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Abstract

Epidemiologic studies have reported inconsistent results regarding an association between 

Parkinson disease (PD) and cutaneous melanoma (melanoma). Identifying shared genetic 

architecture between these diseases can support epidemiologic findings and identify common risk 

genes and biological pathways. Here we apply polygenic, linkage disequilibrium-informed 

methods to the largest available case-control, genome-wide association study summary statistic 

data for melanoma and PD. We identify positive and significant genetic correlation (correlation: 

0.17, 95% CI 0.10 to 0.24; P = 4.09 × 10−06) between melanoma and PD. We further demonstrate 

melanoma and PD-inferred gene expression to overlap across tissues (correlation: 0.14, 95% CI 

0.06 to 0.22; P = 7.87 × 10−04), and highlight seven genes including PIEZO1, TRAPPC2L, and 
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SOX6 as potential mediators of the genetic correlation between melanoma and PD. These findings 

demonstrate specific, shared genetic architecture between PD and melanoma that manifests at the 

level of gene expression.
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Introduction

An association between idiopathic Parkinson disease (PD), neuropathologically 

characterized by the degeneration of pigmented dopaminergic neurons, and cutaneous 

melanoma (melanoma), a cancer of pigment-producing melanocytes, was first reported in 

1972 [80]. This association was hypothesized to result from the chronic systemic 

administration of levodopa (L-DOPA) – an intermediate in the dopamine synthesis pathway 

[23] – for the treatment of PD [4, 80] as L-DOPA is also a biosynthetic intermediate in the 

production of melanin [23]. Since that time, several epidemiologic studies have examined 

the association between PD and melanoma as well as other cancers [5, 17, 21, 27, 29, 36, 42, 

53, 67, 68, 81, 87, 91]. The majority of studies have found that individuals with PD appear 

to have a lower incidence of most cancers, with the exception of melanoma [21, 27, 36, 67, 

68, 81, 91]. Both prospective and retrospective studies have also found an increased risk of 

melanoma in PD that appears to be independent of L-DOPA treatment [5, 29, 42, 67, 91]. 

For example, 92 out of 2,106 (4.4%) individuals with neurologist-confirmed PD had either a 

personal history or current dermatologist-diagnosed melanoma in a 2010 study [5]. The 

increased risk of melanoma in PD has been observed to extend to family members and be 

reciprocal in nature with individuals being at greater risk for PD if their relatives have a 

melanoma diagnosis and vice versa [29, 42]. For example, 40 of 1,544 (2.6%) of individuals 

with pathologically-confirmed melanoma had a neurologist-confirmed diagnosis of PD in a 

2017 study [17]. However, not all studies have identified an association between melanoma 

and PD in affected individuals [19, 27] or their relatives [91]. An epidemiologic association 

between lighter hair color and PD, a potentially shared risk factor with melanoma [6], has 

also been inconsistently reported [19, 30]. Epidemiologic association studies are not without 

biases. PD is known to have an extended prodromal period and a melanoma diagnosis 

necessitates longitudinal follow up, both of which increase medical surveillance and thus the 

chance for spurious epidemiologic associations [27, 33]. In contrast, studies of genetic 

variants associated with disease or cross-disease risk are not expected to be influenced by 

usage of medical care, though they may be subject to similar misclassification [75] and 

ascertainment biases.

The first investigations of a genetic relationship between melanoma and PD focused on 

variants in MC1R, a gene strongly associated with pigmentation and melanoma risk [45]. 

While early reports identified an association between PD and MC1R variants [30, 83] other 

studies failed to replicate these findings [24, 26, 28, 55]. Analyses focused on single variants 

in other melanoma risk genes have also failed to yield consistent associations with PD [19, 

28, 56]. Multi-variant analyses have thus far reported a lack of genetic association as well. 

Dube et al. Page 2

Acta Neuropathol. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For example, a melanoma genetic risk score – calculated by aggregating the effect of 

melanoma genomewide association study (GWAS)-significant (P < 5 × 10−8) loci included 

in the GWAS catalog [89] as of 2012 – was not significantly associated with PD [65]. 

Similarly, no evidence for an association between GWAS-significant melanoma loci and PD 

is observed in a more recent multi-variant, Mendelian randomization study [66]. In contrast, 

genes associated with Mendelian forms of PD have been identified to be somatically 

mutated in melanoma lesions [37, 40, 48]. There may also exist an enrichment of Mendelian 

PD gene germline variants in individuals with melanoma [37], though this requires 

replication. Nevertheless, over 90% of individuals with PD do not have mutations in any 

known Mendelian PD genes [1] and thus variants in Mendelian PD genes are unlikely to 

fully explain any genetic correlation between melanoma and PD.

The genetic risk architecture underlying complex diseases like PD and melanoma is 

mediated by many common genetic variants of small effect size, most of which do not 

demonstrate GWAS-significant associations given current study sample sizes [8]. Analyses 

which only include GWAS-significant loci are not expected to fully represent the genetic 

architecture of these complex diseases and thus may lead to false negative genetic overlap 

results. Recently, statistical methods that aggregate all loci from disease-specific GWAS 

summary statistic datasets in a linkage disequilibrium (LD)-informed manner have been 

developed to better model these polygenic architectures [11]. These aggregated signals can 

be leveraged to estimate the genetic correlation between different diseases [11, 54], even at 

the level of gene expression in specific tissues [35, 57] or across tissues [38]. Here, we apply 

these novel methods to GWAS summary statistics derived from the largest currently 

available studies of melanoma [45], PD [13, 63, 64], and other neurodegenerative diseases 

[25, 44] to investigate whether there exists specific genetic architecture overlap between 

melanoma and PD.

Methods

GWAS Summary Statistics:

We obtained the largest available, European genetic ancestry, case-control, GWAS summary 

statistic data for melanoma (Law2015 [45]) and three independent studies of PD (Nalls2014 

[64]; Chang2017 [13]; Nalls2019 [63]) as well as two negative control comparator 

neurodegenerative diseases: Alzheimer disease (Kunkle2019 [44]) and frontotemporal 

dementia (Ferrari2014 [25]). The summary statistics for these datasets included p-value, 

effect allele, number of individuals or studies, and standard error for every genetic variant 

reported in each study. All individual studies contributing to the GWAS summary statistic 

datasets used in the current analysis received approval from the pertinent institutional review 

boards or ethics committees, and all participants gave informed consent. Additional details 

for each dataset are included below and in the individual study articles [13, 25, 44, 45, 63, 

64].

