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ScienceDirect
As the modal sources of data in education have shifted over the

past few decades, so too have the modeling paradigms applied

to these data. In this paper, we overview the principle foci of

modeling in the areas of standardized testing, computer

tutoring, and online courses from whence these big data have

come, and provide a rationale for their adoption in each

context. As these data become more behavioral in nature, we

argue that a shift to connectionist paradigms of modeling is

called for as well as a reaffirming of the ethical responsibilities

of big data analysis in education.
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Introduction
The primary role of modeling in education has varied as

data collection and analysis traverse the contexts of testing,

tutoring, and online instruction at scale. Each context has

brought its own unique critical foci of practice, thus form-

ing related, but distinct, constituent academic research

fields of study. The types of data produced have also dif-

fered, as a function of the context, and necessitated the

development and adoption of different modeling para-

digms. This paper offers a rationale and historical context

for these differences and is intended to serve as an entry

point for data modeling research in the adjacent fields of

psychometrics and learning analytics.

Data
In this section, we will overview many of the modal

sources of big data in education, the volume and character

of the data, and historical context in which they were

produced. Large scale standardized testing has been the
1 https://secure-media.collegeboard.org/digitalServices/pdf/sat/total-group-
2 https://www.ets.org/s/gre/pdf/snapshot_test_taker_data_2016.pdf
3 https://www.oecd.org/pisa/pisa-2015-results-in-focus.pdf
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original producer of high volume data in education. The

SAT, originally the Scholastic Aptitude Test, was created

by the not-for profit association of institutions called the

College Board and first administered to high school

seniors in 1926. The test consists of reading, writing &

language, and math sections and produced 252 million

item answer records (responses) from 1.63 million stu-

dents in 2016.1 In higher education, the Graduate Record

Examinations (GRE) test, created by Educational Test-

ing Service (ETS), was first administered in 1949 and

presently covers topics in algebra, geometry, arithmetic,

and vocabulary. The test, required by many graduate

school programs, was taken by 584 000 respondents in

AY 2015–2016,2 producing around 24 million responses.

The design objective [1] of these test providers is to craft

items for the instruments, that are their tests, such that

they reliably and accurately estimate abilities which

correlate with post-secondary performance and which

are of high relevance to college admissions offices. Stu-

dent answers to items on the test are referred to in the

field of measurement as dichotomous response data

because the answers (responses) are scored with binary

outcomes of correct or incorrect; although the GRE con-

tains three essays and the SAT contains one optional

essay which are scored on a continuous scale. These

essays are scored by one human and one algorithmic rater

[2]. If the algorithm does not agree with the human rater, a

second human rater will score the essay to break the tie.

Table 1 shows an example of this dichotomous (binary)

response data collected from standardized tests.

The large test providers are in possession of these massive

datasets which are not public and generally not shared

with outside researchers. In practice, researchers in the

field of Psychometrics most commonly use much smaller

datasets on the order of thousands of respondents. A

frequently cited source of data is Kikumi Tasuoka’s

fraction subtraction test [3], which is available by request.

Synthetically generated datasets are also of high popular-

ity in studying the properties of different approaches to

estimation [4] in the various models used to represent

ability. Aggregate results are provided by the Organiza-

tion for Economic Co-operations and Development

(OECD) for its Programme for International Student

Assessment (PISA) test administered every three years

since 2000, with 540 000 test takers across 72 participating

countries in 2015.3 Other sources of high volume data in
2016.pdf
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Table 1

Example of data collected from standardized tests. These data

are referred to as dichotomous responses because of their

binary nature. A ‘0’ represents an incorrect answer to an item

(question) and ‘1,’ a correct answer.

Student ID Item-1 Item-2 Item-3 Item-4

Janelle 0 1 1 1

Zeus 1 1 0 0

Erin 0 1 1 1
educational assessment include; the National Education

Longitudinal Study (NELS) of 1998 and 2002,4 Trends in

International Mathematics and Science Study5 (TIMSS)

run every four years, and the Measures of Effective

Teaching dataset, provisioned by the Bill & Melinda

Gates Foundation [5].

