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In Brief
We used affinity purification
mass spectrometry to determine
the RNA-dependent and
-independent protein–protein
interaction network of the
APOBEC3 family of proteins that
have antiviral and oncogenic
functions. We discovered novel
APOBEC3-specific and shared
interactors that are RNA-
dependent and -independent.
Notably, there were stable
interactions between prefoldin
complex (PFD1-6) subunits and
APOBEC3B, APOBEC3D, and
APOBEC3F. Expression of
APOBEC3B decreased PFD5
interaction with cMyc and
increased cMyc steady-state
levels, indicating a potential
protein interaction-dependent
contribution of APOBEC3B in
cancer.
Highlights

• Determination of APOBEC3 family protein interaction network by mass spectrometry.

• Differential analysis identifies APOBEC3 protein interactions mediated by RNA.

• APOBEC3B/D/F stably interact with Prefoldin family proteins independent of RNA.

• APOBEC3B interaction with PFD5 stabilizes cMyc in MCF7 cancer cells.
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RESEARCH
Protein Interaction Map of APOBEC3 Enzyme
Family Reveals Deamination-Independent Role
in Cellular Function
Gwendolyn M. Jang1,2,3,‡ , Arun Kumar Annan Sudarsan4,‡, Arzhang Shayeganmehr4,‡ ,
Erika Prando Munhoz4 , Reanna Lao1,2,3 , Amit Gaba4 , Milaid Granadillo Rodríguez4,
Robin P. Love4 , Benjamin J. Polacco1,2 , Yuan Zhou1,3, Nevan J. Krogan1,2,3,
Robyn M. Kaake1,2,3,*, and Linda Chelico4,*
Human APOBEC3 enzymes are a family of single-stranded
(ss)DNA and RNA cytidine deaminases that act as part of
the intrinsic immunity against viruses and retroelements.
These enzymes deaminate cytosine to form uracil which
can functionally inactivate or cause degradation of viral or
retroelement genomes. In addition, APOBEC3s have
deamination-independent antiviral activity through protein
and nucleic acid interactions. If expression levels are
misregulated, some APOBEC3 enzymes can access the
human genome leading to deamination and mutagenesis,
contributing to cancer initiation and evolution. While
APOBEC3 enzymes are known to interact with large
ribonucleoprotein complexes, the function and RNA
dependence are not entirely understood. To further un-
derstand their cellular roles, we determined by affinity
purification mass spectrometry (AP-MS) the protein
interaction network for the human APOBEC3 enzymes and
mapped a diverse set of protein–protein and protein–RNA
mediated interactions. Our analysis identified novel RNA-
mediated interactions between APOBEC3C, APOBEC3H
Haplotype I and II, and APOBEC3G with spliceosome
proteins, and APOBEC3G and APOBEC3H Haplotype I
with proteins involved in tRNA methylation and ncRNA
export from the nucleus. In addition, we identified RNA-
independent protein-protein interactions with APO-
BEC3B, APOBEC3D, and APOBEC3F and the prefoldin
family of protein-folding chaperones. Interaction between
prefoldin 5 (PFD5) and APOBEC3B disrupted the ability of
PFD5 to induce degradation of the oncogene cMyc,
implicating the APOBEC3B protein interaction network in
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cancer. Altogether, the results uncover novel functions
and interactions of the APOBEC3 family and suggest they
may have fundamental roles in cellular RNA biology, their
protein–protein interactions are not redundant, and there
are protein-protein interactions with tumor suppressors,
suggesting a role in cancer biology. Data are available via
ProteomeXchange with the identifier PXD044275.

The APOBEC (apolipoprotein B mRNA editing enzyme,
catalytic polypeptide-like) family of enzymes are single-
stranded (ss) polynucleotide cytosine deaminases (1). In
humans, there are 11 total members that are named after the
first enzyme discovered, APOBEC1, which edits apolipopro-
tein B mRNA in addition to other mRNAs and ssDNA (2, 3).
APOBECs that are primarily ssDNA deaminases have diverse
roles in affinity maturation of antibodies (AID, activation-
induced cytidine deaminase), suppression of viral replication
(APOBEC3 (A3) subfamily, A3A-H, excluding E), suppression
of retrotransposons (APOBEC1, AID, A3s), and other yet to be
characterized functions (APOBEC2, APOBEC4) (1). Many of
the family members also have deaminase-independent func-
tions based on their ability to bind RNA and ssDNA with high
affinities, such as blocking virus or retrotransposon polymer-
ase progression (4–6). Through a hydrolytic reaction, APOBEC
enzymes deaminate cytosine to form uracil (7) on transiently
available ssDNA substrates, such as newly synthesized DNA,
DNA being transcribed, or during DNA repair (8, 9). The cy-
tosines deaminated are in a specific motif, such as 5′TTC
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Protein interaction map of APOBEC3 Enzyme Family
(A3F) or 5′ATC (A3B) (10, 11). The fate of the resulting uracil is
varied and may include acting as a template during down-
stream synthesis, which ultimately creates C to T transition
mutations, or could result in the removal of the uracil by uracil
DNA glycosylase, leaving an abasic site (9). This abasic site
can be repaired with high or low fidelity, which may remove
any effect of the uracil or cause the conversion of the C to A,
G, or T (9). While the versatility of uracil in nucleating diverse
downstream events is usually used as an advantage, some
nuclear-localized APOBECs can aberrantly deaminate
genomic DNA during replication or transcription and this has
been linked to ongoing mutagenic processes in tumors and
cancer evolution (12). Some A3 enzymes can also promote
genomic instability in the absence of deamination, but the
mechanism is not known (13). There are multiple levels of
control that attempt to suppress these “off-target” de-
aminations, such as cytoplasmic localization or binding to
cellular RNA (14). Binding to cellular RNA results in APOBEC
enzymes forming high molecular mass ribonucleoprotein
(RNP) complexes that are localized to cytoplasmic RNA pro-
cessing bodies.
Since their discovery over 20 years ago, there have been

essential functions described for many but not all of the
APOBEC enzymes. Humans require APOBEC1 for proper lipid
absorption by editing the apolipoprotein B mRNA, and de-
letions of APOBEC1 in mice cause lethal toxicity (15). AID is
required for affinity maturation and class switching of anti-
bodies, and people born with genetic defects in AID are
severely immunocompromised (1, 16). Although the A3 en-
zymes have essential roles in suppressing viral replication of
retrotransposons and various viruses (e.g., Human immuno-
deficiency virus (HIV), Hepatitis B virus, Epstein Barr virus),
many of them are thought to be functionally redundant (6, 17,
18). Thus, it is unclear why primates would maintain seven
pro-mutagenic enzymes with four of the seven readily able to
enter the nucleus (19). Three nuclear A3s, A3A, A3B, and A3H
Haplotype I (Hap I), have been linked to mutagenesis and
genomic instability in multiple cancer types (9, 13). At the
population level, there is evidence of inactivation or reduced
activity for two of the enzymes linked to cancer in humans. For
example, there is a 90% chance of being homozygous for an
A3B deletion in Oceanic populations (20). For other ethnicities,
it is 30% (20). In addition, A3H is highly polymorphic with
seven main Haplotypes, with A3H Hap II, Hap V, and Hap VII
being stable and active in cells (21, 22). However, the majority
of humans encode either a hypo-active A3H (Hap I) that is
ubiquitinated and degraded in cells or an A3H (Hap III or Hap
IV) that is ubiquitinated and degraded too quickly to observe
catalytic activity (23). It has been hypothesized that these
inactivating measures serve a protective role for the host
genome.
We hypothesized that given the risk to the host for housing

so many mutagenic enzymes, A3s must have additional
functions that benefit humans that have not yet been
2 Mol Cell Proteomics (2024) 23(5) 100755
discovered. In addition, it is likely that there are detrimental
functions yet to be discovered that have supplied the evolu-
tionary pressure for less activity of some A3 family members.
Many proteins exist not alone, but within a protein interaction
network to carry out their functions. Thus, we mapped the
protein interaction network of eight A3 enzymes in order to
identify connections to novel cellular pathways, functions, and
complexes. Using affinity purification mass spectrometry (AP-
MS), we identified high-confidence protein–protein in-
teractions (PPIs) for A3A, A3B, A3C, A3D, A3F, A3G, A3H Hap
I (A3H-I, hypo-active), and A3H Hap II (A3H-II, active) in the
presence and absence of RNAse A to determine RNA-
mediated and RNA-independent interactions. For both
RNAse A treated and untreated conditions, we capture a
number of A3-specific interactions, as well as a number of
interactions that are shared across the A3 family. Among
these are the prefoldin (PFD) complex proteins (1–6) which
specifically co-purify with A3B, A3D, and A3F under both
RNAse A treated and untreated conditions. We demonstrate
that PFD5 interaction with A3B reduces the PFD5 functional
interaction with cMyc and stabilizes cMyc protein expression
levels. Overall, we present the most comprehensive PPI
network of the A3 family of enzymes to date. Functional
enrichment analysis highlights novel cellular pathways and
molecular functions that are likely deamination-independent,
indicating that we have underestimated the physiological
roles of A3 enzymes.
EXPERIMENTAL PROCEDURES

Experimental Design and Statistical Rationale

For each FLAG-tagged A3 bait (e.g. A3A, A3B, A3C, A3D, A3F,
A3G, A3H-I, and A3H-II, in the not treated (NT) condition we performed
three biological replicates. For the RNAse A treated conditions
(+RNAse) the affinity purification experiments were performed as 3
(A3B, A3C, A3D, A3F and A3H-II) or 4 (A3A, A3G, A3H-I) biological
replicates. No technical or process duplicates were performed for any
sample collected. In total, we collected 51 experimental samples, 12
empty vector (EV) control samples (6 for NT, and six for +RNAse), and
11 FLAG-tagged green fluorescent protein (GFP) control samples (5
for NT, and six for +RNAse) (Supplemental Table S1). The number of
EV and GFP controls was selected based on the total number of in-
dependent AP-MS sample preparations such that samples purified on
separate days were represented by an EV and GFP control. EV con-
trols were used for scoring by SAINTexpress (v 3.6.3) (24). GFP con-
trols were scored by SAINTexpress as baits and used to verify
purification. Background proteins were effectively filtered out of the
high-confidence PPI data. All A3 baits, EV, and GFP controls were
analyzed by CompPASS (25) for increased confidence in identifying
PPIs from a purification background. Immunoblotting for co-
immunoprecipitation (co-IP) experiments and quantification were
performed in triplicate.

