation of various markers of 
neuroinflammation in animal models [40, 41]. Nilotinib 
was associated with rescued synaptic dysfunction [46]. 
Both nilotinib and bosutinib were found to prevent cell 
death due to trans-activating response of DNA/RNA-
binding protein (TDP)-43 pathology, but only nilotinib 
reversed mitochondrial impairment [47]. There are, how-
ever, conflicting results as in a study of a mouse model 
of multiple system atrophy, in which nilotinib failed to 
reduce α-synuclein aggregate burden [48]. Although not 
directly measured, both nilotinib and bosutinib are pre-
dicted to cross the BBB [49].

Clinical studies  In clinical studies, the use of nilotinib 
in PD has so far yielded inconclusive results. A trial in 75 
patients with PD randomised to receive placebo, nilotinib 
150mg or 300mg for 12 months showed that nilotinib is 
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safe, well tolerated and can increase dopamine metabo-
lites in the CSF as well as reduce CSF α-synuclein oli-
gomers and hyperphosphorylated tau [50]. An open-
label extension of this study that included 63 patients for 
an additional 12 months randomised to receive 150mg 
or 300mg nilotinib showed that nilotinib continued to 
be safe and tolerated and demonstrated that nilotinib 
300mg was associated with stable scores in the Move-
ment Disorder Society Unified Parkinson’s Disease Rat-
ing Scale (MDS-UPDRS) from baseline to 27 months in 
parts I (nonmotor including cognitive) and II (activities 
of daily living), while nilotinib 150mg was associated with 
improvement in the sum of UPDRS Part I (nonmotor 
including cognitive) and II (activities of daily living) with 
no difference in the UPDRS Part III (motor examina-
tion) [51]. Quality of life measures also worsened in the 
nilotinib 150mg compared to 300mg group between 15 
and 27 months [51]. However, another double-blind pla-
cebo-controlled study that enrolled 76 patients with PD 
who received nilotinib 150mg or 300mg or placebo for 
6 months showed that, while nilotinib was safe and well 
tolerated, patients in the nilotinib arms showed worse 
motor scores (measured with the MDS-UPDRS) [52]. 
This study failed to identify any changes in the dopa-
mine metabolites in the CSF and suggested that, at least 
for PD, there was no evidence to support further test-
ing of nilotinib [52]. In parallel, in a double-blind study 
of nilotinib 150mg or 300mg or placebo in AD, nilotinib 
was overall well tolerated, although more adverse events, 
particularly mood swings, were observed with the 300mg 
dose [53]. This study showed that nilotinib was associ-
ated with reduced amyloid burden in the frontal lobes 
measured with amyloid positron emission tomography 
(Florbetaben PET), attenuated hippocampal atrophy on 
MRI and reduced CSF amyloid beta (Aβ) 40 and 42 and 
CSF phosphorylated tau 181; however, it was underpow-
ered to detect any cognitive or clinical benefits [53]. With 
regards to clinical trials in LBD, a trial has been con-
ducted in 12 patients with LBD randomised to nilotinib 
150mg or 300mg for 24 weeks. This showed that nilotinib 
was safe and well tolerated and treatment increased lev-
els of the dopamine metabolite homovanilic acid in the 
CSF [54]. A follow-up study involving analysis of CSF 
in these patients with PDD or DLB previously treated 
with nilotinib [50, 54] showed that nilotinib altered CSF 
microRNAs that regulate autophagy genes [55]. A fur-
ther study from the same group randomised 26 partici-
pants with DLB to receive bosutinib 100mg orally or pla-
cebo for 12 weeks [56]. It showed that bosutinib was safe 
and well tolerated, penetrated the BBB to inhibit Abel-
son kinase and reduce CSF α-synuclein and dopamine 
catabolism. Secondary clinical outcome analyses showed 
that the bosutinib group had improved activities of daily 

living as measured with the Alzheimer’s Disease Coop-
erative Study- Activities of Daily Living (ADCS-ADL) but 
had no improvements in all other clinical, cognitive, neu-
ropsychiatric and motor outcomes tested [56].

