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Abstract: The simplest extension of the supersymmetric standard model - the addition

of one singlet superfield - can have a profound impact on the Higgs and its decays. We

perform a general operator analysis of this scenario, focusing on the phenomenologically

distinct scenarios that can arise, and not restricting the scope to the narrow framework of

the NMSSM. We reexamine decays to four b quarks and four τ ’s, finding that they are still

generally viable, but at the edge of LEP limits. We find a broad set of Higgs decay modes,

some new, including those with four gluon final states, as well as more general six and eight

parton final states. We find the phenomenology of these scenarios is dramatically impacted

by operators typically ignored, specifically those arising from D-terms in the hidden sector,

and those arising from weak-scale colored fields. In addition to sensitivity of mZ , there are

potential tunings of other aspects of the spectrum. In spite of this, these models can be very

natural, with light stops and a Higgs as light as 82 GeV. These scenarios motivate further

analyses of LEP data as well as studies of the detection capabilities of future colliders to the

new decay channels presented.

Keywords: Higgs Physics, Supersymmetry Phenomenology.
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1. Introduction

Since 1934 when Fermi wrote down his theory of the weak interactions, we have singled out

the weak scale as an interesting scale for new physics. Within the last two decades, we have

finally reached this energy scale at LEP and the Tevatron, and with the LHC we should be

able to probe this scale thoroughly.

The most pressing question at the weak scale is the origin of electroweak symmetry

breaking (EWSB). Within the Glashow-Salam-Weinberg theory of weak interactions, it is

broken by a fundamental scalar doublet of SU(2), the Higgs field. In this framework, all

precision quantities are calculable and agree with present experimental limits.1

The major theoretical shortcoming of the standard model (SM) is the question of the sta-

bility of the Higgs mass. Scalars in general acquire quadratically divergent mass, suggesting

that new physics should cut off this divergence and appears near the weak scale. Numer-

ous solutions to this theoretical problem have been proposed, most notably supersymmetry

(SUSY).

1We are of course neglecting dark matter here, neutrino masses, the LSND anomaly and the NuTeV

anomaly, all of which are beyond the scope of this paper.
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2. Naturalness in the MSSM

In this paper we shall focus on supersymmetric solutions of the hierarchy problem. In these

theories the introduction of superpartners cancels the quadratic divergences of the standard

model with loops of opposite statistics particles, leaving only logarithmically divergent con-

tributions to the Higgs mass, proportional to the SUSY breaking soft mass parameters.

Despite its excellent success in controlling divergences from very high scales, in recent

years SUSY has become far more constrained, with superpartners pushed to higher scales,

resulting in tunings which are typically O(4%) in the minimal supersymmetric extension of

the standard model (MSSM).2 The reason for this is quite simple: the success of the LEP

program has pushed the lower limit on a SM Higgs boson above 114 GeV, a limit which

applies in a large region of the MSSM parameter space. In the MSSM, the Higgs has a mass

which has a tree level upper limit of mZ = 91 GeV. To achieve a mass of 115 GeV, one

must invoke large radiative corrections due to (s)top loops. At one loop, the correction to

the Higgs mass is [2]

δm2
h =

3

4π2
v2y4

t sin4 β log(mt̃rmt̃l
/m2

t ), (2.1)

requiring a stop mass of roughly 500 GeV. Unfortunately, such a large stop mass also feeds

into the soft mass squared of the Higgs,

δm2
Hu

= − 3y2
t

8π2
(m2

t̃l
+m2

t̃r
) log(Λ/mt̃), (2.2)

where Λ is the scale where the stop masses are generated. Even for low scale mass generation

such as gauge mediation, where Λ>∼ 16π2mt̃, this results in a radiative correction to the

up-type Higgs soft mass squared of O((400 GeV)2). This must then be cancelled against a

positive mass squared, for instance via a µ-term, in order to achieve the appropriate vev,

v = 174 GeV. This cancellation must be tuned at the level of 4% in order to achieve this. If

the stops are heavier, or the mediation scale is higher, the tuning becomes worse.

The root of this problem is the small quartic of supersymmetric models, which is fixed

by the electroweak gauge couplings. There are many proposals to enlarge the quartics, for

instance by adding terms in the superpotential [3–10], with non-decoupling D-term quartics

[?, 11,12], or through strong dynamics at an intermediate scale [13–15].

New Higgs Decays and Naturalness

An alternative approach is to evade the LEP limits indirectly. For instance, if the Higgs field

decays in a non-standard way, LEP may not have been as sensitive to the decay. This is not

as trivial as it may appear, in particular because limits on invisible Higgs decays are nearly

as strong as those of b-quarks. If these non-standard decays are present in nature, there must

be new states lighter than the Higgs boson, which themselves decay into ordinary SM fields.

The simplest possibility is the presence of an additional singlet superfield to which the Higgs

2For an excellent discussion of the details of fine tunings in SUSY models, see [1].
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can decay, and which then decays into SM particles, such as b-jets. In this vein, it has been

recently argued that within the NMSSM, where a singlet field S acquires a vev to supply the

µ-term of the Higgs sector, certain non-standard decays are possible, leading to more natural

theories [16].

However, there is still a strong need for additional analyses, for many reasons.

• New combined limits from LEP [17,18] exclude most of the generic parameter space of

these models. Typically, the decay h→ 2a→ 4b has been used to allow lighter Higgses.

However, new LEP combined analyses have basically raised the minimum Higgs mass

for this process to 110 GeV, nearly as strong as the limit on the standard model Higgs.

This raises the question of whether other non-standard decays can occur generically, to

which LEP analyses would have been less sensitive. We will discuss these limits further

in the next section.

• The NMSSM is not a fully general scenario. In the NMSSM, the singlet acquires a

vacuum expectation value to generate a µ-term. One typically requires that this be

the true vacuum of the theory, and additionally makes assumptions of the form of the

theory in the ultraviolet (UV). All of these things can distract from – and are beside

the point of – the basic phenomenological questions relating to Higgs decays.

• The sensitivity of mZ to UV parameters is not the only measure of naturalness in these

theories. Although a significant reason to consider these decays is precisely to ameliorate

this tuning, one often ends up with additional tunings in order to evade experimental

limits. Thus, while mZ may be relatively natural other elements of the spectrum may

be highly tuned, and necessary, to evade experimental limits.

• The parameter space of new operators has not been fully explored. In the MSSM, the

full set of soft breaking operators is considered. However, in adding a singlet to the

theory, one can consider both the effects of D-terms in the supersymmetry breaking

sector, and non-degenerate soft masses for the scalar and pseudoscalar components of

the singlet, both of which can have significant phenomenological consequences.

• The sensitivity of the decays of the pseudoscalar to the presence of new fields has

essentially been ignored within the context of supersymmetric theories. Such fields can

naturally induce the decay of the pseudoscalar to two glue jets, which have far weaker

constraints.

There are two important additional points to be made with regard to naturalness. The

first is: what do we mean by tuning in the scenarios we are considering? Since we are interested

in the low-energy phenomenological theory, it is impossible to quantify the sensitivity of mZ

to the UV parameters. However, we know that the tuning of mZ arises in general due to the

large values of the stop squark masses. Therefore, we shall use the stop masses as a proxy for

this tuning. However, there is typically a tuning necessary to achieve the proper spectrum for
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the lighter scalar states, and this is usually the most severe tuning in the models. Therefore,

we shall quote both stop masses, as well as the scalar mass spectrum tuning for every model

considered.

The second point is: how natural is it to include a soft supersymmetry breaking operator,

without an associated superpotential operator? In particular, how reasonable is it to include

a trilinear scalar potential A-term operator without associated Yukawas? This question has

been studied previously in the context of sterile neutrino masses in supersymmetry [19, 20].

In fact, if there is a SUSY breaking field which carries a charge, whether R-charge or Peccei-

Quinn charge, it is quite natural for these operators to appear without an associated superpo-

tential term. The converse, however, is not true. The presence of the superpotential term will

radiatively generate the soft term at a minimum at the loop-suppressed level. Consequently,

we will insist on technical naturalness, that these soft operators are present at least at this

small level.

In lieu of these points, we will pursue a phenomenological study of the effects of singlets

on the decays and properties of Higgs bosons. We will focus on decay modes that have not

been considered previously, including final states with 6 and 8 particles. We will often be

studying situations when both the new scalar and pseudoscalar states are lighter than the

Higgs, and the Higgs is light enough to have been produced through Higgs-strahlung at LEP,

although we will consider other scenarios. By also focusing on the relevant parameters, we

hope to clearly elucidate the effects of mixing of the singlet with the Higgs, and the effect on

the mass of the Higgs boson.

Since this paper has both basic phenomenological points, as well as points related to model

building, we have attempted to lay out this paper so that one who is interested principally

in the phenomenology can still learn the relevant points. Sections headed “Model Building”

are independent, and the paper can largely be read without those.

The layout of the paper is as follows: in the next section, we will review existing limits on

Higgs decays, both for SM-like and non-SM-like Higgs bosons. In section 4, we will discuss the

effects of singlets on Higgs physics. First, we show how non-standard decays into scalars can

arise and dominate the Higgs decay width. We will also point out how non-standard decays

allow a larger mixing with the Higgs, this mixing can raise the mass of the Higgs boson

considerably without resorting to radiative corrections. In its “Model Building” subsection,

we present the relevant operators that induce the Higgs mixing and decays. In section 5, we

will sketch out the spectra and non-standard decay modes which are consistent with existing

LEP bounds, and lead to a more natural parameter space of the theory. In its “Model

Building” subsections, we discuss model realizations of these different spectra and decay

scenarios. In doing so, we can assess more simply the degree of tuning required to satisfy

the experimental constraints. In section 6, we summarize the presented benchmark points

and their relevant phenomenology for future collider experiments. In section 7, we discuss

additional directions worthy of further investigation and conclude. In particular, we suggest

some new analyses on LEP data which might be useful when considering these scenarios.

