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Abstract

Interior Structure of the Gas Giants: Thermal evolution and normal mode

seismology

by

Christopher R. Mankovich

Understanding the structure and composition of gas giants is of basic im-

portance to planetary astrophysics. Our local exemplars Jupiter and Saturn permit

spatially resolved observations from Earth as well as sensitive in situ observations by

spacecraft. This intersection of physical accessibility and conceptual importance for the

planet formation process renders Jupiter and Saturn essential for establishing baseline

truth for exploration of the assembly and evolution of planetary systems in general. In

this thesis I develop new models for the structure and evolution of these solar system

gas giants, bringing spacecraft observations to bear on our understanding of the physical

processes at work in giant planet interiors.

I first describe evolutionary models for Jupiter and Saturn that incorporate

results from first-principles simulations of hydrogen-helium mixtures at high pressures

to address how the helium distribution is likely to evolve in these planets as they cool.

Bayesian parameter estimation is used to retrieve the distribution of likely thermal

histories for Jupiter and Saturn. I present models that reconcile Jupiter and Saturn’s

observed heat flow, and Jupiter’s atmospheric helium depletion, at the solar age. These

solutions put stringent limits on the uncertain physics of helium immiscibility, and

xiv



translate to a precise prediction for the unknown atmospheric helium content of Saturn.

Second, I describe seismology of Saturn using ring waves driven by gravi-

tational perturbations from the planet’s nonradial oscillations. I present a family of

Saturn interior models together with their normal mode eigenfrequencies and corre-

sponding resonances with orbits in Saturn’s C ring, where more than twenty otherwise

unexplained waves have been characterized using Cassini stellar occultation data. I

identify the fundamental modes of Saturn at the origin of these ring waves, and use

their observed frequencies and azimuthal wavenumbers to estimate Saturn’s rotation

period to within ±2 minutes. This yields a period significantly faster than those in

Saturn’s kilometric radiation, the traditional proxy for Saturn’s unknown rotation pe-

riod. The global fit does not exhibit any clear systematics indicating strong differential

rotation in Saturn’s outer envelope.
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Chapter 1

Introduction

Cool giant planets are relics of the protoplanetary systems from which they

formed in the sense that they do not carry out nuclear fusion, and they are well-bound

enough that even hydrogen does not escape appreciably over tens of billions of years.

As a result their thermal evolution is not intractably complicated, and simulating it

empowers us to use the present states of the giant planets to test ideas pertaining to

their history and formation. The major open questions about planet formation—do gas

giants form by core accretion or by disk instability? To what degree do their observable

abundances represent their bulk abundances?—thus motivate a comprehensive theory

of giant planet evolution, the development of which will continue to be driven heavily

by our nearby, well-studied gas giants Jupiter and Saturn.

This thesis is concerned with the evolution and interior structures of Jupiter

and Saturn, particularly as informed by a spate of recent developments spanning the

disciplines of dense matter physics and planetary science. The work presented here was
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completed during an eventful time for exploration of the outer planets by spacecraft,

most notably the arrival of Juno (Bolton et al. 2017) at Jupiter and the culmination of

the Cassini mission (Edgington & Spilker 2016) at Saturn, and aims to synthesize some

of those results into a refined understanding of the jovian interiors. This requires the

application of models to turn the tangible fundamental characteristics of these planets—

typically their temperatures, radii, and gravity fields—into inferences about the physics

of their interiors. First I will briefly develop some background.

1.1 Modeling a giant planet

The essence of a stable self-gravitating fluid planet is captured by a system of

four differential equations

∂m

∂r
= 4πr2ρ (1.1)

∂P

∂r
= −ρg (1.2)

∂L

∂m
= −T

ds

dt
(1.3)

∂T

∂m
= −∇T

P

Gm

4πr4ρ
(1.4)

representing the conditions of mass conservation, momentum conservation, energy con-

servation, and thermal transport. Combined with an equation of state ρ(P, T, {Xi}), a

model for the distribution of the mass fractions {Xi}, and appropriate boundary condi-

tions, solutions to this system can be sought, and the result is a model for the structure

and evolution of a planet as a whole. The most flexible and realistic solutions are usu-
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ally sought numerically, and such numerical models are the principal tool used for the

work described in this thesis. Myriad simplifications have been made in order for these

equations to appear in this simple form, notably (i) the strong assumption of sphericity

allowing us to neglect horizontal forces and temperature gradients, and (ii) the hydro-

static assumption allowing us to neglect fluid accelerations. Assumption (i) is called

into question when one appreciates that planets are generally rotating, introducing for

example Coriolis and centrifugal forces that warrant at least a two-dimensional descrip-

tion. Assumption (ii), while certainly valid in establishing the background structure

of the planets, likewise ignores potentially interesting behavior that can take place on

timescales close to the dynamical timescale. Depending on the questions being asked

of the model, these can be critical ingredients, and indeed in Chapter 4 below special

methods are used to address these very issues in the context of normal mode oscillations

of the rapidly rotating Saturn. Chapters 2 and 3 are concerned with the broader ther-

mal evolution of Jupiter and Saturn where the one-dimensional hydrostatic description

suffices.

Still, untold complexity lurks even in this simplified description. The single

term on the right-hand side of Equation 1.3 monolithically captures heating and cooling

from a variety of sources including compression, irradiation, differentiation, and accre-

tion, the balance among which sets the luminosity throughout the planet. Likewise in

Equation 1.4 the factor ∇ ≡ d lnT/d lnP representing the temperature gradient in the

interior rather cryptically encapsulates the full description of how heat is transported

in the planet’s interior, be it by radiative or conductive diffusion, turbulent convective
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motions, some combination of these mechanisms, or somewhat more subtle small-scale

mixing processes. There remains significant uncertainty about which among these modes

of thermal transport are significant in the interiors of giant planets, leading to a broad

range of plausible values for ∇ and consequently to uncertain interior structures and

evolution pathways. The major goal of the first part of this work is to use the more de-

tailed constraints available only for Jupiter and Saturn in order to identify what energy

sources and heat transport mechanisms are necessary to give a satisfactory explanation

for these planets’ heat flow at the present day.

1.1.1 Power sources and heat flow

It has been appreciated since Low (1966) that Jupiter and Saturn radiate more

thermal energy than they receive in the form of solar light, indicating that they possess

significant internal sources of luminosity. Soon after, it was shown by Hubbard (1968)

that Jupiter’s interior was probably fully convective, a result of the large radiative and

conductive opacities in the hydrogen-dominated interior. In fact, these opacities are so

large that for realistic estimates of the total Jovian flux, nearly perfect convection would

carry the heat flux in the interior, and consequently the interior of the planet should be

close to an adiabatic stratification, i.e.,

∇ ≈ ∇ad (1.5)

where ∇ ≡ d lnT/d lnP is the temperature gradient and ∇ad ≡ (∂ lnT/∂ lnP )ad is

the adiabatic temperature gradient, a fundamental property of the equation of state.
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Equation 1.5 reflects the simple fact that in the limit of little leakage of heat out of

convective upwellings by radiative or conductive diffusion, they will retain virtually all

of their initial specific entropy, and thus large-scale convective motions will lead to a

structure wherein ds/dr ≈ 0. In reality these diffusive processes, however minuscule, do

occur and so convection is never perfect; as a result ds/dr ≲ 0 and ∇ ≳ ∇ad. Typical

realistic values in a convective layer in the interior of Jupiter or Saturn are ∇−∇ad ∼

10−9–10−6 so that Equation 1.5 is an excellent approximation. Thus if these planets

are indeed fully convective then Equation 1.4 taken with ∇ = ∇ad straightforwardly

provides the temperature throughout the interior.

Further support for the paradigm of the fully convective gas giant came from

evolutionary models. The basic picture from Hubbard (1968) of an initially hot, fully

convective Jupiter deriving its intrinsic flux from the thermal energy of baryons (princi-

pally hydrogen) proved to yield a cooling time roughly in line with the age of the solar

system (Hubbard 1969), a finding bolstered by more detailed calculations by Graboske

et al. (1975) and others since. The evolution of Jupiter can thus be framed in broad

strokes as a prolonged Hayashi-track-like contraction for a failed star, albeit one with a

partially degenerate interior and a surface boundary condition complicated by chemistry

and input from its host star.

The major issues with this picture emerge when the same ideas are applied

to Saturn, a planet one third the mass of Jupiter and ∼ 30 K colder but otherwise

ostensibly quite similar. The same assumptions that lead to successful evolutionary

models for Jupiter vastly underpredict Saturn’s observed luminosity (Pollack et al. 1977;
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Grossman et al. 1980; Fortney et al. 2011; Nettelmann et al. 2013), indicating either

that another energy source beyond simple Kelvin-Helmholtz contraction is operating, or

that at least part of the interior is not convective and therefore the interior temperatures

deviate from those expected for an adiabat. Several lines of reasoning point toward a

reality that probably involves both (Stevenson 1982a).

1.1.2 Phase transitions

To identify what processes might be responsible for these complications, it is

helpful to gather some perspective on the characteristics of hydrogen-helium mixtures

at the conditions relevant for the interiors of the gas giants.

Hydrogen metallization

As was appreciated in the earliest interior models of Smoluchowski (1967) and

Hubbard (1968), for the temperatures relevant to Jupiter and Saturn there exists a

phase transition in the neighborhood of P ∼ 1012 dyne cm−2 = 106 bar separating

molecular hydrogen from a denser, pressure-ionized metallic phase of hydrogen. This

denser metallic fluid phase comprises the inner ∼ 80% of Jupiter’s mass and ∼ 50% of

Saturn’s mass. It has been debated whether this hydrogen phase transition is a first-

order phase transition in the sense that it is necessarily accompanied by a discontinuous

change in density and a release of latent heat (e.g., Stevenson & Salpeter 1977a; Saumon

et al. 1995). In more recent years, ab initio methods used to simulate dense matter

systems directly on small scales have uncovered no strong evidence for a first-order

transition in hydrogen at the temperatures relevant to giant planets, indicating that
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the change from molecular to metallic hydrogen may in fact be a gradual transition

within these planets (McMahon et al. 2012). While this question is far from settled, it

appears that interior models for Jupiter and Saturn need not involve a first-order phase

transition for hydrogen.

Hydrogen-helium immiscibility

A distinct but closely related phase transition concerns the behavior of helium

in metallic hydrogen. Helium remains essentially perfectly neutral under Jovian condi-

tions, and as a result has imperfect solubility in the pressure-ionized liquid metallic hy-

drogen. This means that generally speaking, a sufficiently cooled hydrogen-helium fluid

at P ≳ 106 bar will tend to separate into a helium-poor phase and a denser helium-rich

phase, with the density (or helium fraction) contrast between the two phases increasing

as the fluid is cooled (Salpeter 1973; Stevenson 1975; Stevenson & Salpeter 1977a). This

hydrogen-helium phase transition sets in at temperatures comparable to the tempera-

tures of the metallic layers inside Jupiter, and thus the phase separation of helium may

be occuring in both Jupiter and Saturn. The preference for the resulting overdense

helium-rich droplets to fall deeper into the metallic layers—a helium rain—may have

major ramifications for both of these planets because it both provides an additional

luminosity source and establishes composition gradients that may inhibit convection in

their deep interiors (Salpeter 1973; Flasar 1973; Stevenson & Salpeter 1977b). While

the P–T conditions describing this phase transition have been historically quite un-

certain, and hence its relevance Jupiter and Saturn somewhat unclear, more recent in

situ measurements of Jupiter’s atmospheric helium depletion (Niemann et al. 1998; von
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Zahn et al. 1998) and its related neon depletion (Mahaffy et al. 2000; Wilson & Militzer

2010) suggest that the action of helium rain is all but a certainty in cold planets at a

Jupiter mass or less. The process may have conceivably even occurred in Uranus and

Neptune provided that their P ≳ 106 bar regions possessed a supercritical mixing ratio

of helium to metallic hydrogen.

The ab initio simulations alluded to above have been a major driver of the

progress in modeling giant planets over the last decade, pushing to conditions inaccessi-

ble to laboratory experiment in order to quantitatively map out the relevant equations

of state (Militzer et al. 2008; French et al. 2009; Militzer & Hubbard 2013; Becker et al.

2014; Chabrier et al. 2019), transport properties (French et al. 2012), and the conditions

for hydrogen-helium immiscibility (the H-He phase diagram; Lorenzen et al. 2009, 2011;

Morales et al. 2009, 2013; Schöttler & Redmer 2018), making possible a new generation

models for the static structure of Jupiter and Saturn (Nettelmann et al. 2012, 2013;

Hubbard & Militzer 2016a; Miguel et al. 2016), including those ultimately used to in-

terpret the sensitive gravity field data gathered by Juno at Jupiter (Guillot et al. 2018)

and by Cassini at Saturn (Iess et al. 2019). Models like these have yielded important

insights about the interior mass distributions, as well as the groundbreaking discovery

of deep differential flows in both Jupiter and Saturn.

However, the questions associated with the long-term thermal evolution of

these planets remain unresolved. In particular, no entirely satisfying realization of the

ideas that Stevenson & Salpeter (1977b) first presented in depth has been found, leaving

open the questions: can helium rain realistically explain Saturn’s large luminosity at
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the solar age? Can the same physical assumptions address Jupiter’s heat flow without

compromising the apparently good fit obtained for homogeneous, adiabatic models?

And conversely, if Jupiter and Saturn are treated as a laboratory for dense matter

physics, are the ab initio models for hydrogen-helium systems converging on reality?

Evolution models including the hydrogen-helium immiscibility in these planets have

begun to shed some light on these questions (Hubbard et al. 1999; Fortney & Hubbard

2003; Nettelmann et al. 2015; Püstow et al. 2016), but a cohesive description of the

heat flow and helium abundances in both planets at the solar age has eluded the field.

Chapter 2, initially published as Mankovich et al. (2016), and Chapter 3, to be published

soon after this dissertation, aim to provide such a description by applying the state of

the art in the equation of state and phase diagram of hydrogen-helium mixtures. The

reader is forewarned that the results of these two chapters are substantially different,

owing in part to this developing state of the art in hydrogen-helium physics, and in

part to a recent Cassini measurement of Jupiter’s intrinsic flux (Li et al. 2018) that

significantly changes the picture for Jupiter’s cooling.

1.2 Seismology as the frontier in giant planet astrophysics

The chief constraint on the internal structures of solar system planets other

than Earth is their gravity field, which for a rotating, oblate planet deviates from a

simple spherical potential in a manner that depends on the internal mass distribution.

The sensitive gravity field measurements made at the culmination of NASA’s Juno (Iess

et al. 2018) and Cassini (Edgington & Spilker 2016) missions represent a historic con-
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tribution in this arena, enabling for example the discovery of deep differential rotation

in both Jupiter (Kaspi et al. 2018; Guillot et al. 2018) and Saturn (Iess et al. 2019).

Gravity field measurements like these are in principal sensitive to the quantities most

pressing to formation and evolution questions, for instance the deep envelope metallicity

and the mass of the dense rock/ice core, if one exists. However, quantitative conclusions

based on interpretation of a gravity field alone are inevitably model-dependent and sub-

ject to fundamental issues of nonuniqueness and parameter degeneracy (e.g., Helled &

Stevenson 2017). Thus in the interest of long-term progress there is a need to identify

independent observational means of studying the interiors of these planets.

In this regard seismology is the leading prospect. Just as helioseismology

revolutionized solar astrophysics in the 1970s and 1980s (Christensen-Dalsgaard 2002)

and Kepler and CoRoT asteroseismology has likewise done for stellar astrophysics over

the last decade (Chaplin & Miglio 2013), the interpretation of normal mode oscillations

in giant planets has the potential to radically change the way we study their interiors.

In simple terms, any measured frequency that can be identified with a normal mode

oscillation of a planet is a powerful constraint on the parts of the interior where that

mode has significant amplitude. Like the components of the planet’s static gravity field,

the frequency of a normal mode is sensitive to the interior mass distribution, but also

to other interior properties of fundamental interest: depending on the nature of the

restoring force supporting a given oscillation mode, its frequency can generally shed

light directly on the type of heat transport operating in the planet’s interior, as well as

the interior rotation. The latter possibility is especially intriguing in the case of Saturn,
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whose rotation rate—a critical input for, e.g., gravity field modeling—is otherwise poorly

constrained.

Preliminary detections of Jupiter’s oscillations have already been made from

the ground (Mosser et al. 1993; Gaulme et al. 2011), where observations rely on spa-

tially resolved radial velocity maps of the planet’s surface. These observations are most

sensitive to the acoustic overtone (p–)modes, essentially trapped sound waves the likes

of which have yielded most of the information about the solar interior from global he-

lioseismology. The general structure of the power spectrum of Gaulme et al. (2011)

accords well with expectations from Jupiter interior models, but little else of use can

be gleaned until a spectrum is obtained with a frequency precision sufficient to isolate

individual normal modes. Astronomers appear poised for a breakthrough along these

lines with the broad longitudinal baseline of the JOVIAL campaign (Schmider et al.

2013).

Meanwhile, the Cassini mission has delivered a different dataset that is proving

quietly transformative for our ability to study the interior of Saturn in particular. Peer-

ing at bright stars through Saturn’s translucent C ring, Cassini achieved high-resolution

optical depth scans that allowed for the characterization of dozens of waves in Saturn’s

rings that are driven by the oscillations of Saturn itself through orbital resonances, con-

firming Voyager-era predictions (Stevenson 1982; Marley 1990, 1991; Marley & Porco

1993) that Saturn’s expansive ring system could be acting as a sensitive seismograph for

the planet. More than 20 such waves have now been characterized from Cassini stellar

occultations (Hedman & Nicholson 2013, 2014; French et al. 2016, 2019; Hedman et al.
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2019) in terms of their frequencies and azimuthal orders (spiral arm numbers) m. The

result is the first ever giant planet power spectrum with sufficient precision to isolate

individual normal modes, ushering in the era of bona fide giant planet seismology.

As a whole this dataset is well described by the theoretical formalism and

quantitative predictions of Marley (1990, 1991); Marley & Porco (1993), who demon-

strated that the rings would be most sensitive to forcing by Saturn’s fundamental (f–)

modes in particular. However, the details of the spectrum built up by Cassini reveal

unforeseen complexity that has already yielded important discoveries for Saturn’s in-

terior. An unexpected and profound implication of the first Saturnian waves detected

(Hedman & Nicholson 2013) was the presence of clusters of spiral density waves with the

same value of m in close proximity to one another, where the f–mode spectrum predicts

only a single wave. Fuller (2014) demonstrated that this could be naturally explained if

Saturn hosts not only the inevitable f–modes, but also internal gravity (g–) modes in

its deep interior. The presence of g–modes in Saturn is profound because these require

a stable thermal stratification, a possibility excluded by the traditional assumption of

the interior as fully convective. These new constraints are thus critically important with

respect to the open questions about Saturn’s heat flow discussed above. Nonetheless

Chapter 4 below, originally published as Mankovich et al. (2019), limits its attention to

the subset of Cassini waves that are unaffected by mode mixing—indeed the majority

of the spectrum observed so far—to identify the Saturnian f–modes responsible and use

their frequencies to measure Saturn’s bulk rotation rate. The observed mixed modes

are an important opportunity for future work and will be discussed in Chapter 5.
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1.3 Outline of this work

Chapter 2 recapitulates the main ideas surrounding hydrogen-helium immis-

cibility, applying a recent hydrogen-helium phase diagram to thermal evolution models

of Jupiter. Chapter 3 builds on these calculations by applying a more accurate equa-

tion of state and hydrogen-helium phase diagram, incorporating a new measurement

of Jupiter’s intrinsic flux, and extending the model to the case of Saturn; the con-

clusions reached therein are quite different from those in Chapter 2 owing to these

substantial updates. Chapter 4 presents a different, complementary approach toward

the same big-picture questions, applying normal mode seismology to examine powerful

new constraints on Saturn’s interior structure based on signatures left in the rings by

the planet’s free oscillations. Finally Chapter 5 summarizes these results and discusses

lines for future inquiry.
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Chapter 2

Helium rain and double-diffusive

convection in Jupiter

2.1 Introduction

A Henyey-type stellar evolution calculation for a Jupiter-mass object was first

performed by Graboske et al. (1975), who showed that a convective, homogeneous sphere

of fluid hydrogen and helium could cool to Jupiter’s observed luminosity over roughly

the right timescale, and noted that among all model inputs, the equation of state (EOS)

and superadiabaticity of the temperature gradient have the strongest influence on the

overall cooling time.

These two fundamental physical inputs are closely related. The EOS (paired

with a hydrostatic model) is necessary to translate the planet’s tangible properties

(surface temperature and composition; external gravity field, size and shape) into an
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interior density distribution. Knowledge of the thermodynamic state of matter in these

regimes includes understanding any phase transitions that can operate in a Jovian-

mass planet’s interior, the two most important of which are (i) the transition from

molecular hydrogen to its denser, pressure-ionized “liquid metallic” phase, and (ii) the

limited solubility of neutral helium in that liquid metallic hydrogen once it cools below

a critical temperature (Stevenson 1975). The latter of these two effects has observable

ramifications because the helium-rich phase tends to sink, releasing gravitational energy

(constituting a power source beyond mere contraction) and depleting the outer envelope

in helium (Salpeter 1973; Stevenson & Salpeter 1977b). Ultimately a robust theory of

giant planet evolution must reconcile the atmospheric helium mass fraction Yatm with

the helium content of the protosolar nebula, and this demand constrains the plausible

EOS and H-He phase diagram.

Since the critical temperature for H-He phase separation increases with pres-

sure more slowly than the temperature along a planetary adiabat, the equilibrium he-

lium abundance increases toward the center the planet. Thus in the limit that the

hydrogen-helium mixing ratio is equal to its equilibrium value throughout the liquid

metallic hydrogen part of the mantle, there exists a stabilizing helium gradient that

acts to mitigate the convectively unstable temperature gradient. In this case the dy-

namics of the fluid (and the degree of macroscopic vertical heat transport that ensues)

are dictated by the competing microscopic diffusion of heat and solute; the fluid is in the

double-diffusive regime. In such a region the temperature gradient can be significantly

larger than the adiabatic gradient, leading to potentially dramatic modifications to the
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planet’s cooling time. For example, double-diffusive convection has been invoked in

recent years to explain Saturn’s luminosity excess (Leconte & Chabrier 2013a; the case

of a global heavy-element gradient), the inflation of hot Jupiters (Kurokawa & Inutsuka

2015), and Jupiter’s late thermal evolution including helium rain (Nettelmann et al.

2015), which we are revisiting in this paper. Although differentiation alone contributes

additional luminosity, extending the overall cooling time, any superadiabatic temper-

ature structure associated with double-diffusive convection generally cools the surface

more quickly. For models undergoing helium rain, cases with adiabatic P − T profiles

thus give an upper limit to the cooling time (Fortney & Hubbard 2003, Püstow et al.

2016). The inclusion of double-diffusive convection offers a continuum of shorter cooling

times, modulated by the efficiency of the heat transport through the double-diffusive

region.

Nettelmann et al. (2015) sought a solution for Jupiter’s evolution to its current

state assuming a superadiabatic temperature profile in the framework of layered double-

diffusive convection (LDDC; Mirouh et al. 2012, Wood et al. 2013) and found that a

suitable combination of LDD layer height and modifications to the H-He phase diagram

could match Jupiter’s observed 1-bar temperature and Yatm. However, it is likely that

a quasi-stable turbulent state like the layered structures characterized by the direct

hydrodynamics simulations of Wood et al. (2013) would look quite different in the

presence of a phase transition and rainout of a main component. For example, in the

context of helium phase separation, homogeneous layers themselves—finite volumes of

(P, T ) space, at effectively uniform helium abundance—are intrinsically unstable to
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H-He phase separation, and the influence that droplet formation and rainout has on the

merging or bifurcation of convective layers, or the transport of solute between layers, has

yet to be assessed from the hydrodynamical perspective. The present work thus relaxes

the assumption of layered convection, opting instead to treat the superadiabaticity with

a generic parameterization, the only physical content of which is the demand that the

temperature gradient lie somewhere between the minimum value for overstable double-

diffusion and the upper limit imposed by the Ledoux criterion. This amounts to the

criterion that gravity waves be linearly overstable, so that thermal transport is enhanced

relative to the purely diffusive case by some degree of turbulence.

Despite growing confidence that helium has begun differentiating in Jupiter’s

recent past (and billions of years ago in the case of Saturn; see Fortney & Hubbard 2003

and Püstow et al. 2016), it is not known whether helium rain alone can resolve the gaps

in our understanding of giant planet evolution given Jupiter and Saturn’s luminosities

and the helium content of their molecular envelopes at the present day. Although the

thermodynamic conditions for phase separation of helium from liquid metallic hydrogen

have been evaluated since the early work of Stevenson (1975) and Straus et al. (1977),

quantitative knowledge covering the relevant pressures and H-He mixing ratios has only

become available over the past several years as a result of ab initio simulations making

use of density functional theory molecular dynamics (Morales et al. 2009; Lorenzen et al.

2009, 2011; Morales et al. 2013). The present work demonstrates that using ab initio

results for the H-He phase diagram, a differentiating non-adiabatic Jupiter comprised

of hydrogen and helium surrounding a dense core of heavy elements explain Jupiter’s
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evolutionary state at the solar age.

To assess the viability of the evolution models, we formulate the problem in

a Bayesian framework, using Jupiter’s observed Teff , Yatm, and volumetric mean ra-

dius Rvol to derive posterior probability distributions for the model parameters using

a Markov chain Monte Carlo sampling algorithm. Most importantly, we make a prob-

abilistic determination of the superadiabatic temperature gradient to be expected in

the deep interior, and simultaneously estimate the temperature correction that must be

applied to the Lorenzen et al. (2011) phase diagram to satisfy the Galileo entry probe

measurement of Yatm (Nettelmann et al. 2015). The present work thus extends the

basic approach of Fortney & Hubbard (2003)—using forward thermal evolution models

to infer a most likely H-He phase diagram—with the power of a Bayesian parameter

estimation method and the treatment of non-adiabatic P − T profiles.