Melanoma – Law2015

We obtained meta-analysis Melanoma risk summary statistic data from the Melanoma meta-

analysis consortium (https://genomel.org/). This data was published in Law et al., Nature 
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Genetics, 2015 [45]. This dataset includes melanoma-association results for 9,469,417 

genotyped and imputed variants derived from 12,814 pathologically-confirmed melanoma 

cases and 23,203 controls of European ancestry.

Parkinson disease – Nalls2014

We obtained PD risk summary statistic data from PDGENE (http://www.pdgene.org/). This 

dataset was published in Nalls et al., Nature Genetics, 2014 [64] and Lill et al, PLoS 

Genetics 2012 [50]. The summary statistic data we obtained did not include any 23andMe 

participants and thus the dataset includes PD-association results for 7,799,580 genotyped 

and imputed variants derived from 9,581 PD cases – mostly diagnosed, but some self-

reported – and 33,245 controls of European ancestry. This dataset only included the number 

of studies, and not the number of individuals, supporting the association results for each 

variant. Consequently, we only included variants supported by at least 12 of 13 studies in 

downstream analyses.

Parkinson disease – Chang2017

We obtained Parkinson disease (PD) risk summary statistic data from 23andMe, Inc., a 

personal genetics company (https://research.23andme.com/dataset-access/). This data was 

published in Chang et al., Nature Genetics, 2017 [13]. This dataset includes PD-association 

results for 12,896,220 genotyped and imputed variants derived from 6,476 self-reported PD 

cases and 302,042 controls of European ancestry. This dataset excludes any 23andMe 

participants included in the Nalls2014 study.

Parkinson disease – Nalls2019

We obtained PD risk summary statistic data from the IPDGC (https://pdgenetics.org/). This 

dataset was published in Nalls et al., The Lancet Neurology, 2019 [63]. The summary 

statistic data we obtained did not include any 23andMe data nor Nalls2014 data and thus 

includes PD-association results for 17,510,617 genotyped and imputed variants derived from 

33,674 PD cases – diagnosed and UKB proxy-cases, that is individuals with a first-degree 

relative with PD – and 449,056 controls of European ancestry.

Alzheimer disease – Kunkle2019

We downloaded stage 1 meta-analysis Alzheimer Disease (AD) risk GWAS summary 

statistic data from NIAGADS (National Institute on Aging Genetics of Alzheimer Disease 

Data Storage Site) website: https://www.niagads.org/datasets/ng00075 (#NG00075). This 

data was generated by the International Genomics of Alzheimer Project and published in 

Kunkle et al., Nature Genetics, 2019 [44]. The stage 1 meta-analysis dataset includes AD-

association results for 11,480,632 genotyped and imputed variants derived from 21,982 AD 

cases and 41,944 cognitively normal controls of European ancestry.

Frontotemporal Dementia – Ferrari2014

We obtained discovery phase Frontotemporal Dementia (FTD) risk GWAS summary statistic 

data from the International Frontotemporal Dementia Genomics Consortium (IFGC, https://

ifgcsite.wordpress.com/data-access/). This data was generated by the IFGC and published in 
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Ferrari et al., Lancet Neurology, 2014 [25]. The discovery phase dataset includes FTD-

association results for 6,026,385 variants derived from 2,154 individuals with FTD and 

4,308 control of European ancestry.

Meta-analyzing PD GWAS datasets

We used METAL software [90] to perform an inverse-variance weighted meta-analysis of 

the three independent PD GWAS summary statistics. We refer to this meta-analyzed PD 

dataset in the text, tables, and figures as METAPD (49,731 cases and 784,343 controls).

Standardization and Filtering of GWAS Summary Statistics

We standardized all summary statistics prior to polygenic analyses. We first confirmed the 

genome build to be GRCh37, and then annotated variants with dbSNP v151 rs-identifiers 

and gnomAD [41] non-Finnish European (NFE) allele frequencies using ANNOVAR 

software (2018Apr16) [88]. We only included bi-allelic variants with rs-identifiers and in 

instances where multiple variants shared the same rs-identifiers, we selected the variant that 

was supported by the largest number of studies and/or the greatest sample size. Finally, we 

processed and filtered summary statistics using the munge_sumstats.py tool provided with 

Linkage Disequilibrium Score Regression Software (LDSC) [11]. This processing and 

filtering removed variants with an effect allele frequency of less than 0.05 in the gnomAD 

NFE population, variants with strand-ambiguous alleles, variants supported by a low sample 

size or effective sample (Neff = 4/(1/Ncases+1/Ncontrols)) for the meta-analysis [90], and 

variants that were not reported in the HapMap3 study [31]. The number of variants 

overlapping across all processed GWAS summary statistic datasets analyzed in the present 

study are presented in Table 1.

Estimating Genetic Overlap by GNOVA

We calculated genetic overlap using GNOVA software [54]. GNOVA estimates genetic 

covariance based on all the genetic variants shared between two GWAS summary statistic 

datasets. In brief, the summary statistic z-scores observed for each variant are multiplied and 

their product is regressed against the LD score for that variant, with the LD score being 

calculated based on the external 1000 genomes project CEU population [84]. Genetic 

covariance is then estimated based on all shared variants using the method of moments and a 

block-wise jackknife approach as described in the GNOVA manuscript [54]. GNOVA further 

provides an estimate of genetic correlation based on this calculated genetic covariance and 

the estimated GWAS variant-based heritabilities. As with LD score regression [11], GNOVA 

is able to statistically correct for any sample overlap between two different sets of GWAS 

summary statistics. In addition, GNOVA produces unbounded genetic correlation estimates 

which may be greater than one for traits which are highly genetically correlated. GNOVA 

provides greater statistical power and higher estimation accuracy for genetic correlations 

than LD score regression, especially when the correlations are moderate [54], as is expected 

for melanoma and PD. We ran GNOVA software on the processed GWAS summary statistics 

using default parameters and the 1000 Genomes [84] European population-derived reference 

data provided with the software. Given we test the genetic correlation of melanoma against 
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PD, AD, and FTD we use a Bonferroni corrected significance threshold of P < 1.67 × 10−02 

(0.05 / 3) for our primary analysis. We also ran annotation-stratified analyses using the 

minor allele frequency quartile and chromosome annotations provided with GNOVA 

software as well as the aforementioned reference data and parameters. In the text we present 

genetic correlations, 95% confidence intervals, and p-values that have been corrected for 

sample overlap by GNOVA.

