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ON THE DYNAMICS OF HEMISPHERICAL PHASE GROWTH IN -
NONUNIFORM CONCENTRATION FIELDS

H. Y. Cheh* and Charles W. Tobias
Inorganic Materials Research Division,
Lawrence Radiation Laboratory, and

- Department of Chemical Engineering
University of California, Berkeley -

. . . . March, 1967

) ABSTRACT
iTheoreticél calculations on the'dynamics of asymptotic bubble growth

“in an initially nonuniform,concentraﬁion field are performed. A signi-
 ficaht'simpiification is achieved by noting that ﬁhe'Jakob number for
mass transféf is ususlly small so:that the convective transport can be
‘neglectedvin comparison with the diffusive trapsport; Numerical solu-
tions are obtained for the growth rate of é he@ispherical‘bubble ;n a
surfacé with linear and exponential initial,concentration fiéldS'of the
supersaturated gas in the diffuéibn«boundary layers and also for the cases

involving concentration fields resulting from the constant interfacial

concentration and the constant mass flux. experiments.

* ) Lo { .- . '
Present address: DBell Telephone Laboratories, Murray Hill, N. J.
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I. ﬁIntrodnctronv . |
The dynamicajof.phase growth-is of importancejto.many practicai-'
processes;eror instance,_the growth‘of bubbles'is essen%iai in underf '
atanding the overall naSS‘or heat transfer aspecfsﬂin“electroiytic gas'ip
evolution or in nucleate boiling;'respectively.

The growth of gaa:bubbles on electrodes ie_controlied by mass -
transfer with supersatﬁraﬁiqn serriné.as~drivrng foroe whereas tne growth
of vapor bubblea in nucieate boiling is controlledlpypheat transfer with

'superheat as>dri§ing force.-'A numerical'e#aluation.for‘tne dynamicstof
'.bubble growth involves solring simn;taneously the equation of continuit&,
“the equation_of_motion and either the equapion of"conveetive'd;ffdsion- )
for eleetrolytic gas evolnﬁion or fhe.eqnation of;neap fioW‘forxnneieate '
boiling. An exact eolnpion deioften.too'conplex to be ootainedf Reason-
able aesunptions'baeed'on a careful ekamination of a physical process

are often used 'to 51mp11fy the 1nd1v1dual problem. .

2] (3]

It, vas found by Plesset. and ZW1ck[l] -Forster and Zuber rz-Scriven =,
and Glas and Westwater[gl that for all practlcal purposes, the con31dera;
tion of the asymptotlc stage of growth where v1scous, inertia and surface.
forces can all be neglected in the extended Rayleigh equatlon of moulon
is adequate for descrlbing‘bubble growth. The growth of very small
bubble is usnally slo& due po the high surface forcevthat arrests.its,-
radial motion.. However, the transitlon from thls slow growbh to the .
asymptotic growtn occurs in a very short time (approx1mately 107 sec)[s]
It is, therefore, only this later stage which provides practical interest.

v this asymptotie'stage,pthe extended Rayleigh equation reduces to-
‘a trivial equation which-sfates that the pressure inside the'bubbie is

equal to the pressure in the liquid.- Only the convective diffusion
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equation or the equation of.heat flow need to.be_sblveq for the bubble
dynamics.

Epstein and Plesset[6] éalculated the growth of a gas‘bubble-in
- a8 wniformly supersaturated solution.. The problem was greatly simplified
by their aséumption that the diffusion.boundary layer was so thick tha§
the convective transport can be neglected. Methods that include the con-
vective transport at very rapid bubble growth in nucleafe boiling have
been developed by Plesset and Zwick[l] and als§ by Forster and Zuber[g].
Plesset‘and Zwick calculated thé dynamics of spherical vapor.phase'growth
using a thin thermal boundary layer approximatlion and the method of
regular perturbation. Forster and Zuber considered fhe bubble as a
spherlcally distributed heaﬁ sink and solved also for the dynamics of
bubble growth at the asymptotic stage. An exact calculation using the
method of simila?ity transform for the case of asymptotic growth in an
initially uniform concentration or temperature fiéld wa.s obtained by Birkhoff,

{71

Margulies and Hornihg and also by Sqriven[3]. This exact solution
reduces to Epstein and Plesset's result at lowvgrowth rate and to Plesset
and Zwick's result'at‘high growth rate. The numerical constant in Forster
aﬁd Zuber's calculation is 9.3% lower than the exact solution. - Skinner
and Bahkoff[aj using the regular perturbation approach of Plesset and
Zwick, established a parametric solution for the asymptotic bubble growth
in general temperatufe fields at large superheat. .

