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RESEARCH ARTICLE PHYSICS

Quantum interferometry and pathway selectivity in the
nonlinear response of photosynthetic excitons
Matthias Kizmanna,b,1 , Hari Kumar Yadalama,b,1 , Vladimir Y. Chernyakc,d , and Shaul Mukamela,b,2 ID

Contributed by Shaul Mukamel; received March 22, 2023; accepted May 19, 2023; reviewed by Jianshu Cao and Giulio Cerullo

We propose a time–frequency resolved spectroscopic technique which employs
nonlinear interferometers to study exciton–exciton scattering in molecular aggregates.
A higher degree of control over the contributing Liouville pathways is obtained as
compared to classical light. We show how the nonlinear response can be isolated
from the orders-of-magnitude stronger linear background by either phase matching or
polarization filtering. Both arise due to averaging the signal over a large number of
noninteracting, randomly oriented molecules. We apply our technique to the Frenkel
exciton model which excludes charge separation for the photosystem II reaction center.
We show how the sum of the entangled photon frequencies can be used to select two-
exciton resonances, while their delay times reveal the single-exciton levels involved in
the optical process.

spectroscopy | quantum optics | chromophore aggregates

Two-photon absorption (TPA) has been a common target of entangled light spectroscopy.
In the low-intensity regime, a second-order nonlinear crystal produces pairs of spectrally
and temporally entangled (signal and idler) photons. The sum of their frequencies is
determined by the pump field frequency, and their arrival time difference is controlled
by the phase-matching conditions inside the crystal (the entanglement time). It has
been shown theoretically that since the signal and idler photons appear in pairs with
unusual time–frequency correlations, they can be used to enhance the TPA process in
molecules at low light intensities (1–3) and minimize radiation damage in fragile samples.
Additionally, in contrast to classical spectroscopy, the time–frequency relations can be
used to achieve joint spectral and temporal resolutions which are not bound by the
Fourier uncertainty (4–6).

Several experimental studies have reported the observation of entanglement-enhanced
TPA in molecular systems (7, 8). Generally, the rate of TPA events can be inferred only
indirectly since both photons are absorbed. However, the measured cross-sections are
typically several orders of magnitude higher than theoretical estimates (9, 10), and some
experimental findings report much lower values (11–13). Recent studies suggest that
single-photon scattering (13) or hot-band absorption (14) could be responsible for this
discrepancy.

Quantum optics mainly focuses on generating new states of quantum light through the
use of interferometers and nonlinear crystals. Here, the light–matter interaction results
in the interaction between photons of different frequencies. Entangled light provides an
exciting platform for novel spectroscopic and imaging applications beyond TPA (15).

Quantum spectroscopy combines quantum optics technology with spectroscopic
techniques to obtain new information about light–matter interaction and improve
the sensitivity of classical spectroscopic techniques (16). For example, the Hong–Ou–
Mandel two-photon interferometer has been used to measure ultrafast dephasing times
in the presence of strong losses (17–20). Pathway indistinguishability can be used to,
for example, measure the linear response of a material in the infrared frequency regime
by detection of photons in the more convenient visible range (21, 22). It emerges
in nonlinear interferometers where beam splitters are replaced with nonlinear crystals,
leading to coherences between photons generated at different crystals (23–27).

Classical spectroscopy signals are mostly controlled via their phase-matching
conditions, which are used to select certain Liouville space pathways (28). Phase
matching allows the control over the signs of the wave vectors of the fields, and
different combinations can describe effects like two-exciton scattering, transport, or
their combinations. Quantum light interferometry can provide additional control over
the left/right degrees of freedom in Liouville space (i.e., whether the interaction takes
place on the bra or the ket), complimenting classical techniques which are entirely based
on phase matching (29, 30).
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In this theoretical study, we propose a protocol for studying
two-exciton scattering effects which combines entangled photon
pairs with a nonlinear interferometer by using two coherently
pumped parametric down-conversion (PDC) crystals. The inter-
ferometer combines two-exciton scattering pathways construc-
tively while transport effects are interfering destructively with
each other, such that all interactions only appear either on the left
(ket) or the right (bra) side of the density matrix in Liouville space.
Control over path delays in the interferometer arms provides
a time-dependent read-out of two-exciton scattering processes
with temporal resolution determined by the entanglement time
of signal and idler. We provide an example of the signal for a
Frenkel exciton model of the photosystem II reaction center of
purple bacteria. We show that the pump frequency generating the
entangled photons can be used to select two-exciton resonances,
and the signal/idler time delays reveal information about which
single-exciton states are coupled to a given two-exciton state.

The nonlinear two-exciton scattering effects appear on top
of a large background containing interference terms of the
unperturbed entangled photons and the linear response of the
sample. We show how either phase matching or polarization
filtering can be used to isolate the nonlinear term, so that in
contrast to entangled TPA measurements, no ambiguity remains
about the origin of the signal. Our signal further shares the same
advantages of entangled TPA, i.e., linear scaling with intensity
and increased frequency-time resolution. It may thus address the
feasibility of resolving nonlinear effects with single entangled
photon pairs (9, 10).