Disease-Inferred Gene Expression Overlap Analyses

We investigated whether the genetic overlap between PD and melanoma was mediated by 

shared regulation of gene expression. To do this we generated tissue-specific, disease-

inferred gene expression profiles from the processed GWAS summary statistics using 

FUSION/TWAS software with the default parameters [35]. FUSION/TWAS imputes gene 

expression using cis expression quantitative trait loci (eQTL) data derived from reference 

panels of paired genotype and tissue-specific gene expression data. As gene expression is 

imputed based on disease-specific GWAS summary statistics, FUSION/TWAS identifies 

disease-inferred gene expression profiles with tissue-level resolution. For this study, we used 

eQTL weights based on the 48 tissue Genotype-Tissue Expression (GTEx) [34] version 7 

(v7) reference panel provided with FUSION/TWAS to generate all disease-inferred gene 

expression profiles. We tested for overlap or correlation between the disease-inferred gene 

expression using RHOGE software [57], providing the effective sample size [90] for each 

dataset and only including those FUSION/TWAS results that were at least nominally (p < 

0.05) associated with each disease as per the default RHOGE parameters. RHOGE provides 

an estimate of the genetic correlation between two traits that can be attributed to eQTLs as 

represented by the different trait-inferred gene expression profiles. We exclude the major 

histocompatibility complex (MHC) region from disease-inferred gene expression overlap 

analyses due to its complex LD structure [35, 57]. To consider an overlap as significant we 

used a Bonferroni corrected threshold: P < 1.04 × 10−03 (0.05 / 48 tissues) and present 

uncorrected p-values and 95% confidence intervals in the text.

Highlighting Genes Underlying Disease-Inferred Gene Expression Overlap

We used UTMOST software [38] to generate single-tissue, disease-inferred gene expression, 

and then aggregated them into a summary metric representing cross-tissue, eGene-disease 

associations. eGenes are those genes whose expression are influenced by a least one cis 
disease-associated genetic variant [93]. For this analysis, we generated the single tissue 

disease-inferred results based on the processed GWAS summary statistics and the 44 tissue 

GTEx v6 reference panel provided with UTMOST, using default parameters. We similarly 

generated the cross-tissue summary metric using default parameters. The UTMOST cross-

tissue test summary metric represents the maximum one-sided likelihood ratio test statistic 

for an eGene being associated with the disease, with larger test statistics indicating greater 

support for an association. This summary metric does not include any indicator of 

uncertainty. We identified transcriptome-wide significant, cross-tissue, eGene-disease 

associations using a false discovery rate (FDR) threshold of 0.05, that is five expected false 

discoveries per 100 reported. We compared PD and melanoma UTMOST summary metric 
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eGene results for the disease-specific GWAS summary statistics to identify eGenes that were 

independently associated with both diseases.

Investigating for Differential Expression of Highlighted eGenes in PD Brain 

Tissues

To investigate whether the eGenes we identified as being independently associated with both 

melanoma and PD demonstrated differential expression in PD, we downloaded publicly 

available, normalized microarray gene expression data derived from substantia nigra brain 

tissues donated by individuals with and without PD. These datasets were deposited in the 

Gene Expression Omnibus (GEO) under the accession codes: GDS2821 [47] and GDS3129 

[22, 62]. The GDS2821 dataset includes Affymetrix Human Genome U133 Plus 2.0 array 

data collected from 16 individuals with neuropathologically-confirmed PD and nine aged 

individuals with no history or pathological diagnosis of neurologic or psychiatric disease 

[47]. The GDS3129 dataset includes Affymetrix Human Genome U133B array data derived 

from 15 samples of medial substantia nigra and nine samples of lateral substantia nigra from 

individuals with neuropathologically-confirmed PD as well as eight samples of medial 

substantia nigra and seven samples of lateral substantia nigra from control individuals 

without neurodegenerative disease pathology [22, 62]. We extracted the normalized 

expression levels of GPATCH8, MYO9A, PIEZO1, SOX6, TRAPPC2L, ZNF341, and 

ZNF778 genes and compared the expression between controls using a Mann-Whitney test 

using Graphpad Prism 8.0.

Results

Polygenic Analysis Reveals Specific Genetic Overlap between Melanoma and PD

Prior to cross-disease analyses, we first confirmed that the three independent PD datasets 

demonstrated positive and significant genetic correlation with each other (genetic correlation 

range: 0.94 to 1.07, Table 2) using GNOVA software. Following this confirmation and 

method validation, we proceeded to analyze for potential genetic correlations between 

melanoma, PD, and the comparator neurodegenerative disease datasets.

We identified a significant and positive genetic correlation between melanoma and the meta-

analyzed PD dataset (genetic correlation: 0.17, 95% CI 0.10 to 0.24; P = 4.09 × 10−06, Table 

3). This result was not driven by any specific PD dataset, but all three independent datasets 

contributed to the association (P < 0.05; genetic correlation range: 0.14 to 0.25, Figure 1 and 

Table 4). We further investigated the genetic correlation between melanoma and the meta-

analyzed PD dataset by stratifying it to the level of minor allele frequency and chromosome 

annotations. Consistent with the polygenic nature of these diseases, we found their genetic 

correlation to be most highly enriched in those genetic variants annotated as being in the top 

quartile of minor allele frequency (Supplementary Table 1, online resource). We also found 

the genetic correlation between melanoma and the meta-analyzed PD dataset to be enriched 

in chromosomes 1, 2, 8, 11, 16, and 17 (Supplementary Table 2, online resource). We found 

no shared genetic architecture between melanoma and Alzheimer disease (genetic 

correlation: −0.02, 95% CI −0.11 to 0.07; P = 0.73, Table 3) nor between melanoma and 
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Frontotemporal dementia (genetic correlation: −0.13, 95% CI −0.37 to 0.12; P = 0.32, Table 

3). We similarly did not observe any significant correlation between the meta-analyzed PD 

dataset and AD (Table 3), although one of the individual PD studies showed nominal 

correlation with AD (Nalls2014: genetic correlation: −0.22, 95% CI −0.22 to 0.00, P = 4.94 

× 10−02; Table 4). We did identify a positive and significant genetic correlation between the 

meta-analyzed PD dataset and FTD (genetic correlation: 0.27, 95% CI 0.07 to 0.47; P = 8.43 

× 10−03, Table 3), but this appeared to be primarily driven by one of the individual PD 

studies (Table 4). Together these results demonstrate a consistent, positive and significant 

genetic correlation between melanoma and PD but not between melanoma and FTD or AD.