Finally, in appendix A some calculational results for scalar trilinears are summarized.
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3. Summary of LEP limits on Higgs

Most particle physicists are familiar with the LEP2 95% CL limit on the SM Higgs of mh ≥
114.4 GeV, but LEP has also produced a multitude of other limits on Higgs physics.

The limits that are most applicable to this work are the 95% CL limits on the so called

ξ2 parameters (often also referred to as C2). We are analyzing a SM-like Higgs, which means

that Higgs-strahlung production of the Higgs is close to the SM rate.3 Then depending on the

assumed process of Higgs decay h→ X, the defined limits are on ξ2 ≡ σ(e+e−→hZ)
σ(e+e−→hZ)SM

BR(h→
X). We now list the different limits that LEP has analyzed, based on Higgs-strahlung and

the given Higgs decay process (note: all stated mass limits assume ξ2 = 1):

• Model Independent Decays: This is the most conservative limit on the Higgs boson. It

assumes that the Higgs is produced with a Z boson and looks for electrons and muons

that reconstruct to a Z mass, while the Higgs decay process is unconstrained (by theory

or the event analysis). The only study of this sort is done by OPAL giving a limit of

mh ≥ 82 GeV, see Fig. 11 of [21]. Unfortunately, no other collaboration has released

such an analysis.

• Standard Model Higgs: LEP-wide limits on the SM Higgs are given in Fig. 10 of [22],

requiring mh ≥ 114.4GeV. This study also includes the strongest limits on h → bb̄, τ τ̄

rates.

• Invisible Decays: In this analysis, the Higgs is assumed to decay into stable (on collider

length scales) neutral particles. The implication is that non-standard Higgs decays have

to primarily decay into visible particles. Both L3 and DELPHI have performed such

an analysis [23, 24], but the most stringent constraints are from an older preliminary

LEP-wide analysis that has a limit mh ≥ 114GeV, see Fig. 4 in [25].

• 2 Photon Decays (aka Fermiophobic): Fermiophobic typically means a Higgs with stan-

dard couplings to gauge bosons, but suppressed couplings to fermions, allowing decays

into WW ∗, ZZ∗ as well as photons. If all decay modes are open, there is a limit of

mh ≥ 109.7 GeV, while decays exclusively to two photons have a limit ofmh ≥ 117 GeV.

See Fig. 2 of [26], which is the LEP-wide analysis.

• 2 parton hadronic states (aka Flavor-independent): In this type of analysis, any two jet

decays of the Higgs are allowed. The analyses use the jets that are least sensitive to the

candidate Higgs mass and details of the Z decay. Each LEP collaboration has done a

study [27–30]. However, the strongest constraint is the preliminary LEP-wide analysis

of mh ≥ 113 GeV, see Fig. 2 of [31].

3More generally, we will usually be taking the decoupling limit, where the lightest Higgs state is produced by

Higgs-strahlung, but not in associated production with the CP-odd A0. Thus, constraints from Higgs-strahlung

are the main concern in these scenarios.
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• Cascade Decays: These are the constraints that are most relevant for the present study,

where cascade decays mean that the Higgs decays into two scalars φ and those scalars

decay into X (i.e. h → 2φ → 2X). OPAL [32] and DELPHI [33] looked at b decays

(X ≡ bb̄), see their Fig. 12’s and a new LEP-wide analysis [17,18] has constrained both

b and τ decays, with the exclusion plots given on page 8 in the first reference. For

h→ 2φ→ 4b the limits are now 110 GeV for a Higgs produced with SM strength. For

other intermediate scalar decays, φ→ 2g, cc̄, τ τ̄ , the best model independent exclusions

are from OPAL’s analysis when the mass of the scalar is below bb̄ threshold, which is

given in Fig. 7 of [34] (note: the analysis is restricted for Higgs masses in the range

45 − 86 GeV).

4. Singlets and the MSSM

As we have previously said, the simplest extension of the MSSM is to add a SM singlet

superfield S, containing a CP-even scalar s, and a CP-odd pseudoscalar a.4 The dominant

phenomenological effects of this new field are:

• New decays for the Higgs boson. If one or both of the new states are lighter than half

the Higgs mass, decays h→ 2s and h→ 2a are possible, followed by s→ X or a→ X.

• Light states can mix with the Higgs boson. If a light state mixes with the Higgs boson,

it can push the mass of the Higgs boson up without large radiative corrections. This is

at the cost of having a new light state which can be produced through brehmstrahlung

off a Z, for which there are stringent constraints.

We first show that non-standard decays can easily dominate over SM decays. In the case

of cascade decays, for a Higgs produced with SM strength through Higgs-strahlung, the new

process must have a width at least5 Γh→2a
>∼ 4 × Γh→2b. With a term in the Lagrangian

cv√
2
ha2 (4.1)

the width to two scalars is [35]

Γh→2a =
c2v2

16πmh

(

1 − 4m2
a

m2
h

)1/2

(4.2)

which one can compare with the dominant width of the Higgs to b quarks (in this mass range)

Γh→bb̄ =
Ncm

2
b

16πv2
mh

(

1 − 4m2
b

m2
h

)3/2

∼ .003 GeV
( mh

100 GeV

)

. (4.3)

4More precisely, the CP-even properties of a are not determined until its interactions and mixings are

given. For example, it can pick up a CP transformation if it mixes with a scalar with fixed CP properties (the

CP-even h0, H0 or CP-odd A0) or couples to fermions/gauge bosons in a certain CP fashion. On the other

hand, in all cases s mixes with h0 and thus is always CP-even.
5This condition is not sufficient if the scalar a decays into b quarks, as will be discussed later in section 5.1.
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Taking into account higher order effects, a more accurate approximation for the Higgs decay

width to SM particles in the mass range of interest is (using HDECAY [36])

Γh→SM = (2.34 × 10−5mh + .206MeV) (4.4)

For a 100 GeV Higgs, in order for scalar decays to sufficiently dominate, one must have

cv√
2
>
∼ 5 GeV (4.5)

The required size of the trilinear indicates that non-standard cascade decays can easily dom-

inate over standard Higgs decays.

One can also study the effects of mixing with a singlet on the Higgs mass in a model

independent fashion. In the presence of mixing, the mass eigenstates s̃ and h̃ will be related

to the interaction eigenstates through a mixing matrix

(

s̃

h̃

)

=

(

cos θ − sin θ

sin θ cos θ

)(

s

h

)

(4.6)

Similarly for the mixing in the CP-odd sector, the mass eigenstates ã and Ã are related to

the interaction eigenstates by

(

ã

Ã

)

=

(

cosφ − sinφ

sinφ cosφ

)(

a

A0

)

(4.7)

If the MSSM mass of the Higgs is m2
mssm, then the mass eigenvalue after mixing with the

lighter singlet is

m2
h̃

=
m2

mssm −m2
s̃ sin2 θ

cos2 θ
, (4.8)

where ms̃ is the mass of the mass eigenstate s̃. This increase in mass is only through mixing

and not through radiative corrections.

In the subsection below, we discuss some of the operators which can be used in building

models with certain phenomenologies. Those readers who are only interested in the descrip-

tions of the phenomenology can proceed to section 5.

Model Building: New Operators with Singlets

The introduction of a singlet superfield allows us to introduce a number of new operators in

the theory. These operators have the effects of introducing into the theory masses, mixing,

and decays of the states. The operators are listed in Table 1. We will describe here the

effects of these operators when they appear singly. Clearly, the effects of the operators do not

necessarily add linearly, particularly when vevs turn on, but it is useful to understand their

effects individually. In many scenarios this is sufficient to understand the phenomenology and

we will point out the situations where there are interference effects from multiple operators.
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δ2s XX†(S + S†)2D mass for s

δ2a XX†(S − S†)2D mass for a

mD (W ′
αW

αS)F singlino (Dirac) mass, mixes s and h

allows h→ 2s decays, allows Z s production

λh (SHuHd)F (with mu term) mixes s and h, s and a masses,

singlino (Dirac) mass, allows h→ 2s, h→ 2a decays

As (XS3)F + h.c. Real: (with 〈s〉) mass for s s→ 2a decays, 3 s coupling

Imaginary: a→ 2s decays, 3 a coupling

Ah (XSHuHd)F + h.c. mixes s with H, a with A0, a decays (due to mixing)

with mixing, allows h→ 2s, 2a decays (esp. large tan β)

m2
CP XX†(S + S†)(S − S†)D Mixes s and a, allows a decays (due to mixing)

M−1
Q (SQQ̄+MQQQ̄)F Allows s and a decays to gluons and photons

Table 1: Operators involving the Singlet

δ2s , δ
2
a – Scalar and Pseudoscalar Soft Masses

The operators arising from Kähler potential terms, δ2s and δ2a, determine the spectrum of the

theory by adding mass terms to the Lagrangian

Lδ2
s

= −δ
2
s

2
s2 Lδ2

a
= −δ

2
a

2
a2. (4.9)

Most previous analyses include equal soft masses for the scalar and pseudoscalar, although

there is often no a priori symmetry reason to do so. All other scalar fields in the MSSM

carry a gauged U(1), forcing a degeneracy which is not necessary for singlets. Because our

interests are phenomenological, we allow different masses, and thus more interesting spectra.

In particular, this allows spectra of the form mh > 2ms > 4ma, leading to events with many

final state jets, b-quarks and photons, produced through cascades.

