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Abstract 

Language entails many nested time scales, ranging from the 
relatively slow scale of cultural evolution to the rapid scale of 
individual cognition. The nested, multiscale nature of 
language implies that even simple acts of text production, 
such as typing a sentence, entail complex interactions 
involving multiple concurrent processes. As such, text 
production may have much in common with other cognitive 
phenomena thought to emerge from multiplicative 
interactions across temporal scales, namely those that exhibit 
fractal properties. We investigated the relationship between 
fractal scaling and the quality of produced text. Participants 
(N=131) wrote essays while their keystrokes were recorded. 
Fractal analyses were then performed on time series of 
interkeystroke intervals (IKIs). Results showed that fractal 
properties characterizing IKIs positively predicted expert 
ratings of essay quality, even after accounting for essay 
length. The results support our hypotheses concerning 
multiscale coordination and text production. 

Keywords: text production; writing; keystroke; multifractal; 
essay quality 

Introduction 
Recent theoretical and empirical work characterizes 
language as a complex, dynamic system that involves the 
coordination of multiple nested time scales (Dale, Kello, & 
Schoenemann, 2016; Rączaszek-Leonardi, 2010; 
Rączaszek-Leonardi & Kelso, 2008). Consider three time 
scales that have been highlighted extensively in the 
literature. Language can evolve on a relatively slow scale 
along with changes in cultures and significant historical 
events. On a faster scale, language can be altered throughout 
an individual’s life, based on their experiences and 
knowledge. Lastly, language can change at more rapid 
scales in response to cognitive events that can span days, 
hours, or mere fractions of a second.  

These time scales span several orders of magnitude and 
paint a complex picture of language. The picture is further 
complicated because each of the time scales implicates 
different systems (e.g., cultural, interpersonal, 
physiological) and suggests that language processes should 
be studied as complex, dynamical systems. The current 
work explores this idea in the context of text-based language 
production. We examine whether dynamic analyses of 
typing behaviors during essay writing provide empirical 
support for the notion of writing as a complex, dynamical 
system.  

The nested, multiscale character of text production is 
apparent in the simple example of typing an essay. The 

relatively fast time scale of word selection is nested within 
and constrained by the slower time scale of idea generation. 
Singular ideas are further nested within the subtopics and 
global topic of the essay that change at even slower rates. 
Beyond these examples, nesting can continue at both faster 
and slower time scales. Rapidly changing physiological 
processes influence and support the act of writing that 
would not be possible without a lifetime of learning or the 
evolution of a language within a culture. Thus, even the 
seemingly simple act of typing one sentence of an essay 
may entail complex interactions of any number of processes, 
each with its own characteristic rate of evolution. The 
implication is that language production involves the 
coordination of numerous systems over many different time 
scales. Our assumption is that the act of text production (i.e., 
typing an essay) provides a window into ongoing cognitive 
processes (Pinet, Ziegler, & Alario, 2016). As such, we 
expect that keystroke dynamics will reveal the multiply-
nested character of text production. 

Multiscale Interactions in Human Behavior 

A wide range of cognitive phenomena have been described 
as emerging from the interaction of multiply-nested time 
scales (Ihlen & Vereijken, 2010). The principle evidence for 
that claim is the observation of fractal scaling. Fractal 
scaling typically refers to two qualities: long-range 
autocorrelation and scale dependence. Long-range 
autocorrelation implies that time series observations exhibit 
significant correlations over large timespans (Beran, 1994). 
That is, an observation made at one point in time is related 
to subsequent observations that extend into the future. Scale 
dependence suggests that measurements of time series (e.g., 
variance) depend on the temporal scale at which they are 
measured (Mandelbrot & Van Ness, 1968).  

There are numerous examples of behavioral time series 
known to exhibit fractal scaling: reaction times (Gilden, 
Thornton, & Mallon, 1995; Van Orden et al., 2003), time 
estimation (Wagenmakers et al., 2004), eye movements 
(Stephen & Anastas, 2011), hand movements (Anastas, 
Stephen, & Dixon, 2011; Stephen, Arzamarksi, & Michaels, 
2010), arm movements (Chen, Ding, & Kelso, 1997), 
postural corrections (Collins & DeLuca, 1993), and various 
forms of tool-use (Likens, Fine, Amazeen, & Amazeen, 
2015; Nonaka & Bril, 2014).  