PD and Melanoma Disease-Inferred Gene Expression Overlaps Across Tissues

To investigate whether melanoma and PD-associated risk variants regulated the expression 

of the same genes, we generated disease-inferred, tissue-specific gene expression profiles 

from the processed melanoma and METAPD GWAS summary statistic datasets via 

FUSION/TWAS software [35]. We further investigated for overlap between the different 

disease-inferred gene expression profiles using RHOGE software [57].

We identified a positive and significant overlap between the PD- and melanoma-inferred 

gene expression profiles in a joint analysis of the 48 tissues included in the GTEx v7 

reference panel provided with the FUSION/TWAS software (disease-inferred gene 

expression correlation: 0.14, 95% CI 0.06 to 0.22; P: 7.87 × 10−04). Analyzing the PD- and 

melanoma-inferred gene expression correlation in each of the reference panel tissues 

individually, we observed positive overlap in 44 tissues (disease-inferred gene expression 

correlation median: 0.25, IQR: 0.13, Figure 2 and Table 5), but only a statistically significant 

overlap in the suprapubic, non-sun-exposed, skin tissue (disease-inferred gene expression 

correlation: 0.37, 95% CI 0.17 to 0.57; P: 7.58 × 10−04). Eleven additional tissues 

demonstrated positive and nominal (Figure 2 and Table 5) the PD- and melanoma-inferred 

gene expression overlap including spleen (disease-inferred gene expression correlation: 0.40, 

95% CI 0.13 to 0.66; P: 5.49 × 10−03), minor salivary gland (disease-inferred gene 

expression correlation: 0.45, 95% CI 0.15 to 0.75; P: 7.49 × 10−03), heart atrial appendage 

(disease-inferred gene expression correlation: 0.31, 95% CI 0.09 to 0.54; P: 8.27 × 10−03) 

brain substantia nigra (disease-inferred gene expression correlation: 0.42, 95% CI 0.14 to 

0.71; P: 9.02 × 10−03), and brain caudate nucleus (disease-inferred gene expression 

correlation: 0.29, 95% CI 0.01 to 0.58; P: 4.89 × 10−02).

To highlight genes whose expression was commonly regulated by PD and melanoma risk 

variants, we generated cross-tissue, summary metric eGene-disease associations using 

UTMOST [38] software. Applying UTMOST to the METAPD GWAS summary statistics, 

we identified 606 eGenes significantly associated with PD (Supplementary Table 3, online 

resource), including genes in previously reported PD-associated loci [50, 64], such as MAPT 
(P: 1.28 × 10−04). In the melanoma dataset, we identified 168 significantly associated 

eGenes (Supplementary Table 4, online resource) including those reported in a previous 

TWAS study [92], such as MAFF (P: 1.28 × 10−12). Comparing the two sets of cross-tissue 

summary metric results, we identify seven eGene-disease associations that passed the FDR 

threshold for both PD and melanoma: GPATCH8, MYO9A, PIEZO1, SOX6, TRAPPC2L, 
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ZNF341, and ZNF778 (Figure 3 and Table 6). In addition, we found evidence for differential 

expression between individuals with and without neuropathologically-confirmed PD for five 

of these seven eGenes in publicly available substantia nigra microarray datasets 

(Supplementary Figure 1A-O, online resource). Together, these results suggest that some 

component of the genetic correlation between melanoma and PD may be mediated by the 

shared regulation of gene expression across tissues.

Discussion

In this study, we have identified a positive and significant genetic correlation between 

melanoma and PD by leveraging the largest available GWAS summary statistic datasets and 

recent advances in polygenic complex trait modeling [11, 54] (Tables 3-4). Our results 

support the findings of several epidemiologic studies of shared – individual and familial – 

risk [5, 17, 21, 27, 29, 36, 42, 53, 67, 68, 81, 87, 91] between the two diseases. We also 

demonstrate no evidence for shared genetic overlap between melanoma and two negative 

comparison neurodegenerative diseases: AD and FTD (Table 3), suggesting specificity.

Our results of positive genetic correlations between melanoma and PD stand in contrast to 

negative results from several other genetic studies including single-variant analyses [24, 26, 

28, 55, 65, 66] and multi-variant analyses [65, 66]. Both melanoma and PD are complex 

diseases with inherently polygenic risk architectures. Consequently, efforts to identify shared 

genetic architecture at the single-variant level are likely underpowered, especially given the 

moderate epidemiologic and genetic, correlation between melanoma and PD. This is 

especially true given the fact that the GWAS results analyzed for such single-variant level 

investigations are themselves currently underpowered. For example, a power analysis 

reported in the largest PD GWAS to date (Nalls2019), suggests that an adequately powered 

PD GWAS would require the inclusion of approximately 99,000 PD cases – more than 

double their current PD case sample size [63]. Consequently, our current knowledge 

regarding the genetic architectures of PD and melanoma is hardly comprehensive and larger 

GWAS may reveal shared individual risk loci between these diseases in the future. Similarly, 

previous multi-variant genetic analyses investigating melanoma and PD have focused 

specifically on GWAS-significant loci and thus can be expected to have missed a substantial 

proportion of the genetic architecture [8] underlying these complex diseases. Genetic 

correlation methods that consider linkage disequilibrium structure and incorporate all 

common variants are better powered to detect genetic overlap, especially given current 

GWAS sample sizes, as we demonstrate here for melanoma and PD.

