Lawrence Berkeley National Laboratory

Recent Work

Title

PREDICTION OF PERFORMANCE CHARACTERISTICS OF THE HICKMAN-BADGER CENTRIFUGAL BOILER COMPRESSION STILL

Permalink https://escholarship.org/uc/item/3tn9x9hr

Author Bromley, LeRoy A.

Publication Date 1957-07-01

UNIVERSITY OF CALIFORNIA

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

BERKELEY, CALIFORNIA

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UNIVERSITY OF CALIFORNIA

UCRL-3874

^{′ଦ}ିତ୍ର

 C_{i}^{n}

127

Radiation Laboratory Berkeley, California

Contract No. W-7405-eng-48

PREDICTION OF PERFORMANCE CHARACTERISTICS OF THE

HICKMAN-BADGER CENTRIFUGAL BOILER COMPRESSION STILL

By

LeRoy A. Bromley

July, 1957

Printed for the U. S. Atomic Energy Commission

PREDICTION OF PERFORMANCE CHARACTERISTICS OF THE

HICKMAN-BADGER CENTRIFUGAL BOILER COMPRESSION STILL

By

LeRoy A. Bromley Radiation Laboratory and Department of Chemical Engineering University of California Berkeley, California

July, 1957

ABSTRACT

By solution of the appropriate hydrodynamic and heat transfer equations it is possible to predict the observed heat transfer coefficients. The average deviation is 25% and the maximum 71%. An equation for optimum rotor speed is derived. For a certain desired amount of product the rotor speed should be such that the power supplied to the vapor compressor is $3(1 + \frac{BPE}{\Delta t})$ times that supplied to the rotor. BPE is the mean boiling point elevation in the evaporator and Δt is the total temperature drop for heat transfer.

PREDICTION OF PERFORMANCE CHARACTERISTICS OF THE

-3-

HICKMAN-BADGER CENTRIFUGAL BOILER COMPRESSION STILL

By

LeRoy A. Bromley Radiation Laboratory and Department of Chemical Engineering University of California Berkeley, California

July, 1957

K. C. D. Hickman^{\perp} has described and given operating data on a centrifugal boiler still in which the liquid to be evaporated flows in a thin film outward along the inside of a rapidly rotating cone. The vapors generated are compressed and returned to the other side of the cone where they condense to supply heat for the evaporation taking place on the inside.

Flow Regime in the Film

Whether the flow along the cone is viscous or turbulent can be predicted by calculation of the Reynolds Number. For flow along a flat plate

$$Re = \frac{4\Gamma}{\mu}$$
(1)

where Γ = flow rate per unit length normal to flow, lb/hr ft

 μ = viscosity of the liquid.

If the Reynolds number is less than about 2000 one should expect to have viscous flow. For this case Eq. (1) may be rewritten

$$Re = \frac{2W}{\pi r\mu}$$
(2)

where W = total weight flow, lb/hr

r = any radius, ft.

By inspection it is observed that the highest Reynolds number will occur near the hub of the cone. Let us calculate this radius at which the flow would change from turbulent to viscous. The largest feed rate reported is 1500 lbs/hr total on the two 54-inch c.d. rotors at about $125^{\circ}F$. The critical radius is then

$$r_{\rm crit} = \frac{2W}{2000 \ x \ \pi \ x \ \mu} = \frac{750}{1000 \ x \ \pi \ x \ 0.55 \ x \ 2.42} = 0.18 \ \rm{ft} \qquad (3)$$

-4-

or about 2 inches. Thus for all reported tests the flow was viscous. It might possibly be turbulent near the hub of a larger cone at very high feed rates. Theory

To proceed with the derivation, the following assumptions are made.