Much of the work on fractal scaling in cognition has 
emphasized interaction across scales as its primary 
theoretical contribution (Ihlen & Vereijken, 2010; Kelty-
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Stephen & Wallot, in press). The basic idea is that the rich 
structure observed in behavioral time series is the product of 
many simultaneously occurring processes (e.g., physical, 
cognitive). Each process exists on its own time scale, with 
effects of slower time scales multiplicatively cascading to 
faster and faster time scales. As such, fractal scaling reflects 
on-the-fly cognitive organization during tasks (Van Orden et 
al., 2003; Wallot, Hollis, & van Rooij, 2013). Further, 
variability in fractal properties reflects the flexibility and 
adaptability in typical cognitive tasks necessary for 
coordination across those levels (Anastas et al., 2011). 

If fractal scaling reflects the flexibility and adaptability 
that stems from multiscale coordination, then reliable 
relationships should exist between fractal scaling and other 
meaningful aspects of behavior. The literature contains 
several such examples. Visual search is faster when eye 
movements exhibit fractal properties (Stephen & Anastas, 
2011). Fractal variability in hand movements predicts better 
perceptual estimates (Stephen et al., 2010). Moreover, 
fractal patterns distinguish between various forms of skilled 
and non-skilled behavior (e.g., Nonaka & Bril, 2014). These 
examples are not exhaustive but hint at the large number of 
skillful behaviors that exhibit fractal characteristics. 

The current work explores the idea that fractal scaling 
might also reflect the multiscale coordination involved in 
the skilled production of text. Across domains, the evidence 
implies being skilled means adapting to task demands, and 
fractal scaling characterizes flexibility (Gorman et al., 2010; 
Nonaka & Bril, 2014). The observation of flexibility in 
skilled text production (Allen, Snow, & McNamara, 2016) 
leads to the hypothesis that fractal scaling will reveal the 
flexibility required from the nested, multiscale act of 
composition. That is, we expect more skilled text production 
will be characterized by fractal variability. 

We are not aware of any studies that have examined the 
time course of text production for evidence of fractal 
scaling; however, work related to reading and skilled typing 
provides some bases for exploration (e.g., Wallot & 
Grabowski, 2013; Wallot et al., 2013; Wijnants et al., 2012). 
For example, Wijnants and colleagues (2012) showed that 
the presence of fractal scaling in word naming times 
distinguished dyslexic and non-dyslexic readers. They also 
found a positive relationship between fractal scaling and 
reading fluency. Another study involving skilled typing 
suggests that fractal properties may depend on task 
complexity/difficulty (Wallot & Grabowski, 2013). The 
relevant finding in that study was that there was greater 
fractal variability over time when participants typed a set of 
directions than when they typed simple lyrics from memory 
or simply copied text. 

Current Study 
This study investigates how fractal properties in keystroke 
logs are related to the quality of written text. Participants 
wrote timed, prompt-based argumentative essays while their 
keystrokes were recorded. Time series were constructed 
from the latencies between keystrokes and analyzed by 

fractal analysis. Essays were scored by experts on holistic 
quality and analytical subscales. This study is exploratory 
and the first of its kind; nonetheless, our general expectation 
is that, like performance on other tasks, fractal properties 
will serve as reliable predictors of essay quality.  

Method 
Participants Undergraduate students (N = 131, Female = 
58, mean age = 19.8 years) were recruited from a large 
university in the United States. Students participated in the 
study in exchange for course credit.  
 

Procedure Participants wrote a timed (25-minutes), prompt-
based, argumentative essay. Essay prompts were similar in 
structure to Scholastic Aptitude Test (SAT) prompts in that 
participants were asked to take either a supporting or 
contrary position on a given topic. Keystrokes and their 
respective time stamps were recorded while students 
composed their essays. Unsurprisingly, participants varied 
considerably in the number of keystrokes they produced (M 
= 3,385.40, SD = 1,107.03). To prevent bias, only the first 
999 keystrokes were retained for further analysis, 
corresponding to lowest number of keystrokes in our 
sample. No other keystrokes (e.g., backspaces) were 
omitted. Keystroke timestamp series were then differenced 
to obtain time series of interkeystroke intervals (IKIs). 
Mouse movements were not recorded. 