Expression Constructs

All A3 expression constructs were obtained from the NIH HIV Re-
agent program except A3A, A3H-I, and A3H-II. The A3A and A3H-I
cDNA were purchased and cloned into pcDNA with a 3× HA tag.
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A3H-II was created using site-directed mutagenesis (26). The A3B
plasmid obtained from the NIH HIV Reagent program (ARP-11090)
was found to contain mutations which were corrected by site-directed
mutagenesis to match NCBI Accession AY743217. Subsequently,
single Z domains of A3B were cloned as described in (27). The NIH
HIV Reagent program catalog numbers for the other plasmids were:
A3C (ARP-10101, subcloned into pcDNA with a 3× HA tag), A3D
(ARP-11433, subcloned into pcDNA with a 3× HA tag), A3F (ARP-
10100, subcloned into pcDNA with a 3× HA tag), A3G (ARP-9952).
Reading frames from these pcDNA backbones with 3× HA tags were
amplified and inserted into pcDNA4/TO (Invitrogen) containing a C-
terminal 3× FLAG affinity tag using Gibson assembly. All sequences
were verified and matched against A3 reference sequences to ensure
correct haplotype sequences were used and no mutations were
introduced. We later discovered a point mutation in the A3C construct
after initial AP-MS experiments were performed. It was unclear when
this mutation was introduced, therefore the resulting samples were
removed from the dataset, the mutation was corrected by site-
directed mutagenesis, and the corrected A3C plasmid was used for
additional experiments.

Cell Culture, Transfection, and Cell Harvest for
Immunoprecipitation

HEK293T cells were obtained from the UCSF Cell Culture
Facility (https://cgec.ucsf.edu/cell-culture-and-banking-services), and
cultured in Dulbecco’s Modified Eagle’s Medium (4.5 g/L glucose,
0.584 g/L L-glutamine, and 3.7 g/L NaHCO3, DMEM) supplemented
with 10% Fetal Bovine Serum (Gibco, Life Technologies), 1%
Penicillin-Streptomycin (Corning), and 1% Sodium Pyruvate. Cells
were grown and maintained at 37 ◦C in a humidified atmosphere of
5% CO2 in T175 flasks (Corning). For each immunoprecipitation,
HEK293T cells were plated in 2 × 15-cm dishes at 1 × 107 cells per
plate. After 20 to 24 h of recovery, the HEK293T cells were transfected
with up to 15 μg of the individual 3× FLAG A3 construct or GFP control
DNA. All DNA mixtures were complexed with PolyJet In Vitro DNA
Transfection Reagent (SignaGen Laboratories) at a 1:3 μg:μl ratio
(plasmid:transfection reagent) according to the manufacturer’s rec-
ommendations. Plasmids and PolyJet mixtures were each separately
diluted in 0.5 ml DMEM, combined, and vortexed before incubating for
20 min at room temperature before adding dropwise to cells. Trans-
fected cells were grown for 40 to 48 h, then the media was removed,
and the cells were dissociated from the 15-cm dishes using room
temperature Dulbecco’s phosphate-buffered saline without calcium
and magnesium (D-PBS) supplemented with 10 mM EDTA. Cells from
each pair of transfected dishes were combined and pelleted by
centrifugation at 200g for 5 min at 4 ◦C and washed with 10 ml D-PBS.
Cells were pelleted by centrifugation, divided into two equal aliquots,
and recollected by centrifugation at 500g for 5 min at 4 ◦C. Each of the
baits and controls was individually prepared with at least three bio-
logical replicates.

Cell Lysis and Anti-FLAG Immunoprecipitation

Cell pellets were lysed on ice in 1 ml of freshly prepared cold non-
denaturing lysis buffers without or with RNAse A added (IP buffer
[50 mM Tris-HCl, pH 7.4 at 4 ◦C, 150 mM NaCl, 1 mM EDTA], sup-
plemented with 0.5% Nonidet P 40 Substitute (NP40; Fluka Analyt-
ical), and complete mini EDTA-free protease and PhosSTOP
phosphatase inhibitor cocktails (Roche)). RNAse A lysis buffer was
prepared from IP buffer but is supplemented with 80 μg/ml of RNase A
(Qiagen). Cells were gently resuspended and incubated for 30 min
rocking on a tube rotator at 4 ◦C. Lysates were clarified by centrifu-
gation at 3,500g at 4 ◦C for 20 min, supernatants were collected in
fresh 1.5 ml protein lo-bind tubes (Axygen), and cell debris was dis-
carded. A small amount of each lysate (50 μl) was reserved to monitor
bait protein expression and cell lysis by immunoblotting and silver
staining. Anti-FLAG M2 magnetic beads (40 μl slurry; Sigma-Aldrich)
were initially washed twice in 1.0 ml IP buffer supplemented with
0.05% NP40 and then kept in 0.3 ml IP buffer supplemented with 2 μg
1xFLAG peptide. Cell lysates were combined with washed anti-FLAG
M2 magnetic beads and incubated at 4 ◦C for 2 h on a tube rotator.
After binding, the flow through was collected and the beads were
washed three times with 1 ml wash buffer (IP buffer with 0.05% NP40).
Beads were transferred to a clean tube for a final wash in 1 ml of IP
buffer. Bound proteins were eluted by gently agitating the FLAG beads
with 30 μl 0.05% RapiGest SF Surfactant (Waters Corporation) in IP
buffer at room temperature for 30 min using a vortex mixer. Lysates
and eluates were resolved on 4 to 20% Criterion protein gels (Bio-Rad
Laboratories) to assess FLAG-tagged protein expression and immu-
noprecipitation by Immunoblot and silver stain (ThermoFisher Scien-
tific) respectively. For each immunoprecipitation, 10 μl of the eluate
was submitted for protein digestion and analysis by liquid
chromatography-tandem mass spectrometry (LC-MS/MS).

Reciprocal Immunoprecipitation of Endogenous PUS7 Protein
Under NT and +RNase Conditions

Endogenous immunoprecipitation of PUS7 was performed using
the KingFisher Flex (KFF) Purification System (Thermo Fisher Scien-
tific). Beads and buffers (indicated below) were dispensed into King-
Fisher 96-well deep-well plates or microplates as appropriate and
placed on ice until loaded onto the instrument for automated pro-
cessing as follows: Antibodies (α-PUS7 or IgG1 isotype control were
added to (plate 1) 0.5 ml cell lysate and brought up to 0.75 ml with
Lysis Buffer. After incubating on KFF for 2 h, pre-equilibrated Pierce
Protein A/G magnetic beads (originally 12.5 μl slurry) were added to
the lysate antibody and incubated for an additional 2 h. Protein-bound
beads were washed four times (plates 2–5) with 1.0 ml IP Buffer
supplemented with 0.05% NP40 and eluted in (plate 6) 50 μl 0.05%
RapiGest in IP Buffer. The KFF is operated in a cold room to maintain a
4 ◦C temperature during immunoprecipitation; however, elutions were
performed with the heat block pre-heated to 23 ◦C. Automated pro-
tocol steps were performed using the slow mix speed and the
following mix times: 2 h for binding steps, 2 min for wash steps, and
35 min for the elution step. Two rounds of bead collection (five 30-s
bead collection times) were used at the end of each step before
transferring beads to the next plate. After the elution step, the
instrument was paused for 2 min, to allow beads to settle prior to bead
collection.

SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE), Silver
Stain, and Immunoblot Analysis of Affinity Purified Proteins

Proteins were separated by 4 to 20% SDS-PAGE and either silver
stained (eluate only; ThermoFisher Scientific) according to manufac-
turer’s protocols or transferred to PVDF membranes at 0.25 A for 1.5 h
at 0 ◦C. Transferred PVDF membranes were blocked in 5% milk
powder in 0.2% Tween-TBS overnight at 4 ◦C and immunoblotted
with mouse anti-FLAG-HRP (Sigma) conjugated primary antibody,
rabbit anti-ELAC2 (RNZ2) polyclonal antibody (Proteintech, 10071-1-
AP, 1:2000) and mouse anti-PUS7 monoclonal antibody (OriGene,
OTI4C6; 1:1000) followed by goat anti-rabbit, and anti-mouse sec-
ondary antibodies (BioRad; 1:10,000), respectively. Pierce ECL
Western Blotting Substrate (Thermo Scientific) was used to detect
bands with Hyperfilm ECL film (Amersham).

