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ON' THE DYNAMICS OF HEMISPHERICAL PHASE GROWTH IN, 
NONUNIFORM CONCE~~RATION FIELDS 

* H. Y. Cheh and Charles W., Tobias 
Inorganic Materials Research Division, 

Lawrence Radiation Laboratory, and 
Department of Chemical Engineering 
University of California, Berkeley 

March, 1967 

ABSTRACT 

UCRL-17439 

'Theoretical calculations on the dynamics of asymptotic bubble growth 

. in an initially nonuniform ,concentration field are performed. A signi

,ficant simplification is achieved by noting that the Jakob number for 

mass transfer is usually small so that the con~ective transport can be 

,neglected in comparison with the diffusive tra~sport. Numerical solu-

tions are obtained for the growth rat~ of a hemispherical bubble on a 

surface with linear and exponential initial, concentration fields of the 

supersaturated gas in the diffusion boundary layers and also for the cases 

involving concentration fields resulting from the constant interfacial 

concentration and the consta~t mass flux,experiments. 

* I Present address: Bell Telephone Laboratories, Murray Hill, N. J. 
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I. Introduction ' 

The dynamics/of phase growth is of importance to many practical 

proc~sses. For instance, the growth of bubbles is essential in under-

standing the overall mass or heat transfer aspects.in electroiytic gas 

evolution or in nucleate bOiling, respectively. 

The growth of gas bubbles on electrodes is controlled by mass 
. . . 

transfer with supersaturati~n serving as driving force whereas the growth 

of vapor bubbles in nucleate boiling is controlled by heat transfer'with 

. superheat aSl driving force. A numerical evaluation for the dynamics of 

bubble growth involves solving simultaneously the equation of continuity, 

the equation, of motion and either the equation of convective diffusion 
'. '. 

for electrolytic gas evolution or the. equation of.heat flow for nucleate 

boiling. An exact solution is often too complex to be obtained. Reason-

able assumptions based on a careful examination of a physical process 

are often used'to simplify the individual problem. 
. [1]' [2]" [3] 

It·, was found by P1esset and Zwick. ,: Forster and Zuber ,Scriven., 

and Glas and West~ater[~] that for ali practical purposes; the considera~ 
tion of the asymptotic stage of growth where viscous, inertia and 'surface 

forces can all be neglected in the extended Fayleigh eqt).ation of motion 

is adequate for describing bubble growth. The growth of very small 

bubble is usually slow due to the high surface force that arrests its 

radial motion. However, the transition from this slow growth to the. 

. ( .' 10-2' ) [ 5 ] asymptotic growth occurs in a very short time approx~mately, sec • 

It is, therefore, only this later stage which provides practical interest. 

At this asymptoti~, stage, ,the extend,ed Rayleigh equation reduces to .. 
. .' 

a trivial equation which states that the pressure inside the bubb~e is 

equal to the pressure in the liquid.' Only the convective diffusion 
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equation or the equation of heat flow need to be solved for the bubble 

dynamics. 

[6J 
Epstei~ and Plesset calculated the growth of a gas'bubble in 

a uniformly supersaturated solution., The problem was greatly simplified 

by t~eir assumption that the diffusion boundary layer was so thick that 

the convective transport can be neglected. Methods that include the con-

vective transport at very rapid bubble growth in nucleate boiling have 
[lJ' [2] 

been developed by Plesset and Zwick and also by Forster and Zuber • 

Plesset and Zwick calculated the d~ics of spherical vapor phase 'growth 

using a thin thermal boundary layer approximation and the method of 

regular perturbation. Forster and Zuber considered the bubble as a 

spherically distributed heat sink and solved also for the dynamics of 

bubble growth at the asymptotic stage. An exact calculation using the 

method of similarity transform for the case of asymptotic growth in an 

initially uniform concentration or temperature field was obta,ined by Birkhoff, 

Margulies and HOrning[7] and also by Scriven[3 J• This exact solution 

reduces to Epste~n and Plesset's result at low growth rate and to Plesset 

and Zwick's result at high growth rate. The numerical constant in Forster 

and Zuber's calculation is 9.3% lower than the exactrolution. Skinner 

, [8J 
and Bankoff , using the regular perturbation approach of PIes set and 

Zwick, established a parametric solution for the asymptotic bubble growth 

in general temperature fields at large superheat. 