In this paper, we shall treat the case of a gas bubble growing in an

Initielly nonuniform concentration field.
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IT. Theoretical Analysis

We are dealing with ) hemlsPherical bubble growing asymptotlcal_y
on é surface in an initial;y axisymmetrical concentratibn field. Both
pheses are coﬂsidered to Be incompfessibie. Constant f;uid density and -
constant mass diffﬁsiyiﬁy are assumed. The density of the gas phase is
considered negligible when compared to the liquid density. The diffﬁsion
boundary:layer is assumed tb be so thick that,convéctive transport can .
be.neglected. v |

A general solution of the épherically symmetric case Qill first be'
derived. The solution for the axisymmetric éaée will then be obtained
througﬁ a transformation;whiéh reduces the axisymmetric equation to the
spherlcally symmetric form. The general result ﬁill.then be applied to
several practical,problems[9]. | | '

A. Spherically Symmetric Case

This is the case where bubbles are assuméd to be growing in a concen-
tration field which ié spherically symmetfical. Figure 1 shows the hypo-
thetical.concentfatioﬁ field in the sélufion before the formation of a
bubble; Figur¢_2 gives the schematic concentration field around the bubble

during its growth.

The diffusion equation in sphefical coordinates for this case is

%JeF(Qac : " o)

The boundary conditioné are

[
i

‘1. at t=0, r>0, c=f(r), _ C : - (@)
2. at r=R, £50, c=c_, - S (3)

3. at r=R, t>0, a mass balance gives

o = AD | )
v dt r= R
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Surface of
" constant concentration

-Electrode -
surface
r
XBL&671- 360
Figure la. Figure 1b.

Initial Concentration Field for the Spherilcally Symmetric Case.
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' Surface of
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concentration. . oot T
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 Figure 2a. - | . Figure 2b.

AT . .
i

- Schematic :Dia'gram for thev,Convcem.:ratioh Field for'tﬁe' _Spherically .Symmetr;c Case.
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The solution to Eq. (1) subjected to boundary conditions Egs. (2) and

o]

- (3) can be found in Carslaw and Jaeger: -

o _' . - |
a =___._L___fr.f(r,)f[e-(r-r ) /th_e-(r+r -2R) /Lu;tJdr,+C R gpp I-R
Cer Nt Y, | o s T 2 Jpt

Differentiating Eq. (5) with respect to r and letting r=R, combining with
Eq. (h), wve obtain an integro-differential equation for the bubble history,

o0

R

This can be nondimensionalized by letting

f(m)-c
= I-R - R = Dt = s
m = s R "ﬂ’T—zQandg(m)—fO-c ’ (7)
, s
to give a more convenient form,
iy | 2
2—% = —S— _/ (mje)g (m)m ™™ i dm , (8)
2873 5
‘ [f(O)-cs] ,
where J = ————— 1is the Jakob number for mass transfer.
v

B. Axisymmetric Case

The spherically syﬁmetric case in the presence of a planar surface is
a ﬁypothetical one. The concentration field 1s usuwally of axisymmetric
nature. Using spherical coordinates, this means tﬁere is no dependence
on 8. Figure 3 shbws the initial.concentratién field and Figure 4 is
a schematic picture of the concentration field during the bubble gro&th;‘

TheAdiffusion equation fqr this case is

de _ 0 éac 12 ) | \
é——D[;g%r é—r>+—~—————r25inegé<sir%96—éJ. | (9)

1 f‘r'f<r'>i;g~,;-—32e-<r.'-R>2(“Dt' ar'-c_ @&ﬂ (6)
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Initial Concentration Fleld for the Axisymmetric Case.
(Ax1symmetric with respect to x-axis) ‘
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The boundary conditions are

1. at t=0, 20, c=£(r,8), : | ~ (20)

2. at r=R, t>0, c=cs s ' ' v ' (li)
R . ' R_D .