Ongoing trials  The results of two ongoing studies 
with nilotinib and bosutinib are awaited. These involve 
a Phase 1 trial of bosutinib in mild cognitive impair-
ment (MCI) or dementia [57] and an ongoing placebo-
controlled trial with 200mg nilotinib in LBD aiming to 
recruit 60 patients [58].

Liraglutide/exenatide

Mechanism and preclinical studies  Liraglutide and 
exenatide are synthetic GLP-1 analogues and GLP-1 
receptor agonists. They are available in subcutaneous 
administration form and are approved for use in type 2 
diabetes mellitus (T2DM) and weight loss in the Euro-
pean Union and the USA [59]. Liraglutide and exenatide 
have been studied extensively in preclinical models of AD 
and PD and there is evidence that exenatide can cross the 
BBB [60]. By acting as agonists of the GLP-1 receptor, 
they stimulate insulin release, inhibit glucagon release 
and delay gastric emptying. As such they are found to 
alter glucose metabolism in the brain, increase extracel-
lular signal-regulated kinases (ERK) phosphorylation and 
decrease c-Jun N-terminal kinase (JNK) phosphorylation 
and thus prevent neurodegeneration [61–63]. Liraglutide 
decreases astrocyte and microglial activation, decreases 
chronic inflammation and lipid peroxidation, suppresses 
the apoptosis pathway and increases autophagy-related 
protein expression [64]. It reduces free oxygen species 
and increases the expression of glial-derived neuro-
trophic factor (GDNF) [65, 66]. It suppresses the protein 
kinase B/Glycogen synthase kinase 3β (Akt/GSK-3β) sig-
nalling pathway and acts on signal transducer and activa-
tor of transcription 3 (STAT3) to trigger cellular survival 
mechanisms [67, 68]. Liraglutide may decrease the for-
mation of amyloid beta through effects on brain-specific 
human β-secretase 1 (BACE1) [69, 70]. In mouse models 
of AD, liraglutide rescued synapse loss and loss of synap-
tic plasticity in the hippocampus and was found to have 
a protective effect on brain vasculature [71]. Liraglutide 
was found to improve cognitive deficits in animal models 
of AD by reducing oxidative phosphorylation, oxidative 
stress, proinflammatory cytokines and neuroprotective 
effects [72–76]. Exenatide was found to preserve neurons 
in cellular and animal models of PD and attenuate the 
associated inflammatory response [77]. There is evidence 
that it can protect dopaminergic cells against metabolic 
and oxidative stress and prevent apoptosis, possibly by 
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acting on caspase-3, mechanistic target of rapamycin 
(mTOR) and Akt signalling [78, 79]. Exenatide has also 
been found to reduce amyloid beta levels in several stud-
ies [80, 81]. Exenatide rescues choline acetyltransferase 
levels in a mouse model of AD, modulates Parkin and 
promotes the release of brain-derived neurotrophic fac-
tor (BDNF) [82]. Exenatide reverses age-related immune 
and energy metabolism transcriptomic changes as well as 
blood-brain barrier leakage in aged mice [83]. However, 
in a mouse model of prodromal PD, it led to an increase 
in pathological α-synuclein in brain regions connected 
to the olfactory bulb, accompanied by signs of microglial 
activation [84].