Protein Digestion and Peptide Desalting

RapiGest MS-safe eluted proteins (10 μl) were reduced in 2 M urea,
10 mM NH4HCO3, and 2 mM DTT at 60 ◦C for 30 min with constant
shaking. Samples were then alkylated in the dark at room temperature
Mol Cell Proteomics (2024) 23(5) 100755 3
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with 2 mM iodoacetamide for 45 min. Reduced and alkylated proteins
were digested with 80 ng trypsin overnight at 37 ◦C. Peptides were
acidified with formic acid (pH < 3) and then desalted using C18 ZipTips
(Millipore) according to the manufacturer’s protocols. Desalted pep-
tides were centrifuged in a speed vac to dry and stored at −80 ◦C.

Mass Spectrometry Data Acquisition

Dried peptide samples were resuspended in 2% acetonitrile, 0.1%
formic acid solution, and analyzed by LC-MS/MS using an Easy-nLC
1000 (Thermo Fisher Scientific) coupled online to an Orbitrap Elite
Hybrid Mass Spectrometer with ETD (Thermo Fisher Scientific). Pep-
tides were separated on a 75 μm × 25 cm fused silica IntregraFrit
capillary column (New Objective) packed in-house with 1.9-μm
Reprosil-Pur C18 AQ reverse-phase resin (Dr Maisch-GmbH). Pep-
tides were eluted at a 300 nl/min flow rate over a 60 min gradient: 5%
B for 1 min, 5%–30% B in 50 min, 30 to 95% B in 5 min, and 95% B
for 4 min (mobile phase buffer A: 100% H2O/0.1% FA; mobile phase
buffer B: 100% ACN/0.1% FA). Each immunoprecipitation sample was
run once with a clean gradient run between each individual bait
sample, and all samples were randomized in the queue to reduce
carry-over effects. Data were collected on the Orbitrap Elite in positive
ion mode with MS1 detection in profile mode in the orbitrap
(150–1500 m/z, 1,20,0000 resolution, AGC target of 1 × 106, max in-
jection time of 100 ms). MS2 fragmentation was performed on charge
states 2+ and above with normalized collision energy set at 35% with
a 20 s dynamic exclusion after a single selection (tolerance of 10 ppm).
MS2 data were collected in the ion trap (ion count target 104, max
injection time of 50 ms). For a full description of all LC, MS acquisition,
and tune parameters see Supplemental Table S2.

Peptide and Protein Identification and High Confidence PPI
Scoring

All raw data files were searched with MaxQuant (28) (v 1.6.3.3)
against the human proteome (SwissProt canonical protein sequences-
20393 entries, updated October 09, 2018) concatenated with a fully
randomized decoy database, using a 0.01 peptide and protein false
discovery rate. The following default MaxQuant parameters were
used: (1) digestion mode was set to specific and Trypsin/P was
selected with two max missed cleavages; (2) Carbamidomethyl (C)
was selected as the only fixed modification; (3) oxidation (M) and
Acetyl (Protein N-term) were selected as the variable modifications
with five max number of modifications; and (4) precursor and fragment
mass tolerance were set to 20 ppm and 0.5 Da respectively. In
addition, label-free quantification was turned on, with a match be-
tween runs set to 0.7 min. For each bait in each condition, PPIs were
determined by scoring with SAINTexpress (v 3.6.3) (24) and Comp-
PASS (25) with both the NT and the +RNAse EV samples being
combined to use as controls. Since we collected an EV and GFP
control each time an individual replicate was generated, and not every
replicate included all baits, more controls were collected than indi-
vidual A3 baits. As only 3 to 4 individual samples were collected per
bait per condition, we randomly selected 12 total EV and 11 GFP
controls for SAINT scoring, with EV acting as the SAINT control, and
GFP acting as a bait for further confidence filtering. The metadata
describing the files associated with each of the biological replicates for
each bait in each condition can be found in Supplemental Table S1.
We applied a two-step filtering strategy to determine the final list of
reported high-confidence interactors which relied on two different
scoring stringency cutoffs. In the first step, for each bait and condition,
an identified protein must have a SAINTexpress Bayesian False Dis-
covery Rate (BFDR) < 0.05. In the second step, an identified protein
was considered a high confidence interactor for that bait and condi-
tion, if it was in the 0.9 percentile of the CompPASS wd percentile per
bait score and removing any preys from the list which are also called
4 Mol Cell Proteomics (2024) 23(5) 100755
hits in the appear in GFP control (which was treated as a bait during
scoring). High-confidence interactions for each bait were mapped in
separate condition-specific networks as well as a combined network,
and visualized with Cytoscape (29). All mass spectrometry data
files (raw and MaxQuant search results), as well as associated
metadata, and SAINTexpress scored data files, have been deposited
to the ProteomeXchange Consortium (http://proteomecentral.
proteomexchange.org) (30) via the PRIDE (31) partner repository with
dataset identifier PXD044275.

Differential Interaction Score and MSStats Analysis

A differential interaction score (DIS) was computed for all high-
confidence interactions identified for any A3 bait in either NT
or +RNase conditions (described in (32–34)). The DIS is calculated as
the difference between the NT and +RNase interaction scores for a
given bait with the interaction score being the average of 1—the
SAINTexpress BFDR and CompPASS wd percentile per bait. In this
way, a DIS near 0 indicates an interaction that is confidently identified
in both NT and +RNAse conditions, while a DIS near −1 or +1 indicates
that interaction is specific to NT or +RNAse conditions respectively.
MSstats analysis was used to quantitatively compare and measure
significant differences in protein abundance between NT and +RNAse
conditions using default parameters for MSstats and adjusted
p values (Student’s t test and Benjamini–Hochberg correction) (35).
This quantification was performed using artMS, acting as a wrapper
for MSstats, utilizing the function artMS::artmsQuantification with
default settings.

A3 Domain Sequence Alignment and PPI Similarity Analysis

For each A3 protein, the HMMER (v 3.3.1, http://hmmer.org/) (36)
tool hmmmscan was used to match against Pfam (37) A domains in
order to define double APOBEC domain boundaries. Specifically,
matches to Pfam domains of the following terms were selected:
“NAD2”, “APOBEC2”, “NAD1”, APOBEC_N”, and “APOBEC_C”. The
two domain A3s were then split into two by dividing at the midpoint
between the largest first- and second-domain matches found by
hmmscan. An all-by-all pairwise identity between domains was
calculated using BLAST (v 2.11.0+) (38) with Smith-Waterman trace-
back enabled. Multiple sequence alignment and clustered trees were
calculated by clustal-w (v 2.1) (39). Pairwise comparisons of the high-
confidence PPIs were calculated and visualized using the online
ProHits-viz analysis and visualization tools. Bait comparisons were
performed for each condition separately, as well as a full set, with the
abundance set to the average of the spectral count (AveSpec). Ses-
sion files for each comparison (NT_244_bait_session.json; RNA-
se_244_bait_session.json; ALL_244_bait_session.json) are provided
in the supplement and can be uploaded to the Prohits-viz visualization
tool (40) to display matrices and analysis settings.

Functional Overrepresentation/enrichment Analysis

The high-confidence PPIs for each bait under each condition were
combined to test for A3-specific functional enrichments of Gene
Ontology (GO), KEGG, and canonical pathway terms. Over-
representation analysis was performed using Metascape Express
Analysis (https://metascape.org) with default parameters. The top
significant terms (based on cumulative hypergeometric p-values and
enrichment factors) were identified, refined to non-redundant terms,
and clustered hierarchically. In addition to the bait-specific enrich-
ments, PPIs for each condition were combined (all baits) to identify
any major functional differences between both conditions. Enrich-
ments are visualized by heatmaps that were automatically generated
in the analysis report by Metascape. Subcellular localization of PPIs
for A3B and A3F was determined by manually curating the subcellular

http://proteomecentral.proteomexchange.org
http://proteomecentral.proteomexchange.org
http://hmmer.org/
https://metascape.org
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localization information from https://www.uniprot.org/. The percent-
age of prey localized to the nucleus was calculated for A3B and the
percentage of prey proteins localized to the cytoplasm was calculated
for A3F.