.3. at r=R, t>0, o, T dt =3 f @—) _R sin 6a6 . . | (12)

This set of equations can.be transformed to‘the same form as that of the

sphérically symmetric case by letting

T - |
u/‘[c(f,e,t)-cs] sin 6 49
e'(r,t) = . (13)

,va [f(O,é) -cS].sin.G ae

In terms of c', Eqs. (9) to (12) are

%C_ - Dg 5 r? ac o - (k)
. ’ i .
and f [f(r,e)-c ]sin 6 de

1. 'at t=0, r>O o' = 3r : s o ' (15)

;/‘ [f(o,e)-cslsin 6 a6
o ‘

2. at r=R, t>0, c'=0, . o - (16)

3. at reR, t0, p_ dR—DK . A
. r= R ' '

Comparing Eqs. (1) and.(e-h) to Egs. (lh) and (15-17), it is obvious

that Eq. (8) is also valid for the axisymmeﬁric case provided g(m) and

J are redefined 'as Jf [me 6)-c ]sin o de
J
g(m) = — , — 7 ' (18)

. h/f [f(0,9>—cs]sin 6 46
0 ,
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and

=-35_f (0,9) c]sinede. o (19)
O .

' C. Solutions

The radius-time history for the bubﬁle may be ébtaiﬁea for various
cases by solving Eq. (8) with the approﬁriate initial'ccnditions g(m).
An exact solution will be preéented for the case of uniform initial super-
saturatioﬁ. For cases of general initial conditions, no exact solutions
can be obtained. The solutioh for cases of low and of high Jakob numbers

will then be given.

1. Uniform Supersaturation
g(m) for this case is sihply unity. Eq. (8) is, therefore,

o0

. .
LA f () e ™ o = g [— L] (20)
" e SN
' ' 1
If we let £° = 277 andf= (3/27)2, Eq. (20) simplifies to
%—;’é =z +2f . o (e1)

If the degree of supersaturation is low, 2} will be much smaller than

1/f. This is equivalent to saying that

oo <]

2 : ) . 2
JF m?e n /4T dm is much larger than,J[ Rnm e m /hT dm
o , 0
The solution is then simply'
' 1
K= (2J-r)2 ‘ (22)
or = | 2D(c _~c ) ‘
R = ___E;i_f_ £ . (23)
v

—~

If the degree of éupersaturatioh is very high, i.e;; %ﬁ->> lﬂ@_or
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[o4] [>e]

. 2] _me/im' . e K . -me/h'r
fm e dm Is much smaller than [ A me. am ,
0 0 |
the solution is |
£ =—=a°, -(2k)
Jr , R

2' c
N

Egs. (23) and (25) are the same as-those calculated by Epstein and

(6] | | |

or Cc

8!

R =

0ot .. (25)

Plesset "A complete solution to Eq. (21) has also been thained by

them.‘ Their result can be expressed as

R

ejz [cbsh [(1'+0¢2)%z] A+9(1+32)'%si-nl‘1 [(l+y»2)%z]} ’ - (26)

¢ Jz(l+}2)"%sinh [(‘l+‘§12)%z] (27)

2. Low Supersaturation

This is the case where in Eq. (8),

g o0

| \_-m° 2
\/Am2g<m)efm /hT dm is much greater thanh/;gmg(m)e-m /i am .
0 | | _ 0

Eq. .(8), therefore, reduces to

L [ M, (28)
2k N o |
which can be integrated‘to give
[} .
2 . ' . m '
R = 2Jk/—mg(m) erfc —I dm . o~ : (29)
: 0 2t

This is the basic solution fof the low supersaturation caseE It will

now be applied to several practical cases. =
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a. linear Concentration Field

- A linear decay of concentration from the'sﬁrfacé to the
distance £ and constant thereafter has often been used in literature
In performing mass transfer calculations. This distribution can be given:

in spherical coordinates by

' G
e+ (e mc (1 - Z52=) x/b<1, (30)
£(r;6) = { e, 0<6<cost f— ’ _ - (31)
: r/ﬂ > 1,
\ r cos B <12 T _ ;
¢, t+ (Qw-cw)-———7~—~ » cOS T = <8 <'§ , (32)

where c_ is the bulk concentration and c, 1is the concentration at 6 = m/2.