While the field of Psychometrics is primarily concerned

with the measurement of student abilities from low

periodicity summative tests, the broad field of the learn-

ing sciences, including learning analytics, has focused on

facilitating and measuring change (growth) in student

ability and has used the mechanism of computer tutoring

systems to scale instructional approaches toward that end.

The first computer tutoring systems offering automated

self-paced instruction were seen as early as 1960 [6].

Tutoring systems with more sophisticated adaptive qual-

ities began to develop through the 70s and 80s and were

branded intelligent tutoring systems [7]. These systems

were in large part inspired by the efficacy of one-on-one

human tutoring, later shown to produce learning gains up

to two grade levels, or two standard deviations above that

accomplished with traditional one-to-many classroom

instruction [8]. Whereas standardized tests, because of

their one-time summative nature, often measure large

constructs like mathematics ability, tutoring systems,

used throughout the school year, can measure finer-

grained constructs. The terminology of ‘skills’ or

‘knowledge components’ is often used in tutoring system

contexts, in place of ‘constructs.’ This granularity in

tutoring systems matches their formative instructional

design of measuring mastery of a set of skills before

allowing the student to progress to the next section in

the tutor. The legislation passed in the United States

requiring every state to have a standardized test that

students needed to pass in order to be awarded a high

school diploma (No Child Left Behind, 20016), in part,

catalyzed the development and adoption of tutoring

systems through the mechanism of federal grant funding.

One such system, supported by the National Science

Foundation’s (NSF) Science of Learning Center grants,

was an intelligent tutoring system called the Cognitive
4 https://nces.ed.gov/surveys/els2002/
5 https://nces.ed.gov/timss/
6 http://files.eric.ed.gov/fulltext/ED447608.pdf
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Tutor [9]. The Cognitive Tutor, still in operation as of

this writing, had around 600 000 students using its various

curricular systems in 2012, and in its most popular prod-

uct, Bridge to Algebra, produced 1 billion events from

students that year. These data are referred to as learner

process data because they are produced from student

engagement with material meant to facilitate learning.

These data represent students’ longitudinal interactions

with problems in the system. An example of data from an

intelligent tutoring system is shown in Table 2. These

data are similar to standardized testing data in that they

are response centric (one row per answer), but contain

other information important to characterizing and mea-

suring learning from the time series of responses. Other

features of the response include the time when the

answer was given, the skill associated with the question

being answered, and the number of times the student had

seen questions of that same skill thus far.

Other meta information about the student’s interaction

with the problem can also be included, such as if a hint was

requested. In tutoring systems, students are often able to

attempt a problem more than once but the response

recorded for the question most commonly reflects the

correctness of the answer given by the student on her first

attempt. Thus, in the Cognitive Tutor, a row can represent

all the interactions of a student with a particular problem

and can include other meta information such as the number

of total attempts made by the student to answer the

problem correctly. This format is called step-rollup in

Cognitive Tutor data as it is a summary of a student’s

interaction with each step. The word ‘step’ is used to refer

to the fine-grained questions posed in the tutor.

Researchers have enjoyed a high degree of access to data

from computer tutoring systems. The Cognitive Tutor in

particular has made de-identified step-rollup level data

publicly available. Many datasets from the Cognitive Tutor

and other computer tutors can be found on an NSF

sponsored project called DataShop.7 The largest of the

public datasets [10] was provided as the focus of a data

mining competition whereby participants were given

response data from students on the first portion of each

lesson in the tutor and were tasked with predicting the

correctness of the students’ answers in the proceeding

redacted portion of each lesson. This dataset8 contained

four separate datasets from two years of two different

tutoring products; ‘Algebra’ and ‘Bridge to Algebra,’ a

more remedial version. In total, 37.4 million student-step

events are available in this combined dataset. The

ASSISTments Platform [11] is another example of a tutor-

ing system which has been generous with its dataset

contributions to the research community. It has been

fashioned to be more teacher oriented than its
7 https://pslcdatashop.web.cmu.edu/
8 https://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp
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Table 2

Example of data from an intelligent tutoring system. One row is generated per student per response with meta information pertinent to

modeling their mastery of a skill.