The tuning of these theories with singlets, when mh < 114 GeV, is usually encoded in

how tuned these additional masses must be in order to achieve a proper spectrum, and not

in the sensitivity of mZ or the masses of the stops. When we refer to these operators, a value

of δ2s or δ2a of ±(20GeV)2 refers to a contribution of ±(20GeV)2 to the scalar or pseudoscalar

mass squared.

mD – Supersoft Operator

mD is the so-called “supersoft” operator [37] and arises from a SUSY breaking spurion in the

superpotential. This operator is particularly interesting, and often neglected. If the hidden

sector has a U(1)′ which acquires a D-term expectation value, it has no effect in the MSSM,

in that all soft operators can be generated by F-term breaking. On the other hand, in the
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presence of a singlet, D-term breaking becomes important through the introduction of this

new operator [38]. The Lagrangian terms generated are

L =

∫

d2θ
W ′

α

M
Wα

Y S + h.c.→ −1

2
(mDs+DY )2 (4.10)

where DY is the usual hypercharge D-term, DY =
∑

i gY qiφ
∗
iφi, and W ′

α

M = θαmD. Although

it is supersymmetry breaking, it does not feed into the RG flow of any other soft operators,

hence the term supersoft. The principal effects are to produce a mass for s (but not a), and a

coupling shh∗ which is proportional to the new contribution to the s mass. It also generates a

Dirac mass for the Bino with ψS equal to mD/2. When we refer to a value of mD of 20 GeV,

this implies a contribution to the scalar mass squared of (20GeV)2, and the corresponding

trilinear term.

This operator directly affects the physics of electroweak symmetry breaking and the

properties of the Higgs. However, it is simple to perform the same minimization of the Higgs

potential in the presence of this term. Let us consider the usual MSSM neutral Higgs potential

with this contribution.

V = (|µ|2 +m2
Hu

)H2
u + (|µ|2 +m2

Hd
)H2

d − (bHuHd + h.c.)

+
g2

8
(H∗

uHu −H∗
dHd)

2 (4.11)

+
1

2

[

mDs+
gY

2
(H∗

uHu −H∗
dHd)

]2
+

∆2
s

2
s2

where ∆2
s encodes other contributions to the s mass, such as from δ2s .

When electroweak symmetry is broken, there is a linear term for s, and so we shift s by

an amount

s→ s+
gYmDv

2 cos 2β

2(m2
D + ∆2

s)
(4.12)

The Higgs potential (neglecting s which has already been shifted to its appropriate minimum)

now reads

V =

[

|µ|2 +m2
Hu

+
g2
Ym

2
Dv

2 cos 2β

4(m2
D + ∆2

s)

]

H2
u +

[

|µ|2 +m2
Hd

− g2
Ym

2
Dv

2 cos 2β

4(m2
D + ∆2

s)

]

H2
d (4.13)

−(bHuHd + h.c.) +
(g2 + g2

Y )

8
(H∗

uHu −H∗
dHd)

2

So we see the presence of the s vev amounts to a redefinition of the values of m2
Hu

and m2
Hd

.

Thus, we can perform the usual minimization and diagonalization of the MSSM Higgs fields.

The new trilinear couplings induce a mixing between the s and the other Higgses, which is

encoded in the mass matrix (in the (s h H) basis)






m2
D + ∆2

s
gY mDvsα+β√

2
− gY mDvcα+β√

2
gY mDvsα+β√

2
m2

h 0

− gY mDvcα+β√
2

0 m2
H






(4.14)
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Here, as we dial up m2
D, which is always positive, we increase the mixing. The values of m2

h

and m2
H are the usual ones from the MSSM, in particular with m2

h bounded at tree level to

be below m2
Z .

Since sα+β ≡ sin(α+β) > cos(α+β) ≡ cα+β generally, and m2
H > m2

h, we can just focus

on the 2 × 2 mixing submatrix between s and h. The mass eigenstates are related to the

interaction eigenstates as given in (4.6). We are principally interested in the trilinear terms,

especially the s̃2h̃ term, which allows h̃ → 2s̃ decays. There are two contributions to this

term, one arising from the new supersoft operator, once we have mixed the CP-even states,

and one from the usual D-term trilinears, once we have mixed. The coefficients of these terms

are given in the appendix.

λhSHuHd

λh is a commonly studied superpotential operator, as it induces an additional Higgs quartic

at small tan β which can raise the tree level Higgs mass [8–10]. After electroweak symmetry

breaking, it generates masses for a and s of size λhv. With these contributions the potential

is given by

V = (|µ|2 +m2
Hu

)H2
u + (|µ|2 +m2

Hd
)H2

d − (bHuHd + h.c.) +

(g2 + g2
Y )

8
(H∗

uHu −H∗
dHd)

2 + λ2
h(HuHd)(HuHd)

∗ (4.15)

+
λ2

h

2
(s2 + a2)(H∗

uHu +H∗
dHd) +

√
2λhµs(H

∗
uHu +H∗

dHd) +
δ2s
2
s2 +

δ2a
2
a2

Note the explicit µ-term for the Higgses (and the resulting trilinears), this is to be compared

to the NMSSM where the vev of S gives the µ-term. However, absent any additional mass

terms for S, i.e. δs, we can simply shift S → S −
√

2µ/λh, removing the entire µ term. In

the presence of of additional soft masses for s there is an s-vev of,

〈s〉 = −
√

2λhµv
2

δ2s + λ2
hv

2
. (4.16)

The effect of this is to replace µ by an effective µ, which we denote µ̃, where

µ̃ = µ

(

δ2s
δ2s + λ2

hv
2

)

. (4.17)

Through the new quartic and trilinear terms there are mixings between s and the MSSM

Higgses, giving a mass matrix





λ2
hv

2 + δ2s −2λhvµ̃sα−β 2λhvµ̃cα−β

−2λhvµ̃sα−β m2
h 0

2λhvµ̃cα−β 0 m2
H



 (4.18)

Notice, however, that in the absence of additional soft masses for s (δ2s = 0) the mixing

vanishes, and increases as we deviate from zero. The presence of s-h mixing allows s̃ → 2a
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decays. It is possible for h̃ → 2s̃, 2a decays to occur with equal amplitude, for instance at

small mixing. However, it is also possible to arrange for λh to give only one dominate decay

of h̃. Finally, remember that the presence of λh naturally requires the presence of Ah, at least

at a loop-suppressed level.

AsS
3 + c.c.

Another possible operator to add is a soft trilinear for S in the potential, AsS
3 + c.c.. Alone

this has no effect on the Higgs, although it does give equal but opposite contributions to s

and a soft masses with an S vev and also induces s→ 2a decays. However, if there is another

source of s − h mixing, As can generate h̃ → 2s̃ and h̃ → 2a decays as well as the original

s̃→ 2a. The effective potential with this contribution is,

V = (|µ|2 +m2
Hu

)H2
u + (|µ|2 +m2

Hd
)H2

d − (bHuHd + h.c.) + (4.19)

(g2 + g2
Y )

8
(H∗

uHu −H∗
dHd)

2 +
As√

2
(s3 − 3sa2) +

δ2s
2
s2 +

δ2a
2
a2

Since this operator does little of interest by itself it must be considered in tandem with

some other operator that produces s − h mixing and an s-vev. One combination of note is

mD and As. We can analyze the general case under the simplifying assumption, as above,

that the mixing involves mainly s and h and not H, so the mass and interaction bases are

related as in Eq. (4.6).

The relevant trilinears are given in the appendix. As in the case of λh, at small mixing

h̃→ 2s̃ and h̃→ 2a have equal amplitudes. The size of the s-vev 〈s〉, generated by the mixing

operator will be corrected by As but if As 〈s〉2 ≪ m2
s 〈s〉, as will often be the case, its effects

can be ignored.

AhSHuHd + c.c.

The potential with Ah included is,

V = (|µ|2 +m2
Hu

)H2
u + (|µ|2 +m2

Hd
)H2

d − (bHuHd + h.c.) + (4.20)

(g2 + g2
Y )

8
(H∗

uHu −H∗
dHd)

2 + (AhSHuHd + c.c) +
δ2s
2
s2 +

δ2a
2
a2

After EWSB this generates a vev for s,

〈s〉 = −Ahv
2

√
2δ2s

sin 2β (4.21)

This gives a correction to the b-term for the MSSM Higgses, but still allows the usual diago-

nalization, leading to a mixing matrix of the form,





δ2s Ahvcα+β Ahvsα+β

Ahvcα+β m2
h 0

Ahvsα+β 0 m2
H



 (4.22)
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Unlike the previously discussed operators, Ah mixes the CP odd component of S with A0.

The mixing matrix, in the basis (a A0), is

(

m2
a −Ahv

−Ahv m2
A

)

(4.23)

The mass eigenstates are related to the interaction eigenstates as given in (4.27). This mixing

of a with A0 means that a can decay to 2 b-quarks or 2 τ ’s if its mass is below about 10 GeV.

With no additional terms in the Lagrangian, e.g. M−1
Q ,m2

CP = 0, this is the only decay path

of a. The relevant trilinears are given in the appendix.

m2
CP s a – CP Mixing Mass

The operator m2
CP is a CP mixing mass which mixes the would-be pseudoscalar a with the

would-be scalar s. This operator can be important in allowing decays of the a when M−1
Q

and Ah are zero and can be particularly important when decays h→ 2s would dominate the

Higgs decay, but are kinematically forbidden. In this case, mixing due to m2
CP can make

h→ sa the dominant decay mode.

We should point out that this operator does not, by itself, violate CP. As mentioned

earlier, without any other interactions, there is nothing to prevent us from assigning CP-even

transformation properties to both a and s. This remains true with the inclusion of As or the

supersoft operator mD in the potential. Only when a couples to fermions or gauge bosons as a

pseudoscalar, or mixes with the A0 is a CP-odd property forced upon it. The scenarios which

we will study will not have such a mixing and hence no actual CP violation is introduced into

the theory, making such a term safe from edm searches, for example.