Transfections in HEK293T Cells for Reciprocal and Experimental
Anti-FLAG Immunoprecipitation

HEK293T cells were maintained in DMEM with Fetal Bovine Serum
to a final concentration of 10%. Cells were grown and maintained at
37 ◦C in a humidified atmosphere of 5% CO2. HEK293T cells were
seeded in a T75 tissue culture flask at 2 × 106 cells per flask and 16 to
24 h later, plasmids were transfected using GeneJuice (Milli-
poreSigma/Novagen) transfection reagent as per the manufacturer’s
protocol. The following C-terminally 3× HA tagged constructs in
pcDNA were used as indicated in the figures: A3B, A3D, A3F, A3G,
A3B N-terminal domain (NTD), A3B C-terminal domain (CTD); C-
terminally FLAG-tagged constructs in pcDNA: PFD3 (GenScript,
NM_003372), PFD5 (GenScript, NM_002624); and cMyc (GenScript,
NM_002467) in pcDNA. After 24 h, where indicated 12.5 μM MG132
was added for 16 h. Then, 40 h after the transfection, cells were
washed with 1x PBS and lysed using 1x Lysis Buffer (50 mM Tris, 1%
NP40, 0.1% sodium deoxycholate, 150 mM NaCl, 10% glycerol,
50 mM sodium fluoride, and complete mini EDTA-free protease in-
hibitor). Protein concentrations were estimated using the Bradford
assay. RNAse A at a final concentration of 50 μg/ml was used for the
required experiments. Subsequently, anti-FLAG M2 magnetic beads
(Sigma) were added to the lysates and incubated for 2 h at 4 ◦C on a
rotator. Co-IP was performed as per the manufacturer’s protocol, but
using Lysis Buffer for washes. Laemmli buffer without a reducing
agent was used to elute proteins. Samples were reduced with 5% 2-
mercaptoethanol and then resolved by SDS-PAGE before transferring
to a nitrocellulose membrane. The 3× HA tagged A3B, A3D, A3F, A3G,
A3B NTD, and A3B CTD were detected using anti-HA rabbit antibody
(1:1,000, Sigma), FLAG tagged PFD3 and PFD5 were detected using
anti-FLAG mouse antibody (1:1,000, Sigma), and anti-c-Myc rabbit
antibody clone 7E18 (1:500, Sigma). Loading control for cell lysate,
α-tubulin, was detected using an anti-α-tubulin mouse antibody
(1:5,000, Sigma). Secondary detection was performed using Licor
IRDye antibodies IRDye 680-labeled anti-rabbit and IRDye 800-
labeled anti-mouse. Secondary antibodies were used at 1:10,000.
Immunoblots were quantified using Image Studio software.

Transfections in HEK293T cells for Detection of A3B, PFD5, and
cMyc

HEK293T cells were plated in a six-well plate at 3 × 106 cells per
well and GeneJuice transfection reagent was used as per the manu-
facturer’s protocol. The following plasmids were transfected (100 ng
each): pcDNA PFD5-FLAG, pcDNA cMyc, and pcDNA A3B-3× HA,
pcDNA A3B NTD-3× HA, or pcDNA A3B CTD-3× HA. Empty pcDNA
was used to equalize transfection amounts to 300 ng where needed.
Transfection media was replaced the day after transfection and where
indicated, MG132 was added to a final concentration of 12.5 μM for
16 h. Then, 40 h after the transfection cells were washed with 1x PBS
and lysed in 2x Laemmli Buffer. A Lowry assay (Sigma - total protein
kit) was used to determine protein concentrations before resolving
samples on an SDS-PAGE gel and transferring them to a nitrocellulose
membrane for immunoblotting. The A3B-3× HA was detected using
anti-HA rabbit antibody (1:1,000, Sigma), FLAG-tagged PFD5 was
detected using anti-FLAG mouse antibody (1:1,000, Sigma), endog-
enous PFD5 was detected using mouse anti-PFD5 antibody (1:500,
Santa Cruz), and cMyc using anti-c-Myc rabbit antibody clone 7E18 or
9E10 (1:500, Sigma). Loading control for cell lysate, α-tubulin, was
detected using an anti-α-tubulin mouse antibody (1:5,000, Sigma).
Secondary detection was performed using Licor IRDye antibodies
IRDye 680-labeled anti-rabbit and IRDye 800-labeled anti-mouse.
Secondary antibodies were used at 1:10,000. Immunoblots were
quantified using Image Studio software with normalization of each
experimental lane to its respective anti-α-tubulin band. Normalized
values were then converted to relative amounts by setting the cMyc
alone condition to 100 and calculating the relative cMyc in other
experimental conditions.

Transfection and Immunoblotting for MCF7 cells

Six-well plates were seeded with MCF7 cells at 3 × 105 cells per
well. Cells were maintained in Eagle's Minimum Essential Medium with
0.01 mg/ml human recombinant insulin and Fetal Bovine Serum to a
final concentration of 10%. Cells were grown and maintained at 37 ◦C
in a humidified atmosphere of 5% CO2. C-terminally tagged A3B-
3× HA construct in pcDNA was used for transfections (0–300 ng)
using Lipofectamine 3000 transfection reagent as per the manufac-
turer’s protocol. After 48 h, cells were washed with 1x PBS and lysed
using 2x Laemmli buffer. Protein concentrations were estimated using
a Lowry assay (Sigma – total protein kit). A3B was detected using an
anti-HA rabbit antibody (1:1,000, Sigma), endogenous cMyc and
PFD5 were detected using rabbit anti-c-Myc antibody clone 7E18 or
9E10 (1:500, Sigma) and mouse anti-PFD5 antibody (1:500, Santa
Cruz), respectively. Loading control for cell lysate, α-tubulin, was
detected using an anti-α-tubulin rabbit antibody (1:5,000, Sigma).
Secondary detection was performed using Licor IRDye antibodies
IRDye 680-labeled anti-rabbit and IRDye 800-labeled anti-mouse.
Secondary antibodies were used at 1:10,000. Immunoblots were
quantified using Image Studio software with normalization of each
experimental lane to its respective anti-α-tubulin band. Normalized
values were then converted to relative amounts by setting the cMyc
alone condition to 100 and calculating the relative cMyc in other
experimental conditions.
RESULTS

Global Analysis of A3 Protein-Protein Interactions (PPIs)

Here we use a label-free FLAG-based AP-MS approach to
characterize the RNA-dependent and -independent PPI
network for human A3 proteins (Fig. 1A). To this end, we
transiently transfected HEK293T cells with C-terminally 3×
FLAG tagged A3 proteins (i.e. A3A, A3B, A3C, A3D, A3F, A3G,
and two haplotypes of A3H: A3H-I and A3H-II), or FLAG-
tagged negative controls (i.e. GFP-FLAG, empty vector (EV))
(Supplemental Fig. S1). A3A is the only A3 family member
expressed in myeloid lineage cells and the others are primarily
expressed in CD4+ T cells at different levels (41, 42). During
viral infection and cancer expression of some A3s has been
identified in other cell types, but there is no consistent cell
type where their expression is found (18, 43–47). Given these
reasons as well as the frequency of HEK293Ts being used as
model cells for PPI network analyses, we used HEK293T cells
to compare interactions across A3 family members. Negative
controls and A3-FLAG proteins were affinity purified by anti-
FLAG immunoprecipitation in biological triplicate from
HEK293T cell lysates that were either treated with RNAse A
(+RNAse) or not treated (NT) (Supplemental Fig. S2). Purified
samples were digested with trypsin, and the resulting peptides
were analyzed by LC-MS/MS. Data was searched using
MaxQuant (28) (Supplemental Tables S3 and S4), and high-
Mol Cell Proteomics (2024) 23(5) 100755 5
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FIG. 1. AP-MS analysis of the A3 family proteins identifies shared and specific RNA-dependent and -independent PPIs. A, in the AP-
MS workflow described in this study, HEK293T cells were transiently transfected with C-terminally 3× FLAG-tagged A3 proteins in biological
triplicate and purified with or without RNAse A treatment. Purified proteins were trypsin digested and analyzed by LC-MS/MS. Peptides and
proteins were identified by MaxQuant (28), high confidence PPIs were determined by SAINT and CompPASS, and RNA-dependent and in-
dependent PPIs were characterized using a Differential Interaction Score (DIS) calculation. The cartoon representation at the top shows each of
the 3× FLAG tagged A3 proteins with the Z1 domain in green, the Z2 domain in orange, and Z3 domain in blue. B, sequence identity matrix
demonstrating pairwise similarity in A3 domains. C, clustered tree diagram of the similarity of A3 protein domains. D, correlation plot of SAINT-
scored proteins identified in A3 pull-downs with no treatment (left) and RNAse A treatment (right); performed by Prohits-viz (40). E, heatmap of
the top functional enrichment analysis of high confidence PPIs per each bait. For the full list of enrichments see Supplemental Table S7.
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confidence PPIs were differentiated from background using a
two-step filtering approach with the SAINTexpress (24) and
CompPASS (25) scoring algorithms.
Using SAINTexpress we first filtered out any protein with a

