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Understanding inertial instability on the f-plane with complete Coriolis force
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Laboratory of Dynamical Meteorology,
University P. and M. Curie and Ecole Normale Supérieure, Paris, France

zeitlin@lmd.ens.fr

Abstract
We present analytical results allowing to understand the influence of usually neglected
vertical component of the Coriolis force and of the vertical velocity contribution in its
horizontal component upon wave-trapping in shear flows in stratified fluid, and upon
related inertial instability.

1 Introduction

It is known (e.g. Gerkema and Shrira (2005)) that inclusion of the so-called non-traditional
(NT) terms, i.e. of the usually neglected vertical component of the Coriolis force and of
the vertical velocity contribution to its horizontal component, in the primitive equations
for the atmosphere and the ocean changes the properties of near-inertial waves. In the
recent paper (Tort et al., 2016) it was shown, on the basis of numerical solutions of the
linearized primitive equations, that properties of sub-inertial waves trapped in the veloc-
ity shear change as well. As trapped waves are at the origin of the inertial instability
(Zeitlin, 2008), the characteristics of the latter change too, with increasing growth rates
and shifting instability thresholds, cf. Tort et al. (2016). In the present contribution,
without having recourse to numerical analysis, we give analytic arguments allowing to
understand, qualitatively and quantitatively, the changes induced by the NT effects in
trapped modes and inertial instability. We first analyze in sect. 2 the NT inertial in-
stability in the two-layer rotating shallow water model, following the lines of analogous
treatment of traditional inertial instability by Zeitlin (2008), and then consider continu-
ously stratified shear flows, following the lines of Plougonven and Zeitlin (2009), in sect
3. Section 4 contains conclusions and a discussion.

2 Inertial instability in two-layer rotating shallow water model with a rigid lid on the
non-traditional f - plane

Our starting point is non-dissipative primitive equations in the Boussinesq approximation
on the tangent f -plane with full Coriolis force

(∂t + u∂x + v∂y + w∂z)u− fv + Fw + ∂xΦ = 0, (1)

(∂t + u∂x + v∂y + w∂z) v + fu+ ∂yΦ = 0, (2)

(∂t + u∂x + v∂y + w∂z) ρ = 0, (3)

δNH (∂t + u∂x + v∂y + w∂z)w + ∂zΦ + b− Fu = 0, (4)

∂xu+ ∂yv + ∂zw = 0, (5)

where x and y are zonal and meridional coordinates, u and v are corresponding compo-
nents of velocity, ρ = ρ0 + σ(x, y, z, t) is density and b = g σ

ρ0
is buoyancy. Φ = P

ρ0
is
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geopotential, constructed from pressure P and background density ρ0. F is the ”non-
traditional” contribution to the Coriolis parameter, while the ”traditional” Coriolis pa-
rameter is f . In terms of Earth’s angular velocity Ω and latitude φ, f = 2Ω sinφ and
F = 2Ω cosφ. For convenience, following Tort et al. (2016), we included a switch δNH

which controls the (quasi-)hydrostatic approximation. It should be emphasized that the
NT terms affect the hydrostatic balance, which thus becomes ”quasi-hydrostatic” (White
and Bromley, 1995).

2.1 A sketch of the derivation of the two-layer model

Following Zeitlin (2007) we vertically integrate the horizontal momentum and continuity
equations (1), (2), (5) between two pairs of material surfaces: (z1, z2) and (z2, z3), sup-
posing uniform densities ρ1,2 in respective layers and taking z1 = 0 and z3 = const, and
use the quasi-hydrostic relation resulting from (4) at δNH = 0 in order to express geopo-
tential/pressure inside the layers in terms of the pressure at z3 and vertical position. We
arrive in this way to the following system of equations for the velocities u1,2, v1,2 and
thicknesses h1,2 of the respective layers:

d2u2
dt
− fv2 − F

(
1

2
∂yv2h2 − ∂x(u2h2)

