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Abstract

Connectionism is drawing much attention as a
new paradigm for cognitive science. An important
objective of connectionism has become the
definition of a subsymbolic bridge between the
mind and the brain.

By analyzing an important example of this
subsymbolic approach, NETtalk, I will show that
this type of connectionism does not fulfil its
promises and is applying new lechniques in a
symbolic approach.

It is shown that connectionist models can only
become part of such a new approach when they are
embedded in an alternative conceptual framework
where the emphasis is not placed upon what
knowledge a system must posses to be able to
accomplish a task but on how a system can develop
this knowledge through its interaction with the
environment.

Introduction

Connectionism has beer gaining much atention in
cognitive science. On of the reasons is that
problems of the traditional cognitivistic approach,
like the need for noise and fault tolerance and the
capability to generalize, are solvable with
connectionist, brain-like, techniques.

This proposal makes the problem of complete
reduction (PCR) (Haugeland, 1978), or of how a
symbolic description of cognition can be reduced (o
a non-symbolic one, again highly relevant.

In the traditional cognitivistic view cognition is
scen as formal symbol manipulation. The basic
steps of this approach can be defined as: *“I,
Characterize the situation in terms of identifiable
objects with well defined propenties. 2, Find general
rules that apply to situations in terms of those
objects and properties. 3, Apply the rules to the
situation of concern, drawing conclusions about
what should be done.” (Winograd and Flores, 1986,
p.15).

The physical symbol system hypothesis (Newell,
1980) can be taken as the most influential
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formulation of this approach. The hypothesis states
that a physical symbol system (PSS) constitutes
the necessary and sufficient conditions for general
intelligence. A PSS consists of a set of actions and
1s embedded in a world that consists of discrete
states; objects and their relations. Moreover, a PSS
has a "body of knowledge" that specifies the
relations between the events in the world and the
actions of the system, we can also refer to this body
of knowledge as a world model built up with
symbolic representations. The actions of the
system, either in the world, or internal inferences,
are organized around the goals of the system
according to the principle of rationality: roughly a
system will use its knowledge to reach its goals.
An important implication of this conceptualization
of cognition is that it can (and must) be modelled at
the abstract level of symbol manipulation. The
specifics of the implementation are, therefore, of no
importance. PCR is no longer an issue since the
non symbolic level of brain dynamics is not taken
to be very relevant in explaining cognition.

The hypothesis of physical symbol systems is
often seen as the only plausible model for general
intelligence which has no serious competitors (e.g.
Pylyshyn, 1989). Despite this claim this paradigm
also confronts some serious problems. One of these
problems is the symbol grounding problem
(Harnad, 1990), or the question of how symbols
acquire their meaning. In the cognitivistic tradition
the meaning of symbols is taken as given (Newell,
1981), which implies that cognitivism has to resort
lo a nativistic position: that the "body of
knowledge" is just present from the start on.
Moreover, one has to assume that the sysiem
possesses very reliable transduction functions that
allow the coupling between events and objects in
the world and their internal symbolic representation.
These assumption have been criticized on several
grounds. For instance, the genome does not have
the coding capacity to represent this body of
knowledge (Edelman, 1987), or it still needs to be
explained how during evolution this "body of
knowledge" could have been acquired (Piaget in
Piatelli-Palmarini, 1980). Moreover, practical
applications developed within this paradigm, for
instance robot control architectures, have not been
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very successful (see Malcolm et al., 1989, for an
overview).

A related issue is the frame of reference problem
(FOR) (Clancey, 1992) which conceptualizes the
relation between the designer, the observer, and the
system. The designer of a sysiem develops this
system out of his/her domain ontology (i.e. a
categorization of the task domain into events,
objects, and relations). The consequence of this is
that the knowledge on which the system is based is
grounded in the experience of the designer and that
this domain ontology is static,

An alternative position towards explaining
cognition can be found in traditional connectionism
(e.g. Rosenblatt, 1958). Here the hypothesis of
formal symbol manipulation was rejected in favour
of theories that take the dynamics of the brain into
account. The appropriate ool here was not logic but
stauistics. It is assumed that by interacting in its
environment an organism, which does not possess
prior knowledge of this environment, develops
preferences for specific responses to certain stimuli.
The evolving associations between stimuli and
responses are directly related to the development of
distinct connection patterns in its nervous system.
The classical example of this approach is the
perceptron proposed by Rosenblatt (1958). Also in
this case PCR is dissolved since the intentional
level of symbol manipulation is not taken to be
relevant in explaining behavior.