In §2.2 we describe our modeling approach using Modules for Experiments

in Stellar Astrophysics (MESA; Paxton et al. 2011, 2013, 2015), including our atmo-

spheric boundary condition, treatment of helium phase separation, thermal transport,

and other modifications that were necessary for our application. We describe the three

free parameters in our inhomogeneous, non-adiabatic models, namely the heavy-element

core mass Mc, the double-diffusive superadiabaticity (or “density ratio”) Rρ, and the

phase diagram temperature offset ∆Tphase. In §2.3 we present results of evolutionary

calculations, first validating our models for the case of homogeneous composition, then

discussing in detail the late inhomogeneous, non-adiabatic evolution as a result of helium

rain. We then repeat these calculations, but treating the planet’s equilibrium tempera-

18



ture Teq as a fourth free parameter controlling the overall cooling time, mimicking the

influence of a “colder” or “warmer” EOS than the adopted Saumon et al. (1995) EOS.

Marginalizing over this parameter allows us in an indirect sense to marginalize over the

plausible H-He equations of state and thus obtain the most general estimates for the

remaining three parameters. In §2.4 we summarize and contextualize our findings.

2.2 Planetary evolution models

Our evolution models are computed using MESA version 8118. The models

are hydrostatic, nonrotating spheres with envelopes consisting of binary mixtures of 1H

and 4He surrounding dense inert cores of heavy elements. In the density-temperature

regime relevant to giant planets with M ≲ MJ, MESA employs the Saumon et al. (1995)

equation of state, interpolated over hydrogen’s molecular-metallic phase transition such

that the density varies smoothly between the two phases (SCvH-I). This EOS is advan-

tageous for studies of helium phase separation because it provides the necessary state

variables for arbitrary mixtures of hydrogen and helium, which is critical for solving

the energy equation throughout the interior of the differentiating planet. This is one

of our principal motivations for using SCvH-I over more recent H-He EOSs obtained

with ab initio methods (e.g., Militzer & Hubbard 2013) in spite of the latter class com-

paring more favorably with shock experiments. Rosseland mean radiative opacities are

taken from Freedman et al. (2008) and a privately communicated 2011 update. Electron

conduction opacities are based on Cassisi et al. (2007).

Jupiter is oblate as a result of its rapid rotation, while our present models are

19



perfect spheres. A suitable mean planet radius with which to compare our model radii

is the volumetric radius (Seidelmann et al. 2007)

Rvol ≡ R2/3
eq R

1/3
pol = 69, 911± 6 km, (2.1)

where Req and Rpol are Jupiter’s equatorial and polar radii at 1 bar; Rvol is the ra-

dius of sphere enclosing the same volume as does Jupiter’s 1-bar surface. Because the

overall compactness of the planet is steeply sensitive to its heavy element mass, the

high precision of this radius measurement translates into an extremely narrow range of

allowed core masses. As an example, fitting the radius of our homogeneous, adiabatic

Jupiter model—for which Mc is the sole free parameter—to Jupiter’s Rvol at the solar

age using MCMC produced Mc = (25.33 ± 0.03) ME (the quoted value corresponding

to the median and the error to the 68% confidence interval). Our models prefer large

core masses because of the assumption that all heavy elements are relegated to a dense

core; in reality, at least half of Jupiter’s heavy element mass probably resides in the

hydrogen-dominated mantle and envelope (Saumon & Guillot 2004). Thus in our find-

ings (§2.3), Mc should be interpreted as a total heavy element mass. Indeed, the fact

that our adopted equation of state is limited to hydrogen and helium is the reason why

we make no effort to calculate the oblateness and associated gravitational multipole

moments (J2, J4, . . .) for our models.

The presence of heavy elements in the envelope and the action of rotation

would both modify the hydrostatic structure and thus the total cooling time obtained

for an evolutionary model. To assess the sensitivity to the heavy element distribution, we
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computed models with fixed total heavy element mass MZ = Mc+MZ,env = 28 ME and

varying combinations of the core mass Mc and envelope heavy element content MZ,env,

modelling the heavy elements in the H-He envelope simply by taking Y → Y + Z for

the purposes of this diagnostic. We find that models with more of their heavy elements

mixed throughout the envelope cool more quickly (e.g., Baraffe et al. 2008a), with a

characteristic spread of 70 Myr in the time for models with no H-He phase separation

to cool to Jupiter’s volumetric radius. This is a relatively short time compared to the

∼ 2 − 5 × 108 yr spread in cooling times obtained by varying the total heavy element

content or atmospheric boundary condition, as discussed in §3. The centrifugal support

provided by rotation would also modify the radius evolution, but as there are a number

of complexities associated with rotation (e.g., the likely differential rotation as a function

of radius or latitude, and the details of the planetary figure as a result of even rigid

rotation), we do not model rotation here. It should be noted that the effect of rotation

is to some degree degenerate with the total amount and distribution of heavy elements,

since the tendency for centrifugal acceleration to prefer larger radii can be offset by

incorporating more heavy elements.

2.2.1 Initial conditions

Adiabatic, extended (1-bar radius R = 2RJ) initial models of mass M =

MJ = 1.89861 × 1030 g were created using MESA’s create_initial_model capability

described in Paxton et al. (2013). For each model, a fraction of the total mass was

converted into a dense, nonevolving core of specified mass Mc and density ρc. All

models in the present work adopt a constant core density ρc = 15 g cm−3 for simplicity.
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The evolution is insensitive to the particular choice of core density; the total radius R

is set by Mc nearly independent of ρc.

2.2.2 Hydrogen-helium phase separation

We couple our evolutionary calculations to the H-He phase diagram of Lorenzen

et al. (2011), whose calculations include the simplifying assumption of ideal entropy of

mixing between the two species. The group of Morales et al. (2013) instead performed

direct thermodynamic integrations, thus including nonideal contributions to the entropy

of mixing, but at the expense of subtantially more sparse sampling in helium number

fraction xHe. The results of the two groups are in reasonable agreement, diverging

most noticeably at temperatures ≲ 3000 K, which on a present-day Jupiter (or Saturn)

adiabat is well outside the transition from molecular to metallic hydrogen predicted by

either group. Although it appears from their Figure 1 that the phase diagram of Morales

et al. (2013) predicts that Jupiter has not yet cooled into the immiscibility region of

(P, T ) space for a protosolar mixture, the favored model of Hubbard & Militzer (2016b)

has a cooler deep interior such that it has already undergone H-He phase separation

according to both phase diagrams. These cooler deep layers are a result that Militzer

et al. (2008) attributed to the important inclusion of the nonideal entropy of mixing

between H and He.

Apart from the major differences in the two modern phase diagrams’ behavior

at T ≲ 3000 K, P ≲ 1 Mbar, their overall shapes at the warmer conditions relevant to

Jupiter and Saturn are in rough agreement, with the major effect being an temperature

offset (up to 1000 K) between the two. It is possible that this discrepancy stems from
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including versus excluding the nonideal entropy of mixing between the two components.

It was demonstrated by Nettelmann et al. (2015) that applying the raw phase diagram of

Lorenzen et al. (2011) to Jupiter resulted in too large a loss of helium from the molecular

envelope, motivating a global downward offset in the demixing temperature such that

the onset of phase separation takes place later in the planet’s history. It is reassuring

that an offset motivated by Jupiter’s observed atmospheric helium content brings the

two phase diagrams into closer agreement. In this paper, we also allow for a global

temperature offset ∆Tphase to this phase diagram and estimate its value from available

data; we confirm the result of Nettelmann et al. (2015) that for models computed

with SCvH-I, the necessary downward offset is of order 200 K. Shifts to the published

phase diagram in pressure are also conceivable, but as the phase diagrams of Lorenzen

et al. (2011) and Morales et al. (2013) agree fairly closely on the minimum pressure

for phase separation at temperatures typical of Jupiter and Saturn’s molecular-metallic

transitions, the temperature offset appears to be the most important correction.

The phase diagram of Lorenzen et al. (2011) adopted for the models in this

paper is illustrated in Figure 2.1, wherein phase curves are shown in (xHe, T ) space

(left panel) and in (P, T ) space (right panel). The data are finely sampled in xHe but

more coarsely in P , where data are available at P = (1, 2, 4, 10, 24) Mbar. Our model

assumes no phase separation at pressures lower than 1 Mbar where no data are available.

This assumption is reasonable given the near-vertical (P, T ) phase curves found by

both Lorenzen et al. (2011) and Morales et al. (2013) for the relevant temperatures

4 kK < T < 6 kK, although the latter phase diagram situates the boundary at slightly
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Figure 2.1: H-He phase diagram of Lorenzen et al. (2011), illustrating immiscibility
regions as a function of helium number fraction xHe for four pressures (left panel),
and as a function of pressure for the protosolar mixture (right panel). Immiscibility
regions (shaded regions bounded by thick curves) are precluded in terms of equilibrium
thermodynamics, i.e., by the criterion that the Gibbs free energy be stable with respect
to perturbations in the helium concentration. The vertical dashed line in the left panel
designates the protosolar mixture, xHe = 0.0866 (Y = 0.275). Open circles in the right
panel are raw data and the curve is a linear interpolation in logP . A solar-age profile of
a representative differentiated Jupiter (Mc = 30ME, Rρ = 0.25, ∆Tphase = 0) is shown
in the thin black solid curves.

lower pressure P ≈ 0.8 Mbar. To compute the equilibrium abundances for zones at

arbitrary T and P , we interpolate in the tables linearly in xHe and logP to obtain

Tphase, and numerically solve the equation

Tphase(xHe, P ) + ∆Tphase − T = 0 (2.2)

for the equilibrium helium concentration xHe.

Differentiation begins once the planetary P − T profile cools into the immis-

cibility region for the protosolar mixture, at which time one or more grid points are

supersaturated in helium. For this and each subsequent timestep, we assume the ther-

modynamic equilibrium distribution of helium throughout the interior, which amounts
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to the assumption that all helium excess is delivered efficiently by gravitational settling

to lower depths such that it can exist in chemical equilibrium with its surroundings.

Here “efficient” delivery means that the local supersaturation can be reduced to zero

faster than the other relevant timescales, namely the planet’s thermal timescale, the

large-scale convective circulation time, and the simulation timestep.

The thermal timescale τth = Egr/L, with Egr denoting the total binding en-

ergy, is roughly 109 yr. Timesteps in our simulations are typically 106 to 107 yr. The

convective circulation time presents the strongest condition: it can be estimated with

mixing length theory as (Guillot et al. 2004) τMLT ∼ 108 s, or 3 yr. Stevenson & Salpeter

(1977b) derived the minimum size a He-rich droplet would need to attain in order for

its terminal speed to exceed the average speed of convective motions of the ambient

fluid. Balancing the terminal speed from a turbulent drag law with an average con-

vective speed estimated from mixing length theory, those authors obtained a minimum

droplet length scale on the order of 1 cm. Repeating their calculation, we balance the

(downward) buoyancy force with a drag force through a convective plume:

∆ρd3g ≈ Cρd2v2, (2.3)

where ∆ρ is the density excess compared to the surrounding H-dominated fluid, d is the

length scale of the droplet, C is a nondimensional drag coefficient, and v is the relative

speed between the droplet and the medium. A minimum droplet size dmin corresponds
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to a droplet having v = vMLT so that

dmin ≈
Cρv2MLT

∆ρg
, (2.4)

where vMLT ≈ 10 cm s−1, ∆ρ ≈ ρ, and g ≈ 3× 103 cm s2. If as in Stevenson & Salpeter

(1977b) we assume turbulent flow over the scale of a droplet (Re ≡ vd/ν ≳ 103), then

C = 0.5 (Landau & Lifshitz 1959) and we arrive at a smaller minimum size dmin ≈ 10−2

cm; the discrepancy may be the result of a dimensional error in the earlier calculation.

However, given a typical kinematic viscosity ν = 4× 10−3 cm2 s−1 (French et al. 2012),

the Reynolds number Re ≡ ud/ν ≈ 25 so that a turbulent drag force is not appropriate.

If instead we balance buoyancy with a Stokes drag appropriate for low Reynolds number,

then (Landau & Lifshitz 1959)

∆ρd3ming ≈ 6πdminρvMLTν (2.5)

and we obtain

dmin =

(
6πνvMLT

g

)1/2

≈ 10−2 cm, (2.6)

incidentally the same estimate as in the turbulent case.

Again following Stevenson & Salpeter (1977b), this droplet size can be trans-

lated into a droplet formation timescale if we suppose that the droplets grow by mi-

croscopic diffusion of He nuclei into the He-rich pockets. Assuming the microscopic

diffusivity DHe to be of order the He-He self-diffusion coefficient obtained in the recent
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ab initio simulations by French et al. (2012), the timescale to form a sinkable droplet is

τsedimentation =
d2min

DHe
=

(10−2 cm)2

10−3 cm2 s−1
≈ 10−1 s. (2.7)

The strong hierarchy in timescales

τsedimentation ≪ τMLT ≪ τth (2.8)

implies that the transport of excess helium toward the center of the planet is probably

efficient in spite of convection (or double-diffusive convection, which mixes material over

much longer timescales), so assuming the equilibrium mixture throughout the planet at

each timestep is an adequate starting point for evolutionary models.

For all timesteps in which a cell has been cooled below its critical tempera-

ture, we lower the abundance of the outermost supersaturated grid point (i.e., the first

grid point with P > 1 Mbar) to its equilibrium value. We apply this same equilibrium

abundance throughout the molecular envelope, reflecting the fact that outside of regions

where phase separation is taking place, the species are being rapidly mixed by convec-

tion. Since a single timestep corresponds to millions of large-scale convection cycles,

the entire molecular envelope acts as a reservoir of helium for the phase separation and

rainout taking place near the molecular-metallic transition. The molecular envelope

thus depletes uniformly in a given step.

Iterating inward over grid points, we enforce the local equilibrium abundance

(a monotonically increasing function of depth) in each cell, and propose that same
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abundance as the tentative (He-enriched) mixture to be applied to the remainder of the

metallic interior. Eventually, a grid point is reached whose equilibrium abundance is

greater than or equal to its proposed abundance. At this point the inward iteration

ceases and the homogeneous, He-enriched interior is stable to phase separation; all that

remains is to enforce conservation of helium overall. The proposed profile always has

a helium deficit, which is resolved by the constraint that all helium nuclei that have

rained out from above are mixed into the homogeneous interior; we raise the helium

abundance of the homogeneous interior accordingly. Since this adjustment typically

leaves the uppermost layers in the homogeneous interior marginally supersaturated,

we repeat the iteration over all grid points as many times as necessary to achieve the

equilibrium profile. In practice this takes one or two more iterations.

2.2.3 Modes of heat transport

The pioneering work of Hubbard (1968, 1969, 1970) made the case for Jupiter’s

envelope as a convective fluid of primarily hydrogen and helium. The short mean free

path of photons and electrons in the interior imply a small thermal conductivity, with

the result that convection, rather than radiation or conduction, carries nearly all the in-

trinsic flux. The temperature gradient is thus marginally superadiabatic; estimates from

mixing length theory yield ∇−∇ad ≲ 10−6 throughout the envelope and ∇−∇ad ≲ 10−9

within hydrogen’s molecular-metallic phase transition at megabar pressures. Our homo-

geneous Jupiter models indicate that convection maintains these small superadiabatic-

ities to within an order of magnitude over the history of the planet with the exception

of an early, brief radiative window similar to that described by Guillot et al. (1995).

28



As demonstrated by Guillot et al. (2004), the inclusion of alkali metals enhances the

opacity enough to ensure convection at all depths within a present-day Jupiter. Our

models, which include modern opacities and self-consistently allow for radiative trans-

port wherever ∇rad < ∇ad, confirm this result: the intermediate radiative window is

only mildly subadiabatic (∇−∇ad ∼ −10−1) and vanishes before t ∼ 2×108 yr (see also

Fortney et al. 2011), and has an insignificant effect on the overall cooling time. Thus

for the homogeneous phases of the evolution, our models may be directly compared to

models constructed assuming ∇ = ∇ad always.

In the more general case allowing for stratification in the mean molecular

weight µ, the Schwarzschild & Härm (1958) criterion for dynamical convection

∇ > ∇ad (2.9)

must be replaced by the Ledoux (1947) criterion

∇ > ∇ad +
φ

δ
∇µ, (2.10)

where

∇µ ≡ d lnµ

d lnP
(2.11)

is the slope of the mean molecular weight µ along the planetary profile, and φ and δ

are two thermodynamic derivatives defined by

φ =

(
∂ ln ρ

∂ lnµ

)
P,T

, δ = −
(
∂ ln ρ

∂ lnT

)
P,µ

. (2.12)
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(Details on the novel calculation of (φ/δ)∇µ in MESA are given in Paxton et al. 2013

§3.3). If mean molecular weight increases toward the planet’s center, as is the case for

a differentiated planet, then ∇µ > 0 and the regime

∇ad < ∇ < ∇ad +
φ

δ
∇µ (2.13)

corresponds to the situation wherein a superadiabatic temperature profile is dynami-

cally stabilized by the chemical stratification. The mixing that ensues in this regime is

termed “semiconvection” in the stellar context (Schwarzschild & Härm 1958; Sweigart

& Gross 1974) and “double-diffusive convection” in the hydrodynamic context (Turner

1974). In this case the Brünt-Väisälä frequency N of the fluid is real-valued, admitting

gravity waves. These modes are in general overstable if fluid parcels can exchange a

significant fraction of their heat with the environment over an oscillation period. The

linear stability analysis of Kato (1966) demonstrated that in the stellar case, where

radiative diffusion is efficient, the thermal diffusion timescale tends to be short com-

pared to buoyant oscillation periods N−1/2 so that the criterion for convective instability

reduces to Equation 2.9 and marginally superadiabatic temperature gradients can be

sustained by convection. Stevenson (1979) came to the same conclusion, arguing that

the otherwise weak vertical heat transport provided by these overstable oscillations is

mitigated by the occasional breaking of waves (Rosenblum et al. 2011), redistributing

solute such that ∇ = ∇ad to a good approximation.

Metallic hydrogen environments in cool giant planets differ from the stellar

case for two reasons: (i) the formation, rainout, and deeper redissolution of helium
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droplets tends to enforce a persistent, stabilizing composition gradient, and (ii) since

the (conduction-limited) diffusion of heat is quite inefficient, overstable gravity waves

have relatively slow growth rates so that wave-breaking events are rare and the fluid is

only weakly turbulent; vertical heat transport is thus enhanced relative to the purely

diffusive case but is still much weaker than in the case of overturning convection. The

resulting temperature gradient is substantially superadiabatic, possibly closer to the

Ledoux limit ∇ = ∇ad + (φ/δ)∇µ (Stevenson 1979; Mirouh et al. 2012).

2.2.4 A parametric model for double-diffusive convection

We assume the temperature gradient ∇ to be adiabatic unless there exists a

stabilizing composition gradient ∇µ > 0, in which case the temperature gradient is

steeper than the adiabat by an amount proportional to ∇µ, i.e.,

∇ = ∇ad +Rρ
φ

δ
∇µ ⇐⇒ Rρ =

∇−∇ad

(φ/δ)∇µ
. (2.14)

Equation 2.14 defines the density ratio Rρ, which describes the relative (and compet-

ing) contributions that the temperature and composition stratifications make to the

overall density stratification. We take Rρ as a free parameter that we seek to estimate.

Although the commonly cited criterion of Equation 2.13 is a necessary condition for

semiconvection, it is not sufficient; the linear instability demands the somewhat more

strict criterion (Walin 1964; Kato 1966)

1 > Rρ >
Pr + τ

Pr + 1
≡ Rcrit. (2.15)
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Thus for the semiconvective instability to grow, the temperature gradient must be su-

peradiabatic by a nonvanishing amount determined by the Prandtl number Pr and

diffusivity ratio τ defined by

Pr =
ν

κT
, τ =

κµ
κT

, (2.16)

where ν is the fluid’s kinematic viscosity, κT is its thermal diffusivity, and κµ is the

diffusivity of solute, in this case the diffusivity of helium atoms in a mixture which is

predominantly metallic hydrogen. In Figure 2.2 we show values of Pr, τ , and Rcrit,

derived from the ab initio transport properties obtained by French et al. (2012) for

a Jupiter adiabat. Here the calculation of τ (and thus Rcrit) assumes an effective

composition diffusivity κµ that is of order the He-He self-diffusion coefficient reported

in that paper. The values of Rcrit indicate that overstable modes can grow at 1 Mbar

and deeper for density ratios Rρ > 10−1.

2.2.5 Energetics of evolving compositions

Enriching or depleting a Lagrangian fluid element in helium generally modifies

its internal energy per gram u and does work modifying its density ρ following the

fundamental thermodynamic relation

T
ds

dt
=

du

dt
+ P

d(1/ρ)

dt
, (2.17)
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Figure 2.2: Estimates of the dimensionless quantities Pr and τ (Equation 2.16), as
well as the critical density ratio Rcrit for overstable double-diffusive convection (Equa-
tion 2.15). Quantities are derived from the ab initio transport properties of French
et al. (2012) for the metallic hydrogen part of Jupiter’s interior. The shaded region is
the intersection of Rcrit < Rρ < 1 and P > 1 Mbar, within which the stable stratifica-
tion from helium rain admits growing-amplitude gravity waves and thus some degree of
double-diffusive convection.

where s is the entropy per gram and d/dt denotes a time derivative. This change in

heat content is commensurate with the energy gained or lost by the fluid element via

photons:

dL

dm
= −T

ds

dt
(2.18a)

= −du

dt
− P

d(1/ρ)

dt
. (2.18b)

Here L is the local luminosity and m is the Lagrangian coordinate; other energy sources

and sinks (nuclear fusion or fission, tidal dissipation, neutrino cooling) are negligible for

our application. While the two forms of the energy equation Eqs. 2.18a and 2.18b are

fundamental, MESA’s solvers do not work with the entropy directly, and also do not

work with (u, ρ) by default (although the latter option exists). In either of the two
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standard thermodynamic bases (ρ, T ) or (P, T ), these two variables (along with m,

r, and Xi) are solved for simultaneously and then s or u are computed from the EOS

post-hoc. Because s or u are not solved for directly, their finite differences over time

are subject to numerical noise, and direct finite differences of either form 2.18a or 2.18b

thus yield noisy luminosity profiles. The approach MESA takes by default is to instead

recast Equation 2.18 into time derivatives of the quantities comprising the adopted

thermodynamic basis. Since the phase diagram of Lorenzen et al. (2011) provides the

equilibrium helium abundance over (P, T ) space, and these are also the independent

variables in the Saumon et al. (1995) EOS, we choose to adopt (lnP, lnT ) as the

thermodynamic basis for our MESA calculations. In this basis the energy equation

takes the form (Paxton et al. 2013)

dL

dm

∣∣∣∣
Xi

= −cPT

(
d lnT

dt
−∇ad

d lnP

dt

)
, (2.19)

where we have assumed radiation pressure is negligible as is appropriate for T ≲ 104 K.

The standard transformation of Equation 2.18 into Equation 2.19 (e.g., Kip-

penhahn & Weigert 1990) ignores the fact that entropy and internal energy depend

not only on P and T but also on the composition vector Xi, and hence Equation 2.19

is only accurate at fixed composition. This poses no substantial problem for energy

conservation in stellar models, where large abundance changes typically only happen

as a result of fusion, in which case nuclear energy generation overwhelms the T (ds/dt)

term in the energy equation; one important exception is the accretion of material with

a composition different from the stellar surface. For our application, it is necessary to
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add to Equation 2.19 the component of dL/dm that arises from composition changes at

fixed P and T :

dL

dm

∣∣∣∣
P, T

= − ∂u

∂Xi

dXi

dt
− P

∂(1/ρ)

∂Xi

dXi

dt
. (2.20)

Here the repeated indices denote summation over species i = 1, . . . , N − 1 where N is

the total number of species in the model. (Since all N mass fractions sum to unity, only

N−1 mass fractions are independent.) All models in this work assume a two-component

mixture of 1H and 4He, so that Equation 2.20 reduces to just

dL

dm

∣∣∣∣
P, T

= − ∂u

∂Y

dY

dt
− P

∂(1/ρ)

∂Y

dY

dt
. (2.21)

In practice we calculate this term for each cell as

dL

dm

∣∣∣∣
P,T

=− u(P, T, Y0)− u(P, T, Y1)

∆t

− P

(
ρ−1(P, T, Y0)− ρ−1(P, T, Y1)

∆t

)
(2.22)

where Y0 and Y1 denote the helium mass fractions before and after our helium redistribu-

tion step, and ∆t denotes the (finite) timestep. Obtaining u(P, T, Y1) and ρ−1(P, T, Y1)

requires one additional call to the EOS module per zone per timestep.

2.2.6 Model atmospheres

The overall cooling time of an evolutionary giant planet model depends strongly

on the boundary condition applied at the atmosphere, since that condition determines

how rapidly the planet can radiate. We apply the self-consistent model atmospheres of
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Fortney et al. (2011) as fit analytically by Leconte & Chabrier (2013a), which provide

the temperature at the 10 bar level T10 as a function of surface gravity g and intrinsic

temperature Tint. The planet’s effective temperature Teff in a given timestep is given by

T 4
eff = T 4

int + T 4
eq, (2.23)

where the equilibrium temperature Teq describes the orbit-averaged temperature of a

body radiating as much energy as it absorbs from the Sun following

σT 4
eq =

(1−A)L

16πa2
, (2.24)

with L the instantaneous luminosity of the star and a the planet’s orbital semimajor

axis. Effective temperatures for our models are calculated assuming the value for A

determined by Voyager measurements in the infrared (Hanel et al. 1981b; Pearl & Con-

rath 1991). Although the planet’s albedo is certainly a function of time as a result of

changing atmospheric dynamics and chemistry (Hubbard & Smoluchowski 1973), as-

suming the present-day value of the albedo throughout the evolution is an acceptable

(and at this stage necessary) approximation.