 

Text Analyses Pairs of raters evaluated the essays based on 
holistic quality and analytic subscales. Raters received 
extensive training before scoring and received compensation 
for their time. Holistic scores ranged from one (minimum) 
to six (maximum) and were based on a standardized rubric 
used in the assessment of SAT essays. Interrater reliability 
was good (r = 0.75). Raters were instructed to treat the 
distance between points (e.g., 1-2, 3-4, 4-5) as equal. The 
nine subscales, also based on a 6-point scales, were:  

Introduction. (M = 3.97, SD = 0.96) Demonstrates 
mastery in meeting the goals of an introduction (e.g., 
presenting a topic, providing a purpose, clearly stating a 
thesis, previewing arguments). 

Body. (M = 4.08, SD = 0.90) Demonstrates mastery in 
meeting the goals of body arguments (e.g., transition 
between arguments, using topic sentences, supporting 
arguments with evidence, and maintaining a flow 
throughout the arguments). 

Conclusion. (M = 3.19, SD = 1.32) Demonstrates mastery 
in meeting the goals of a conclusion (e.g., summarizing the 
essay, re-establishing the significance of discussion, 
capturing the reader’s attention, and effectively closing the 
essay). 

Organization. (M = 3.86, SD = 0.98) Follows a logical 
structure, beginning with the introduction, through the 
arguments and evidence presented in the body arguments, 
and to the conclusion. 

On-Topic/Global Cohesion. (M = 4.13, SD = 0.85) 
Details presented throughout the essay support the thesis 
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and do not stray from the prompt and the main ideas and 
organizing principles presented in the introduction. 

Grammar, Syntax, & Mechanics. (M = 3.70, SD = 0.79) 
Employs correct Standard American English, avoiding 
errors in grammar, syntax, and mechanics; the essay 
conveys strong control of the standard conventions of 
writing. 

Voice. (M = 4.09, SD = 0.76) The writer is expressive, 
engaging, and sincere, with a strong sense of audience.  

Word Choice. (M = 4.07, SD = 0.71) Word choice is 
precise and effective. 

Sentence Structure. (M = 4.06, SD = 0.75) Sentence 
patterns are varied effectively, enhancing the quality of the 
essay. 
 

Fractal Analysis Fractal analysis comes in two forms, 
monofractal analysis and multifractal analysis, both of 
which were performed on the IKI time series. The goal of 
monofractal analysis is to understand how variability 
depends on scale (e.g., Eke, Herman, Kocsis, & Kozak, 
2002). In general, evaluating monofractality means 
estimation of scaling exponents from the relationship, F2(s) 
~ sH where H is the Hurst exponent, and F2(s) is a measure 
of fluctuation. Being a singular measure, the Hurst exponent 
provides a measure of typical scaling behavior in a time 
series. Moreover, H ranges from zero to one and has useful 
interpretive ranges (Collins & DeLuca, 1993; Gorman et al., 
2010). When H = 0.5, the time series exhibits random 
variation. When H > 0.5, the series contains long-range 
autocorrelation, and when H < 0.5, the series exhibits long-
range anticorrelation such that small values generally follow 
large values and vice versa. Many series have been shown to 
require not one but a spectrum of exponents to characterize 
their variability (Ihlen & Vereijken, 2010; Kantelhardt et al., 
2002). Hence, the goal of multifractal analysis is to 
determine whether fractal scaling is fixed across time; that 
is, whether a time series exhibits multifractality 
(Kantelhardt et al., 2002).  

We used Multifractal Detrended Fluctuation Analysis 
(MFDFA; Kantelhardt et al., 2002) to evaluate both 
monofractal and multifractal properties in IKIs. The 
outcome of MFDFA is the multifractal spectrum. MFDFA 
is the generalization of Detrended Fluctuation analysis 
(DFA) and has been used in diverse literature to characterize 
time-varying structure (Kantelhardt et al., 2002; Peng et al., 
1994). The MFDFA procedure consists of five steps. The 
first step is to create the profile by integrating over a mean-
centered time series. In a second step, the time series of 
length, N, is divided into Ns = int(N/s) non-overlapping bins, 
such that each bin contains s observations. To compensate 
for Ns often being a non-integer multiple of s, the binning 
procedure is performed twice by starting from each end of 
the time series. The result partitions the time series into 2Ns 
bins. In a third step, data in each bin is fit with a least 
squares regression line that is subtracted from the binned 
data to obtain local residuals. The bin-wise residuals are 
squared and averaged to obtain a measure of variance within 

each segment, v. The fourth step averages over all the bins 
to obtain the qth order fluctuation function as captured in  

