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Deciphering the functional consequence of genetic 
variation within and across populations is a funda-
mental question of biology. To address this, a combi-
nation of techniques to interrogate changes on both 
systems- wide and mechanistic scales is required (Fig. 1). 
Systems- wide approaches provide a high- level view and 
generate networks that describe how different proteins 
or genes relate to each other or to environmental per-
turbations. Such networks have proved highly inform-
ative, enabling functional annotations of proteins and 
conveying information on the architectures of entire 
biological systems1,2. Protein–protein interaction (PPI) 
networks describe which proteins interact3–5 (Fig. 1a). 
Experimental methods to determine PPIs include affin-
ity purification–mass spectrometry (AP–MS)6,7, yeast 
two- hybrid (Y2H) screening8 and protein fractionation9. 
AP–MS and protein fractionation identify proteins 
that form complexes together in a cell type of interest, 
whereas Y2H uses a yeast reporter system to identify 
binary interactions. PPI networks describe proteins 
that are in physical contact but lack the resolution to 
discern mechanism, which often requires knowledge of 
the structures of the proteins and the complexes they 
form. Typically, high- resolution protein structures 
are determined using biophysical approaches, such as 
X- ray crystallography10, cryogenic electron microscopy 
(cryo- EM)11 and NMR spectroscopy12 (Fig. 1b). These 

methods are key for elucidating protein mechanisms 
and designing drugs that bind to active sites or disrupt 
PPIs. However, traditional structural biology methods 
are often time- consuming and rely on purification 
of the relevant proteins, which is not always feasible. 
Furthermore, they take place in vitro, which can intro-
duce artefacts and may not always reflect biologically 
relevant protein conformations.

PPI mapping and traditional structural biology are 
centred on proteins and their physical attributes. Genetic 
methods provide a functional context by means of meas-
uring the phenotypic consequences of perturbing pro-
teins or PPI networks. The characterization of genetic 
interactions13, which describes how mutations in differ-
ent genes affect one another, has proved a particularly 
useful complement to PPI networks. Systematic map-
ping of genetic interactions enables the generation of 
functional interaction networks, shedding light on the 
biological purpose of the PPIs14,15 (Fig. 1c, left panel). 
Until recently, systematic genetic analyses were applied 
only at a whole- gene or protein level, relying on tradi-
tional structural biology for deciphering mechanistic 
actions. Over the past decade, developments in genetic 
interaction mapping and the related field of coevolution, 
which studies how protein residues evolve together, have 
allowed structural biology to be tackled on a genetic 
basis. By identifying pairs of residues that are related 
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through genetic interactions or coevolution, these meth-
ods are providing high- resolution functional informa-
tion sufficient to model the structures of proteins and 
their complexes (Fig. 1c, right panel).

In this Review, we describe the fundamentals of 
coevo lution and genetic interaction mapping, and out-
line how these methods have evolved over the past dec-
ades. We discuss how technical advances and the growth 
of protein sequence databases have enabled the applica-
tion of these methods to inform structural modelling 
of proteins and protein complexes. We also describe 
chemical–genetic interaction mapping, which is closely 
related to genetic interaction mapping and has similarly 
been used for structural modelling. We list applications 
of these methods and discuss emerging approaches that 
will enable expansion into new systems. For brevity, we 
do not discuss traditional structural biology methods 
(reviewed in16–19).

Coevolution and deep learning approaches
The genetic material of all living organisms evolves over  
time. This evolution takes place in the form of alter-
ations to the DNA sequence, often as single base subs-
titutions. Coevolution analysis is based on the principle 
that amino acid residues in a protein, or in two inter-
acting proteins, mutate and evolve together when they 
reside in the same functional region20. For example, 
in a single protein, spatially proximal amino acid resi-
dues that are essential to a specific function are likely to 
evolve together over time. Similarly, with two interacting 

proteins, if one protein evolves in the binding interface, 
the other protein can develop complementary changes 
in the interface to avoid disruption of the interaction site. 
This evolutionary phenomenon was observed more than 
three decades ago20, and its application to predicting 
residue–residue contacts was made feasible a few years 
later with the growth of protein sequence databases and 
increases in computational power21–25.

Modelling protein structures using coevolution. Accurate 
identification of residue–residue contacts is crucial 
for coevolution- based protein structure modelling. 
Residue–residue contacts are predicted by generating a 
multiple sequence alignment of a protein family and iden-
tifying correlations in amino acid changes for pairs of 
residue positions across the alignment. Early methods 
used local statistical models to determine covariation 
between residue pairs, relying on the assumption that 
each correlated residue pair is independent of all other 
pairs21–23,26,27. Thus, while computationally efficient, these 
approaches failed to accurately represent real proteins, 
in which each residue can interact with many others. 
As a result, the local approaches were not able to distin-
guish direct from indirect correlations between residue 
pairs. Direct correlations reflect true residue–residue 
contacts, whereas indirect correlations arise for pairs 
that coevolve without being in contact. Indirect corre-
lations can arise, for example, between residues that are 
evolutionarily constrained through a network path of 
direct contacts28. Accurate structure prediction requires 
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Fig. 1 | Readouts, scale and resolution. A complete understanding of cellular processes requires measurements of physi-
cal and functional properties at a low- resolution, systems- wide scale and at high resolution of individual components.  
a | Protein–protein interaction networks describe which proteins bind to each other and are generated using methods such 
as affinity purification–mass spectrometry (AP–MS), protein fractionation and yeast two- hybrid screening. b | High-resolution 
structures of proteins and their complexes are determined using biophysical methods, such as X- ray crystallography, cryo-
genic electron microscopy (cryo- EM) and NMR spectroscopy, that typically take place in vitro. c | Functional interaction 
networks (left panel) describe how different genes or proteins or regions thereof affect the function of each other, or how 
they respond to drugs. Functional connections are determined using methods such as genetic or chemical–genetic inter-
action mapping. Improvements in these methods and the related field of coevolution have recently enabled the structures 
of proteins and their complexes to be determined (right panel).

