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Abstract

Technological advancements in the past decades have improved dietary intake and physical 

activity measurements. This report reviews current developments in dietary intake and physical 

activity assessment in youth. Dietary intake assessment has relied predominantly on self-report or 

image-based methods to measure key aspects of dietary intake (e.g., food types, portion size, 

eating occasion), which are prone to notable methodologic (e.g., recall bias) and logistic (e.g., 

participant and researcher burden) challenges. Although there have been improvements in 

automatic eating detection, artificial intelligence, and sensor-based technologies, participant input 

is often needed to verify food categories and portions. Current physical activity assessment 

methods, including self-report, direct observation, and wearable devices, provide researchers with 

reliable estimations for energy expenditure and bodily movement. Recent developments in 

algorithms that incorporate signals from multiple sensors and technology-augmented selfreporting 
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methods have shown preliminary efficacy in measuring specific types of activity patterns and 

relevant contextual information. However, challenges in detecting resistance (e.g., in resistance 

training, weight lifting), prolonged physical activity monitoring, and algorithm (non)equivalence 

remain to be addressed. In summary, although dietary intake assessment methods have yet to 

achieve the same validity and reliability as physical activity measurement, recent developments in 

wearable technologies in both arenas have the potential to improve current assessment methods.

INTRODUCTION

Dietary intake (DI), physical activity (PA), and sedentary behavior (SB) measurement 

among children have experienced significant changes in accuracy and precision afforded by 

emerging new technologies. Even though technologies for measuring PA and SB have been 

available for over a decade and achieved notable accuracy,1 pediatric DI measurement 

methods have substantial error,2, 3 and novel approaches to DI assessment continue to lack 

precision. Recent technological innovations in DI, PA, and SB measurement among children 

are the topic of this review. Although childhood is generally considered to involve 

individuals aged 2 through 18 years, what can be expected from the different technologies 

will vary by age of the child.

CURRENT METHODS TO ASSESS DIETARY INTAKE AND PHYSICAL 

ACTIVITY IN CHILDREN AND YOUTH

Alternative methods of DI, PA, and SB measurement are appropriate for different study 

designs, health purposes, and desired information. DI measures capture diverse elements 

(e.g., total caloric intake, specific nutrient intake, food groups, portion size, eating event, or 

bites taken). PA and SB measures also assess diverse elements (e.g., the type, duration, 

intensity, and sometimes location of PA and SB). Type typically consists of broad 

categorizations of PA and SB (e.g., ambulation, sleep) or specific types of activities or 

postures (e.g., walking, tennis, napping, cycling, or standing). Duration would ideally be 

measured throughout the entire 24-hour lifecycle4 and across multiple days, weeks, or 

months, but usually that is not feasible. Intensity could be assessed in broad categories (e.g., 

moderate, vigorous) or as energy expenditure (EE) units over some period of time. Records 

(diaries), 24-hour recalls, and frequency questionnaires are the most commonly used self-

reported assessment tools.5,6 Self-report measures of DI, PA, and SB have significant 

accuracy (validity) and precision (reliability) limitations,7,8 including recall or memory bias, 

participant burden, social desirability bias, and reactivity (i.e., the participant changes 

behavior to ease the burden or in light of the information).9 Substantial bias (consistent 

underreporting) between self-reported energy intake and the gold standard of doubly labeled 

water (a measure of EE) have been demonstrated.7 Although PA and SB assessment have 

progressed to more objective indicators of behavior (e.g., pedometers, accelerometers), these 

also have limitations. For example, wearable monitors worn on the hip do not detect upper 

body movement, or assess work (e.g., carrying weight), or posture (e.g., sitting versus 

standing). Sensors can be placed on specific parts of the body, such as on the thigh to detect 

posture,10 but such special placement may increase participant burden, indicating a need for 

further innovative methods that minimize such constraints.
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NEW DEVELOPMENTS IN BEHAVIOR MEASUREMENT IN CHILDREN AND 