While Voyager 1 measured a Bond albedo A = 0.343±0.032, corresponding to

Teq = 109.9±1.3 K, Pearl & Conrath (1991) noted that the value of A determined using

Voyager 2 radiometry is larger than that determined by Voyager 1 by roughly 12%. As

those authors suggested, if this discrepancy is the result of unidentified systematic error

such that the true value is 6±6% larger than the Voyager 1 measurement, then a revised
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estimate for Jupiter’s Bond albedo is A = 0.366±0.035. This corresponds to a modestly

smaller equilibrium temperature Teq = 108.5± 1.4 K. In the present work we adopt the

median equilibrium temperature Teq = 109.0 K of the two Voyager determinations as

ground truth. In §2.3.2 we also show our full calculations repeated with Teq as a free

parameter to address the broad modeling uncertainties—principally those associated

with the EOS—that contribute to the uncertain overall cooling time for a contracting

giant planet.
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Figure 2.3: Sensitivity of the cooling time to the surface boundary condition (left panel)
and heavy-element mass (right panel) for homogeneous, adiabatic Jupiter models. The
dashed curve corresponds to Teq = 109.0 K, and the blue (magenta) curve corresponds
to plus (minus) σTeq = 1.4 K.

2.3 Results of Evolutionary Calculations

We first validate our general modeling approach and implementation of the

model atmospheres by computing homogeneous, adiabatic evolutionary sequences. Fig-

ure 2.3 shows evolution in the age-Teff plane for models with core masses between 0 and
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30 ME and a range of assumed equilibrium temperatures reprensenting the uncertainty

in the Voyager determination of Jupiter’s Bond albedo. Models with higher equilibrium

temperatures generally take longer to cool because they absorb more stellar flux, and

models with greater heavy element content generally cool faster because they are more

compact. Figure 2.4 provides a summary of cooling times attainable by homogeneous

models across Mc − Teq parameter space, and demonstrates that over the cooling time

depends more steeply on the atmospheric boundary condition than on the assumed

heavy element mass. The total cooling times agree closely with published results also

using the SCvH-I EOS (Fortney & Hubbard 2003; Saumon & Guillot 2004; Fortney

et al. 2011).
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Figure 2.4: Time for homogeneous 1.0 MJ models to cool to Jupiter’s Teff as a function
of their heavy-element mass Mc and equilibrium temperature Teq. The horizontal lines
designate the Voyager measurement of Teq (see §2.2.6). The color scale is piecewise
linear such that yellow corresponds to the solar age 4.56 Gyr.

The SCvH-I EOS generally leads to slow cooling for the homogeneous models.
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These were evolved to Jupiter’s observed Teff = 124.4 K, a temperature notably not

reached within the age of the solar system (4.56 Gyr) for any of the models, even those

with vanishing heavy element mass. It is clear that whatever superadiabaticity arises

from helium rain in the inhomogeneous case must act to accelerate the planet’s cooling

in spite of any additional luminosity associated with differentiation. This is the first

indication that inhomogeneous models computed with the SCvH-I equation of state

will tend to favor fairly weak heat transport in the helium gradient region such that

the temperature distribution is strongly superadiabatic and a thermal boundary layer is

established. As described by Stevenson & Salpeter (1977b), in this case the molecular

envelope can cool rapidly while the cooling of the deeper interior is stalled or even

reversed. Indeed, sections 2.3.1 and 2.3.2 below demonstrate that best-fitting models

have a steep enough temperature gradient in the stable region that the cooling of the

molecular envelope is accelerated while the helium-enriched metallic interior is heated

over time.

Some more recent equations of state based on ab initio methods (e.g., Militzer

& Hubbard 2013) yield adiabats which are colder at Mbar pressures and Jupiter- and

Saturn-like entropies than the adiabats obtained from the semianalytic model of Saumon

et al. (1995). These “colder” equations of state compare more favorably with shock ex-

periment, and generally predict shorter cooling times for homogeneous Jupiters because

their adiabats have less total internal energy for a given global entropy. With such an

EOS, if inhomogeneous evolution is to help with addressing Jupiter’s luminosity con-

straint, then any double-diffusive convection in the deep interior must act to lengthen
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the cooling relative to the homogeneous case. Thus for a “colder” equation of state,

more modest superadiabaticities should be expected such that the differentiation lumi-

nosity overwhelms the accelerated cooling of the envelope due to the double-diffusive

bottleneck at 1-2 Mbar. This situation is closer to the luminosity problem for Saturn,

where the drastic underluminosity of homogeneous models is robust with respect to the

assumed equation of state. In §2.3.1 we illustrate the central role that the efficiency

of heat transport by ODDC plays in determining the thermal evolution. In §2.3.2 we

retrieve strong superadiabaticities for our nominal SCvH-I case. Then to address the

systematic modelling uncertainty associated with the H-He equation of state, we re-

peat our calculations with Teq taken as a fourth free parameter to modulate the overall

cooling time, with high (low) Teq mimicking the effect of a warmer (colder) equation of

state.

2.3.1 Inhomogeneous evolution

Interior profiles for Jupiter models undergoing helium rain are illustrated in

Figure 2.5 for four different values of Rρ, including the adiabatic case Rρ = 0. (In

the case of evolving composition profiles, ∇ad = ∇ad(P, T, Xi) where the Xi are now

functions of depth. We refer to the case where ∇ = ∇ad everywhere as adiabatic,

although the profiles are emphatically not isentropic.) For this figure and all others in

this section, unless otherwise indicated, the two remaining free parameters are arbitrarily

chosen as Mc = 30 ME and ∆Tphase = 0 K for illustrative purposes. The first column

shows profiles at 3.5 Gyr, at which time helium rain has not yet commenced and the

models are thus still in an identical state. The remaining three panels show profiles
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shortly after the onset of helium rain (3.8 Gyr), then at a more typical time after

helium rain onset (4.0 Gyr), and finally at the solar age (4.56 Gyr). The inset in the

center left panel plots Teff as a function of age for the four models.

Evolution in the adiabatic case Rρ = 0 is simplest because there is minimal

feedback between the evolving composition and temperature profiles, and thus the shape

of L(m) can be understood by inspecting just the composition term of dL/dm (Equa-

tion 2.21); the thermal term retains essentially the same smooth profile as before helium

rain sets in. The layers with decreasing helium abundance—from the planetary surface

down to the lower boundary of the helium gradient region—have an increasing internal

energy u and specific volume 1/ρ, and thus dL/dm < 0 there. Similarly, layers deeper

than the bottom of the gradient region have a uniformly increasing helium abundance

and thus dL/dm > 0 there. Hence, a global maximum in the luminosity is attained at

the base of the gradient region. The adiabatic model also exhibits the most extended

helium gradient region among the models considered (spanning 1 to 2.4 Mbar at the so-

lar age), simply because a shallower T (P ) profile intersects the immiscibility gap over a

broader range in pressure. Likewise, larger values of Rρ represent steeper T (P ) profiles,

which generally intersect the immiscibility gap over a more narrow range in pressure.

This can be seen by comparing the two solar-age profiles in the right panel of Figure 2.1,

and is manifested in the relative widths of the features in Y and ∇ in Figure 2.5.

The evolution is more complex in the case of nonzero superadiabaticity Rρ > 0,

owing to the feedback between the composition profile and the temperature profile.

Since in this case the settling of helium directly modifies T (P ) via Equation 2.14, it
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contributes to both the thermal (Equation 2.19) and composition (Equation 2.21) com-

ponents of dL/dm. For cases with Rρ ≳ 0.20, double-diffusive convection poses a suf-

ficiently strong thermal barrier that the homogeneous, adiabatic deep interior actually

heats up with time, and the reduced heat flux impinging on the bottom of the molecular

envelope allows the envelope to cool relatively quickly. The temperature evolution in

the vicinity of the helium gradient is illustrated for these same four values of Rρ in

Figure 2.6, and Figure 2.7 shows the evolution of the core-mantle boundary in T − ρ

space. Indeed since a more pronounced temperature contrast over the helium gradient

region drives a steeper composition gradient as per the phase diagram, a runaway effect

ensues, with Teff and Yatm plummeting as stronger stratifications are realized. In the

most extreme case shown here (Rρ = 0.30), the effective temperature decreases by 8

K over 108 yr in this phase, to be compared to the roughly 1 K per 108 yr cooling

rate before the onset of helium rain. After roughly a thermal time for the homogeneous

interior, the gradient region feels significant heating from below, quenching the runaway

and once again assuming a state of slow evolution in which the surface cools by roughly

1 K per Gyr.

The effect of translating the phase curve in temperature is summarized in

Figures 2.7 and 2.8, which show evolutionary tracks for two families of models, one

with the phase diagram unmodified (solid curves) and one with a representative offset

of ∆Tphase = −230 K for illustration purposes (dashed curves). The crossing of the two

families of curves in Figure 2.8 demonstrates the fundamental anticorrelation between Rρ

and ∆Tphase. For instance, an effective temperature of 124 K at 4.56 Gyr can be realized
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Figure 2.6: Evolution of the interior temperature profile for differentiating Jupiter mod-
els (the same models as in Figure 2.5). Each panel plots a time sequence of profiles for
the model indicated. Color maps to model age.

either by a model with relatively modest superadiabaticity using the unmodified phase

diagram, or by a model with a more extreme superadiabaticity and a delayed helium

rain onset. However, the offset of ∆Tphase = −230 K delays the onset of helium rain by

nearly 800 Myr and consequently leads to a more modest depletion of helium from the

molecular envelope by the time the model reaches the solar age. As demonstrated by

Nettelmann et al. (2015) and discussed in §2.2 above, a downward offset of roughly this

magnitude must be applied to the Lorenzen et al. (2011) phase diagram to yield values

of Yatm at the solar age which are consistent with the Galileo entry probe measurement

(Table 2.1). Lastly, we note that translating the phase diagram to lower temperatures

also leads to a more localized helium gradient region, the ∆Tphase = −230 K case

yielding a gradient roughly 1/3 the geometric thickness of the gradient established in
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Rρ of the temperature profile in the helium gradient region. The two families of curves
are for two representative temperature offsets applied to the H-He phase diagram: the
solid tracks assume ∆Tphase = 0; the dashed tracks assume ∆Tphase = −230 K. For each
model with ∆Tphase = 0 that reaches the solar age, that point is indicated with a filled
circle.

the ∆Tphase = 0 case for each of the Rρ values considered here. In the following section,

we leave ∆Tphase as a free parameter alongside Mc and Rρ and systematically estimate

all three simultaneously by fitting Jupiter’s Teff and Yatm along with its volumetric

radius Rvol.

2.3.2 Bayesian Parameter Estimation

We estimate model parameters and their statistical uncertainties using Markov

chain Monte Carlo (MCMC). In particular, given our nonlinear three-parameter model

θ ≡ {Mc, Rρ, ∆Tphase} (2.25)
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Figure 2.8: As in Figure 2.7, but showing the effective temperatures as a function of
age. The marker shows Jupiter’s observed Teff at the solar age.

and fundamental Jupiter data (see Table 2.1)

D ≡ {Teff , Yatm, Rvol}, (2.26)

we calculate the posterior probability distribution from Bayes’ theorem

P (θ|D) ∝ P (D|θ)P (θ). (2.27)

In the likelihood P (D|θ) we assume Gaussian errors for the data D:

lnP (D|θ) = −1

2

[
ln(2πσ2

Teff
) +

(Teff − Tm
eff)

2

σ2
Teff

+ ln(2πσ2
Yatm

) +
(Yatm − Y m

atm)
2

σ2
Yatm

+ ln(2πσ2
Rvol

) +
(Rvol −Rm)2

σ2
Rvol

]
, (2.28)
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Table 2.1: Jupiter evolutionary constraints

Age (yr) Teq (K) Teff (K) Yatm Rvol (km)

4.56× 109 109.0a 124.4± 0.3b 0.234± 0.005c 69, 911± 6d

a§2.2.6
bHanel et al. (1981b)
cvon Zahn et al. (1998)
cSeidelmann et al. (2007)

where a superscript m denotes the model outcome at the solar age; each sample from

the posterior distribution thus entails a full evolutionary calculation. Samples are drawn

from the posterior distribution Equation 2.27 using the Python MCMC implementation

emcee (Foreman-Mackey et al. 2013). Our prior probability distribution P (θ) is chosen

to be uniform over Mc ≥ 0, all ∆Tphase, and 0.1 ≤ Rρ ≤ 1 following the criteria for

linear instability (see §2.2.3, in particular Equation 2.15); elsewhere it is zero.

The late evolution of Teff , Yatm and R for the a subset of the evolutionary

sequences in the resulting chain are shown in Figure 2.9, which color codes tracks by

their value of Rρ. For the duration of the initial homogeneous phase, the differences

in Teff and R between tracks stem solely from the heavy element core mass Mc, since

that parameter adjusts the mean density and hence the total radius of the planet. As

described in §2.3.1, the time at which phase separation sets in (and Yatm first diverges

from the protosolar value) is set by ∆Tphase, and the trend toward later phase separation

onset with increasing Rρ is the result of the two parameters’ substantial covariance.

Timesteps spanning the solar age are typically 107 yr, and the values of Teff , Yatm

and R were interpolated linearly within those timesteps to obtain Tm
eff , Y m

atm, and Rm.
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Proposed steps in which the model terminated before the solar age (as would be expected

for a model with simultaneously large Rρ and ∆Tphase, for example) were rejected, since

a calculation of the likelihood (Equation 2.28) would not be possible.

The models that terminate before 5 Gyr did so either because (i) the model

cooled to Teff = 120 K, at which point we stop to avoid unnecessary computation time,

or (ii) upon the onset of phase separation, the luminosity inversion described in the

previous subsection (and evident in the Rρ = 0.30 case in Figure 2.5) grew to the

degree that a negative luminosity was realized in the interior, typically just outside the

helium gradient region. This behavior follows from attempting to enforce large values of

Rρ such that the the large luminosity generated by deposition of helium into the metallic

interior cannot be communicated upward through the weakly turbulent double-diffusive

layer. Nettelmann et al. (2015) identified the same effect in their models with LDDC,

noting that there exists a minimum layer height such that the luminosity is still positive

throughout the interior. In our models this translates to an effective upper limit on the

values of Rρ attainable by models with strictly positive luminosity profiles.

The outcome of our Bayesian parameter estimation is the posterior probability

distribution shown in Figure 2.10, wherein each panel plots the full joint distribution

marginalized over the other two parameters. The medians of each distribution are in-

dicated, as are the central 68% confidence regions. Typical models (as characterized by

the medians) have massive cores (Mc = 27.7 ME), are strongly superadiabatic in the

compositionally stratified region (Rρ = 0.31), and have substantial downward offsets to

the phase diagram (∆Tphase = −235 K.) The posterior distribution of ∆Tphase is nar-
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rowly peaked at these large negative offsets, and quite robustly rules out the unmodified

phase diagram. This result is driven by the requirement that the model’s homogeneous

molecular envelope retains enough helium to match the modest depletion measured by

the Galileo entry probe (Table 2.1).

The single largest modeling uncertainty for the cooling of the giant planets

is associated with the equation of state. Depending on the assumed EOS, Saumon &

Guillot (2004) found that cooling times for homogeneous Jupiter models spanned 3.1

to 5.4 Gyr. (For comparison, our homogeneous models with SCvH-I cool in 5 to 5.5

Gyr for realistic heavy element masses and equilibrium temperatures; see Figures 2.3

and 2.4.) The range in cooling times obtained from applying different equations of state

owes mostly to the fact that for different P (T ) relations, models with a given entropy

possess different total thermal energy content and hence take more or less time to cool

to Jupiter’s present-day luminosity.

As a means of exploring how our results would be affected by the application of

a different equation of state, we repeat our full calculations with a modified atmospheric

boundary condition. Although the model atmosphere and equation of state are not

directly related, they are degenerate in that they both dictate the overall timescale for

the thermal evolution. This can be made explicit by first integrating the energy equation

(equation 2.18a) over the mass of the planet to yield

Lint = −
∫ M

0
T
ds

dt
dm = 4πR2σSB

(
T 4
eff − T 4

eq

)
. (2.29)

For the simplified example of a planet cooling through a sequence of isentropes, ds/dt
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is independent of m and the second equality can be integrated to yield the total cooling

time

τcool =

∫ τcool

0
dt =

∫ s0

scool

( ∫M
0 T (m, s) dm

4πR2(s)σSB
(
T 4
eff(s)− T 4

eq

)) ds, (2.30)

where s0 designates an arbitrary large starting entropy, scool designates the planet’s

current entropy, and other symbols have their usual meanings. Equation 2.30, while

emphatically not how our evolutionary sequences are calculated, serves as a heuristic

tool to demonstrate that choosing a colder EOS (such that the mean temperature along

a given adiabat is lower) and reducing the solar input Teq have a similar effect.

Our modification of the boundary condition as a proxy for a different H-He

EOS is motivated by the lack of other realistic EOS options presently available in

MESA at the relevant densities and temperatures. Varying the parameter Teq offers

a simple means of producing a different total cooling time, the relation between the two

being illustrated in Figure 2.4. As an example, we find that a homogeneous, adiabatic

model with Mc = 30 ME and Teq reduced to 100 K cools to Jupiter’s Teff in just 4.2

Gyr. Since very large superadiabaticities tend to reduce the cooling (see Figure 2.8),

differentiating models that satisfy the basic constraints of Table 2.1 in spite of a cold

boundary condition must have small values for Rρ such that the cooling is extended to

the age of the solar system.

Figure 2.11 shows the late evolution of models computed with this artificially

free boundary condition, with a uniform prior chosen for Teq; the posterior distributions

of Mc, Rρ, ∆Tphase and Teq are shown in Figure 2.12. In this case the extra freedom in

the boundary condition leads to a wide variety of total times spent in the homogeneous
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phase of evolution, and consequently the other parameters Mc, Rρ and ∆Tphase have

markedly wider posterior probability distributions. Most likely models have equilib-

rium temperatures several K cooler than the measured value Teq = 109 K such that

the homogeneous cooling is more short-lived, and in the inhomogeneous evolution that

follows, double-diffusive convection can proceed with temperature gradients closer to

the adiabat and still satisfy the Teff constraint at the solar age. Indeed, the models

display an overall preference for the lowest possible density ratios; the marginalized

posterior probability density increases uniformly toward lower values of Rρ and peaks

at the lower boundary imposed by the step-function prior Rρ > Rcrit = 0.1, which was

imposed in light of the linear criterion for the double-diffusive instability (see §2.2.4).

As a result, the most likely evolution during the inhomogeneous phase is secular cooling

of the envelope, with no dropoff of the surface temperature or helium abundance over

short timescales. These models might be considered preferable to the most likely models

obtained in the three-parameter case of Figures 2.9 and 2.10 because if Teff , Yatm, and

Rvol were undergoing drastic changes on a 108 year timescale, then observing Jupiter in

its present state would be somewhat serendipitous.

Freeing Teq also allows much more modest corrections to the phase diagram, the

68% credible interval now spanning −200 to −100 K. Importantly, despite the freedom

in the overall cooling time, the unmodified phase diagram is still found to be extremely

unlikely with 95% of probability lying at offsets ∆Tphase < −50 K.

The posterior distribution of Teq values in Figure 2.12 should not be inter-

preted as a new determination of Jupiter’s Teq, as that is a measured quantity. Rather,
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it contains information about a most likely equation of state: it is significant that the

distribution excludes the measured value almost completely, with only 0.4% of cumu-

lative probability within the error of the measurement (Table 2.1). If we suppose that

our model contains the essential physics, this can be taken as evidence that the real

EOS for hydrogen and helium predicts substantially colder interiors than does SCvH-I.

For reference, a homogeneous evolutionary sequence computed with the median values

Mc = 28.8 ME and Teq = 102.9 K from the distributions in Figure 2.12 cools to Jupiter’s

Teff in 4.46 Gyr (see Figure 2.4).
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dashed line near each peak designates the median, with the flanking vertical dashed
lines enclosing the central 68% of cumulative probability.
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Figure 2.11: As in Figure 2.9, but including Teq as a additional free parameter to mimic
the effect of an EOS predicting a warmer or colder interior.
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Figure 2.12: As in Figure 2.10, but including Teq as an additional free parameter to
mimic the effect of an EOS predicting a warmer or colder interior.
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2.4 Discussion

The framework developed here consists of a Python class for creating instances

of MESA work directories, modifying MESA inlists, executing the evolution program,

and processing its output, all as part of a single likelihood calculation called by an

emcee sampler. The method renders it straightforward to add additional parameters to

the model or incorporate new or updated constraints in any quantity output by MESA

directly. It is readily adaptable to a host of different problems, most obviously non-

adiabatic thermal evolution models for Saturn, where the same fundamental physics

operate. Beyond just the Jovian planets and H-He immiscibility, our technique has

broad applicability for deriving properties of objects from giant planets to brown dwarfs

and stars, e.g., retrieving the age and composition for an object with measured mass

and radius. Performing these retrievals with a code as mature as MESA means that

our knowledge of stellar/planetary evolution is built in, including complexities such

as self-consistently determining mixing boundaries, modeling double-diffusive transport

processes, or calculating nuclear energy generation rates with state of the art nuclear

networks. Thus in the example of retrieving an object’s composition and age from its

measured mass and radius, meaningful inferences can be made about not just the bulk

composition, but the composition profile, and indeed the composition profile’s possible

origins and evolution. The Bayesian approach automatically provides meaningful error

bars for model parameters, and combining it with the open source MESA package offers

more flexibility than traditional grid-based isochrone fitting because new parameters—

and indeed new physics—can be added at will.
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This work builds on that of Nettelmann et al. (2015) principally in two ways:

first, it makes the weakest possible assumption about the temperature gradient result-

ing from double-diffusive convection in the deep interior, abandoning the assumption

of layered convection following the flux laws derived by Wood et al. (2013) in favor of

a generic model wherein any temperature gradient can be attained as long as it is con-

sistent with the criterion for linearly overstable gravity waves. Second, performing the

calculations in an MCMC framework allows a probabilistic determination of all model

parameters simultaneously, and we find a multitude of models that satisfy the imposed

constraints (Table 2.1). We demonstrated that SCvH-I predicts strongly superadiabatic

temperature profiles in Jupiter’s helium gradient region, such that the planet’s surface

cools rapidly as most of the metallic hydrogen interior heats up over time. Repeating

the calculations with a variable boundary condition to probe the effects of using a dif-

ferent EOS, we found that more modest superadiabaticities are preferred, although the

distribution of allowed values is still broad. We found in all cases that the unperturbed

phase diagram of Lorenzen et al. (2011) is highly unlikely.

That such a diversity of models meeting the imposed constraints were obtained

in Figures 2.11 and 2.12 underscores the severe uncertainties that persist in modelling

the evolution of giant planets. Admittedly, the present work does not exploit all the

available data. Most importantly, our models make no use of of Jupiter’s gravitational

harmonics or its axial moment of inertia, both of which constrain the interior density

profile. As discussed in §2.2, a calculation of oblateness and the associated non-spherical

components of the gravity field is beyond our scope because the only EOS currently
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available for modeling giant planets in MESA, SCvH-I, is limited to hydrogen and

helium. All heavy elements are in an inert core rather than partially distributed through

the envelope, and as such the density profiles in our models are somewhat unrealistic and

are not suited for fitting to J2 or any higher-order moments. Our models therefore also

neglect the impact that the distribution of heavy elements has on convective stability,

which may also play an important role in the thermal evolution of Jupiter and Saturn

(Vazan et al. 2016a). Nonetheless, we view these models as complimentary to the

detailed static models computing using more realistic equations of state (e.g., Hubbard

& Militzer 2016b) in that we use a forward thermal evolution model to derive estimates

for Jupiter’s deep superadiabatic temperature stratification and corrections to the H-

He phase diagram, both of which should be taken into consideration for improving

static models of the Jovian planets. Our findings support the existing body of evidence

indicating that a realistic H-He equation of state departs significantly from SCvH-I.

59



Chapter 3

Helium in the comparative

evolution of Jupiter and Saturn

3.1 Introduction

Understanding the interiors of the gas giants is a critical step toward under-

standing the universal processes of planet formation and evolution. Jupiter and Saturn

hold special significance in this respect because of their accessibility. However, out-

standing puzzles concerning their thermal evolution obscure the connection between

their present-day configurations and their origins in the young solar system. Evolu-

tionary models treating Jupiter’s interior as being well-mixed and nearly adiabatic as a

result of efficient convection are broadly successful in explaining the planet’s luminosity

at the solar age (Graboske et al. 1975; Fortney et al. 2011). However, similar models

for Saturn fail to reproduce its observed heat flow (Pollack et al. 1977; Grossman et al.
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1980; Fortney et al. 2011), and thus some additional luminosity source is required.

Apart from the primary luminosity from cooling baryons (Hubbard 1968), dif-

ferentiation has long been appreciated as a potentially significant luminosity source for

cool gas giants (Smoluchowski 1967; Flasar 1973). In particular, the limited solubility

of helium in fluid metallic hydrogen eventually leads to the formation of helium-rich

droplets that may rain out on a timescale short compared to their convective redis-

tribution (Salpeter 1973). As noted by Stevenson & Salpeter (1977a), the success of

homogeneous, adiabatic Jupiter models implies that the planet has begun raining out

helium only recently or not at all, whereas the differentiation is probably significant in

the cooler Saturn. The helium depletion subsequently observed in Jupiter’s atmosphere

(von Zahn et al. 1998) suggests that the planet has indeed begun differentiating helium

in the recent past.