Multiple sequence 
alignment
An alignment of the sequences 
from multiple proteins. The 
multiple sequence alignment 
defines how the residue 
positions in each protein relate 
to those of the other proteins.

Protein family
A group of evolutionarily 
related proteins. The members 
of a protein family will typically 
have similar sequences  
and/or structures and related 
functions.
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that only direct correlations be considered. Hence, the 
local statistical models were sufficient to predict con-
tacts but lacked the resolving power necessary to model 

entire protein structures. During the past decade, local 
models have been replaced by global models, which 
recognize that correlated pairs are dependent on each 
other and furthermore incorporate the conservation of 
individual residues29–33. Global models enable the dis-
tinction of directly coupled residue pairs from those 
that should be excluded from the analysis because 
they are indirectly coupled. Crucially, these technical 
advancements have been accompanied by the rapid 
growth of protein sequence databases such as UniProt34, 
increasing the coverage of sequence space across the  
members of protein families and making possible  
the systematic comparison of evolutionary changes at 
residue level in prokaryotes. Together, these develop-
ments paved the way for using coevolution to model the 
structures of monomeric proteins. The first successful 
determination of protein folds using coevolution was  
achieved by EVfold35,36, followed by other methods, such 
as DCA-fold37, FILM3 (reF.38) and GREMLIN39 (Fig. 2a).

Modelling of protein complexes and prediction of PPIs 
using coevolution. The same coevolution principles 
used to determine residue–residue contacts within a 
protein can be used to determine residue–residue con-
tacts between proteins. However, a key challenge lies in 
the identification of orthologues to generate the paired 
multiple sequence alignments required for quantify-
ing coevolution among residues between two proteins. 
Only organisms that contain both interacting proteins 
can be used for the multiple sequence alignments, and 
the interacting pairs must be correctly paired in each 
species, which is particularly difficult if the proteins have 
paralogues that perform other cellular functions32,40–43.  
To enable prediction of PPIs and modelling of their 
interfaces (Fig. 2b), most studies have limited their scope 
to protein pairs that are likely to interact based on spe-
cific criteria. For example, several efforts have focused on 
protein pairs encoded close to each other in conserved 
genomic locations (for example, on the same operon)40,41, 
or pairs of protein families with members known to 
interact42,44. Although these studies demonstrated that 
coevolution could in principle be used for the syste-
matic identification of PPIs, the challenges of scaling to  
unbiased and proteome- wide predictions made this 
unfeasible in practice. Furthermore, coevolution meth-
ods are computationally costly, and applying them to 
identify PPIs requires the combinatorial pairing of 
all possible interaction partners. A recent effort tack-
led these challenges via a combination of techniques 
to systematically identify PPIs in Escherichia coli 
and Mycobacterium tuberculosis using coevolution45. 
Hundreds of previously uncharacterized PPIs were 
discovered by quantifying the coevolution of residue 
pairs across several millions of protein pairs in both 
organisms. The high computational requirements were 
managed via a multistep protocol incorporating a faster 
pre- screen using local models26, followed by global 
models32,39 and structural modelling to home in on the 
highest confidence interactors. This study showed that 
coevolution is highly effective for PPI prediction in 
binary complexes, but less so in higher- order complexes 
or those that contain nucleic acids45.

a
Identify coevolving residue pairs
within a protein sequence

Construct models
of individual protein
structures

b
Identify coevolving residue pairs
between two protein sequences

Construct models
of protein complex
structures

c
Random mutants in antibiotic resistance gene

Deep sequence to identify residue
pairs that coevolve under selection Construct models of 

protein structures

Impose restraints based
on coevolving pairs
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on coevolving pairs

Impose restraints based
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Fig. 2 | Structural modelling of proteins and their complexes using coevolution. 
Coevolution methods identify pairs of amino acid residues within or between proteins 
that have evolved together. Such pairs are often close in space and can be used to derive 
spatial restraints for structural modelling. a | To identify coevolving residue pairs in a 
protein, a multiple sequence alignment of its protein family is first generated. Pairs  
of sequence positions whose residue types change in a correlated fashion across the 
sequence alignment are coevolving and are likely to be close in space. Spatial restraints 
are generated based on predicted contacts and used for modelling the protein structures. 
b | Similar to part a, but coevolving residue pairs are here identified across the sequence 
alignments of an interacting pair of proteins. Here, the predicted residue contacts are thus 
between two different proteins, and the resulting restraints are used for modelling protein 
complexes instead of individual proteins. c | Random mutagenesis is carried out on an 
antibiotic resistance gene, and plasmids harbouring the gene variants are transformed 
into cells, followed by selection for functional copies of the gene. Surviving variants are 
again exposed to random mutagenesis and reintroduced into the assay. After a sufficient 
number of cycles, variants are deep sequenced to identify coevolving residue pairs and 
structural modelling is carried out as in part a. Filled circles represent sequence positions 
and the colours represent different residue types (grey denotes any residue type).
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Experimental evolution. Coevolution has proved power-
ful for determining the structures of proteins and their 
complexes. However, the requirement of large protein 
families with sufficient diversity and the obfuscating 
effects of paralogues impose limitations on the appli-
cability of the approach. An experimental method 
(3Dseq)46 was recently developed with the aim of using 
protein sequence variation generated in a laboratory to 
determine coevolving residues and subsequent applica-
tion of computational coevolution methods for structure 
modelling. The approach relies on iterative generation 
of mutations in a given gene using error- prone PCR 
and exposure to a medium that selects functional vari-
ants of the gene (Fig. 2c). Selected populations are deep 
sequenced, and coevolving residue pairs are identified 
by comparison throughout the population, allowing 
inference of residue couplings and structural modelling 
using the same principles as for natural coevolution. 
The method was applied to two antibiotic resistance 
proteins from Pseudomonas — β- lactamase PSE1 and 
acetyltransferase AAC6 — expressed in E. coli, with 
functional selection by ampicillin for PSE1 and kana-
mycin for AAC6, resulting in accurate high- resolution 
models of both structures46. As 3Dseq does not rely on 
natural variation, it is particularly well suited to proteins 
that lack the large number of family members required 
for natural coevolution modelling and should provide an 
avenue for tackling eukaryotic systems.