Clinical studies  There have been no clinical trials 
with liraglutide or exenatide in LBD. In PD, a dou-
ble-blind, placebo-controlled trial in 62 patients with 
moderate PD assigned to have subcutaneous injec-
tions of exenatide 2mg or placebo once weekly for 48 
weeks in addition to their usual medication, showed 
improvements in off-medication scores on Part III 
of the MDS-UPDRS by 1 point in the exenatide arm 
and worsening by 2.1 points in the placebo arm [60]. 
Secondary analyses in the same cohort showed that 
exenatide was associated with improvements in mood 
and depression measures while additional analyses in 
subgroups defined by age, motor phenotype, disease 
duration, severity, body mass index and insulin resist-
ance showed that patients with older age of onset and 
with disease duration over 10 years responded less 
well to exenatide [85]. Subgroups with a tremor-dom-
inant phenotype and lower MDS-UPDRS Part I scores 
at baseline experienced the best motor response to 
exenatide [86]. Another trial evaluated the progress 
of 45 patients with moderate PD treated with exena-
tide showed clinically important improvements in PD 
across motor and cognitive measures for exenatide 
compared to placebo. At 12 months, exenatide-treated 
patients had an average 2.7 point improvement on 
the MDS-UPDRS part III (motor examination) and 
a 2.8 point improvement in the Mattis dementia rat-
ing scale-2 in comparison with an average 2.2 and 3.5 
point decline respectively in control patients [87]. Fur-
ther follow-up of these trial participants 24 months 
after the first baseline visit (i.e. 12 months after stop-
ping exenatide) showed that the exenatide group had 
an advantage of 5.6 points in the MDS-UPDRS Part 
III (motor examination) as well as an advantage of 5.3 
points on the Mattis Dementia Rating Scale-2 [88]. A 
meta-analysis of these studies confirmed that exena-
tide is associated with improvement in cognitive, 
motor and nonmotor symptoms in PD [89].

Regarding studies testing the effects of GLP-1 analogues 
in cognitive disorders, a double-blinded placebo-con-
trolled trial with liraglutide given for 12 weeks in late 
middle-aged individuals (age range 45–70) with subjec-
tive cognitive complaints, half of whom had a family his-
tory of AD, showed no cognitive benefits [90]. However, 
liraglutide was associated with improvement in intrinsic 
connectivity within the default mode network (DMN) 
measured with functional MRI (fMRI) [90]. A placebo-
controlled study of liraglutide in 38 patients with AD 
showed no effects on Aβ levels or glucose metabolism in 
the brain measured with PET imaging [91]. One trial that 
had recruited 27 patients with early AD to receive exena-
tide or placebo was terminated early because the funder 
withdrew support. The reported results showed no group 
differences in clinical and cognitive measures, MRI meas-
ures or CSF biomarkers except for lower Aβ42 in plasma 
extracellular vesicles [92].

Meanwhile, a nationwide population-based case-control 
study found a statistically significantly decreased inci-
dence of PD among diabetic individuals with a record 
of taking DPP-4 inhibitors (which increase GLP-1 lev-
els) as well as a risk estimate below for GLP-1 agonists 
[93]. Another epidemiological study testing the associa-
tion between prescription of various antidiabetic medi-
cations and PD found that the use of LG-1 mimetics is 
associated with a lower incidence of PD compared to the 
use of other oral antidiabetic drugs [94]. Similarly, a pre-
dictive algorithm using electronic health records to find 
associations between phenotypes and prescribed drugs 
found that prescription of liraglutide was associated with 
a decreased risk of a diagnosis of AD (adjusted OR 0.76) 
while a pharmacovigilance study aiming to compare the 
risk of AD among 66,085 patients with T2DM in the FDA 
spontaneous reporting database found that a prescrip-
tion of exenatide or liraglutide was associated with a 
lower risk of developing AD compared to a prescription 
of metformin [95, 96].

Ongoing trials  There are no ongoing trials in LBD 
but there are trials investigating the potential benefits 
of liraglutide in AD and PD. A 12-month trial is test-
ing the impact of liraglutide on cerebral glucose meta-
bolic rate among 206 participants with AD [97] and 
another 6-month trial among 40 AD patients treated 
with liraglutide or placebo has been completed but the 
results are not yet reported [98]. An ongoing Phase 3 
randomised placebo-controlled trial aims to investigate 
the efficacy of exenatide among 200 patients with PD 
over 96 weeks [99].
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Candesartan/telmisartan