Substituting Egs. (30-32) into Eq. (18) yields

A 1-@(1-%{1), n>1, (33)
g(m) =
v l,_%ﬂl, m<1l, (3)"’)
where ' . CW;CQ ' : ' %
=g | (35)

Substituting Fas. (33) and (3%4) into Eq. (29) and integrating, the

following analytic solution is obtained,

ny

o 1 1 1 w32 1, T L7

K =27 T-a)[f-erfc - + T erfc —— + — 1-(1L+=)e -) . (36)
L6 ET% . 21% 3 Jr h

: : ‘ -

o’ will again appear in later cases. It can be expressed more generally by
_ interface concentration - bulk concentration
interface concentration - saturation concentration

Therefore, w=0 signifies the uniform supersaturation case. 0 <w<1
means that the solution is supersaturated, however a gradient of concentra-
tion from the bulk to the interface exists. =1 means the bulk solution is
saturated and w1 1is the case where the bulk is below saturation.
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This résult is given iﬁ Figure 5. For ééses where & > 1, & maximum of
‘radius occurs. The growth of bubble is followed by a.coilapée which is

- due to thé»low concentration of gas in the bulk solution.

b. vExpénentiél Concentration Field
A better approximation to the liﬁear concentration field in

the diffusion boundéry layer is the exponential representation, i.e.,

v “f(r,é) =.¢c, + (c -c,) exp (E—SQE—Q) 5 0 <6 <‘g P o (37)
or gm) =1 - o [1 - i @-e™ml, , | . (38)
© C,Co : '
where w = ——— . Eq. (29) can also be integrated in closed form for this
case, o ' . L 1 .
¢32v= oF [; -w (7 - 5:,72 -1~ eT erfe 12)] - (39)
: T

A numerical solution is given in Figure 6. v
*
c. Constant Interfacial Concentration

Thé interfacial concentration c, is maintained to be s
‘constant. The well-known solution of the.diffusion equaﬁion prior to
the appearance of a bubble in a semi-infinite mediumfprovides us the

initial condition for this case,LIOJ‘

f(r,e)

Co +'(cw-cw) erfe

2Vt

]

c, *+ (cw-cé) erfc ELE%E_Q , 0<8 <I (40)

2}

1 _
where £'=-2(Dt)2'and t can be interpreted as the waiting time for
bubble growth as is often done in the literature:of nucleate boiling.

Integrating Eq. (18), g(m) is obtained as,

- .
This correspondsto the case of constant potential in electrolytic gas
evolutlon.
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XBLE7TI-354

o

- Figure 5. Low ‘.Supgrsaturation with an Initia.lly Lineax; Concentration Field.
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:" Figure 6. Low Supersaturation lwith an Initially Exponential Concentration Field.
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g(m) =.J..-- w [erf n - —;LT—; (i - e'_m2>] . o " (k1)

The bubble history is, therefore,

. pT o 2N o | .
R =‘2Jf le-w <erf me —— (1-e” " )>J erfc —=r dm . (42)
o . - J%_m . A Dy '
A numerical solution is_given in Figure T.
d. Constant Mass Flux*
s e [10]
The initial condition for this case is,
, Lt X
£(r,6) = ¢+ q /= lerfec —=
. A 2Dt -
. r cos O - v
= ¢, f.Cq lerfc =—p— , 0< 0 <3, (43)
: - 1 1
where q is the constant mass flux, ¢, = q(4t/D)2 and £ = 2(Dt)2. g(m) for
this>case is
_ 2 -
-m it 1l . 2
g(m):l-w{l-e -é—merfcm-—a—-mY(-g,m)}, (4L)
where : e / m
. o = q(
R
Cp t —==-c
oo \/"n-;‘ .
‘The bubble history is, therefore, P
o ‘2 )
ﬁlg =27 m(l-a) 1-e"® + iz;nrerfc m- Y ( S,m ) erfec — . (45)
| 2 2m
‘ . 2?2
5 .
A numerical solution 1s given in Figure 8.
' 3. High Sﬁpersaturation
This is the case where
o ‘~ : \ e
2 . : . 2
- . -n /b
f Rmg(m)e m/ b dm is much greater than f n“g(m)e w/ T am
0 ' VO

M _ .
This corresponds to the case of constant current in electrolytic gas
evolution.