Deep learning- based approaches. In addition to experi-
mental evolution, numerous computational develop-
ments have refined and extended the coevolution field. 
Improved statistical models30,39,47 have increased accuracy 
and decreased the required number of aligned protein 
sequences. Incorporation of metagenome sequencing 
datasets has provided a means of increasing the sequence 
space accessed by multiple sequence alignments48. 
Finally, several new methods, such as RaptorX49, 
ComplexContact50 and DeepCov51, use deep learning 
to extract and integrate additional protein sequence fea-
tures with the coevolution data for contact prediction. 
Although these advances increased the accuracy of mod-
elling and enabled systematic studies across prokaryotic 
proteomes, the technology has, in most cases, not been 
applied to eukaryotic proteins and complexes.

Recent advances in deep learning have led to a revo-
lutionary development in the form of the neural network- 
based AlphaFold52, which enables regular prediction 
of protein structures at near experimental accuracy, 
in prokaryotes as well as eukaryotes. The AlphaFold 
(version 2) engine makes use of constraints on protein 
structure derived from evolution, physics and geometry. 
During training, AlphaFold parses experimental protein 
structures deposited in the protein databank (PDB)53, 
as well as clustered protein sequence databases, such as 
BFD52 and UniRef90 (reF.54), learning rules to govern the 
modelling of structure from sequence. The neural net-
work takes as input a multiple sequence alignment of a 
given protein and its family members to extract evolu-
tionary information for individual residues as well as on 
a pairwise basis. Incorporation with components learnt 
from the PDB enables the final structure prediction52.

AlphaFold has proved remarkably effective for deter-
mining the structures of individual proteins and their 
complexes. The AlphaFold model, trained on single pro-
tein chains, was showcased on nearly the entire human 
proteome, resulting in confident structure predictions for 
58% of all residues55. In comparison, experimental efforts 
over the past several decades have together resulted in 
structural coverage of 17% of human protein residues55. 
Similarly, a study across 11 different proteomes found 
that AlphaFold added structure determination for on 
average 25 percentage points of additional residues over 
existing experimental structures or those that could be 
derived by homology modelling56. Interestingly, despite 
being trained on single proteins, AlphaFold proved capa-
ble of modelling the structures of protein complexes56–58. 
Most recently, AlphaFold- Multimer has been released, 
featuring a model trained on multimeric protein struc-
tures, which clearly outperforms the standard AlphaFold 
for modelling protein complex structures59.

Inspired by the performance of AlphaFold, the 
RoseTTAFold60 software was developed using simi-
lar ideas. The accuracy of RoseTTAFold is generally 
somewhat lower than that of AlphaFold, but the predic-
tions are faster and require less computational power60. 
RoseTTAFold provided early evidence that this tech-
nology can model protein complexes in addition to 
individual proteins60. Recently, the respective strengths 
of RoseTTAFold and AlphaFold were combined to not 
only model but also identify protein complexes61. The 
high speed of RoseTTAFold was leveraged to examine 
more than 4 million paired multiple sequence align-
ments to generate a set of approximately 5,500 poten-
tial PPIs in Saccharomyces cerevisiae (budding yeast). 
AlphaFold was then applied to this smaller set to iden-
tify higher- confidence candidate protein complexes and 
model their structures61. Importantly, like all technolo-
gies discussed in this Review, these methods rely on data 
generated from experimental approaches and should be 
viewed as powerful complements to these62, rather than 
as replacements.

Genetic and chemical–genetic interactions
A complementary approach to coevolution and deep 
learning- based methods leverages the measurement 
of genetic interactions, providing a means for struc-
tural modelling using sets of intentionally designed 
mutations.

For most organisms, such as Homo sapiens, budding 
yeast or E. coli, any given gene is typically directly func-
tionally related to only a small number of other genes. 
Thus, when deleting or otherwise perturbing two differ-
ent genes, the cellular response will most often reflect 
the combined effect of the two as independent contri-
butions. Genetic interactions arise between genes for 
which the response deviates from this expectation, indi-
cating that the genes are functionally related. Genetic 
interactions can be measured by multiple phenotypic 
readouts, but often centre around cell replication and 
survival as this can be informative for most systems, 
including unicellular organisms and human cancer 
cells. Positive genetic interactions arise when the cell is 
either no sicker (epistatic) or healthier (buffering) than 

Orthologues
evolutionarily related genes in 
different species. The proteins 
encoded by orthologous  
genes are typically responsible 
for the same function in the 
respective organisms.

Paralogues
genes with similar sequences 
that originated via a duplication 
event within a genome. 
Paralogues belong to the same 
species and their encoded 
proteins are typically not 
involved in the same function.