In this paper, we shall'treat the case of a gas bubble growing in an 

initially nonuniform concentration field. 
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II. Theoretical Analysis 

We are dealing with a hemispherical bubble growing asymptotically 

on a surface in an initially axisymmetrical concBntration field. Both 

phases are considered to be incompressible. Constant fluid density and 

cons1?ant mass diffusivity are assumed. The density of the gas phase .is 

considered negligible when compared to the liquid density. The diffusio~ 

boundary layer is assumed to be so thick that ,convective transport can 

be neglected. 

A general solution of the spherically symmetric case will first be 

derived. The solution for the axisymmetric case will then be obtained 

through a transformation-which reduces the axisymmetric equation to the 

spherically symmetric form. The general result "ill then be applied to 
, . [9] 

several practical problems • 

A. Spherica~ly Symmetric Case 

This is the case where bubbles are assumed to be growing in a concen-

tration field which is spherically symmetrical. Figure 1 shows the hypo-

thetical concentration field in the solution before the formation of a 

bubble. FigurE7 2 gives the schematic concentration field around the bubble 

during its growth. 

The diffusion equation in spherical coordinates for this case is 

dC D d (2 dC)", 
dt = r2 Or r dr . 

The boundary conditions are 

l- at't=O, r?:.O, c=f(r) , 
2~ at r.=R, t>O c=c , . , s 

3· at r=R, t>o, a mass balance gives 

, dV _ AD (2c) 
Pv dt - \"dr , 

r=R 

(1) 
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or, dR D (dc) 
Pv dt =, \dr. r=R • 

(4 ) 

The solution to Eq. (1) subjected to boundary conditions Eqs. (2) and 

, (3) can be found in Carslaw and Jaeger:f.:;.OJ ' 

00 , 

c = 
1 J "f( ,)r _(r_r,)2/4Dt -(r+r'-2R)2/4Dt]d '+ R r r L e -e r c -

2r 'J7TDt R, " '" s r 

r-R 
erf, r::::-:' 

2 "Dt 

Differentiating Eq. (5) with respect to r and letting r=R, combining with 

Eq. (4), we obtain an integro-differential equation for the bubble history, 

00 
~' 

P dR = Dl 1 
v dt ',2R J7TDt 

I r'f(r') (~-R) e - (r' _R)2/4Dt dr' -cs G + J~Dt)J . (6) 

R 

This can be nondimensionalized by letting 

m = r-R to ='B Dt d gem) t ' fA.. , t ' 't" = :2 an 
t 

to give a more convenient form, 

00 

f(m)-c s 
= -f""'C O~)'---c":' , 

s 

dd\.. J J' ( ) () _m
2

/4't" d't" = d'..,---.s m+]e g m m e dm , 
2 .... \I7T't"J 0' 

[f(O)-c ] 
where J = ____ s_ is the Jakob number for mass transfer. 

Pv 
B. Axisymmetric Case 

(8 ) 

The spherically symmetric case in the presence of a planar surface is 

a hypothetica~ one. The concentration field 1s usually of axisymmetric 

nature. Using spherical coordinates, this means there is no dependence 

on ¢. Figure 3 shows the initial concentration field and Figure 4 is 

a schematic picture of the concentration field during the bubble growth. 