BFDR >0.05 (Supplemental Table S5, Supplemental Fig. S3)
and then removed any preys from the list which were also
called hits in the GFP control (one prey), resulting in the
6 Mol Cell Proteomics (2024) 23(5) 100755
identification of 744 interactions between the eight A3 bait and
292 prey proteins. This included 391 interactions in RNAse+
(blue edges) and 353 interactions in NT (red edges) conditions;
of these 744 interactions, 326 bait-prey pairs (163 interacting
proteins) were captured in both conditions. In total, 129 pro-
teins in this network were identified as interacting with at least
two A3 bait proteins in at least one condition, while 163
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proteins were found to pull down specifically with one A3
protein in one or both conditions. SAINTexpress accounts for
reproducibility, abundance, and specificity against a control (in
this case, the empty vector), regardless of the other baits, and
therefore avoids penalizing proteins that are identified across
multiple baits or within different conditions, which is good for a
network where sequence similarity between baits and shared
nucleic acid binding function in cells could result in over-
lapping interactors. However, given the density and size of the
SAINTexpress network, we used CompPASS wd scores (0.9
percentile per bait) as a second filter to focus on the highest
confidence interactions, and clarify which hits are more likely
to be strong A3 and condition-specific interactors; these are
highlighted as darker cyan in Supplemental Fig. S3
(Supplemental Table S5). In total, we captured 143 and 153
high-confidence PPIs between the eight A3 protein baits un-
der NT and +RNAse conditions respectively, with 60 PPIs
being identified in the A3-PPI network under both conditions
(Supplemental Fig. S4A). In comparison to the SAINTexpress
network, this reduced the total prey count by 132 and corre-
sponded to 102 and 101 total high confidence interacting
proteins identified in NT and +RNAse conditions respectively,
with 48 being shared across conditions (Supplemental
Fig. S4B). The proteins identified in each condition for each
individual A3 bait can differ fairly significantly, thus demon-
strating the importance of performing these analyses for each
bait under both conditions (Supplemental Fig. S4C).
To see if protein domain structure and sequence similarity

correlated with high-confidence A3 co-purifying proteins in NT
and +RNAse conditions, we calculated the pairwise correla-
tion and clustered in a correlation matrix. The A3 proteins are a
family of single (A3A, A3C, A3H) and double (A3B, A3D, A3F,
A3G) zinc-coordinating domain (Z domain) proteins, with the
protein domains all sharing a core structure of a five-stranded
β-sheet surrounded by six α-helices (48). The double domain
proteins were considered as two entities, the NTD and the
CTD. Sequence alignment of the amino acids in each domain
and similarity analysis clusters these protein domains into four
groups: Z1 domains (A3A, A3B-CTD, and A3G-CTD), the Z3
domain (A3H), and two groups of Z2 domains (1-A3C, A3D-
CTD, A3F-CTD; 2-A3G-NTD, A3F-NTD, A3B-NTD, A3D-NTD)
(Fig. 1, B and C) (49, 50). However, these amino acid simi-
larities did not always correlate with the clustering of shared
PPIs (Fig. 1D). Further, although some of the A3 proteins have
similar documented functions, such as the anti-HIV activity of
A3F, A3G, and A3H-II, most have diverse PPIs (Fig. 1D).
Comparing single domain A3A, A3C, and A3H proteins, we do
not see high levels of overlapping interactions between them
and other A3 proteins. A3A does not share high-confidence
interactors with the other A3 proteins, and its interactors are
largely not sensitive to RNAse A treatment (Supplemental
Fig. S5). Similarly to A3A, A3C does not have a high degree
of shared high-confidence interactions and only shares one
interaction with any other A3 protein (Supplemental Fig. S4C).
The two A3H haplotype baits, A3H-I and A3H-II, share a
number of interactors and cluster together in both NT
and +RNAse conditions. Notably, under NT conditions these
A3H proteins also cluster with and share interactors with A3G,
though this correlation is lost in the +RNAse condition. Given
A3H is a single domain, while A3G is a double domain A3
protein, and the low sequence homology between the do-
mains, the overlapping proteins likely reflect a functional
similarity. Given these interactions are sensitive to RNAse A, it
is probable that these interactions are mediated by RNA. The
double domain proteins A3B, A3D, and A3F cluster together
under both NT and +RNAse conditions, indicating shared in-
teractions. Based on the domain structure and homology of
these proteins (Fig. 1B), the NTDs of A3B, A3D, and A3F
cluster together and it is feasible that the shared interactions
are engaging similar binding surfaces on each protein through
their NTD. Notably, when comparing correlation across all
baits and conditions, this trend remains (Supplemental
Fig. S5).
All PPI data was collected by affinity purification in which

cells are lysed in non-denaturing buffer prior to purification,
thus disrupting cellular compartmentalization, which could
allow otherwise location-dependent interactions to occur.
Most A3 proteins are found throughout the cell (19), and all
A3s except A3A have been previously associated with ribo-
nucleoprotein complexes in the cytoplasm, which is consis-
tent with our PPI dataset (14, 51–54). Additionally, although
A3D and A3G were thought to be only cytoplasmic, several
more recent reports have shown that they are also found in the
nucleus (46, 55, 56). Only A3B has a nuclear localization signal
that places the majority of A3B in a single compartment, but
similar to other A3s, there are conditions where it becomes
relocalized to the cytoplasm (53, 57). A3F has largely been
identified in the cytoplasm except during HIV-1 infection (53).
Since A3B and A3F are the most discretely localized bait
proteins, we used their PPI datasets to test the specificity of
the prey proteins to cellular localization. We found that for A3B
PPIs, 62.5% were proteins that had subcellular localization
reported in the nucleus (Supplemental Table S6). Conversely,
for A3F, we found that 77% of the PPIs were proteins that had
subcellular localization reported in the cytoplasm, indicating
that a number of compartment-specific interactions were
maintained in our PPI dataset (Supplemental Table S6).
We performed functional enrichment analysis for each bait

in order to further characterize the high-confidence PPIs
pulled down by each A3 bait. Here we were primarily inter-
ested in characterizing bait-specific and shared interactions,
and since some shared interactors were conditional for some
baits, we collapsed the NT and +RNase datasets by bait prior
to performing enrichment analysis. As expected of nucleic
acid binding proteins, a number of the A3 PPI functional en-
richments corresponded to RNA and ssDNA processes and
complexes (Fig. 1E, Supplemental Table S7). While A3A
shares a functional enrichment, i.e. protein folding, with A3B,
Mol Cell Proteomics (2024) 23(5) 100755 7
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A3D, and A3F, it is for different complexes and specific pro-
teins (PDCL3, PHLP, TXND9, TCPA, TCPH, and TCPZ) related
to protein folding functions (Supplemental Fig. S4C). The A3A-
specific functional enrichment is for PDCL and TRiC/CCT in
G-protein beta folding, and in a recent study, it was shown
that A3A interaction with the CCT complex inhibits its deam-
inase activity (58). Consistent with the proteomics results of
the previous study, in our hands the CCT complex binding is
specific to A3A and does not co-purify with other A3 proteins.
A3C shares some functional overlap with other A3 proteins
including mRNA and ncRNA metabolic processes (Fig. 1E)
(58). The top A3C-specific functional enrichment is the repli-
cation protein A (RPA) complex, a heterotrimeric complex that
binds to ssDNA. Previously, it has been shown that RPA can
interact with AID (59, 60) and recently it was shown that the
RPA complex is co-opted by the L1 retrotransposon to facil-
itate integration and can also recruit A3 proteins to the site of
integration, although A3C was not specifically studied (61).
Interestingly, A3H-I and A3G, but not A3H-II interactors share
a functional enrichment in tRNA processing (Fig. 1E and
Supplemental Fig. S4C). In addition, A3G-specific interactors
are enriched for tRNA pseudouridine synthesis functions
(Fig. 1E). To our knowledge this is the first time A3G and A3H
proteins have been linked to tRNAs and other tRNA editing
enzymes. The A3B, A3D, and A3F proteins share a core group
of interacting proteins and the main shared functional
enrichment for this trio is in protein folding (Fig. 1E). Unlike
A3A, these three A3s do not have interactions with the CCT
complex, their protein folding enrichment is related to in-
teractions with prefoldin (PFD) complex subunits (Fig. 1E,
Supplemental Fig. S4C). Collectively, these results demon-
strate that a number of A3 PPIs are mediated by RNA and that
while some PPIs are shared, a large number of interactors are
A3-specific. These data demonstrate why it is important to
systematically map interactions for all the A3 proteins under
RNA-depleted and RNA-untreated conditions.

The RNA-Dependent and -Independent A3 PPI Network

After identifying high-confidence interactors for each bait,
we wanted to identify which PPIs were condition-specific, that
is, those that more strongly interact with specific A3 proteins
in +RNAse, NT, or both conditions. A3 enzymes are known to
interact with cellular RNA promiscuously, being identified as
interacting with multiple RNA types in the absence of viral
infection (62–64). Studies of A3 enzymes during HIV-1 infec-
tion and structural studies show that they prefer G-rich and
A-rich sequences, but do not appear to have other specific
requirements (65–67). Notably, recent cryo-EM structures
have determined that A3G can form an interaction with the
HIV-1 Vif protein that is dependent on RNA and protein con-
tacts, thus providing a model for the RNA-dependent
interactions identified in this study (67–69). Since RNA-
dependent interactions were identified consistently across
biological replicates, we hypothesize that there are both
8 Mol Cell Proteomics (2024) 23(5) 100755
protein and RNA interactions that are taking place.
Conversely, interactions that occur only in the +RNAse con-
dition may occur due to RNA occluding the protein binding
interface of the A3 or prey protein, now being exposed by the
addition of RNAse A degrading the bound RNA. As with all AP-
MS data, additional validation will be needed to ensure these
interactions take place within proper cellular compartments
and the context of living cells with intact signaling.
As expected, a number of the high-confidence PPIs were