Mechanism of action and preclinical studies  Candesar-
tan and telmisartan are ARBs widely used in cardiovas-
cular disease as antihypertensives, as well as treatments 
for heart failure and left ventricular systolic dysfunction. 
They are predicted to cross the BBB [49]. With regard to 
putative mechanisms of action in LBD, they were found 
to inhibit the expression of Toll-like receptor 2 (TLR2) 
and candesartan has been shown to recue expression 
of both TLR2 and TLR4 in vitro and in a mouse model 
[100]. This is of particular relevance because both TLR2 
and TLR4 are implicated in mediating the microglial 
response to α-synuclein in Lewy body disorders [101]. 
They have further been linked with reversing the acti-
vated proinflammatory phenotype of primary microglia 
reacting to oligomeric α-synuclein, and to reduce tumour 
necrosis factor alpha (TNF-α) levels [102–104]. Neuro-
protective effects of these drugs may also include inhibi-
tion of the endoplasmic reticulum (ER) stress triggered 
by inositol-requiring enzyme/endonuclease 1α (IRE1α), 
downregulation of tumour necrosis factor receptor asso-
ciated factor 2 (TRAF2) and activation of peroxisome 
proliferator-activated receptor (PPAR)- β/δ, as shown in 
a rotenone PD mouse model [105]. In a 1-methyl-4-phe-
nyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model 
of PD, telmisartan upregulated the expression of BDNF 
and GDNF and reduced markers of inflammation such 
as TNF-α and IL-1 [106, 107]. Regarding behavioural 
outcomes in animal models, candesartan and telmisar-
tan have been found to improve motor deficits through 
increasing dopamine transporter markers and GDNF and 
through reducing levels of α-synuclein and attenuating 
ER stress-triggered neuronal apoptosis [107, 108].

Telmisartan and candesartan have variable effects on 
Αβ. Some studies have shown that they improve cogni-
tive deficits in AD transgenic mice, prevent an increase 
of Αβ, phosphorylated tau and neprilysin, and decreased 
levels of TNF-α [109–114]. In contrast, other studies do 
not support use of candesartan or telmisartan in AD or 
PD due to limited benefits in animal models [115–117].

Clinical studies  No trial data are available in LBD. A 
study comparing candesartan, lisinopril and hydrochlo-
rothiazide for 12 months in 53 individuals with cognitive 
problems but not dementia found that participants on 
candesartan had greater benefits in executive cognitive 
tests as well as improved preservation of cerebral haemo-
dynamics [118, 119]. A follow-up study randomising 176 
participants with MCI to receive candesartan or lisino-
pril for 12 months showed that candesartan was supe-
rior to lisinopril on the primary outcome of executive 

function measured with the Trail Making Test part B as 
well as several other tests [120]. A randomised placebo-
controlled trial with candesartan that included 257 older 
adults with hypertension followed for a period of 44 
months showed that candesartan was associated with 
less decline in attention and episodic memory but no dif-
ferences in working memory or executive function, with 
effect sizes being in the small-to-moderate range [121]. Α 
randomised placebo-controlled trial of candesartan ver-
sus placebo in a total of 4964 elderly patients with mean 
follow-up of 3.7 years primarily aiming to measure car-
diovascular events failed to show significant differences 
in Mini-Mental State Examination (MMSE) scores or 
proportion of patients who developed dementia [122]. In 
terms of epidemiological evidence, a prospective cohort 
analysis of a database of 819,491 male participants with 
cardiovascular disease showed that ARBs were associated 
with a reduction in the incidence and progression of clin-
ically diagnosed AD and all-cause dementia compared to 
other antihypertensive and cardiovascular drugs [123].

Ongoing trials  There is one ongoing Phase 2 ran-
domised placebo-controlled trial in 77 persons with MCI 
treated with candesartan for 12 months [124] and two 
ongoing trials concerning telmisartan in AD. The first 
is comparing telmisartan with perindopril in 150 MCI 
participants over 12 months [125], the other is testing 
whether telmisartan over 8 months has the potential to 
prevent AD in 66 African Americans who are at high risk 
of AD [126]. No studies are ongoing for LBD.