When we compare the solutions of PCR of both
approaches they have two contradictory positions.
While cognitivism emphasizes the importance of a
formal symbol manipulating mind traditional
connectionism underlines the importance of the
dynamical brain. This contrast can be seen as a
mind-brain dilemma (Verschure, 1992).
Subsymbolic connectionism has an alternative
position towards this dilemma.

Smolensky (1988) tried to define a theoretical
framework for connectionism where he assumes that
cognition, as described within classical cognitivism,
is an emergent property of the interaction of a large
number of units which are subsymbolic. His
proposal is based on developments in the present
main stream of connectionist research (e.g.
Rumelhart and McClelland, 1986).

Smolensky assumes that in a connectionist model
symbols are encoded by the ‘complex patterns of
activity over many units. Each unit participates in
many such patterns ... The interactions between
individual units are simple, but these units do not
have conceptual semantics: they are subconceptual’
(Smolensky , 1988, p. 6).

The subsymbolic description of cognition at the
level of units 1s supposed to be, in principle,
reducible to brain processes. The limited knowledge
we have of the brain is here seen as the only barrier
we have to take to complete this subsymbolic
reduction of cognition.

Subsymbolic connectionism offers a new
perspective on the relation between the mind and the
brain. It assumes that both levels can be joined up
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by specifying "bridging principles” between the
cognitivistic symbol manipulating mind and the
dynamic brain. If this approach can show how PCR
can be solved without rejecting one of the levels of
description involved it can indeed be taken as
progress.

To evaluate this claim of subsymbolic
connectionism I will first analyze its paradigmatic
example, NETtalk. This analysis will show that
subsymbolic connectionism does not fulfil its
promise (o solve the mind-brain dilemma, but still
constitutes, in essence, a symbolic approach. Next |
will sketich an alternative framework which does
allow a solution to this dilemma. Central 1o this
alternative position is that in order to understand
cognition the focus should not be on a predefined
"body of knowledge”, but on how this can be
acquired through the system-environment
interaction.

NETtalk: the example of
subsymbolic reduction

NETtalk, the famous “parallel network that leamns
lo read aloud’ by Sejnowski and Rosenberg (1986,
1987) is put forward by Smolensky, and others, as
the example of subsymbolic reduction.

With NETwalk Sejnowski and Rosenberg have
successfully built a model that could pronounce
English words. Although they acknowledge the
differences between the architecture of NETtalk and
the brain they assume that NETtalk can teach us
how information (in this case letter to phoneme
mappings) is represented in ‘large populations of
neurons'.

The input layer of NETtalk consists of 7 identical
groups of 29 units each. The letters of the alphabet
plus 3 extra features representing word boundary and
punctuation are coded in every group by a special
unit. The hidden layer of NETtalk has no pre-
assigned interpretation but is necessary o
accomplish the mapping between the input- and the
output layer. Every unit of the output layer
represents one of 23 articulatory features or one of 3
features representing stress and syllable boundaries.
The network leamns, by means of back propagation,
10 associate the letter coded for by the active unit of
the fourth group of the input layer with a specific
set of articulatory features represented by a specific
pattern of active output units. The other 6 groups of
the input layer provide a context. The coupled
activation pauemns of the input- and output layer are
determined by the designers of the system.

NETtalk is able to learn to correctly pronounce
95% of the presented words after training with
50000 words. It could correctly generalize 10 new
cases in 78% of the test words.

Sejnowski and Rosenberg next tried to determine
the features coded by the hidden units of NETtalk by
clustering input patterns that lead to the same
activation patterns of these elements. This cluster
analysis of NETtalk showed that the activity



Vowels: Consonants:
Tensed
Medium
High
Central 1
Front 1
Front 2
Central 2
Low
Back 1
Back 2
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Vowels: Consonants:
Yoiced 1 21
Unvoiced 1 12
Fricative 0 9
Palatal 0 8
Velar 1 8
Labial 0 7
Stop 0 7
Affricative 0 6
Alveolar 0 6
Nasal 0 6
Dental 0 5
Liquid 0 4
Glide 1 3
Glottal 0 1

Table 1: the frequency of occurrence of the articulatory features in coding vowels and consonants.

patterns of the hidden units could be understood as
separating two main features: vowels and
consonants. These results where considered to be an
important proof of the power of subsymbolic
computing: the emergence of a ‘symbolic’
separation of the letter to phoneme mapping in
vowels and consonants.

