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Abstract

Recent work has shown that people use temporal information
including order, delay, and variability to infer causality be-
tween events. In this study we build on this work by investi-
gating the role of time in dynamic systems, where causes take
continuous values and also continually influence their effects.
Recent studies of learning in these systems explored short in-
teractions in a setting with comparatively rapidly evolving dy-
namics and modeled people as relying on simpler, resource-
limited strategies to grapple with the stream of information
(Davis et al., 2020). A natural question that arises from such an
account is whether interacting with systems that unfold more
slowly might reduce the systematic errors that result from these
strategies. Paradoxically, we find that slowing the task indeed
reduced the frequency of one type of error, but increased the er-
ror rate overall. To capture the differences between conditions,
we introduce a novel Causal Event Segmentation model based
on the notion that people compress the continuous scenes into
events and use these to drive structure inference.
Keywords: causal learning; time; continuous; event cogni-
tion; interventions

Introduction
Learning about causal structure is central to higher level cog-
nition, allowing people to predict the future, select beneficial
actions, and make sense of the past. The study of how people
learn causal structure has historically focused on simple sce-
narios involving the presence or absence of binary variables
(e.g. did a patient take a drug, and did they get sick?). This
has taught us much about how people use causal structure for
a host of decisions (e.g. Ali et al., 2011; Fernbach & Erb,
2013; Hayes et al., 2014; Sloman, 2005). However, this focus
on simple stimuli obscures other important questions, such
as how we incorporate continuous covariation and temporal
information into our causal judgments.

Time is central to our notions of causality (Hume, 1740),
making it unsurprising that temporal contiguity is one of the
strongest psychological cues to causality. Sophisticated ex-
pectations about delays between events shape causal judg-
ments (Hagmayer & Waldmann, 2002; Pacer & Griffiths,
2012), intervention selections (Bramley et al., 2018), and
goal directed actions (Buehner & May, 2003). People also
judge that highly variable delays are less causal (Greville &
Buehner, 2010) and use variability as a cue for structure in the
absence of order or covariational cues (Bramley et al., 2018).

Prior work on the role of time in causality has focused on
delay distributions, i.e. the time that it takes for one event
to influence another, with events largely treated as punctate

rather than extended in time. In this project we instead study
a fully continuous setting in which continuous valued causes
continually affect rates of change of their effects, introduc-
ing a different set of representational challenges. Rather than
reasoning directly about rates of occurrence of events or de-
lay distributions between events, people must reason from un-
folding timeseries data.

How might varying the speed at which a continuous sys-
tem evolves affect what people learn about it? Extrapolating
from the literature on events cited above, one might expect
that a more slowly evolving system would make learners less
likely to infer the presence of causal linkages between vari-
ables. Yet reduced speed may have advantages as well. In
the setting originally explored by Davis et al. (2018), people
were well described with a Local Computations (LC) model,
which characterized them as focusing on establishing the re-
lationship between pairs of variables independently, that is,
rather than controlling for other variables—as one would by
separately considering the full space of possible structural
models wholesale. The key support for the LC model came
from a particular characteristic error. Participants frequently
inferred direct connections between variables that were indi-
rectly related (e.g. in the network X → Y → Z concluding
incorrectly that additionally X → Z). This is an error first ob-
served in studies with binary variables (Fernbach & Sloman,
2009; Rottman & Keil, 2012). A natural question that arises
is whether these errors in Davis et al. (2018) were due to par-
ticipants failing to perceive the short lag in influence from X
to Y and then to Z. Slowing the system will increase the dif-
ference in rates of change between direct and indirect effects,
which we hypothesize will reduce these systematic errors.

We also aim to understand how people learn causal struc-
ture from a continuous flow of information by comparing dif-
ferent formal accounts of how people represent continuous
information and use it to infer causal relationships. Firstly,
we follow Davis et al. (2020) in describing people as com-
puting likelihoods on the basis of the continuous dynamics
directly—either considering all hypotheses in parallel (nor-
mative model), or focusing separately on individual edges
(Local Computations variant). Secondly, we introduce a new
preliminary account of how people might handle continuous
information in time—the Causal Event Segmentation (CES)
model—that characterizes people as segmenting the continu-
ous stream into discrete events, and using those to infer causal
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structure.
In summary, we ask two questions. Firstly, does slowing

the dynamics of the system reduce the systematic errors that
have been previously observed? We do find the expected re-
duction in those errors but at the cost of reducing overall ac-
curacy. Secondly, how do people represent continuous infor-
mation in dynamic systems? We find that a model describing
people as segmenting continuous information into discrete
events captures people’s behavior across conditions.