RNA-dependent with 83 being identified only in the NT con-
dition. In addition, we also identified 93 A3-interacting proteins
only under +RNAse conditions. For a number of the PPIs
classified as high confidence under one condition, they were
pulled down and identified in both, sometimes just below our
stringent high confidence threshold. Therefore, in order to
more accurately discern conditional interactions from non-
conditional interactions, we used a modified differential
interaction score (DIS) similar to previous reports (32–34). The
DIS maintains high stringency hit calling (BFDR<0.05;
CompPASS wd 0.9 percentile per bait), while also recovering
conserved interactions scoring below strict cutoffs for one
condition but not for the other. Here, a DIS of 0 indicates that
prey was confidently purified under both NT and +RNAse
conditions, whereas a DIS of +1 or −1 indicates that a prey
interaction is specific to +RNAse or NT conditions respectively
(Supplemental Table S8). If we use a cutoff of |DIS| >0.5
indicating conditional change, we find that 163 PPIs are
identified in both conditions and that only 38 are preferentially
identified in +RNAse conditions, and 35 are preferentially
identified in NT conditions (Supplemental Table S8).
Combining NT and +RNAse PPI networks we capture 236
interactions between the eight A3 protein baits and 155
interacting proteins (Fig. 2). It is important to note that since
the SAINT BFDR accounts for more than just abundance, this
is not an indicator of the relative abundance of an interaction,
but a way to indicate if a PPI is an interactor in one or both
conditions. For some PPIs identified as an interactor in both
conditions, it may be that this interaction is stronger or more
abundant in one condition. To this end, we performed MSstats
analysis on each A3 bait PPI network, quantitatively
comparing RNAse+ and NT conditions (Supplemental Fig. S6,
Supplemental Table S8).
In our differential A3 PPI network (Fig. 2) edge width cor-

relates to the average spectral count (AveSpec) and the edge
color corresponds to the bait-prey DIS. For PPIs identified in
both conditions, the edge width corresponds to the highest
AveSpec (Max Ave Spec). Functional enrichments that cor-
responded to biological processes (BP) and cellular com-
plexes (CC) were extracted and proteins in the full PPI network
were mapped back to a single biological process or cellular
complex. If a protein had more than one BP and one CC, the
term with a larger population was selected to represent it in
the network (Supplemental Table S8). Several PPIs captured
in this network have been described in previous studies, or
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FIG. 2. The A3 family RNA-dependent and RNA-independent PPI network. Protein interactions are depicted as edges drawn between two
protein nodes with the edge thickness representing the maximum of the average spectral count (Max Ave Spec from 2 to 101) for a particular
bait-prey pair. Edge color represents the DIS of the pairwise interaction from −1 to 1, with −1 being confidently identified only in NT (red), one
being confidently identified only in RNAse+ conditions (blue), and 0 indicating similar interaction in both conditions (black). Gray edges are prey-
prey interactions from known protein complexes. The A3 proteins are represented as large diamond nodes, and the identified prey proteins are
represented as circular light blue nodes. Prey proteins involved in select enriched cellular complexes, are depicted as filled in blue nodes. Prey
proteins involved in select biological processes are depicted with yellow colored borders.

Protein interaction map of APOBEC3 Enzyme Family
have been reported in interaction databases (Supplemental
Table S8) (51, 52, 58, 70, 71), although we capture a number
of novel interactors as well. The most interconnected A3
interacting proteins were RNA binding proteins including
proteins involved in splicing, ribonucleoprotein complexes
(RNP), and RNA modification. Specifically, components of the
spliceosome interact with A3C, A3G, and both A3H haplo-
types. Though A3C interacts with a different subset of spli-
ceosomal components in an RNA-dependent manner, A3G,
A3H-I, and A3H-II interact with a core set of spliceosome
factors in both conditions. To simplify, we can look at indi-
vidual subnetworks for each A3 bait (Supplemental Fig. S7).
The interconnectivity of a given prey is also mapped to each
individual network (Supplemental Fig. S7). An in depth dis-
cussion of these results is presented as a Supplementary
Discussion.
Although studies have identified the RNA-dependent in-

teractions of A3G and A3F with RNP complexes previously
[90,91], the RNA-independent interactions and overlapping
interactions with other A3 family members have not been
examined in detail. Here we examine some of the RNA-
dependent and -independent interactions that are identified
in our PPI network. A3C, A3G, A3H-I, and A3H-II capture and
identify PPIs with functions in RNA splicing and spliceosome
complexes. Though functionally similar, it is noted that the A3s
showed distinct interactions with specific subunits. For
example, A3C interacts with spliceosome proteins SRRT,
SNW1, RED, SMU1, and CATIN, while A3G, A3H-I, and A3H-II
do not. The DIS scores for SRRT, SNW1, and SMU1 were
similar in NT and +RNAse, but RED and CATIN were stronger
interactors in NT, indicating a potential dependence on RNA
for the interaction. In contrast, A3G, A3H-I, and A3H-II share
interactions with a separate spliceosome protein complex
involving PRPF3, SRSF1, SRSF2, SRSF4, SRSF5, SRSF6,
PPM1G, and PPIH, although not all three A3 proteins interact
with all these components. Most interactions are shared be-
tween A3G and A3H-I, with only SRSF1, SRSF2, and SRSF6
being shared between A3G, A3H-I, and A3H-II. All of these
interactions occurred under both conditions except SRSF1
and SRSF2 which were recovered for A3H-I only in
the +RNAse condition. Additional PPIs were found with
functions involved in tRNA processing, RNA methylation, and
Mol Cell Proteomics (2024) 23(5) 100755 9
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ncRNA export from the nucleus. Similar to spliceosome
components, PPIs with functions in tRNA processing and
RNA methylation components were found to interact with
multiple A3 proteins, primarily A3G and A3H-I, though many
were non-overlapping between A3 datasets. A3G specifically
interacted with tRNA processing and RNA methylation PPIs
that were only observed in the NT condition (e.g., PUS7,
PUS3, TRUA, TRM1, WDR6) whereas most PPI from this
category with A3H-I were found in both NT or +RNAse, with
less found with only NT (e.g., THUM3, PUS7) or +RNAse (e.g.,
RNZ2, TRM6, TRM61, DIM1). We validated the RNAse+ and
NT condition specificity for two of these, PUS7 and RNZ2, in
HEK293Ts overexpressing FLAG-tagged A3 proteins. Using
co-immunoprecipitation (co-IP) immunoblots, we show that
PUS7 is NT-specific while RNZ2 is RNAse+ specific, consis-
tent with our MS results (Supplemental Fig. S8A). We also
demonstrate the RNA-dependence of the PUS7 interaction by
reciprocal co-IP of the endogenous PUS7 protein from
HEK293T cells expressing A3G or GFP control (Supplemental
Fig. S8B).
It was notable that A3B, A3D, and A3F all interacted with

multiple members of the Prefoldin family of proteins (PFD1-6).
The strongest interactions with A3B are PFD proteins, with
PFD3, PFD5, and PFD6 being the most abundant, in both the
NT and +RNAse condition (Fig. 2 and Supplemental Fig. S4).
PFD2 had the weakest interaction with A3B and A3F and
PFD4 had an intermediate interaction strength with A3B, A3D,
and A3F. In the case of A3D, there was no high-confidence
interaction with PFD2. The A3F interactions were 2-fold less
strong than A3B and the A3D interactions were 3- to 4-fold
less strong than A3B. However, all the interactions with the
PFD proteins were usually similar for the NT and +RNAse
conditions, except A3D and PFD4, which only occurred in the
PFD5-FLAG

HA

A3B-HA + + + - - - - - - - - -
A3D-HA - - - + + + - - - - - -
A3F-HA - - - - - - + + + - - -
A3G-HA - - - - - - - - - + + +

PFD5-FLAG + + + + + + + + + + + +
RNAse A - + - - + - - + - - + -

Treatment L IP IP L IP IP L IP IP L IP IP

A

PFD5-FLAG

FIG. 3. Multiple A3s interact with Prefoldin complex members. C
HEK293T cells were used for FLAG immunoprecipitation of PFD5-or PF
either the NT or +RNAse immunoprecipitation (IP). Higher contrast PFD5
of PFD5 or PFD3 in each sample. Variable levels are due to PFD poly
interaction of A3B, A3D, A3F, but not A3G with PFD3 and PFD5 with v
or +RNAse condition, there are interactions between A3B, A3F, and A3D w
shown in Supplemental Fig. S9.
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presence of RNAse A (Fig. 2 and Supplemental Fig. S4). To
validate the AP-MS results, we conducted reciprocal co-IPs
where we used FLAG-tagged PFD3 or PFD5 and immuno-
precipitated 3× HA-tagged A3B, A3D, A3F, and A3G in the NT
or +RNAse condition. A3G served as a negative control since
it did not interact with any PFD family members in our AP-MS
result, but is also a double domain A3 protein (Fig. 2 and
Supplemental Fig. S4). We observed that A3B and A3F had a
strong interaction with PFD3 and PFD5 in the NT or +RNAse
condition. Consistent with the AP-MS analysis, A3D showed
less interaction, and A3G did not interact with PFD3 and PFD5
(Fig. 3, Supplemental Fig. S9).