One requires either mD or λh to induce Higgs decays (through direct couplings or mix-

ings). In the case that λh is present, h→ 2a is already significant, so h→ as typically cannot

compete. However, in the mD case, where a has no couplings, such a scenario is viable. We

thus consider the mass matrix (in the (a s h)) basis)





δ2a m2
CP 0

m2
CP m2

D + δ2s
gY mDvsα+β√

2

0
gY mDvsα+β√

2
m2

h



 (4.24)

Because the mixing will allow the a to be produced through a-strahlung from the Z, LEP

limits become very severe. Ultimately, this implies that m2
CP must be somewhat small, and

for our purposes here, we will treat it as a perturbation. Ultimately, it will be necessary

to calculate mixings precisely, but for estimates and intuition, it is easiest to study in the

perturbative limit. We can perform a rotation in the sh sector by an angle θ, which may be

large. This leaves the following matrix





m2
a m2

CP cos θ m2
CP sin θ

m2
CP cos θ m2

s̃ 0

m2
CP sin θ 0 m2

h̃



 (4.25)
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The mass matrix can then be diagonalized by a series of rotations

U = R(θsh)R(δas)R(δah) (4.26)

where θsh = θ diagonalizes the sh mass matrix, and the R(δi) are perturbative rotations

where sin δas = m2
CP cos θ/(m2

s̃ −m2
a) and sin δah = m2

CP sin θ/(m2
h̃
−m2

a), where m2
s̃,h̃

are the

s̃s̃ and h̃h̃ entries after the θ rotation.

The relevant mixing angle which enters into ã-strahlung is

sin θah = sin θ cos δah sin δas − cos θ sin δah ≃ m2
CP sin θ cos θ

(

(m2
s̃ −m2

a)
−1 − (m2

h̃
−m2

a)
−1
)

.

(4.27)

M−1
Q – Fermiophobic Decay Operator

If the singlet superfield couples to new vector matter, there are loop induced decays of the

scalars into gauge bosons. The presence of the new fields corrects the beta function of the

SM gauge groups, with a superpotential coupling

λQSQQ̄+MQQQ̄ (4.28)

the gauge kinetic term becomes

∫

d2θ

(

1

2g2
+

bi
16π2

log(mQ + λQS)

)

WαW
α ≃

(

1

2g2
+

bi
16π2

M−1
Q S

)

WαW
α (4.29)

where Wα is the gauge field strength, and M−1
Q = λm−1

Q . This results in a coupling between

s and two gauge fields, as well as a and two gauge fields which explains why we refer to this

as a fermiophobic decay operator. Because s generally mixes with the Higgs, it is difficult for

a loop suppressed decay to compete. However, a, which mixes with the often heavy A0, and

often through the loop suppressed operator Ah, can have its dominant decay mode through

this operator. Expanding out the expression above, we find a term in the Lagrangian

L ⊃ c(aF aF̃ a) ≡ c(a ǫµνρσF a
µνF

a
ρσ)/2 (4.30)

This induces a decays into photons or gluons, with the decay width

Γc =
c2

4π
m3

aND (4.31)

where ND is the number of “colors” in the final state (i.e. 1 for photons and 8 for gluons).

With the convention above,

c =

√
2M−1

Q

64π2
big

2
i =

√
2M−1

Q

16π
biαi (4.32)
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where i labels the gauge group and bi is it’s beta function where dgi

d log µ = bi
g3

i

16π2 . In the

specific case of a 5 + 5̄ and higgsinos

D,Dc L,Lc H̃u, H̃d

b3 1 0 0

bQ 2/3 2 4/3

(4.33)

We can compare the decays into gluons and those into b quarks through mixing,

Γglue/Γbb̄ =
(N2

c − 1)c2m3
a/(4π)

(mb/v)2Nc(sinφ tan β)2
√

1 − 4m2
b/m

2
a(ma/16π)

. (4.34)

which for the particular case of a D,Dc, becomes

Γglue/Γbb̄ =
1

4π2

α2
3

Nc(sinφ tan β)2
√

1 − 4m2
b/m

2
a

(

mav

mbMQ

)2

(4.35)

For decays to glue to dominate over b’s, one requires small mixing angles in the CP-odd sector,

which can be achieved simply with loop suppressed Ah, or a heavy A0. Alternatively, one

can have lighter D,Dc squarks, for example, with the values α3 = .12,ma = 40GeV,MQ =

330GeV one requires (sin φ tan β)<∼ .05 to get comparable rates.

When M−1
Q induced decays for ã dominate, we can get an estimate on the branching

ratios into gluons and photons in the case of S coupling to a SU(5) complete multiplet. For

this, the branching ratios are (2g, 2γ) = (.99, 3.8 × 10−3). If the Higgs dominantly decays

into 2ã, this gives branching ratios h̃→ 2ã→ (4g, 2g 2γ, 4γ) of (.99, 7.6 × 10−3, 1.5 × 10−5).

The channels with photons may be enhanced by including λh which only induces decays into

photons, via Higgsino loops.

Other Operators

Note that we ignore here the effects of a µ-term for the S field, and a superpotential S3 term.

Since we are mostly concerned with the scalar sector of the theory, and aren’t concerning

ourselves with the cosmological implications at this time, the mass of the singlino is irrelevant

for our purposes. The only effect of µS is then to generate an S∗HuHd term in the potential

in a cross term with λh. This has the same phenomenological effect as Ah, so including µS

should not change the basic outcome of our study. Including S3 in the superpotential can

induce invisible decays of the Higgs to a singlino, but these are highly constrained and not

interesting for our purposes. It can also induce a term HuHdS
∗2 in the potential, but this

acts simply like Ah in the presence of an s-vev, and like λh in the presence of an h-vev in

allowing h→ 2a, 2s decays. Hence, we do not consider either operator here.

– 14 –



5. Scenarios

Although we have expanded the MSSM only by a single superfield, there is a remarkably large

number of new scenarios of Higgs decays which arise, with large variations in the number of

particles in the final state, as well as types of particles in the final state.

We can group the scenarios, in increasing order of complexity, into three categories:

• The Higgs is mixed heavy. In the presence of large mixing, the Higgs mass can be

increased significantly, in spite of small radiative corrections. In this scenario, the

Higgs is at least 114 GeV in the case of SM-like decays, or 106 GeV in the case of

cascade decays to 4 b quarks.

• The Higgs decay is dominated by a single stage decay. Here h→ 2a→ 2X or h→ 2s→
2X, where X is composed of a pair of standard model fields. As above, if X = 2b, one

requires mh >∼ 106GeV, however, if X = 2τ or X = 2g, the Higgs can be considerably

lighter.

• The Higgs decay is dominated by a two-stage cascade. That is h → 2s → 4a → 4X or

h → as → 3a → 3X. Such two stage cascades generally do not occur if one restricts

oneself to the scenario of the NMSSM. Here X = 2τ, 2b, 2g, resulting in 6 and 8 particle

final states, which have not been constrained by LEP analyses other than the model

independent ones.

Additionally, we can split the scenarios further into two cases: “large-mixing” and “small-

mixing”. We define these as follows: the small mixing case arises when the light CP-even

singlet has a sufficiently small Higgs component that s-strahlung limits do not constrain it,

even with conventional decays. In the large-mixing case, the singlet has sufficient Higgs

component that non-standard decays are needed to evade limits.

With large mixing case, there are three real scalars that we are concerned with: h, s,

and a. These are defined to be the field which couples to the Z in Higgs-strahlung, the field

which mixes with the Higgs, and the field which does not mix with the Higgs, respectively. In

many cases s can be thought of as the scalar and a as the pseudoscalar. The mass eigenstates

are h̃, s̃ and ã, which are the fields mostly made of the untilded field of the same character,

and usually the heaviest, intermediate, and lightest mass eigenstates, respectively. As a note

of caution, we will often refer to the h̃, s̃, ã still as the Higgs, CP-even singlet and CP-odd

singlet and have tried to ensure that the meaning is clear given the context.

First, we will discuss the necessary operators in all scenarios and then we will proceed to

study the three basic scenarios, including the existing limits and model building possibilities.

Model Building: Necessary Operators in All Scenarios

The basic requirements on any viable scenario are threefold, and can be satisfied with various

combinations of operators. The requirements [operators satisfying the requirements] are:
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• ã must decay [Ah, m2
CP , M−1

Q ]: This is not absolutely true, for instance if ã is never

produced, but almost always is.

• h̃ must decay into 2s̃ or 2ã or ãs̃ [mD, λh, As (+ mixing), Ah]: For the mass range we

are interested in, these non-standard decays for h̃ must exist.

• s̃ must decay to 2ã [λh (+ mixing), As, Ah (+ mixing), m2
CP ]: When s̃ is light (i.e.

<∼ 80 GeV) and in “large-mixing”, constraints from SM decays are usually quite strin-

gent. Conceivably, s̃ could decay directly primarily to τ ’s if the mixing is small enough,

but in general, the cascade decays for s̃ are necessary to evade LEP limits, unless it is

heavier than h̃.

5.1 Higgs Decays Through a Single Stage Cascade Into b Quarks

As we have already described, the only means in the MSSM to push up the mass of the Higgs

above LEP limits is to introduce very heavy top squarks, which then introduce tunings into

the theory. However, as described in section 4, if the Higgs mixes with a lighter field s, the

mass of the field h̃ which is produced strongly through h̃-strahlung from a Z can have its

mass pushed up, simply by mass mixing, without introducing unnaturally heavy top squarks.

However, this mixing allows the lighter field to be produced weakly through s̃-strahlung,

trading off the heavier h̃ for stronger limits on the lighter s̃.

Now that s̃ contains a Higgs component, we must consider LEP limits on it. With

standard model decays for s̃, the limits are typically sin2 θ <∼ 0.03. The large mixing necessary

to achieve changes in the h̃ mass requires that s̃ decays dominantly through cascades, in this

case, one typically requires sin2 θ <∼ 0.2 if the cascades end in b quarks for lighter s̃ and

sin2 θ <∼ 0.4 for heavier s̃. These, in general, also imply that the dominant decays of the Higgs

are non-standard.

If these decays are h̃ → 4τ or h̃ → 4g, then the Higgs can be considerably lighter than

115 GeV, and it is essentially unnecessary to push the Higgs mass up. These scenarios will

be discussed in section 5.2.