1. Pathway-Selectivity through Interferometry

We consider the set-up shown in Fig. 1. Two second-order
nonlinear crystals are pumped by a common coherent pump
field. The pump intensity is sufficiently weak, so that only a single
entangled photon pair is generated, either in crystal 1 or 2. The
signal (idler) photons of the two crystals are then interfered at the
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Fig. 1. The proposed interferometric setup. Two nonlinear crystals PDC1
and PDC2 are weakly pumped by the same pump field such that only a single
entangled photon pair is generated, whose origin can be either PDC1 or
PDC2. The photons emitted at PDC1 can interact with a sample before they
are mixed at the beam splitters Bs,i with the photons emitted from PDC2
and send into the four detectors Di (i = 1,2,3,4). The signal is given by a
combination of four coincidence detections between the Upper and Lower
detectors, 〈S〉 = 〈(D1 − D2)(D4 − D3)〉. Delay lines 1�1 and 1�2 between
the s1 , i1 and s2 , i2 paths, respectively, lead to a time-dependent read-out of
the two-exciton scattering process. The rotatable polarizers P are used for
tunable polarization filtering. A similar interferometer has been studied in
refs. 31–33.

beamsplitters Bs(i), respectively, and detected at the two output
ports. The signal photon is thus measured either at detectorD1 or
D2, while the idler photon is measured either atD3 orD4. Prior to
their interference at the beamsplitter, the signal and idler photons
generated at the first crystal can interact with a sample consisting
of a large number of noninteracting molecules. The measured
signal is finally given by a combination of detections at the signal
and idler photon detectors, 〈S〉 = 〈(D1 − D2)(D4 − D3)〉.
It is the coincidence of two heterodyne measurements where
the signal (idler) from the first crystal after interaction with
the sample is heterodyned with the signal (idler) of the second
crystal. A similar interferometer has been considered in refs. 31–
33 without a sample to study the coherences between the signal
and idler photons of both crystals. On their own, the signal
(idler) photons show no coherence between the two crystals since
the idler (signal) photons can be measured to distinguish them.
However, a two-photon (fourth-order) coherence is present when
coincidences between the signal and idler are measured. This
coherence is used here to study the nonlinear response of the
sample.

We study the fourth-order nonlinear response of Frenkel exci-
tons in the reaction center of the photosystem II photosynthetic
complex, described by the Hamiltonian

H = HF + HM + Hint , [1]

where HF is the free field Hamiltonian, HM is the matter Hamil-
tonian, and Hint is the field–matter interaction Hamiltonian.
The matter Hamiltonian is given by

HM =
Nc∑

n,m=1
hmnB†

mBn + g
Nc∑
n=1

B†
nB

†
nBnBn, [2]

where Nc is the number of chromophores in the molecular
aggregate, the Boson operators Bn with [Bn, B†

m] = δmn describe
the deexcitation of the chromophore at site n, hmn contains the
single-excitation energies of each chromophore and their mutual
couplings, and g is the anharmonicity.

For the field Hamiltonian HF , we introduce a simple model
(Materials and Methods) that describes the propagation of signal
and idler photons in space along their respective pathways
through the interferometer. Note that this is an effective
Hamiltonian which can be derived from first principles using an
effective action approach (for more details see SI Appendix). Each
pathway segment has its own set of annihilation and creation
operators. Beam splitters are used to mix the pathways between
single photons, and the sample introduces a local interaction
between the signal and idler photons, whose evolutions are
otherwise independent. In the interaction picture, the signal
described in the caption of Fig. 1 is given by

〈S〉 =
∫∫
∞

−∞

dtsdti
〈
ã†
s2(ts − τs2 − τD)ã†

i2(ti − τi2 − τD)

× ãs̃1(ts − τs̃1 − τD)ãĩ1(ti − τĩ1 − τD) + h.c.
〉
, [3]

where ãk(t) is the annihilation operator acting at the beginning
of the pathway k (Fig. 1), and τk is the optical path length of
pathway k (note that τD refers to the path length between the
beam splitter and the detectors and is assumed to be the same for
all four detectors).

The dipole interaction Hamiltonian between the signal and
idler photons and the sample is given by

H̃int(t) = V(t) · Ẽ
†
(t) + h.c., [4]
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where V(t) =
∑

n �nBn(t) is the dipole operator in the
interaction picture and �n is the dipole moment of the
nth chromophore. The positive-frequency part of the electric

field operator is given by Ẽ(t) =
∑

k

√
h̄ωc,k

4πε0cA�kãk(t) +∑
j

√
h̄ωc,j

4πε0cA�j ãj(t − τj) with k ∈
{
s̃1, ĩ1

}
, j ∈ {s1, i1}, ε0 as

the vacuum permittivity, c as the speed of light in vacuum, and
�k,j the respective polarization vector. We assume plane waves
with a transversal area A and wave packets with well-defined
central frequencies ωc,k and ωc,j.

Using this interaction Hamiltonian, the formal expression for
the signal S is given by

〈S〉 = tr
{
ST exp

(
−
i
h̄

∫
∞

−∞

dt H̃int,−(t)
)
ρM ⊗ ρF

}
. [5]

We have introduced the interaction Hamiltonian superoperator
in Liouville space whose action on an ordinary operator X is de-
fined asHint,−X = [Hint , X ]. Using the left/right superoperators,
we can rewrite Hint,−(t) = VL(t) · Ẽ

†
L(t)−VR(t) · Ẽ

†
R(t)+ h.c.,

where ALX = AX and ARX = XA for arbitrary Hilbert space
operators A, X . T denotes superoperator time ordering, and
ρM = |g〉〈g| is the initial matter density operator, assumed to be
in the ground state.