𝐹" 𝑠 = { &
'()

[𝐹'(𝑣, 𝑠)]"/'}'()
23& 	&/",      (1) 

where F2(v,s) is the variance calculated in Step 3 and q takes 
on both positive and negative values. Steps 2 through 4 are 
repeated for several s, increasing s by a power. The current 
work used a fractional power (11/10) for varying s which 
allowed for a larger range of scales over which scaling 
estimates were made. The maximum s was ≤ N/4. Step 5 
evaluates scaling behavior by performing a log-log 
regression of Fq(s) on s for each value of q. We used 101 
values of q, ranging from -3 to 3. When scaling properties 
are present, the result from Step 5 is a linear slope equal to 
the q-order Hurst exponent, H(q). When q = 2, the 
procedure is equivalent to standard DFA. H(q) can then be 
used to estimate the width of the multifractal spectrum 
dh(q). In contrast H, dh(q) provides a measure of the 
variability in scaling over time.  
 

Results 
 

Hierarchical multiple regression was used to explore the 
relations between the fractal properties in IKIs (i.e., H, 
dh(q)) and holistic essay scores (M = 3.85, SD = 0.89)1. 
Table 1 presents the descriptive statistics for the predictor 
variables used in constructing regression models. 

Table 1. Descriptive statistics 
Variable M SD 
Number of Words (NW) 412.67 162.22 
dh(q) 1.32 0.26 
H 0.51 0.06 

 
 In addition to fractal properties, we included the total 
number of words (NW) in each essay as a predictor in the 
regression model because of the known positive relationship 
between essay length and essay quality (e.g., McNamara, 
Crossley, & Roscoe, 2013; McNamara, Crossley, Roscoe, 
Allen, & Dai, 2015). Predictors were checked for 
multicollinearity and all variance inflation factors were less 
than 2 (VIFNW =1.09; VIFH = 1.21; VIFdh(q) = 1.26), 
indicating that multicollinearity was not a concern. Note 
that, NW, H, and dh(q) were converted to z-scores to aid in 
interpretation. This was especially crucial in the case of H as 
its theoretical domain is (0, 1). NW was entered in the first 
model step; H and dh(q) were both entered in the second 
model step. As expected, the initial model was significant, β 
= 0.47,  R2 = 0.28, p < 0.001; however our interest was in 
characterizing whether fractal properties predicted essay 
quality over and above NW. The results showed that fractal 
properties improved model fit, F(2,127) = 6.68, p < 0.01, R2 
= 0.35. As expected NW was a significant predictor such 
that a one standard deviation increase in essay length 
predicted a 0.54 increase in holistic score, t(127) = 8.09, p < 

                                                             
1 We also estimated models that included polynomial terms. 
However, none of the polynomial models improved model fit and 
were not reported here. 
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0.001. After controlling for NW, the model also revealed 
that a one standard deviation increase in H predicted a 0.21 
increase in holistic score, t(127) = 2.92, p < 0.01. 
Furthermore, a one standard deviation increase in dh(q) 
predicted a 0.29 increase in holistic score, t(127) = 3.19, p < 
0.01.  

Following the analysis of holistic essay scores, nine 
additional sets of regression models were fit predicting each 
subscale from NW, H, and dh(q). The modeling strategy for 
these additional models was the same as for overall essay 
quality. A summary of those models appears in Table 2. The 
table shows that fractal properties explain significant 
variance for seven out of nine subscales, with Conclusion 
and Organization being the exceptions. Of note is the fact 
that, for several outcomes, the fractal properties explain 
more than twice the variance explained by NW.  
 

 

Discussion 
In this study, we investigated how the multiscale 
characteristics of text production relate to essay quality. In 
general, we found that the Hurst exponent was a positive 
predictor of holistic essay quality and analytical scores. 
Similarly, we found that broader multifractal spectra 
predicted better quality essays, overall, and on several 
analytical subscales. The remainder of the discussion is 
structured as follows: First, we give an overview and basic 
interpretation of the scaling behavior observed for IKIs 
during essay production. Second, we speculate on how those 
interpretations inform patterns of prediction observed with 
respect to essay quality. Lastly, we offer ideas for potential 
applications and future research. 