)
= − 1

ρ2
∂xπ, (6)

d2v2
dt

+ fu2 −
F

2
∂yu2h2 = − 1

ρ2
∂yπ, (7)

d1u1
dt
− fv1 −

F

2
(∂yv1h1 + ∂x (h2u1)) = − 1

ρ1
∂xπ − g

ρ1 − ρ2
ρ1

∂xh1 + F
ρ2
ρ1
∂x (h2u2) ,(8)

d1v1
dt

+ fu1 −
F

2
(∂y(u1h1) + ∂yh1u1) = − 1

ρ1
∂yπ − g

ρ1 − ρ2
ρ1

∂yh1 + F
ρ2
ρ1
∂y (h2u2) ,(9)

∂th1,2 + ∂x (u1,2h1,2) + ∂y (v1,2h1,2) = 0, h1 + h2 = H0 = const. (10)

Here d1,2
dt

= ∂t + u1,2∂x + v1,2∂y are Lagrangian derivatives in respective layers, and π
denotes the pressure under the rigid lid at z = z3. These equations are the rigid-lid
analog, which is much simpler, of the two-layer rotating shallow water equations with full
Coriolis force and free upper surface derived by Stewart and Dellar (2010) and used by
Tort et al. (2016).

2.2 Background flow and 1.5 dimensional reduction

As follows from (7), (9), stationary zonal flow solutions obey the following equations,
which reflect modifications of the geostrophic balnce by NT terms:

fu2 = − 1

ρ2
∂xπ +

F

2
∂yu2(H − h1), (11)

fu1 = − 1

ρ1
∂yπ − g

ρ1 − ρ2
ρ1

∂yh1 + F

[
h1∂yu1

2
+ ∂yh1u1 +

ρ2
ρ1
∂y ((H − h1)u2)

]
. (12)

We are interested in the influence of the NT effects upon inertial instability, which was
shown to be stronger at weak stratifications (Tort et al., 2016). Therefore, we will limit
ourselves by frequently used in oceanography approximation where two densities are close
ρ1 ≈ ρ2, and their difference is significant only in the reduced gravity term g ρ1−ρ2

ρ1
=

g′. We will be considering in what follows symmetric with respect to translations in x
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configurations, like the stationary flows (11), (12). The translational symmetry leads to
the ”1.5 dimensional” reduction of (6) - (10):

d2u2
dt
− fv2 −

F

2
∂yv2h2 = 0, (13)

d2v2
dt

+ fu2 −
F

2
∂yu2h2 = − 1

ρ2
∂yπ, (14)

d1u1
dt
− fv1 −

F

2
∂yv1h1 = 0, (15)

d1v1
dt

+ fu1 −
F

2
(∂y(u1h1) + ∂yh1u1) = − 1

ρ1
∂yπ − g

ρ1 − ρ2
ρ1

∂yh1 + F
ρ2
ρ1
∂y (h2u2) ,(16)

∂th1,2 + ∂y (v1,2h1,2) = 0, h1 + h2 = H0 = const. (17)

2.3 Linearized equations and resulting eigenfrequency problem

Linearization of the 1.5 dimensional equations (13) - (17) about ”barotropic” solutions
with h1 = H1 = const, h2 = H2 = const, and u1,2 = U1,2(y) gives

∂tu2 + (U ′2 − f)v2 −
F

2
∂yv2H2 = 0, (18)

∂tv2 + fu2 −
F

2
∂yu2H2 +

F

2
U ′2η = −∂yφ, (19)

∂tu1 + (U ′1 − f)v1 −
F

2
∂yv1H1 = 0, (20)

∂v1 + fu1 −
F

2
(∂yu1H1 + U ′1η + 2∂yηU1) = −∂yφ− g′∂yη + F∂y (−ηU2 +H2∂yu2) ,(21)