The initial field density operator is given by ρF = |9〉〈9|,
where

|9〉 =
∫∫
∞

0
dωsdωi ψ

(1)(ωs,ωi)a†
s1(ωs)a†

i1(ωi)|0〉

+ ψ(2)(ωs,ωi)a†
s2(ωs)a†

i2(ωi)|0〉. [6]

Here,ψ(1,2)(ωs,ωi) plays the role of a two-photon wave function
of the signal and idler generated at PDC1/2, respectively. These
are not true wave functions of light but rather correlation
functions of the signal and idler modes conditioned on the
placement of the mirrors used to collect and send them to the
sample. This correlation function can be derived by using an
effective action (SI Appendix) to describe the generation of the
signal and idler photons inside the crystal and their subsequent
propagation with single-photon Green’s functions from their
point of origin to the mirrors used to redirect the two beams into
the sample. The two-photon wave function depends on the fixed
angles of the propagation directions of signal and idler beams (at
their central frequency) with respect to the classical pump when
leaving the crystal, which are controlled by the mirror positions
(see angle θ in Fig. 1). Additional changes to the wave function
appear due to the propagation length of the signal and idler which
is included explicitly in our effective Hamiltonian.

We focus on signals obtained by expanding the exponential
in Eq. 5 to fourth order. Eq. 3 contains two annihilation
operators associated with the output from the sample and two
creation operators associated with the output from PDC2 and
vice versa. This implies that only coherence terms of the field
density operator are measured, where the ket side describes
photons originating from PDC1 and the bra side describes
those originating from PDC2 or vice versa. Since the operators
associated with the output from PDC2 do not interact with the
sample and do not appear in the interaction Hamiltonian in Eq.4,
only pathways where all interactions happen either on the Left or
the Right side of the density matrix can contribute to this signal.
The signal further contains a four-point correlation function,
which is why two photons must be generated either on the ket
or bra, accompanied by two deexcitations in the molecule. This

also means that the molecule, which is assumed to be initially
in the ground state, needs to be excited twice. The relevant
ladder diagrams selected by the interferometric setup are shown
in Fig. 2A. Here, all interactions are on the Left side (ket), and
contributions with all interactions on the right are their hermitian
conjugates. The Left diagram in Fig. 2A contains two excitations
(together with the absorption from signal and idler of PDC1),
followed by two deexcitations (together with the emission of two
photons measured in coincidence by the two detectors). The
other diagram describes a sequential excitation and deexcitation
process. We have assumed that the signal appears before the idler,
which can be controlled by the external delays.

Calculating the expectation value over the field degrees of
freedom in Eq. 5 gives

〈S〉 = C
∑
ijkl

∫
∞

−∞

dt1dt2dt1dt2 ψ(1)(t1 − τs1 , t2 − τi1)

× Bij,kl (t1, t2; t1, t2)ψ(2)∗(t1 + τs̃1 − τs2 , t2 + τĩ1 − τi2)

× (�i · � s̃1)
(
�j · � ĩ1

)
(�k · �s1) (�l · �i1) + h.c., [7]

where the indices i, j, k, l run over the chromophores in
the aggregate, C = √

ωc,s1ωc,i1ωc,s̃1ωc,ĩ1/(4π h̄ε0cA)2, and

Bij,kl (t1, t2; t1, t2) =
〈
Bi,L(t1)Bj,L(t2)B†

k,L(t1)B
†
l,L(t2)

〉
. In this

equation and in the following, all multipoint expectation values
are time ordered. Bij,kl (t1, t2; t1, t2) thus describes contributions
due to both ladder diagrams in Fig. 2A.

Note that due to the interferometric setup, contributions of
other ladder diagrams with interactions both on the left and the
right vanish identically in the integrand of Eq. 7. An expression
of Eq. 7 derived from an effective action approach is given in
SI Appendix.

As discussed earlier, the interferometry setup forces all exciton
operators to act either on the left or on the right side of the density
operator. In general, n field–matter interactions can generate

BA

{

{

Fig. 2. (A) Ladder diagrams of the contributing processes in the sum-over-
state picture, where all interactions are on the Left (complex conjugated
processes with all interactions on the right are not shown). Right/Left-
pointing arrows denote photon annihilation/creation, and red/blue color
denote signal/idler photons. |g〉 is the ground state, |e, e′〉 denote the single-
exciton eigenenergies, and |f 〉denote the two-exciton eigenenergies obtained
from a diagonalization of the matter Hamiltonian in Eq. 2. The time-orderings
of incoming and outgoing signal and idler are controlled by the time delays
of their respective paths (Eq. 14). The two diagrams are the ones selected by
the interferometric setup. Note that if the linear background is suppressed
by either phase matching or polarization filtering, the factorized linear
contribution needs to be subtracted from these ladder diagrams. In this
case, the second ladder diagram cancels with its factorized contribution. (B)
Incoming and outgoing wave vectors of signal and idler at their respective
central frequencies. The black arrows show polarization filtering where the
incoming polarizations are chosen in the plane of the incoming wave vectors,
and the outgoing polarizations lay in a perpendicular plane, suppressing the
linear background. Alternatively, the freedom in the phase matching can be
used to suppress the linear background. The outgoing wave vectors can be
rotated around the sum of the incoming wave vectors (green arrow) while
conserving the angle between them.
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4n Liouville space pathways since each interaction can either
annihilate or create a photon on the left or the right side of
the density operator. In classical spectroscopy, Liouville pathway
selectivity is obtained by phase matching, where pathways are
selected depending on whether the interaction with each field
involves either a or a†. Here, different selections based on whether
interactions happen on the left or right side of the density operator
are possible. The quantum nature of light therefore introduces
new control knobs for light–matter interactions and allows for a
better isolation of matter pathways.