1. Viscous flow in both evaporating and condensing films.

2. No nucleation (bubble, or drop formation).

3. No inert gas present.

4. Condensate is flung off only at outer edge.

5. Heat flow only by conduction.

6. No abrupt temperature drops at phase boundaries.

For flow down vertical walls it has been shown²

$$' = \frac{\rho^2 g y^3}{3\mu}$$
(4)

In a centrifugal force field large compared to gravity on a cone inclined to the axis of rotation at an angle ϕ , g would be replaced by $4\pi^2 r N^2 \sin \phi$. It is implicitly assumed that the velocity profile is fully developed at any radius. Although this cannot be exact it is probably a good approximation and is similar to the approach used by Nusselt³ for condensation. Hence Eq. (4) can be written for this case

$$y = \frac{1}{2\pi} - \sqrt{\frac{3}{r^2 \rho^2 N^2 \sin \phi}}$$
 (5)

But since we postulate heat flow by conduction only,

$$h = \frac{k}{y} = \left[2\pi \sqrt{\frac{3}{\frac{k^{3} \rho^{2} N^{2} \sin \phi}{3\mu}}} \right] \cdot \frac{r^{2/3}}{w^{1/3}}$$
(6)
$$= E \frac{r^{2/3}}{w^{1/3}}$$

where E, the quantity in square brackets, is a constant quantity in any single experiment.

For the next part of the derivation the metal resistance to heat transfer will be neglected. The error introduced will be corrected for later. By a heat balance at any point r one may write for the flow W on the condensing side (outside) of the cone [the flow on the evaporating side is $(W_{\rm F}-W)$]:

$$\frac{\mathrm{d}W}{\mathrm{d}r} = \frac{U2\pi r\Delta t}{\lambda \sin \phi} = \frac{2\pi r\Delta t}{\left(\frac{1}{\mathrm{h}} + \frac{1}{\mathrm{h}}\right) \lambda \sin \phi} = \frac{2\pi r^{5/3} \Delta t E}{\left[\left(W_{\mathrm{F}} - W\right)^{1/3} + W^{1/3}\right] \lambda \sin \phi}$$
(7)

where $W_F =$ feed rate to one cone of the evaporator. Integrating Eq. (7) for the amount of distillate W_D between r_i and r_o results in Eq. (8):

$$W_{F}^{4/3} - (W_{F} - W_{D})^{4/3} + W_{D}^{4/3} = \frac{\pi \Delta t E}{\sin \phi \lambda} r_{o}^{8/3} \left[1 - \left(\frac{r_{i}}{r_{o}} \right)^{8/3} \right]$$
(8)

but we are interested in the average heat transfer coefficient \overline{U} as defined by

$$W_{\rm D}\lambda = \frac{\overline{U}\pi (r_{\rm o}^2 - r_{\rm i}^2) \Delta t}{\sin \phi} \qquad (9)$$

Solving Eq. (9) for \overline{U} and eliminating $\triangle t$ and E by means of (8) and (6) one obtains

$$\overline{U} = \frac{\pi}{\sqrt[3]{5}} \cdot \frac{2W_{\rm D}}{W_{\rm F} \left[1 - \left(1 - \frac{W_{\rm D}}{W_{\rm F}}\right)^{4/3} + \left(\frac{W_{\rm D}}{W_{\rm F}}\right)^{4/3}\right]} \left(\frac{\left(\frac{k^3 \rho^2 N^2 r_{\rm O}^2 \sin \phi}{W_{\rm F}^{\mu}}\right)^{1/3} \left(\frac{1 - \left(\frac{r_{\rm i}}{r_{\rm O}}\right)^{8/3}}{\left[1 - \left(\frac{r_{\rm i}}{r_{\rm O}}\right)^2\right]}\right) (10)$$

or

$$\overline{U} = 2.18 \left[f\left(\frac{W_{D}}{W_{F}}\right) \right] \left[g\left(\frac{r_{i}}{r_{o}}\right) \right] \left(\frac{k^{3}\rho^{2}N^{2}r_{o}^{-2}\sin\phi}{W_{F}^{\mu}}\right)^{1/3}$$
(11)

where

$$f\left(\frac{W_{\rm D}}{W_{\rm F}}\right) = \frac{2W_{\rm D}}{W_{\rm F}\left[1 - \left(1 - \frac{W_{\rm D}}{W_{\rm F}}\right)^{4/3} + \left(\frac{W_{\rm D}}{W_{\rm F}}\right)^{4/3}\right]}$$
(12)

values for which are tabulated in Table 1. Also tabulated in Table 1 are values calculated for $f(\frac{W_D}{W_F})$ for $h_c \longrightarrow \infty$ (i.e., no condensate resistance or perfect dropwise condensation).