Student ID Time Opportunity count Skill Response

Zeus 6/5/2017 10:01 1 Parallelogram perimeter 0

Zeus 6/5/2017 10:09 2 Parallelogram perimeter 1

Zeus 6/5/2017 10:13 1 Rectangle Area 1

Erin 6/5/2017 10:00 2 Circle Circumference 1

Erin 6/5/2017 10:05 1 Circle Area 1
predecessors, albeit less intelligent [12]. Its full 2012–2013

academic year public dataset9 comprises 6.1 million rows of

student-problem level data with additional meta informa-

tion on the exact answer the student gave, an anonymized

school and teacher ID, among other meta information.

This computer tutoring system was also supported by

funding from the federal government in a testing climate

pushing states, and their teachers, to see students well

prepared to pass their mandatory standardized state test.

Early versions of the ASSISTments Platform used previ-

ously released standardized test items from its state of

operation, Massachusetts, as its primary source of problem

content. The majority of content now in ASSISTments is

not from tests but instead generated in-house or by

teachers.

The approach of intelligent tutoring systems and their

derivates has largely been a problem-first pedagogy, hold-

ing as their primary instructional hypothesis that problem

solving, with immediate feedback and scaffolded supports,

serves as a more effective method of learning a new subject

than the relatively passive consuming of lectures and texts

[13�]. However, the human deconstruction of a task into

fine-grained components, a process called cognitive task

analysis, is an expensive one, and while this process has

seen success in its application to courses in statistics [14],

the scalability of this manual coding process to the expanse

of all subject areas in higher education is daunting. Fur-

thermore, there is an incompatibility between the prob-

lem-first approach of tutors and the current lecture-first

pedagogical approach of most post-secondary courses.

With a high number of knowledge components needed

to cover the tasks in college level curricula, the number of

assessment problems typically given in a course would

have to substantially increase. Retrofitting ITS to higher

education, at least when strictly adhering to ITS domain

model principles, seems intractable.

Forty years after intelligent tutoring systems were intro-

duced to high-schools, higher-education experienced its

own digital renaissance in the form of Massive Open

Online Courses (MOOCs) after two Stanford computer

science professors offered the first MOOC in 2012, drawing
9 https://sites.google.com/site/assistmentsdata/home/

2012-13-school-data-with-affect
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over 100 000 enrollments. After realizing the demand for

such freely accessibly, high quality instructional material,

they formed a for-profit company called Coursera. Shortly

after, a non-profit venture between Harvard and MIT,

called edX, was created to also provide high-quality, freely

accessible, online courses but with a glance toward facili-

tating research in education. MOOCs, both as instructional

resources and as the subject of research, differ from the e-

Learning and distance education movements that pro-

ceeded it in that those movements were based on the

waning hypothesis that the costs of a community college

education could be driven down through the scaling of low

cost online instruction while maintaining the same level of

instructional value. MOOCs are a presentation of univer-

sity level courses, many from prominent institutions, using

high production value user interfaces, software design, and

video lectures. A response to apparent popular demand,

MOOCs did not and still do not represent a unified

pedagogical hypothesis being tested. Likewise, MOOCs

do not share a single critical pedagogy, a reflection of their

residentially taught course inspirations, but instead tout

universal access as their primary innovation. The relevance

of MOOCs to the big data landscape is that they produced

detailed clickstream behavior of, in some cases, tens of

thousands of learners’ interactions with the various ele-

ments of a single course. The 290 courses offered by MIT

and Harvard in the first four years of edX produced

2.3 billion logged events from 4.5 million learners [15�].
Unlike intelligent tutoring systems, the events logged from

MOOCs went beyond problem solving and encompassed

video play, pause, and scrub events, page navigations,

problem answer text, and social discussion board data.