The notion that helium rain can explain Saturn’s luminosity is supported by

evolutionary calculations including helium immiscibility for plausible, if tentative, phase

diagrams (Hubbard et al. 1999; Fortney & Hubbard 2003). Leconte & Chabrier (2013b)

imagined an important alternative scenario wherein significant departures from adia-

baticity due to double-diffusive convection in Saturn’s deep interior can also explain

that planet’s luminosity without recourse to helium immiscibility. However, given the

direct evidence for helium differentiation in Jupiter, it appears difficult to avoid helium

differentiation in the presumably1 colder interior of Saturn.

Work in recent years has applied many of these ideas to the evolution of Jupiter
1 For reference, although the baseline layered-convection Saturn model of Leconte & Chabrier shows

a radically different cooling history from their adiabatic case, the two possess very similar deep temper-
atures at the solar age (their Figure 6), i.e., colder than Jupiter’s.
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(Nettelmann et al. 2015; Mankovich et al. 2016) and Saturn (Püstow et al. 2016). The

main goal of the present work is to simultaneously study the evolution of Jupiter and

Saturn under a single model for hydrogen-helium immiscibility to judge whether a con-

sistent picture exists for their evolution. The motivation for doing this now is twofold.

First, Jupiter’s Bond albedo has recently been dramatically revised following analysis

of multi-instrument Cassini data, indicating less absorbed solar flux and more inter-

nal flux emanating from Jupiter (Li et al. 2018) than long thought based on Voyager

infrared measurements (Hanel et al. 1981a). This updated surface condition implies a

greater flux contribution from the interior, potentially attributable to helium rain. The

second motivation is the recent phase diagram of Schöttler & Redmer (2018), which

builds on prior work (e.g., Lorenzen et al. 2011; Morales et al. 2013) by both including

nonideal entropy effects and covering the full range of possible helium fractions. As

will be discussed below, this knowledge of the phase diagram over all mixtures (from

helium-poor to helium-rich) is of critical importance for modeling the helium distribu-

tion within Saturn. We aim to assess to what degree this proposed phase diagram is

viable in the context of Jupiter’s atmospheric helium content and Jupiter and Saturn’s

radius and heat flow at the present epoch.

3.2 Hydrogen-helium mixtures

The phase diagram that describes the solubility of helium in fluid metallic

hydrogen is uncertain in Jovian interiors, a regime that is difficult to access experimen-

tally. The phase diagram in this regime has been increasingly mapped out by ab ini-
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tio methods, in particular density functional theory–molecular dynamics (“DFT-MD”)

simulations used to predict the thermodynamic conditions for helium phase separation.

Advances along these lines have been made in recent years (Lorenzen et al. 2009, 2011;

Morales et al. 2009, 2013; Schöttler & Redmer 2018), the results remaining substantially

uncertain because they are sensitive to the assumed electron density functional and the

accuracy with which the entropy of mixing between hydrogen and helium is treated.

As described by Morales et al. (2013), the nonideal contributions to this en-

tropy of mixing is crucial for satisfying experimental results for molecular hydrogen, and

strongly affects predictions for solubility in metallic hydrogen. Because the most recent

studies of helium phase separation in the evolution of Jupiter (Nettelmann et al. 2015;

Mankovich et al. 2016) and Saturn (Püstow et al. 2016) made use of results assuming

an ideal mixing entropy (Lorenzen et al. 2011), the more accurate phase diagram of

Schöttler & Redmer (2018) warrants a reappraisal of this type of model.

3.2.1 Modeling the interior helium distributions

The central assumption of the present work is that the helium distributions are

dictated by their instantaneous thermodynamic equilibrium profiles. This amounts to

the assumption that metallic regions cooled to the point of becoming supersaturated lose

their excess helium instantaneously, reducing the ambient abundance to the saturation

value while sinking the He-rich phase (typically Y ≈ 0.9; see Figures 3.2 and 3.3)

deeper into the planet where it redissolves into the background if possible. These ideas

have already been described in the literature (Stevenson & Salpeter 1977b; Fortney &

Hubbard 2003; Nettelmann et al. 2015; Püstow et al. 2016), and the algorithm we use
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in practice is described in detail in Mankovich et al. (2016). The major differences from

that work are the application of the Schöttler & Redmer (2018, hereafter “SR18”) phase

diagram and extension of these models to the case of Saturn.

3.2.2 The phase boundary is a surface T (P, Y )

The earlier DFT-MD simulations of Morales et al. (2013) did derive the full

nonideal entropy of hydrogen-helium mixtures using thermodynamic integrations, and

this phase diagram has previously been applied to detailed models for the static struc-

ture of Jupiter (Hubbard & Militzer 2016a) and Saturn (Iess et al. 2019). Its major

limitation is its lack of coverage in mixture space, the published phase diagram being

restricted to a single helium number fraction xHe = 8% representing the protosolar

helium abundance (ostensibly the mean abundance of the gaseous jovian envelopes).

While this is appropriate for predicting whether and where phase separation will set in

for a planet initially well mixed at the protosolar helium abundance, it does not gen-

erally yield enough information to calculate the resulting helium distributions in any

detail.

The basic reason for this is that if a region becomes supercooled and loses

its excess helium to greater depths via dense droplets, the local helium abundance de-

creases to the value satisfying exact saturation. Solving for this saturation abundance

requires knowledge of the phase curves corresponding to lower abundances than the ini-

tial value. Take for example the homogeneous protosolar-abundance adiabats indicated

in Figure 3.1, where they are compared to phase curves obtained by B-spline fits to the

SR18 data. The warmest adiabat indicated by the dotted curve osculates the Y = 0.27
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Figure 3.1: Phase curves from the ab initio hydrogen-helium phase diagram of Schöttler
& Redmer (2018) compared with protosolar-abundance adiabats satisfying Jupiter or
Saturn’s observed T1 and Teff (solid black curves). Helium phase separation occurs in
regions of the planet that cool beneath the pressure-temperature phase curve for the
relevant local helium mass fraction Y , labeled to the right of each region. The diagram
focuses on the helium-poor part of the phase diagram relevant for setting the helium
content of a well-mixed molecular envelope in Jupiter or Saturn. A single hotter adiabat
(dotted black curve) represents the onset of helium immiscibility.
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phase curve at P ≈ 2 Mbar and T ≈ 5500 K, representing the moment that helium

immiscibility sets in within the planet. From this point the initially well-mixed adiabat

is supercooled in the neighborhood of P ≈ 2 Mbar and this region will tend to lose

its excess helium to lower depths via droplets. Exterior to this region, the molecular

envelope is kept well-mixed by convection and thus the rainout process at P ≈ 2 Mbar

drains helium from exterior regions uniformly. The outer envelope abundance is thus

given by the condition of saturation at P ≈ 2 Mbar, i.e., the value of Y labeling the

unique phase curve that osculates the planetary P–T profile there. Even without ap-

plying detailed models, visual inspection of Figure 3.1 reveals that this curve would

correspond to Y between 0.20 and 0.27. Interpolating by eye, we may conclude that

this phase diagram predicts an outer envelope abundance of Y ≈ 0.25 for Jupiter. By

the same reasoning, this phase diagram predicts an outer envelope abundance Y ≈ 0.13

for Saturn.

Meanwhile at depth, droplets descending from above encounter increasingly

warm surroundings, eventually redissolving into the medium (unless they reach the core

or center of the planet first, a possibility discussed below). Here the helium abundance

in the mixture increases. The question of whether this layer is itself now supersaturated

requires knowledge of the phase curve at this greater local abundance. It becomes

evident that, under the assumption that all excess helium is rained out to lower depths

and redissolved at its first opportunity, solving for the equilibrium helium distribution

throughout the interior is an iterative process that requires knowledge of the phase

diagram at a potentially broad range of helium fractions. In other words, the deep
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abundances are fundamentally not determined locally, and so the extent of the helium

rain region cannot be determined from any single phase curve.

Jupiter’s molecular envelope helium depletion relative to the protosolar abun-

dance is modest, and the large mass ratio between Jupiter’s metallic and molecular

regions guarantees only a subtle helium enrichment of the deep interior. Saturn, on

the other hand, has lower internal temperatures and so tends to suffer more dramatic

differentiation of helium. At odds with Iess et al. (2019), we find that applying realistic

phase diagrams to Saturn’s present-day interior does not produce Jupiter-like helium

distributions with a uniformly depleted molecular envelope that gradually transitions to

a uniform, moderately enriched metallic envelope deeper down. As we will show below,

we find that Saturn is cold enough that such an enriched inner envelope would itself be

unstable to further phase separation when the phase diagram is queried at the correct

(tentative, enriched) abundance.

Speaking in terms of an evolutionary path, we find that after immiscibility

sets in, Saturn rapidly cools through a sequence of qualitatively Jupiter-like helium

distributions until its helium gradient reaches the planet’s dense core (or center, in

the absence of such a core). After this point Saturn accumulates a shell (or core, if

no core of denser material exists) of helium-rich material, an outcome of hydrogen-

helium immiscibility discussed by Salpeter (1973) and Stevenson & Salpeter (1977a,

their Figure 4c) and modeled explicitly by Fortney & Hubbard (2003) and Püstow et al.

(2016). Figures 3.2 and 3.3 demonstrate this evolution path for our baseline Saturn

model with helium rain.
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Figure 3.2: A typical sequence in evolutionary time (top to bottom) of Saturn interior
profiles (black curves) superimposed with the SR18 phase curves. Left panel: P–T
space, as in Figure 3.1. The dot-dashed portion of the planet profile indicates the
continuous helium gradient region, and the thick portion indicates the extent of the
helium-rich shell, when one exists. The thin dotted curve indicates the phase curve
corresponding to the instantaneous outer envelope helium abundance. Right panel: the
same Saturn profiles in Y –T space, with phase curves corresponding to P = 1.2, 1.5, 2,
4, 10, and 24 Mbar from bottom/blue to top/green. The triangle on each of these phase
curves indicates the maximum Y in the helium-poor phase given the planet’s current
temperature at that pressure level. These values move to lower Y as the planet cools,
driving the depletion in the outer envelope. At 1.6 Gyr the gradient region extends all
the way down to the heavy-element (Y = 0) core, implying that helium-rich material
falling from above no longer finds a warm homogeneous inner envelope in which to
redissolve. From this time onward a the helium-rich (Y ≈ 0.87) phase collects outside
the core, establishing a dense shell. (Sequence continued on the following page.)
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Figure 3.3: Evolution of a typical Saturn, continued from Figure 3.2.
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Figure 3.4: A schematic description of the present-day structures found for Jupiter and
Saturn by applying the methods described in Section 3.2 and 3.3. Diagrams are to scale
by radius, these specific structures corresponding to the most likely individual models
from the favored samples described in Section 3.4. The dashed boundaries enclose the
continuous helium gradient region within each planet. The outer boundaries at ≈ 80%
of Jupiter’s radius and ≈ 55% of Saturn’s radius correspond to P ≈ 2 Mbar where SR18
predicts the onset of hydrogen-helium immiscibility. The inner boundary at ≈ 35% of
Saturn’s radius represents the transition to a shell of helium-rich material, discussed in
Section 3.2. This shell itself possesses a weak helium gradient as can be seen from the
right-hand panels of Figure 3.3.

To help guide the discussion that follows, Figure 3.4 show schematic diagrams

for the present-day internal structures that we obtain for Jupiter and Saturn.

3.2.3 Overall temperature of the phase diagram

As discussed in Section 3.2.2 above, a preliminary comparison to a Jupiter

adiabat reveals that SR18 predicts only subtle differentiation of helium in Jupiter. In

particular the diagram predicts an atmospheric abundance Y1 ≈ 0.25, an overestimate

relative to the abundance Y1 = 0.238 ± 0.005 measured by the Galileo entry probe
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(von Zahn et al. 1998). This finding is consistent with Schöttler & Redmer (2018) who

showed based on comparison to reference adiabats that this phase diagram predicts

helium immiscibility to be marginal or even absent in Jupiter.

Assuming that hydrogen-helium immiscibility is the mechanism responsible for

Jupiter’s atmospheric helium depletion, the Galileo abundance measurement imposes a

stringent constraint for discerning among viable, if still uncertain, phase diagrams. It is

for this reason that, following Nettelmann et al. (2015) and Mankovich et al. (2016), we

introduce a degree of freedom via an additive temperature offset ∆Tphase modulating

the overall temperature of the phase curves applied in this work, relative to SR18. This

parameter allows us to explore a more general space of phase diagrams, with larger

∆Tphase values leading to more pronounced differentiation, smaller values leading to

less, and ∆Tphase = 0 recovering the SR18 phase curves as published. It also yields a

convenient language of expressing our results in terms of belief about the “true” phase

diagram based on how well our various thermal evolution models fare. Based on the

discussion thus far, Jupiter models will require ∆Tphase > 0 to successfully match the

Galileo helium abundance.

3.3 Gas giant evolution models

We create new evolutionary models for Jupiter and Saturn using a code derived

from that of Thorngren et al. (2016) and recently applied to Saturn’s static structure

in Mankovich et al. (2019). The most significant update is the use of the ab initio

hydrogen-helium equation of state (EOS) of (Militzer & Hubbard 2013, “MH13”), an
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advance compared to the semianalytic model of Saumon et al. (1995) which predicted

warmer metallic interiors for Jupiter and Saturn. MH13 provides data for a single

mixture Y = 0.245. In this work EOS quantities are calculated for arbitrary hydrogen-

helium mixtures by combining MH13 with the Saumon table for pure helium under

the linear mixing approximation, as described and tabulated by Miguel et al. (2016).

The influence of heavier elements is treated using the Rostock water EOS of French

et al. (2009), also incorporated under the linear mixing approximation. The models in

this work are initialized hot, with uniform envelopes containing a helium mass fraction

Y = 0.270 corresponding to the protosolar value from Asplund et al. (2009). Rotation

is neglected.

3.3.1 Rainout and convection

The internal flux in the models presented here is assumed to be carried purely

by convection such that ∇ = ∇ad to a good approximation, except in cases where

emergent helium gradients may partially stabilize the fluid against convection. (Here

∇ ≡ d lnT
d lnP is the temperature gradient in the model and ∇ad ≡

(
∂ lnT
∂ lnP

)
s

is the adiabatic

gradient.) In such cases the double-diffusive instability may operate, and the ensu-

ing nonlinear motions may establish superadiabatic temperature gradients ∇ > ∇ad

consistent with a Schwarzschild-unstable, Ledoux-stable configuration.

The overall heat and compositional flux through such a configuration are sensi-

tive to the microscopic diffusivities of heat and solute via the Prandtl number Pr = ν/κT

and diffusivity ratio κµ/κT , where ν is the kinematic viscosity, κT is the thermal dif-

fusivity set by electron conductions, and κµ is the diffusivity of solute. However, given
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the likelihood that excess helium can aggregate by diffusion and rain out of the mix-

ture quickly compared to convection timescales (Salpeter 1973; Stevenson & Salpeter

1977b), non-diffusive processes play an important role and it is not clear whether sig-

nificant growth rates are achievable by overstable modes. In fact, if rainout of excess

helium is fast even compared to the fluid’s buoyancy period, then an adiabatically per-

turbed fluid parcel is perennially in equilibrium with its surroundings in terms of solute

abundance. This lack of helium contrast between the parcel and its environment means

that the buoyancy is no longer affected by helium gradients, and the condition for con-

vective instability reduces back to the Schwarzschild criterion so that ∇ ≈ ∇ad should

be expected.

In lieu of any detailed understanding of how helium immiscibility affects the

double-diffusive instability and associated secondary instabilities like layer formation

(Mirouh et al. 2012; Wood et al. 2013), we apply the same simple, general model as in

Mankovich et al. (2016). The temperature gradient is allowed to take on superadiabatic

values in helium gradient regions, the value of the superadiabaticity assumed to be

proportional to the magnitude of the helium gradient there following

∇−∇ad = RρB (3.1)

where the “density ratio” Rρ (also labeled R0 in the literature) is simply taken as a

constant, introducing a free parameter in the model. Here B is the so-called Ledoux

term accounting for the effect of composition gradients on the buoyancy frequency (e.g.,

Unno et al. 1989).
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Regardless of their helium distributions, stabilizing Z gradients may be a gen-

eral feature of gas giants as a result of the core accretion process (Helled & Stevenson

2017) or core miscibility (Wilson & Militzer 2012a,b), although outcomes in the latter

vary widely depending on the stratification of the core boundary (Moll et al. 2017). If

these heavy element gradients do exist, they generally dramatically affect the cooling

history of the gas giants (Leconte & Chabrier 2013b; Vazan et al. 2015, 2016b, 2018)

and thus deserve close attention. Nonetheless, for conceptual simplicity this work makes

the strong assumption that the heavy elements are distributed trivially into a distinct

Z = 1 core of chosen mass Mc and an envelope with uniform Z = Z1. In this case the

the only continuous composition gradients are in the helium mass fraction Y , and the

term B of Equation 3.1 reduces to

B =
χρ

χT

(
∂ ln ρ

∂ lnY

)
P,T

∇Y (3.2)

where

χρ =

(
∂ lnP

∂ ln ρ

)
T,Y

and χT =

(
∂ lnP

∂ lnT

)
P,Y

(3.3)

and ∇Y = d lnY
d lnP is the true Y gradient in the model.

3.3.2 Model atmospheres and Jupiter’s Bond albedo

A fundamental input for a planetary evolution model is the surface boundary

condition that sets how quickly the planet can cool. While the total emitted power from

the jovian planets is fairly well constrained (Li et al. 2010, 2012), it is more subtle to

determine what fraction is emerging from the planet’s deep interior (the intrinsic flux
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from contraction and interior processes) as opposed to being re-radiated from absorbed

stellar light. Measuring the latter requires broad coverage in phase angle, a requirement

that was met in Cassini ISS/VIMS observations during the spacecraft’s flyby of Jupiter

in 2000-2001. Li et al. (2018) analyzed these data to arrive at a new measurement of

A = 0.503± 0.012 for Jupiter’s Bond albedo, a significant departure from the Voyager

result of A = 0.343 ± 0.032 (Hanel et al. 1981a). As described by Li et al. (2018),

the new larger reflectivity obtained for Jupiter’s atmosphere indicates that the planet’s

intrinsic flux is substantially higher than previously believed.

We apply the model atmospheres of Fortney et al. (2011) for Jupiter and

Saturn. These models assume no particular Bond albedo, instead solving for a self-

consistent radiative-convective equilibrium accounting for the absorption of stellar flux.

These models are consistent with Voyager estimates for each planet’s Bond albedo, and

thus the intrinsic flux they predict for Jupiter at its present-day surface gravity and Teff

falls below the recent Cassini measurement. In order to apply a more realistic surface

condition for Jupiter, we adjust the Tint column of the Fortney et al. (2011) Jupiter

tables to instead be consistent with the Bond albedo reported by Li et al. (2018). In

particular, we recompute Tint from

T 4
eff = T 4

int + T 4
eq (3.4)

where Teff is as given in the tables and Teq = 102.5 K is the value implied by A = 0.503

for the solar flux received at Jupiter’s semimajor axis. The predictions of the model at-

mospheres modified in this way deviate from their tabulated values only at relatively late
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Figure 3.5: The importance of the assumed hydrogen EOS and surface boundary condi-
tion for Jupiter and Saturn cooling times. “Baseline” uses the up-to-date Bond albedos
and the Militzer & Hubbard (2013) hydrogen-helium EOS combined with Saumon et al.
(1995) helium as described in the text. Shaded regions mark the observed effective tem-
peratures and the solar age τ⊙ = 4.56 Gyr.

times when the absorbed solar flux (proportional to T 4
eq) becomes significant compared

to the intrinsic flux (∝ T 4
int).

3.3.3 Expectations from simpler evolution models

To illustrate the influence of atmospheric surface condition on cooling times,

we show in Figure 3.5 baseline cooling curves for Jupiter and Saturn assuming homoge-

neous, adiabatic interiors. The Voyager (Hanel et al. 1981a) and Cassini (Li et al. 2018)

determinations of Jupiter’s Bond albedo are compared. Analysis of existing Cassini data
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may also reveal a higher albedo for Saturn, and thus for that case we compare the Voy-

ager (Hanel et al. 1983) Bond albedo is to a hypothetical higher value of A = 0.5. Two

EOSs for hydrogen (Militzer & Hubbard 2013; Saumon et al. 1995) are also compared.

The assumed EOS has only a modest effect on Jupiter’s cooling time, whereas the up-

dated surface condition accelerates the time for Jupiter to cool to its observed Teff by a

significant few times 108 yr. For Saturn, both the EOS and the surface condition sig-

nificantly modify the cooling time, but in any case homogeneous models fail to explain

Saturn’s heat flow at the solar age t = τ⊙ = 4.56 Gyr, recovering a well-known result

(Pollack et al. 1977; Grossman et al. 1980; Fortney et al. 2011).

It is significant that Jupiter’s revised albedo brings cooling times for homo-

geneous models short of 4.56 Gyr, because it means that some amount of additional

luminosity from differentiation of the planet’s chemical components can be straightfor-

wardly accommodated. Jupiter and Saturn now both require an extra luminosity source,

and given our expectations for the relative amounts of helium lost from each planet’s

molecular envelope (Section 3.2), it appears that helium immiscibility may provide one

natural explanation. The success of this scenario in explaining the observed heat flow

in both planets is assessed in detail in Section 3.4 below.

3.3.4 Parameter estimation

The evolution models here contain four free parameters. The core mass Mc

and envelope heavy element abundance Z1 control the distribution of heavy elements.

As described in Section 3.2.3, the phase diagram temperature offset ∆Tphase controls the

temperatures of the hydrogen-helium phase curves and thus dictates the overall amount
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Table 3.1: Jupiter and Saturn evolutionary constraints

Quantity Jupiter Saturn Reference

Teff (K)a 96.67± 0.17 125.57± 0.07 Li et al. (2012, 2010)
R (km)b 69, 911± 70 58, 232± 58 Seidelmann et al. (2007)

Age (109 yr) 4.56±0.10 Connelly et al. (2012)
Y1/(X1 + Y1) 0.238± 0.005 – von Zahn et al. (1998)

aMean value used as the condition for model-data comparison rather than
fit; see Section 3.3.4.

bErrors are inflated to 10−3 times the mean value, about ten times the true
volumetric radius uncertainty.

of helium differentiation. Finally the density ratio Rρ sets the superadiabaticity of the

temperature profile in regions with continuous helium gradients, providing an additional

degree of freedom in setting the rate of cooling from the planet’s surface by limiting the

flux emerging from the metallic interior (e.g., Nettelmann et al. 2015; Mankovich et al.

2016).

We estimate these parameters independently for each planet by starting with

the planets’ observed mean radii and effective temperatures at the solar age 4.56 Gyr,

applying Bayes’ theorem assuming that the likelihood of the data given a model follows

a multivariate normal distribution with trivial covariance, and sampling from the pos-

terior probability distribution using the ensemble Markov chain Monte Carlo sampler

emcee (Foreman-Mackey et al. 2013). Uniform priors are assigned to each of the four

parameters within the ranges 0 < Mc < 30, 0 < Z1 < 0.5, |∆Tphase| < 2, 000 K, and

0 ≤ Rρ < 1 except in cases where otherwise noted. Samples are judged to be con-

verged based on inspection of the posterior distributions and the individual traces of

each walker in the sampler. The samples described below consist of between 30,000 and

60,000 evolutionary models each.
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For Jupiter models, the likelihood includes an additional term comparing the

Galileo probe interferometric measurement of Jupiter’s atmospheric helium abundance

von Zahn et al. (1998) to the abundance in the well-mixed molecular envelope of the

models. Because this interferometric measurement, along with the variety of estimates

obtained for Saturn from thermal emission, occultation, and limb scan data, is ulti-

mately sensitive to the He/H2 mixing ratio, comparisons are made in terms of the

helium mass fraction relative to the hydrogen-helium mixture:

Y1
X1 + Y1

=
Y1

1− Z1
. (3.5)

Here and in what follows X1, Y1 and Z1 denote the true mass fractions of hydrogen, he-

lium, and water respectively in the well-mixed molecular envelope of our model Jupiters

and Saturns.

In reality, a slightly less intuitive approach than this is used because the 1-

bar temperature T1 is the fundamental independent variable rather than time t. In

particular, our method can guarantee that a given model eventually cools to the correct

Teff , but there is no guarantee that the same model will reach the solar age t = τ⊙ before

it cools out of the regime covered by the model atmospheres. Therefore, although Teff

is in fact the relatively uncertain quantity and the solar age the relatively certain one,

we instead cool models to their observed Teff and then treat their age as the uncertain

data point, distributed normally about 4.56 Gyr with a somewhat arbitrary standard

deviation equal to 0.10 Gyr. This approach has the advantage of bestowing even poorly

fitting models with meaningful likelihoods, whereas if model-data comparisons were
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always made at 4.56 Gyr it would not be clear what to do with a Saturn model that

cooled in, e.g., 4.4 Gyr. In practice all models are cooled through the planet’s Teff , and

quantities compared to data (R, Y1, age) are linearly interpolated within the timestep

spanning that Teff .

The data used as constraints for Jupiter and Saturn’s thermal evolution are

summarized in Table 3.1.