A closer analysis of the letter to phoneme
mapping the network has to learn shows, however,
that the patterns presented to the network can
beforehand be separated into two global categories:
vowels and consonants. To illustrate this in Table 1
the 24 articulatory features represented by the units
of the output layer are shown with their frequency
of being involved in coding a vowel or a consonant.
Articulatory features that are used to code both
vowels and consonants are printed in bold face.
Table 1 shows that the features that are used to code
about 95% of the vowels only code about 5% of the
consonants and vice versa. Only 8 of the 24 features
show an overlap and are used for coding vowels and
consonants. Notice, however, that this overlap is
always rather limited. For instance the feature
"Unvoiced” is used 12 times in encoding a
consonant and only once in encoding a vowel.
Because every input letter is related to a number of
articulatory features it can unambiguously be coded
as a vowel or a consonant. Only one of the 51
symbols leamned is completely defined by features
related to the opposite class (the letter ¢ as
pronounced in logic is completely defined by
articulatory features which mostly code vowels).
See Verschure (1992) for an elaborate analysis.

NETtalk is put forward as a clear example of a
model possessing subsymbolic representations. In
this analysis it is shown, however, that the
subsymbolic reduction given by NETualk of the
pronunciation of English words, expressed in the
separation of vowels and consonants, is pul in by
the designers of the system. The vowels are always
translated to a set of articulatory features of which
we know beforehand that they distinguish vowels
from consonants. Therefore, it is not surprising that
NETtalk learns 1o discriminate them from the
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category of patterns coding consonants. The trick
of subsymbolic reduction seems to lie in the
transformation from the symbols (in this case
articulatory features) to the actual activation patiems
that NETtalk learns. This transformation, which
conserves symbolic regularities (a vowel-consonant
distinction), is made by the designers: Sejnowski
and Rosenberg and not by NETtalk. Therefore, the
claim that NETtalk started out withowt ‘considerable
“innate” knowledge in the form of input and output
representations that were chosen by the
experimenters’ (Sejnowski & Rosenberg, 1987,
p.158) does not relate to the reality behind the
model.

The analysis of NETtalk suggests that
subsymbolic reduction seems 1o boil down 10 a
circularity consisting of the following steps: 1, The
designer of the system defines basic symbolic
properties in which a certain task can be described
(in NETtalk articulatory features and characters); the
knowledge the system must have to accomplish the
lask 1s defined. 2, These properties get translated to
regularities of activation patterns presented to a
connectionist model (in the case of NETtalk this is
expressed in which letter should be pronounced with
which set of pronunciation features). 3, The
connectionist model leamns to separate the patterns
on their differences and groups them together on
their regularities. These separations and groupings
get expressed in the dynamics of the network, for
instance in the activation of the hidden layer or in a
specific distribution of the weights. 4, The
regularities expressed in the dynamics of the
network, which are completely determined by the
regularities put in by the designers of the system,
are symbolically interpreted by the designer (in the
case of NETtalk as a vowel/consonant distinction).
Steps 1 to 3 show a strong similarity to the ones of
the cognitivistic approach listed earlier. It can be
shown (Verschure, 1992) that this hypothesis
concerning the circularity of subsymbolic reduction
can easily be generalized to other connectionist
models which have ‘emergent’ properties and



models that rely on completely distributed
representations.

Subsymbolism seems 10 be based on a
misconception of the epistemological status of the
representations of the model (Verschure, 1990).
Knowledge that is put in by the designers, that
relates to their domain ontology (the symbolic
categorization of the domain consisting of characters
and phonetic features), is erroneously interpreted as
an emergent property of the model. This provides
another example of the seriousness of the FOR
problem.

The solution of the mind-brain dilemma that
subsymbolic connectionism offers remains a vague
promise.

From symbols to dynamics

The analysis of NETtalk showed that subsymbolic
connectionism can be seen as a new methodology in
a well known theoretical framework: cognitivism.
The initial ambition of connectionism to form an
alternative paradigm for cognitive science is not
fulfilled. It seems useful 1o reevaluate the role that
connectionism can play in cognitive science.