The diffusion equation for this case is 

dc 
dt [1 ~ 2 dC) 1 d ( dC)] = D :2 r r dr + 2 dB sin e dB . 

r ' r sin e ' 
(9) 
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The boundary conditions 

1. at t=O, r~O, 

2. at r=R" t>O" 

3· at r=R,t>O, 

are 

c=f(r,e), 

c=c 
s ' 

dR D 
Pv'dt = '2 

7T 

J (fr)r=R 
'0 

sin e de • 

(10) 

(11) 

(12) 

This set of equations can be transformed to the same form as that of the 

spherically symmetric case by letting 

'IT 

J'[c(~,e,t)-cs] sin e de 

C I (r, t) = 

f 
° 

[f(o,e) -c ] sin e de , ' s 

° 
In terms of c l

, Eqs. (9) to (12) are 

and 

1. 'at t=o, r~, 

2. at r=R, t>O, 

3. at r=R, 't>O, 

, dc I _ D ,d (2 dc I) 
'dt-2'dr r dr ' 

r , 
'IT " ' ' J [f(r,e)-cs]sin e de 

° c I = -7T--------- , 

c '=0, 

J' [f(O,e)-cs]Sin e de 

0, 

P dR_D(dC') 
vdt - \~ r=R 

Comparing Eqs. (1) and (2-4) to Eqs. (14) and (15-17), it is obvious 

that Eq. (8),is also valid for the axisymmetric case provided g(m) and 

J are redefined"as 'J'IT[f(m, e)-c Jain e de s ' 

g(m} = ~07T--------' - , 

J 
° 

[f(o,e)-c Jsin e de 
s 

(14 ) 

'(18) 
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and 

c. Solutions 

7r 

J = ~v J [f(O, e )-cs ]sin e de 

o 

The radius-time history for the bubble may be obtained for various 

cases by solving Eq. (8) with the appropriate initial condItions gem). 

An exact solution will be presented for the case of uniform initial super-

saturation. For cases of general initial conditions, no exact solutions 

can be obtained. The solution for cases of low and of high Jakob numbers 

will then be given. 

1. Uniform Supersaturation 

gem) for this case is simply unity. Eq. (8) is, therefore, 

00 . 2 
df 1 J ( ) -m /4-r [1 1 l ~ = m+Jl. m e dm = J - + - I 
d't" ' 20l .r;;'J 0 Iv .r:;;:. -1 

If we let ~2 
1 

= 2J-r and!= (J/27r)2, Eq. (20) simplifies to 

at 1 n 
~=ii+2rr . 

If the degree of supersaturation is low, 2! w.1ll be much smaller than 

l/~. This is equivalent to saying that 

00 

J 2.-m2/4-r m e dm is much 

o 

The solution is then simply 

dC.= 

or 
R = 

00 

larger than .J dlm e _m
2 

/4-r dm. 

o 

1 

(2J-r)2 , 

2D(c oo-C s ) 
t 

Pv .-'-

If the degree of supersaturation is very high, i.e.', 2/» l/~E. or 

(20 ) 

(21 ) 

(22 ) 
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dm is much smaller than elm, 

the solution is 

or c -c 
R=~ 00 sJDt 

r p r"v 
'in v 

Eqs. (23) and (25) are the same as,those calculated by Epstein and 

P1esset [6] •. A complete solution to Eq. (21) has also been obtained by 

them. Their result can be expressed as 

. (24) 

tfl = e'z [COSh [(1+~2)tzJ + ~(1+t2rtsinh [(1+t2)tzJ] , (26) 

, iz 2 1. ' 1 . 
~ = e (1+~ r 2 sinh [(1+12)2zJ • (27) 

2. Low Supersaturation 

This is the case where in Eq. (8), 

00 00 

J. 2 ( ') _m2/4-r: mgme dm is much greater than J rR.mg(m)e _m
2 

/4-r: 

o o 

Eq. ) (8), therefQre, reduce s to 

00 

m2g(m) e-
m2

/ 4
-r: elm , 

which can be integrated to give 

00 

2· J' m . (/(., = 2J . mg(rri) erfc --r dm • 
2-r:2 o 

elm • 

This is the basic solution for the low supersaturation case. It will 

nml be applied to several practical cases. 