±∂tη1,2 + ∂yv1,2H1,2 = 0, (22)

where we used the weak stratification approximation, and introduced the geopotential
φ = π/ρ, the perturbation of the interface position η, and the prime notation for ordinary
derivatives. Equations (22) suggest introduction of a new variable V = v1H1 = −v2H2.
In terms of this variable we get:

∂tV + fH1u1 = −H1∂yφ− g′H1∂yη

+ FH1

[
H1

2
∂yu1 +

U ′1
2
η + U1∂yη +H2∂yu2 − ∂y (U2η)

]
, (23)

−∂tV + fH2u2 = −H2∂yφ+ FH1

(
H2

2
∂yu2 −

U ′2
2
η

)
, (24)

H1∂tu1 = − (U ′1 − f)V +
F

2
H1∂yV, (25)

H2∂tu2 = + (U ′2 − f)V − F

2
H2∂yV. (26)

The variable η can be eliminated from the equations (23), (24) by time-differentiation
and the use of (22), and then the variables u1 and u2 can be expressed in terms of
V using (25), (26). Finally, geopotential can be eliminated by suitably combining the
remaining equations. We arrive in this way to a single equation for V . The whole
procedure follows that of Zeitlin (2008) for traditional approximation, but new terms
appear in the final equation due to NT contributions. We make a Fourier transformation
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in time: V (t, y) = eiωtV̂ (ω, y) + c.c and arrive to a second-order ordinary differential
equation for V̂ , which we write down in the case H1 = H2 = H, for simplicity:[

−2ω2 + f(f − U ′1(y)) + f(f − U ′2(y)) +
FH

2
(U ′′1 (y) + U ′′2 (y))

]
V̂ (y) +

−HFU ′1(y)V̂ ′(y)−H
[
g′ + FH(U2(y)− U1(y)) +

F 2H2

2

]
V̂ ′′(y) = 0. (27)

2.4 Trapped modes and inertial instability

We introduce the length scale L, the time scale f−1, the velocity scale U and non-
dimensional parameters: Rossby numberRo = U/ (fL), Burger numberBu = g′H/ (f 2L2),
and δNT = FH

fL
and write down the equation (27) in non-dimensional form:[

2(1− ω2)−Ro (U ′1(y)) + U ′2(y)) +Ro δNT
(U ′′1 (y) + U ′′2 (y))

2

]
V̂ (y) +

δNTRoU
′
1(y)V̂ ′(y)−

[
Bu+ δNT ((U2(y)− U1(y))) +

δ2NT

2

]
V̂ ′′(y) = 0. (28)

We can eliminate the term with the first derivative by the transformation of the dependent
variable:

V̂ → V̂ e

δNTRo
U′1

2

[
Bu+δNT(U2−U1)+

δ2
NT
2

]
. (29)

We should recall that, by construction, in the rotating shallow water model the vertical
scale H is much smaller than the typical horizontal scale L, and hence the parameter δNT

is necessarily small. We will write down the equation resulting from the substitution (29)
into (28) in the leading order in δNT:

[Bu+ δNT ((U2(y)− U1(y)))] V̂ ′′ +[
2ω2 −

[
2−Ro (U ′1(y)) + U ′2(y)) +Ro δNT

(U ′′1 (y) + U ′′2 (y))

2

]]
V̂ = 0. (30)

This equation is a Scrödinger equation with energy 2ω2 and ”potential” 2−Ro (U ′1 + U ′2)+

Ro δNT
(U ′′1 +U ′′2 )

2
. Under traditional approximation, when δNT → 0, U1 = U2 = U , cf (11),

(12) at constant h1. Equation (30) then has negative eigenvalues ω2 for strong enough
anticyclonic ( U ′(y) > 0) shears of the background flow (Zeitlin, 2008), and hence gives an
instability of standing modes trapped in the minimum of the potential. In the presence
of NT effects the background flow acquires a vertical shear. As follows from (11), (12) at
constant h1, in non-dimensional terms