To reassess the ambition of connectionism it is
useful to first evaluate the nature of connectionist
models. Connectionist models are dynamical
structures with a brain-like flavor, but they can also
be applied to model other phenomena like the
immune system or auto catalysis (e.g. Farmer,
1990). This implies that these models are neutral to
any interpretation and cannot by themselves
constitute a new paradigm.

In defining an alternative conceptual framework
the FOR problem can be taken as a starting point.
To understand behavior it is important not to
confuse the different perspectives involved. If the
design of a system is based on an external domain
ontology (from the designer or observer) and its
behavior is interpreted as if it were related to the
experience of the anefact we are suddenly confronted
with the symbol grounding problem. Because, it is
not recognized that the representations of the system
are founded in this extermal domain ontology. In
this respect the symbol grounding problem can be
seen as an artifact of a symbolic approach which
ignores the FOR problem.

It is obvious that intelligence is related 1o
knowledge. The point is, however, that this
knowledge should from the start on be grounded in
the experience of the system and not in that of the
designer or observer. Moreover, symbolic
descriptions of behavioral regularities can be taken
as being part of an observer ontology. But there is
no reason to automatically assume that the behavior
of the system is produced by internal symbolic
processes that mirror these regularities.

Given the above mentioned problems there is
no reason to subscribe immediately to the
assumptions made by cognitivism. In our own
work, which relates to the emerging ficld of "New
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Al" (Brooks, 1991), a different set of assumptions
is made. The first assumption is that cognition can
only be modelled using autonomous agents (see
also Brooks, 1991): systems that have realistic
sensors and effectors with which they interact with
the world. Next, these systems do not assume
highly reliable transduction functions that take care
of the percepuon of, for instance, a letter, but they
span the whole domain from sensing to acting.
This allows the development of representations that
are grounded in the experience of the system. The
behavior of the system is not separable from its
environment. It is the result of the ongoing
interaction between the two and not a distinct
property of one of these elements (e.g. Ashby,
1960) Furthermore, a different set of assumptions
about the world is made: First, the real world is
constantly changing, only partually knowable, and
only partially predictable. Therefore there cannot be
a predefined body of knowledge that approximates
the properties of the real world (see also Agre &
Chapman, 1988; Suchman, 1987). Second, the
world does not consist of a collection of events.
The notion event is completely connected to the
interaction between a system and the world. This
last point will be further dealt with in the
discussion section.

While cognitivism assumes that there is a "body
of knowledge" to be able to explain behavior and
postpones the question of learning (Haugeland,
1985) this proposal takes the opposite strategy. The
central theme is how a system can acquire
knowledge from its interaction with the world: how
does adaptation take place and what are its
prerequisites. Moreover, all processes, internal and
external, are in principle dynamic. The observed
behavior can, however, be described in symbolic
terms.

Starting with the assumptions outlined above we
have developed a design methodology for
autonomous agents, distributed adaptive control
(DAC) (Pfeifer & Verschure, 1992; Verschure et al.,
1992) which is based on a model for classical
conditioning (Verschure & Coolen, 1991). The
basic properties of the system are related to a value
scheme, which is taken to be defined by the genetic
setup of the system (Edelman, 1987). The value
scheme defines the properties of the sensors and
effectors and some initial sense-act relations
(reflexes). The value scheme allows a coarse
adaptation to the environment, for instance, when
there is a collision to the left turn to the right. The
system is also equiped with a more sophisticated
sensor: an inverse range finder which represents, in
essence, lime to contact. The states of this more
sophisticated sensor are gradually integrated into the
basic reflexes of the system due to the system
environment interaction. This integration process,
which is based on a Hebbian learing mechanism,
will lead to a fine tuned adaptation to the specifics
of the environment. In Figure 1 the set up of the
control architecture is depicted. The three sensors
project their state onto specific neural fields.



Environment

Figure 1: The DAC architecture and its relation to
the environment.

Activation of units in the fields that relate 1o the
collision detector (C) and the target detector (T) will
automatically trigger an acton, avoid or approach
respectively. The basic reflexes can be described as:
“collision left -> turn right" and symmetric for the
other side, and "target left -> turn left" and
symmetric for the other side. The default action of
the system is 10 move forward. These aclions are
represented by motor units in field M. The
connections between C, T and M are prewired.
These connections implement the reflexes by
connecting the related sensing and acting
components. Since the change of the connections
between C and T and the range finder field (R) is
based on a Hebbian learning rule any state in R
which occurs congruently with an action will be
associated with the acuvation in C and/or T that
triggered this action. Over time specific prototypical
states of R will develop that will trigger specific
actions. Next to these four fields a special
inhibitory unit, I, is defined that regulates the
interaction between avoid and approach actions:
activation in C will inhibit the output from T.