From Table 1 it is apparent that for practical purposes $f(\frac{w_D}{w_F}) \approx 1.0$ over the region of most usefulness, but could be increased considerably if the condensate could be removed (as in dropwise condensation or flung off by enough centrifugal force).

The function $g(\frac{1}{r_0})$, which is equal to the last terms in brackets in Eq. (10), is tabulated in Table 2.

Since in practice, r_i would be made as small as possible, $g(\frac{r_i}{r_o})$ would usually be nearly 1.0.

For most practical calculations Eq. (11) can be simplified. Let us replace the outer radius by the outer diameter, D_{o} , (adjusting the constant accordingly):

$$\overline{U} \approx 1.37 \left(\frac{k^3 \rho^2 N^2 D_o^2 \sin \phi}{W_F^{\mu}} \right)^{1/3}$$
(13)

If the metal wall has appreciable thermal resistance then the true value of the over-all coefficient U can be calculated from

$$\frac{1}{\overline{U}} = \frac{1}{\overline{U}} + \frac{x_{m}}{k_{m}}$$
(14)

Turbulent Flow

As noted before, at very high flows near the hub of a rotating cone the flow may be turbulent (if Re > 2000). For heating fluids in turbulent flow down vertical walls $Drew^2$ gives

h = 0.01
$$\left(\frac{k^{3}\rho^{2} g}{\mu^{2}}\right)^{1/3} \left(\frac{c_{\mu}\mu}{k}\right)^{1/3} \left(\frac{4r}{\mu}\right)^{1/3}$$
 (15)

If one assumes that this would also be approximately valid for evaporation with g replaced by the centrifugal force then one obtains for the evaporation

UCRL-3874

coefficient in turbulent flow

$$h_{e_{turb}} = 0.0293 \left(\frac{k^2 \rho^2 N^2 W_F C_p \sin \phi}{\mu^2} \right)^{1/3}$$
(16)

 W_F was used as the flow should change little between r_i and the critical radius. It is interesting to note that the coefficient is essentially independent of radius as long as turbulence persists. The condensation coefficient between r_i and r_{crit} may be calculated from

-7-

$$h_{c} = 4.35 \left(\frac{k^{3} \rho^{2} N^{2} r_{crit} \sin \phi}{W_{c} \mu} \right)^{1/3} g\left(\frac{r_{i}}{r_{crit}} \right)$$
(17)

where W is the amount condensed between r and r crit. Minimize Power Required

As pointed out by Hickman, power is used to turn the rotor, compress the vapor, and a small amount is used in auxiliary equipment, and some is lost as heat. Since the rotor and compressor use the major share of the power the optimum speed of rotation will be calculated that will minimize the power requirement for a desired amount of feed and product for a certain rotor.

<u>Power to Rotor</u>. The rotor must overcome the frictional loss caused by flow of liquid over the surface; per unit mass of distillate:

$$\mathbf{F} = \frac{2\pi^2 N^2 r_o^2}{g_c} \frac{W_F}{W_D}$$
(18)

The gain of kinetic energy in the radial direction is neglected.

In addition the kinetic energy of the leaving streams will either be degraded or perhaps some recovered in the form of pressure, but in any case it must be supplied to the rotor. Numerically it is equal to the above. There will be

(19)

additional kinetic energy loss due to evaporation from a rotating surface and condensing from a relatively stagnet vapor. This will be allowed for in the efficiency, η_{n} .

-8-

There is also going to be energy lost due to drag of the scoop(s). If the scoop is streamlined and made as small as possible consistent with handling the flow then this energy need be perhaps only 10 to 20% of the kinetic energy loss. If, on the other hand, large scoops are used and if they are not streamlined, then this energy loss could easily be 1 to 10 times the kinetic energy loss and would represent a serious loss in energy. There will also be small losses due to windage and mechanical friction but these should both be small. These latter losses should be reduced to a minimum by proper design and will also be allowed for by an efficiency factor η_r .