(28) 
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a. Linear Concentration Field 

A linear decay of concentration from the' surface to the 

distance £ and constant thereafter has often been used in literature 

in performing mass transfer calculations. This distribution can be given 

in spherical. coordinates by 

f(r;e) = 

c + 
00 

(c -c )(1 -w 00 

r cos 
£ 

-1 P-
O < e < cos -'-, 

r 

r/£ < 1 , 

r/i> 1, 
(31) 

where Coo is the bulk concentration and c is the concentration at e = TI/2. . w 

Substituting Eqs. (30-32) into Eq. (18) yields 

1 
1 - (1) (1 - 2m) , 

g(m) = 
m < 1 , (34 ) 

where c -c w 00 
(1) = .• 

c -c w s 

Substituting Eqs. (3·3) and (34) into Eq. (29) and integrating, the 

following analytic solution is obtained, 

* 

1 1 3/2 (. 
erfc -. -1 + -r erfc -1 + 4-r 1 - (1 + L) 

3
· ~. . 4-r 

2-r2 2-r2 ~TI 

C'

ill"will again appear in later cases. It can be expressed more generally by 
(1) = interface concentration - bul~ concentration • 

interface concentration - saturation concentration 

Therefore, arO signifies the uniform supersaturation case. 0 < (1) < 1 
means that the solution is supersaturated, however a gradient of concentra
tion from the bulk to the interface exists. (1)=1 means the bulk solution is 
saturated and ill>l is the case ",here the bulk is below saturation. 
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This result is given in Figure 5.' For cases where ill> 1, a maximum of 

radius occurs. The growth of bubble is followed by a collapse which is 

due to the low concentration of gas in the bulk solution. 

b. Exponential Concentration Field 

A better approximation to ·the linear concentration field in 

the diffusion boundary layer is the exponential representation} i.e., 

or 

where (/.) = 
c -c w, (Xl 

c -c w s 
Eq. (29) can also be integrated in closed form for this 

case, 

A numerical solution is given in Figure 6. 

* c. Constant Interfacial Concentration 

The interfacial concentration c is maintained to be a - w 

'constant. The well-known solution of the-diffusion equation prior to 

the appearance of a bubble in a semi-infinite medium provides us the 

[lOJ 
initial condition for this case, 

f(r,e) = c~ +' (c -c ) erfc _x_ 
~ w (Xl 2 .JDt 

1 

where I- '=, 2(Dt)2 and t can be interpreted as the waiting time for 

bubble growth as is often done in the literature of nucleate boiling. 

Integrating Eq. (18), gem) is obtained as, 

* This corresponooto the case of constant potential in electrolytic gas 
evolution. 

(40) 
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The bubble history is, therefore, 

00 

=. 2J J mlr l-OJ (erf' m- _1_ ,(l-e _m
2 ))~ 

, . J7rm J 
o 

A numerical solution is given in Figure 7. 

d~ * Constant Mass Flux 

i 
[lOJ 

The initial.condition for this case s, 

f(r,e) = Coo + q J4t ierfc ~ 
, D 2.JDt 

(41) 

(42) , 

= c + c ierfc r cos e 0 < e < ~ (,43) 
00 q £' 2 ' 

1 1 

where q is the constant mass flux, c = q(4t/D)2 and £ = 2(Dt)2. g(m) for 
, q 

this case is 

g(m) = 1 - OJ [1_e-
m2

+ J; m erfc m- !... y (3 2)J ' 2, 2m "2 ,m , 

where . c /~ 
OJ=:....:.~-: ._--: 

, c 
~oo:;' ~~,:'::c_ 

-.J7T_ : s 

The bubble history is, therefore, ./ 

00 

r· ( 2 r 2 ' , -m -.J7T, 1 
if(, = 2J J ml,..l-OJ l-e + 2" m erfc m- 2m Y 

o 

m erfc -1 dm • 
21'2 

A numerical solution is given in Figure 8. 