3.4 Results

In what follows we devote our attention to the parameters ∆Tphase and Rρ

pertaining directly to the helium distributions and thermal histories of Jupiter and

Saturn, addressing each planet in turn. Because we forgo any detailed calculations of

rotation, oblateness, and the associated zonal gravity harmonics, we find as expected

that Mc and Z1 are extremely degenerate, essentially unconstrained so long as the total

heavy element content is sufficient to fit each planet’s mean radius at the solar age. As

a result the two parameters are strongly anticorrelated.

3.4.1 Jupiter

The evolutionary paths we obtain for our baseline Jupiter model are shown

in Figure 3.6, which illustrates the basic success of this model in matching Jupiter’s

effective temperature, mean radius, and atmospheric helium content at the solar age.

The first conclusion we can reach based on the solutions obtained for Jupiter

is that our model would rule out a phase diagram as cold as SR18, which unperturbed
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Figure 3.6: Jupiter’s evolution with instantaneous helium rainout following the SR18
phase diagram. Tracks are colored by their log posterior probability with more likely
models appearing yellow and progressively less likely samples appearing green to blue
to purple. Black crosses signify the data summarized in Table 3.1. The most likely
individual model is shown as the dot-dashed magenta curve.
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(∆Tphase = 0) leads to such subtle differentiation of helium that the model overes-

timates Jupiter’s atmospheric helium abundance relative to the Galileo measurement

(Figure 3.7). This lends more systematic confirmation of the initial expectations of

Section 3.2.3 and of Schöttler & Redmer (2018), who predicted based on a preliminary

comparison to reference adiabats that helium immiscibility is marginal or absent in

Jupiter. We find that translating the SR18 phase curves to modestly higher tempera-

tures at ∆Tphase = (128±24) K instead gives excellent agreement. Furthermore ∆Tphase

shows very weak covariance with other parameters, being constrained almost entirely

by the Galileo measurement.

As discussed above, any superadiabatic regions associated with helium gradi-

ents bear on cooling times directly, because they can generally trap heat in the deep

interior and cause the molecular envelope to cool relatively quickly. Larger Rρ can thus

generally mitigate the cooling time extension offered by helium differentiation, although

speaking generally, the process can become complicated by the feedback between the

temperature profile and the equilibrium helium distribution providing the stratification.

Nonetheless, as in Mankovich et al. (2016), the simple picture just described is the gen-

eral behavior observed in our Jupiter models after helium begins differentiating. The

relationship between superadiabaticity Rρ and cooling time is illustrated in Figure 3.8,

where results for the baseline model are compared with those assuming the older Voy-

ager Bond albedo from Hanel et al. (1981a). The comparison reveals that Jupiter’s

updated albedo allows excellent fits at low or vanishing superadiabaticity. This is qual-

itatively consistent with the findings in Mankovich et al. (2016), where once the Bond
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Figure 3.7: Prediction for the temperature of the true phase diagram (relative to
the unperturbed SR18 diagram) based on the atmospheric helium content of Jupiter.
The shaded band represents the Galileo probe interferometer measurement (von Zahn
et al. 1998), and the color of model points maps to log posterior probability as in
Figure 3.6. Shown is the baseline (superadiabatic) Jupiter sample, but other Jupiter
cases (adiabatic; low albedo) yield virtually identical distributions on this diagram.
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Figure 3.8: Prediction for the fractional superadiabaticity in Jupiter’s helium gradient
region. Two different assumptions regarding the atmospheric boundary condition are
compared; one is the recent Cassini Bond albedo measurement from Li et al. (2018,
yellow-green points and blue histograms) and the other is the Voyager measurement
from Hanel et al. (1981a, grey points and histograms).

albedo was treated as a free parameter, solutions with larger albedos (lower Teq) and

interiors closer to adiabatic were recovered. The quantitative results obtained there

were different from the present results because of the more strongly restrictive prior

assumed for Rρ there (see Section 2.4 of that work), and to a lesser degree the older,

likely less realistic EOS and phase diagram used in those calculations.
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Need Jupiter be superadiabatic?

Even adiabatically stratified (Rρ = 0) models appear to succeed for Jupiter

based on Figure 3.8, raising the question, would strictly adiabatic models do any worse?

To answer this, we computed samples for models assuming purely adiabatic interiors.

In such a model ∇ = ∇ad everywhere outside the isothermal core, although it’s cru-

cial to understand that even an adiabatic envelope is no longer isentropic once helium

begins differentiating and the temperature profile and helium/entropy are solved for

self-consistently. We find that strictly adiabatic interiors, i.e., efficient heat transport

by convection through helium gradient regions, perform no worse in terms of the quality

of the best-fitting models. This is quantified in terms of an Akaike (1974) information

criterion

AIC = 2n− 2 lnLmax (3.6)

where n is the number of free parameters in each sample and Lmax is the maximum

likelihood obtained therein. The model yielding the minimum AIC will represent the

minimally complex model that can also yield a good fit. We find AIC = 27.8568 for

the adiabatic (n = 3) Jupiter sample compared to AIC = 29.8364 for the baseline

(n = 4) Jupiter sample, indicating that the baseline model is probably overfit by the

introduction of finite superadiabaticity Rρ associated with helium gradients. We thus

emphasize our three-parameter, adiabatic Jupiter sample as our preferred model.
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3.4.2 Saturn

We find an abundance of Saturn models that successfully explain Saturn’s heat

flow at the solar age. Evolutionary sequences for baseline Saturns are shown in Fig-

ure 3.9. Because this sample enforces no constraint on Saturn’s atmospheric helium

content at the solar age, and a uniform prior probability is assigned to ∆Tphase, this

sample explores a wide variety of phase diagrams via ∆Tphase. This manifests in the

diversity of evolutionary paths in Figure 3.9 and the quite broad posterior ∆Tphase dis-

tribution shown in Figures 3.10 and 3.11 with the label “unconstrained phase diagram.”

As is the case for Jupiter, good solutions for Saturn require that SR18 be translated to

warmer temperatures, this time driven by Saturn’s luminosity constraint: taken at face

value, the SR18 phase curves predict insufficient differentiation for Saturn to provide

the planet’s observed luminosity.

In addition to the distribution of ∆Tphase being considerably broader for this

Saturn sample, there is also a distinct bimodality that was absent for Jupiter. This

bimodality arises because the model cooling times exhibit a strongly non-monotone

dependence on ∆Tphase, as is evident in Figure 3.11. The first mode corresponds to phase

diagrams consistent with SR18 to within a few hundred K, where warmer phase curves

extend Saturn’s cooling time because they lead to more pronounced differentiation in

the planet. This behavior has a limit, though, corresponding to phase curves that

are so warm that they lead to the complete exhaustion of the helium that initially

resided in the molecular envelope. This is the case for models beyond ∆Tphase ≈ 550 K,

where hotter phase diagrams push this exhaustion time for Saturn farther into the
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Figure 3.9: As in Figure 3.6, but for Saturn. This is our baseline (most general)
Saturn sample with a uniform prior on ∆Tphase. Individual histories are plotted for two
ostensibly good solutions: the most likely model with ∆Tphase < 550 K is shown in the
magenta dot-dashed curve, and the most likely model with ∆Tphase > 550 K is shown
in the grey dashed curve. The latter case exhausts the helium in its molecular envelope
entirely at t ≈ 4.1 Gyr; this type of evolution is not favored for reasons discussed in the
text.
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Figure 3.10: As in Figure 3.7, but for Saturn, and this time comparing two assumptions
about the phase diagram via the prior assigned to ∆Tphase. Grey points and histograms
show the sample obtained for a uniform prior in ∆Tphase, and colorful points and green
histograms show the sample obtained using a prior distribution for ∆Tphase derived from
the Jupiter Galileo measurement as illustrated in Figure 3.7.

past. In this limit the models begin to again undershoot the solar age because an

increasing fraction of their time is spent in a final episode of rapid cooling after their

differentiation luminosity vanishes. This behavior is exhibited by the second mode

visible in Figure 3.11. Individual evolution tracks typifying each of these modes are

highlighted in Figure 3.9.
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Figure 3.11: As in Figure 3.10, but this time showing the influence of ∆Tphase on
Saturn’s cooling time. The non-monotone relationship for the sample with no constraint
on the phase diagram is caused by the models with ∆Tphase ≳ 550 K losing the helium
from their molecular envelopes entirely before the solar age, evolving on a rapid cooling
track from that time.
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A better-informed phase diagram

There are several reasons that the “hot phase diagram” mode of Saturn so-

lutions just described is probably not realistic. First, total exhaustion of helium from

the molecular envelope appears to be ruled out by a multitude of Voyager and Cassini

experiments (Conrath et al. 1984; Conrath & Gautier 2000; Banfield et al. 2014; Achter-

berg et al. 2016; Koskinen & Guerlet 2018). Second, the scenario requires that the true

phase diagram depart from SR18 by ∆Tphase ≳ 700 K, probably an unrealistically large

departure given the level of consensus emerging from different ab initio groups over

recent years (Lorenzen et al. 2009, 2011; Morales et al. 2009, 2013; Schöttler & Redmer

2018). The third problem with such a scenario, and the most important from the point

of view of this work, is that the phase diagram that it requires would drastically un-

derpredict Jupiter’s observed atmospheric helium abundance. The same fundamental

physics is at work within both planets; in the interest of applying a consistent physi-

cal model to both, we carry out a new calculation for Saturn that folds in our belief

about the true phase diagram as informed by the Jupiter models that satisfy the Galileo

measurement (see Section 3.4.1 and Figure 3.7).

This updated Saturn sample imposes a prior likelihood for ∆Tphase propor-

tional to the marginalized posterior distribution obtained for Jupiter and driven by the

Galileo probe measurement of Jupiter’s atmospheric helium abundance. This distribu-

tion is fit well by a normal distribution with mean 128 K and standard deviation 24 K

(see Section 3.4.1). Evolutionary tracks for this more restrictive sample are summarized

in Figures 3.12. Good solutions are still obtained for Saturn, as expected based on the
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considerable amplitude of the unconstrained sample’s posterior probability distribution

in the neighborhood of ∆Tphase = (128±24) K. Distributions for ∆Tphase are illustrated

in Figures 3.10 and 3.11 and labeled “phase diagram constrained by Jupiter/Galileo.”

As expected, the posterior distributions exclude very hot phase diagrams. Figure 3.10

emphasizes a significant result: having folded in our expectations for the temperature

of the phase diagram based on Jupiter, we can make a meaningful prediction for the

helium content of Saturn’s molecular envelope. This prediction is illustrated in more

detail and compared to abundances derived from observations of Saturn’s atmosphere

in Section 3.4.2 below.

Need Saturn be superadiabatic?

In Section 3.4.1 we demonstrated that superadiabaticity need not be invoked to

recover satisfactory solutions for Jupiter; here we turn our attention to the same question

for Saturn. The distributions in Figure 3.13 are largely consistent with Rρ = 0, leading

one to expect that adiabatic models perform roughly as well as the rest. Considering

first Saturns with an unconstrained phase diagram, we find that an adiabatic (n =

3) sample yields AIC = 36.2254 while the equivalent superadiabatic (n = 4) sample

yields AIC = 38.2254. Repeating this exercise for the case with the more realistically

constrained phase diagram, we find that an adiabatic sample returns AIC = 36.3088

compared to AIC = 38.2258 for a superadiabatic sample. In all cases this reasoning

suggests that the superadiabatic models introduce additional model complexity with

no little to no return in terms of quality of fit. Thus our favored Saturn models are

those assuming adiabatic interiors and phase diagrams constrained by Jupiter/Galileo.
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Figure 3.12: As in Figure 3.9, but applying phase diagrams that satisfy the Galileo
measurement of Jupiter’s atmospheric helium abundance.
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Figure 3.13: As in Figure 3.10, but showing the influence of Rρ on Saturn’s cooling
time.

Implications of the success of adiabatic models will be discussed in Section 3.5.

Saturn’s atmospheric helium content

The abundance of helium in Saturn’s atmosphere is the central testable predic-

tion of the models presented here. Figure 3.14 summarizes our findings in this respect,

with our best guess represented by either of the two very similar distributions in the

lower panel. Our prediction is consistent with, but better constrained than, the earlier

theoretical predictions of Hubbard et al. (1999) and Nettelmann et al. (2015). The broad

distributions in the upper panel are disfavored for the reasons described in Section 3.4.2.
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Observational determinations of the He to H2 mixing ratio have been made by

various means, typically combining thermal emission spectra with vertical temperature

profiles obtained from radio occultations or infrared limb scans. Values derived in

this way from Pioneer (Orton & Ingersoll 1980), Voyager (Conrath et al. 1984), and

Cassini data (Banfield et al. 2014; Achterberg et al. 2016; Koskinen & Guerlet 2018),

and also from purely infrared Voyager data (Conrath & Gautier 2000), have yet to

reach a consensus, but they are generally consistent with depletion from the protosolar

helium abundance. Figure 3.14 compares these values alongside the theoretical results

derived here. We predict a more pronounced depletion than implied by most of these

observations. The exceptions are the low estimate of Conrath et al. (1984) (likely

unreliable for reasons explained in Conrath & Gautier 2000) and the measurement

reported by Achterberg et al. (2016) which agrees very well. Given the challenging

systematics involved with measurements like these, a definitive validation or exclusion

of our prediction may need to await an in situ measurement of Saturn’s atmospheric

helium abundance.

3.4.3 Is neon depletion energetically significant?

Besides just helium, Jupiter shows evidence for depletion of its atmospheric

neon, exhibiting an abundance around 1/10 the protosolar value by number (Niemann

et al. 1998). This depletion is generally understood to be a consequence of neon’s

tendency to dissolve into the helium-rich droplets (Roulston & Stevenson 1995; Wilson

& Militzer 2010) that are lost to the interior. Thus the atmospheric neon depletion

observed in situ at Jupiter offers a strong secondary confirmation of the notion that
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Figure 3.14: The helium mass fraction relative to total hydrogen and helium predicted
for Saturn’s atmosphere today. Top: Saturn models with uniform priors as described
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Jupiter (Figure 3.7) and driven by the Galileo probe helium abundance measurement
(von Zahn et al. 1998). Black error bars are values derived from Voyager (Conrath
et al. 1984; Conrath & Gautier 2000) and Cassini (Banfield et al. 2014; Achterberg
et al. 2016; Koskinen & Guerlet 2018) data.
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helium differentiation has occurred in Jupiter.

What has not been considered is the energetic significance of sinking neon along

with the sinking helium. Assuming that Jupiter’s global neon enrichment is similar to

its observed atmospheric enrichment in the other noble gases at 2 to 3 times protosolar

(Atreya et al. 2016), then Jupiter’s atmospheric neon has depleted by a factor of 20-

30. If we further make the assumption that neon was initially well mixed throughout

the envelope after formation, and its atmospheric depletion is driven entirely by loss

into helium-rich droplets at the molecular-metallic interface, then the degree of neon

differentiation at the solar age is simply set by the relative masses in the helium-poor

(molecular) and helium-rich (metallic) regions of the interior.

Figure 3.15 applies this reasoning to our most likely adiabatic Jupiter model,

showing the enclosed helium or neon mass as a function of enclosed mass in the planet.

We suppose that Jupiter’s bulk neon enrichment is similar to its atmospheric argon

enrichment at ≈ 3 times protosolar (Mahaffy et al. 2000; Asplund et al. 2009), implying

an initial neon mass fraction XNe ≈ 4×10−3 in Jupiter’s envelope for a total neon mass

of MNe ≈ 1.2 ME, approximately 0.3 ME of which resides in the molecular envelope

when helium immiscibility sets in. The observed atmospheric abundance at about 1/10

protosolar—the exact value is taken from Mahaffy et al. 2000—translates into a final

neon mass fraction of XNe ≈ 2 × 10−4 in Jupiter’s molecular envelope for a final neon

mass MNe ≈ 10−2 ME remaining there. The molecular envelope thus lost virtually all

0.3 ME of its neon since the onset of helium immiscibility, compared to the ≈ 2.0 ME

of helium that sank to the metallic depths for the same model.
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Figure 3.15: The initially well-mixed versus final, differentiated, distributions of helium
(top panel) and neon (bottom panel) in Jupiter’s interior for the simple models discussed
in Section 3.4.3. Enclosed helium (or neon) mass is plotted as a function of the enclosed
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Our models suggest that the differentiation of helium is more advanced in

Saturn, and consequently we expect depletion of neon in Saturn’s atmosphere to be

more severe than in Jupiter’s. For the sake of these simple estimates, we assume that

Saturn’s outer envelope contains a negligible mass of neon at the present day. As before

we assign a fiducial bulk enrichment for neon based on measurements of different species,

this time supposing that neon tracks the carbon enrichment at ≈ 10 times protosolar

per the methane abundances from Fletcher et al. (2009). We assume that the dissolved

neon follows helium-rich droplets all the way to the helium-rich shell; the neon transition

in this simplistic model therefore takes place substantially deeper than the molecular-

metallic transition. Figure 3.16 illustrates the result of applying this exercise to our

most likely adiabatic Saturn model including the Jupiter/Galileo phase diagram prior.

This model sheds 0.7 ME of neon from its outer envelope compared to 12 ME of helium.

Calculating the associated change in the gravitational binding energy of neon

provides an estimate of the energetic significance of neon differentiation. From the

composition profiles in Figures 3.15 and 3.16 we calculate initial and final values for the

binding energies

EHe = −
∫ MHe

0

Gm

r
dmHe (3.7)

and

ENe = −
∫ MNe

0

Gm

r
dmNe (3.8)

with mHe the enclosed helium mass, mNe the enclosed neon mass, and m the enclosed

total mass. For Jupiter, we find that ∆ENe ∼ 1040 erg compared to ∆EHe ∼ 1041 erg. In
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Figure 3.16: As in Figure 3.15, but for Saturn.
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the case of Saturn, we find ∆ENe ∼ 3×1039 erg compared to ∆EHe ∼ 1041 erg. We thus

expect that neon sequestration could bolster the luminosity from helium differentiation

by as much as ∼ 10% for Jupiter and ∼ 3% for Saturn, an effect not captured in the

thermal evolution models of this work.

While crude, the arguments suggest that the luminosity that helium differenti-

ation provides to each planet is augmented somewhat by the accompanying sequestering

of neon, at least in a time-averaged sense. Apart from the unknown bulk neon abun-

dances for Jupiter and Saturn, there is an additional layer of complexity associated with

the precise time evolution. Considering Jupiter’s pronounced neon depletion in spite of

helium immiscibility having set in only recently, it seems possible that Saturn’s neon

was sequestered rapidly after immiscibility set in ≳ 3 Gyr ago. In this case the lumi-

nosity source may have been episodic in nature—potentially on timescales close to the

thermal timescale—and deducing its influence on Saturn’s cooling time as a whole would

require a more detailed thermal evolution model as well as a more detailed hydrogen-

helium-neon immiscibility model. For these reasons, explicit treatment of neon in the

evolutionary models is beyond the scope of this work, but deserves closer attention as

models like these are refined.

3.5 Discussion

This work provides a self-consistent physical picture for the thermal evolution

of Jupiter and Saturn in detail, an outcome that had so far proven elusive. These mod-

els are built on the premise that some degree of hydrogen-helium immiscibility—and
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rainout of the resulting helium-rich phase—occurs in both planets, a notion supported

by decades of work spanning dense matter physics (e.g., Stevenson 1975; Hubbard & De-

witt 1985; Morales et al. 2009; Lorenzen et al. 2009) and planetary science (e.g., Smolu-

chowski 1967; Stevenson & Salpeter 1977b; von Zahn et al. 1998; Conrath & Gautier

2000). The evolution models presented here apply recent advances in the equation of

state of hydrogen (Militzer & Hubbard 2013), the phase diagram describing miscibility

of hydrogen-helium mixtures (Schöttler & Redmer 2018), and the atmospheres of the

gas giants (Fortney et al. 2011; Li et al. 2018). Sampling parameter space systemati-

cally using Markov chain Monte Carlo, we are able to arrive at solutions that naturally

explain the radii and heat flow of both Jupiter and Saturn at the solar age, as well as

Jupiter’s observed atmospheric helium depletion.

The value in this final constraint is that it puts stringent limits on allowable

phase diagrams. The parameter estimation performed in this work provides statisti-

cally meaningful distributions of model parameters, estimating for instance that based

on Jupiter’s helium depletion, the true phase diagram is warmer than the most current

ab initio phase diagram (Schöttler & Redmer 2018) by a mere (124±24) K (1σ error) at

the ≈ 2 Mbar pressures that it predicts for the onset of helium immiscibility in metallic

hydrogen. That this correction is so modest suggests that the ab initio dense matter

results may be converging on truth. (For comparison, Jupiter models built on a pre-

vious generation of phase diagram that assumed ideal hydrogen-helium mixing entropy

predicted the necessary temperature offset to be between 200 and 300 K, in the oppo-

site direction (Nettelmann et al. 2015; Mankovich et al. 2016).) These findings imply
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a rather precise prediction for Saturn’s atmospheric helium abundance summarized in

Figure 3.14. The posterior predictive Y1 distribution for our favored model is well fit

by a Gaussian producing a helium mass fraction, relative to hydrogen and helium, of

0.12± 0.01 (2σ error). The corresponding He/H2 mixing ratio is 0.066± 0.006, consis-

tent with one measurement made from multi-instrument Cassini data but inconsistent

with others. An in situ determination of Saturn’s atmospheric helium abundance pro-

vided by an entry probe (e.g., SPRITE; Simon et al. 2018) would be decisive test of the

evolutionary picture developed here.

Another important result is that although superadiabaticity resulting from

some flavor of double-diffusive convection in metallic regions possessing helium gradients

does modulate the cooling time for Jupiter and Saturn, equally good solutions are found

for both planets assuming purely adiabatic envelopes corresponding to essentially perfect

convection. This runs contrary to the expectation from earlier modeling efforts (e.g.,

Hubbard et al. 1999; Fortney & Hubbard 2003; Fortney et al. 2011; Nettelmann et al.

2015; Mankovich et al. 2016) that Jupiter required some mechanism (non-adiabatic

interiors or otherwise) to speed its evolution rather than prolong it2. This development

is due to the major improvement in our understanding of the internal heat flow of Jupiter

in light of recent Cassini results (Li et al. 2018).

The success of even adiabatic models in explaining Jupiter and Saturn’s heat

flow is rather significant with respect to the remarks in Section 3.3.1: in the limiting

case that rainout of the denser helium-rich phase can proceed rapidly with respect
2Recognizing this tension, Mankovich et al. (2016) ultimately treated Jupiter’s Bond albedo as a free

parameter, recovering a median value consistent with the subsequent Cassini measurement.
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to buoyancy timescales, then the influence of a background helium gradient on fluid

buoyancy is lost completely. In this case the condition for convective instability reduces

to the Schwarzschild criterion, and so convection in the planet is uninhibited. Thus

the success of these adiabatic models can be taken as circumstantial evidence that the

rainout process does indeed proceed rapidly compared to any relevant timescale.

Finally the energetic significance of neon differentiation is examined. Assuming

that Jupiter’s atmospheric neon depletion is driven by dissolution into the helium-

rich material lost to the metallic interior, and making an informed guess about the

planet’s bulk neon abundance, we estimate that Jupiter’s time-averaged differentiation

luminosity may be increased by ∼ 10% relative to just the helium differentiation treated

in the thermal evolution models in this work. Assuming similar bulk abundance patterns

for Saturn and assuming that its outer envelope is devoid of neon by the solar age,

Saturn’s differentiation luminosity could be augmented by a ∼ 3%.

3.6 Conclusions

An explanation for Saturn’s surprisingly high luminosity has been sought for

decades. Models that provide plausible evolution pathways for Saturn invoke either

an additional luminosity source beyond straightforward contraction, or interiors that

deviate significantly from adiabaticity because of some degree of non-convective heat

transport. On the other hand, Jupiter’s luminosity is fairly well explained by simple

models, but its precisely constrained atmospheric abundances reveal the presence of

interior processes that sequester helium and neon. This work applies identical assump-
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tions to Jupiter and Saturn, calculating new thermal evolution models in the context of

recent results regarding hydrogen-helium immiscibility physics and a significantly up-

dated measurement of Jupiter’s intrinsic heat flow. We have showed that these models

naturally address the observed heat flow from both Jupiter and Saturn at the solar age,

as well as Jupiter’s atmospheric helium depletion. Even purely adiabatic interiors are

successful in these respects. These findings provide a consistent picture for the evolution

of both planets simultaneously, and make a precise prediction for Saturn’s atmospheric

helium abundance. Measuring this quantity in situ would provide an observational test

of the picture developed here.
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Chapter 4

Saturn ring seismology

4.1 Introduction

The prototypical gas giants Jupiter and Saturn offer an opportunity to study

the processes at work during planet formation and the chemical inventory of the proto-

solar disk, and also constitute astrophysical laboratories for warm dense matter. Infer-

ences about these planets’ composition and structure rely on interior models that are

chiefly constrained by the their observed masses, radii and shapes, surface abundances,

and gravity fields (Stevenson 1982a; Fortney et al. 2016). While the latter have been

measured to unprecedented precision by Juno at Jupiter and the Cassini Grand Finale

at Saturn, in the interest of long term progress there is a need to identify independent

observational means of studying the interiors, and seismology using the planets’ free

oscillations appears to be the most promising such avenue.

While preliminary detections of Jupiter’s oscillations have been made from the

ground by Gaulme et al. (2011), the resulting power spectrum lacked the frequency res-
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olution necessary to identify specific normal modes responsible for the observed power,

a necessary step before the frequencies can be used to probe the interior in detail. Sat-

urn, on the other hand, provides a unique opportunity for seismic sounding of a Jovian

interior owing to its highly ordered ring system, wherein gravity perturbations from

Saturn’s free oscillations can resonate with ring orbits. Saturn ring seismology is the

focus of this work.