We showed (Verschure et al., 1992) that a system
based on these properties can develop emergent
behaviors like wall following in an environment
where targets are placed behind holes in walls. This
regularity leads the sysiem (0 associate being
parallel to a wall with approach actions. Over time
this behavior was generalized to any situation were
the system was next to a wall. It follows a wall
wiggling along switching between approach and
avoidance actions.

This wall following behavior can be described in
symbolic terms like a strategy or rule which is
based on the representation of a wall and the action
to follow it. The prorerties of the control
architecture, however, indicate that such a rule is
not present in the system. This behavior will only
emerge when a specific regularity is present in the
system-environment interaction (e.g. targets behind
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holes in walls). This indicates that although
behavioral regularities might be based on special
internal regularities of a system this does not have
Lo be the case. Moreover, this emergent behavior is
only present from the point of view of the observer.
The system can only act on its immediate sensory
states, while wall following behavior is displayed
over several time steps consisting of many actions.
This behavior that for an observer looks very
structured can only be explained when it is
decomposed into the actions that constitute it. This
decomposition, however, shows that the system is
acting like it always would, whether it is following
walls or doing something else, that for an observer
might look not that well organized.

Discussion

The analysis of subsymbolic ~nnnectionism has
shown that it is in fact applying iew techniques in
a well known conceptual framework: cognitivism.
Therefore, it does not provide a new perspective on
the mind brain dilemma. It was argued that to assess
the role connectionism could play in cognitive
science it is of importance to find an alternative
conceptual scheme in which it can be applied. The
reason for this is not 1o find a justification for doing
connectionism, but to address the mind-brain
dilemma.This alternative framework can be found in
the developing field of "New AI". The contrast
between the two approaches now becomes that
assumptions of cognitivism, which lead 1o the
symbol grounding problem, become central research
issues. One of this issues is, for instance, what is
the role and nature of knowledge in adaptive
behavior.

In doing this it becomes clear that the issue of
emergence should also be viewed from the
perspective of FOR. Emergent behavior then relates
to an observer who specifies a specific time and or
spatial frame in which "interesting" behavior is
displayed by the system. This emergent behavior is
not a property of the system but of the interaction
with the environment. The chunk of action that an
observer can call wall following is related to a set of
actions that become a connected whole in the frame
of reference of the observer. To explain this
behavior it should be viewed from the perspective of
the system. Which in the case of the presented
example means that what is wall following from
the observer perspective can only be explained from
the system'’s perspective as a sequence of approach
or avoid actions given the immediate sensory and
the internal states.

This perspective on behavior gives a different
slatus to nouons that are taken for granted in the
symbolic paradigm. For instance, the latter assumes
that the world consists of objects and events which
are somehow mirrored by the internal
representations of the system. In our case we see
that the notion of event and object is defined from
the perspective of the system where an event always



relates to actions. For instance, initially an action
can only be triggered by one of the basic reflexes
defined by the value scheme. Due to the learning
mechanism this can be transferred to range finder
states. What will now become a situation in which
a specific action will be triggered cannot be
predicted but depends on the specifics of the system
environment interaction. Only from the perspective
of the leaming history of the system the notion
event can be defined.

An important issue is how this proposal will
scale up to the phenomena traditionally studied in
cognitve science like reasoning and language. The
central question is, however, whether we should see
this issue as a conflict between two approaches.
From the perspective of FOR we can see that the
accounts offered by traditional approaches can be
taken as observer characterizations of behavioral
regularities. Which would mean that it is possible
to describe some parts of behavior, like language, in
terms of discrete elements that we call symbols.
From the systems perspective linguistic behavior is
still behavior built up out of many actions.

The mind brain dilemma can be addressed from the
presented perspective. Supposedly conflicting
paradigms in fact provide a different perspective on
the phenomenon of behavior. With this we can
overcome the isolated position of the study of the
mind as a special science and focus on the iniual
ambition behind cognitive science to develop a
fruitful interaction between the behavioral and the
Neurosciences.
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