Table 3 depicts an example of these event log data.

Additionally, exported datasets10 made available to edX

university partners included learners’ optionally provided

demographic information such as age, country of origin,

gender, highest level of education, and stated motivations

for signing-up for an edX account.

Each edX University partner has access to the full event

log and demographic datasets for their courses, past and

present. The logs are updated on a daily basis. A research

data exchange (RDX) program allows participating edX
10 http://edx.readthedocs.io/projects/devdata/en/latest/

internal_data_formats/index.html
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Table 3

Example of event level data from a learner’s interactions with an online course. In the example, the learner loaded the intro course page

and then, two minutes later, began playing a video on the intro page. She paused the video after one minute then loaded the next page,

which was a quiz. She submitted her answer, ‘3.1415,’ to the first question of the quiz five minutes later, which was the correct answer.

Student ID Time Event type Resource Meta info

Janelle 6/5/2017 10:01 Load_page /lec1/intro.html –

Janelle 6/5/2017 10:03 Play_video /lec1/welcome.vid 0:00

Janelle 6/5/2017 10:04 Pause_video /lec1/welcome.vid 1:00

Janelle 6/5/2017 10:08 Load_page /lec1/quiz.html –

Janelle 6/5/2017 10:13 Answer /lec1/quizQ1 ‘3.1415’ [Correct]
partners to request de-identified data from courses of

other partners participating in the program. Coursera

has data sharing agreements only at the individual

instructor level, making institution based research more

difficult to facilitate as researchers retrieve the data from

the instructors rather than centrally through a university

data administrator contact. No event level MOOC data-

sets have been made public; however, researcher requests

for MOOC event level data under a memorandum of

understanding (MOU) is available from Stanford,11

MITx,12 and HarvardX.13 A student-course level aggre-

gated dataset was made public by MIT and Harvard [16]

summarizing learner interactions with the first 17 courses

offered by the two institutions. The dataset was heavily

de-identified with perturbations of the data made to

ensure re-identification was not possible. The bias intro-

ducing side-effects of this form of anonymization were

well documented [17] and greatly reduced the utility of

the dataset to be mined for novel inferences and correla-

tional findings.

Models
In this section, we will overview the canonical modeling

frameworks applied to each of the three modal source of

big data described in the previous section. In standard-

ized testing, the Rasch model [18] has been the corner-

stone statistical framework for estimating students’ abili-

ties and item difficulties from responses to a test, a

paradigm called Item Response Theory (IRT).

PðY ij ¼ 1jujÞ ¼ euj�bi

1 þ euj�bi
ð1Þ

As shown in Equation 1, IRT is based on a standard

logistic function, where the dependent outcome variable

Y is the dichotomous response (correct or incorrect) for a

student j on test item i conditioned on the ability u of

the student. The probability of a correct response eval-

uates to 0.50 when the ability of the student equals the

difficulty of the item bi. For example, if uj and bi are both

2, then the numerator becomes one (e0) and the
11 https://iriss.stanford.edu/carol/research
12 http://web.mit.edu/ir/mitx/
13 https://vpal.harvard.edu/access-vpal-research-data
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denominator is two, resulting in a probability of correct

of 0.50. As the difficulty or ability changes by one,

relative to one another, the probability of correct

changes approximately with percentages corresponding

to standard deviations. That is, if the student’s ability is

three greater than the difficulty of the item, the proba-

bility of correct will be 0.9526. If a student’s u were

estimated to be 3, they would be reported to be in the

top five percentile of test takers. The abilities of all test

takers are estimated after responses are collected; how-

ever, the parameters of the items are typically estimated

beforehand on smaller sample cohorts during the devel-

opment of the test. Item difficulties estimated during

test development are used to select the items that will

comprise the test to make sure the desired variety of

item difficulty is represented.