* 

3. High Supersaturation 

This is the 'case where 
00 

00 2 2 

1 ,c_ ( ) -m::/4-r 1'2 ( ) -m /4-r 

O 
~L.lIIg m e / dm is much greater than m g me' dm • 

. 0 

This corresponds to the case of constant current in electrolytic gas 
evolution. 

(44 ) 
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'Eq. (8) thus reduces to 

00 

~ _ J J' ( ) -m 
2 

/4-r d - mgme dID, 
-r . 2 Jrr-r3 ' 0 

which can be integrated to give 

00' 

{C= Jjg(m) ~rfc " m1 dID. 
o 2-r"2 

This ,equation is applied to the same cases treated in the last sec-

tion. We shall merely give the bubble-history equation whose numerical 

solutions are presented in Figure 9 to Figure 12. ' 

a. Linear Concentration Field 

. 1 '00 ' 

, ,[ 2 1. .. If m m J 1 m tc- = J - -r 2
_\ "2 erfc1. dID + '(1- 2m),erfc 1-.. 

J; 0 2-r2 1 2-r2 
~J . 

b. Exponential Concentration Field 

00 

~~ J J' [1 -00 (1 ~ ~ (l-e-~))J m erfc --1 dm • 

o ' 

c. Constant Interfacial Concentration 

00 

'de = J J [1-00 (erf m 
o 

'd. Constant Mass Flux 

00 

1 --
J;m 

(1_e-
m2

)) ] 

2-r2 

m erfc -, -1 dID 
2-r2 ' 

(46 ) 

(48) , 

(50) 

1(= J.[ [1-'" (1_e-
m2 +'{7 m eri'cm- ~ d~,m2»)J erfc 2:;'; dm • (51) 

Thus we have completed our calculation for the bubble dynamics under 

the condition that the convective transport can be neglected. It is 

found that for.thecase of Uniform supersaturation, the radius is 
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1 

proportional to (Dt l~ for both the low and the high supersaturation 

cases. However, the dependence of~ on the dimensiOD~ess driving force: J, 
1 

is different. It is proportional to J2 for the case of low supersatura-

tion and to J for the high supersaturation case. For other cases, the 

dependence on J remains the same as the uniform supersaturation case. 
1 

However, the radius of the bubble i.s no longer porportional to (Dt )2. 

Since no generation term is considered in the derivation, the bubble 

cannot grow indefinitely. For cases where m~ 1, the growth will cease 

after the bubble has completely exP~usted the supersaturated concentra-

tion in the solution. For cases where ill> 1, a collapse often occurs d'..:.e 

to the low gas content in the bulk solution. 

III. Discussion 

[11] [41 
Westerheide and Westwater and also Glas and vleshlater - measured 

the growth of various kinds of gas bubbles during electrolysis. For the 

majori~y of bubbles they studied, the radius of the bubble was found to 

be proportional to the square root of time. From·the radius-time plot, 

using Scriven's SOlution[3] for the asymptotic growth of bubble in a 

uniformly supersaturated solution, these authors calculated the supersa"':.ura

tion ratio defined as coole for these various types of gas bubbles. 
s 

Extensi ve results tabulated in Glas! dissertation [12] are summari zed in 

Table 1. 

The difference of values of coole between hydrogen and oxygen to s 

chlorine and carbon dioxide can be explained quali tat i vely by considering 

the difference in solubilities of hydrogen and oxygen to chlorine and 

carbon dioxide in electrolytes. Although these supersaturation ratios 

appear to be quite different from each other, the concentration gradients 
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Table 1. 