-18- . UGRL-17439

~
:
1
-
oV
XBL671-69
Figure T. Low Supersaturation for the Case of
Constant Interfacial Concentration.
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R (ZJ)-IIZ

20

XBLET!I - T1!

) Figure 8. Low Supei-saturatiqn for the Case of Con?te.nﬁ Mass Flux. )
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Eq. (8) thus reduces to

' S 2 |
&= fmgm)e'“?/“dm,, )

which can be integrated to give
: R - - ' |
- (bT)

R [ gm) exte B an.

This: equation is applied to the same cases treated in the last sec-

tion. We shall merely give “the bubble hlstory equatlon whose numerlcal
solutions are presented in Flgure 9 to Figure l12. -

Linear Concentration Field

. a P

£ = J[:"'""r u<f—erfc;;dm+f(l-—)erfo__g >} - (L8)

b. Exponential Concentration Field
@=Jj[l-w<l-—(l— m)j}erfc-————dm. (49)
‘ . 212
0 i
c. Constant Interfacial Concentration
1l mé ' m - -
ﬁ 1-w (erf m - == (1-e ~ ) )| erfc —¥ dm . (50)
#;Fnl 212
'd’, Constant Mass Fiux
(51)

- . 2 o
JE; Jf [:1-(.0 <l-e _m +'\—é———7}‘m erfc m- %Ex T (-3,m2) ] erfe -—IET dm .
0 . o T ' 2712

Thus we have completed our calculation for the bubble dynamics under
the condition that the convective transport can be neglected. It is

found that for the case of uniform supersaturation, the radius is
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Figure 9. High Supersaturation with an
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Initially Linear Concentration Field.
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- Figure 10. High Supersaturation with an Initialiy
- Exponential Concentration Field.
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XBL6TI-77

Figure 11. High Supersaturation for the
Case of Constant Interfacial Concentration.
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R (J)!

) 4 8 12 16

Figure 12. High Supersaturé.tion for the
Case of Constent Mass Flux.
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1

.propbrtional to (Dt)? for both the low and the high supersaturation
cases. ﬁowever, the dependence of £ §n the dimensionless driving force, J,
is different. It is proportional to J% for the case of low supersatﬁra—
tion and to J for the high supersaturatibn cése. For other cases, the
dgfendence on J remains the same aé the uniform supersaturation case.
However, the'radius of'the bubble is no longer porportional to (Dt)%.

Since no generation tefm is considefed in.the derivation, the bubble
cannot grow indefinitely. TFor cases where w < 1, the groﬁth will cease
after the_bubble has completely exhausted the supersaturated concentra-

tion in the solution. For cases where w > 1, a collapse often occurs due

to the low gas content 1in the bulk solution.

o III. Discussion
. (11] (%]
Westerheide and Westwater and also Glas and Westwater measured
the growth of various kinds of gas bubbles during electrolysis. For the
majority of bubbles they studied, the radius of the bubble was found to
be proportional to the square root of time. From the radius-time plot,

[3] for the asymptotic growth of bubble in a

using Seriven's solution
uniformly supersaturated solution, these authors calculated the supersaiura-
tion ratio defined as cm/cs for these various types of gas bubbles.

[12} are>summarized in

Extensive results tabulated in Glas' dissertation
Table 1.

The‘difference,of values of cw/cs between hydrogen and oxygen to
chlorihe and carbon dioxidé can be explained'qualitatively by considering
the difference in solubilities of hydrogen and oxygen to chlorine and

carbon dioxide in electrolyfes. Although these supersaturation ratios

appear to be quite different from each other, the concentration gradienis



Various Supersaturation Ratios Reported by Glas

- D6 -

Table 1.