We show the allowed regions (dark and light shaded) with h̃ decays to four b jets in

figures 1a and 1b. In these plots, we assume a value for ma > 12GeV (where kinematics no

longer strongly favor decays to τ ’s) where constraints are strongest. We show the regions

which are allowed when accounting for constraints on s̃ → 4b decays (light and dark shaded

regions), assuming a typical BRa→2b ≃ 0.87. For comparison, we also plot the region where

mh > 110 GeV, where h→ 4b is essentially unconstrained (dark shaded regions).

These plots have assumed a 100% branching ratio for h → 2a, so the only applicable

limits are the h → 4b exclusions given in the LEP-wide analysis [17, 18]. However, it is an

important question what the LEP constraints are on a scenario with both h→ 2b and h→ 4b

rates. In a recent paper on these decays in the NMSSM [39], the authors only required that

the h → 2b (4b) rate be consistent with the LEP h → 2b (4b) exclusions, thus they assumed

that these analyses are independent of each other. However, upon closer inspection of the

details of the analyses, it appears such an approach may be too generous.
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Figure 1: The allowed regions in sin2 θ-ms̃ space, where ms̃ is the mass of a light singlet mixing

with the Higgs an amount sin θ. The plots are shown with
√
mt̃1

mt̃2
= 270 GeV (a) and

√
mt̃1

mt̃2
=

300 GeV (b). The shaded regions (combined dark and light) are allowed from the combined LEP

limits, while the dark shaded regions additionally have mh̃ > 110 GeV.

In the higher mass (mh̃ > 90GeV) range, the combined LEP analyses are dominated by

OPAL [32] and DELPHI [33]. A close reading of these papers suggests that the 2b and 4b

decays of the Higgs are generally reconstructed together. For instance, in studying e+e− →
Zh, in the Z → νν analysis by OPAL, the neural nets trained to capture to the 4b decays

of the Higgs are also reasonably efficient in capturing the 2b decays. In the all jet (Z → jj)

analysis, OPAL uses the same analysis procedure for both 2b and 4b, forcing the six jet

event into a four jet topology via the DURHAM algorithm, hence this analysis efficiently

reconstructs both types of decays. As for DELPHI, they clearly state that the analyses are

not independent of each other [40], and both decays are reconstructed via the same analysis

procedure.

Beyond efficiencies, there are still differences between 2b and 4b events. For example, the

distribution of discriminating variables will be broader in 4b decays (e.g. the reconstructed

Higgs mass), making it difficult to know how to constrain the scenario when there are signif-

icant levels of both 2b and 4b decays. If 2b and 4b signals were indistinguishable, the correct

limit would be
ξ2
4b

ξ2
4b,bd

+
ξ2
2b

ξ2
2b,bd

< 1, where ξ2bd is the experimental bound of the individual anal-

ysis. As an attempt to combine these limits, when there are O(1) rates for 2b and 4b decays,

in addition to applying the individual limits, we will also require that

ξ22b+4b ≡
ξ24b

ξ24b,bd

+
ξ22b

ξ22b,bd

<
√

2 (5.1)

This additional requirement, on the effective ξ22b+4b, accounts for the redundancy of the analy-

ses, and which should forbid situations where the naive combination of analyses is significantly
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excluded. Thus, we find it to be a good compromise between the assumptions of complete

independence/interdependence (ξ22b+4b ≤ 2, 1 respectively) of the separate analyses. Note

that one can also interpret this as only requiring a 99.5% CL limit, if the two decays give

indistinguishable events. More rigorously, a combined analysis should be done to find the

proper constraints.

For our purposes here, where we take the branching ratio h → 2a to be one, the results

are relatively simple. Even with relatively light stops (270 GeV), the small suppressions of the

Higgs couplings due to mixing are sufficient to allow such a Higgs to have been undetected.

However, at this mass, this is achieved by strongly mixing and pushing the physical Higgs

above 110 GeV(out of the LEP constraints). At mt̃ = 300 GeV, a region opens up below 110

GeV, but the overall allowed space is still quite narrow. Moving to higher Higgs mass (roughly

325 GeV stops) the model independent parameter space opens up significantly (about twice

as large as at 300 GeV). However, even with 300 GeV stops, the tuning of mZ is already

expected to be O(15%), which begins to reintroduce fine tuning from another direction.

Note that in all of these cases we are considering s̃ to be lighter than h̃. The reason for

this is simple: although mixing the Higgs with a heavier singlet can suppress couplings of

the h̃, if it is heavier than the Higgs, the effect is to push the mass of h̃ down, aggravating

naturalness issues. Thus, we should view a light s̃ as a natural consequence of this model with

mh̃ ∼ 110 GeV. Such a scenario is somewhat distinct from previously discussed scenarios

[39,41] because of the presence of the light s̃ which can be easily produced at rates comparable

to that of the SM (in general, roughly a factor of 10 smaller).

Let us further note that we have been discussing the model independent tuning. Whether

or not one can achieve these mixings in a given model without, e.g., tuning to prevent a

tachyonic s̃ is a separate, often more stringent constraint.

As a final comment, we note that these limits are based on the best available limits of

h→ 2a→ 4b, which are still preliminary. Final limits may further constrain this scenario.

Model Building: Single Stage Cascades into b Quarks

It is straightforward to construct models in which the Higgs is mixed strongly with a lighter

scalar. Because of this mixing, if the Higgs decays h̃ → 2a, then generally s̃ decays to 2a as

well. Here we will discuss the model building and tunings associated with large mixings, and

situations where h̃ → 2a → 4b. Situations with h̃ → 2a → 4g, 4τ , where Higgs mass may be

below 110 GeV, will be deferred to subsequent discussions.

There are three operators which can induce significant mixing with the Higgs: mD, λh,

and Ah. Ah principally mixes s with H0 rather than h because cos(α + β) is small, so we

focus on the other two.

mD is unique in that while it induces mixing, it also adds a diagonal mass for s, so that a

tachyon never appears. As a consequence, with this operator, it is simple to get large mixing

without having to tune masses to a high degree. In figures 2 we see that one can easily achieve

large Higgs masses and large mixings over broad ranges of the parameter space.

– 18 –



a) sin2Θ= .1 .2 .3 .4 .5 .6 .7 .8

0

20

40

60

80

100

∆s

0 20 40 60 80 100 120 140
ms

.9

b) sin2Θ= .1 .2 .3 .4 .5 .6 .7 .8

0

20

40

60

80

100

∆s

0 20 40 60 80 100 120 140
ms

.9

c) sin2Θ=.1 .2 .3 .4 .5 .6 .7 .8

0

20

40

60

80

100

120

∆s

0 20 40 60 80 100 120 140
ms

.9

d) sin2Θ= .1 .2 .3 .4 .5 .6 .7 .8

0

20

40

60

80

100

120

∆s

0 20 40 60 80 100 120 140
ms

.9

Figure 2: In these plots, the contours are of ranges of s̃ mass (a,c) or h̃ mass (b,d). The x-axis

specifies the value of ms arising from the mD operator. The y-axis is all other contributions to the

mass squared term for s. The values of
√
mt̃1

mt̃2
are 250 GeV for a,b and 350 GeV for c,d. The dashed

contours are lines of constant sin2 θ as labeled. The contours (darkest to lightest) are for masses less

than a) 20, 35, 50, 65, 80, 90, 95; b) 100, 105, 115, 130, 145, 160, 175; c) 20, 35, 50, 65, 80, 90, 95,

100; d) 108, 110, 115,130, 145, 160, 175.

λh is somewhat more challenging, because we require a sufficiently large µ-term from

experiment. From searches for the chargino, we typically require µ > 100 GeV [42]. In figure

3 we consider this scenario for λ = 0.25. Here we see that it is very challenging to have

sufficiently large µ while keeping the light state dominantly s (i.e., sin2 θ < 0.5). One can

tune this scenario to achieve this, but generally, it is most natural to have sin2 θ ∼ 1 and the

s decoupled, and mh > 110 GeV (as is required with no singlet component). Naturalness

here is not considerably improved from the MSSM, unfortunately.

Since λh is in general more tuned, we list a benchmark with mD below (masses in GeV

and in the decoupling limit which we define as mA ≫ mZ and large tanβ >∼ 5)

mt̃ δ2s δ2a mD As sin2 θ mh̃ ms̃ mã B(h̃→ 2ã) B(s̃→ 2ã) tuning

325 452 572 43 −11 0.1 109 73.8 32.6 0.86 .99 3%
(5.2)

Here “tuning” is defined as the tuning in mD necessary to satisfy the necessary requirements.

The maximum value of mD arises from the limit on s̃ → 2a decays and the minimum value
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Figure 3: In these plots, the contours are of ranges of s̃ mass (a,c) or h̃ mass (b,d). Here the λh

operator is taken to be λ = 0.25. The x-axis is the value of the effective µ parameter (once s has

acquired a vev). The y-axis are other soft contributions to the mass squared of s, in addition to

the λ2v2 term arising from λh. The values of
√
mt̃1

mt̃2
are 250 GeV for a,b and 350 GeV for c,d.

The dashed contours are lines of constant sin2 θ as labeled. The contours (darkest to lightest) are for

masses less than a) 20, 40, 60, 80, 90, 96; b) 100, 115, 130, 145, 160, 175, 190, 205, 220; c) 20, 40, 60,

80, 90, 105; d) 105, 115, 130, 145, 160, 175, 190, 205, 220. The white region in the lower right corner

is where s̃ is tachyonic.

arises from the lower limit on mh̃. The tuning of a parameter x which can lie between two

values a and b, with b > a will be defined to be the smaller of 100% or (b − a)/(b + a).

Qualitatively, this is the average fractional change in a parameter which is allowed consistent
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with phenomenology and constraints. In future benchmarks, it will generally be defined as

the largest tuning in δ2s or δ2a to achieve the proper spectrum of s̃, ã masses. This tuning is

usually related to the lighter of the two states. In these scenarios, constraints on ξ22b+4b (see

eq. 5.1) are very stringent, so this region may not be allowed by the full analysis.