 $\frac{\text{work to rotor}}{\text{lb of product}} = \frac{4\pi^2 N^2 r_o^2}{\eta_r g_c} \frac{W_F}{W_D}$

Work delivered to compressor. For each pound of distillate this work is

$$\frac{\Delta P}{\eta_c \rho_v} = \frac{\lambda J}{\eta_c T} (\Delta t + BPE). \qquad (20)$$

This is true as long as the temperature drop for heat transfer, Δt , and the mean boiling point elevation, BPE, of the evaporating liquid are small compared to the absolute temperature, T, of evaporation. J is the mechanical equivalent of heat. If one neglects the rotor metal resistance to heat transfer one may eliminate Δt by means of Eqs. (11) and (9). The addition of Eqs. (19) and (20) then results in the equation for total work:

$$\frac{\text{Total work}}{W_{D}} = \frac{4\pi^{2}N^{2}r_{o}^{2}W_{F}}{\eta_{r} g_{c} W_{D}} + \frac{3^{\frac{1}{5}} J \lambda^{2} W_{D}}{\pi^{2}\eta_{c} \text{Tr}_{o}^{2} \left[1 - \left(\frac{r_{i}}{r_{o}}\right)^{8/3}\right] \left[f\left(\frac{W_{F}\mu}{W_{F}}\right)\right]} \left[\frac{W_{F}\mu}{\kappa^{3}\rho^{2}r_{o}^{2}N^{2}\sin\phi}\right]^{\frac{1}{5}} + \frac{J\lambda(\text{BPE})}{\eta_{c} T}$$

(21)

If all quantities in the above equation are fixed (or nearly so) except total work/ $W_{\rm p}$ and rate of rotation N, Eq. (21) may be written

$$\frac{\text{total work}}{W_{D}} = AN^{2} + \frac{B}{N^{2/3}} + C$$
(22)

where A, B, and C will be considered independent of N. The optimum value of N is then

$$N_{\text{opt}} = \left(\frac{B}{3A}\right)^{\frac{3}{8}} = \frac{\left(g_{c}J\right)^{\frac{3}{8}}}{\pi^{\frac{3}{2}} 3^{\frac{1}{4}} 4^{\frac{3}{8}}} \left(\frac{\lambda^{6} W_{D}^{6} \mu \eta_{r}^{3}}{T^{3} W_{F}^{2} r_{o}^{\frac{14}{4}} k^{3} \rho^{2} \sin \phi \eta_{c}^{3} \left[1 - \left(\frac{r_{i}}{r_{o}}\right)^{\frac{8}{3}}\right]^{\frac{3}{2}} \left[f\left(\frac{W_{D}}{W_{F}}\right)\right]^{\frac{3}{2}}}\right)^{\frac{1}{8}}$$