Note that in Eq. 7, the wave function ψ(2) describing the
entangled photons of PDC2 appear to be stimulating the emission
of the signal and idler photons of the sample. In reality, the
entangled photons of PDC2 never pass through the sample but
are combined with the emitted signal and idler at the beam
splitters and thus heterodyne them. Both viewpoints can be
shown to be identical (34).

2. Rotational Averaging and Background
Suppression

Eq. 7 describes the response of a single aggregate. However, in
general, the sample consists of a large number Ns of randomly
oriented molecular aggregates. The initial density matrix must
therefore be replaced by Ns replicas, ρ̃M = |g〉〈g|⊗Ns , and the
scalar products between the polarizations and the dipole moments
should be averaged over all possible orientations. Additionally,
the large number of molecules (in a region much larger than
the optical wavelength) leads to phase-matching conditions that
must be satisfied in order to obtain a measurable macroscopic
signal.

The expectation value over the matter degrees of freedom
will contain N 2

s terms where the four-point correlation function
B̃ij,kl (t1, t2; t1, t2) factorizes into two two-point correlation func-
tions (a product of linear responses) acting on different molecules
and Ns irreducible four-point correlation functions (nonlinear
response), where all operators act on the same molecule. Due to
the different scaling with Ns, the nonlinear response of interest is
given by a small correction on top of a huge background given by
the products of linear responses as well as the signal from photons
that did not interact with the sample (i.e., went straight from
PDC1 to the detectors). However, the different factorizations
must be paired with their corresponding rotational averages over
the dipole moments and will also possess unique phase-matching
conditions. This allows to suppress the background contributions
by either collecting the emitted signal and idler beams from the
sample at certain orientations or by performing a polarization-
dependent measurement. Fig. 2B sketches the phase-matching
conditions and the polarization filtering.

The expectation value in Eq. 7 over the matter degrees of
freedom combined with the rotational averaging gives

Bij,kl (t1, t2; t1, t2)
〈
(�i · � s̃1)

(
�j · � ĩ1

)
(�k · �s1) (�l · �i1)

〉
�

=
(
N 2
s B

(2)
i,k (t1, t1)B

(2)
j,l (t2, t2)

〈
(�i · � s̃1) (�k · �s1)

〉
�

×

〈(
�j · � ĩ1

)
(�l · �i1)

〉
�

+ (k, s1, t1)↔ (l, i1, t2)
)

+ NsB̃ij,kl (t1, t2; t1, t2)

×

〈
(�i · � s̃1)

(
�j · � ĩ1

)
(�k · �s1) (�l · �i1)

〉
�
. [8]

Here, Bij,kl (t1, t2; t1, t2) denotes the four-point correlation
function evaluated by the trace over the space of Ns molecules
in the ground state, ρ̃M = |g〉〈g|⊗Ns , 〈•〉� denotes rotational
averaging, and B(2)

i,j (t, t ′) =
〈
Bi,L(t)B†

j,L(t
′)
〉
M

with 〈•〉M
denoting the time-ordered trace over the single-molecule space
ρM = |g〉〈g|. Note that (k, s1, t1)↔ (l, i1, t2) denotes the same
term as the previous under permutation of the three variables.
We have further introduced the nonlinear response

B̃ij,kl (t1, t2; t1, t2) =
〈
Bi,L(t1)Bj,L(t2)B†

k,L(t1)B
†
l,L(t2)

〉
M

− B(2)
i,k (t1, t1)B

(2)
j,l (t2, t2)

− B(2)
i,l (t1, t2)B

(2)
j,k (t2, t1). [9]

Note that the first two terms in Eq. 8 contain two independent
rotational averages over two dipole moments, each, while the
last term contains a single rotational average over a product
of four dipole moments. Rotational averaging over two dipole
moments results in

〈
(�i · � s̃1) (�k · �s1)

〉
�

= (�i · �k) (� s̃1 · �s1)
(35). Therefore, choosing � s̃1/ĩ1 to be perpendicular to �s1/i1
suppresses the background terms entirely [note that terms that
mix signal and idler paths of the form (� s̃1 · �i1) do not appear
because of phase matching].

The rotational averaging of four dipole moments can be
performed by applying basic considerations of representation
theory on the group of three-dimensional rotations SO(3).
It can be expressed in terms of three independent isotropic
tensors resulting in three possible pairings of scalar products
of the four vectors for both the polarization vectors and dipole
moments,〈

(�i · � s̃1)
(
�j · � ĩ1

)
(�k · �s1) (�l · �i1)

〉
�

= M(1)
ijkl

(
� s̃1 · � ĩ1

)
(�s1 · �i1) +M(2)

ijkl (� s̃1 · �s1)

×

(
� ĩ1 · �i1

)
+M(3)

ijkl (� s̃1 · �i1)
(
� ĩ1 · �s1

)
, [10]

where M(p)
ijkl = c(p)1 (�i · �j)(�k · �l ) + c(p)2 (�i · �k)(�j ·

�l ) + c(p)3 (�i · �l )(�k · �j) is a linear combination of the three
possible combinations of the dipole moments (35). Selecting
� s̃1/ĩ1 to be perpendicular to �s1/i1 therefore eliminates one of
the combinations but still leaves the two other possibilities. If the
two incoming polarizations are chosen to be in the same plane
and the two outgoing ones in an orthogonal plane, only the first
term in Eq. 10 survives.