5.2 Higgs Decays Through a Single Stage Cascade (without b’s)

Single stage cascade decays of the Higgs are familiar within supersymmetric theories. Within

the CP violating MSSM such decays can easily occur [43–45]. Within the NMSSM, the decays

h → 2a → 4γ are well studied [35, 46], while it has been argued, prior to the combined LEP

analyses, that h → 2a → 4b allowed considerable reduction in the fine tuning of mZ within

the NMSSM [16]. More recently, it has been argued that the combined LEP limits favor a

h → 2a → 4b decaying Higgs at approximately mh ∼ 105 GeV [39], which we argued in

section 5.1, had applied constraints that may have been too generous. h → 2a → 4τ has

also been considered [41, 46]. Here we study these, and an additional possibility, namely,

h̃→ 2ã→ 4g.

h̃ → 2s̃,2ã → 4τ : Phenomenologically, it makes little difference whether the intermediate

state here is 2s̃ or 2ã, except if it is 2s̃, the ã can be completely decoupled, while if it is 2ã,

the s̃ could mix considerably with the Higgs, giving large corrections to the Higgs couplings. In

general, models of this sort are highly tuned, because the mass of the intermediate scalar must

be <∼ 10GeV in order for decays to τ ’s to dominate over decays to b quarks. As a consequence,

they generally do not lead to a significantly less tuned theory than the MSSM, although they

offer interesting and distinct phenomenology.6 Generically, one expects a scalar field with

mass <∼ 10GeV, as well as accompanying decays h̃ → 2s̃, 2ã → 2τ2c and h̃ → 2s̃, 2ã → 4c.

There may also be some interesting B physics in this mass range [48].

The only existing analyses on this scenario [17, 18, 21] cut off at mh̃ > 86GeV, for

theoretical reasons related to the MSSM which do not exist in theories with additional singlets.

The extension of this analysis is important to understanding the true limits on such a scenario.

h̃ → 2ã → 4g: One of the most interesting possible signatures results in the 4 glue final

state. Such a final state is difficult to see at LEP and has not been constrained by any

existing analysis, save the model independent analysis [21], allowing such a Higgs, in principle,

as light as 82 GeV. The extent to which we believe other analyses (e.g., the two-jet flavor

independent decays) can be interpreted to constrain this scenario will be discussed in the

benchmark summary.

Models with this final state can be easily constructed with essentially no fine-tuning, and

squarks as light as the direct experimental limit. Although a search for four jets at a hadron

collider seems impossible, the same processes which generate the four jet final state can also

generate h̃→ 2ã → 2g2γ, which should occur with a rate down by roughly α2
EM/α

2
s ∼ 10−2,

see M−1
Q subsection of section 4. This rate can be increased if couplings of the a to Higgsinos

6In our scenarios h̃ decays into 2ã are correlated with the size of the ã mass which leads to tuning for ã to

be lighter than two b’s. If the decays are mediated by derivative couplings, e.g. a Peccei-Quinn axion, then

this light ã can be reasonably natural (see for e.g. [47]).
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exist as well. A search for the two photons at the LHC should be feasible [35], and there may

be background reduction by requiring two jets which reconstruct to the invariant mass of the

photon pair (however, this is unlikely at a hadron collider like the LHC).

Model Building: h̃ → 2ã → 4τ,4g via λh, M
−1
Q

λh allows decays to both s̃ and ã. However, λh generally mixes the CP even s with h, giving

strong constraints from s̃-strahlung. Consequently, with λh, the most natural models are those

with h̃ → 2ã → X. In order to evade constraints on s̃-strahlung, it is most straightforward

to simply raise the mass of s̃ through the addition of δ2s . In doing so, however, one generally

realizes the large mixing scenario described in section 5.1, requiring that ms̃ > 2mã in order

to evade constraints. One can raise the mass of s̃ much larger than the other relevant scales,

as well. In fact, this is quite reasonable, for instance if S appears as the N=2 completion of a

5-D U(1) gauge multiplet. 5-D gauge invariance protects the mass of a, but not s against tree

level SUSY breaking terms [49, 50]. Thus, for our purposes in this section, we will decouple

s from the theory.

For h̃→ 2ã to sufficiently dominate over h̃→ 2b, a suitably large λh is necessary, and by

the discussion in section 4, we see that the requirement is λ > 0.2. At tree level, this results

in mass squared of (35 GeV)2 for ã.

Let us now consider the subsequent decays of ã. If we include the a nonzero M−1
Q , the

possibility of ã → 2g opens up. However, the presence of λh requires the presence of Ah,

which allows ã → 2b as well. This operator need not be large, being generated at the loop

level. At this size

Ah ∼ λg2

16π2
msusy ∼ .2GeV (5.3)

it would be expected to yield a mixing of a and A0 at the 10−3 level or smaller, which is easily

small enough for the decays to glue to dominate. In comparison, in the NMSSM it is difficult

to have M−1
Q induced decays dominate because the cross term in |κS2 + λHuHd|2 acts like

Ah with an S vev and thus fermion decays tend to dominate in this scenario.

The benchmark point then has (taking the decoupling limit)

mt̃ δ2s δ2a λh Ah M−1
Q sin2 θ mh̃ ms̃ mã B(h̃→ 2ã) tuning

200 5002 −352 0.3 0.3 300−1 10−3 92.1 503 38.7 .92 60%

(−512) (0) (11.1) (0.96) (3%)

(5.4)

Here we have taken µ = 100 GeV, there is no reduction in the effective µ-term since δs is

large. The inclusion of a nonzero M−1
Q as described in subsection M−1

Q of section 4 generates

the decays to two gluons. Due to the kinematics (heavy h̃, ã), there are no constraints on

these 4 jet decays.

If M−1
Q = 0, one expects decays to standard model fermions to dominate. For decays of

taus to dominate requires mã to be less than the bb̄ threshold. This requires us to tune δ2a
to cancel the tree-level mass of m2

a ∼ (40GeV)2. For instance, the above point with δ2a of
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−(51GeV)2 achieves the proper spectrum with a 3% tuning. The necessary changes to the

parameters and the corresponding changes in the spectrum are shown in parentheses in the

table in the second line, whereas things that are common to the first are not repeated.

Model Building: h̃, s̃ → 2ã → 4g,4τ via mD, As, M
−1
Q

Cascade decays of the CP-even states into 2ã can easily dominate with the inclusion ofmD and

As. The operator As induces a large trilinear sa2 while mD induces O(1) mixing between s

and h. Thus if the 2ã channel is kinematically accessible, h̃, s̃ will dominantly decay into it. In

addition, there is no mixing in the CP-odd sector, thus M−1
Q provides the only decay channel

for ã; hence the final state of the cascade decay is dominantly 4g and, at a subdominant but

potentially interesting rate, 2g 2γ and 4γ. Notice that in this scenario the vev of s has no

relation to the µ parameter and the minima are only local minima due to the As operator.

As a benchmark point, we take (in the decoupling limit)

mt̃ δ2s δ2a mD As sin2 θ mh̃ ms̃ mã B(h̃→ 2ã) B(s̃→ 2ã) tuning

175 802 0 30 8 .22 94.9 76.2 28.3 .92 .99 100%

(−272) (8.37) (.93) (10%)

(5.5)

Some comments on this benchmark are in order. Looking at the first line, it is a large mixing

point, where s̃, h̃ are similar in mass and the main constraints are on the h̃ decays. As

mentioned above, with no Ah operator, there is no mixing in the CP-odd sector so ã can only

decay into gauge bosons through M−1
Q . The constraint from the dominant 4g final state only

requires mã
>∼ 5 GeV [34], so these scenarios are viable and quite natural.

As a variation on the phenomenology, τ final states can also be considered. For the

4τ state to compete, one could include a small Ah operator and tune the ã mass below bb̄

threshold, at the expense of increased tuning. As before the necessary changes in parameters

are given in parentheses in the second line. The constraints on cascades into τ now apply,

which generally require that mã
>∼ 5 GeV if B(ã → 2τ) ∼ 1. However, these points are on

the edge of a constraint contour, for instance when ms̃ is between 45-76 GeV, one instead

requires mã
>∼ 7 GeV, severely limiting the allowed parameter space [17,18,34]. In summary,

these benchmark points suggest that cascades into τ ’s seem to be disfavored by both tuning

considerations and available parameter space, but still remain an interesting phenomenological

possibility.

5.3 Higgs Decays Through a Two Stage Cascade

A very interesting phenomenological possibility is that the Higgs cascade decay proceeds

through two intermediate scalars. This is a very reasonable possibility in supersymmetric

theories, because the new singlet actually comes with both the scalar and pseudoscalar, so

h̃→ 2s̃→ 4ã→ 4X is possible or with CP mixing, h̃→ s̃ã→ 3ã→ 3X is possible. However,

when considering theories with λh, it is essentially impossible to achieve two stage cascades as

the dominant decay mode, see Fig. 3. Furthermore, with λh, s̃ is lighter than ã due to mixing,
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making it difficult to arrange a scenario where something of the form h̃ → 2s̃ → 4ã → 4X

can occur.

However, in the broader context we are considering here, such decays can easily arise,

with only moderate spectral tuning. In general, the models rely upon the presence of D-term

supersymmetry breaking through the supersoft operator mD.

There are two forms which we can study, one with CP mixing and one without. With

CP mixing, we can consider h̃ → ãs̃ → 3ã → 6τ, 6b. Such scenarios can easily occur with

essentially no tuning, and occur when the decay h̃ → 2s̃ is kinematically forbidden. In cases

where the six b-quark final state dominates, we also expect a non-trivial fraction of 4b 2τ

events as well.

Without CP mixing, the cascade generally follows h̃ → 2s̃ → 4ã → 8g, 8τ, 8b. Scenarios

with so many soft final states have not been studied at LEP, and thus have no constraints

beyond the OPAL model independent constraints (mh > 82 GeV). This allows very light

stops, and the only tuning required is in achieving the proper spectrum of scalars.