U1 = U + δNT (U + U ′/2) , U2 = U + δNTU
′/2, (31)

and in the leading order in δNT (30) gives

Bu

2
V̂ ′′(y) +

[
ω2 − (1−Ro(1 + δNT)U ′(y))

]
V̂ (y) = 0. (32)

Therefore, at small δNT the influence of NT effects to the leading order consists just in
deepening the potential by rescaling its amplitude, and hence in diminishing eigenfrequen-
cies squared, which leads to increase of the growth rates of the instability. At the same
time, the eigensolutions V̂ (y) are distorted with respect to the traditional approximation,
according to (29).
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3 Inertial instability in continuously stratified fluid on the non-traditional f - plane

3.1 Scaling, parameters and background flow

In this section we are back to the full primitive equations (1) - (5). For simplicity,
we consider a rest state with a stable linear stratification ρs and constant Brünt-Väısäıla

frequency N =
√
−g ∂zρs

ρ0
. We introduce a horizontal velocity scale U , a horizontal scale L,

a geopotential scale φ0 = gH, and time scale f−1. The dimensionless parameters are then
the Rossby number Ro = U/ (fL), the baroclinic Burger number Bu = (NH/ (fL))2, and
a parameter γ = F/f measuring the magnitude of NT terms. As in Tort et al. (2016),
we consider a reference barotropic balanced shear flow (Φref (y, z) , uref (y, z)) with the
background vertical structure defined by (ρs (z) ,Φs (y, z)). This flow verify the equations:

furef + ∂yΦref = 0, ∂zΦref + b0 − FUref = 0, (33)

where b0 = gρs/ρ0. By cross-differentiation we get:

(f∂z + F∂y)uref = 0, (34)

Hence, the velocity of the barotropic flow is a function of both meridional and vertical co-
ordinates which, in turn, means that linearization about such profile gives a non-separable
problem. However, using the crucial observation that the flow velocity is a function of
”slanted” meridional coordinate ξ = y − (F/f)z only: uref (y, z) = U (ξ), and making
a change of variable y → ξ, we get ∂yΦref = ∂ξΦ, ∂zΦref = ∂zΦ0 (z) − F/f∂ξΦ, where
Φref (y, z) = Φ (ξ) + Φs (z). Using (33) we arrive to the standard thermal wind balance in
terms of (ξ, z):

fU + ∂ξΦ = 0, ∂zΦ0 + b0 = 0. (35)

3.2 Reduction to 2.5 dimensions, linearization, and resulting eigenfrequency problem

As in section 3, we are interested in a zonally symmetric problem where all dependence
on x is removed in (1) - (5). We thus get a ”2.5 dimensional” version of equations (1) -
(5) which, after linearization about the flow given by (35) become:

∂tu− (f − U ′(ξ))v̂ = 0, (36)

∂t (v̂ + γw) + f ′ + ∂ξφ = 0, (37)

∂tb−N2w = 0, (38)

δNH∂tw + (∂z − γ∂ξ)φ+ b− Fu = 0, (39)

∂ξv̂ + ∂zw = 0, (40)

where all dependent variables represent small perturbations of the reference state, and
we introduced a new variable v̂ = v − γw. By resolving the incompressibility constraint
(40) with the help of streamfunction ψ(ξ, z, t): v̂ = −∂zψ, w = ∂ξψ and eliminating all
variables in favor of ψ we get:

∂4zzttψ +
(
δNH + γ2

)
∂4ξξttψ − 2γ∂4ξzttψ + f (f − U ′(ξ)) ∂2zzψ +N2∂2ξξψ = 0. (41)

Under the above-described scaling, the non-dimensional form of this equation is:

∂4zzttψ +
H2

L2

(
δNH + γ2

)
∂4ξξttψ − 2γ

H

L
∂4ξzttψ + (1−RoU ′(ξ)) ∂2zzψ +Bu∂2ξξψ = 0. (42)
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After the Fourier transformation ψ = ψ̂(ξ)ei(mz−ωt) + c.c. this gives an eigenproblem for
eigenfrequencies ω:

(1− ω2
(
δ2NH + δ2NT

)
ψ̂′′(ξ) + 2ω2δNT im ψ̂′(ξ) +m2

[
ω2 − (1−RoU ′(ξ))

]
ψ̂(ξ) = 0, (43)

where we put Bu = 1 without loss of generality (results below can be extended to any
Bu by rescaling), transformed the hydrostatic switch into the true non-hydrostaticity
parameter δNH = H

L
, and introduced the parameter δNH = γH

L
already used in sect. 2. It

is, in fact, this parameter, and not γ which measures the strength of NT effects, cf Tort
et al. (2016). As in section 3 we arrive to a second-order ordinary differential equation,
where the term with the first derivative in ξ can be removed by a change of variables

ψ̂ = ψ̃e
−imδNT

ω2

1−ω2(δ2
NH

+δ2
NT

) . (44)

We thus get:

ψ̃′′(ξ)+
m2

1− ω2 (δ2NH + δ2NT)

[
ω2

(
1 + δ2NT

ω2

1− ω2 (δ2NH + δ2NT)

)
− (1−RoU ′(ξ))

]
ψ̃(ξ) = 0.

(45)

3.3 Analysis of the eigenproblem, trapped modes and inertial instability

The eigenproblem (45) has the same form as in the traditional approximation, cf Plougonven
and Zeitlin (2009), modulo the change δ2NH → δ2NH+δ2NT in the factor in front of the square

bracket, and the replacement ω2 → ω2

(
1 + δ2NT

ω2

1− ω2 (δ2NH + δ2NT)

)
in the first term in-

side the square brackets. The trapped eigensolutions of (45), which can be interpreted
again as a Schrödinger equation, appear when the ”potential” (the second in square brack-
ets term) is positive, i.e. the shear of U(ξ) is anticyclonic. When the ”potential” is deep
enough, the eigenvalues, i.e. the eigenfrequencies squared, can become negative, thus giv-
ing an instability. This analysis is the same as in traditional approximation (Plougonven
and Zeitlin, 2009), and similar to that of section 2. The above-described changes due to
NT effects increase the effective non-hydrostaticity of the flow, and enhance the growth
rates, respectively. Note that the changes in the eigenproblem (45) are of the order δ2NT. If
this parameter is small, which is the case for large-scale geophysical flows, the NT effects
in the leading order just change the form of eigensolutions, as follows from (44) together
with the change of variables ψ̂(y) → ψ̂(ξ). At the next order they increase the growth
rates. As was shown in (Plougonven and Zeitlin, 2009) the eigenproblem (45) can be
solved analytically in the case of tanh profile of velocity. By making the above-described
changes in the parameters of the resulting hypergeometric equation, the dependence of
the eigenfrequencies squared on the parameter δNT can be explicitly traced. In particular,
in the hydrostatic approximation δNH = 0 at small δNT, it can be shown that the NT cor-
rection to the eigenfrequency squared is strictly negative, and thus leads to the increase
of the growth rate of inertial instability.

4 Conclusions and discussion

We thus showed how the NT effects change the Schrödinger-like equation for the waves
trapped in the anticyclonic shear, which are at the origin of the inertial instability, both in
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the two-layer and continuously stratified models. The analysis of the simplest barotropic
configuration of the background flow can be done ”by hand” and gives qualitative un-
derstanding of the role of NT effects. We should emphasize that the use of ”slanted”
variables, as in section 3, allows to analyze analytically the role of NT effects upon other
dynamical problems in simple flow configurations., like for example frontogenesis, follow-
ing the approach of Plougonven and Zeitlin (2005). This will be presented elsewhere.
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