Metformin

Mechanism of action and preclinical studies  Met-
formin is a widely used anti-hyperglycaemic drug 
belonging to the biguanide class, mainly indicated for 
T2DM [127]. There is little evidence on putative mecha-
nisms of action specifically for LBD and metformin is 
predicted to cross the BBB albeit with little probability 
[49]. In PD and AD animal models, metformin has been 
reported to lessen α-synuclein phosphorylation and 
aggregation, as well as astroglia and microglia activa-
tion, and shows neuroprotective effects [128–132]. Met-
formin prevented dopamine depletion, improved cell 
survival and promoted autophagy [133–136]. Further-
more, metformin inhibited oxidative stress, improved 
mitochondrial viability, reduced inflammation and 
improved synaptic function in several cell and animal 
models of PD and AD [137–141]. By reducing Αβ secre-
tion and tau phosphorylation, it improved behavioural 
outcomes such as cognitive performance in several 
transgenic animal models of AD [129, 132, 142–144]. 
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However, a study in a mouse model of tauopathy 
(ApoE−/−) reported an increase of Αβ formation and 
tau phosphorylation with metformin [145]. Metformin 
has shown beneficial effects in improving motor impair-
ment in PD animal models [129, 146, 147]. There are 
however other animal studies where metformin was not 
associated with any benefits [145, 148].

Clinical studies  There is no specific evidence con-
cerning use of metformin in LBD or PD. A randomised 
placebo-controlled pilot study testing metformin as a 
potential disease-modifying treatment for AD over 8 
weeks with 20 subjects with MCI or mild AD dementia 
showed that metformin was associated with improved 
executive function providing some promising prelimi-
nary data for further research [149]. In another study, 
80 overweight participants with amnestic MCI were 
randomised to receive metformin or placebo for 12 
months [150]. Metformin was associated with modest 
improvements in the primary outcome of verbal learn-
ing and memory using the selective reminding test, but 
no changes were observed in the secondary outcomes 
such as the AD Assessment Scale-cognitive subscale 
(ADAS-cog), glucose uptake in the posterior cingulate-
precuneus on fluorodeoxyglucose (FDG)-PET or in the 
levels of plasma Aβ42 [150]. A trial comparing the com-
bination of metformin and donepezil to the combination 
of acarbose and donepezil in a total of 100 participants 
with abnormal glucose metabolism and non-dementia 
vascular cognitive impairment found that the group 
randomised to metformin-donepezil showed some cog-
nitive improvements [151] on the ADAS-cog scale, the 
Trail Making Test and the World Health Organization 
University of California Los Angeles Auditory Verbal 
Learning Test. These cognitive benefits were associated 
with decreases in the levels of fasting insulin and insu-
lin resistance, as well as lower common carotid artery 
intima–media thickness [151]. Meanwhile, several epi-
demiological studies have found associations between 
use of metformin and lower incidence of either all-cause 
dementia, AD or PD [152–157]. However, not all epi-
demiological studies have found associations between 
the use of metformin and a lower risk of dementia 
[158–160]. A study using the National Alzheimer’s Co-
ordinating Center database investigated the effect of oral 
hypoglycaemic drugs on longitudinal memory decline 
among patients with T2DM with either normal cogni-
tion (n=1192) or with AD (n=807) and found that met-
formin was associated with better memory performance 
in non-demented participants (mean duration of follow-
up 3.4 years) but it had no effects in AD (mean dura-
tion of follow-up 1.9 years) [161]. A systematic review 
and meta-analysis of observational studies testing the 

association between metformin and neurodegenerative 
diseases analysing a total of 19 studies with 285,966 par-
ticipants found no association between metformin expo-
sure and incidence of all subtypes of neurodegenerative 
diseases, and found that metformin monotherapy was 
associated with an increased incidence of PD compared 
to non-metformin or glitazone users (OR 1.66) [162].

Ongoing trials  There are no ongoing trials that are test-
ing metformin in LBD. There are six registered trials test-
ing metformin in MCI, early AD and patients with dia-
betes [163–168]. These trials test a variety of measures 
including cognitive performance as well as CSF and PET 
imaging markers of AD.