UCRL-17439

[12]

* ;
Gas Cq Average cw/cs Number of Bubbles
in water Used in Averaging
at 25°C, 1 atm

moles/ce

Hydrogen 7.13 x 1077 4.65 433

Oxygen 1.4 x 1077 5.67 21

Chlorine | 8.15 x 1077 1.09 86

Carbon ;5' .

dioxide 3.00 x 10 1.3k 112

*

c.'s are taken from Landolt-Bornstein, Zahlenwerte und Funktionen,

6. Auflage, II. Band, 2.
(1962).

Teil b, p.l-p.19, Springer-Verlag, Berlin



“o7 - UCRL-17439

which are the driving force for mass transfer may not be too different. -

L]

Gias and Westwater tfied to correlate their measured growth
coefficient to current density which represents the rate of formation of
gas by & so-called "unsteady-state model." The concentration field
prior to the formation of the new phase is‘éiven by the solution of the
diffusion equation (cf. Eq. (43)). The concentration at x=10"3cm was
chosen arbltrarily as the hypothetical uniform supersaturation in Scriven's
model to calculate the growth coefficient. The‘waiting time which was not
measureqiwas used as an adjustable parameter to fit the data. Better
agreement was obtained for cases of chlorine and oxygen.

Using our model, the Jakob number'fof the case of constant mass flux
can be obtained by combining Eq. (19) and‘Eq. (43), |

i
_—1p~— f [£(0,8) - cs] sin 6 ae
v 0 L

1 q 4Dt . ' |
5; [Cm T NTT T cs] ' : ‘(52)

Taking the example of hydrogen where pv and cs are the smallest, using

<y
]

1

walting periodé ranging from 0.02 to 0.2‘sec and a current density of

3.95 x 10_2 amp/cme* which corfesponds to a mass flux of 4.09 x 1077 g
iequiv/ch sec for the case where the solutlon is'saturated with hydrogen
initially, J varies from 0.095 to 0.30. Therefore, it can be concluded
that all the observations made by W¢stwéter and co~workers .fall exclusively
in the case where‘the convective transport can be neglectedf However,
since the actual walting time haé not been measured, a qﬁantitatiye

evaluation using our model was not possible.

* [12]‘

These are some typical conditions reported in Glas' work ~
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\IV. 'Cbnciﬁsiqssl
Theoretical ealculations bﬁ the dynamics of'bubble growﬁh in a
nonuniform concentration field were performed. Solutions were obuained
fof the linear, the ek@dnestialJconcentration fields, the constant inter-
faeial concenﬁrstion and fhe_cohstans ﬁass flux cases at 5oth low and |
high degfees sf suﬁersaturatiOn. Unfortunately, no experimental data

are available to test these theoretical results.
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| Nemenclature
A: Interfacial area between two phases [cm ]
~D: Diffusivity of a species in a homegeneous medium [cm /sec]
J: gakob number for mass -transfer ='5—.Jf £(o, 6)-c lsin 6 a6
'Rt Radius of a bubble fem] !
V: Volume of a bubbie lem3]
- e: Concentration of a species [gm/cm3]

£: An initial concentration field for bubble growth [gm/cm3]
e ; \/F [f(m,e)-c ]sin 6 de

g: A dimens1onless concenuratlon—~

b
.[f(O,G)-cs]sin 6 46
o o
m: A dimensionless distance coordinate = E%B
q: A constant flux of mass [gm/cm2 sec)

t: Time [sec]
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.. 1
A modified Jakob number = (3/2m)2
A characteristic length lem]

A dimensionless radius = R/

A dimensionless parameter = (2J7)%

X 2
Density of a fluid [gm/cm”]

A dimensionless time = Dt/Z

Interface concentration-bulk concentraticn

A dimensionless concentration =
interface concentration-saturation concentration

Subscripts

q:

s:

Refers 4o the case of constant mass flux
Refers to gquantities at saturation
Refers to quantities in the vapor or gas phase

Refers to quantities in the bulk medium
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