YOUTH

Advances in DI, PA, and SB assessment have incorporated different forms of digital 

technology often in parallel, including: (1) computers in facilitating the self-report of 

behavior; (2) PDAs or smart phones for reporting and recording of behavior soon after it 

occurs (called Ecological Momentary Assessment [EMA]); (3) cameras in smartphones to 

take images primarily of foods (called “active” assessment because it requires initiation of 

the assessment and the use of image size markers, called fiduciary markers, by the 

participant); (4) wearable cameras that take images at short intervals (seconds) throughout 

the day (called “passive” assessment because no action needs to be taken other than putting 

it on and starting it at the beginning of the day); (5) various sensors, usually connected to 

some recording device; (6) integrated sensor and image methods; and (7) integrated sensor 

and behavior change intervention (Tables 1 and 2). Each technology is presented in 

sequence, first for DI and then for PA and SB combined.

Computers Facilitating Self-Report

Computer-assisted programs have been employed to improve the accuracy of the 24-hour 

dietary recall, including the Food Intake Recording Software System11 and the Automated 

Self-Administered 24-Hour Recall (ASA24-Kids), adapted from the adult ASA24 system 

developed by the National Cancer Institute.12 The ASA24 utilizes the Automated Multiple-

Pass Method13 to enhance accuracy and includes 20,000 or more images of foods, most in 

successively larger portions, to facilitate accuracy of portion size estimation.14 To reduce 

participant burden, ASA24-Kids further eliminates elements, such as foods children do not 

commonly eat (e.g., quiche) and aspects of food preparation (e.g., added salt, fat content), 

most children cannot report.15 Similar computerized systems have been developed for 

assessing children’s DI globally (e.g., in Portugal,16 Brazil,17 and the United Kingdom18).

Although early procedures showed some improvement in categorizing foods19,20 and portion 

size estimation,21 methodologic challenges have also been reported. Comparison of recall 

data collected using Food Intake Recording Software System to criterion methods (e.g., 

direct observation) demonstrated a 35% intrusion rate (i.e., foods reported eaten, but were 

not) and a 15% omission rate (i.e., underreported foods eaten),11 totaling to an 

approximately 50% food intake misidentification rate. Similar intrusion (27%) and omission 

(35%) rates were observed in studies that used ASA24-Kids, which were higher than a 

dietitian-administered recall (intrusions, 20%; omissions, 23%).22 Inaccuracies in portion 

size reports have also been reported.11 Unfortunately, ASA24-Kids is no longer available for 

general use on the National Cancer Institute website.

Ecological Momentary Assessment

EMA, an active real-time self-reported data collection technique that allows for flexibility in 

sampling time throughout the day, is thought to minimize errors of self-report because it 

minimizes the time between the occurrence of a behavior (e.g., DI, PA, and SB) and 

reporting of it. EMA facilitates multiple data entries per day, and sampling schemas can be 

random or based on reported or detected eating events (e.g., meals or snacks). When data 
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entry was performed right after eating events, recall bias was minimized.23 EMA enables 

examination of within-person variations in dietary behavior over time.23,24

Recent EMA efforts have used mobile technologies, including PDAs25 and smartphone 

apps,26,27 to record data. Despite prompts for data entry, which commonly range from two to 

seven per day in published studies,25–27 compliance rates with EMA methods for dietary 

assessment over time have varied. The percentage of answered prompts per day in one 7-day 

study steadily decreased from 63% (day 1) to 23% (day 7),27 whereas in another 7-day 

study, 71% of random prompts were completed.20 EMA-assessed DI, compared with 24-

hour dietary recalls, demonstrated concordance ranging from 66% to 90%, depending on 

food type.26

The physical and social contexts of PA are commonly assessed via EMA.28 Prompting for 

self-report data when a person is engaged in activity in the natural environment improves 

ecological validity and reduces recall bias,23 with moderately high participant compliance 

rates.29

Image-Based Active Assessment

Image-based active assessments capitalize on the camera function of contemporary mobile 

devices to minimize recall bias. Generally, image-based assessment methods require 

participants to follow specific picture-taking protocols. The resulting images are commonly 

processed either by trained dietitians or by automated processes. Automated image analysis 

driven by algorithms can require additional image capture protocols, which may affect data 

quality. For example, the Technology-Assisted Dietary Assessment system30 requires an 

image to be taken with a fiducial marker, a visual indicator of size for automatic estimation 

of volume, of a meal at a 45° angle before and after the meal. Although preliminary 

evidence with adolescents30 and toddlers31 indicates ease of using systems like Technology-