and the work at \mathbb{N}_{opt} becomes

$$\left(\frac{\text{total work}}{W_{D}}\right)_{\text{at }N_{\text{opt}}} = \frac{\frac{1}{4} \left[\frac{1}{3^{3/4}} \left[\frac{\lambda^{6} \mu}{\frac{1}{3^{1/2} \pi g_{c}^{1/4}} \left[\frac{\lambda^{6} \mu}{\frac{1}{3^{1/2} \pi g_{c}^{1/4}} \left[\frac{1}{1 - \left(\frac{r_{i}}{r_{o}}\right)^{8/3}}\right]^{3} \left[f\left(\frac{W_{D}}{W_{F}}\right)\right]^{3} \eta_{c}^{3} \eta_{r}}\right]^{\frac{1}{4}} \left[\frac{W_{F} W_{D}}{\frac{1}{1 - \left(\frac{r_{i}}{r_{o}}\right)^{8/3}}\right]^{2} \left[f\left(\frac{W_{D}}{W_{F}}\right)\right]^{3} \eta_{c}^{3} \eta_{r}} \right]^{\frac{1}{4}} \left[\frac{W_{F} W_{D}}{\frac{1}{1 - \left(\frac{r_{i}}{r_{o}}\right)^{8/3}}\right]^{2} \left[f\left(\frac{W_{D}}{W_{F}}\right)\right]^{3} \eta_{c}^{3} \eta_{r}} \left[\frac{1}{1 - \left(\frac{r_{i}}{1 - \left(\frac{r_{i}}{r_{o}}\right)^{8/3}}\right]^{3} \left[f\left(\frac{W_{D}}{W_{F}}\right)\right]^{3} \eta_{c}^{3} \eta_{r}} \right]^{\frac{1}{4}} \left[\frac{1}{1 - \left(\frac{r_{i}}{1 - \left(\frac{r_{i}}{r_{o}}\right)^{8/3}}\right]^{3} \left[f\left(\frac{W_{D}}{W_{F}}\right)\right]^{3} \eta_{c}^{3} \eta_{r}} \left[\frac{1}{1 - \left(\frac{r_{i}}{1 - \left(\frac{r_{i}}{1 - \left(\frac{r_{i}}{r_{o}}\right)^{8/3}}\right)^{3} \left[f\left(\frac{W_{D}}{W_{F}}\right)\right]^{3} \eta_{c}^{3} \eta_{r}} \right]^{\frac{1}{4}} \left[\frac{1}{1 - \left(\frac{r_{i}}{1 - \left(\frac{r_{i}}{r_{o}}\right)^{8/3}}\right]^{3} \left[f\left(\frac{W_{D}}{W_{F}}\right)\right]^{3} \eta_{c}^{3} \eta_{r}} \left[\frac{1}{1 - \left(\frac{r_{i}}{1 - \left(\frac{r_{i}}{1 - \left(\frac{r_{i}}{r_{o}}\right)^{8/3}}\right)^{3} \left[\frac{1}{1 - \left(\frac{r_{i}}{1 - \left(\frac{r_{i}}$$

and

$$\left(\frac{\text{work to compressor}}{\text{work to rotor}}\right)_{\text{at }N_{\text{opt}}} = 3 \left(1 + \frac{\text{BPE}}{\Delta t}\right) \quad (25)$$

It will be noted that power consumed per pound of product may be reduced by increasing the rotor size or, since W_F and W_D are for one rotor, the work may be reduced by dividing the total desired flow among a number of rotors. The temperature should be as high as possible (without the formation of scale). Although it is important to improve rotor efficiency it is even more important to improve compressor efficiency.

It is interesting to note that Hickman suggests that the ratio of work supplied to the compressor to work supplied to the rotor be 3.22 for a commercial

-9-

still. This is nearly that predicted for optimum rotor speed. Comparison of Heat Transfer Coefficients with Experiment

Table 3 compares the heat transfer coefficients reported by Hickman to those calculated by use of Eq. (11). It will be noted that the values range from +71% to -32%. The measured values with the greatest deviation are either those with very low Δt or very low W_D which tend to magnify any experimental errors. On the whole the agreement is satisfactory indicating that the proposed mechanism, viscous flow, is probably correct.

Conclusions

On the basis of the derived equations it is possible to predict the operating characteristics of the Hickman-Badger still. It is also possible to predict the optimum conditions of operation.

This work was performed under the auspices of the U. S. Atomic Energy Commission.

REFERENCES

K. C. D. Hickman, Ind. Eng. Chem. <u>49</u>, 786 (1957).
 W. H. McAdams, "Heat Transmission," 3rd ed., McGraw-Hill (1954).
 W. Nusselt, Z. Ver. Deut. Ing. <u>60</u>, 541, 549 (1916).