Scaling Properties in IKIs 
We found that IKIs in this study were characterized by 
global H close to the value typical of random variation (i.e., 
H = 0.50). The observed mean of H was surprising given the 
prevalence with which Hs indicative of long-range 
correlation (i.e., H > 0.5) have been observed in other tasks 
(Kello et al., 2010). The result was further surprising 

because keystrokes observed during typing tasks have been 
previously characterized as being anti-correlated, where H < 
0.5 (Wallot & Grabowski, 2013). One possible reason for 
the difference in results is those authors’ use of power 
spectral density to estimate H (labeled α in that study). 
Simulation work has shown power spectral density 
underestimates H (Delignières et al., 2006).  The reason for 
those differences may be the method used to estimate H. 

A more likely and substantive reason relates to nature of 
the tasks used in each study. In Wallot and Grabowski 
(2013), participants performed one of three relatively simple 
tasks: type a nursery rhyme from memory; copy text from a 
page; and generate a novel set of directions from school to 
home. The latter condition was the closest to essay writing 
but still differs substantially in complexity and difficulty, 
factors known affect the scaling properties in basic motor 
control tasks and complex tasks like steering (e.g., Chen et 
al., 2001; Likens et al., 2015). Writing a timed essay is 
arguably more difficult and more complex than giving 
familiar directions. Perhaps, then, the Hurst exponents we 
observed in this study reflect those differences in task 
difficulty. The results concerning dh(q) lends further, albeit 
tentative, support for that conclusion. 

The trend across tasks observed in Wallot and Grabowski 
(2013) permits cautious speculation about the meaning of 
spectral widths within the current context. Note that a direct 
comparison between the widths we observed and those in 
Wallot and Grabowski is not possible because they used a 
wavelet form of multifractal analysis, and different methods 
are known to produce different widths (Ihlen & Vereijken, 
2013). In Wallot and Grabowski, the multifractal spectrum 
width increased as a function of task complexity, with the 
generative task producing the broadest spectrum. Similar 
results have also been reported in the motor control and 
social coordination literatures where an increase in task 
difficulty has been associated with widening dh(q) (e.g., 
Davis, Brooks, & Dixon, 2016; Romero, Coey, Beach, & 
Richardson, 2013). A reasonable conclusion is that the 
relatively broad spectra we observed reflect the difficulty 
inherent in writing a timed essay.  

Unlike H, the multifractal spectrum does not have the 
same useful interpretive indices concerning long range 
correlation and randomness. However, a few words are 
possible concerning why task complexity or task difficulty 
would affect the width of the multifractal spectrum. The 
multifractal spectrum provides a summary of scaling 
behaviors that evolve over time (Ihlen & Vereijken, 2013; 
Kantelhardt et al., 2002). If the Hurst exponent were 
sufficient to describe the scaling behavior present in the IKI 
time series, then one would expect a narrow spectrum – a 
time-invariant monofractal process. Instead, we observed 
broad multifractal spectra that are more consistent with 
interpretation of a time-varying multifractal process. Time-
varying scaling behavior is thought to reflect the ongoing 
dynamics in complex, dynamical systems that range from 
individual physiological processes to entire human teams 
(Likens et al., 2014). Time-varying scaling behavior in the 

DV NW R 2 NW H dh (q ) R 2 F
Intro 0.30*** 0.10 0.39*** 0.27** 0.29*** 0.20   7.85***
Body 0.43*** 0.22 0.38*** 0.18* 0.15 0.27   3.52*
Conc. 0.63*** 0.23 0.64*** 0.24* 0.13 0.26   2.46
Org. 0.39*** 0.15 0.44*** 0.16 0.16 0.19   2.45
Coh. 0.17* 0.04 0.23** 0.19* 0.17* 0.10   3.71*
Gram. 0.15* 0.04 0.24*** 0.20** 0.33*** 0.18 11.30***
Voice 0.30*** 0.15 0.34*** 0.17* 0.20** 0.22   5.78**
Word 0.22*** 0.10 0.31*** 0.22*** 0.31*** 0.27 15.06***
Sent. 0.30*** 0.16 0.37*** 0.19** 0.23*** 0.25   7.79***

Model 1
Predictors

Table 2. Regression models for expert rated subscales

Note: ***p < 0.001, **p<0.01, *p<0.05. F test was based on 2 
and 127 degrees of freedom.