Ornstein–Uhlenbeck networks
The stimuli in our task were generated using a new ap-
proach for simulating continuous causal systems first pro-
posed in Davis et al. (2018). See Davis et al. (2020) for a full
explication of the generative process, but briefly Ornstein–
Uhlenbeck (OU) networks represent causality with autore-
gressive processes that move towards a basin point as a func-
tion of time (Uhlenbeck & Ornstein, 1930). Importantly,
however, when one variable is causally influenced by another
variable (as defined by the causal structure of the OU net-
work), this is modelled by making the effect’s basin point
nonstationary, following some function of the state of its
cause(s). We here further restrict these functions such that
the effect either asymptotes to a value equal to the cause’s
value (“regular” connections) or to the negative of the cause’s
value (“inverted” connections). If a variable has more than
one cause, we model it as attracted to the sum of the basin
points defined by each of its causes. Formally, the change in
a variable vi following time t is given by

P(∆vt
i|vt ,ω,σ,Θ) = ω

[[
∑

j
θ ji · vt

j
]
− vt

i

]
+N(0,σ) (1)

where ω is the asymptote rate (“spring rigidity”), σ is the
endogenous noise of each variable, and θ ji is the causal im-
pact of variable j on variable i (1 in the case of a direct, and
–1 in the case of an inverse relationship). Simply put, the
mean that variable i reverts to is the sum of the values of its
causes, each first multiplied by their respective θs. To ac-
commodate interventions we use the “Do()” operator (Pearl,
2009), whereby an intervened on variable takes the assigned
value with a probability of 1, ignoring all other endogenous
or exogenous factors.

In this work we manipulate two aspects of the generative
model. First, ω (rigidity) defines how tightly an effect tracks
its cause. Higher values of ω result in an effect reaching its
asymptote more quickly (instantaneously when ω = 1). Sec-
ond, the update rate determines the amount of real time (i.e.
from the point of view of external observer) between each
system update (i.e., the time from t to t + 1 when comput-
ing the change in variable vi, ∆vt

i). Rigidity and update rate
represent two alternative ways in which to manipulate sys-
tem speed. Decreasing ω results in effects responding to their
causes more slowly holding system noise (σ) constant. De-
creasing the update rate also affects of the responsiveness of
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Figure 1: Rate of change toward an asymptote of 80 in each
condition. Stimuli were generated with a small amount of
noise (σ = 2) to show the changing update rates by condition.

effects but in addition lowers the noise in the system from the
point of view of an external observer. Fig. 1 illustrates these
effects. We assess whether either of these manipulations re-
sult in a lower rate of local computations style errors.

Slowing the process does not come without drawbacks.
Larger real time intervals between each application of Eq. 1
formally reduces the amount of evidence produced in a set
period. To demonstrate this, we simulated 100 participants
in each condition interacting with each of the 25 causal mod-
els tested in this experiment (Fig. 2B), and used the posterior
entropy over graphs according to an optimal learner as a mea-
sure of the learnability of the systems.1 There was a consider-
able increase in log posterior entropy from the fast-rigid con-
dition (–224) to the fast-flexible (–55) and slow-rigid (–80)
conditions, and even further increase in entropy for the slow-
flexible condition (–13). These results demonstrate that while
potentially reducing systematic, local computations style er-
rors, slower dynamics come at the cost of reduced informa-
tion with which to learn.

Method
Participants
205 participants (87 female, 1 no response; age M = 37.2, SD
= 11.8) were recruited from Amazon Mechanical Turk using
psiTurk (Gureckis et al., 2016). They were paid a base pay-
ment of $3 plus performance related bonuses (M = $0.97, SD
= $0.46) and the task took 32.6 minutes (SD = 18.3). Par-
ticipants were randomly assigned to one of four conditions.
Those who made a causal judgment before intervening on any
slider on over 90% of trials were excluded (Table 1).