Neural network
A category of machine learning 
that is inspired by the human 
brain and is central to deep 
learning algorithms.

Homology modelling
A method for determining the 
structure of a protein on  
the basis of sequence similarity 
with another protein of known 
structure by satisfying spatial 
restraints.
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the sickest single mutant. This may indicate factors that 
operate in the same pathway or are subunits of the same 
non- essential complex63. Conversely, negative genetic 
interactions (synthetic sick or lethal) occur when muta-
tions in two genes lead to a more severe growth defect 
than expected. This may reflect factors that function in 
parallel pathways or are non- essential subunits of the 
same essential protein complex (Fig. 3a).

Chemical–genetic interactions, similar to genetic 
interactions, describe how the presence or absence of 
a drug or environmental perturbation affects the phe-
notype of a single genetic mutation. Here, a positive 
interaction reflects that drug treatment has a lesser effect 
on the mutant phenotype than expected, which could 
indicate that the drug inhibits pathways in which the 
mutated gene functions. By contrast, negative chemical–
genetic interactions arise when the effect of a mutation 
in the presence of a drug is more severe than expected, 
potentially indicating that the drug inhibits a parallel 
pathway (Fig. 3b). Notably, the relationships that form 
the basis of genetic and chemical–genetic interactions 
are often more complex than the illustrative examples 
provided here.

Systematic analysis of genetic and chemical–genetic 
interactions. Early work on concepts that underlie 
genetic interactions focused on small numbers of genes 
that were already known to affect a given phenotype of 
interest13. In the early 2000s, the creation of gene dele-
tion libraries in budding yeast and advances in high- 
throughput technologies paved the way for systematic 
mapping of genetic and chemical–genetic interactions64. 
A key development was introduced by synthetic genetic 
array (SGA), which enabled the rapid crossing of  

a set of test mutants across a deletion library in a plate- 
based format, providing an efficient means of identify-
ing synthetic lethal interactions15. A different method, 
diploid- based synthetic lethal analysis with microarrays 
(dSLAM), relied on barcoded yeast mutants grown in 
a pooled competitive format, where microarrays were 
used to quantify the amounts of the different single 
and double mutants65. These methods were primarily 
developed to identify negative genetic interactions. The 
ability to capture positive genetic interactions was intro-
duced by epistatic miniarray profile (E- MAP), which 
expanded on SGA to provide quantitative measure-
ments of the entire spectrum of genetic interactions in a 
high- throughput format66,67. This approach enables the 
generation of a continuous genetic interaction profile for 
each test mutant, consisting of its scores across all dele-
tion library mutants; these profiles can be used to group 
together proteins that are functionally related or belong 
to the same complex14,67–70 (Fig. 3c). In parallel with these 
developments, related methods were designed for deter-
mining chemical–genetic interactions, following a simi-
lar format but using a library of chemical perturbations 
in place of the deletion library71,72 (Fig. 3c). Chemical–
genetic interaction mapping relies on methods similar to 
those of genetic interaction mapping but is considerably 
less complex, as it simply relies on the addition of drugs 
to the plates or pools of single mutants65,71–74.

Systematic genetic and chemical–genetic inter action 
mapping (for example, chemical–genetic miniarray pro-
file (CG- MAP)) have proved highly effective for organ-
izing genes on the basis of function on both local and 
global levels14,67–71,74–76. The technologies have been adap-
ted to different model systems, including Caenorhab
ditis elegans77, E. coli75,76, Schizosaccharomyces pombe78  
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Fig. 3 | Mapping of genetic and chemical–genetic interactions. Genetic 
and chemical–genetic interactions describe the functional relationships 
between pairs of mutations or between a mutation and a drug, respectively. 
a | A positive genetic interaction between two gene deletions may indicate 
that the gene products operate in the same pathway (G1–G2 or G3–G4), 
whereas a negative interaction can arise if the products of the deleted genes 
belong to parallel pathways (for example, G1–G3). b | Positive interactions 
between a drug (D) and a gene deletion can indicate an antagonistic 
relationship (for example, D–G1), whereas a negative interaction may 
indicate that the gene product belongs to a parallel pathway of the drug 
target (for example, D–G3). c | The epistatic miniarray profile (E- MAP) and 

synthetic genetic array (SGA) approaches allow for high- throughput 
measurements of genetic or chemical–genetic interactions between a set of 
test mutants (y- axis) and a genome- scale library (x- axis). Each row constitutes 
the genetic interaction profile for a test mutant (A–E), and clustering these 
by similarity (tree on right) provides a functional organization of the mutants. 
d | Deep mutational scanning (DMS) can be used to measure genetic 
interactions between all pairwise combinations of point mutations in a gene. 
For each pair of residue positions (left), all possible combinations of amino 
acids (aa) are measured (right), which can be used to generate a composite 
genetic interaction score for the position pair. Depictions in parts c,d are 
illustrative subsets of much larger interaction maps.
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and Drosophila melanogaster cell lines79. More recently, 
advances in RNA interference (RNAi) and CRISPR–
Cas9 (reF.80) genome editing have enabled expansion into 
mammalian cells81–85.