4.1.1 Background

The concept of ring seismology was first developed in the 1980s. Stevenson

(1982) suggested that Saturnian inertial oscillation modes, for which the Coriolis force

is the restoring force, could produce regular density perturbations within the planet

that might resonate with ring particle orbits and open gaps or launch waves, but he

did not calculate specific mode frequencies. Later in the decade in a series of abstracts,

a thesis, and papers Marley, Hubbard and Porco further developed this idea. Marley

et al. (1987), relying on Saturn oscillation frequencies computed by Vorontsov (1981),

suggested that acoustic mode oscillations, which differ from inertial modes in that their

restoring force is ultimately pressure, could resonate with ring particle orbits in the

C ring. They recognized that mode amplitudes of a few meters would be sufficient

to perturb the rings. Marley & Hubbard (1988) focused on low angular degree ℓ f–

modes which have no radial nodes in displacement from surface to the center of the

planet (unlike p–modes) as the modes which had the potential to provide the most

information about the deep interior of a giant planet. Marley et al. (1989) compared

the predicted locations resonance locations of such modes with newly discovered wave
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features in the C ring found in radio occupation data by Rosen (1989). They suggested

that the Maxwell gap and three wave features found by Rosen which had azimuthal

wave numbers and propagation directions consistent with such resonances were in fact

produced by Saturnian f–modes with ℓ ≤ 4. As we will summarize below, we now know

that these specific f–mode–ring feature associations were correct, although the story for

the ℓ = 2 and ℓ = 3 waves is complicated by g–mode mixing (Fuller et al. 2014; Fuller

2014).

These ideas were ultimately presented in detail in Marley (1990, 1991) and

Marley & Porco (1993). Marley computed the sensitivity of Saturn oscillation frequen-

cies to various uncertainties in Saturn interior models, including core size and regions

with composition gradients, and discussed the sensitivity of ring resonance locations to

these uncertainties. As we will show below, the overall pattern of resonance locations

within the rings first presented in Marley (1990) agrees well with subsequent discover-

ies. While Marley recognized the impact of regions with non-zero B−V frequency N

on f–mode frequencies and the possibility of g–modes (for which the restoring force is

buoyancy), he did not consider mode mixing between f– and g–modes. Marley & Porco

(1993) presented the theory of resonances between planetary oscillation modes and rings

in detail and derived expressions for the torque applied to the rings at horizontal (Lind-

blad) and vertical resonances and compared these torques to those of satellites. They

also suggested several more specific ring feature-oscillation mode associations, many of

which have subsequently turned out to be correct. Marley and Porco concluded by not-

ing that because the azimuthal wave numbers of the Rosen wave features were uncertain,
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only additional observations by the planned future Saturn mission Cassini could ulti-

mately test the hypothesized connection between oscillation modes and ring features.

Consequently there was essentially a two-decade pause in ring seismology research until

those results became available.

Optical depth scans of the C ring from Cassini radio occultations and Ul-

traviolet Imaging Spectrograph stellar occultations presented by Colwell et al. (2009)

and Baillié et al. (2011) confirmed all the unexplained waves reported by Rosen et al.

(1991b) and identifying many more. Hedman & Nicholson (2013) followed up with

VIMS stellar occultations, combining scans taken by Cassini at different orbital phases

to determine wave pattern speeds and azimuthal wavenumbers m at outer Lindblad

resonances, making seismology of Saturn using ring waves possible for the first time.

As alluded to above, the detection of multiple close waves with m = 2 and m = 3

waves deviated from the expectation for the spectrum of pure f–modes. In light of

this result, Fuller et al. (2014) investigated the possibility of shear modes in a solid

core, finding that rotation could mix these core shear modes with the f–modes and in

principle explain the observed fine splitting, although they noted that some fine tuning

of the model was required. The most compelling model for the fine splitting to date

was presented by Fuller (2014), who showed that a strong stable stratification outside

Saturn’s core would admit g–modes that could rotationally mix with the f–modes and

rather robustly explain the number of strong split m = 2 and m = 3 waves at Lindblad

resonances, and roughly explain the magnitude of their frequency separations.

Subsequent obervational results from the VIMS data came from Hedman &
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Nicholson (2014), who detected a number of additional waves including an m = 10 wave

apparently corresponding to Saturn’s ℓ = m = 10 f–mode. French et al. (2016) charac-

terized the wave in the ringlet within the Maxwell gap (Porco et al. 2005) and argued it

to be driven by Saturn’s ℓ = m = 2 f–mode, supporting the prediction by Marley et al.

(1989). The remainder of C ring wave detections that form the observational basis for

our work are the density waves reported by Hedman et al. (2019) and the density and

bending waves reported by French et al. (2019).

4.1.2 This work

Here we seek to systematically understand the ring wave patterns associated

with Saturn’s normal modes. In particular, we aim to identify the modes responsible for

each wave, make predictions for the locations of other Saturnian resonances in the rings,

and ultimately assess what information these modes carry about Saturn’s interior. We

describe the construction of Saturn interior models in Section 4.2. §4.3 summarizes our

method for solving for mode eigenfrequencies and eigenfunctions, as well as our account-

ing for Saturn’s rapid rotation. In §4.4 we recapitulate the conditions for Lindblad and

vertical resonances with ring orbits and describe which f–modes can excite waves at

each. §4.5 presents the main results, namely f–mode identifications and a systematic

comparison of predicted f–mode frequencies to the pattern speeds of observed waves

and its implications for Saturn’s interior, principally its rotation. The separate question

of mode amplitudes and detectability of ring waves is addressed in §4.6, which also lists

the strongest predicted waves yet to be detected. Discussion follows in §4.7 and we

summarize our conclusions with §4.8.
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4.2 Interior Models

Our hydrostatic planet interior models are computed using a code based on

that of Thorngren et al. (2016) with a few important generalizations. To model arbitrary

mixtures of hydrogen and helium, we implement the equation of state of Saumon et al.

(1995) (the version interpolated over the plasma phase transition, henceforth “SCvH-

I”). Heavier elements are included using the ab initio water EOS of French et al. (2009),

extending the coverage to T < 103 K using the analytical model of Thompson (1990) for

water. The density ρ(Y, Z) is obtained assuming linear mixing of the three components

following

ρ−1(Y, Z) =
Z

ρZ
+

1− Z

ρHHe(Y )
, (4.1)

where in turn

ρ−1
HHe(Y ) =

Y

ρHe
+

1− Y

ρH
. (4.2)

Here Y and Z are the mass fractions of helium and heavier elements, respectively, and

the densities ρH, ρHe, and ρZ are tabulated as functions of pressure P and temperature

T in the aforementioned equations of state.

The outer boundary condition for our interior models is simply a fixed tem-

perature at P = 1 bar, namely T1 = 140 K, close to the value derived by Lindal et al.

(1985) from Voyager radio occultations and mirroring that used in previous Saturn in-

terior modeling efforts (e.g., Nettelmann et al. 2013). The envelope is assumed to be

everywhere efficiently convective so that the deeper temperature profile is obtained by
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integrating the adiabatic temperature gradient:

T (mr ≥ Mc) = T1 +

∫ mr

M
∇ad(P, T, Y )T dlnP , (4.3)

with the core itself assumed isothermal at T (Mc). Here mr denotes the mass coordinate

and the adiabatic temperature gradient ∇ad ≡
(
∂ lnT
∂ lnP

)
ad

is assumed to be that of the

hydrogen-helium mixture alone 3.

Following common choices for models of Saturn’s interior (e.g., Nettelmann

et al. 2013), the distribution of constituent species with depth follows a three-layer

piecewise homogeneous structure: heavy elements are partitioned into a core devoid

of hydrogen and helium (Z = 1) and a two-layer envelope with outer (inner) heavy

element mass fraction Z1 (Z2). The helium content is likewise partitioned with outer

(inner) helium mass fraction Y1 (Y2) subject to the constraint that the mean helium mass

fraction of the envelope match the protosolar nebula abundance Y = 0.275. The Z and

Y transitions are located at a common pressure level P12, a free parameter conceptually

corresponding to the molecular-metallic transition of hydrogen, although in SCvH-I

itself this is explicitly a smooth transition. We only consider Z2 > Z1 and Y2 > Y1

to avoid density inversions and to reflect the natural configuration of a differentiated

planet.

The particular choice of this three-layer interior structure model is motivated
3 This simplification is necessary because the water tables of French et al. (2009) do not provide

an entropy column. While these tables have been extended with entropies calculated from separate
thermodynamic integrations (N. Nettelmann, private communication), the entropies are accurate only
up to an additive offset and so cannot be used to write the total entropy of even an ideal H-He-Z
mixture. Within the core where Z = 1, the entropy is straightforward to calculate and there we use
these extended tables to calculate the sound speed in pure water. See Baraffe et al. (2008b) for a
discussion of the significance of heavy elements in setting ∇ad in the envelope.
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by the desire for a minimally complicated model that simultaneously (a) satisfies the

adopted physically-motivated EOS, (b) includes enough freedom to fit Saturn’s low-

order gravity field J2 and J4, and (c) does not introduce significant convectively stable

regions in the envelope, such as those that might arise in cases where composition varies

continuously. Requirement (c) precludes a viable class of configurations for Saturn’s

interior (e.g., Leconte & Chabrier 2013b, Fuller 2014, Vazan et al. 2016b), but it signifi-

cantly simplifies the formalism and interpretation because in this case the normal modes

in the relevant frequency range are limited to the fundamental and acoustic overtone

modes. While the isothermal cores of our models are stably stratified and so do admit

g–modes, the stratification is such that the maximum B−V frequency attained there is

only N ≈ σ0, where σ0 = (GM/R)1/2 is Saturn’s dynamical frequency. Since g–modes

have frequencies at most N , and f–mode frequencies follow σ ≈ ℓ1/2σ0 (Gough 1980),

g–modes in such a core will not undergo avoided crossings with the ℓ ≥ 2 f–modes.

As will be discussed in §4.5 below, a spectrum of purely acoustic modes is sufficient to

explain the majority of the spiral density and bending waves identified in the C ring

that appear to be Saturnian in origin.

4.2.1 Gravity field

We generate rigidly rotating, oblate interior models by solving for the shape

and mass distribution throughout the interior using the theory of figures formalism

(Zharkov & Trubitsyn 1978). The theory of figures expresses the total potential, in-

cluding gravitational and centrifugal terms, as a series expansion in the small parameter

mΩ = Ω2R3/GM where Ω is the uniform rotation rate, R is the planet’s volumet-

112



ric mean radius, and GM is the planet’s total gravitational mass. Retaining terms of

O(mn
Ω) provides a system of n algebraic equations that describe the shape and total

potential as integral functions of the two-dimensional mass distribution, while the mass

distribution is in turn related to the potential by the condition of hydrostatic balance.

A self-consistent solution for the shape and mass distribution in the oblate model is ob-

tained iteratively, yielding the corresponding gravitational harmonics J2n in the process.

To this end we use the shape coefficients given through O(m4) by Nettelmann (2017)

and implement a similar algorithm. For our Saturn models we adopt R = 58, 232 km

(Seidelmann et al. 2007) and GM = 37, 931, 207.7 cm3 s−2 (Jacobson et al. 2006).

For a given combination of the parameters Z1, Z2, Y1, P12, and mΩ, an initially

spherical model is relaxed to its rotating hydrostatic equilibrium configuration. The

mean radii of level surfaces are adjusted during iterations such that the equatorial

radius a of the outermost level surface for a converged model matches a = 60, 268 km

following Seidelmann et al. (2007). As the mean radii are adjusted and the densities are

recalculated from the EOS, the total mass of the model necessarily changes; therefore

the core mass Mc is simultenously adjusted over the course of iterations such that the

converged model matches Saturn’s total mass. These models include 4096 zones, the

algorithm adding zones late in iterations if necessary to speed convergence to the correct

total mass.

The values for the gravity used for generating interior models are those of Ja-

cobson et al. (2006), appropriately normalized to our slightly smaller adopted reference

equatorial radius according to J ′
2n = (a/a′)J2n. Although dramatically more precise
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harmonics obtained from the Cassini Grand Finale orbits will soon be published, the

values of J2 and J4 from Jacobson et al. (2006) are already precise to a level beyond that

which can be used to put meaningful constraints on the deep interior using our fourth-

order theory of figures, where in practice solutions are only obtained with numerical

precision at the level of |δJ2/J2| ≈ |δJ4/J4| ≲ 10−4.

For the purpose of fitting the gravity field, we create models using mΩ =

0.13963 corresponding to the 10h 39m 24s (10.657h) rotation period measured from

Voyager kilometric radiation and magnetic field data by Desch & Kaiser (1981). We

sample interior models from a bivariate normal likelihood distribution in J2 and J4 using

emcee (Foreman-Mackey et al. 2013) assuming a diagonal covariance for these gravity

harmonics. Because the numerical precision to which our theory of figures can calculate

J2 exceeds its observational uncertainty, the former is used in our likelihood function.

We take uniform priors on Z1 and Z2 subject to the constraint that 0 < Z1 < Z2 < 1, a

uniform prior on 0 < Y1 < 0.275, and a uniform prior over 0.5 Mbar < P12 < 2 Mbar.

The mass distributions and sound speeds for models in this sample are illustrated in

Figure 4.1.
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Figure 4.1: Saturn interior models with two-layer envelopes of varying Y and Z dis-
tributions, surrounding pure-Z cores. Models are sampled based on J2 and J4 from
Iess et al. (2019). Mass density (top panel) and sound speed (bottom panel) are shown
as functions of the mean radii of level surfaces (bottom horizontal axes) and pressure
coordinate (top horizontal axes).
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4.3 Mode eigenfrequencies and eigenfunctions

Our approach is to perform the pulsation calculation for spherical models cor-

responding to the converged theory of figures models, with the various material pa-

rameters defined on the mean radii r of level surfaces. The influence of Saturn’s rapid

rotation is accounted for after the fact using a perturbation theory that expresses the

full solutions in the presence of Coriolis and centrifugal forces and oblateness in terms

of linear superpositions of the solutions obtained in the non-rotating case.

For spherical models, we solve the fourth-order system of equations governing

linear, adiabatic oscillations (Unno et al. 1989) using the open source GYRE stellar

oscillation code suite (Townsend & Teitler 2013). The four assumed boundary conditions

correspond to the enforcement of regularity of the eigenfunctions at r = 0 and the

vanishing of the Lagrangian pressure perturbation at the planet’s surface r = R (Unno

et al. 1989, Section 18.1). The three-layer nature of the interior models considered in

this work involve two locations at which the density and sound speed are discontinuous

as a result of discontinuous composition changes (see Figure 4.1). Additional conditions

are applied at the locations of these discontinuities; these amount to jump conditions

enforcing the conservation of mass and momentum across these boundaries.

As will be discussed in §4.5, comparison with the full set of observed waves in

the C ring requires f–modes with angular degree in the range ℓ = 2–14, and we tabulate

results through for the f–modes through ℓ = 15.

In what follows, we adopt the convention that m > 0 corresponds to prograde

modes—those that propagate in the same sense as Saturn’s rotation—so that the time-
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dependent Eulerian perturbation to, e.g., the mass density corresponding to the ℓmn

normal mode in the planet is written as

ρ′ℓmn(r, θ, φ, t) = ρ′ℓmn(r)Y
m
ℓ (θ, φ)e−iσℓmnt, (4.4)

where σℓmn is the mode frequency in the frame rotating with the planet, and r, θ, and

φ denote radius, colatitude, and azimuth respectively. Analogous relations hold with

the pressure P or gravitational potential Φ in place of density. The Y m
ℓ (θ, φ) are the

spherical harmonics, here defined in terms of the associated Legendre polynomials Pm
ℓ

as

Y m
ℓ (θ, φ) =(−1)

m+|m|
2

[(
2ℓ+ 1

4π

)(
(ℓ− |m|)!
(ℓ+ |m|)!

)]1/2
× Pm

ℓ (cos θ)eimφ.

(4.5)

The solution for the displacement itself has both radial and horizontal components, with

the total displacement vector given by

ξ(r, θ, φ, t) =

[
ξr(r) r̂ + ξh(r)

(
θ̂
∂

∂θ
+ φ̂

1

sin θ

∂

∂φ

)]
× Y m

ℓ (θ, φ)e−iσℓmnt.

(4.6)

4.3.1 Rotation

In reality, Saturn’s eigenfrequencies are significantly modified by the action

of Saturn’s rapid rotation because of Coriolis and centrifugal forces and the elliptic-

ity of level surfaces. We account for these following the perturbation theory given by
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Vorontsov & Zharkov (1981) (see also Saio 1981) and later generalized by Vorontsov

(1981) to treat differential rotation, using the eigenfunctions obtained in the non-

rotating case as basis functions for expressing the full solutions. In this work we calcu-

late corrected eigenfrequencies for a range of rotation rates, treating Saturn as a rigidly

rotating body.

Denoting by σ̃ℓmn the eigenfrequency obtained for the ℓmn mode in the non-

rotating case, we write the corrected eigenfrequency as an expansion to second order in

the small parameter

λ ≡ ΩS

σ̃ℓmn
(4.7)

so that the corrected frequency as seen in inertial space is given by

σℓmn = σ̃ℓmn

[
1 + σℓmn,1λ+ σℓmn,2λ

2 +O(λ3)
]
. (4.8)

For Saturn’s f–modes, λ ≈ 0.3 for ℓ = 2 and decreases to λ ≈ 0.1 by ℓ = 15. The

dimensionless factor σℓmn,1 includes the effects of the Coriolis force and the Doppler

shift out of the planet’s rotating reference frame. σℓmn,2 includes the effects of the

centrifugal force and ellipticity of the planet’s figure as a result of rotation. In the limit

of slow rotation, it is appropriate to truncate the expansion at first order in λ, in which

case Equation 4.8 reduces to the well-known correction of Ledoux (1951) in which the

Coriolis force breaks the frequency’s degeneracy with respect to the azimuthal order m.

Expressions for σℓmn,1 and σℓmn,2 are obtained through the perturbation the-

ory; in practical terms they are inner products involving the zeroth-order eigenfunctions
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and operators describing the Coriolis and centrifugal forces and ellipticity. Corrections

related to the distortion of equipotential surfaces require knowledge of the planetary

figure as a function of depth, and these are provided directly by the theory of figures as

described in §4.2.1.

This formalism is constructed to retain the separability of eigenmodes in terms

of the spherical harmonics Y m
ℓ , so that each corrected planet mode may still be uniquely

specified by the integers ℓ, m and n and the expressions 4.4 and 4.6 hold for the corrected

eigenfunctions. Generally speaking, distinct modes whose frequencies are brought into

close proximity by the perturbations from rotation may interact, yielding modes of

mixed character. In the second-order theory applied to rigid rotation, selection rules

limit these interactions to pairs of modes with the same m and with ℓ differing by

−2, 0, or +2. Vorontsov & Zharkov (1981) found that for f– and p–modes with ℓ ≤

8 these additional frequency perturbations do not exceed 0.5%, roughly an order of

magnitude smaller than the second-order corrections themselves, and indeed generally

smaller than the truncation error associated with neglecting higher-order correction

terms (see below). There is thus little to be gained from incorporating mode-mode

interactions given the accuracy of the present theory, but mode-mode interactions could

be meaningfully taken into account in a third-order perturbation theory. The present

work neglects mode-mode interactions.

Further details on the calculation of these rotation corrections are given by

Marley (1990), which the present implementation follows closely4. The interior density
4Marley (1990) corrected several typographical errors from Vorontsov & Zharkov (1981) and

Vorontsov (1981), and one error was introduced: Equation (A1.27) for the ellipticity correction I5
is missing a factor of two in the second term.
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and sound speed discontinuities described above necessitate additional second-order cor-

rections accounting for the ellipticity of these transitions and the gravitational potential

perturbation felt throughout the planet as a result (Vorontsov & Zharkov 1981, Section

5).

Equation 4.8 provides the mode frequency as seen in inertial space. This

frequency can in turn be related to a pattern speed—the rotation rate of the full m-fold

azimuthally periodic pattern—according to

Ωpat =
1

m
σℓmn, (4.9)

which is suitable for direct comparison with the pattern speeds observed for waves in

the rings. For completeness, the mode frequency in the planet’s corotating frame is

related to the frequency seen in inertial space by

σℓmn = σcorot
ℓmn +mΩS (4.10)

i.e., modes that are prograde in the planet’s frame (m > 0) modes appear to have larger

frequencies in inertial space as a result of Saturn’s rotation.

As an illustration of the relative importance of these various contributions to

the modeled pattern speed, we may substitute the frequency expansion 4.8 into 4.9 to

write

Ωpat =
σ̃ℓmn

m
+

σℓmn,1ΩS

m
+

σℓmn,2Ω
2
S

mσ̃ℓmn
. (4.11)

These three contributions are shown in Figure 4.2, which demonstrates that the second-

120



order rotation corrections affect the pattern speeds at the level of ≳ 50 deg day−1 for

modes with ℓ below 15. These corrections are thus essential for comparison with the

observed wave pattern speeds, whose uncertainties are no larger than approximately

0.1 deg day−1 (P.D. Nicholson, private communication).

Higher order terms in the series expansion are potentially also significant. A

third-order theory would include in the expansion 4.11 a λ3 term

Ω
(3)
pat ≡

σℓmn,3Ω
3
S

mσ̃2
ℓmn

, (4.12)

where the nondimensional prefactor σℓmn,3 involves significant mathematical complexity

(Soufi et al. 1998; Karami 2008). To establish an upper limit for the magnitude of third-

order corrections, noting that |σℓmn,2| < |σℓmn,1| for all modes we consider, we suppose

that similarly |σℓmn,3| ≤ |σℓmn,2| and thus adopt |σℓmn,3| = |σℓmn,2| as an upper limit.

The resulting upper limits on third-order contributions to f–mode pattern speeds are

indicated in Figure 4.2, which demonstrates that the truncation error associated with

our second-order theory may be as large as 30 deg day−1 for ℓ = m = 2, but decaying

with increasing m. As discussed §4.5 below, these error estimates are taken into account

in our analysis to ensure that the systematic dependence of the truncation error on m

does not bias our estimate of Saturn’s bulk rotation rate.
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Figure 4.2: Magnitude of the contributions made to the modeled pattern speed by each
of the four terms in Equation 4.11, as well as the estimate (4.12) for the magnitude of
third-order corrections. For these prograde modes the first-order corrections (Doppler
plus Coriolis; blue solid curve) take positive values, the second-order corrections (cen-
trifugal force and ellipticity; green dashed curve) take negative values, and the estimated
third-order intrinsic corrections (purple solid curve) have no assumed sign.

4.4 Saturnian f–modes in the rings

This section briefly summarizes the formalism (Marley & Porco 1993) connect-

ing Saturn’s nonradial oscillations with orbital resonances in the rings.

4.4.1 Resonance conditions

The condition for a Lindblad resonance is (Goldreich & Tremaine 1979)

m(Ω− Ωpat) = ±qκ (4.13)

with the upper sign corresponding an inner Lindblad resonance (ILR) and the lower sign

corresponding to an outer Lindblad resonance (OLR), and with q a positive integer.
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Taking the lower sign in Equation 4.13 to consider an OLR, it physically represents

the condition that the perturbing pattern overtakes an orbiting ring particle once every

m/q epicycles. This prograde forcing in phase with the ring particles’ epicycles leads to

a deposition of angular momentum that may launch a spiral density wave propagating

toward the planet, assuming self-gravity is the relevant restoring force. At an ILR

an orbiting particle instead overtakes the slower perturbing pattern once every m/q

epicycles, leading to a removal of angular momentum that may launch a spiral density

wave that propagates away from the planet. Such waves are common in Saturn’s rings

at mean motion resonances with Saturnian satellites.

Vertical resonances satisfy an analogous condition, namely that the perturbing

pattern speed relative to the ring orbital frequency is simply related to the characteristic

vertical frequency µ in the rings:

m(Ω− Ωpat) = ±bµ, (4.14)

where b is a positive integer and the vertical frequency µ(r) in the ring plane can be

obtained from (Shu et al. 1983)

µ2 + κ2 = 2Ω2. (4.15)

As with Lindblad resonances, there exist both inner and outer vertical resonances (IVRs

and OVRs), depending on the sign of Ω − Ωpat. Self-gravity waves excited at vertical

resonances generally propagate in the opposite sense from those excited at Lindblad
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resonances, so that bending waves at IVRs propagate toward the planet and those at

ILRs propagate away. IVRs are common in the rings as a result of Saturnian satellites,

namely those whose inclinations provide resonant vertical forcing.

In the above, the positive integer q or b is sometimes referred to as the ‘order’

of the resonance. This work focuses on first-order (q = 1 or b = 1) resonances; higher-

order resonances are possible (Marley 2014) but the wave structures they produce may

destructively interfere (P.D. Nicholson, private communication) and these resonances

do not appear to need to be invoked to explain the present data (see §4.5 below).

Furthermore, in what follows we limit our attention to OLRs and OVRs because in

practice, the prograde f–modes of modest angular degree have pattern speeds that

exceed Ω(r) throughout the C ring.

The orbital and epicyclic frequencies Ω and κ for orbits at low inclination and

low eccentricity can generally be written as a multipole expansion in terms of the zonal

gravitational harmonics J2n, namely

Ω2(r) =
GM

r3

[
1 +

∞∑
n=1

A2nJ2n

(a
r

)2n ]
(4.16)

and

κ2(r) =
GM

r3

[
1 +

∞∑
n=1

B2nJ2n

(a
r

)2n ]
, (4.17)

with the J2n values scaled to the appropriate reference equatorial radius a. The A2n

and B2n are rational coefficients and are tabulated by Nicholson & Porco (1988). We
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use the even harmonics of Iess et al. (2019) through J12 for the purposes of locating

resonances in the ring plane, although the gravity field only affects radial locations of

resonances and has no bearing on f–mode pattern speeds. We therefore use the latter

for quantitative comparison between model f–modes and observed waves.