Assisted Dietary Assessment, other work indicates that complexity in image-taking 

protocols can impose participant burden that potentially leads to declines in image taking 

over time30

The active image-based approach to DI assessment is subject to underreporting32–34 In 

addition to method limitations, technical challenges in automating image analysis have been 

documented. Furthermore, storage and “by hand” analysis of image data by trained 

personnel can accrue considerable error, researcher burden, and expense.35 Nonetheless, 

although challenges remain with using image-based dietary assessment in isolation, images 

can be used as memory aids for self-reported dietary assessment32,36 or dietary recall 

interviews.33,37,38 Data captures through images may also be augmented by asking 

participants to insert text descriptors for captured images39.

Image-Based Passive Assessment

With concerns for participant burden, several studies have focused on passive dietary 

assessment, which generally requires only putting and turning on the assessment instrument/

sensor at the start of the assessment. The eButton40 is one of the earliest passive dietary 

assessment devices and utilizes a camera among 11 other sensors in a relatively small 

circular device worn on the chest. The eButton takes front-facing (relative to the participant) 
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images of whatever is in front of the child at frequent intervals (e.g., every 1–10 seconds) 

over extended periods of time (e.g., 12 hours) and encrypts and stores these images in built-

in memory, along with other sensor-obtained data (e.g., accelerometer, light meter, etc.). At 

the end of each day, a procedure is initiated to upload the images for data storage and 

laboratory processing. Full-day images have been shown to improve 24-hour dietary recalls.
41 Substantial advancements in image analysis methods have been developed toward a 

completely automated system. Recent enhancements to the eButton include (1) automatic 

identification of dining plates of a known size,42 thereby providing a basis for food portion 

size assessment43,44; (2) refined food shape and volume estimation with global contours45; 

and (3) improved estimation of volume of portions of different foods in the images guided 

by lines of the manually administered three-dimensional digital wire mesh.46,47

The eButton system has been tested in children both under laboratory conditions and at 

home and school.48 Full-day passive video data from a wearable camera demonstrates 

substantially higher mean estimated caloric intake compared with a self-reported diet diary,
49 which is subject to systematic underreporting of caloric intake. However, personnel 

(dietitian) effort to review food-item images and need for additional data from participant 

interviews to identify foods not recognized by staff can be substantial.48 Even though the 

time needed to analyze the images is high (i.e., approximately 9 hours for 1 day of images), 

access to the all-day images can provide mportant information regarding energy balance 

behaviors and their antecedents.50,51

Concerning the validity of the eButton’s automated image detection of food, an artificial 

intelligence procedure attained accuracy of 91.5% in the initial sample, and 86.4% in the 

cross-validation sample of images.52 For food identification, dietitians attained 77.0% 

agreement with child/parent reporting of intake after seeing the images.53 Under semi-

laboratory conditions, mean relative error using a three-dimensional wire mesh procedure 

for estimating portion size was 2.8%.46 Against manipulated food portion sizes, two 

dietitians using this three-dimensional wire mesh procedure attained intraclass correlation 

validity coefficients of 0.766 for volume served, 0.596 for volume left after intake and 0.677 

for intake volume, but the engineers who helped create the wire mesh system did 

substantially better.47 Two dietitians attained intraclass correlations of 0.65 with child/parent 

reported portion size estimation after seeing the images.53 Thus, validity coefficients were 

better under laboratory circumstances, when fewer foods were involved; dietitians did not do 

as well as the engineers who helped create the system (suggesting additional training was 

necessary to enhance competence); and validity coefficients were not as high as might be 

desired for immediate use as an off-the-shelf system. Continuing research to automate all 

components holds the promise of enhancing accuracy and ease of use of this system.