Various Supersaturation Ratios Reported by Glas[12) 

* Average cjc Gas c Number of Bubbles s s Used in Averaging in water 
at 25°C, 1 atm 

mOles/cc 

Hydrogen 7.13 x 10-7 4.65 433 

Oxygen 11.4 x 10-7 5·67 21 

Chlorine ·8.15 x 10- 5 1.09 86 

Carbon 
3.00 x 10'::5 dioxide 1.31 112 

* cs's are taken from Landolt-Bornstein, Zah1enwerte und Funktionen, 
6. Auflage, II. Band, 2. Teil b, p.l-p.19, Springer-Verlag) Berlin 
(1962) • 
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which are the driving force for mass transfer may not be too different . 

. ' [4] . 
Glas and Westwater tried to correlate their measured growth 

coefficient to current densitY'which represents the rate of formation of 

" " gas by a so-called unsteady-state model. The concentration field 

prior to the formation of the new pD~se is given by the solution of the 

diffusion equation (cf. Eq. (43)). The concentration at x=10-3cm was 

chosen arbitrarily as the hypothetical uniform supersaturation in Scriven's 

model to calculate the growth coefficient. The waiting time which was not 

measured was used as an adjustable parameter to fit the data. Better 

agreement was obtained for cases of chlorine and oxygen. 

Using our model, the Jakob number for the case of constant mass flux 

can be obtained by combining Eq. (19) and Eq. (43), 

7f 

J 
1 J [f(O,e) - c ] sin e de =-p s 

v 0 

1 
[c + 3 ,)4; - csJ =-

Pv co D 

Taking the example of hydrogen where p and c are the smallest, using 
v s 

wmting periods ranging from 0.02 to 0.2 sec and a current density of 

-2 / 2* 7 3.95 x 10 amp cm which corresponds to a mass flux of 4.09 x 10- g 
. 2 
equi v / cm sec for the case where the solution is saturated with hydrogen 

initially, J varies from 0.095 ,to 0.30. Therefore, it can be concluded 

that all the observations made by Westwater and co-w.orkers .fall exclusively 

in the case where the convective transport can be neglected. Hm1ever, 

since the actual waiting'time has not been measured, a quantitative 

evaluation using our model was not possible. 

* (12 ] 
These are some typical conditions reported in Glas' work - • 
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. . 
IV. Conclusions 

Theoretical calculations on the dy~mics of bubble growth in a 

nonuniform concentration field were performed. Solutions were obtained 

for the linear, the exponential concentration fields, the constant inter-

facial concentration and the constant mass flux cases at both low and 

high degrees of supersaturation. Unfortunately, no experimental data 

are available to test these theoretical results. 
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Nomenclature 

A: Interfacial area between two pha~es [cm2 ] 

D: 

J: 

'R: 

V: 

. c: 

f: 

g: 

m: 

q: 

t: 

Diffusivity of a species in a homogeneous medium (cm2/sec] 

Jakob number for mass ·transfer = L 17r [f( 0, e )-c ] sin e de 
Pv ° s 

Radius of a bubble [cm] 

Volume of a bubble [c~3] 

Concentration of a species [gm/cm3] 

An initial concentration field for bubble growth [gm/cm3] 

:"; ... " ... : ....... '" _1a7r
[f(m,e)-cs Jsin e de 

A dimensiollless concentration=--~----------------~ 

1a"[f(o,e l-c
s

lsin e de 

r-R A dimensionless distance coordinate = --£-

A constant flux of mass [gm/cm2 sec] 

Time. [sec] 
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1 !: A modified Jakob number = (J/2n)2 

t: A characteristic length [cm] 

6\: A dimensionless radius = RIp, 

1 

~: A dimensionless parameter = (2JT)2 
-::> 

p: Densi ty of a fluid l gm/ cm..)] 

T: A dimensionless time = Dt/p,2 

UCR L-,1743Q 

interface concentration-bulk concentraticn ro: A dimensionless concentration = ~~~~~~~~~~~~----~-----------------
interface concentration-saturation concentratior: 

Subscripts 

q: Refers to the case of constant mass flux 

s: Refers to quantities at saturation 

v: Refers to quantities in the vapor or gas phase 

00: Refers to quantities in the bulk medium 
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