The classification and ascertainment of participants was different between the three 

independent PD datasets included in the present study; however, they all demonstrate 

positive and significant genetic overlap with each other (Table 2). While this overlap does 

not guarantee specificity of the represented genetic architecture [12], the fact we observe all 

three independent PD studies to demonstrate positive and significant genetic overlap with 

melanoma (Figure 1 and Table 4) bolsters confidence in our results. Importantly, although 

the PD and melanoma genetic correlation point estimates for the three individual PD studies 

appear different, their 95% confidence intervals overlap which indicates that the effect size 

estimates are not significantly different (Figure 1 and Table 4). The genetic overlap between 
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the independent PD datasets supported their meta-analysis, and the genetic correlation 

between the meta-analyzed PD dataset and melanoma provided the most precise estimate 

(genetic correlation: 0.17, 95% CI 0.10 to 0.24; P = 4.09 × 10−06; Figure 1 and Tables 3-4). 

Further increases in precision may result from incorporating additional independent GWAS 

summary statistic datasets and thus our analyses should be repeated as these become 

available for both melanoma and PD. Similarly, our FTD genetic correlation results should 

be interpreted with caution as the current sample size is at least one order of magnitude 

smaller than the other disease datasets. For example, among the individual PD datasets, we 

only observe a positive genetic correlation between FTD and Nalls2019. Parkinsonism has 

been observed in about 20% on individuals with FTD [2, 7], and this result may suggest that 

individuals with FTD with parkinsonism were included among the UKB-proxy cases in the 

Nalls2019 dataset. Alternatively, a positive genetic correlation between FTD and the other 

PD datasets may be observed from the use of a larger FTD GWAS summary statistic dataset. 

Thus, our analyses should be repeated as larger GWAS summary statistic datasets become 

available.

We infer disease-associated gene expression profiles [35] using melanoma and meta-

analyzed PD GWAS summary statistics and investigate for their overlap at the level of 

tissues [57] and genes [38] to provide bioinformatically-driven biological context to our 

melanoma and PD genetic correlation results. We identify significant cross-tissue overlap 

(disease-inferred gene expression correlation: 0.14, 95% CI 0.06 to 0.22; P: 7.87 × 10−04) 

and significant individual tissue overlap in suprapubic non-sun-exposed skin (disease-

inferred gene expression correlation: 0.37, 95% CI 0.17 to 0.57; P: 7.58 × 10−04). We also 

observe positive, nominal disease-inferred gene expression correlation in peripheral tissues 

with PD relevance like the heart atrial appendage (disease-inferred gene expression 

correlation: 0.31, P < 0.05, Table 5) - which may reflect the cardiac sympathetic denervation 

associated with PD [32, 82] - or the minor salivary glands (disease-inferred gene expression 

correlation: 0.45, P < 0.05, Table 5) - which have been reported in some, but not all, studies 

as containing alpha synuclein aggregates in the context of PD [46, 85]. In terms of PD-

relevant brain tissues, we observe positive, nominal disease-inferred gene expression 

correlation in the substantia nigra and basal ganglia caudate nucleus (disease-inferred gene 

expression correlation: 0.42 and 0.29, respectively; P < 0.05, Figure 2 and Table 5). 

Importantly, the available GTEx v7 inferred gene expression reference model for brain 

tissues are based on substantially fewer samples than most peripheral tissues, for example 

the brain substantia nigra reference is derived from 80 donors compared to 335 donors for 

the suprapubic skin reference (Table 5). Consequently, our disease-inferred gene expression 

risk profile overlap analyses should be repeated as larger reference panels become available. 

Similarly, another limitation of the GTEx dataset is the inclusion of tissues from individuals 

with extended post-mortem intervals. As this can be expected to result in an 

underrepresentation of short-lived transcripts in the inferred gene expression reference 

panels, our analyses should be repeated as reference panels based on tissues from individuals 

with shorter post-mortem intervals become available.

We identify seven cross-tissue, eGene-disease associations passing the FDR threshold for 

both melanoma and PD (Figure 3 and Table 6), most of which are located on the 

chromosomes which we identified as being enriched for the genetic correlation between 
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these two diseases. Importantly, the UTMOST software currently only provides a compatible 

reference panel based on the GTEx v6 release which is derived from fewer donor samples 

per tissue compared to GTEx v7 release. In addition, the GTEx v6 reference panel does not 

include four tissues - brain substantia nigra, brain spinal cervical spinal cord, brain 

amygdala, and minor salivary gland - which we observed to demonstrate positive disease-

inferred gene expression overlap for melanoma and PD (Table 5). Additional eGenes may 

pass the FDR threshold for both PD and melanoma in analyses based on the larger GTEx v7 

reference panel. Thus, our analyses should be repeated when this or other larger reference 

panels become available for UTMOST. Nevertheless, using the smaller GTEx v6 reference 

panel we identify seven genes that may be commonly regulated by melanoma and PD-

associated variants under the FDR threshold (Figure 3 and Table 6), including PIEZO1 
(Melanoma P: 2.74 × 10−11; METAPD P: 5.65 × 10−05); TRAPPC2L (Melanoma P: 2.36 × 

10−11; METAPD P: 8.47 × 10−05); and SOX6 (Melanoma P: 1.30 × 10−04; METAPD P: 5.97 

× 10−05).

PIEZO1 encodes a recently described mechanosensitive cation channel [15] with several 

biological functions including human T cell activation [52], direction of lineage choice in 

human neural stem cells [71], and mediating the age-related loss of function of 

oligodendrocyte progenitor cells [79]. PIEZO1 is expressed in the neurons of the human 

substantia nigra [20, 76] and also is ubiquitously expressed in human enteric neurons [58], 

both neuronal types impacted by PD [10, 43]. Interestingly, the expression of PIEZO2 – 

PIEZO1’s paralog – is regulated by, putatively melanocyte-derived, dopamine signaling in 

mouse primary sensory neurons [69] but whether this regulation is relevant for PIEZO1 is 

currently unknown. Similarly, a role for PIEZO1 in melanoma remains largely unexplored 

though PIEZO1 has been identified to contribute to the migration of invasive melanoma cells 

[39].

TRAPPC2L is a component of transport protein particle (TRAPP) complexes which 

function in intracellular vesicle-mediated transport and autophagy [60, 61, 78]. This gene is 

expressed in human substantia nigra neurons [20] and a homozygous missense variant in it 

causes a neurodevelopmental disorder characterized by progressive encephalopathy and 

episodic rhabdomyolysis [60]. The intergenic variant rs12921479 - which is an eQTL for 

TRAPPC2L in the brain [34, 74] – was reported to be associated with PD (P: 9.31 × 10−07) 

in an autopsy-confirmed cohort of PD [3], but is only nominally associated with PD in our 

meta-analyzed PD dataset (P: 1.01 × 10−02). A role for TRAPPC2L in melanoma remains to 

be explored.