0.9 0.99 1.0 8 0.99 1.00 1.00	1.89 1.98 2.00		
0.99 0.99 8 0.99 1.00	1.89 1.98		
	1.89		
0 C	1.81		
7.0	1.75		
0°00 0'00	1.70		
1.00	1.66		
0°4 1°01	1.62		
0•3 *0.1	1.58		
0.2	1.55		
0.1	1.53		
0.01	1.50		
0 1,50	1.50		
	8 1		
	 ជុ អ្ន	ر	· · · .
	$f(\frac{W_{\rm H}}{(\frac{W_{\rm D}}{M})})$ fc	۲.	
	$\frac{-\nu}{W_{\rm F}} = 0.0000 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 \\ \frac{W_{\rm F}}{100000000000000000000000000000000000$	$\frac{-L}{W_{\rm F}} = 0.00000 0.01 0.1 0.2 0.5 0.4 0.5 0.6 0.7 0.8$ $f(\frac{W_{\rm D}}{W_{\rm F}}) = 1.50 1.29 1.12 1.07 1.03 1.01 1.00 0.99 0.99 0.96$ $f(\frac{W_{\rm D}}{W_{\rm F}}) = 0.01 0.01 0.50 1.55 1.55 1.58 1.66 1.70 1.75 1.8$	$\frac{\nu}{r_{\rm F}} = 0.0 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.99 0.99 0.99 0.96$