Fasudil

Mechanism of action and preclinical studies  Fasudil 
is a selective rhoA/rho protein kinase (ROCK) inhibi-
tor. It is used in China and Japan for the treatment of 
vasospasm following subarachnoid haemorrhage [169]. 
Fasudil may act on LBD through several potential mech-
anisms. It crosses the BBB but due to limited bioavail-
ability in the CNS a liposomal fasudil formulation for 
intrathecal injection was proposed to increase therapeu-
tic efficacy and reduce side effects in an animal model 
[169–172]. It promotes the degradation of α-synuclein via 
autophagy through the c-Jun N-terminal protein kinase 
(JNK)1/Bcl-2/beclin 1 pathway [173]. Through reducing 
α-synuclein phosphorylation and total levels, preventing 
dopamine cell death and inflammation, fasudil improved 
motor deficits in various animal models of PD [174–176]. 
Fasudil was found to reduce microglial and astrocytic 
activation, increase GDNF and increase neuronal dendrite 
network organisation [177]. In AD animal models, fasudil 
rescued cognitive deficits and reduced acetylcholinest-
erase activity and oxidative stress [178–180]. Fasudil has 
been linked with promoting the release of neurotrophic 
factors and the dilation of cerebral vessels, inhibits the 
release of intracellular calcium, promotes axonal regen-
eration and reduces inflammation, Aβ deposition and tau 
phosphorylation [181–183].

Clinical studies and ongoing trials  There are no available 
clinical trials that have tested fasudil as a disease-modify-
ing treatment in LBD, AD or PD. Furthermore, there are 
no registered ongoing trials testing fasudil in these condi-
tions. There is an ongoing trial evaluating whether fasudil 
improves clinical outcomes in patients with ALS [184] 
and a Phase 2 trial of fasudil in patients with the 4-repeat 
tauopathies of progressive supranuclear palsy-Richardson 
syndrome or corticobasal syndrome [185].
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Compounds not shortlisted  Etanercept, salbutamol and 
rasagiline were compounds that were recommended 
by more than one expert in the first phase of the Delphi 
consensus process but ranked low in the priorities in the 
second round. This was either due to the relative lack of 
preclinical evidence available or the absence of benefits 
in trials in AD or PD as none of these compounds have 
been tested in LBD. For example, rasagiline generally 
failed to show any cognitive benefits in PD patients with 
cognitive impairment [186–190]. Rasagiline has however 
shown some benefits in a double-blind parallel group 
placebo-controlled trial of 50 participants with mild to 
moderate AD randomised to receive 1 mg of rasagiline 
or placebo for 24 weeks. This trial showed favourable 
change in FDG-PET differences in rasagiline versus pla-
cebo in middle frontal, anterior cingulate and striatal 
regions along with benefits in measures of quality of life 
[191]. Meanwhile, rasagiline has shown some evidence 
in preclinical models in improving motor, cognitive and 
biochemical outcomes [192–194]. Similarly, limited evi-
dence is available for the potential role of etanercept. 
Etanercept, a TNF inhibitor, has shown some promise in 
animal and cell culture models reducing cytokine release, 
preventing neurotoxic effects of TNF-α on dopaminergic 
cells and reducing caspase 3 activity [195–198], but had 
either limited or no benefits in trials in AD [199–201]. 
Finally salbutamol, a β2 adrenergic receptor agonist, has 
shown some benefits in preclinical studies improving 
cognition, preventing amyloid related changes, modestly 
decreasing a-synuclein levels and improving the viabil-
ity of dopaminergic neurons in animal and cell culture 
models [202–204]. However, evidence from clinical stud-
ies is lacking, apart from one study showing that better 
control of asthma through treatment with salbutamol 
for 12 months improves cognition [205]. Studies in small 
cohorts in PD show modest global improvements while 
limited data are available from epidemiological studies 
with likely presence of confounding factors [206–212].