SOX6 is a transcription factor which was recently identified as a determinant of substantia 

nigra neuron development and maintenance [70]. Its expression was observed to localize to 

pigmented and tyrosine hydroxylase positive neurons but not to pigment-negative neurons 

within the substantia nigra [70]. In addition, SOX6 expression was diminished in the 

substantia nigra of individuals with PD and deletion of SOX6 in mice was observed to 

decrease dopamine levels and innervation in the striatum [70], a brain region that is also 

impacted in PD [9]. In a separate study, a large deletion in SOX6 was identified in a patient 

with global developmental delay and progressive parkinsonian symptoms including rest 

tremor [77] . Interestingly, SOX6 has been identified as a determinant of gastric 
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dopaminergic neuron development [59], which may suggest a role for this gene in the enteric 

nervous system dysfunction and pathology observed in PD. SOX6 may also have a role in 

melanoma. In a cancer cell line expression study, SOX6 was found to be highly expressed in 

melanoma cells but was not detectable in eight other cancers [86]. Additionally, SOX6 was 

identified as a candidate melanoma driver gene [72] in a screen and SOX6 may be a 

melanoma stem cell marker [51].

While we observe evidence for differential expression between neuropathologically-

confirmed PD and controls for PIEZO1, TRAPPC2L, and SOX6 in at least one substantia 

nigra microarray dataset, these results should be interpreted with caution. Neurodegenerative 

diseases like PD are characterized by dramatic changes in cell-type proportions [49] which 

will impact differential expression results. Thus, the PD-associated differential expression of 

the eGenes highlighted in this study should be confirmed in larger, RNA-sequencing-based 

datasets - as these become available - in order to allow for the inclusion of important 

covariates like cell-type proportions, sex, age of death, and RNA quality among others. 

Nevertheless, the fact we observe differential expression of SOX6 in the same direction as 

previously published [70] is reassuring.

Investigating for differential expression of the eGenes highlighted in this study in the context 

of melanoma is challenging given our focus on the risk of developing melanoma. 

Nevertheless, a recent GTEx v8-based, multi-tissue TWAS resource (phenomexcan.org) [73] 

provides some evidence for a link between the eGenes we highlight and melanoma-

associated pigmentation traits included in the UK Biobank study. For example, PIEZO1 is 

associated with red hair (P: ~0), ease of skin tanning (P: 3.74 × 10−175), and skin colour (P: 
3.41 × 10−121); TRAPPC2L is associated with red hair (P: 3.28 × 10−181), ease of skin 

tanning (P: 1.06 × 10−71), and skin colour (P: 6.24 × 10−55); and SOX6 is associated with 

ease of skin tanning (P: 1.40 × 10−13), skin colour (P: 1.55 × 10−11), and childhood sunburn 

occasions (P: 3.92 × 10−11).

Together, these results support a biologically plausible role for PIEZO1, TRAPPCL2, and 

SOX6 in the genetic correlation between melanoma and PD, but these findings require 

confirmation and further investigation with future experimental work.

PD and melanoma are clinically heterogenous diseases [16, 18] for which spatiotemporal 

environmental exposures are relevant [14, 16] and may be necessary, in addition to innate 

genetic susceptibility, for the development of sporadic disease. Consequently, the moderate 

genetic correlation we observe should not be interpreted as suggesting that these diseases 

will always be co-morbid. However, our results of replicable and significant genetic 

correlation, regardless of the magnitude of effect, do suggest that these two very different 

diseases share common biological pathways. Thus, even if only a minority of individuals 

with PD ultimately develop melanoma, understanding the genetic correlation between these 

disease at the molecular level – for example, if and how the regulation of PIEZO1, 
TRAPPC2L, and SOX6 and their related biological pathways contribute to PD 

etiopathogenesis – may provide mechanistic insight that is generalizable to all individuals 

with PD. Our results support such future research efforts.
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Figure 1. GNOVA Genetic Correlation Results for Parkinson Disease and Melanoma GWAS 
Summary Statistic Datasets
Forest plot of genetic correlation between melanoma and the individual and meta-analyzed 

Parkinson disease datasets (Tables 3-4). Box size indicates the effective sample size (Neff = 

4/(1/Ncases+1/Ncontrols)). The three independent PD datasets are Nalls2014 (Nalls et al., 

2014[64]); Chang2017 (Chang et al., 2017[13]); Nalls2019 (Nalls et al., 2019[63]). 

METAPD is an inverse-variance-weighted meta-analysis of the three independent Parkinson 

disease summary statistic datasets.
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Figure 2. Parkinson Disease (PD) and Melanoma Tissue-specific, Disease-inferred Gene 
Expression Profile Correlation
PD and Melanoma disease-inferred gene expression profile correlation at the level of 48 

specific tissues included in the GTEx v7 reference panel (Table 5). Disease-inferred gene 

expression profiles were generated from the processed melanoma and METAPD summary 

statistics using FUSION/TWAS software and correlation between these profiles was 

estimated using RHOGE software. METAPD is an inverse-variance-weighted meta-analysis 

of the three independent Parkinson disease summary statistic datasets. The red dashed line 
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demarks the multiple test corrected P threshold of 1.04 × 10−03 (0.05 / 48) while the blue 

dotted line demarks the nominal threshold, P = 0.05.
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Figure 3. Cross-tissue eGenes Associated with Both Parkinson Disease (PD) and Melanoma.
Conjunction plot of the cross-tissue PD and melanoma eGene −log10 P values. We generated 

cross-tissue eGene-disease results (Supplementary Tables 3-4, online resource) from the 

processed melanoma and METAPD summary statistics using UTMOST software. METAPD 

is an inverse-variance-weighted meta-analysis of the three independent Parkinson disease 

summary statistic datasets. The red dashed lines demark the false discovery rate (FDR) 

threshold of 0.05. Labels and lines indicate eGenes associated with both PD and melanoma 

under the FDR threshold.
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Table 1.