In addition to this polarization filtering, phase matching may
also be used to suppress the linear background. Here, we do not
treat the phase matching explicitly but assume that a certain
phase-matching direction has been selected by choosing the
angles at which the signal is collected and sent to the detector. The
linear response forces the incoming and outgoing beam directions
to be equal. Therefore, both beams generated by the sample
propagate in the same direction as the incoming signal and idler
beams, i.e., ks1 = ks̃1 and ki1 = kĩ1 , where ki is the wave vector
of the photon associated with pathway i at its respective central
frequency. For the nonlinear response, the sum of outgoing wave
vectors needs to be equal to the sum of the incoming wave vectors,
ks1 +ki1 = ks̃1 +kĩ1 , which allows for additional freedom in the
combinations of outgoing directions than in the linear response.
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If we fix the central frequencies of the outgoing photons to be
equal to their incoming counterparts, an obvious solution is the
one equal to the linear response terms where signal and idler leave
the sample in the same direction as they came in. Additional
solutions are obtained by rotating the signal and idler around the
direction ks1 + ki1 . This means that the plane spanned by the
outgoing propagation directions can be chosen perpendicular
to the incoming propagation direction plane. It is therefore
always possible to collect a signal for the nonlinear response in a
background-free direction. The origin of the measured signal due
to a fourth-order interaction can be further verified by studying
its scaling with respect to the pump intensity used to generate the
entangled photon pair. In this case, the signal should scale linearly
with the pump intensity, in analogy to TPA with entangled
photons.

3. The Two-Exciton Scattering Matrix

Having discussed how the nonlinear response may be separated
from the linear background, we now turn to the calculation
of the four-point correlation function B̃ij,kl (t1, t2; t1, t2) in
Eq. 9. The nonlinear response will be calculated using an
exciton/quasiparticle picture (36, 37). In this approach, the chro-
mophores are treated as interacting anharmonic oscillators, and
the response is expressed in terms of single-exciton/quasiparticle
Green’s functions and the scattering matrix describing their
interaction. Here, the interference between noninteracting and
interacting double-exciton transitions is built in from the start.
The sum-over-state approach in contrast requires the diago-
nalization of HM , and the resulting terms in the nonlinear
response contain both noninteracting and interacting double-
exciton contributions which cancel each other identically, i.e., a
large number of terms are unnecessarily calculated.

For the Frenkel exciton model in Eq. 2 that conserves the
number of excitations, with the exciton–exciton interaction
diagonal in the chromophore basis set, the nonlinear response
assumes the form

B̃ij,kl (t1, t2; t1, t2)

= −2
∑
pq

∑
α,β=L,R

(−1)p(α)+p(β)
∫∫
∞

−∞

dτ+dτ−

× Giq,Lβ(t1 − τ+)Gjq,Lβ(t2 − τ+)0̃qp,βα(τ+ − τ−)

× Gpk,αL(τ− − t1)Gpl,αL(τ− − t2), [11]

with the left/right parity defined as p(L) = 0, p(R) =
1, and Gjk,αβ(t) = 〈Bj,α(t)B†

k,β(0)〉 (37). In our model, a
chromophore is described by an anharmonic oscillator with a
fourth-order anharmonicity g (Eq. 2) that conserves the number
of excitations. Two-level chromophores are recovered in the
g → ∞ limit. Since the number of excitations is conserved
and the aggregate is initially in the ground state, the exact
expression for the scattering matrix 0̄ is given by a sum of ladder
diagrams. The interaction term in Liouville space is given by
g
∑

n(B
†
n,LB

†
n,LBn,LBn,L − B†

n,RB
†
n,RBn,RBn,R). Since in a model

with a conserved number of excitations, 〈Bj,L(t)B†
k,R(t ′)〉 = 0,

we can show by induction, starting with the right-most bare
vertex in a ladder diagram, that only the left components of
bare vertices contribute. Eq. 11 can be therefore recast in the
form

B̃ij,kl (t1, t2; t1, t2) =

= −2
∑
pq

∫∫
∞

−∞

dτ+dτ−Giq(t1 − τ+)Gjq(t2 − τ+)

× 0̃qp(τ+ − τ−)Gpk(τ− − t1)Gpl (τ− − t2), [12]

with Gjk(t) = 〈Bj,L(t)B†
k,L(0)〉. Summation of the ladder

diagram results in the exciton scattering matrix 0̃mn(t) =∫ dω
2π e
−iωt 0̄mn(ω) with 0̄mn(ω) = g((I − gF̄ (ω))−1)mn and

F̄mn(ω) =
∫
∞

0 dteiωtGmn(t)Gmn(t) =
∫ dε

2πGmn(ε)Gmn(ω−ε).
The two-level chromophore case is obtained in the limit g →∞,
resulting in

0̄mn(ω) = −(F̄−1(ω))mn. [13]

For simplicity, the effect of the environment is modeled by
introducing a finite lifetime to the exciton states of the aggregate
(inversely proportional to the number of excitations in the
state). Note that Eq. 12 inherently includes the subtraction
of single-exciton contributions given by the second and third
terms in Eq. 9. This can be verified by the fact that the
scattering matrix 0̄mn(ω) vanishes for g = 0 in Eq. 2. Only
the linear background is present in this case since the sample
does not possess any nonlinearity. In the sum over state
approach, the ladder diagrams in Fig. 2A do not vanish for
g = 0. The single-exciton contribution needs to be subtracted
manually. For the Hamiltonian HM in Eq. 2, doing so erases
the second ladder diagram and gives a correction to the first.
This subtraction must be carried out because of the four-
point correlation function that is being measured here, which
allows for a factorization of the signal discussed in Eq. 8. This
is not the case for intensity measurements used in classical
spectroscopy.