A3B Interaction With PFD5 Inhibits PFD5-Mediated
Degradation of cMyc

Prefoldins are present in all eukaryotes and Archaea and
exist as a hetero-hexameric complex (72). The PFD subunits
assemble into a β-barrel complex with six long tentacle-like
coiled coils, that act as a molecular cochaperone to fold
actin and tubulin monomers during cytoskeleton assembly,
though each PFD also has distinct independent biological
functions (72). The prefoldin complex acts on unfolded actin
and α- and β-tubulin cotranslationally and delivers them to
CCT posttranslationally (73). Despite this canonical role as a
cochaperone, the Prefoldin subunits also shuttle between the
cytoplasm and nucleus (PFD6, PFD2) or are predominantly
nuclear (PFD5) and act on multiple DNA binding proteins (72).
PFD3 localizes to the cytoplasm when solely expressed, but
translocates to the nucleus in the presence of the Cullin2
ubiquitin ligase substrate receptor, VHL (74). This PFD3-VHL
interaction induces degradation of some DNA repair proteins
such as the DNA mismatch repair protein MSH4 (75). All the
PFD protein levels in cells are tightly controlled when not in a
A3B-HA + + + - - - - - - - - -
A3D-HA - - - + + + - - - - - -
A3F-HA - - - - - - + + + - - -
A3G-HA - - - - - - - - - + + +

PFD3-FLAG + + + + + + + + + + + +
RNAse A - + - - + - - + - - + -

Treatment L IP IP L IP IP L IP IP L IP IP

PFD3-FLAG

HA

B

PFD3-FLAG

o-IP of (A) PFD5 or (B) PFD3 with A3 enzymes. Cell lysates (L) from
D3- FLAG. Co-immunoprecipitating HA-tagged A3s were detected in
or PFD3 blots are shown below each blot to demonstrate the presence
ubiquitination and degradation (76). AP-MS results demonstrated an
arying strengths. Consistent with this, the co-IP shows that in the NT
ith PFD3 and PFD5, but not A3G. Purification control immunoblots are
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protein complex through polyubiquitination and degradation
(76).
To study the functional implications of these interactions,

we hypothesized that the role of A3s would not be to interact
with the total PFD complex that has a role in protein folding
but to interact with the individual PFD subunits, which have
nuclear roles, often with DNA binding proteins. Since A3s have
roles in modifying DNA, we investigated if any PFDs and A3s
would have any overlap (10, 77, 78). In particular, A3s also
have deamination-independent roles that solely rely on their
ability to bind nucleic acids, such as restriction of retro-
transposons, and inhibition of viral polymerases, and A3A was
recently identified to induce genomic instability in pancreatic
cancer by a deamination-independent mechanism (4, 5, 13).
Thus, we also considered that the protein interaction network
could reveal additional deamination-independent functions for
the A3 family.
PFD5 (also called MM-1) is a well-characterized tumor

suppressor since it acts as a co-repressor of the E-box-
dependent transactivation activity of cMyc (79). PFD5 can
bind the N-terminal region of cMyc and repress transcriptional
activity in three different ways. This can be through PFD5
recruiting the HDAC1-mSin3 complex to inhibit chromatin
remodeling, monoubiquitinated PFD5 recruiting a Skp2-
ElonginC-ElonginB-Cullin2 complex to induce cMyc
degradation, or PFD5 and the Egr-1 repressor binding and
downregulating the wnt4 gene, that would otherwise target
cMyc gene expression (72). The most direct way that PFD5
could inhibit cMyc is through the recruitment of the Skp2-
ElonginC-ElonginB-Cullin2 complex for ubiquitination and
proteasomal degradation of cMyc (Fig. 4A) (80). A3B bound to
PFD5 could potentially block the interaction with cMyc and
disrupt PFD5 tumor suppressor activity (Fig. 4A). This would
be consistent with recent results that show A3B mRNA, but
not deamination activity is associated with cancer, suggesting
that A3B has a deamination independent effect on cell pro-
liferation (81). Moreover, this would be consistent with cMyc
usually being dysregulated but not lost in many cancers (82).
To test whether A3B interaction with PFD5 inhibited its inter-
action with cMyc, we co-purified PFD5-FLAG, A3B-HA, and
cMyc in the presence of the proteasome inhibitor MG132
(Fig. 4, B and C). The PFD5-FLAG was co-expressed in
HEK293T cells with A3B-HA and cMyc alone or together. The
FLAG tag was immunoprecipitated and the resolved proteins
were blotted for cMyc, HA, and FLAG. Both cMyc and A3B-
HA interacted with PFD5-FLAG independent of each other.
In addition, using 1 μg of each plasmid, we observed that
PFD5 could interact with both cMyc and A3B-HA at the same
time (Fig. 4, B and C). However, there was less cMyc in the co-
IP when 1 μg of cMyc compared to 4 μg of cMyc was co-
transfected with 1 μg A3B-HA (Fig. 4, B and C). When 4 μg
of cMyc was co-transfected with 2 μg A3B-HA, the level of
cMyc in the co-IP decreased further than when co-transfected
with 1 μg A3B-HA (Fig. 4, B and C). Altogether, these data
suggest a competitive interaction of cMyc and A3B with
PFD5-FLAG.
To determine if this interaction could disrupt PFD5-

mediated proteasomal degradation of cMyc we coexpressed
PFD5-FLAG, A3B-HA, and cMyc in the absence and presence
of MG132. We quantified the amount of cMyc relative to the
level of α-tubulin to normalize any differences between lanes
in total protein. We observed that in the presence of PFD5-
FLAG, the cMyc is decreased by 1.5-fold (Fig. 4, D and E).
When A3B-HA is coexpressed with PFD5-FLAG and cMyc,
the cMyc is 3.3-fold greater than cMyc alone (Fig. 4, D and E).
This large increase in the cMyc by A3B-HA may be due to the
added protection from endogenous PFD5 in the HEK293T
cells. Consistent with this is that in the presence of MG132,
the cMyc levels in cells is equivalent to that in the presence of
A3B-HA (Fig. 4, D and E). Further, the PFD5-FLAG mediated
degradation of cMyc is blocked in the presence of MG132 and
the recovery of cMyc protein levels in the presence of MG132
and A3B-HA is 7.5-fold above cMyc expression alone. The
higher rescue of cMyc in the presence of MG132, compared
to its absence suggests that A3B alone cannot fully compete
for PFD5 binding with cMyc, consistent with the co-IP data
(Fig. 4, D and E).
To confirm that the ability of A3B to alter the cMyc steady-

state protein levels is through a direct interaction with PFD5,
we made mutants of A3B. A3B has two Z domains (Fig. 1, B
and C). We used the two domains individually in a co-IP
experiment to determine which interacts with PFD5. We
expressed PFD5-FLAG in HEK293T cells with A3B-HA, A3B
NTD-HA, or A3B CTD-HA (Fig. 4F). We observed that both
the A3B -NTD-HA and -CTD-HA could interact with PFD5-
FLAG, but the A3B CTD-HA was co-immunoprecipitated
more than the A3B NTD-HA domain (Fig. 4F). To determine
if the A3B -NTD-HA or -CTD-HA interactions with PFD5 were
functional, we co-expressed in HEK293T cells the A3B-HA
full length and individual Z domain constructs in the pres-
ence of cMyc and presence or absence of PFD5-FLAG. We
quantified the amount of cMyc relative to the level of
α-tubulin to normalize any differences between lanes in total
protein. Due to endogenous PFD5, we only observed a 1.2-
fold decrease of cMyc in cells after overexpression of
PFD5-FLAG, similar to Figure 4E and demonstrating that
PFD5-induced cMyc degradation was near maximum
(Fig. 4G). In the absence of overexpression of PFD5-FLAG, to
enable testing the effects on endogenous PFD5 in HEK293T
cells, the A3B -NTD-HA or -CTD-HA were only partially able
to recover the cMyc steady-state protein levels (1.3–1.8 -fold)
compared to A3B-HA (4.6-fold). These data demonstrate that
although both Z domains of A3B are involved in the PFD5
interaction, each domain alone is not sufficient to fully
recover cMyc protein levels in cells and that the A3B full
length is required. This is further demonstrated by over-
expression of PFD5-FLAG in the presence of A3B-HA. The
overexpression of PFD5-FLAG decreased the effect of A3B-
Mol Cell Proteomics (2024) 23(5) 100755 11
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FIG. 4. A3B inhibits PFD5-mediated degradation of cMyc. A, left: Diagram of tumor suppressor PFD5 recruiting Cullin-2 RING ubiquitin
ligase for cMyc ubiquitination and degradation. Right: A3B interacts with PFD5 leading to the hypothesis that A3B can disrupt this degradative
pathway and lead to A3B-mediated, but deamination-independent, dysregulation of the cell cycle. B and C, co-IP experiments from HEK293T
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HA on cMyc by ~2-fold, but had no effect on the A3B -NTD-
HA or -CTD-HA (Fig. 4G).
To determine if this relationship occurs in a cell type relevant

to cancer, we used the MCF7 tumorigenic breast cancer cell
line that is estrogen receptor positive and does not express
A3B in the absence of estrogen. cMyc amplifications are
found in 44% of ER positive breast cancers and cMyc can
also affect cancers by resisting degradative pathways to
maintain protein stability in cells (82). In this experiment, we
transfected increasing amounts of A3B-HA expression
plasmid and detected the effect on endogenous cMyc and
PFD5 (Fig. 4, H and I). We quantified the amount of cMyc
relative to the level of α-tubulin to normalize any differences
between lanes in total protein. The steady-state cMyc protein
levels increased to a maximum of 2.5 to 3.4-fold when 150 to
300 ng of A3B plasmid was transfected (Fig. 4, H and I). The
PFD5 levels remained constant.