In cases with eight gluon jets, there are typically levels of 6g2γ which are non-negligible.

However, the photons are sufficiently soft that the background is very large, and the jets are

very soft, well below the cuts to be applied at the LHC. Likewise, the decays to eight b quarks

or eight τ ’s seem difficult to study at hadron colliders. These scenarios probably will instead

be studied by a future linear collider like the ILC.

Model Building: h̃ → 2s̃ → 4ã → 8g,8τ,8b via mD, As, M
−1
Q

With the operators mD,As, and M−1
Q , it is possible to find points that have significant two

stage cascades. With the following benchmark point, the Higgs-like mass eigenstate is pushed

heavy by mixing with the s, and via dominance of mD over As, decays h̃ → 2s̃ are favored

over decays into 2ã. The small value of As is still sufficient to have s̃ decay into 2ã’s which

completes the two stage cascade.

mt̃ δ2s δ2a mD As sin2 θ mh̃ ms̃ mã B(h̃ → 2ã) B(h̃ → 2s̃) B(s̃ → 2ã) tuning

360 402 −522 60 8 .06 111 39.3 16.2 .35 .50 .99 4%

(−542) (7.13) (0.36) (0.49) (2%)

(5.6)

At this point, the constraints that are independent of the ã decay products are: 1) decay

independent analysis on s̃ which requires ms̃ >∼ 5GeV for the value of sin2 θ, 2) SM searches on

the s̃ and h̃ which are both satisfied with stronger constraints on h̃ since ξ2SM = cos2 θB(h̃→
SM) = .14.

The final state products of ã determine what additional constraints apply to this scenario.

In the first line of the benchmark, we will consider gluon and b quark final states. With Ah

turned off, a nonzero M−1
Q causes it to decay primarily to gluon jets. For this final state,

there are no further analyses that constrain this scenario. However, if the ã does mix with

A0 by both turning on a small Ah operator and reducing M−1
Q , decays b’s dominate. In this

case, the limits apply to the effective ξ22b+4b defined earlier. We find that these are consistent
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with the new LEP limits, assuming that the analyses are not sensitive to the 8b final state

(this sensitivity has not yet been determined by any LEP analysis). If ã is lighter than 10

GeV, again listed in the second line with new parameters/changes in parentheses, τ ’s can

dominate, and is consistent with the new LEP analysis of 4τ events from s̃-strahlung and

Higgs-strahlung. Finally, in the case that M−1
Q and mixing decays are comparable, more

complicated scenarios are allowed, with many possible final state topologies.

Model Building: h̃ → ãs̃ → 3ã → 6b,6τ via m2
CP , mD, As

In the presence of m2
CP , mD and As, the coefficient of the h̃s̃ã coupling is

cv√
2

=
3m2

CP v∆s
2
2θ

(

m2
h̃
−m2

s̃

)

8
√

2m2
h̃
m2

s̃

−
m2

CP s2θgY

(

(3c2θ + 1)m2
h̃

+ (1 − 3c2θ)m
2
s̃

)

mD

8m2
h̃
m2

s̃

(5.7)

+
m2

CP Ass2θ

(

(3c2θ) + 5)m2
h̃

+ (5 − 3c2θ))m
2
s̃

)

2m2
h̃
m2

s̃

Where we have taken the decoupling and large tan β limits, as well as the mã = 0 limit and

at tree-level ∆ = g2
Y + g2.

We are most interested in scenarios where 2mã < ms̃ ∼ 60GeV. Using the perturbative

expression for sin θah (eq. 4.27), we require sin2 θah < 0.015, which is a typical upper limit for

ã → 2b. The constraints on ã → 2τ are roughly sin2 θah < .07 in the kinematically allowed

region. Comparing this limit with eq. 4.27, we have (neglecting terms down by m2
s̃/m

2
h̃
)

m2
CP

<
∼ .12 m2

s̃/(sin θ cos θ) (5.8)

for b quarks, and

m2
CP

<
∼ .26 m2

s̃/(sin θ cos θ) (5.9)

for tau decays. Hence, m2
CP can be O(m2

s̃), and thus not a small parameter. One can still use

the approximate expressions for estimates and intuitive understanding, but for better than

O(1) precision, we must calculate exactly.

The presence of As is important, both for h̃ → ãs̃ and s̃ → 2ã decays. In general, one

does not need a large value for As, with 4 GeV sufficient in order to secure sufficiently large

h̃→ ãs̃ and s̃→ 2ã decays.

Let us consider the benchmark point (mass units are in GeV):

mt̃ δ2s δ2a mD As m
2
CP sin2 θsh sin2 θah mh̃ ms̃ mã Bh̃→ãs̃ Bs̃→2ã tuning

250 582 −102 48 6 422 0.10 .01 103 67.0 18.4 .70 .91 100%

(−202) (66.6) (9.87) (0.69) (0.96) 18%

(5.10)

In line one, we consider b quark decays (gluon decays cannot dominate since there is mixing

between a and h). This point is consistent with the limits on the effective ξ22b+4b from 4b and
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2b decays. To get to τ decays, one changes the parameters as listed in line two, which satisfies

the constraints on 4τ rates. Again, these results assume limited sensitivity at LEP to the 6

final state decays (6b and 6τ).

6. Phenomenology and Benchmark Point Summary

It is remarkable that by simply extending the MSSM to include a singlet superfield, there

can be so many modifications to the Higgs phenomenology. Furthermore, many of these

modifications do not arise in the NMSSM framework.

To aid in understanding, we have attempted to isolate a few points in parameter space

which demonstrate the relevant phenomenology. There are several qualitative issues which

are relevant. Let us begin by reviewing our different decay scenarios.

i) h̃ → 2ã → 4b: The new LEP limits are noticeably more constraining, and require a certain

degree of suppression in the Higgs production and branching ratio of ã to b quarks. This can

be achieved with
√
mt̃1

mt̃2
= 300GeV (O(10 − 15%) tuning). In a crude attempt to combine

limits on 2b and 4b decays, we defined a cumulative ξ22b+4b (in eq. 5.1) and required it to be

less than
√

2. This is allowed principally in the “just so” region, where we have essentially

saturated the LEP limits, i.e., pushed the parameters so that LEP was nearly sensitive to this

scenario. Hence, these regions may be impacted by the finalized LEP limits. Hidden tunings

seem to appear when we attempt to use λh, the operator used in the NMSSM, to generate

the decays because of the large µ term and the subsequent large mixing term with s̃. Such

hidden tunings are smaller in models with the supersoft operator mD together with As.

ii) h̃ → 2s̃/2ã → 4τ : We have not demonstrated a model which can achieve these decays

above the kinematical threshold (i.e., where ã→ bb is not kinematically forbidden). However,

we can achieve these decays by tuning the models to the 10 percent level (necessary to get

the ã mass into this region). Furthermore, it is troubling that the best available limits in

this region (from OPAL [34]) seem to stop at 86 GeV, a theoretical prior due to constraints

in two Higgs doublet models which does not apply in cases with singlets. This motivates a

reanalysis of the LEP data without the theoretical bias that mh̃ < 86 GeV if mã
<∼ 10 GeV.

iii) h̃ → 2ã → 4g: It is remarkably simple for this decay to dominate under the assumption

that Ah is loop suppressed or absent. Such models could be very natural with arbitrarily

light stops (subject to direct search limits), and a Higgs with mass mh̃ as light as 82 GeV, the

limit from the OPAL model independent analysis [21]. These scenarios can arise easily with

either mD or λh, and generally come with associated h̃→ 2ã→ 2g 2γ decays at the 7× 10−3

level.

iv) h̃ → ãs̃ → 3ã → 6b,6τ : Such a decay can dominate Higgs decays via the inclusion of the

mD operator, incorporating the sensitivity of the Higgs to D-term supersymmetry breaking,

but is difficult to engineer with only λh (i.e., without D-term breaking). This is an important

example of phenomenology which would not occur in the NMSSM, but easily arises within a
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general operator analysis. Here there is no analysis to exclude this scenario, meaning a Higgs

as light as 82 GeV is allowed. In the case that the final state is composed of b-jets, such a

scenario can be quite natural. In the case where the final state is composed of τ ’s, the tuning

is significant, again at the few percent level. Such a scenario would be difficult to detect at

the LHC. Finally, although this scenario seems CP-violating, it can be consistent for ã, s̃ to

be both CP-even and thus there are no additional contributions to CP-violating observables

such as edms.

v) h̃ → 2s̃ → 4ã → 8b,8τ,8g: This scenario, too, can only dominate with D-term breaking,

and not within the narrow NMSSM framework. With D-term breaking, it appears to be

necessary to have roughly 10% tuning in order to achieve the proper spectrum (with b or

g final states - a few percent if the final state is τ), but again a light Higgs (as light as 82

GeV) is allowed (however, in our benchmark, an additional 4b rate pushes up the required

Higgs mass). Because the final state particles are so soft, it is difficult to envision a scenario

in which the LHC could detect this Higgs.

The benchmarks realizing these phenomenologies are summarized in Table 2. The bench-

mark points illustrate the importance of the general operator analysis. Some scenarios are

only natural with the presence of D-term SUSY breaking. The gluon final states only occur

once we additionally consider the effects of new, heavy fermions. Such effects are typically

excluded from NMSSM analyses and yet we see they can generate some of the most interesting

phenomenology. Despite this, one should keep in mind that unexplored operators may also

generate the same phenomenology, and thus the phenomenology presented should not only

be considered in the context of the particular model realizations.

6.1 Possible exclusions in existing data

To the extent that many of these signals have not been explicitly analyzed, one can argue

that only the model independent bound from OPAL truly limits them. However, once one

specifies a given decay mode, it is almost certain that the bounds will improve from the model

independent limit.