Large scale standardized tests are focused on the mea-

surement of a construct [19] at a single point in time,

known as summative assessment. In the environment of

computer tutoring systems, continuous measurement that

informs instructional decisions, known as formative assess-
ment, is called for. Longitudinally oriented models and

finder-grained decomposition of constructs are therefore

used by tutoring systems to track students’ mastery in

these constructs and adaptively guide them through

lessons. Variations on the IRT logistic model have been

introduced which consider growth with respect to the

number of problems a student has attempted of a partic-

ular skill [20,21]. The statistical framework of Bayesian

Networks, however, has been the implementation of

choice inside of the Cognitive Tutor, primarily due to

the affordances of Bayes theorem which allows for an

update to the inference of student mastery of a skill based

on new evidence, such as the correctness of the last

response to a problem of the same skill, without needing

to re-estimate model parameters.

PðKjQÞ ¼ PðQjKÞPðKÞ
PðQÞ

¼ ð1 � PðSÞÞPðLtÞ
ð1 � PðSÞÞPðLtÞ þ ð1 � PðL0ÞÞPðGÞ ð2Þ
www.sciencedirect.com
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The Bayes’ theorem equation is shown above and

assumes the positive value of all the binary variables

(Q = 1 and K = 1). On the right, is the theorem expressed

in terms of the parameters of the Bayesian Knowledge

Tracing model [22]. This expression is the updated

probability (posterior) that a student has mastered the

skill K given observation of a correct response on a

problem associated with skill K. This is the probability

that the correct answer was observed because the student

knows the skill, the compliment of the probability of slip

P(S), answering incorrectly even though the skill is

known, multiplied by the current estimate of knowledge

P(Lt) divided by that same value plus the probability that

the answer was observed because the student did not

know the skill and guessed P(G). Since students are in a

tutoring context and feedback and hints can be given

between opportunities to answer questions, growth is

assumed and represented by parameter P(T) which

increases the probability of knowledge between oppor-

tunities with P(Lt) = P(Lt�1) + (1 � P(Lt�1))P(T). For-

getting, in the canonical form of the model, is assumed

to be negligible (zero) within the short lesson segments in

which problems of a skill appears. On the very first

opportunity to answer a question of a skill, the probability

of knowledge at the previous opportunity is not known P
(L0) and so this initial prior probability value serves as a

fourth parameter to be estimated. The association of

questions to skills is conducted by subject matter experts

through a process called cognitive task analysis. A strong

assumption is made with this model that all skills are

independent of one another, therefore a different set of

parameters are learned for each skill independently from

data collected from past cohorts of students using the

tutor. Within the tutor, if the inference of P(L) is greater

than 0.95, the student is assumed to have mastered that

skill and is no longer asked to practice it in the tutor. This

dynamic prescription of practice is the primary aspect of

adaptivity in intelligent tutoring systems.

Different layers of abstraction are present in models

applied to data from testing, tutoring, and online course

contexts (Figure 1). In IRT, item responses are input and

used directly to estimate ability. In intelligent tutoring
Figure 1

Model abstraction layers for Item Response Theory, Bayesian Knowledge T

learner process data from online courses.

www.sciencedirect.com 
models, the question responses go through a look-up layer

where the question is associated with a skill and the data

point then represents a response to the skill, with the item

abstracted away. In this case, this look-up, or Q-matrix, is

hand specified but can be iteratively refined from data

[21]. In an online course context, the available input

includes event stream (or clickstream) data which fea-

tures inputs of mixed type. The output can be any logged

outcome, such as certification in the course [23], stop-out

[24,25] or predicting what action the learner is going to

take next in the course [26�]. In this case, behavior is the

input and the output. What is difficult about this scenario

is that theoretical foundations, and thus intuitions for

explaining behavior, are often lacking which subject

matter experts need to bring to bear to construct effective

features. This lack of intuition about what governs the

behaviors of students in MOOCs is in part what has

fueled the numerous approaches to visualize MOOC data

in order to better understand it [27]. Instead of hand

engineering features a priori, neural networks, which have

distributed featurization at the core of their generalizing

principle, can be used in place to induce features. Fea-

turization approaches have been demonstrated promi-

nently outside of education in autoencoders used to re-

construct the bag of words of a document from a lower

dimensional featurization of the same document [28], and

more recently in word2vec approaches which featurize

words with respect to the contexts they appear in [29].