Number of Overlapping Variants in Processed GWAS Summary Statistic Datasets

Dataset
Melanoma

Law
2015

PD
Nalls
2014

PD
Chang
2017

PD
Nalls
2019

METAPD
AD

Kunkle
2019

FTD
Ferrari

2014

Law 2015 1,038,973 - - - - - -

Nalls 2014 997,418 1,015,955 - - - - -

Chang 2017 1,038,516 1,015,498 1,075,906 - - - -

Nalls 2019 1,007,785 983,012 1,033,569 1,034,607 - - -

METAPD 1,007,521 983,023 1,032,819 1,033,287 1,033,303 - -

Kunkle 2019 1,038,796 1,015,849 1,075,582 1,034,409 1,033,126 1,077,308 -

Ferrari 2014 979,084 973,381 993,831 961,697 961,512 994,078 994,337

All GWAS summary statistic datasets were standardized and filtered using the same pipeline. We annotated all variants with dbSNP v151 rs-
identifiers and gnomAD non-Finnish European (NFE) allele frequencies. We filtered variants as to only include bi-allelic variants with rs-identifiers 
and further removed variants with an effect allele frequency less than 0.05, variants with strand ambiguous alleles, variants with limited support, i.e. 
those supported by a low sample or study number, and variants that were not reported in the HapMap3 study. Presented are the numbers of variants 
overlapping between each dataset. METAPD is an inverse-variance-weighted meta-analysis of the three independent Parkinson disease summary 
statistic datasets. PD: Parkinson disease; AD: Alzheimer disease; FTD: Frontotemporal dementia.
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Table 2.

GNOVA Genetic Correlation Results for independent Parkinson Disease Datasets

Parkinson Disease Dataset Nalls2014 Chang2017 Nalls2019 METAPD

Nalls2014
nCase = 9,581

nControl = 33,245
- - - -

Chang2017
nCase = 6,476

nControl = 302,042

0.95 [0.77, 1.12]
(4.16 × 10−26)

- - -

Nalls2019
nCase = 33,674

nControl = 449,056

1.07 [0.90, 1.25]
(7.91 × 10−34)

0.94 [0.80, 1.09]
(1.43 × 10−36)

- -

METAPD
nCase = 49,731

nControl = 784,343

1.00 [0.83, 1.18]
(1.04 × 10−28)

0.71 [0.56, 0.86]
(8.09 × 10−21)

1.06 [0.91, 1.21]
(6.10 × 10−42)

-

We estimated the genetic correlation between the independent Parkinson disease datasets using GNOVA software. All correlation estimates, 95% 
confidence intervals – presented in square brackets - and p-values - presented in parentheses - are corrected for any potential sample overlap. 
GNOVA genetic correlation estimates are unbounded and thus may be greater than 1. METAPD is an inverse-variance-weighted meta-analysis of 
the three independent Parkinson disease summary statistic datasets.
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Table 3.

GNOVA Genetic Correlation Results for Meta-analyzed Parkinson Disease, Melanoma, and Comparator 

Neurodegenerative Diseases GWAS Summary Statistic Datasets

Summary Statistic Dataset Melanoma
Law2015

PD
METAPD

AD
Kunkle2019

FTD
Ferrari2014

Melanoma
Law2015

nCase = 12,814
nControl = 23,203

- - - -

PD
METAPD

nCase = 49,731
nControl = 784,343

0.17 [0.10, 0.24]
(4.09 × 10−06)

- - -

AD
Kunkle2019

nCase = 21,982
nControl = 41,944

−0.02 [−0.11, 0.07]
(0.73)

0.01 [−0.06, 0.09]
(0.71) - -

FTD
Ferrari2014

nCase = 2,154
nControl = 4,308

−0.13 [−0.37, 0.12]
(0.32)

0.27 [0.07, 0.47]
(8.43 × 10−03)

0.22 [−0.05, 0.49]
(0.11) -

We estimated the genetic correlation between diseases using processed disease-specific GWAS summary statistic datasets and GNOVA software. 
All correlation estimates, 95% confidence intervals – presented in square brackets - and p-values - presented in parentheses - are corrected for any 
potential sample overlap. METAPD is an inverse-variance-weighted meta-analysis of the three independent Parkinson disease summary statistic 
datasets. PD: Parkinson disease; AD: Alzheimer disease; FTD: Frontotemporal dementia.
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Table 4.

GNOVA Genetic Correlation Results for Independent Parkinson Disease, Melanoma, and Comparator 

Neurodegenerative Diseases GWAS Summary Statistic Datasets

Summary Statistic Dataset

Melanoma
Law2015

nCase = 12,814
nControl = 23,203

AD
Kunkle2019

nCase = 21,982
nControl = 41,944

FTD
Ferrari2014
nCase = 2,154

nControl = 4,308

PD
Nalls2014

nCase = 9,581
nControl = 33,245

0.14 [0.02, 0.25]
(1.79 × 10−02)

−0.11 [−0.22, 0.00]
(4.94 × 10−02)

0.27 [−0.06, 0.60]
(0.10)

PD
Chang2017

nCase = 6,476
nControl = 302,042

0.25 [0.16, 0.33]
(3.31 × 10−09)

−0.01 [−0.11, 0.09]
(0.87)

−0.16 [−0.45, 0.12]
(0.26)

PD
Nalls2019

nCase = 33,674
nControl = 449,056

0.19 [0.10, 0.29]
(8.28 × 10−05)

0.05 [−0.04, 0.14]
(0.27)

0.40 [0.14, 0.66]
(2.78 × 10−03)

We estimated the genetic correlation between diseases using processed disease-specific GWAS summary statistic datasets and GNOVA software. 
All correlation estimates, 95% confidence intervals – presented in square brackets – and p-values - presented in parentheses - are corrected for any 
potential sample overlap. PD: Parkinson disease; AD: Alzheimer disease; FTD: Frontotemporal dementia.
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Table 5.