Genetic interactions of point mutants. Most genetic 
interaction maps have focused on whole- gene deletions 
or knockdowns. However, early studies in budding yeast 
investigated the genetic interaction profiles for limited 
numbers of point mutants. For example, alanine scan 
mutations of the actin gene ACT1 were screened for 
genetic interactions with more than 200 genes that had 
been shown to exhibit complex haploinsufficiencies in a 
strain hemizygous for ACT1 (reF.86). The screen revealed 
that alanine mutations in close proximity on the actin 
surface shared many interactions (that is, exhibited sim-
ilar genetic interaction profiles), suggesting that they 
may be disrupting the same PPI binding interfaces86. 
Similarly, an early budding yeast E- MAP that focused on 
chromatin biology included three alleles of the POL30 
gene14, which encodes the multifunctional protein 
PCNA that functions in DNA replication and repair and 
in chromatin assembly. The pol3079 point mutant allele 
gave rise to a genetic interaction profile similar to that 
of pol30 DAmP (a gene knockdown allele), suggesting 
a destabilizing effect on the protein. The genetic inter-
action profiles of these mutants were consistent with a 
defective DNA replication and repair system14,63,87. By 
contrast, the pol308 allele, which perturbs a different 
region of PCNA, exhibited genetic interactions relating 
to defects in chromatin assembly. Interestingly, this allele 
has been shown to diminish the PPI between PCNA and 
chromatin assembly factor 1 (CAF1)88. These results 
indicated that genetic interactions provide a high level 
of resolution and allow the dissection of multifunctional 
proteins into regions that are functionally and physically 
connected to other factors. Spurred by these findings, the 
E- MAP technology was extended to screen entire librar-
ies of point mutations in a set of related proteins to gen-
erate point mutant E- MAPs (pE- MAPs)89,90. Quantitative 
SGA screens have also included large numbers of point 
mutations; however, these have generally been cho-
sen on the basis of their phenotype as temperature- 
sensitive alleles of essential genes, rather than systematic 
mutations of a specific protein or complex68,69.

Concurrently with pE- MAP, a complementary 
approach termed deep mutational scanning (DMS) 
was developed91. DMS set out to tackle the problem of 
identifying the most informative mutations to study in 
a protein, without the requirement of preselecting resi-
dues of interest. To this end, the method allows for a 
comprehensive screen of point mutations in a protein 
or protein domain. DMS relies on the rapid synthesis 
of large numbers of mutations in a gene, in conjunc-
tion with a genotype–phenotype coupled selection 
assay. In its most basic form, DMS quantifies the effects 
of individual point mutations on a specific function, 
via the chosen selection assay. However, it can also be 
applied to pairs of point mutations to quantify genetic 
interactions91 (Fig. 3d).

The development of pE- MAP and DMS enabled the 
systematic study of the relationship between genetic 

interactions and residue distances in a protein struc-
ture. The first pE- MAP covered 53 budding yeast point 
mutants in RNA polymerase II (RNAPII), crossed 
against a library of 1,200 deletion and knockdown 
mutants89. This study revealed that pairs of residues that 
exhibited similar genetic interaction profiles were typi-
cally close in space, whether they resided in the same or 
different RNAPII subunits89,90. Several early DMS studies 
revealed similar patterns for the pairwise genetic inter-
actions between point mutants92–94. For example, a screen 
of double mutants of 75 residues in the RRM2 domain of 
the budding yeast PAB1 protein showed that both posi-
tive and negative genetic interactions were enriched at 
shorter distances between the mutated residues92. These 
findings were supported in a screen of genetic inter-
actions for all pairs of mutations in 55 residues of the 
IgG binding domain of strepto coccal protein G (GB1)93. 
In some proteins, such as those regulated by allostery, 
these trends can differ. For example, a recent pE- MAP 
screen of the molecular switch Gsp1/Ran revealed that 
the genetic interaction profiles of interface mutations 
reflected their biophysical effects on the switch cycle 
kinetics, instead of their interface locations95. These 
studies highlight how genetic interactions ultimately 
report on mechanism and showcase the complementa-
rity of this technology to traditional structural biology 
approaches.

Modelling the structures of proteins and their complexes 
using genetic and chemical–genetic interactions. Similar 
to coevolution, genetic interaction data have been used 
for structural modelling of proteins and their com-
plexes. The key challenge remains how to derive spatial 
restraints between pairs of residues that can be used for 
modelling. pE- MAP and DMS provide complementary 
strengths for this purpose. For example, DMS can pro-
vide comprehensive genetic interaction measurements of 
all possible residue–residue combinations in a protein. 
Indeed, these fine- grained data can be used to model the 
secondary structure and tertiary structure of small pro-
teins or domains96–98 (Fig. 4a,b). Two groups96,97 examined 
genetic interaction data from DMS scans of GB1 (reF.93), 
the RRM2 domain of the budding yeast PAB1 protein92, 
the human YAP65 WW domain99 and the heterodimer 
FOS–JUN100. The authors set out to use the genetic inter-
action data from each of these studies to predict struc-
tural contacts between residue pairs in the respective 
protein domains and to test whether the contacts could 
be used for structure determination96,97. The GB1 dataset 
was the most comprehensive and covered nearly all pos-
sible mutation pairs across 55 residues, which allowed 
the determination of residue contacts and accurate mod-
elling of both secondary and tertiary structure of the 
domain96,97. The RRM2 and WW domain datasets cov-
ered only a fraction of the possible double mutants and 
were sequenced less deeply. Although contact prediction 
was possible with these datasets, the secondary structure 
predictions were not accurate. The fold of a 22–24 resi-
due section of the WW domain could be modelled; how-
ever, the RRM2 domain fold could not96,97. The data for 
the FOS–JUN dimer covered a stretch of 32 residues on 
each monomer and enabled contact predictions across 

Knockdowns
genes whose expression has 
been reduced.

Complex haploinsufficiencies
Negative genetic interactions 
observed in cells that are 
hemizygous for two different 
genes. The phenotype of the 
two hemizygous loci combined 
is more severe than expected if 
the genes were unrelated.

Hemizygous
A diploid cell is hemizygous for 
a gene if it harbours only one 
functional allele of the gene.