The above relations constitute a closed system allowing the comparison of

planet mode frequencies to the frequencies of waves observed at resonances in the rings.

In cases where we do compare resonance locations, the resonant radius for a Lindblad

or vertical resonance is obtained by numerically solving Equation 4.13 or 4.14.

4.4.2 Which modes for which resonances?

Each planet mode can generate one of either density waves or bending waves.

The type of wave that the ℓmn mode is capable of driving depends on its angular

symmetry, and in particular the integer ℓ−m = (0, 1, 2, 3, . . .). Modes with even ℓ−m

are permanently symmetric with respect to the equator, and so are not capable of

any vertical forcing. However, they are antisymmetric with respect to their azimuthal

nodes, and so do contribute periodic azimuthal forcing on the rings. The reverse is true

of modes with odd ℓ − m, whose perturbations are antisymmetric with respect to the

equator and so do contribute periodic vertical forcing on ring particles. Meanwhile their

latitude-average azimuthal symmetry as experienced at the equator prevents them from

forcing ring particles prograde or retrograde.

In what follows, we restrict our attention to prograde f–modes, namely the

normal modes with m > 0 and n = 0. Acoustic modes with overtones (n > 0; p–modes)

are not considered because that they contribute only weakly to the external potential
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perturbation due to self-cancellation in the volume integral of the Eulerian density

perturbation; see Equation A.11. We further limit our consideration to prograde modes

because while f–modes that are retrograde in the frame rotating with the planet can in

principle be boosted prograde by Saturn’s rotation (see Equation 4.10), we find that the

resulting low pattern speeds (≲ 500 deg day−1) would place any Lindblad or vertical

resonances beyond the extent of even the A or B rings. Finally, azimuthally symmetric

(m = 0) modes do not lead to Lindblad or vertical resonances.

4.5 Results for rigid rotation

Figure 4.3 summarizes the OLR and OVR locations of prograde model Sat-

urn f–modes with ℓ −m between zero and five, together with locations of 17 inward-

propagating density waves and four outward-propagating bending waves observed in

Cassini VIMS data. A visual comparison in this diagram provides a strong indication

that the f–modes are responsible for the majority of the wave features shown. In par-

ticular, we can make unambiguous identifications for the f–modes at the origin of 10 of

the 17 density waves, and all four of the bending waves; these visual identifications are

summarized in Table 4.5.

The remaining seven density waves at m = 2 and m = 3 exhibit frequency

splitting that is likely attributable to mixing with deep g–modes as proposed by Fuller

(2014), and which our model, lacking a stable stratification outside the core, does not

attempt to address. We thus omit all m = 2 and m = 3 waves from the quantitative

analysis that follows, although we note that the predicted ℓ = m = 2 and ℓ = m = 3
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f–mode OLR locations do generally coincide with the locus of observed density waves

for these m values, the sole exception being the close-in W76.44. This wave was only

recently detected in VIMS data (French et al. 2019), and while coupling with deep

g–modes is a possible interpretation (E. Dederick, private communication), this wave

may be particularly challenging to explain due to its large splitting from the other three

m = 2 waves. We also note that the frequency and m value of the outermost m = 2

density wave in the ringlet within the Maxwell gap (French et al. 2016) were predicted

by Fuller (2014).

As discussed in §4.3, the density and sound speed discontinuities inherent

to the three-layer interior structures assumed for Saturn affect the f–mode frequencies.

Their effect is strongest for the lowest-degree f–modes, which have significant amplitude

at these deep transitions. This is evident in Figure 4.3 in the considerable spread of

predicted locations for resonances with the ℓ = {2, 3} f–modes. By ℓ ≳ 4 the f–modes

have low enough amplitudes at these deep density transitions that their frequencies are

not strongly affected.

The model f–modes whose resonance locations coincide with the remainder of

the observed waves contain a striking range of radial and latitudinal structures, including

the rest of the sectoral (ℓ = m) sequence up to ℓ = m = 10, as well as seven non-sectoral

(ℓ ̸= m) modes with ℓ−m = {1, 2, 3, 4, 5}. These waves are evidently the result of time-

dependent tesseral harmonics resulting from Saturn’s nonradial oscillations.

Although general agreement for these is evident at the broad scale of Figure 4.3,

the observed wave pattern speeds are known to a precision better than 0.1 deg day−1
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for the weakest waves yet measured (P. D. Nicholson, private communication). This

high precision warrants a closer inspection of the pattern speed residuals with respect

to our predictions. What follows in the remainder of this section is an analysis of these

residuals and their dependence on the assumed interior model and rotation rate.

4.5.1 Saturn’s seismological rotation rate

Saturn’s bulk rotation rate has to date been deduced from a combination of

gravity field and radiometry data from the Pioneer, Voyager and Cassini spacecrafts

(e.g., Desch & Kaiser 1981, Gurnett et al. 2005, Giampieri et al. 2006, Anderson &

Schubert 2007). Along different lines, Helled et al. (2015) optimized interior models to

the observed gravity field and oblateness to extract the rotation rate. Since we have

demonstrated that the frequencies of Saturnian f–modes depend strongly on ΩS through

the influence of the Coriolis and centrifugal forces and the ellipticity of level surfaces, a

natural question is, what interior rotation rate is favored by the waves detected so far

that appear to be associated with modes in Saturn’s interior?

Given an observed C ring wave with a pattern speed Ωobs
pat that appears to be

associated with a predicted Saturn model f–mode resonance with pattern speed Ωpat

and azimuthal order matching the observed number of spiral arms m, we calculate the

pattern speed residual ∆Ωpat ≡ Ωpat−Ωobs
pat. For each Saturn interior model and rotation

rate considered, we calculate a weighted root-mean-square (RMS) value of ∆Ωpat over
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the set of mode-wave pairs according to

RMS ∆Ωpat ≡

[∑
i

wi |∆Ωpat, i|2
]
, (4.18)

where the weights wi are assigned in inverse proportion with the maximum magnitude

of third-order corrections as described in §4.3.1, the weights sum to unity, and i indexes

the set of waves that we have identified with Saturn f–modes, namely those with ℓ

values and model pattern speeds listed in Table 4.5. The resulting curves are shown

in Figure 4.4 for rotation periods between 10h 30m and 10h 42m. The relation between

RMS ∆Ωpat and ΩS always exhibits a distinct minimum, owing to the strongly correlated

response of the f–mode frequencies to varying ΩS. In particular, the predicted pattern

speeds increase uniformly with faster Saturn rotation.

The optimal Saturn rotation period depends on the interior model chosen, as

does the quality of that best fit: interior models favoring longer rotation periods gen-

erally achieve a slightly better bit. To account for this in our esimate of Saturn’s bulk

rotation period, we weight the optimized rotation period from each interior model in

inverse proportion to the value of RMS ∆Ωpat obtained there. The cumulative distribu-

tion of rotation rates resulting from our sample of interior models is shown in Figure 4.4.

This distribution may be summarized as PS = 10.561+0.031
−0.022 h = 10h 33m38s+1m52s

−1m19s where

the leading value corresponds to the median and the upper (lower) error corresponds

to the 95% (5%) quantile. This may be expressed in terms of a pattern speed as

2π/PS = 818.13+2.41
−1.70 deg day−1.

Although these seismological calculations vary the assumed rotation rate, the
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underlying interiors randomly sampled against J2 and J4 using the theory of figures as

described in §4.2.1 assumed the Desch & Kaiser (1981) Voyager rate, in principle an

inconsistency of the model. As a diagnostic we generate a new sample from the gravity

field, but adopting mΩ = 0.14201 consistent with the 10.561h median rotation period

derived here. Repeating the remainder of this analysis we find a very similar distribution

of optimal rotation periods, the median shifting to longer periods by approximately one

minute as a result of the slightly different interior mass distributions obtained. The

frequencies of the f–modes themselves are inherently more sensitive to Saturn’s assumed

rotation rate than are the low-order gravity harmonics J2 and J4, a consequence of

the f–modes extending to relatively high m where Saturn’s rotation imparts a larger

fractional change to the frequency (see Figure 4.2).

4.5.2 Is rigid rotation adequate?

The lack of any perfect fit among the range of interior structures and rotation

rates we have considered is evident in Figure 4.4, where the RMS pattern speed residuals

reach approximately 1.2 deg day−1 at best, an order of magnitude larger than the

typical observational uncertainty of approximately 0.1 deg day−1 associated with even

the weakest waves we compare to here (P.D. Nicholson, private communication). The

absolute residuals are shown mode by mode in Figure 4.5, including the full span of

residuals obtained over the sample of interior models, each one evaluated at its optimal

rotation rate. Points lie on both sides of zero by construction, but again no model

provides an entirely satisfactory fit.

First, it is notable that the model pattern speed covariance (the diagonal ele-
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ments of which set the vertical spans in the residuals of Figure 4.5) varies so strongly

and non-monotonically with m. This can be understood as a consequence of the trade-

off between the decreasing zeroth-order frequency and the increasing contribution from

the first-order rotation correction with increasing ℓ, as can be seen from Figure 4.2 for

the sectoral modes. At high ℓ, the zeroth-order frequency loses out to the first-order

correction. Since the latter is proportional to ΩS, the overall pattern speeds vary more

strongly with rotation than at intermediate ℓ. At low ℓ, where the frequency is dom-

inated by the zeroth order contribution and so rotation plays a smaller role, the large

model covariance is due mostly to sensitivity to the locations of the core boundary

and envelope transition, sensitivity that decays rapidly with increasing ℓ as modes are

confined increasingly close to the planet’s surface.

A significant observational development has been made by Hedman et al.

(2019) in their detection of density waves corresponding to the full set of Saturn’s sec-

toral f–modes from ℓ = m = 2 up to ℓ = m = 10, constituting frequency measurements

for modes that possess the same latitudinal symmetry but sample an uninterrupted se-

quence of depths within Saturn. On the other hand, the non-sectoral (ℓ ̸= m) f–mode

waves reported by Hedman et al. (2019) and French et al. (2019) extend the detections

up to ℓ = 14 but also importantly sample a variety of latitudinal structures inside the

planet by virtue of the range in their values of ℓ − m. Thus in principle the available

modes serve to constrain differential rotation inside Saturn.

With this in mind, the second panel of Figure 4.5 is a valuable illustration

because any strong differential rotation as a function of depth or latitude would gen-
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erally manifest as systematic trends in the residuals ∆Ωpat as a function of ℓ or ℓ−m

respectively when referred to the rigid model. Instead, the residuals exhibit no obvious

systematic dependence on ℓ, although small systematic departures as a function of ℓ−m

may indicate the presence of differential rotation as a function of latitude. In particular,

in each of the four cases where two modes belonging to the same multiplet have been

observed (ℓ = 5, 9, 10, and 13), the two frequencies are offset by between 1 and 5 deg

day−1.

More firm conclusions regarding the presence or strength of differential rotation

are not possible given the present theoretical accuracy limitations discussed in §4.3.1.

A more accurate treatment of rotation effects could potentially increase the predicted

pattern speeds of the low-m modes by as many as tens of deg day−1 (see Figure 4.2)

which could produce a spectrum consistent with a spin frequency increasing by several

percent toward the planet’s surface. Indeed, this systematic uncertainty motivates the

weighted fit that we carry out in our estimate of Saturn’s bulk rotation in §4.5.1. Ul-

timately a more accurate perturbation theory, or else non-perturbative methods (e.g.,

Mirouh et al. 2018), will be required to fully interpret the implications for differential

rotation inside Saturn.
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Figure 4.3: Locations of resonances with our model Saturn’s f–modes (colorful hori-
zontal spans) and wave features observed in Saturn’s C ring using stellar occultations in
Cassini VIMS data (open symbols; see references in Table 4.5). The number of spiral
arms m (or equivalently, the azimuthal order of the perturbing planet mode) is shown
versus distance from Saturn’s center in the ring plane. Top panel: Outer Lindblad
resonances, which can excite inward-propagating spiral density waves in the rings. The
three roughly vertical model sequences correspond to modes with m = ℓ, m = ℓ − 2,
and m = ℓ − 4 from right to left. The three observed m = 3 density waves are offset
vertically for clarity. Right panel: Outer vertical resonances, which can excite outward-
propagating bending waves in the rings. The three vertical model sequences correspond
to m = ℓ − 1, m = ℓ − 3, and m = ℓ − 5 from right to left. Model resonances are
colored by the assumed Saturn rotation rate as described in the legend; the resonances
indicated for each rotation rate are slightly offset vertically for clarity.
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Figure 4.4: Saturn’s rotation rate from fits to the set of observed C ring waves identified
with Saturnian f–modes. RMS pattern speed residuals across the full set of waves are
shown as a function of Saturn’s assumed rotation rate. Each black curve corresponds
to a single interior model from the sample shown in Figure 4.1. The thick blue curve
shows the cumulative distribution of rotation periods minimizing the weighted RMS
pattern speed residuals for each model; its median and 5%/95% quantiles are given in
§4.5.1. Vertical lines with shaded errors indicate Saturn rotation rates in the literature,
references to which are given in the text. For visual clarity the Helled et al. (2015)
result of 10h 32m (45± 46)s referred to in the text is omitted from the diagram.
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Figure 4.5: Pattern speeds residuals (predicted minus observed) for models each cal-
culated at their optimal Saturn rotation period. Top panel: All residual frequencies,
including those for the m = 2 and m = 3 sectoral f–modes for which identification with
specific m = 2 or m = 3 density waves is not possible. For these modes residuals are
shown with respect to each of the nearby density waves having the correct m value. The
domain of the right panel is indicated. Bottom panel: Frequency residuals for the 14
waves identified with Saturn f–modes and used to constrain Saturn’s rotation. Circular
markers are for one interior model randomly chosen from our sample, while vertical
lines show the span of residuals obtained for the full sample. These vertical spans thus
indicate the amount of freedom available from the low-order gravity field as applied to
three-layer Saturn models, when the rotation rates are tuned using the seismology. Note
that these spans do not represent random uncertainties because the residuals for the
various modes are highly correlated. The vertical axis at right expresses the residuals
in terms of minutes of Saturn rotation, i.e., the degree to which Saturn would need to
be spun up or down to fit a given wave’s observed pattern speed. Four pairs of modes
that are members of same-ℓ multiplets are evident (see discussion in §4.7); the pairs
with ℓ = 9, 10, and 13 are slightly offset horizontally for clarity.
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4.6 Strength of forcing

The adiabatic eigenfrequency calculation that forms the basis for this work

provides no information about excitation or damping of normal modes, processes which

have yet to be adequately understood in the context of gas giants.

Stochastic excitation of modes by turbulent convection such as in solar-type

oscillations is one obvious candidate for Jupiter and Saturn, where convective flux dom-

inates the intrinsic flux in each planet. However, the expectation from simple models

for resonant coupling of f– and p–modes with a turbulent cascade of convective eddies

(e.g., Markham & Stevenson (2018) following the theory of Kumar (1997)) is that these

modes are not excited to the amplitudes necessary to provide the mHz power excess

that Gaulme et al. (2011) attributed to Jovian p–modes.

Recent work from Dederick & Jackiewicz (2017) demonstrated that a radiative

opacity mechanism is not able to drive the Jovian oscillations, although they noted that

driving by intense stellar irradiation is possible for hot Jupiters. Dederick et al. (2018)

and Markham & Stevenson (2018) each focused on water storms as a mode excitation

mechanism, finding this too insufficient for generating a power spectrum akin to that

reported by Gaulme et al. (2011). Markham & Stevenson (2018) further demonstrated

that deeper, more energetic storms associated with the condensation of silicates were

viable.

In lieu of a complete understanding of the amplitudes of acoustic modes in gas
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giants, we simply adopt equal mode energy across the f–mode spectrum following

Eℓmn ∝ σ2
ℓmn|ξ|2 = constant, (4.19)

corresponding to the “strong coupling” case cited by Marley & Porco (1993). Less

efficient coupling of the turbulence with the f–modes could result in a steeper decline of

equilibrium mode energy with frequency; Marley & Porco (1993) adopted Eℓmn ∝ σ
−13/2
ℓmn

as a limiting case.

Because the scaling relation 4.19 is only a proportionality, it remains to set

an overall normalization by choosing the amplitude of a single mode. Marley & Porco

(1993) proposed that the ℓ = m = 2 f–mode OLR is the origin of the Maxwell gap,

and accordingly anchored their amplitude spectrum by assuming that this mode had

an amplitude sufficient to produce the OLR torque TL/Σ ∼ 1016 cm4 s−2 necessary

to open a gap (Rosen et al. 1991a). The corresponding displacement amplitude was of

order 100 cm; we follow suit and adopt 100 cm as the amplitude of this mode5.

In what follows we normalize our f–mode eigenfunctions in accordance with

the amplitude estimate of Equation 4.19 and derive the resulting torques applied at

OLRs and OVRs. While this amplitude law is but one of many plausible scenarios, any

similar scaling relation will yield the same general dependence of Lindblad and vertical

torques on ℓ, m, and position in the ring plane. In particular, the magnitudes of the
5While the connection between the ℓ = m = 2 f–mode and the Maxwell gap itself has yet to be

fully understood, it is tantalizing as this mode yields the largest gravity perturbations out of any of
Saturn f–modes for any simple amplitude spectrum (see §4.6.1). Furthermore, the ringlet within the
gap harbors an m = 2 density wave (French et al. 2016) as predicted from the Saturn mode spectrum
calculated by Fuller (2014).
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torques decline monotonically with ℓ for a given ℓ−m, and also with ℓ−m for a given m.

This is sufficient for a basic prediction of the relative strengths of waves at the f–mode

resonances calculated here, which will allow us to identify locations that may harbor

hitherto-undetected waves.

4.6.1 Torques and detectability

In deriving the magnitudes of torques applied at ring resonances we follow the

approach of Marley & Porco (1993). In a ring of surface mass density Σ, the linear

torque applied at a Lindblad resonance is (Goldreich & Tremaine 1979)

TL
ℓmn = −mπ2Σ

DL
(2m+ ℓ+ 1)

(
Φ′
ℓmn

)2
, (4.20)

where

DL =−

(
3− 9

2
J2

(
a

rL

)2
)
Ω2(1∓m)

+
21

2
J2

(
a

rL

)2

Ω2 +O(J2
2 , J4)

(4.21)

and Φ′
ℓmn is the magnitude of the perturbation to the gravitational potential caused by

the ℓmn mode, evaluated at the Lindblad resonance r = rL in the ring plane cos θ = 0.

Similarly the linear torque applied at a vertical resonance r = rV is (Shu et al. 1983;

Marley & Porco 1993)

T V
ℓmn =

mπ2Σ

DV

(
dΦ′

ℓmn

dθ

)2

, (4.22)
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where

DV =−

(
3 +

9

2
J2

(
a

rV

)2
)
Ω2(1∓m)

− 21

2
J2

(
a

rV

)2

Ω2 +O(J2
2 , J4)

(4.23)

and (dΦ′
ℓmn/dθ) is to be evaluated at the vertical resonance r = rV and cos θ = 0. In the

expressions for DL and DV the upper (lower) signs correspond to inner (outer) Lindblad

or vertical resonances, as in Equations 4.13 and 4.14. An expression for Φ′
ℓmn is derived

as in Marley & Porco (1993); this is reproduced in Appendix A for completeness. These

expressions rely on integrals of the Eulerian density perturbation ρ′ℓmn over the volume

of the planet. While accuracy to second order in Saturn’s smallness parameter mΩ

would demand that this density eigenfunction include second-order corrections from

the perturbation theory described in §4.3.1, the fact that only an order of magnitude

calculation of the torques is required for the present purpose leads us to simply calculate

these using the zeroth-order density eigenfunctions.

To illustrate which modes are likely to excite the strongest ring features, Fig-

ure 4.6 summarizes the torques applied by the f–modes at OLRs and OVRs in the C

and D rings assuming mode amplitudes follow equipartition per Equation 4.19. Because

the torques (Equations 4.20 and 4.22) are proportional to ring surface mass density Σ,

itself strongly variable across the rings at a variety of spatial scales, we instead plot the

normalized torques TL/Σ and TV /Σ. These are straightforward quantities to calculate

even with imperfect knowledge of the mass density itself. When comparing to detected

wave patterns should be kept in mind that Σ can play an important role in whether a
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given wave is likely to be driven to detectable amplitudes.

Saturnian waves can also be obscured by more prominent eccentric features,

such as those associated with satellite resonances. Of particular importance is the

strong Titan 1:0 apsidal resonance, which Nicholson et al. (2014) studied in Cassini

radio and stellar occultations and found responsible for driving the m = 1 wave in the

Titan/Colombo ringlet (77,879 km) and also dozens of other m = 1 features from 74,000-

80,000 km. Their test-particle model (cf. their Figure 19) predicts maximum radial

deviations in excess of 100 m as much as 3,500 km away from that resonance, posing a

serious challenge for the reconstruction of weaker wave features from stellar occultation

profiles obtained at different phases. This substantial region of the C ring thus may be

concealing waves driven at Saturn resonances, and Figure 4.6 accordingly indicates the

region where the maximum radial deviations are larger than 300 m according to the

model of Nicholson et al. (2014).

For context, the torques associated with four satellite resonances that open

gaps or launch waves in the C ring are also shown in Figure 4.6. Prometheus 2:1 ILR

opens a gap in the C ring while the Mimas 4:1 ILR launches a wave. The Mimas 3:1

IVR opens a gap, while the Titan -1:0 nodal resonance launches a wave. Estimates for

the strengths of these satellite torques are taken from Rosen et al. (1991a,b) and Marley

& Porco (1993).

Conspicuously missing waves?

Inspection of Figure 4.6 reveals a few f–mode resonances that this simple

excitation model predicts to experience strong forcing, but where no waves have yet
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been detected. Four of the OLRs with m = ℓ− 2 have normalized torques predicted to

be greater than that of the detected (ℓ,m) = (13, 11) OLR. The most obvious of these

is the (8, 6) OLR, which this model predicts to lie at 74,940 km, happening to be almost

exactly coincident with the detected W74.93 and W74.94 OVR features (French et al.

2019). The fact that these OVR waves apparently dominate the signal at this position

betrays some tension with the spectrum of amplitudes we have assumed, which predicts

W74.93 and W74.94 to have torques one to three orders of magnitude lower than that

predicted for the (8, 6) OLR. Given the close proximity of these resonances, an appeal

to the spatial dependence of Σ seems unlikely to resolve this tension.

Of the remaining m = ℓ− 2 OLRs stronger than (13, 11), none among (10, 8),

(11, 9), or (12, 10) have had associated wave detections. This may be attributable to

strong perturbations from the Titan apsidal resonance as discussed above. Among the

predicted m = ℓ − 4 resonances, the (12, 8) OLR at 74,556 km is quite close to the

inner boundary of the C ring where there are a series of gaps that have yet to be fully

understood. Falling in such a gap could render such a resonance unobservable, although

within the model uncertainty, this resonance could lie between the gaps or on gap edges.

As for the OVRs, the only resonances that yield waves that have been detected

so far in the C ring are the four that fall closest to Saturn, and indeed the strongest

predicted waves in each ℓ − m have been observed. It warrants closer attention that

three of the four strongest OVRs predicted in the C ring have not been associated with

any wave feature, while waves have been observed at what should be weaker OVRs with

ℓ−m = 3 and ℓ−m = 5. These three “missing waves” correspond to the (ℓ,m) = (6, 5),

142



Table 4.2: Predicted OLRs and OVRs in the C ring without wave detections

ℓ m Type Ωpat (deg day−1) Remark (see §4.6)

11 11 OLR 1368.5–1371.5
12 12 OLR 1346.9–1349.7
13 13 OLR 1327.7–1330.1
8 6 OLR 1742.1–1747.6 Coincident with W74.93, W74.94
10 8 OLR 1586.9–1591.0 Near Titan apsidal
11 9 OLR 1532.9–1536.4 Near Titan apsidal
12 10 OLR 1488.4–1491.6
14 12 OLR 1419.3–1421.8
12 8 OLR 1695.6–1699.5 Among gaps
14 10 OLR 1568.6–1571.6 Near Titan apsidal
15 11 OLR 1521.4–1524.1 Near Titan apsidal
6 5 OVR 1737.0–1743.6 Near Titan apsidal
7 6 OVR 1646.4–1652.1 Near Titan apsidal
8 7 OVR 1578.0–1582.8
9 8 OVR 1523.9–1528.1
10 9 OVR 1479.8–1483.5
11 10 OVR 1443.0–1446.3
12 9 OVR 1581.1–1584.6 Near Titan apsidal
13 10 OVR 1530.1–1533.1 Near Titan apsidal
15 10 OVR 1604.7–1607.6

Note. — Pattern speeds can be mapped to physical locations given Saturn’s equatorial
radius and J2n using the relations in §4.4.1.

(7, 6), and (8, 7) Saturn f–modes. Because of their location, it is possible that these

waves are present but obscured by the Titan apsidal resonance.