Model 2
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IKIs might reflect changes in cognitive state or changes in 
strategy that accompany the multiscale coordination 
involved in writing an essay (e.g., Stephen et al., 2009). 
That idea is elaborated in the following section in the 
context of essay quality.  

Scaling Properties as Predictors of Essay Quality 

We have suggested that changes in scaling behavior may 
reflect changes in cognitive state or strategy. If so, then a 
broader multifractal spectrum could reflect flexibility in 
writing. Multifractal scaling is synonymous with flexibility 
and adaptability in other contexts (e.g., Collins & De Luca, 
1993), and flexibility in the use of cohesive devices (i.e., 
flexibility in writing) predicts higher quality essays (e.g., 
Allen et al., 2016; Snow et al., 2015). The implication is: if 
multifractal scaling reflects flexibility in writing, then wider 
multifractal spectra may also indicate higher quality essays. 
The current findings seem to support such reasoning. 
Results from regression analyses suggest fractal properties 
positively predict overall essay quality as well as quality on 
analytical subscales. 
 Another notable feature of the regression analyses was 
that dh(q) did not predict the quality of either the Body or 
Conclusion. As a potential explanation of those results, we 
refer to our data preparation steps. The time series in our 
sample were truncated to accommodate participants with 
short essays. Given the average length of intact series was 
over three times the length of the truncated series we 
analyzed, there is a strong possibility the fractal analyses did 
not equally represent Body and Conclusion aspects of text. 
If true, then perhaps dh(q) did not adequately capture 
variability with respect to Body and Conclusion sections. In 
addition, neither H nor dh(q) predicted the organization 
subscale. A similar interpretation could be made concerning 
the length of the time series analyzed with respect to the 
length of a typical essay in our sample.  

Applications and Future Directions 

In this study, we have shown for the first time that fractal 
properties measured while writing an essay predict essay 
quality. Being the first of its kind, we have interpreted the 
results cautiously. However, the results are promising and 
suggest opportunities for future research and applications. 

One promising area of research pertains to flexibility and 
adaptability in writing. As already discussed, multifractal 
scaling may suggest flexibility and adaptability in writing. If 
so, then it should be possible to link multifractal 
characteristics with other aspects of writing flexibility 
(Allen et al., 2016; Snow et al., 2015). In those studies, 
flexibility was characterized over several essays; however, 
if flexibility is important on the timescales of days and 
weeks, then flexibility should also be important within the 
context of a single essay. If so, then the fractal properties of 
keystrokes may also relate to the flexibility at those slower 
time scales.  

Another related area of investigation involves the use of 
fractal properties in applied settings. The results of the 

current study, if replicable, could inform applied educational 
settings such as those involving learning analytics and 
automated writing evaluation systems. The analyses we 
have presented here are algorithmically efficient enough to 
be implemented in real time. Real-time assessment of fractal 
properties is promising on several fronts. Real-time fractal 
properties could be monitored by instructors for early signs 
of writing difficulty and provide faster, targeted feedback. 
The same notion could apply within automated writing 
evaluation systems to augment automated feedback systems.  

Lastly, the methods we have presented are not limited to 
the analysis of keystrokes. The use of physiological 
measurements and various movement registration devices is 
becoming more common in applied literature on intelligent 
tutoring systems (D’Mello, Picard, & Graesser, 2007). 
Fractal analyses have proven beneficial in other settings 
involving physiological data, primarily because of 
relationship between fractality and flexibility (e.g., Chen et 
al., 2001; Ivanov et al., 2001). An open, empirical question 
is whether fractal analysis of physiological data may reveal 
flexibility in intentional forms of behavior. In conclusion, 
we have demonstrated that text production exhibits scaling 
properties like those observed in other cognitive 
phenomena. In doing so, we have also supported the idea 
that language is a complex, dynamical system involving 
coordination across many nested time scales. Going 
forward, our goal will be to further articulate time scales 
relevant to text production.  
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