Allostery
A process whereby an active 
site in a protein (enzyme) is 
regulated by the binding of  
a molecule to a different site 
(typically distal in space).
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the interface96,97. The predicted contacts were then incor-
porated into a protein docking of the two monomers as 
spatial restraints, greatly improving the accuracy of the 
models compared with docking without DMS- derived 
restraints96. Finally, one of the studies also predicted 
contacts in an RNA molecule96,101, the twister ribozyme 
from Oryza sativa, suggesting that DMS could be used 
for RNA structure prediction. Interestingly, although the 
two studies96,97 harnessed different ranges of the genetic 
interaction data and used different interaction metrics for 
computing contact predictions, they nonetheless arrived 
at similar results. This suggests that the approach is 
robust and highlights the massive information content of 
DMS data. Accordingly, both groups showed that sparser 
data subsets still allowed modelling of the GB1 structure 
at an accuracy similar to that achieved when using the 
complete dataset. These findings highlight the potential 
of DMS as a structural biology tool, and other studies 
have further applied it to successfully reveal structural 
features of intrinsically disordered proteins102,103.

Whereas DMS is well suited for modelling the 
structures of small proteins and domains, the pE- MAP 
approach is more appropriate for determining struc-
tures of protein assemblies. pE- MAP has lower cov-
erage than DMS but enables comparison of genetic 
interactions across residues in any number of interacting 
proteins in a single screen, which facilitates the mod-
elling of interactions. Additionally, pE- MAP provides 
systems- wide cellular information for every mutated 
residue via its genetic interaction profile with thousands 
of other mutants in different pathways and processes. 
A recent study harnessed these traits to use pE- MAP and  
chemical–genetic interaction data to determine the 
structures of protein complexes104 (Fig. 4c). Using a tech-
nique termed integrative structure determination105 
(Box 1), the authors modelled the structures of three pro-
tein complexes: histones H3 and H4 in budding yeast; 
subunits Rpb1 and Rpb2 of RNAPII in budding yeast, 
and subunits RpoB and RpoC of bacterial RNA poly-
merase (RNAP) in E. coli. The histone pE- MAP included  
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Fig. 4 | Structural modelling of proteins and their complexes using 
genetic and chemical–genetic interactions. a | Deep mutational scanning 
(DMS) relies on the rapid synthesis of mutated variants (blue, red or green) 
of a gene, which are cloned into vectors and introduced into an assay (here, 
cell- based) that competitively selects for variants with particular traits. The 
composition of variants is determined via deep sequencing before and after 
selection, allowing for identification of variants that are enriched or depleted 
by the selection. b | When using DMS to measure genetic interactions, each 
gene variant contains two point mutations (stars). The selection assay 
identifies mutant pairs that are enriched (positive genetic interaction) or 
depleted (negative genetic interaction) compared with an expectation from 
the quantities of each single mutant. Likely residue contacts are identified 

based on the genetic interactions and used for modelling the structure of 
the protein. c | The point mutant epistatic miniarray profile (pE- MAP) 
approach relies on in vivo screening of a set of point mutants in two or more 
interacting proteins against a large library of gene deletions and/or 
knockdowns (pE- MAP) or chemicals (chemical–genetic miniarray profile 
(CG- MAP)). The resulting genetic (or chemical–genetic) interaction profiles 
often consist of more than 1,000 genetic interactions for each point mutant. 
Pairwise comparison of the profiles provides measures of genetic similarity 
between all pairs of tested point mutants. High similarity between a pair of 
point mutants indicates a likely contact between the mutated residues. The 
structure of the protein complex is modelled using this relationship for pairs 
of residues that reside in different subunits of the complex.
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a comprehensive alanine scan as well as context- specific 
mutations, resulting in a map of 350 histone mutants 
crossed against 1,370 deletion or knockdown mutants104. 
Distance restraints between H3–H4 residue pairs were 

devised using the similarity of genetic interaction pro-
files between the corresponding mutations. These 
restraints were then applied to arrange the structures 
of the H3 and H4 subunits, capturing the interface of 

Box 1 | Integrative structure determination

Integrative structure determination is a powerful tool to determine the 
structures of macromolecular assemblies105,131 by providing a framework to 
combine information from varied experimental approaches, bioinformatics 
tools and prior knowledge. Integrative modelling aims to maximize the 
completeness, accuracy and precision of the resulting model by computing 
an ensemble of structural models that are consistent with all the input 
information. The integrative modelling approach has been successful in 
determining the architecture of large macromolecular assemblies132,133, 
describing the structural heterogeneity of flexible protein complexes134,135 
and rationalizing the effect of pathogenic mutations132,136. The integrative 
modelling workflow iterates through the following four stages (see 
the figure).

Gathering information
A large variety of experimental and computational information can  
be used for integrative modelling including X-ray crystallography,  
nmR spectroscopy, electron microscopy, chemical cross- linking mass 
spectrometry, small- angle scattering and affinity purification–mass 
spectrometry. evolutionary residue–residue couplings computed from 
natural variation40,41,137 or from experimental evolution46 can also be used 
for modelling and are often complementary to experimental methods. 
Recently it has also been demonstrated that genetic interactions 
measured using the point mutant epistatic miniarray (pE- MAP) platform104 
and deep mutational scanning96,97,102,103,138 (DMS) can be used for 
integrative modelling of small proteins and protein complexes.