Disease-Inferred Gene Expression Profile Overlap between Melanoma and PD in GTEx v7 Reference Panel 

Tissues

GTEx v7 Tissue Number of Samples in
Tissue Reference Panel

Melanoma vs. METAPD

ρGE p-value

Adipose Subcutaneous 385 0.30 [0.01, 0.59] 4.82 × 10−02

Adipose Visceral Omentum 313 0.23 [−0.03, 0.49] 9.39 × 10−02

Adrenal Gland 175 0.25 [−0.10, 0.59] 1.73 × 10−01

Artery Aorta 267 0.14 [−0.16, 0.44] 3.64 × 10−01

Artery Coronary 152 0.19 [−0.34, 0.71] 4.93 × 10−01

Artery Tibial 388 0.15 [−0.19, 0.49] 3.93 × 10−01

Brain Amygdala 88 0.25 [−0.10, 0.60] 1.77 × 10−01

Brain Anterior cingulate cortex BA24 109 0.17 [−0.28, 0.62] 4.58 × 10−01

Brain Caudate basal ganglia 144 0.29 [0.01, 0.58] 4.89 × 10−02

Brain Cerebellar Hemisphere 125 0.18 [−0.18, 0.54] 3.38 × 10−01

Brain Cerebellum 154 0.17 [−0.11, 0.45] 2.32 × 10−01

Brain Cortex 136 −0.04 [−0.51, 0.43] 8.75 × 10−01

Brain Frontal Cortex BA9 118 −0.05 [−0.58, 0.49] 8.67 × 10−01

Brain Hippocampus 111 0.41 [0.12, 0.70] 1.15 × 10−02

Brain Hypothalamus 108 0.41 [0.07, 0.75] 3.09 × 10−02

Brain Nucleus accumbens basal ganglia 130 0.34 [−0.04, 0.73] 9.04 × 10−02

Brain Putamen basal ganglia 111 0.30 [−0.04, 0.64] 9.60 × 10−02

Brain Spinal cord cervical c-1 83 0.26 [−0.56, 1.08] 5.49 × 10−01

Brain Substantia nigra 80 0.42 [0.14, 0.71] 9.02 × 10−03

Breast Mammary Tissue 251 0.24 [−0.09, 0.57] 1.64 × 10−01

Cells EBV-transformed lymphocytes 117 0.09 [−0.39, 0.58] 7.11 × 10−01

Cells Transformed fibroblasts 300 0.29 [0.07, 0.51] 1.35 × 10−02

Colon Sigmoid 203 −0.01 [−0.44, 0.42] 9.60 × 10−01

Colon Transverse 246 0.24 [−0.10, 0.57] 1.70 × 10−01

Esophagus Gastroesophageal Junction 213 0.28 [−0.00, 0.56] 5.88 × 10−02

Esophagus Mucosa 358 0.13 [−0.17, 0.43] 3.92 × 10−01

Esophagus Muscularis 335 0.24 [−0.02, 0.51] 7.36 × 10−02

Heart Atrial Appendage 264 0.31 [0.09, 0.54] 8.27 × 10−03

Heart Left Ventricle 272 0.08 [−0.24, 0.41] 6.22 × 10−01

Liver 153 0.25 [−0.07, 0.56] 1.36 × 10−01

Lung 383 0.17 [−0.27, 0.60] 4.54 × 10−01

Minor Salivary Gland 85 0.45 [0.15, 0.75] 7.49 × 10−03

Muscle Skeletal 491 0.17 [−0.07, 0.42] 1.70 × 10−01

Nerve Tibial 361 0.27 [−0.00, 0.53] 5.61 × 10−02

Ovary 122 0.30 [−0.12, 0.71] 1.79 × 10−01
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GTEx v7 Tissue Number of Samples in
Tissue Reference Panel

Melanoma vs. METAPD

ρGE p-value

Pancreas 220 0.35 [0.04, 0.66] 3.15 × 10−02

Pituitary 157 0.30 [0.00, 0.59] 5.54 × 10−02

Prostate 132 0.08 [−0.33, 0.49] 7.10 × 10−01

Skin Not Sun Exposed Suprapubic 335 0.37 [0.17, 0.57] 7.58 × 10−04

Skin Sun Exposed Lower leg 414 0.29 [−0.01, 0.58] 5.96 × 10−02

Small Intestine Terminal Ileum 122 0.29 [−0.01, 0.58] 6.71 × 10−02

Spleen 146 0.40 [0.13, 0.66] 5.49 × 10−03

Stomach 237 0.34 [0.04, 0.64] 3.23 × 10−02

Testis 225 0.09 [−0.22, 0.39] 5.78 × 10−01

Thyroid 399 0.26 [−0.02, 0.54] 7.66 × 10−02

Uterus 101 0.30 [−0.02, 0.61] 8.43 × 10−02

Vagina 106 −0.11 [−0.93, 0.72] 8.05 × 10−01

Whole Blood 369 0.28 [−0.02, 0.57] 7.38 × 10−02

We generated disease-inferred gene expression profiles based on standardized and processed GWAS summary statistics using FUSION/TWAS 
software and the Genotype-Tissue Expression Project (GTEx) v7 reference panel. We further compared the overlap of these disease-inferred gene 
expression profiles using RHOGE software. METAPD is an inverse-variance-weighted meta-analysis of the three independent Parkinson disease 
summary statistic datasets. PD: Parkinson disease; ρGE: correlation coefficient for inferred transcriptomic overlap; BA: Brodmann Area.
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Table 6.

Cross-Tissue eGene-Disease Associations for Melanoma and PD

Gene

Melanoma
UTMOST Cross-tissue

PD
UTMOST Cross-tissue

Test Metric P Test Metric P

GPATCH8 9.27 8.33 × 10−05 9.18 9.17 × 10−05

MYO9A 10.10 2.41 × 10−05 6.47 1.01 × 10−03

PIEZO1 176.52 2.74 × 10−11 9.29 5.65 × 10−05

SOX6 9.02 1.30 × 10−04 9.77 5.97 × 10−05

TRAPPC2L 690.56 2.36 × 10−11 9.27 8.47 × 10−05

ZNF341 8.42 1.67 × 10−04 6.57 1.19 × 10−03

ZNF778 219.82 2.55 × 10−11 6.07 1.47 × 10−03

We inferred cross-tissue, eGene-disease associations based on standardized and processed melanoma and METAPD GWAS summary statistics 
using UTMOST software and the Genotype-Tissue Expression Project (GTEx) v6 reference panel. METAPD is an inverse-variance-weighted meta-
analysis of the three independent Parkinson disease (PD) summary statistic datasets.
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