Materials
Participants interacted with a number of causal devices rep-
resented by three vertical sliders that moved on their own ac-
cording to the hidden causal structure and OU process, but

1The simulated participants intervened using an idealized ver-
sion of the intervention strategies observed in Davis et al. (2018),
intervening on each variable for 1/3 of the trial and evenly splitting
their intervention choices between the extreme range of the variables
(100 and -100).
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Figure 2: Stimuli. (A) Task environment. Sliders turn blue when intervened on. (B) All tested causal graphs, presented in
random order. Black arrowheads denote regular connections, white arrowheads denote inverse connections.

could also be intervened on, by clicking and dragging to set
their levels, overriding their normal causes (see Fig. 2A).2

The sliders were constrained to be between -100 and 100, and
the buttons on the slider presented a rounded integer value in
addition to moving up and down. A timer at the top of the
page counted down from 45 seconds at 1s increments, and
at the bottom of the page were six additional sliders (one for
each potential causal relation). Responses could be one of
three options: ‘Inverted’, ‘None’, or ‘Regular’, corresponding
to θ < 0, no relationship (θ = 0), and θ > 0, respectively. Par-
ticipants were pretrained on these terms in the instructions.

Stimuli and Design

Participants were tested on 25 causal graphs (see Fig. 2B) that
were roughly balanced across a number of factors, such as the
number of inverted and regular links and the number of links
between each variable. The graphs were presented in random
order for a total of 25 trials. The OU parameters used during
training and the test were σ = 5 and θ = [1,0,−1] for regular,
none, or inverse connections, respectively.

Participants were randomly assigned to one of four con-
ditions that determined the other parameters, ω and update
rate. We varied the rate at which the process unfolded, with
the slider values updating at either 100 (“fast”) or 300ms
(“slow”). Crossed with this, we manipulated the rigidity of
the OU process, setting ω to be either 0.1 (“rigid”) or 0.05
(“flexible”). ω sets the rate at which the process asymptotes,
when ω= 0.1 the variables move 10% of the way toward their
basin point in expectation, and when ω = .05 the variables
move 5% of the way toward their basin point in expectation
(see Fig. 1). These two factors independently manipulate the
rate of change of variables towards their asymptotic value,
with ω changing the formal properties of the OU network it-
self, and update rate changing the experienced real-time pace
of the process.

2See zach-davis.github.io for a demo.

Table 1: Breakdown of conditions and number of partici-
pants. Counts prior to exclusions in parentheses.

Condition Update rate ω n
fast-rigid 100ms 0.1 45 (54)
fast-flexible 100ms 0.05 42 (53)
slow-rigid 300ms 0.1 44 (51)
slow-flexible 300ms 0.05 38 (47)

Procedure
Participants first completed an interactive instruction section
that used a sequence of videos to explain the nature and goals
of the task, how to intervene, as well as the trial duration.
They were instructed that, for a randomly selected trial, they
would receive a bonus of $0.25 for each correct causal link
judgment (out of ‘no link’, ‘regular’ and ‘inverse’ for each
of the 6 directed links). Importantly, this bonus scheme was
demonstrated with a hypothetical participant who observed a
chain network and correctly identified the two existing causal
links but incorrectly added an additional direct link between
the indirect effects. Participants were told that this partici-
pant received a reward of $1.25 for the correct responses but
missed out on an additional $0.25 for marking the direct con-
nection between indirect effects. Participants could not pro-
ceed to the task until they correctly answered five compre-
hension check questions probing if they knew the duration
of each trial, the difference between a regular and inverted
connection, that there can be more than one connection per
network, and that they would have to provide a response for
all six possible connections on each trial.

In the main task, participants completed 25 trials lasting
45 seconds each. A trial was initiated by pressing the “Start”
button at the top of the page, whereupon the sliders began up-
dating according to the OU process at either 100 or 300ms,
depending on condition. Participants were free to click, drag,
or hold any slider to any value for any amount of time over-
riding its normal causes. After releasing a slider, it continued

810

zach-davis.github.io


0.00

0.25

0.50

0.75

1.00

fast
rigid

fast
flexible

slow
rigid

slow
flexible

condition

pr
op

or
tio

n

model
CES
LC
Norm

(A) Overall
accuracy

0.00

0.25

0.50

0.75

1.00

fast
rigid

fast
flexible

slow
rigid

slow
flexible

condition

(B) Accuracy on
indirect effects

1e−04

1e−03

1e−02

1e−01

1e+00

0 5 10 15
time held (s)

pr
op

or
tio

n 
of

 in
te

rv
en

tio
ns condition

fast−rigid
fast−flexible
slow−rigid
slow−flexible

(C) Holding behavior

Figure 3: Descriptive statistics. (A) Proportion of causal links correctly identified by condition. (B) Among variable pairs
that were indirectly but not directly causally related, proportion that received a correct “none” response (indicating the absence
of a direct connection). (C) Proportion of continuous interventions that are held at one value over time. As dynamics slow
participants hold at the same value for longer. Plot points in panels (A) and (B) derived from maximum a posteriori predictions
from three models. Horizontal dashed lines denote chance responding. Error bars denote standard errors of the mean.

to move according to the OU process.
Participants could make (and revise) their causal judgments

at any point during the trial, but could not proceed to the next
trial until they had entered a judgment for all six potential
causal relations. No feedback was provided. After complet-
ing the 25 trials, participants were informed of their bonus
and completed a brief post-test questionnaire.