Wearable, front-facing cameras now permit in-field passive direct observation of PA,54 

including categorizing types of PA,55 and assessing the environment of active transport.56 

Researcher burden, however, has limited implementation, which awaits further advances in 

digital processing of the images for PA variables.57
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Sensor-Based Methods

Wearable sensors enable identification of key indicators of eating behavior (e.g., chews, 

swallows).58 Sensor data to date have only been collected in adults (outside of the eButton), 

but nothing inherently precludes use of these technologies with children. Signals from a 

combined sound sensor over the laryngopharynx and a bone conduction microphone to 

assess swallowing, and a below-the-ear sensor to detect chewing, demonstrated greater than 

90% accuracy in detecting periods of food intake (within a resolution of 30 seconds). 

Artificial intelligence algorithms were trained to differentiate solid foods from liquids, and 

predict mass of solid foods consumed.59 Combining sensor data with videos, the sound 

sensor data further provided accurate prediction of energy intake.60,61 Others have combined 

motion sensors and physiologic electric signal detectors to detect eating events.62,63 High 

accuracy in detecting eating events has also been reported using an electroglottograph for 

detecting electrical impedance across the larynx by the passing of food during swallowing.64

A transcutaneous sensor using resonance Raman spectroscopy has been developed and used 

to measure carotenoid status, an indicator of fruit and vegetable intake.65,66 Considered a 

biomarker, this method measures skin carotenoid status that reflects intake over multiple 

weeks, but is confounded by smoking and adiposity. This is a promising method for those 

primarily interested in fruit and vegetable intake.

Miniaturized sensing devices enable passively measuring aspects of PA67 and SB.68 

Measurable aspects of activity are in three categories: bodily movements (e.g., walking, 

running), the physiologic or cardiovascular indicators of the physical exertion or SB, and the 

context in which behaviors take place (including past and anticipated behaviors and 

information about the current environment).

Accelerometers have been used to assess PA in children and adolescents for more than 20 

years.69,70 Because of the affordability and practicality of accelerometer-based objective 

sensing, it has become standard even in large-scale studies, such as the U.S. National Health 

and Nutrition Examination Survey71 and the U.K. Biobank studies.72 These 

microelectromechanical system accelerometers measure acceleration, which can be used to 

assess overall motion of a part of the body.73 When the devices are worn on the waist or hip, 

they can measure large-scale body movements that correspond to activity, such as 

ambulation. Gross measurement of movement can be scaled based on age and used as a 

proxy for activity intensity categorization or EE estimation.74 Initially, accelerometers had 

insufficient battery and memory capacity to store the “raw” accelerometer data, instead 

using microprocessors to compute and store motion summary values, called “counts.” 

Sometimes counts were collected from a single axis of accelerometer data, and typically 

values represented 1 minute of activity. Such data were then processed with age-specific 

“outpoint” algorithms to infer EE. Although the doubly labeled water method is considered 

the criterion for EE, accelerometers offer researchers a noninvasive and objective alternative 

for estimating EE.75 Augmenting accelerometer data with physiologic information (e.g., 

heart rate) can lead to improved EE estimates.76

Recently, electronics have improved so that an inconspicuous monitor can collect and store 

raw triaxial accelerometer signals at a sampling rate of more than 60 times a second and run 
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for multiple weeks on a single charge. Simple cutpoints in distributions of accelerometer 

readings do not capture all the information about PA and SB in these data. Some PA and SB 

researchers now propose abandoning cutpoint algorithms for new methods that exploit the 

information present in the raw signal.77 Such methods can use features in the raw data 

stream to not only improve EE estimates,78 but also to measure other aspects of PA, SB, and 

sleep, detecting specific types of activity.79,80 Moreover, using pattern recognition 

algorithms with raw data can differentiate wrist gesturing from true ambulation,72,81 which 

has led researchers to move the sensors from the hip to the wrist, so as to capture both PA, 