DISCUSSION

Despite A3 enzymes being highly studied for their response
to viral infection and role in cancer, there have been very few
studies on interacting proteins, and in some studies, it was
unclear whether interactions were mediated by RNA or not.
Here we determined the protein-protein and protein-RNA
mediated interactions for eight A3 enzymes. The A3 family
has highly similar amino acid sequences due to being formed
through duplication events, however, several distinct in-
teractions suggest that A3 activity is not fully redundant and
may have deamination-independent functions.
Shortly after the discovery of the A3 family, the family was

divided into three Z-domains. This resulted in the Z1, Z2, and
Z3 groups of which A3H is the only Z3 member. Some A3s
with two deaminase domains have a combination of Z1 and
Z2. We found that there were more interactions shared be-
tween similar Z-domains, than less related Z-domains, but
there were still distinct interactions for all A3s. Even A3H-I and
A3H-II which are identical except for three amino acids (105,
121, and 178) had distinct interactions. Perhaps most sur-
prising was that A3G which had amino acid similarities with
A3B, A3D, and A3F shared very few PPIs with these 3 A3s that
had multiple shared PPIs. Rather A3G (Z2-Z1 domains)
cells treated with 12.5 μM MG132 for 16 h demonstrated that A3B-H
transfections of low A3B (1 μg, +), high A3B (2 μg, ++), low cMyc (1 μg
resulted in less co-purification of cMyc with PFD5 in a concentration-dep
was functional and resulted in more cMyc in cells in the presence of A3
formed with or without MG132 treatment (12.5 μM for 16 h) as indicated a
blots, with a representative blot shown in (D). F, co-IP experiments from H
interact with PFD5-FLAG. G, The A3B NTD-HA and A3B CTD-HA interac
did not result in more cMyc in cells. Only the presence of full-length A3
independent blots, with a representative blot shown. H and I, A3B-HA re
line. MCF7 cells were transfected with increasing amounts of A3B-HA. T
protein in cells. The quantification of two independent blots is plotted in
quantified using Image Studio software with normalization of each expe
were then converted to relative amounts by setting the cMyc alone con
conditions.
clustered with the Z3 group (A3H) under NT and by itself
under +RNAse conditions respectively. Even A3A which has a
high amino acid similarity to the A3B CTD shares no in-
teractions with A3B or any other A3.
Prior to this study, protein network analyses found similar

interactions for A3G and A3F with RNA-binding proteins,
which overlap with our protein interaction network (51, 52, 62).
However, an important difference with our study is that the
previous interactions were primarily detected with the NT
condition and the authors concluded that there are few sig-
nificant interactions in the +RNAse condition. In contrast, here
we find that many of the RNA binding protein interactions of
A3G and A3F occur in both the NT or +RNAse conditions and
that A3F interacts with other types of proteins, such as those
involved in protein folding. Although Kozak et al. determined
that many of these RNA binding proteins are not incorporated
into HIV-1 virions, the only function identified for A3G and A3F
at the time was restriction of HIV replication and no other
functions based on the interacting proteins were proposed
(51). The interactions previously published may be fewer or
different due to those studies conducted in T-cell lympho-
blastic cell lines. However, it is now known that A3s can be
upregulated in any epithelial cell after a virus infection and
during cancer, their mRNA expression has been found in
multiple tissues (83–86). Thus, the potential interactions of A3
enzymes are more diverse than previously thought.
The protein interaction network of A3C revealed some po-

tential functions. Although A3C is highly expressed in T cells
(42) it has minimal restriction activity against HIV-1 (87, 88),
but can restrict the retroelement LINE-1 (87, 89). However, the
interaction of A3C with CATIN/CACTIN suggests a possible
reason for the high expression of A3C. CATIN/CACTIN is a
negative regulator of Toll-like receptor (TLR) activity and
interaction with A3C may de-repress TLR activity ensuring a
proper immune response (90). Additionally, the interaction of
A3C with the complex RED/IK and SMU1 that is required for
mRNA splicing, in particular splicing of influenza A virus NS1
pre-mRNA, may act to suppress splicing and exert an antiviral
response (91). Since A3C catalytic activity is low, it is fitting
that these potential functions do not rely on deamination ac-
tivity (92). Although there is a more active version of A3C in the
A and cMyc each interact with PFD5-FLAG. Using combinations of
, +), or high cMyc (4 μg, ++) demonstrated that the presence of A3B
endent manner. C, is the quantification of (B). D and E, this interaction
B-HA, when PFD5-FLAG was also present. The experiment was per-
bove the blot (D) or graph (E). E, the quantification of three independent
EK293T cells demonstrated that A3B NTD-HA and A3B CTD-HA both
tions with endogenous PFD5 and PFD5-FLAG were not functional and
B-HA could fully recover cMyc levels. G, is the quantification of three
gulation of endogenous PFD5 occurs in the MCF7 breast cancer cell
he endogenous cMyc detected increased with the amount of A3B-HA
(I). A representative blot is shown in (H). E, G and I, immunoblots were
rimental lane to its respective anti-α-tubulin band. Normalized values
dition to 100 and calculating the relative cMyc in other experimental
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human population, A3C S188I, this form is only found in 10%
of people of African descent, suggesting that the primary role
of the common A3C is deamination independent (87).
The interaction of A3G and A3H with tRNA binding and

modification proteins suggests a role in tRNA biology.
Although the deamination of adenosine to inosine in tRNAs is
a well-characterized deamination event, cytosine deamination
has not been documented (93). Based on the ability of A3
enzymes to regulate HIV-1 reverse transcriptase by binding to
the RNA template or the enzyme itself, the roles of A3G and
A3H may be to regulate the activity of other enzymes by
binding the tRNA (94, 95). This may relate to an antiviral role if
A3G and A3H can temporarily slow or shut down protein
synthesis during a viral infection, which would facilitate im-
mune clearance.
Overall, the interactions with RNA binding proteins by all A3s

may also be a mechanism to inhibit LINE-1 retrotransposition.
Although most A3 enzymes inhibit LINE-1 movement, only A3A
has been shown to do this by a deamination-dependent
mechanism (96, 97). Other A3s have a deamination-
independent mode of restriction that has been poorly charac-
terized. A3C and A3D have been reported to interact with the
LINE-1 protein ORF1p as amechanism of inhibition, but it is not
known how A3B, A3F, A3G, and A3H can restrict retro-
transposons (89, 98, 99). The protein interaction network sug-
gests many possibilities of disrupting LINE-1 mRNA transport.
For example, A3G interacts with NXF1, which facilitates mRNA
export from the nucleus and is also used by LINE-1 (100, 101).
Further confidence in this type of role comes from the interac-
tion of A3G, A3H-I, and A3H-II with SRSF complex proteins
(SRSF1, 2, 4, 5, and 6) that function as export adapters for the
TAP/NXF1 nuclear export pathway (102). A3F, A3G, and A3H-I
also interact with RO60 that bind to endogenous retroelements,
such as Alu (103). ROA3 which plays a role in cytoplasmic
trafficking of RNA interacts with A3F and A3B (104). These in-
teractions suggest that A3 enzymes may be able to affect the
mRNA transport of LINE-1 or Alu, disrupting their ability for
nuclear export or import of their mRNA.
One of the key interactions we identified was with the pre-

foldin family of proteins and A3D, A3F, and A3B. Although
these proteins are well-known chaperone proteins, they also
have individual roles. However, it is also interesting that A3A
interacts with proteins of another chaperone complex, the
CCT complex which includes TCPA, TCPZ, and TCPH. For
A3A, it was found that interaction with the CCT complex in-
hibits A3A deamination activity, which may be a mechanism to
protect from unwanted deamination of genomic DNA (58). We
did not find that the PFD proteins specifically inhibited the
activity of A3D, A3F, or A3B (data not shown). Rather, we
found that A3B could inhibit the normal tumor suppressor role
of PFD5 to induce degradation of the oncogene cMyc. Further
studies are needed to determine the long-term impact of A3B-
induced increases of cMyc in cells. Although the discovery of
the CCT complex inhibiting A3A activity was initially thought to
14 Mol Cell Proteomics (2024) 23(5) 100755
protect the genomic DNA from damage, it was found that
tumors with an A3A mutation signature also harbor CCT
complex mutations that may derepress A3A activity (58).
Nonetheless, A3A has also been found to have a deamination-
independent role in causing genomic instability in pancreatic
cancer, although the mechanism is not known (13). For A3B,
we observed that competitive binding for PFD5 with cMyc
disrupts the cMyc degradation pathway, which can promote
cellular proliferation. These data demonstrate that despite
there being clear mutation signatures of A3 enzymes in mul-
tiple cancers, they may be acting in a deamination-
independent manner, which should be considered alongside
the development of catalytic inhibitors for cancer treatments
(105).
The data presented here suggest new potential roles of A3

enzymes. Since the discovery of A3 enzymes, it was known
that most of them exist in RNPs. However, the identity of the
interacting proteins in these complexes was never determined
for all A3 enzymes, which led to difficulties in ascribing a
function to these RNPs. These data open several new avenues
of investigation into their roles in tRNA maturation, RNA
splicing, and ncRNA. In addition, we have for the first time
identified high-confidence protein-protein interactors of A3
enzymes suggesting additional functionality by which they
contribute to known functions of viral and retrotransposon
restriction and oncogenesis.
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