Representing the system and translating information into spatial 
restraints
A structural model of a macromolecular assembly is defined by the  
conformations and relative positions and orientations of its components 
(for example, atoms, residues, domains and subunits). Thus, the repre-
sentation is defined by all the structural variables that need to be 

determined on the basis of input information. This includes, for example, 
the components of the system (including the copy number), the coordi-
nates of the components and whether multiple states need to be  
modelled. The scoring function consists of a series of terms that encode  
the spatial restraints that quantify the degree of a match between the 
structural models and the input information. For example, pe- mAP  
data were converted into a Bayesian data likelihood that provides an 
upper bound on the distance spanned by the mutated residues and  
objectively interprets the noise in the experimental data104. Similarly,  
data from DmS experiments and coevolution analysis are converted  
into upper-bound or harmonic distance restraints between the resi-
dues40,41,96,97,102,139. The scoring function also accounts for the physico-
chemical properties of proteins via terms such as excluded volume and 
sequence connectivity140.

Structural sampling
Structural models are computed by sampling the conformations and/or 
the configuration of the components; this is often achieved by using 
monte Carlo- based methods for stochastic sampling. The result is an 
ensemble (that is, the model) of predicted structures that agree with the 
input information within acceptable tolerances.

Validating the model
validation of the model is essential to quantify its uncertainty and to  
assess the degree of consistency between the model and the information 
used and not used to compute it141,142. To this end, the validation protocol 
includes five steps whose outputs are an estimate of the model precision 
(quantified by the variability between the models in the ensemble), one  
or more representative structures and their uncertainties, and mapping  
of the known information into the structures in the model.

This protocol (that is, stages 2, 3 and 4) can be scripted using the 
open- source Integrative Modelling Platform (IMP) package143.
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their interaction and obtaining an accurate structure 
of the H3–H4 complex. The RNAPII dataset provided 
an opportunity to test the performance of the approach 
on a system that differs vastly from that of the histones. 
Specifically, Rpb1 and Rpb2 are much larger than the 
histones (1,200–1,700 residues versus 100–140 residues) 
and the RNAPII pE- MAP is much sparser, with 53 point 
mutants crossed against 1,200 deletion or knockdown 
mutants89. In addition, the authors split Rpb1 into two 
domains for the structural modelling to test the appli-
cability to a higher- order system. The model of this 
three- body complex proved accurate, suggesting that 
the approach is generalizable and can effectively har-
ness the contents of sparse datasets. Extending the use 
of the approach to chemical–genetic interactions, the 
authors accurately modelled the RpoB–RpoC complex 
of bacterial RNAP using a CG- MAP of 44 point mutants 
subjected to 83 different environmental stresses106. This 
showed transferability of the approach to chemical–
genetic interaction maps in spite of the reduced size 
of the interaction profiles in this dataset. Finally, in a 
comparison of integrative structure determination 
using cross- linking mass spectrometry (XL- MS) data 
and pE- MAP data, the authors found that the two per-
formed similarly, but crucially led to higher accuracy 
models when combined104. Thus, a key value of the 
methods described in this Review is that their data types 
are typically orthogonal to those traditionally used in 
structural biology, allowing data integration that results 
in improved models105 (Box 1).

Emerging approaches
A key promise and challenge for the methods discussed 
in this Review is the expansion into new systems, scales 
and organisms. The continued success of this field will 
rely on the effective integration of complementary data 
types to best make use of available methods (Fig. 1). In 
particular, the integration of experimental data with 
those from computational coevolution and deep learn-
ing models should prove valuable. Such efforts will 
likely benefit from a fine- grained interpretation of the 
scale and resolution represented by each data type. For 
example, it has been shown that residue–residue con-
tacts derived from coevolution are more accurate when 
compared with experimentally determined side chain 
contacts than with more commonly used backbone 
contacts107. This finding suggests that the dominant 
effect observed in coevolution reflects side chain inter-
actions, and could be harnessed to generate more precise 
models when computationally feasible.

To better complement computational methods, there 
is a need to increase the speed and coverage of experi-
mental genetic approaches. Advances in CRISPR–Cas9 
genome editing (Box 2) are setting the stage for such  
developments. For example, chemical–genetic inter-
action mapping is primed for modelling PPIs on a 
proteome- wide scale in yeast, using a recent method 
to efficiently generate point mutations while surveying 
their drug sensitivities in a multiplexed fashion108 (Box 2). 
Guided by global PPI maps109, and using individual  
protein structures from traditional structural biology 
methods or AlphaFold/RoseTTAFold, this system 

should in principle enable the modelling of interac-
tion interface structures across the yeast proteome. In 
addition to facilitating increased scale, CRISPR–Cas9 
genome editing can be used for the systematic gener-
ation of point mutations in mammalian cells110–114. At 
present, these approaches are not suitable for mamma-
lian pE- MAP screening, owing to incomplete editing, 
off- target effects or other technical obstacles (Box 2). 
However, these limitations are steadily diminishing110, 
setting the stage for genetics- based structural model-
ling of protein complexes in human cells and providing 
a means of characterizing the effects of disease- causing 
mutations. By integration with recent efforts to generate  
multi- scale models of entire cells115–119, genetic inter-
action mapping could thus inform on global function 
as well as the structures of protein complexes.