Results
Descriptive Results
See Fig. 3 for descriptive results. Across all conditions, par-
ticipants were above chance (.33) in identifying causal links
(M = .71, SD = .22), t(168) = 22.30, p < .001. They were
slightly more likely to recognize regular (.83) than inverse
(.79) causal links, t(168) = 3.89, p < .001. Participants were
also more likely to correctly classify causal links as the exper-
iment progressed, as confirmed by a random effect regression
with subject-level intercept and slope for trial number (Mean
β = .004), t(168) = 6.76, p < .001.

Successful learning relies on effective interventions—i.e.,
ones that are extended in time and involve large swings of
each variable’s value. In our task, a two-way ANOVA did
not show differences in average duration of interventions (M
= 3.07s) as a function of either update rate or spring rigidity
(all Fs < 1). However, the average range of interventions—
defined as the minimum slider value subtracted from the
maximum value during an intervention bout—varied substan-
tially with condition: 138.5, 102.4, 89.0 and 69.1 in the fast-
rigid, fast-flexible, slow-rigid, and slow-flexible conditions,
respectively; an ANOVA revealed an effect of update rate,
F(1,165) = 8.89, p = .003, of rigidity, F(1,165) = 44.8, p <

.001, and no interaction. That is, learners in slower systems
generated less variable movement, a finding supported by the
increase in propensity to hold variables at one value for ex-
tended periods of time as the dynamics slow (Fig. 3C).

Fig. 3A shows that, as expected, accuracy in identifying
causal links decreased as the dynamics slowed. Although
subjects were above chance in all conditions (ps < .001), a
two-way ANOVA on accuracy showed decreased accuracy
as a function of both update rate (F(1,165) = 9.9, p = .002)
and rigidity (F(1,165) = 7.4, p = .008), but no interaction.
Somewhat paradoxically, however, Fig. 3B shows that slow-
ing the dynamics actually had the opposite influence on ac-
curacy for indirect effects. As dynamics slowed, accuracy
improved. A two-way ANOVA showed this was due to both
update rate (F(1,165) = 15.1, p < .001) and spring rigidity
(F(1,165) = 5.1, p = .025), with a small interaction between
the two (F(1,165) = 4.5, p = .036).

One reason for the reduced accuracy by condition may
be that, as demonstrated above, slowing down the dynam-
ics results in decreased information produced by the system.
For example, a trial in the “slow” condition had 150 data-
points, versus 450 in the “fast” condition. It was also shown
that learners in slower systems perform less informative in-
terventions, compounding the general decrease in informa-
tion. To test whether accuracy differences between condi-
tions was driven solely by overall system information, we
computed the posterior entropy over the 729 possible graphs
given the data that participants generated as they interacted
with the sliders, according to a normative learner that knows
the exact parameters of the system (but not causal structure).
As expected, lower entropy was associated with higher ac-
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curacy, r(167) = −.67, p < .001, confirming that more sys-
tem information aided learning. However, a two-way AN-
COVA revealed that, even after controlling for differences
in the conditions’ posterior entropy, there remained a dif-
ference in accuracy between conditions, with main effects
of speed (F(1,164) = 11.8, p < .001) and spring rigidity
(F(1,164) = 8.8, p = .004), and an interaction between the
two (F(1,164) = 7.6, p = .006).

These results indicate independent effects of the two ways
we slowed the dynamic system. Participants classified causal
links less accurately both as the asymptote speed ω slowed
from .1 to .05 and as the gap between t and t+1 increased
from 100 to 300ms. However, as predicted, these manipula-
tions increased accuracy on the key test of direct and indirect
connections.

Modeling
To better understand participants’ judgments we compared
them to those of several causal structure learning models. In
particular, we assessed two models that had previously been
found to capture people’s behavior, as well as a new model
inspired by the event segmentation literature. For each partic-
ipant and model, the model received as input the slider values
and the participant’s interventions and yielded a posterior dis-
tribution over the 729 causal graphs. We now briefly describe
each model starting with our new addition.