UCRL-3874

-12-

2 Hr 2 Mr
#/hr $#/hr$ $Bru(hrr$ tr F $Bru(hrr$ tr F <th< th=""></th<>
50 13.5 3620 2120 50 13.5 3620 2120 50 13.5 3620 2120 50 13.5 3520 2120 50 22 3900 2750 50 22 3550 2120 50 22 3550 2120 750 22 3550 2740 2740 80 3180 2180 2740 2740 80 3850 378 3550 3550 11 4150 3550 3550 3550 11.1.8 4150 3550 3766 4510 900 117.8 1000 14.86 12.9 901 12.9 4000 2180 2560 912 2560 2360 2360 2360 928 919 2280 2360 2360 938 1174 22120 2360 2360 928 2140 2360 2360 2360 928 21140 2360<
56 15 5620 2410 57 20.5 5900 2550 57 22.5 5900 2550 57 22.5 5900 2550 57 22.5 5900 2550 88 318 4270 2550 88 318 5650 3180 88 318 5650 3550 3550 88 378 11.0 4000 3550 3550 88 378 1108 4160 3550 14.8 967 256 3180 4180 - 5 14.4 968 378 1000 3550 3550 - 556 - 556 968 378 1090 2720 2180 - 16 - 16 968 2114 12.9 4000 2720 2580 - 16 - 56 968 2114 2280 2360 2350 - 16 - 16 968 2114 2280 2360 2360 - 16 - 16 968
50 2350 2550 2550 50 20.5 3940 2550 50 23 4.050 3.180 50 23 4.510 3.650 80 31 11.0 4.510 3.560 80 31 11.0 4.510 3.560 80 318 3.650 3.760 3.760 80 318 3.760 3.760 4.23 80 318 4.180 4.180 4.180 11.1.8 4.150 3.760 3.760 4.23 958 376 2.250 4.180 4.180 4.13 958 3778 2.17.0 3.760 2.750 4.13 958 957 2.140 2.720 4.14 1.16 958 911 12.9 4.000 2.140 4.17 958 174 2.250 2.140 2.160 2.160 958 174 2.250 2.140 1.16 1.16 958 10 1290 2.150
70 220.5 7940 2740 70 22 4510 7560 740 70 23 750 750 750 80 71 4510 7560 756 80 76 7160 7560 750 80 76 7160 7560 756 80 716 111 4150 7560 17.40 80 7760 7760 7760 7760 17.40 80 716 111.8 4150 7550 14.18 14.17 9760 2760 7760 7760 7760 14.1 978 778 1000 2750 14.18 14.1 978 778 2720 2750 2750 14.4 968 711 12.9 4000 2750 14.4 968 711 265 2720 2750 14.4 14.7 968 711 265 2140 2750 1.1 1.4 968 710 2750 <
750 23 4000 7180 750 23 4270 3070 88 31 3550 3550 88 31 3550 3550 88 41 11 4150 3650 88 31 3850 3756 4.270 88 3756 3160 3756 4.41 11 4150 3550 3756 4.43 96 17.6 117.8 4.160 3766 96 211 26 2720 2720 2720 96 91 12.9 4000 2720 2720 2720 96 91 2260 2720 2720 2720 27400 98 91 2260 2720 2720 27400 2720 96 91 2260 2750 27400 2750 27400 98 96 2140 265 27400 2750 27450 98 265 21400 27450 27450 27450 <
75 25 27 47 45 88 33 355 355 355 88 33 355 355 355 88 33 365 355 355 88 33 365 355 355 766 41 4000 4150 355 958 378 4000 14150 355 958 378 4000 2720 2720 958 378 1000 2720 2720 968 378 1000 2720 2720 968 2174 22240 2720 2720 968 91 22240 2720 2720 968 510 1980 2720 2720 968 510 2020 2740 2750 968 2140 2250 2750 2750 968 2100 2750 2750 16 968 2100 2250 2750 16 968 2100 2260
88 31 350 350 350 350 350 350 350 350 350 350 350 350 350 350 350 350 3550 441 462 460 460 2350 2350 2350 2350 2350 117.6 111.6 1290 2350 2350 2350 2350 1290 2350 2350 2350 2350 2350 2350 2350 2350 117.4 211.1 2350 116 2350 116 2350 117.4 2350 116 2350 116 2350 116 2350 116 2350 116 2350 116 2350 116 2350 116 2350 116 2350 116 2350 116
80 38 3890 3760 80 41 4000 4180 4180 44 11 4150 3550 756 50 17.48 4150 3550 747 50 17.68 4000 4180 7550 50 17.68 4080 35180 738 958 3778 12.9 4080 2720 966 174 12.9 4000 2720 966 2720 2720 2720 144 967 265 2720 2720 156 968 510 1980 2780 2750 946 327 2020 2440 2750 958 510 1980 2750 16 946 327 2020 2450 16 9780 2198 2198 216 16 9780 2198 216 2450 16 978 219
00 41 11 4150 - 5 50 17.8 4150 3550 +17 50 17.8 4000 3180 3580 958 378 1990 2720 +47 968 91 265 2190 2360 -16 968 91 2240 2350 -15 -15 958 510 1990 2360 2440 -16 968 91 2240 2520 2440 -16 968 91 2120 2440 2550 -16 951 466 2240 2350 -16 -16 958 510 1980 2350 2450 -16 958 2140 2720 2450 -16 -16 958 2100 2450 2750 -16 -16 958 2100 2450 -16 -16 -16 958 2100 2450 -16 -16 -16 958 2100 2450 -16
44 11 4150 3550 +17 50 17.8 4080 3550 +17 44 12.9 4080 3780 +17 958 378 1990 2720 2720 967 265 2720 2440 2720 968 91 2720 2440 2720 968 91 2780 2780 2780 968 91 2780 2780 2780 968 91 2780 2780 2780 968 91 2780 2780 2780 968 91 2840 2750 2780 951 1980 2750 2750 2750 953 196 2250 2750 2750 953 2146 2250 2750 2750 953 196 2750 2750 2750 953 2760 2750 2750 2750 953 2760 2750 2750 2750 953 2760
44 12.9 4000 2720 +47 958 378 1990 2360 -16 967 265 2440 2360 -15 968 91 2350 2440 2520 968 91 2520 2480 -15 968 91 2520 2480 -15 968 91 2520 2480 -16 946 327 2020 2450 -16 946 327 2020 2450 -16 958 198 2020 2450 -16 946 327 2020 2450 -16 958 198 2740 2750 -16 958 2140 2750 2450 -16 958 2140 2450 2450 -16 958 2140 2450 -16 -16 958 2140 2450 -16 -16 2350 2460 2460 -16 -16 2360 2460 245
958 378 1990 2360 967 265 2070 2440 968 91 2120 2440 968 91 22240 2350 968 91 22240 2350 946 327 2020 2350 946 327 2020 2450 931 462 2020 2450 938 198 2140 2450 938 2140 2750 946 327 2020 2450 958 2140 2750 958 2140 2750 958 2140 2750 958 2140 2750 958 2140 2550 958 2140 2750 958 2150 958 2120 2580 958 2120 2750 958 210 2020 2750 2750 958 200 2750 2020 2750 2750 2750 2750 2750
967 265 2440 968 91 2120 968 91 2740 968 91 2720 968 91 2720 968 91 2750 968 91 2750 968 91 2750 968 91 2750 968 510 1980 946 327 2020 931 462 2250 933 198 2140 938 2140 2250 938 2140 2480
962 174 2120 2480 968 91 2240 2520 968 510 1980 2350 946 327 2020 2450 946 327 2020 2450 958 198 2450 -16 946 327 2020 2450 958 198 2140 22450 958 198 2140 2450 958 2360 2450 -16
968 91 22240 2520 -11 968 510 1980 2350 -16 946 327 2020 2450 -18 951 462 2020 2450 -18 938 198 2140 2250 -10 938 198 2140 2450 -114 958 236 2480 -12 2020
946 327 2020 2450 -18 931 462 2020 2250 -10 938 198 2140 22480 -14 938 198 2140 2480 -14
940 221 2450 2450 -10 931 462 2020 2250 -10 938 198 2140 2480 -14 950 730 7380 -32