To aid in the search for Saturnian resonances in the C ring, Table 4.2 lists

the pattern speeds of all model OLRs and OVRs in the C ring with predicted torques

comparable to or larger than than the smallest predicted torque associated with a wave

that has already been observed. Likewise, Table 4.3 reports resonances predicted to lie

in the D ring, although it is not clear whether any wave patterns there will ultimately

be detectable given the ring’s faintness.
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Table 4.3: Predicted OLRs and OVRs in the D ring

ℓ m Type Ωpat (deg day−1)

5 3 OLR 2314.3–2324.3
6 4 OLR 2034.3–2042.2
7 5 OLR 1861.1–1867.6
9 5 OLR 2063.1–2069.4
10 6 OLR 1901.5–1906.8
11 7 OLR 1784.6–1789.0
2 1 OVR 3359.2–3400.7
3 2 OVR 2423.7–2433.4
4 3 OVR 2061.8–2070.8
7 4 OVR 2177.3–2185.2
8 5 OVR 1968.1–1974.5
9 6 OVR 1826.1–1831.4
11 6 OVR 1970.5–1975.6
12 7 OVR 1841.5–1845.9
13 8 OVR 1743.8–1747.5
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C ringD ring C ringD ring

Figure 4.6: Strengths of torques per surface mass density exerted on the C and D
rings by model Saturnian f–modes, with amplitudes assigned according to equal energy
per mode following Equation 4.19. Model points (filled circles; shown for one randomly
drawn interior model) are colored by their value of ℓ − m. Arrows highlight model
f–modes that we have identified with observed waves as in Table 4.5. The grey shaded
region in both panels represents the region where maximum radial variations in ring
orbits caused by the Titan 1:0 apsidal ILR exceed 300 m, making the detection of wave
features more difficult; see §4.6. A subset of resonances have been labeled to their left
by their azimuthal wavenumber m for ease of identification. Torques associated with
waves or gaps at example satellite ILRs or IVRs in the C ring are indicated with dotted
horizontal lines.
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4.7 Discussion

This work offers interpretations for the set of inward-propagating density waves

and outward-propagating bending waves observed in Saturn’s C ring in terms of reso-

nances with Saturnian f–modes. It also demonstrates that Saturn’s rotation state is of

critical importance for Saturn ring seismology, a fact made evident by the systematic

mismatch with the observed pattern speeds of these waves obtained assuming that Sat-

urn rotates rigidly at the Voyager System III magnetospheric period of Desch & Kaiser

(1981) or slower (see Figure 4.4). The interior configurations considered to arrive at

this conclusion accounted somewhat generously for the freedom in the low-order gravity

field, because the likelihood function used to obtain our posterior distribution of interior

models assumed an inflated variance on J2 to accord with the numerical precision of

our theory of figures implementation (see §4.2.1). Because the resulting distribution

included a diversity of heavy element and helium distributions, envelope transition lo-

cations, and core masses, the seismology suggests a tension with the Voyager rotation

rate commonly assumed for Saturn’s interior that different three-layer interior models

seem unlikely to resolve. This conclusion based on the ring seismology adds support to

the notion that periodicities in Saturn’s magnetospheric emission (e.g., Desch & Kaiser

1981; Gurnett et al. 2005; Giampieri et al. 2006) may not be consistently coupled to the

rotation of Saturn’s interior (e.g., Gurnett et al. 2007; Read et al. 2009).

The present model is potentially oversimplified in two major ways. First, the

model is not suited to address the close multiplets of waves observed to have the same

azimuthal wavenumber m, namely the multiplets of waves in the C ring with m = 2
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and m = 3. The bulk of these seem naturally explained by the model of Fuller (2014),

wherein avoided crossings between the f–modes and deep g–modes of higher angular

degree give rise to a number of strong perturbations with the same m value. However,

in the wealth of new OLR and OVR wave patterns that have been measured from

increasingly low signal to noise VIMS data since Hedman & Nicholson (2014), it seems

that only two waves add to the mixed-mode picture, both with m = 2: the close-

in W76.44 wave, and the Maxwell ringlet wave whose frequency and m number were

predicted by Fuller (2014). The f–modes of higher angular degree have less amplitude

in the deep interior and so are less likely to undergo degenerate mixing with any deep

g–modes strongly. Indeed, there is not yet any direct evidence for f–modes with ℓ > 3

undergoing avoided crossings with deep g–modes, although the outlying (5, 4) OVR

warrants closer scrutiny in the mixed-mode context.

The second major simplification of the present model is the assumption that

Saturn rotates rigidly. While upper limits can be established for the depth of shear

in Jupiter or Saturn’s envelopes on magnetohydrodynamic grounds (Liu et al. 2008;

Cao & Stevenson 2017), evidence gathered from spacecraft indicate that zonal wind

patterns do penetrate to significant depths (Smith et al. 1982; Kaspi et al. 2018). It has

been proposed that the insulating molecular regions of these planets may be rotating

differentially on concentric cylinders (Busse 1976; Ingersoll & Pollard 1982; Ingersoll

& Miller 1986), the zonal winds being the surface manifestation of these cylinders of

constant angular velocity. The mode identifications made in §4.5 and Table 4.5 reveal

that the seismological dataset now samples a variety of radial (via the angular degree
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ℓ) and latitudinal (via the latitudinal wavenumber ℓ−m) structures within Saturn and

so should strongly constrain differential rotation in Saturn’s interior. If our rigid model

systematically underpredicted f–mode frequencies toward high ℓ, this would indicate

that Saturn’s outer envelope rotates faster than the bulk rotation. Such a result would

be qualitatively consistent with the expectation for rotation on cylinders or an eastward

equatorial jet that extends to significant depth, as well as with the rotation profiles that

Iess et al. (2019) deduced from the Cassini Grand Finale gravity orbits. As discussed

in §4.5.2, the lack of any such obvious systematic dependence of wave pattern speed

residuals on ℓ (see Figure 4.5) offers a preliminary indication that Saturn does not

experience strong differential rotation as a function of radius within the volume sampled

by the ℓ ≥ 4 f–modes considered in this analysis, although we emphasize that the

inclusion of higher order rotation corrections is necessary to confirm this.

The modes identified here also contain four instances of a pair of modes be-

longing to the same multiplet, i.e., a pair described by the same angular degree ℓ but

different azimuthal order m. This carries significance for the prospect of deducing Sat-

urn’s rotation profile from the frequency splitting within each multiplet, although the

important centrifugal forces and ellipticity due to Saturn’s rapid rotation complicates

the picture compared to the first-order rotation kernels commonly applied to helio-

seismology (Thompson et al. 2003) and asteroseismology (e.g., Beck et al. 2012). The

frequency offsets that remain between modes with the same ℓ but different ℓ−m may

point to a latitude-dependent spin frequency, although the manner in which this would

fit in with a radius-independent spin frequency is unclear. Quantitative constraints on
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differential rotation via the f–modes awaits future work.

4.8 Conclusions

We have presented new Saturn interior models and used them to predict the

frequency spectrum of Saturn’s nonradial acoustic oscillations. Comparison with waves

observed in Saturn’s C ring through Cassini VIMS stellar occultations reveals that the

majority of these waves that are driven at frequencies higher than the ring mean motion

are driven by Saturn’s fundamental acoustic modes of low to intermediate angular degree

ℓ.

The frequencies of Saturn’s f–modes probe not only its interior mass distri-

bution, but also its rotation state, especially those modes of higher ℓ. We used the

frequencies of the observed wave patterns to make a seismological estimate of Saturn’s

rotation period assuming that it rotates rigidly. Using these optimized models, we

proposed that small but significant residual signal in the frequencies of the observed

waves as a function of ℓ suggests that Saturn’s outer envelope may rotate differentially,

although we are unable to draw quantitative conclusions given the accuracy with which

the present theory accounts for rotation in predicting the f–mode frequencies.

Saturn ring seismology is an interesting complement to global helioseismology,

ground-based Jovian seismology, and asteroseismology of solar-type oscillators. Because

the rings are coupled to the oscillations purely by gravity, they are fundamentally sen-

sitive to the modes without nodes in the density perturbation as a function of radius,

and the observation of modes from ℓ = 2 to ℓ ∼ 15 stands in contrast with helioseismol-
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ogy where the vast majority of detected modes are acoustic overtones (p–modes) and

f–modes only emerge for ℓ ≳ 100 (e.g., Larson & Schou 2008). Likewise ground-based

Jovian seismology accesses the mHz-range p–modes and Saturn ring seismology fills in

the picture for frequencies down to ∼ 100 µHz. Because of their point-source nature,

main sequence and red giant stars with CoRoT and Kepler asteroseismology means that

typically only dipole (ℓ = 1) or quadrupole (ℓ = 2) modes are observable because of

geometric cancellation for modes of higher ℓ (Chaplin & Miglio 2013). In contrast, the

proximity of the C and D rings to Saturn renders them generally sensitive also to higher

ℓ so long as the modes exhibit the correct asymmetries. We finally reiterate that Saturn

is a rapid rotator (ΩS/σ0 ∼ 0.4), more in line with pulsating stars on the upper main

sequence (Soufi et al. 1998) than with stars with CoRoT and Kepler asteroseismology,

and to our knowledge this is the most complete set of modes characterized to date for

such a rapidly rotating hydrostatic fluid object.

This work buttresses the decades-old hypothesis (Stevenson 1982) that Sat-

urn’s ordered ring system acts as a sensitive seismograph for the planet’s normal mode

oscillations. The set of Saturnian waves detected in the C ring so far thus provide impor-

tant contraints on Saturn’s interior that are generally independent from those offered by

the static gravity field. Future interior modeling of the solar system giants will benefit

from joint retrieval on the gravity harmonics and normal mode eigenfrequencies.
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Chapter 5

Summary and Future Directions

5.1 Summary

This thesis examined the structure and long-term evolution of Jupiter and

Saturn. Chapter 2 addressed hydrogen-helium immiscibility as it applies to the thermal

evolution of Jupiter, applying a Bayesian method to probabilistically estimate (i) the

uncertain temperature of the true hydrogen-helium phase transition, which is tightly

constrained by the observed helium depletion in Jupiter’s atmosphere, and (ii) to what

degree if any Jupiter’s helium gradient must suppress convection in order to explain

the planet’s observed heat flow. Chapter 3 incorporated new observational and physical

inputs and extended this technique to include Saturn as well, providing a model that

reconciles the thermal evolution of Jupiter and Saturn simultaneously. These results

represent the first self-consistent explanation for both planets’ present-day heat flow

in the context of helium rain, demonstrating that neither metallicity gradients nor

superadiabatic interiors need be invoked to obtain satisfactory solutions for the cooling
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of the gas giants. These models predict Saturn’s atmospheric helium mass fraction

(relative to hydrogen and helium) to be Y = 0.12 ± 0.01 corresponding to a He/H2

mixing ratio 0.066± 0.006.

Chapter 4 endeavored to interpret a very different dataset, applying models

for the static structure of Saturn in order to understand the wealth of new seismic con-

straints obtained by Cassini observations of waves in the rings. Apart from a minority

of special cases that will be discussed below, these waves proved to have frequencies and

azimuthal wavenumbers in excellent agreement with the fundamental (f–)mode oscilla-

tions supported by these Saturn models, confirming the prediction by Marley & Porco

(1993) that these Saturnian oscillations resonate with orbits in the C ring. Doppler and

Coriolis effects render these frequencies extremely sensitive to Saturn’s rotation, allow-

ing a new seismological measurement of Saturn’s bulk spin period as 10h33m38s
+1m52s
−1m19s.

This result brings a new line of evidence in support of the idea that the longer peri-

ods evident in Saturn’s kilometric radiation do not in fact track the planet’s interior

rotation. This work highlights the value of the unique “Kronoseismology” dataset, the

interpretation of which has only just begun.

5.2 Future directions

The work in this thesis touches on a number of unresolved questions that will

be addressed in the coming years.
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5.2.1 A stable stratification in Saturn?

Chapter 4 offered specific f–mode interpretations for 14 of the 21 “fast” C ring

waves reported in the literature so far (Hedman & Nicholson 2013, 2014; French et al.

2016, 2019; Hedman et al. 2019). The remainder are waves with low azimuthal order

(m = 2–3) that manifest in clusters of waves with a single value of m but with finely split

frequencies—a behavior totally uncharacteristic of f–modes that suggests an origin in

a more complex oscillation within Saturn. Fuller (2014) demonstrated that the earliest

detected among these waves (not incidentally some of the strongest) could be understood

as resonances with mixed modes inside Saturn. In this scenario the modes responsible

for the peculiar ring waves are in fact mixed modes caused by avoided crossings between

the f–modes and internal gravity (g–)modes, similar to mixed modes in red giant stars

(Chaplin & Miglio 2013) but enhanced by Saturn’s rapid rotation (Fuller et al. 2014).

The presence of g–modes in Saturn is profound because these require an in-

terior that is at least partially stably stratified and thus non-adiabatic, a possibility

excluded by the traditional assumption of the interior as fully convective. In reality

stable stratifications may be a general feature of giant planet interiors given the possi-

bilities of core erosion (Guillot et al. 2004; Wilson & Militzer 2012b,a), the concurrent

accretion of solids with gas during core accretion (Helled & Stevenson 2017), and the

helium phase separation (Stevenson & Salpeter 1977b) that has been studied at length

here. In fact, recent work has argued that Saturn’s unexpectedly high luminosity can

be explained by a strongly stably stratified interior, such as could be established by a

primordial metallicity gradient (Leconte & Chabrier 2013b). Chapter 3 of this work
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demonstrated on the contrary that adiabatic, or else only weakly superadiabatic, inte-

riors can also provide satisfactory solutions for Saturn when helium rain is accounted

for. If the conclusion of Fuller (2014) is correct then the mixed-mode seismology un-

ambiguously rules out such a fully adiabatic interior, and models for Saturn’s thermal

evolution and internal structure must be generalized to address nontrivial metallicity

distributions and hydrogen-helium immiscibility both.

Beyond the mere existence of f–g mixed modes in Saturn, their actual fre-

quencies are powerful quantitative constraints for the deep interior. The frequencies

of g–modes are dictated by the location and strength of the stable stratification via

the magnitude of the buoyancy frequency N and the radial extent of the region where

N2 > 0. The frequencies of the seven known m = 2 and m = 3 waves that appear

to be driven by Saturnian mixed modes may therefore offer a singular opportunity to

ascertain the physical origin of Saturn’s deep stable stratification because the profile

of N expected as a result of, say, helium rain is different from that expected for an

eroded core. While a simplistic model developed by Fuller (2014) demonstrated proof

of concept, no realistic interior model has incorporated these new constraints. While the

interpretation of these frequencies is somewhat more involved than the interpretation of

the low-order zonal gravity harmonics usually used to constrain Saturn’s deep interior,

in the long run they may be more informative.

5.2.2 Saturn’s seismological rotation

Even putting aside Saturn’s mixed modes at m = 2–3, the 14 waves interpreted

in Chapter 4 have more to say. The rigid rotation assumption of the models therein is
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a fair assumption for the conductive metallic interior (Liu et al. 2008; Cao & Stevenson

2017) but almost certainly an oversimplification for the molecular hydrogen envelope

above, especially in light of the conclusions of Iess et al. (2019) based on Cassini Grand

Finale gravity field measurements. While rigid models yielded a satisfactory fit to the

ensemble of wave frequencies corresponding to f–modes, the best fit betrays small but

potentially significant residuals (Figure 4.5) that may contain the signature of differen-

tial rotation in the interior. However, these models treated rotation using a perturbation

theory accurate only to second order in Saturn’s spin frequency, precluding any categor-

ical statement about Saturn’s differential rotation. A theory more accurately treating

effects associated with Saturn’s rapid rotation, be it through a higher-order pertur-

bation theory (e.g., Karami 2008) or through non-perturbative methods (e.g., Mirouh

et al. 2018), will offer either a confirmation of the deep differential rotation inferred by

Iess et al. (2019) or an indication that a different profile is required.

5.2.3 Excitation of gas giant oscillations

The mechanism or mechanisms responsible for exciting gas giant oscillations

to observable levels remains unsolved. Stochastic solar-like excitation by turbulent con-

vection fails to explain the ≳ 10 cm displacement amplitude modes that ring seismology

suggests in Saturn and ground-based seismology suggests in Jupiter (Gaulme et al.

2011). Recent theoretical efforts have explored driving by an opacity mechanism (Ded-

erick & Jackiewicz 2017), moist convection (Dederick et al. 2018; Markham & Stevenson

2018), and giant impacts (Wu & Lithwick 2019). Finding that water storms are energet-

ically insignificant for driving the Jovian oscillations reported by Gaulme et al. (2011),
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Markham & Stevenson posited that deeper storms associated with silicate condensation

could be viable, although no obvious means exists for testing that scenario. Wu &

Lithwick argued that in the case of Saturn, the leading sources of damping for observed

f–modes are the very ring waves that reveal their existence in the first place. In this

case the theory describing the driving of spiral density waves at Lindblad resonances

(Goldreich & Tremaine 1979) straightforwardly predicts their mode lifetimes. These

lifetimes may be of order 104–107 yr for modes spanning ℓ = 2–10, long enough that

their lifetimes span the expectation for impacts by bodies whose sizes span 8–80 km.

Such large impacts appear to yield a scaling that naturally explains Saturn’s trend of

increasing f–mode energy with increasing ℓ ≳ 5, but fail to explain the major secondary

peak in mode energy at ℓ ≤ 4. These large amplitudes at low ℓ suggest a missing ex-

citation mechanism—weaker damping seems unlikely because the ring wave damping

is well understood—the nature of which remains a mystery. Theoretical work on this

problem may need to account for the fact that these are the same modes that are af-

fected by mode mixing, although at first glance that seems likely to only enhance their

dissipation.

An important implication of the model advanced by Wu & Lithwick is that

given the stochastic nature of forcing by giant impacts—both in terms of timing of

impulses and in terms of impact angle—f– and p–modes with a wide variety of angular

structure (ℓ and m) should be excited. The vast majority of these modes in Saturn

would not satisfy resonances with ring orbits and hence would not suffer this resonant

dissipation. Indeed in Jupiter, whose past included larger, more frequent impacts, there

156



is no significant ring system to speak of. Thus unless all of these modes experience

some source of damping that has not been identified, Jupiter and Saturn should both be

ringing quite resoundingly. Wu & Lithwick showed that the corresponding modes may

be detectable, with a gravity signal dominated by the f–modes and a radial velocity

signal dominated by the p–modes. In particular the potential perturbation expected

for the Jupiter’s f–modes is marginally within the Juno gravity sensitivity for odd

ℓ, a possibility already considered by Durante et al. (2017) but in need of revisiting

given these dramatically larger estimates for mode amplitudes. Likewise for Saturn, the

proximal orbits by Cassini have already evinced a complex gravitational potential that

has been challenging to interpret (Iess et al. 2019), and future work should determine

whether strong f–modes otherwise concealed from view are playing a part.

5.2.4 Stable stratifications and jovian dynamos

The question of stable stratifications in the jovian interiors if of critical impor-

tance from the perspective of their dynamos. Jupiter shows a strong, complex external

magnetic field in line with expectations for a field supported by turbulent convection

in the metallic interior. Saturn, on the other hand, shows a weak field that is curi-

ously almost perfectly azimuthally symmetric, with recent measurements from Cassini

quoting an upper bound on the overall tilt of Saturn’s magnetic dipole moment of mere

arcseconds (Dougherty et al. 2018). Following Cowling (1933) the deep magnetic field

certainly has a more complicated structure, and the common feature of the models ex-

plaining the surprisingly restrained external field (Stevenson 1982b; Stanley 2010; Cao

et al. 2012) is an appeal to a stable stratification outside an inner, electrically con-
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ducting, fully convective dynamo generation region. The stably stratified layer could

support differential flows that tend to attenuate the non-axisymmetric components of

the magnetic field, giving rise to the highly ordered field observed outside the planet.

This picture for Saturn’s internal structure is generally different from those considered

so far to interpret Saturn’s thermal evolution (Fortney & Hubbard 2003 and Chap-

ters 2 and 3 of this dissertation, or the quite different models of Leconte & Chabrier

2013b or Vazan et al. 2016a), oscillations (Fuller 2014 and Chapter 4 of this work),

and static gravity field (Nettelmann et al. 2013; Iess et al. 2019). Different datasets,

when taken piecemeal, inspire fundamentally different interior models, an idea demon-

strated schematically for Saturn in Figure 5.1. It remains a longer-term goal to bring

the full wealth of independent magnetic, gravitational, and seismic information to bear

simultaneously on our understanding of Saturn’s complicated interior.
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Thermal evolution:

Helium rain
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Figure 5.1: Possible interior structures for Saturn motivated by disparate datasets. The
most fundamental difference among these models is their prediction for the location and
extent of Saturn’s stable stratification, if one exists.
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Appendix A

Potential perturbations from

nonradial oscillations

The density perturbations associated with nonradial planet oscillations gener-

ally lead to gravitational perturbations felt outside the planet. These perturbations can

be understood as time-dependent components to the usual zonal and tesseral gravity

harmonics, and these are derived here following Marley & Porco (1993).

As in the standard harmonic expansion for the static gravitational potential

outside an oblate planet (Zharkov & Trubitsyn 1978), the time-dependent part of the

potential arising from nonradial planet oscillations can be expanded as

Φ′(t) =
GM

r

∞∑
n=0

{
−

∞∑
ℓ=2

(a
r

)ℓ
J ′
ℓnPℓ(cos θ)

+

∞∑
ℓ=2

ℓ∑
m=−ℓ

(a
r

)ℓ
Pm
ℓ (cos θ)

[
C ′
ℓmn cosmφ+ S′

ℓmn sinmφ
]}

.

(A.1)
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The coefficients J ′
ℓn, C ′

ℓn and S′
ℓn are analogous to the usual gravity harmonics, but with

the background density replaced by the Eulerian density perturbation ρ′(r, t) due to the

oscillation in the ℓmn mode:

MaℓJ ′
ℓn = −

∫
ρ′ℓmn(r, t) r

ℓPℓ(cos θ) dτ,

Maℓ

 C ′
ℓmn

S′
ℓmn

 =
2(ℓ−m)!

(ℓ+m)!

∫
ρ′ℓmn(r, t) r

ℓPm
ℓ (cos θ)

 cosmφ

sinmφ

 dτ,

(A.2)

where dτ = r2 sin θ dθ dφ dr is the volume element and the integrals are carried out over

the volume of the planet. Given that our solutions for the density perturbation take

the form

ρ′ℓmn(r, t) = Y m
ℓ (θ, φ)ρ′ℓn(r)e

−iσℓmnt

= c0P
m
ℓ (cos θ)ρ′ℓn(r)e

i(mφ−σℓmnt),

(A.3)

where

c0 ≡ (−1)
m+|m|

2

[
2ℓ+ 1

4π

(ℓ− |m|)!
(ℓ+ |m|)!

]1/2
, (A.4)
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the integrals in Equation A.2 are separable:

MaℓJ ′
ℓ = −c0e

−iσt

∫ 2π

0
eimφ dφ

×
∫ π

0
[Pℓ(cos θ)]

2 sin θ dθ

∫ a

0
ρ′nℓ(r) r

ℓ+2 dr (A.5)

Maℓ

 C ′
ℓm

S′
ℓm

 =
2(ℓ−m)!

(ℓ+m)!
c0e

−iσt

∫ 2π

0
eimφ

 cosmφ

sinmφ

 dφ

×
∫ π

0
[Pm

ℓ (cos θ)]2 sin θ dθ

∫ a

0
ρ′nℓ(r) r

ℓ+2 dr. (A.6)

Notice from the symmetric integrand over azimuth that the J ′
ℓ only have contributions

from axisymmetric (m = 0) modes, while the C ′
ℓm and S′

ℓm only have contributions from

nonaxisymmetric (m ̸= 0) modes. Using the orthogonality of the associated Legendre

polynomials

∫ π

0
Pm
ℓ (cos θ)Pm′

ℓ′ (cos θ) sin θ dθ =

∫ 1

−1
Pm
ℓ (µ)Pm′

ℓ′ (µ) dµ =
2δℓℓ′δmm′

(2ℓ+ 1)

(ℓ+m)!

(ℓ−m)!
, (A.7)

Equations A.5 and A.6 reduce to

MaℓJ ′
ℓ = −

(
4π

2ℓ+ 1

)1/2

e−iσℓmnt

∫ a

0
ρ′ℓn(r) r

ℓ+2 dr, (A.8)

MaℓC ′
ℓm = (−1)

m+|m|
2

[
4π

(2ℓ+ 1)

(ℓ− |m|)!
(ℓ+ |m|)!

]1/2
e−iσℓmnt

∫ a

0
ρ′ℓn(r) r

ℓ+2 dr, (A.9)

S′
ℓm = iC ′

ℓm. (A.10)

The coefficients Sℓm are identical to the Cℓm up to a phase offset and can thus be

ignored. These expressions for the coefficients J ′
ℓ and C ′

ℓm can be substituted into the
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expansion A.1 to write the ℓmn component of the external potential perturbation as

Φ′
ℓmn(r, t) =



G

rℓ+1
Pℓ(cos θ)

(
4π

2ℓ+ 1

)1/2

e−iσℓmnt

∫ a

0
ρ′ℓmn(r)r

ℓ+2 dr, m = 0,

G

rℓ+1
Pm
ℓ (cos θ)(−1)

m+|m|
2

[
4π

(2ℓ+ 1)

(ℓ− |m|)!
(ℓ+ |m|)!

]1/2
e−iσℓmnt

× cosmφ
∫ a
0 ρ′ℓmn(r) r

ℓ+2 dr, m ̸= 0.

(A.11)

As above, we restrict our attention to prograde f-modes, namely those normal modes

having m > 0 and n = 0. Thus for the modes of interest the amplitude of the potential

perturbation felt at a radius r outside Saturn is simply

Φ′
ℓm0(r, θ) =

G

rℓ+1
Pm
ℓ (cos θ)(−1)

m+|m|
2

[
4π

(2ℓ+ 1)

(ℓ− |m|)!
(ℓ+ |m|)!

]1/2 ∫ a

0
ρ′ℓm0(r) r

ℓ+2 dr

(A.12)

where the time dependence and azimuthal dependence are omitted for the purposes of

estimating the magnitudes of torques on the rings.
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