Causal Event Segmentation model. The Causal Event
Segmentation (CES) model describes people as segmenting
continuous variables into events, and using these events as
cues for causality. Roughly put, it conceives of people as
drawing causal links only when their actions ‘make some-
thing happen.’ This is operationalized by taking all time-
points where a participant intervenes on a slider and drawing
a causal link if another variable crosses some threshold value
during that intervention bout. See Fig. 4 for visual demon-
stration of these principles.

The CES model assigns a central role to interventions, in
that it only infers a causal link between an intervened upon
variable as the “root” cause and a non-intervened upon “end”
variable as the effect. More precisely, the CES model takes
all time points where a variable is intervened on, and registers
an event if any other variable crosses a threshold during that
time. For example, the horizontal dashed line in Fig. 4 shows
a threshold at which the CES model would register an event
if another variable was being intervened upon.3 To determine
the sign of the link, for all timepoints during the event (where
the root variable is intervened upon and an end variable is
above a threshold) the CES model compares the signs of the
two variables. If on average the signs match, the model draws
a “regular” causal link, if they do not match the model draws
an “inverse” causal link.

If no end variables cross a threshold, no causal links are

3A threshold is an absolute value (e.g. 50), such that “crossing”
a threshold could mean being greater than that value or less than its
negative.
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Figure 4: Illustration of CES model. During participant’s in-
tervention bout on X from approximately 1 to 3 seconds, Z
crosses threshold (here shown as 50). Histograms on the right
demonstrate distributions over fitted threshold values by con-
dition, with colors corresponding to condition as in Fig. 1.

drawn. To only register events when a threshold is crossed,
the CES model excludes all cases where a potential end vari-
able is above threshold before the intervention begins. In ad-
dition, the CES model does not account for temporal delays
between events. The only links that can be drawn originate
from an intervened on node. Links are not drawn between two
non intervened on nodes, even if they both cross the thresh-
old. To account for uncertainty in participant judgments, per
participant we fit a threshold parameter, as well as a guess
parameter that corresponded to the probability of responding
counter to the predictions of the events model.
Normative model. The normative model inverts the gener-
ative model to optimally infer the structure most likely to have
produced the evidence (see Davis et al., 2020), starting each
problem with a uniform prior, and assuming a static degree
of parameter uncertainty. At each timepoint, the normative
model evaluates the likelihood of each variable’s value given
the values of all other variables at the previous timepoint,
as well as information about the participant’s interventions,
and updates the probability of each potential graph. Updating
over all timepoints and multiplying by the prior probability of
each graph (we assume uniformity) yields a posterior distri-
bution over graphs.

Two choices were made to account for participant uncer-
tainty. While participants see examples of OU networks in
the instructions, they will of course not develop exact repre-
sentations of key parameters ω, θ, and σ. We assume the same
hyperpriors over these parameters as (Davis et al., 2020), rep-
resenting a reasonable degree of uncertainty about their pre-
cise values while still maintaining qualitative similarity with
the generating process. To account for uncertainty in partici-
pant judgments, a softmax function was applied to the poste-
rior over graphs, with a separate temperature parameter fit for
each participant to maximize the posterior probability of the
graph chosen by participants.
Local Computations model. The local computations (LC)
model is a broadly successful model of causal learning that
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describes people as focusing on pairs of variables, rather than
evaluating the evidence with respect to the full space of pos-
sible structural models. At each timepoint, the LC model
evaluates the individual contribution of each variable to each
other variable’s value, ignoring the possible contribution of
other links. In other respects the LC model is identical to the
normative model. LC based models have been proposed as
accounts of how people build causal models in a resource-
efficient way (Bramley et al., 2017; Fernbach & Sloman,
2009). As mentioned, Davis et al. (2020) showed that the
LC model best fit participants in a very similar task to this
study’s fast-rigid condition. Here we test the extent to which
these results generalize to different time characteristics.

Baseline model. The baseline assumes participants have an
equal probability of responding for any graph. It has no fitted
parameters.

Modeling Results
Fig. 5A shows the proportion of participants’ edge judgments
that correspond with the most probable graph under each
model. As the system slows down, participants are less likely
to make the same judgments of causal relationships as the
models. This suggests increasing noise in their judgments,
a result that may cohere with the reduced information in the
system as it slows.