Going further, extrapolating from existing limits might give us an estimate on the poten-

tial exclusions of an actual analysis. For instance, in searches for h→ 4b in events where the Z

decays hadronically, DELPHI and OPAL force the whole event into 4 jets, which is reasonably

efficient even though the total process can have more jets in it (up to 6). So since this anal-

ysis is akin to the SM 4 jet analysis done for h → 2b, Z → hadronic, the flavor-independent

analyses may be used to estimate the potential limits on h → 4g. If one assumes that the

efficiencies to reconstruct the 4g and 4b state are the same, and that the background for 4g

is the same as for 2g, one can estimate the scale of exclusion that may be possible in existing

data. Doing this, it appears that h→ 4j below 86 GeV has strong exclusion, that interesting

constraints could possibly be set for 86 GeV < mh̃ < 100 GeV, and for mh̃ > 100GeV it

appears unlikely that interesting constraints could be set. All of this is an extremely rough

estimate, but suggests additional analyses in the hadronic channels should be done.
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Case 1 2 3 4 5

√
mt̃1

mt̃2
(GeV) 325 200 175 360 250

δ2s(GeV)2 452 5002 802 402 582

δ2a(GeV)2 572 −352(−512) 0 (−272) −522 (−542) −102 (−202)

mD(GeV) 43 0 30 60 48

λh 0 0.3 0 0 0

As(GeV) −11 0 8 8 6

Ah(GeV) 0 0.3 0 (small) 0/small 0

m2
CP (GeV)2 0 0 0 0 422

sin2 θsh 0.1 10−3 .22 0.06 .10

sin2 θah 0 0 0 0 .01 (.01)

mh̃(GeV) 109 94 94.9 111 103

ms̃(GeV) 73.8 503 76.2 39.3 67.0 (66.6)

mã(GeV) 32.6 38.7(11.1) 28.2 (8.37) 16.2 (7.13) 18.4 (9.87)

Bh̃→2ã 0.86 0.92(0.96) .92 (.93) .35 (.36) .09 (.12)

Bh̃→2s̃ 0 0 0 .50 (.49) [ãs̃] .70 (.69)

Bs̃→2ã .99 0 .99 .99 (.99) .91 (.96)

a→ X bb gg gg (ττ) gg, bb (ττ) bb (ττ)

tuning 3% 60%(3%) 100% (10%) 4%(2%) 100% (18%)

pheno i iii ii, iii v iv

Table 2: Benchmark Point Summary. Terms in parentheses are variations on the spectrum in order

to achieve ã → ττ decays. When Ah is labeled 0/small, the 0 indicates the presence of nonzero M−1

Q

allowing ã → gg decays, while the “small” is to indicate a small level allowing ã → bb or ã → ττ

decays, without modifying the spectrum. [ãs̃] indicates that the decay is h̃→ ãs̃ rather than h̃→ 2s̃.

Decays of the Higgs to six and eight parton final states are more difficult to estimate, for

instance it is not known how sensitive the current 2b and 4b searches are to actual 6b or 8b

decays. Analyses that attempt to utilize the multi-jet nature of the decays might be useful,

but might encounter issues like jet-finding algorithms constructing fake jets in the signal or

background (OPAL and DELPHI use the DURHAM algorithm which is known to have such

issues). It is also not clear how much b-tagging can help in the cases of multi-b decays.

6.2 Future experiments

It is not clear to what extent these Higgses may evade detection at the LHC. The six and eight

parton decays almost certainly will be challenging. Similarly, the decay of the Higgs into four

gluon jets is a tremendous challenge at any hadron collider. The decay h→ 2a→ 2g2γ should
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be more promising. Especially as loops involving the Higgsinos can amplify this beyond the

expected 7 × 10−3 branching ratio, analyses of such scenarios, particularly at the Tevatron,

would be highly motivated. The associated h → 4γ decay has the added signal of seeing

both the two a’s and the Higgs that decayed into them. Unfortunately, the expected 10−5

branching ratio is probably too small to be seen, so this channel requires either an enhanced

rate either through increased branching ratio or Higgs production via colored sparticle decay

chains.

7. Summary and Conclusions

One of the strongest predictions of the MSSM is the character of the Higgs boson, both in its

mass and its couplings. However, the simplest extension of the MSSM, adding a singlet, can

dramatically alter the Higgs boson phenomenology, in particular by introducing a remarkable

set of decay scenarios. We have studied, in a relatively general sense, the effects of singlets

on the decays of the Higgs boson in supersymmetric theories. There are a number of general

points to be gleaned from this analysis.

First of all, the MSSM expectations of the Higgs boson decays can easily be modified.

The presence of the singlet opens up a number of cascade decay possibilities, which are much

harder to constrain. Secondly, the NMSSM (where the singlet acquires an expectation value

to generate the µ-term) is too narrow a framework to realize many of the interesting decay

scenarios. A number of them can only dominate the Higgs decay once one includes the

possible effects of D-term vevs on the physics of singlets. Some cascades can occur but are

remarkably tuned within the NMSSM, but are not tuned in a broader framework. This makes

it essential that we continue to include these operators in future analyses.

Finally, while these models admit much lighter Higgses, and hence much lighter stops,

than the MSSM, the sensitivity of mZ is typically inadequate as a measure of tuning. Often

the most severe tuning comes from finding an appropriate spectrum such that cascades can

occur, while still maintaining a large coupling to the Higgs boson. All analyses of cascade

decays must be careful to consider these additional tunings rather than simply focus on the

tuning of mZ . Also, through mixing, heavier Higgses can be allowed for lighter top squarks

and hence with less tuning of the mZ .

Such issues notwithstanding, it is quite straightforward to achieve models which are not

tuned, and have a Higgs below the MSSM LEP limit. Cascade decays h̃ → 2ã → 4b allow

lighter, more natural Higgses, but at the expense of typically saturating the LEP bounds, a

tuning of sorts on its own. Plus, these allowed regions will likely be impacted by the finalized

LEP limits. Other cascade decays, in particular h̃ → 2ã → 4g and h̃ → ãs̃ → 3ã → 6b can

occur with very little tuning of the ã mass, and light Higgses (mh̃ > 82 GeV). Decays with τ

final states (h̃ → 2ã → 4τ , h̃→ ãs̃ → 3ã → 6τ , h̃ → 2s̃ → 4ã → 8τ) seem to be quite tuned,

since there is no apparent symmetry to explain the very light ã (except in case of PQ axion,

see footnote 6). On the other hand, two stage cascades h̃→ 2s̃→ 4ã→ 8b, 8g can occur with

moderate tuning. In our realizations, two stage cascades (those with six- and eight parton
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final states) require D-term breaking while gluon final states arise with new, heavy fields,

although there are possibly additional means to produce this phenomenology.

The collider tests of these scenarios are largely unexplored. Firstly, since the model inde-

pendent decay analysis of OPAL [21] is the dominant constraint for most of our scenarios, it

would be extremely useful for a LEP-wide analysis to be carried out. LEP may also have been

sensitive to some of the new non-standard decays we have introduced, which motivates further

investigation by the LEP Higgs search collaborations on these specific decays. Therefore, we

strongly suggest that the following analyses be performed:

• h→ anything (model independent). Such an exclusion performed by the OPAL analysis

is an important consideration for all models of non-standard Higgs decays, and thus

should be performed by as many LEP collaborations as possible.

• h → hadronic (i.e., 4 jet, or multi-parton final states). Given that photonic, leptonic,

and two jet decays of the Higgs are already highly constrained, it is worthwhile to close

a significant means by which a Higgs might hide, namely in a generic hadronic decay.

However, such an analysis may be quite difficult to separate from background, even in

events where large amounts of b-flavor is required. The simplest analysis should be an

extension of flavor-independent Higgs search to flavor-independent cascades.

• h → 2a → 4τ above mh̃ = 85 GeV. The theoretical considerations which appear to

have truncated the analysis at this mass range do not apply in general models, and

likely significant constraints can still be placed above this value.

At the LHC and the Tevatron, the most promising decay channel is the h̃→ 2ã→ 2g 2γ

that is associated with 4 gluon decay. At the Tevatron, such a search may be possible, because

the jet threshold is sufficiently low. At the LHC, in this topology, the ã photon decay could

be seen, although a more careful analysis is needed [35]. Since the two gluon jets would be

difficult to measure/choose, this topology does not allow detection of the Higgs. The 4 photon

decay is probably at too small of a rate to detect, although this may be increased either by

increasing the branching ratio or if Higgses appear in cascade decays of colored superpartners

(and thus boosting the overall production rate). Many of the other channels seem even more

difficult to search at the LHC, but on a positive note, at the ILC, one should be able to detect

the Higgs through the Z recoil method (see for example [51] and for a linear collider analysis

of a SUSY model with nonstandard Higgs decays see [?]).

It should be noted that while many of these scenarios are very difficult in terms of Higgs

detection, they are not nightmare scenarios. Quite the contrary, the existence of these decays

allows a light Higgs and would naturally be associated with a wealth of light superpartners.

This suggests that the proper lesson of LEP is not a need for models with a heavy Higgs, but

rather that further thinking about the possibilities of a stealthy Higgs is in order.
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A. Trilinear couplings

mD – Supersoft Operator

The terms arising from the supersoft operator are
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]
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while those arising from the D-term trilinears are

D-terms
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(A.12)

where at tree-level ∆ = g2
Y + g2. Where the notation is as in section 4; θ is the mixing angle

between s and h and φ is the mixing angle between a and A0, from the Ah operator.
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Top corrections

The loops from the top induce trilinear terms with an overall coefficient C =
3y4

t
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λhSHuHd

The λh and µ term give trilinears
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As

In this case the induced trilinears are
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Ah

This soft term gives the following trilinears
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m2

CP

Since we are ultimately interested in h̃ → s̃ã and s̃ → ãã decays, we find those terms in the

Lagrangian. Arising from the usual MSSM D-terms, we have (at leading order in m2
CP ),
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While from mD we have
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This term is often important in conjunction with As. The equivalent trilinears with the

combination of As and m2
CP are
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