One of the most crucial, and currently tractable, appli-
cations to human systems relates to the rapidly growing 
field of host–pathogen interaction mapping120–124. This 
area of research is centred on the systematic identifica-
tion of PPIs between pathogen and host proteins and 
the generation of interaction networks between the two 
organisms (Fig. 5a). These networks have proved highly 
effective for interrogating the mechanisms of infection, 
revealing important aspects of pathogen life cycles, host 
factor functions and host–pathogen interplay, as well 
as providing potential targets for drug discovery120–124. 
Host–pathogen PPI networks could be used as a blue-
print for genetic interaction mapping between pathogen 
point mutants and human gene knockouts or knock-
downs. To generate these maps, human cells would be 
infected by virus harbouring the relevant point muta-
tions, and the human proteins from the PPI maps would 
be knocked down or knocked out (Fig. 5b), allowing for 
the construction of a host–pathogen genetic interaction 
map (Fig. 5c). The genetic interaction profiles of the viral 
point mutants would then be converted into spatial 
restraints for structural modelling of viral protein com-
plexes (Fig. 5d), which would ultimately be re- integrated 
into the PPI map. The platforms required for such efforts 
have recently been developed. For example, a technology 
for generating viral E- MAPs (vE- MAPs), using infecti-
vity as readout, was recently applied to HIV infection in 
human cells125. In an analogous fashion, DMS could be 
used for modelling individual viral proteins, by employ-
ing suitable selection assays126. For example, a DMS plat-
form was developed to structurally map mutations in 
the SARS- CoV-2 Spike receptor- binding domain that 
alter ACE2 binding or escape antibody recognition127,128. 
Many pathogens adapt rapidly to circumvent immune 
and drug responses128–130. Genetic interaction- driven 
modelling of pathogen protein structures will provide 
an avenue to identify the mechanisms of these changes, 
laying the groundwork for therapeutic intervention.

Conclusions
Structural modelling of proteins and protein complexes 
using genetically derived restraints lies at the inter-
section of network biology and structural biology. Until 
recently, these major areas of research were disparate and 
had little overlap. Network biology provided a large- scale 
systems view of interactions within and between cellular 
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Box 2 | CRISPR–Cas9 applications at residue-level resolution

The CRISPR–Cas9 system sets up for genome editing by introducing a 
double- stranded break (DSB) in DNA (see the figure, panel a)80. The Cas9 
enzyme is directed to the target DNA site by a single guide RNA (sgRNA), 
which contains the target sequence. Cas9 cuts the DnA at the target site, 
and the break is typically repaired via non- homologous end joining (NHEJ), 
resulting in insertions and deletions (indels) that lead to inactivation of the 
target gene. Alternatively, the DSB can be repaired via homology- directed 
repair (HDR), resulting in a specific edit based on the template of a stretch 
of donor DnA. However, HDR in mammalian cells is inefficient, and the 
natural preference of the cell for nHeJ would lead to the introduction of 
unwanted indels even in the presence of donor DnA.

Base editors offer a more fine- tuned alternative, by relying on 
catalytically impaired versions of Cas9 that do not introduce DSBs. most 
base editors consist of a DnA deaminase enzyme fused to either nickase 
Cas9 (nCas9), which cuts a single strand of double- stranded DNA, or to 
catalytically dead Cas9 (dCas9). Base editors convert specific base pairs  
(as directed by the sgRNA) into different base pairs (see the figure,  
panel b). Base editing circumvents the need for donor DNA and avoids 
unintentional indels at target or off- target sites. However, the technique 
does not support all 12 possible DnA base- to- base conversions and suffers 
from other limitations, including unwanted bystander or off- target edits 
and sequence- specific requirements to allow for editing (for example, 
proximity of a protospacer adjacent motif (PAM) site)112.

A recent development, termed prime editing, provides a flexible 
platform for DnA editing, allowing for all base- to- base conversions, 
insertions or deletions, without the need of a DSB or donor DnA, and with 

lower off- target activity than Cas9 (see the figure, panel c)110. The prime 
editor consists of nCas9 fused to a reverse transcriptase, which is guided  
to its target by a prime editing guide RNA (pegRNA). In addition to the 
target sequence, the pegRnA contains a reverse transcriptase template 
(RT template) for the desired edit, preceded by a primer- binding site.  
The primer- binding site hybridizes to the nicked target DnA, and the RT 
template dictates the sequence of the new edited DnA. Prime editing  
and base editing methods could both potentially be used for genetic 
interaction mapping in mammalian cells, but the editing efficiency is not 
yet high enough for robust application112.

In budding yeast, which is more tractable for genome editing than 
mammalian cells, a CRISPR–Cas9- based method was recently developed 
for multiplexed genome editing in a pooled fashion, allowing for the rapid 
measurement of point mutant chemical–genetic interactions (see the 
figure, panel d)108. Here, guide–donor plasmids are first generated, which 
contain the desired sequence of donor DnA, combined with a barcode and 
guide sequences to direct the edit and barcode integration. The plasmids 
are transformed into Cas9- expressing yeast cells, resulting in genomically 
edited cells with the corresponding barcode integrated. Cells are grown  
in a pooled format and exposed to a large number of different conditions. 
Barcodes are counted via sequencing, and chemical–genetic interactions 
are quantified based on enrichment or depletion of each mutant in treated 
versus untreated conditions. This method would allow for proteome-wide 
measurement of chemical–genetic interactions for protein complex 
subunits, thereby providing the data required for global structural 
modelling of the budding yeast protein interactome.
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processes, whereas structural biology supplied structures 
of individual proteins and complexes, typically derived 
in vitro. Genetics- based structural modelling uses spatial 
restraints derived from functional data, such as coevo-
lution or genetic interactions, to compute structural 
models. The methods are efficient and low cost, and 
enable structural characterization of protein interac-
tion interfaces, with a potential to cover entire protein– 
protein interactomes, including those of host–pathogen 

systems. These techniques are not meant to replace 
traditional structural biology methods, which remain 
the gold standard in terms of resolution. Instead, the 
orthogonal datasets produced by genetics- based mod-
elling are primed to complement traditional struc-
tural biology methods to provide a more accurate and  
complete description of the structures of proteins in vivo.
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