Fig. 5B shows the relative performance of the models, as
measured by mean Bayesian Information Criterion per par-
ticipant. While all models outperform the baseline model,
the distinction decreases as the system slows down. Overall,
the CES model is the best-fitting model, although the norma-
tive and LC models narrowly outperform the CES model in
one condition (slow-rigid).

This strong performance of the CES model is reflected in

the number of participants best fit by each model (Fig. 5C).
Across all conditions, the CES model fits the majority of par-
ticipants, although its separation from the other models is
slightly ameliorated as the dynamics slow down.

Fig. 3 gives insight into why the CES outperforms the other
models. While cell B shows that the LC model also predicts
increased accuracy on indirect effects as the dynamics slow,
only the CES model predicts the simultaneous decrease in
overall accuracy.

Intervention Analyses

The above models can also shine light on why participants
acted differently in the different conditions. Note that the
informativeness of an intervention depends on the underly-
ing learning model. For example, a good intervention for the
CES model involves holding an intervened-on variable at a
particular value for an extended period (providing the time
needed for an event to be recorded). In contrast, for the nor-
mative model large swings in that variable are preferred. Un-
der the assumption that learners choose interventions that are
appropriate for how they learn, one can ask whether their in-
terventions are more explicable under one model versus an-
other. In particular, we ask which model provides the best
account of how interventions varied over our experimental
conditions. To this end, we compared, for each model, how
each participant’s interventions would have fared when ap-
plied to each of the four experimental conditions. For exam-
ple, if a participant in the fast-rigid condition held variable X
at 100 for 10 seconds, we simulated that intervention in all
four conditions. A model that learns as people do predicts
that a participant’s interventions will lead to better learning
when applied to his or her own condition as compared to
one of the others—because those interventions were appro-
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priate for that model in that condition. We fed this simulated
participant data into our inference models. We found that
the CES model was more accurate when participants’ actions
were matched with the condition in which they were actu-
ally performed (t(168) = 5.15, p < .001). However, this was
not the case for the LC (t(168) = .10, p = .92) or normative
(t(168) = 1.02, p = .31) models. This is consistent with the
idea that participants acted to maximize learning under the
CES model, roughly speaking this means they acted to pro-
duce many informative “events”. Indeed, Fig. 3C confirms
that participants in the slower conditions held variables at one
end of the range longer than those in faster conditions—as ap-
propriate for a CES learner.

Discussion
This paper investigated the impact of timing on causal learn-
ing in continuous dynamic systems. We predicted that re-
ducing a system’s speed might ameliorate a particular type
of error captured by the local computations model—given
X → Y → Z, incorrectly inferring a direct relationship be-
tween X and Z—on the grounds that learners would more
readily perceive the lag in influence from X to Y and then to
Z. Yet, we also noted that people are generally less likely to
infer a causal relationship the greater the lag between cause
and effect. In fact, we found just this paradoxical effect of
time on learning. Whereas slowing the dynamics resulted in
increased accuracy for indirect effects, it resulted in reduced
accuracy overall. That is, rather than having a uniformly posi-
tive or negative effect, changes in system timing led to a trade-
off between different types of errors.

We also introduced the CES model, finding that it fit the
majority of participants across conditions. The success of
this model fits nicely with work suggesting that people nat-
urally segment continuous streams of information into dis-
crete events (for review, see Zacks, 2020). That said, the CES
model in its current form is highly exploratory with plenty of
room for improvment and further testing. For one thing, it
only infers a direct connection between an intervened-on root
variable and end variable that registers an effect, whereas peo-
ple have been shown to infer structure from linking sequences
of events (Bramley et al., 2018). In addition, given the impor-
tance of interventions to produce events for the CES to learn
from, a future direction would be modeling the CES’s pre-
scriptions for how one should intervene to maximize learn-
ing.

A limitation of this project is that it confounds the amount
of information produced by the system with the rate of
change, in that the 100ms update rate produced three times
as many datapoints than a 300ms update rate in 45 seconds.
We made this design choice because the alternative was to
have 30 minute versus 90 minute experiments depending on
condition. In the results section we showed that the overall
amount of information produced by the system could not ex-
plain the difference between conditions, but a natural further
experiment would be to test this directly by holding the total

number of observations constant.
Learning the relationships between continually shifting

variables in real-time is as challenging as it is common. In
this paper we identified factors that modulate performance
in continuous dynamic environments, and proposed a new
model for causal learning inspired by people’s ability to ab-
stract and discretize their experiences. We find support for
the idea that, in these informationally rich settings, people
use events triggered by their actions to infer causal structure.
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