URCL-3874

-13-

NOMENCLATURE

			Suggested Unit
BPE	. =	Mean boiling point elevation of evaporating liquid	°F
C.	=	Heat capacity of vapor	BTU/10 ^O F
D	=	Outside diameter of rotor	Ft
E	=	Constant parameter in Eq. (5)	• • • • • • • • • • • • • • • • • • •
F	=	Friction loss on rotor per unit mass distillate	ft lbf/lbm
$f(\frac{W_D}{W_T})$	=	See Eq. (11) and Table 1	
g	=	Acceleration of gravity	ft/hr ²
gc	=	Gravitational constant	4.18 x 10 ⁸ $\frac{1\text{bm}}{1\text{bf}} \frac{\text{ft}}{\text{hr}^2}$
$g(\frac{r_i}{r_o})$		See Eq. (9) and Table 2	
$g(\frac{r_i}{r})$	<u></u> =	Same as above with r_{o} replaced by r_{crit}	
-crit h	=	Coefficient of heat transfer	$\frac{BTU}{hr} f^{2} o_{\mathbf{F}}$
he	ź	Coefficient of heat transfer for evaporation	111 10 1
he	=	Coefficient of heat transfer for condensation	N H
J	=	Mechanical equivalent of heat	778 - $\frac{\text{ft lbf}}{\text{BTU}}$
k		Thermal conductivity of the liquid	$\frac{BTU}{br}$ $^{\circ}F$
k m	-	Thermal conductivity of rotor metal	111 10 F
N	÷	Rate of rotor rotation	Rev per hr (or min)
Nopt	=	Optimum rate of rotor rotation	11
ΔP	=	Pres. difference between condensing and evaporating sides of rotor	$\frac{1bf}{ft^2}$
r	=	Radius	ft
r, r	=	Inside and outside radius respectively \cdot	ft
r	-	Radius at which flow changes from turbulent to viscou	ıs ft
Re	=	Reynolds number	
∆t	Ξ	Total temperature drop for heat transfer	°F
Т	. =	Absolute temperature of evaporation	°R

-14-

NOMENCLATURE

е ^н .			Suggested Unit
U		Over-all heat transfer coefficient (See Eq. (13))	Btu/hr ft ^{2 o} F
$\overline{\upsilon}$	22	Over-all heat transfer coefficient (not including metal resistance)	H · · · · · ·
U _{calc} ,U _{ex}	.p=	Calculated and experimental values of U	Ħ
W	=	Liquid flow on a rotor (condensate flow after Eq. (6))	lbm/hr
W _F	=	Feed flow to a rotor (one cone only)	11
W _D	=	Distillate rate from one rotor cone	11
Wc	=	Distillate rate at r _{crit}	ff
X _m	. =	Metal wall thickness of rotor	ft
Г	=	Mass flow per unit periphery normal to flow	lbm/hr ft
η _r ,η _c	=.	Efficiency of rotor and compressor, respectively	
λ	-	Latent heat of vaporization at temperature T	Btu/lbm
μ	=	Viscosity of liquid	lbm/hr ft
ρ,ρ _v	. =	Density of liquid and vapor, respectively	lbm/ft ³
6		Angle of rotor to its axis	