SB, and sleep behavior, with high rates of wearing the instrument.82 Researchers are now 

able to study the 24-hour activity cycle, and the relationship between not only movement 

and health, but the specific reasons or ways that people are moving their bodies. Physiologic 

monitoring, in addition to motion-based monitoring, is also being used to study the activity 

of youth.83–85 Practical options for measuring physiology related to PA while someone is 

outside of the laboratory setting include heart rate, galvanic skin response, and skin 

temperature sensors. Nonetheless, the burden of wearing physiologic sensing devices, 

especially those that provide the most reliable data with stick-on attachments, has limited 

widespread use for multisensor measurement of PA, SB, and sleep.

New research-grade activity monitors have shown improved ability to detect bodily 

movement via algorithms developed using limb-worn accelerometers (e.g., wrist and 

ankle81). Some newer versions of accelerometer-based activity monitors are augmented with 

additional sensors to improve detection of posture (e.g., inclinometer86), orientation (e.g., 

gyroscope), and also some contextual information (e.g., light sensor87).

Passive mobile sensing, such as GPS devices or location sensors in mobile phones, can be 

used to identify and characterize the physical environments in which youth engage in PA 

(e.g., outdoor play time88,89) and to aid identification of PA patterns that are challenging to 

assess using an accelerometer alone (e.g., independent mobility,88 travel distance and speed,
85,90 and active transportation91). In-environment sensing, using special-purpose devices that 

i factors of interest, such as air quality,92,93 can provide additional context about the 

environment in which they do it. For example, in-home or in-school sensors could provide 

cues about what type of activity children are engaged in or additional information about their 

sleep patterns.94,95

Integrated Sensor and Image Methods

Current advances in dietary assessment technologies largely target data processing by 

applying artificial intelligence software to sensor signals, sometimes also with images, for 

detecting or discriminating events, bouts, or types of behavior. For example, to minimize the 

numbers of images needed to be reviewed to estimate portion sizes, the study by Sazonov et 

al.96 used data from wearable sensors to mark images for review only when the sensors 

detected eating. The accuracy of this combination of sensors and images in identifying foods 

and quantifying portions has not yet been reported. Because complex foods come in 

combinations in the same dish (e.g., stews, pizza, sandwiches, fried rice), another integrated 

method, DietCam, employed an initial ingredient detector, then machine learning algorithms 

with a texture detector, followed by machine learning algorithms for food clarification, 
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which achieved greater than 85% precision across food groups of different complexity.97 

These advances require artificial intelligence software, which has become a major focus of 

innovation in diet assessment.98

Integrating Digital Measurement With Behavior Change Interventions

A fully integrative sensor approach for measuring and changing behavior is the Monitoring 

and Modeling Family Eating Dynamics99 system, which incorporates several sensors and 

devices (including smartwatches, mobile devices, and beacons) to passively detect eating 

events and intervene in real time to encourage dietary change. Monitoring and Modeling 

Family Eating Dynamics focuses on the home food environment for all family members, 

including children. Accelerometers and gyroscopes on smartwatches automatically detect 

eating events, an approach to eating detection that was previously used exclusively in adult 

populations.100–102 EMA surveys administered via smartphones collect data on context, 

including reasons for eating and who is eating with the user. This cyberphysical system is 

currently under development.

Sensor-based systems have been used to provide just-in-time feedback to promote or repress 

particular eating behaviors. One example used a piezoelectric strain sensor placed on the 

temporalis muscle, attached to the stem of an eyeglass frame, which was combined with an 

accelerometer to attain a 99% accuracy rate in differentiating eating from PA events,103 

common speech, and motion artifacts.104 This system monitored chew counts and provided 

just-in-time feedback (i.e., during the eating event) to participants. Just-in-time feedback 

targeting a 25% reduction in chew counts resulted in a reduction in food mass and energy 

intake.105 The AutoDietary system captures the Bluetooth-linked acoustic data acquired by a 

throat-worn unit, then processes the data on a smartphone in real time, and provides 

feedback to wearers on chewing frequency, snacking, and specific foods consumed.106