Conclusions
We provide a comprehensive review of recently pub-
lished and ongoing trials of agents potentially suitable for 
repurposing  for LBD. Our initial prioritisation exercise 
identified nine candidate compounds or classes of com-
pounds. In Table 2, we summarise the agents prioritised 
through our Delphi process, their proposed mechanisms 
of action, available evidence and future work required. 
As part of the methodology we followed for the Delphi 
consensus recommendations, we did not exclude com-
pounds that are already in trials; therefore, ambroxol 
and nilotinib were highly prioritised in the process. 
While these trials are still ongoing, our Delphi consensus 

reviews show clear support for continuing research on 
the role of these compounds as disease-modifying treat-
ments in DLB and PDD.

Following detailed evidence-based review, over two 
thirds of the panel identified ambroxol as the top prior-
ity compound for both DLB and PDD, though even more 
(79%) thought there was evidence for PDD. Ambroxol, 
initially developed as a mucolytic agent, has activ-
ity as a molecular chaperone for the lysosomal enzyme 
GCase. Loss of function mutations in the GBA1 gene that 
encodes GCase are one of the leading genetic risk fac-
tors for the synucleinopathies of PD and DLB [30]. This 
appears to be a highly promising compound for repur-
posing, and the largest planned trial is a Phase 2 Norwe-
gian study of people with dementia or MCI with Lewy 
bodies that will enroll 172 participants [36]. Further trials 
are warranted.

Nilotinib and bosutinib are tyrosine kinase inhibitors 
and have shown promising preclinical evidence of effects 
both on α-synuclein and hyperphosphorylated tau as well 
as evidence of tolerability. However, during the course of 
this Delphi panel study, a double-blind placebo control 
Phase 2 study over 6 months in people with PD suggested 
that those on nilotinib had worse motor scores than pla-
cebo and, importantly, there was no evidence of central 
CNS penetration as dopamine metabolites in CSF did not 
change [50]. This suggests that, of the two compounds, 
bosutinib may be more worthy of further investigation 
than nilotinib.

There was support for the GLP-1 receptor agonists lira-
glutide and exenatide, and both are being assessed in AD 
trials, while exenatide is undergoing a Phase 3 trial in PD. 
Subcutaneous administration is required which is clearly 
less convenient than oral therapy, but trials of other 
agents administered subcutaneously or even by intrave-
nous infusion have proved acceptable in AD. While not 
the focus of this repurposing study, oral GLP-1 receptor 
agonists are becoming available (e.g. semaglutide) which 
would be an easier dosing route for future studies [213], 
while alogliptin, an oral compound inhibiting DPP-4, 
the enzyme that inactivates GLP-1, thus boosting GLP-1 
indirectly, is also trialled in PD [214].

Candesartan and telmisartan are ARBs, in wide clinical 
use as antihypertensives and for heart failure. They have 
a number of potential actions of relevance in LBD includ-
ing actions on microglia and the endoplasmic reticulum. 
No trials are ongoing or planned in LBD, though there 
are ongoing trials in MCI and AD. There is good rationale 
for examining these compounds in LBD.

Metformin is a widely used anti-hyperglycaemic drug 
which has been shown to prevent α-synuclein phospho-
rylation and aggregation in animal models and prevent 
astroglial and microglial activation. There are ongoing 
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studies in MCI and AD, but no identified studies in LBD. 
The panel concluded that studies of metformin in LBD 
are therefore warranted.

Fasudil is a selective rhoA/kinase (ROCK) inhibitor 
used for the treatment of subarachnoid haemorrhage in 
China and Japan. There are ongoing studies in progres-
sive supranuclear palsy and ALS, but no studies in AD or 
LBD. Notably fasudil was prioritised in a recent Delphi 
consensus study of repurposing in AD [13].

In summary, through an international Delphi study, 
we have identified several promising compounds that 
have sufficient evidence to be taken forward into Phase 

2 and Phase 3 studies for LBD. Given the current lack of 
any disease-modifying therapies and the huge burden 
of disease globally, both in terms of numbers affected 
and adverse impact on quality of life and mortality, 
there is a clear and urgent need to undertake clinical 
trials of these compounds in LBD.
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