4. Application to the Reaction Center of
Photosystem II

We now apply our results to the reaction center of photosystem
II (PSII). Photosystem II is a large protein dimer complex
responsible for photosynthetic light harvesting in many biological
species, i.e., plants, bacteria, and other living organisms (38–
40). Its reaction center core receives excitation energy from
the sunlight-absorbing light-harvesting complex attached to
it. This energy leads to charge separation (41) among the
associated chlorophylls, and this separated charge is used for the
oxidation of H2O. The reaction center generates O2 as a result
of a complex—but well-understood—sequence of biochemical
reactions. Considerable effort has been made in understanding
the various biochemical reactions happening in this complex
due to the high efficiency of various processes occurring on
femtosecond time scales.

Various exciton models have been developed for under-
standing the spectroscopic experimental data of the PS II
reaction center. We consider a simplified model of the reaction
center, which includes six close-by chromophores. A further
simplification is made by excluding charge transfer excited states.
This makes it possible to describe the reaction center complex by
the Hamiltonian in Eq. 2 in the g → ∞ limit which then has
six single-exciton and fifteen two-exciton states.

We use the single-exciton Hamiltonian and the direction of
transition dipole moments, extracted by modeling the experi-
mental spectroscopic data in ref. 42. The rotationally averaged
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interferometric signal is computed by assuming that the two
outgoing polarizations lay in a plane perpendicular to the plane
of incoming polarizations. This selects the first term on the right-
hand side of Eq. 10 and results in

S(1τ1,1τ2)

=
∑
ijkl

∫
dt1dt2d t̄1d t̄2M

(1)
ijkl B̃ijkl (t̄1, t̄2; t1, t2)

× ψ(2)∗
(
t̄1 +

1τ2

2
, t̄2 −

1τ2

2

)
× ψ(1)

(
t1 +

1τ1

2
, t2 −

1τ1

2

)
. [14]

Here, we have introduced the controllable time delays 1τ1,2 be-
tween the signal and idler originating from PDC1,2, respectively
(Fig. 1). These are used to control the first and last interaction
time intervals in the left ladder diagram in Fig. 2A. Using Eq. 12,
the signal in the frequency domain is given by

S(1τ1,1τ2) =
∑
ijkl
M(1)

ijkl

∫ +∞

−∞

dω3
2π

dω3
2π

dω2
2π

dω1
2π∑

pq
Giq(ω1 + ω2 − ω3)Gjq(ω3)0qp(ω1 + ω2)

× Gpk(ω2)Gpl (ω1)ψ
(2)∗(ω3,ω1 + ω2 − ω3)ψ

(1)(ω1,ω2)

× exp
(
i
ω1 − ω2

2
1τ1 − i

2ω3 − ω1 − ω2
2

1τ2

)
. [15]

We assume the monochromatic pump used to generate the
entangled photons and the two nonlinear crystals to be iden-
tical. The two-photon correlation function is then given by
ψ(1,2)(ω1,ω2) ∝ δ(ω1 +ω2−�p)sinc(ω1−ω2

2 Te), where�p is
the monochromatic pump frequency and Te is the entanglement

time of the signal and idler photons. This approximation is
justified as long as the spectral width of the pump field 1�p
is much shorter than the dephasing times γfg of the two-exciton
states,1�p � γfg . In this case, the first and last interaction-time
interval is fixed by the delay 1τ1,2, respectively (Fig. 2A). The
uncertainties in these time intervals are given by the entanglement
time Te. The intermediate interaction-time interval which is
spent in the |f 〉〈g| coherence is integrated over a time interval
given by the temporal width of the pump field.

The spectral information content of the system correlation
function is displayed by Fourier transformation with respect to
the two time delays and for a fixed pump frequency,

S(�1,�2)

=
∫
∞

0
d1τ1d1τ2 exp (i�11τ1 + i�21τ2) S(1τ1,1τ2).

[16]

The spectra are plotted versus �1 + �p/2 and �2 + �p/2.
From Eq. 12, it is clear that �p selects a particular two-
exciton resonance of the scattering matrix. The�1/2 axes provide
information about the single excitation coherence evolution
during the two time delays between the first two and last two
interactions represented in the Liouville space pathway shown in
Fig. 2A.