Smartphones and other commercially available wearable devices are equipped with a host of 

sensors (e.g., accelerometer, location, or gyroscope) that are increasingly being used to 

assess youths’ PA and SB, as well as vehicles to provide behavior change interventions.
29,107,108 Smartphone data can detect key activities that contribute to EE (e.g., examples 

from the adult literature include sitting, standing, walking, and jogging109), although more 

work remains to be done to reliably detect these activities regardless of how phones are used 

and carried. Phones using context-sensitive EMA110 can gather contextual information about 

youth PA, process that information in real time, and use the results to generate context-

sensitive prompts in response to relevant contextual information (e.g., type of (in)activity, 

social and physical context, and lack of data).111

CHALLENGES IN DIETARY INTAKE AND PHYSICAL ACTIVITY 

MEASUREMENT IN CHILDREN

Although both active imaging and EMA dietary assessment methods, and accelerometer 

measures of PA, have been commonly used, a number of challenges still face most of the 

other innovative technological methods. Passively recorded camera images have intuitive 

appeal for identifying types and amounts of foods consumed, but enthusiasm has been 
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tempered by the early inability to automatically identify the foods and the substantial 

amount of time to manually process food images. Conversely, recent efforts to automatically 

detect eating events and to limit the number of images taken and in turn, minimize the time 

necessary to process the smaller number of images hold promise to advance the field. 

Advances in artificial intelligence software for identifying images with foods (from a stream 

of images), as well as to identify specific foods in those images, also offers the promise of 

further limiting the time necessary to process images. For the foreseeable future, however, 

interviews with the participating users will likely be needed to verify the foods and portions 

that were automatically or manually identified, and to identify foods and portions when the 

camera may have been turned off or images are blurred or too dark. Rapid progress in many 

aspects of the relevant technologies is minimizing these limitations.

Although advancements in sensor technology and algorithm development have improved 

abilities to measure PA, SB, and EE, challenges remain (e.g., measuring movement with 

resistance during resistance training and weight lifting); measuring behavior and context for 

long periods of time, affordably, without burdening participants; and algorithm 

(non)equivalence using outpoints (i.e., activity intensity estimates differ based on algorithm 

selection, which hinders comparability of accelerometer-based PA measurements across 

studies).112 For example, in a recent study using data from the International Children’s 

Accelerometer Database, estimated daily minutes of moderate to vigorous PA ranged from 

29.7 to 126.1 minutes, depending on the algorithm used.112 The use of increasingly 

sophisticated algorithms, processing increasingly heterogeneous sensing data, gathered by a 

diverse set of devices that are rapidly changing, creates a data harmonization challenge. This 

challenge can only be addressed with transdisciplinary, collaborative efforts to collect and 

label sensor data for algorithm development and verification. One such project, the 

Repository for Algorithm Development in Ambulatory Research led by the National Cancer 

Institute, focused on the development of shared ontologies across disciplines (i.e., a common 

vocabulary and set of interrelationships among terms to permit pooling what was learned 

from different studies)113 to improve and foster promising future sensor-driven approaches 

for richly measuring activity in adults and children.

CONCLUSIONS

There has long been recognition of the relevance of DI, PA, and SB behaviors to clinical 

health outcomes across all populations. Although many health practitioners discuss these 

behaviors with patients, the discussion can be limited and nonspecific because of the self-

reported and thus biased nature of current clinical measures of dietary and PA behaviors. 

Although DI assessment methods have yet to achieve the validity and reliability now 

available for technology-enhanced PA measurement, the development of wearable 

technologies in both arenas opens the possibility for valid capture of real-time health 

behavior performance in a given patient. Availability of such data will provide new 

opportunities for personalized behavioral intervention and feedback that incorporates 

effective behavioral change strategies.