These simpler, linear representation learning models

embed inputs into a vector space which can be interro-

gated to de-bias sexist language in large text corpora [30]

or to reason about the compositionality of academic

departments [31��] and problems in a tutoring system

[32]. While interpretation of neural network hidden states

is an area of continuing research, dimensionality reduc-

tion techniques which lend themselves to visually surfac-

ing regularities in their representations [33] have opened

up their inner workings to productive scrutiny [34]. Still,

the application of neural networks does not guarantee

superior results when compared to classical approaches

in classical data scenarios. Piech et al.’s [35��] application

of neural networks to the knowledge tracing scenario

demonstrated the pre-requisite inference utility of
racing, and representation learning (neural network) models applied to

Current Opinion in Behavioral Sciences 2017, 18:107–113
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modeling all skills at once, unlike BKT which treats them

as independent; however, its predictive performance was

shown to be on par with modern extensions of the BKT

model [36�]. Connectionist models most distinguish

themselves when applied to more complex data from less

traditionally structured behavioral contexts.

Synthesizing research

Scarcity of scholarly interaction between model research-

ers in the fields of psychometrics and learning analytics is

in part attributable to differences in disciplinary training.

Asserting distributional assumptions that improve model

fit and reliability of testing instruments is in the bailiwick

of the statistician, which makes up the majority back-

ground of researchers in Psychometrics, while the com-

puter scientist and engineer is at home developing adap-

tive learning technologies with models validated through

predictive generalization. The cognitive scientist finds

residence in either area. There is evidence, however, of

the two fields becoming more interested in aspects of

modeling long studied by the other. Psychometric

research is increasingly interested in developing longitu-

dinal models of fine-grained constructs [37,38], while

learning analytics is increasingly interested in the validity

and reliability of their models, studying their convergence

properties [39,40] and the metrics and criterion used to

arrive at the intended measure [41]. A shared research

pursuit may be on the horizon. Standardized testing

fatigue is setting in, politically, with students being tested

an average of 20–25 hours per year in the US [42]. Learner

process data may be turned to as the source for continuous

assessment [43] which will require both statistical assur-

ances of reliability and algorithmic capabilities for extract-

ing information from complex behavioral data.

Privacy implications

It is the nature of privacy for its essence and boundaries to

be questioned and debated [44]. With the amount of

information contained in behavioral data, the privacy

implications of its analysis in educational contexts is

similarly contested and at times met with hesitation

and uncertainty by organizations and government [45].

US law has provided little in the way of guidance on how

to proceed, inheriting an antiquated concept of what

constitutes the protected student ‘record’ and lacking

due caution with respect to publicly subjecting de-iden-

tified data to the contemporary dangers of re-identifica-

tion [46]. The current practice of the educational analyt-

ics community has been to rationally weigh the tangible

harms of big data analysis with the benefits [47], acknowl-

edging an opportunity cost to not innovating with data in

the learning sciences and in practice [48]. The debate

around big data analysis can be analogized to ethnogra-

phy. Should the observer stay far enough away so as not to

affect the behaviors of the observed or is authentic

collaboration and engagement with the minutia of their

everyday lives a necessity to the understanding needed to
Current Opinion in Behavioral Sciences 2017, 18:107–113 
shape practices for the better [49]? The answer will likely

hinge on the degree to which these activities are per-

ceived as serving the interests of the learner.
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