The first two columns in Fig. 3 show the absolute value of
the signal |S(�1,�p,�2)| for two pump frequencies �p and
two entanglement times Te. The horizontal and vertical axes of
the 2D spectra mark the single-exciton energies, corresponding
to the Liouville space pathways |g〉〈g| → |e〉〈g| → |f 〉〈g| →
|e′〉〈g| → |g〉〈g| illustrated by the left ladder diagram in Fig. 2A.
The energy levels of the photosystem II reaction center are
shown in Fig. 4B. Eq. 15 shows that the pump frequency
�p can be used to select specific f -states. The horizontal axis
then gives the energy difference Ee − Eg , and the vertical axis
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Fig. 3. Absolute value of the (normalized) signal |S(�1 ,�p ,�2)| (Eq. 16) for two pump frequencies (Top and Bottom rows). The first two columns show the
signal for entangled photons for two different entanglement times Te = 10 fs (Left column) and Te = 100 fs (Center column). The Right column depicts the
respective absolute value of the signal obtained by classical double-quantum-coherence spectroscopy. The classical spectra show additional resonances due
to the ladder diagram in Fig. 5 present in the classical spectroscopy. These resonances may be different single-exciton resonances. For visual clarity, a grid is
drawn to indicate the single-exciton energies.
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Fig. 4. (A) The photosystem II reaction center complex consists of six chlorophylls and is described by the Frenkel exciton model. (B) Energy levels of the
photosystem II reaction center with 6 single-exciton eigenstates and 15 two-exciton eigenstates.

gives Ee′ − Eg . Evidently, the 2D spectra have both diagonal
and off-diagonal peaks depending on the possible excitation
pathways through the single-exciton manifold leading to the
two-exciton state selected by the pump frequency �p. The
diagonal contributions arise from the Liouville space pathways
with e′ = e. They provide information about which single-
exciton states are coupled to the selected two-exciton state.
The off-diagonal peaks arise from pathways with e′ 6= e and
provide information about the coherence between different
excitation pathways. The reasons for the absence or presence
of the diagonal and off-diagonal peaks are subtle. They either
arise due to interference effects induced by entanglement of the
two-exciton eigenstates (43) or can be suppressed by rotational
averaging because of the orientation of the transition dipole
moments. Further, the spectral range of the spectra decreases with
increasing entanglement time. This is because, for the continuous
pump limit considered here, the individual spectral ranges of
signal and idler are centered around �p

2 with a bandwidth
of approximately 2π

Te
. Hence, as Te is increased, only certain

excitation pathways contribute to the signal, and other resonances
are suppressed.

Finally, we note that in double-quantum-coherence spec-
troscopy (DQC), both using classical light and quantum light,
phase matching selects two ladder diagrams which contribute to
the 2D spectra (44, 45). These are shown in Fig. 5. The first
diagram is the same as in Fig. 2A. The last column in Fig. 3
shows the spectra obtained from classical DQC spectroscopy
after a Fourier transform of the intermediate time interval has
been performed and the respective two-exciton resonance has
been selected. Note that, here, data have to be collected over
three time intervals using ultrashort pulses, while the spectra with
entangled photons only require scanning over two time intervals.

Fig. 5. Additional ladder diagram which appears in the double quantum
coherence signal of classical spectroscopy. These diagrams can be selected
using phase matching and pulse shaping with the use of coherent pulses.

The second diagram in Fig. 5 can either add or suppress the
peaks of the first diagram which is isolated by the interferometer
in Fig. 1. Additional resonances at ωfe = (Ef − Ee)/h̄ appear
along the�2 axis that do not lie on the single-exciton energy grid
and leads to an asymmetric spectrum with respect to switching�1
and �2. The additional resonances and cancellation effects lead
to more congested spectra that are harder to interpret. Hence,
comparing and contrasting the 2D spectra obtained by phase
matching in DQC spectroscopy and those using the coincidence
measurement proposed in the current work can help under-
stand the detailed structure of two exciton states in molecular
aggregates.

Entangled photons with an entanglement time of Te < 20 fs
can be generated in a periodically poled lithium tantalate crystal
(13). Another possibility is given by β − BaB2O2 (BBO)
crystals with type-II phase matching. Numerical simulations
show that an entanglement time of Te = 10 fs (Te =
100 fs) could be achieved for a crystal length of L ≈ 50 μm
(L ≈ 500 μm), respectively (46). This estimate holds for a
slightly lower pump frequency of �p = 3.05 eV, but similar
crystal lengths for the pump frequencies used in this work are
expected.

5. Conclusions

We have demonstrated how an entangled photon pair com-
bined with a nonlinear interferometer can be used to monitor
quasiparticle scattering processes in chromophore aggregates in
real time. All interactions with the matter density operator take
place either on the left (ket) or the right (bra) side, and the
signal may thus be understood as a two-photon analogue of a
heterodyne measurement, where the two-photon wave function
of one crystal heterodynes the two-photon wave function of the
other crystal after it is scattered off the sample. This pathway
selectivity of the left/right superoperators is achieved by the
nonlinear interferometer and cannot be mimicked by classical
phase-matching schemes.

The proposed signal involves a four-point correlation function
of the electric fields. The fourth-order correction in terms of
the dipole operators possesses both a nonlinear contribution
and a factorized linear contribution, given by the product of
two independent linear processes for both signal and idler. We
have shown how for macroscopic samples consisting of large
numbers of molecules, which is typically the case for samples
used in spectroscopy, the linear background can be suppressed by
using either phase matching or polarization filtering. Isolating the
nonlinear response means that in contrast to TPA with entangled
photons, there is no ambiguity about the origin of the measured
signal. The cross-section of our signal should be similar to the
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TPA cross-section with entangled photons and could thus be
used to settle the current debate about the discrepancy in reported
cross-sections of fourth-order processes with entangled photons.

The antifrequency correlation between signal and idler may
be used to overcome the time/frequency Fourier limit. It is
possible to obtain good spectral resolution of the two-exciton
scattering matrix according to the spectral width of the pump
field, while maintaining good temporal resolution in the single-
exciton Green’s function according to the entanglement time
set by the nonlinear crystal. The pump field frequency can
select a single two-exciton state while the delay lines can be
used to scan the single-exciton manifold. These control knobs
give information about the two-exciton pathways as well as the
coupling between excitons. We have used this signal to study the
response of the photosystem II reaction center without charge
transfer. Note that the same signal may also be obtained with
only one crystal combined with a Franson interferometer (47),
by placing the sample into the long pathways of both signal and
idler.