Choosing measurement technologies is complex and depends, in part, upon the populations 

and the settings where they will be deployed, the research questions being addressed, and of 
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course the fast-paced improvement of existing—and development of new technologies. It is 

beyond the scope of this paper to aid the reader in specific choices. Rather, the main 

contribution of this paper is to point the reader toward emerging technologies for diet and PA 

assessment in youth. As the field moves forward, it is important to consider that the 

development of mobile and connected tools to assess diet and activity is inherently a 

transdisciplinary task and requires collaboration across disciplines such as (but not limited 

to) engineers, computer scientists, nutritionists, exercise scientists, behavioral scientists, and 

medical experts. The field will move forward much more rapidly if researchers commit to 

using open software architectures that facilitate sharing of code and algorithms and building 

upon existing work rather than forcing each research group to reinvent the wheel. Many of 

these methods are still under development and not yet available for general use. In 

conclusion, technological tools are becoming available that will enable diet and PA health 

interventions to meaningfully improve health outcomes.
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Table 1.

Summary of Dietary Intake Assessment Technological Tools in the Field

Outcome measure/Technology Main feature Limitations References

Type and portion of food intake

    Automated 24-hour recall (ASA24-
Kids)

Uses colorful drawn images of the foods 
to prompt accurate food recall

Self-report error; intrusions and 
omissions were higher when the 
child completed the ASA24-
Kids alone than a dietitian-
administered recall

12, 14, 15

    Image-based active assessment Participants take pictures of their food, 
and then trained dieticians automated 
processes that process the images

Image quality problems; high 
participant burden; difficulty 
with automating image analysis

30, 32–34

Type and frequency of food intake

    EMA Collection of dietary intake data at or near 
the moment when an eating event occurs 
via a mobile device survey; data collection 
can be based on eating events, randomly 
sampled times, or another appropriate 
sampling scheme; dietary intake data are 
retrieved at multiple time points

Decreased compliance and 
attrition rates due to participant 
fatigue

25–27

Portion and/or frequency of food intake

    Wearable sensors Capable of collecting data in frequent 
intervals; can be used to monitor eating 
events and provide just-in-time feedback; 
high accuracy in detecting periods of food 
intake, especially when sensors are 
combined

Sensors may interfere with daily 
activities (e.g., sports); sensors 
can malfunction; very time-
consuming process for 
dieticians to visually identify 
the portions for most foods

48, 57, 60, 62, 94, 
101, 104

ASA24-Kids, Automated SellA Administered 24-Hour Recall adanted for children; EMA, ecolosical momentary assessment.
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Table 2.

Summary of PA Assessment Technological Tools in the Field

Outcome measure/ Technology Main feature Limitations References

Context of PA

    EMA Flexible prompting frequency; implementable 
with smartphones or text messages; provide 
improved ecological validity and reduced recall 
bias compared to paper diary

Self-report data; potential for recall 
bias; possible missing data due to 
participant noncompliance

28

    GPS Sensed location for context-sensitive EMA Potential participant burden with 
having multiple devices

108, 109

Bodily movement

    Accelerometers Validated in children and youth; can be worn on 
various body locations (waist, wrist, and ankle); 
additional sensors that help improve detection of 
posture (e.g., inclinometer), orientation (e.g., 
gyroscope), and also some contextual 
information (e.g., light sensor)

Expense; inability to provide 
contextual information; challenge in 
comparing accelerometry data across 
different protocols; limitation in 
detecting some strenuous activities 
(e.g., weight training)

Specific types of activities

    GPS Passive mobile sensing; ability to identify PA 
patterns that are challenging to assess using 
accelerometer alone (e.g., independent mobility, 
travel distance and speed, and active 
transportation)

Potential participant burden with 
having multiple devices

83, 86, 88, 89

EE

    Accelerometer Validated in children and youth Limitation in estimating EE in some 
types of exercise (e.g., cycling)

    Heart rate monitor Provide improved EE estimate when using with 
accelerometer

Potential participant burden with 
having multiple devices

81–83

EE, energy expenditure; EMA, ecological momentary assessment; PA, physical activity.
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