Interferometry enables greater control over the Liouville space
pathways. Reducing the number of contributing pathways leads
to cleaner, less congested signals, which are easier to interpret.
Here, we have shown how to isolate quasiparticle scattering
processes and resolve them in real time. Other interferometric
techniques could enable the isolation of transport processes
with joint time–frequency resolution. The current theoretical
study is based on an effective field Hamiltonian which describes
the propagation along the interferometric arms, together with
an effective wave function for the entangled photons. A more
general description of the evolution of the field operators is
given in terms of single-photon Green’s functions and an
effective action describing the generation of the entangled
photons. Such a theoretical framework would allow us to
discuss spatial aspects of the interaction including effects due
to focusing and a precise estimation of the nonlinear interaction
cross-section.

Materials and Methods

Below, we introduce a simple quantum model that helps the interpretation of the
interferometric signals. We consider the case when the signal and idler photons
are distinguishable. To that end, we introduce four directed graphs (signal
and idler each have two graphs depending on which crystal they originate
from), representing the pathways of the signal and idler photons. The vertices
describe sources (outgoing arrows), sinks (incoming arrows), and beam splitters
(two incoming, two outgoing arrows), and the edges describe free evolution
of the respective photon wave packets. With each edge α, we associate an
open interval Iα = (x′

α,L, x
′

α,R), with [xα,L, xα,R] ⊂ (x′
α,L, x
′

α,R), with |xα,L −
x′
α,L|, |x

′

α,R − xα,R| � |xα,R − xα,L| and |xα,R − xα,L| being the length
of the optical path between the components, represented by the vertices αL
and αR. With each edge, we associate a family of photon creation/annihilation
operators a†

α(x) and aα(x), where x ∈ Iα , with the commutation relations
[aα(x), a

†
β(x′)] = δαβδ(x− x′). The one-particle Hamiltonian of the effective

quasi-one-dimensional photon system is given by

H0 = −i
∑
α

∫
Iα
dxa†

α(x)
d
dx
aα(x) +

∑
a∈0̃1

H(0)
a , [17]

H(0)
a =

αR=a∑
α

αL=a∑
β

Sa,βαa
†
β(xβ ,L)aα(xα,R) + h.c., [18]

where 0̃1 is the subset of the graph vertices that represent the splitters, with Sa
being the scattering matrix of a splitter, represented by the vertex a.

The total Hamiltonian of the matter-field system has the form

H(t) = H0 + HM + Hint , [19]

withHM andHint being the system under study and the system–field interaction
Hamiltonians, respectively. It is important to observe that both HM and Hint
involve the photon operator values at the sources and sinks so that one can
associate the annihilation and creation operators ab and a†

b, associated with

sources a ∈ 0L1 and sinks a ∈ 0R1 .
Since our graph does not have directed loops, and due to the simple nature

of the Hamiltonian H0, one can easily derive an explicit expression for the
interaction-picture sink operators ã(t) in terms of the source counterparts; that
is, for a sink j ∈ 0R1 , we have

ãj(t) =
∑
k∈0L

1

∑
γ∈h(k,j)

S(γ )ãk(t − l(γ )), [20]

where h(k, j) is the set of all (directed) paths that start at source k and end
at sink j, and l(γ ) is the total optical length of path γ , while S(γ ) is the
product of the proper elements of the scattering matrices over the intermediate
(splitter) vertices on path γ . Using this result, the annihilation operators b =(
ãD1 ,R(t), ãD2 ,R(t)

)T at the detectors D(1,2) are given by

b = c + Ud, [21]

with c =
(
ãD1 ,L(t − τD), ãD2 ,L(t − τD)

)T , U = 1√
2

(
1 i
i 1

)
, and d =(

ãs2 ,L(t − τs2 − τD), ãs̃1 ,L(t − τs̃1
− τD)

)T
. The annihilation operators for

the other two operators are obtained analogously by changing D1 → D3 and
D2 → D4 in the definition of b and c, and s → i in the definition of d. We
assumed a balanced 50:50 beam splitter, and τi describes the optical path
length of the respective path. Here, the L/R indices are not to be confused with
the Liouville superoperator indices but indicate whether the operator describes
annihilation at the source/sink of the path, respectively. Note that we assume
that the path lengths between the two beam splitters and the four detectors τD
are all equal.

This model can now be used to calculate the signal

S =

∫∫
∞

−∞

dtsdti 〈(ã
†
D1 ,R

(ts)ãD1 ,R(ts)− ã†
D2 ,R

(ts)ãD2 ,R(ts))

× (ã†
D4 ,R

(ti)ãD4 ,R(ti)− ã†
D3 ,R

(ti)ãD3 ,R(ti))〉, [22]

which leads to Eq.3. Here, we have ignored the first term in Eq.21 since photons
are only generated at the crystal or the sample. Terms containing the product of
annihilation operators where one is associated with the output form the sample
(indices s̃1, ĩ1) while the other is associated with PDC2 (indeces s2, i2) can also
be neglected since either photons are generated together in the paths s1, i1 (and
converted by the sample to paths s̃1, ĩ1) or the paths s2, i2. Mixed populations
between these paths never occur.
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