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Long-term simulation of space-charge effects

Ji Qiang

Lawrence Berkeley National Laboratory, Berkeley, CA 94720

Abstract

The long-term macroparticle tracking simulation is computationally challeng-

ing but needed in order to study space-charge effects in high intensity circular

accelerators. To address the challenge, in this paper, we proposed using a fully

symplectic particle-in-cell model for the long-term space-charge simulation. We

analyzed the artificial numerical emittance growth in the simulation and sug-

gested using threshold numerical filtering in frequency domain to mitigate the

emittance growth in the simulation. We also explored alternative frozen space-

charge simulations and observed qualitative agreement with the self-consistent

simulations.

1. Introduction1

The nonlinear space-charge effects present strong limit on beam intensity in2

high intensity/high brightness accelerators by causing beam emittance growth,3

halo formation, and even particle loss. Self-consistent macroparticle simulations4

have been widely used to study these space-charge effects in the accelerator5

community [1, 2, 3, 4, 6, 5, 7, 8, 9, 10, 11, 12, 13, 14]. In some applications,6

especially in high intensity circular accelerators such as a synchrotron, one has7

to track the beam for many turns. It becomes computationally challenging for8

the long-term space charge tracking simulation since on one hand, one needs9

to avoid numerical artifacts and to ensure accuracy of the simulation results.10
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On the other hand, one would like to reduce the computing time in physics11

applications.12

The charged particle motion inside an accelerator follows classical Hamil-13

tonian dynamics and satisfies the symplectic conditions. For better accuracy,14

it is desirable to preserve the symplectic conditions in the long-term numerical15

tracking simulation too. Violating the symplectic conditions in numerical inte-16

gration results in unphysical results [15, 16]. A gridless symplectic space-charge17

tracking model and a symplectic particle-in-cell (PIC) model were proposed in18

recent studies [17, 18].19

Even with the use of the symplectic space-charge model, there still exists ar-20

tificial emittance growth in long-term space-charge simulations. This numerical21

emittance growth could be due to numerical collisional effects associated with22

the use of smaller number of macroparticles in the simulation compared with23

the real number of particles inside the beam [19, 20, 21, 22, 23]. In this study,24

we analyzed the numerical emittance growth in simulations using the symplec-25

tic spectral PIC model and proposed a threshold filtering method to mitigate26

the numerical emittance growth. In order to improve computational speed in27

the long-term space-charge simulation, we also explored a frozen space-charge28

model in the simulation.29

The organization of this paper is as follows: after the introduction, we30

present the symplectic particle-in-cell space-charge model in Section II; we ana-31

lyzed the numerical emittance growth in self-consistent macroparticle tracking32

and its mitigation in Section III; we tested the non-self consistent frozen space-33

charge simulations in Section IV; and drew conclusions in Section V.34
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2. Symplectic Particle-In-Cell Space-Charge Model35

In the self-consistent symplectic particle-in-cell (PIC) model, macroparticle36

phase space coordinate advancing through a single step τ can be given as:37

ζ(τ) = M(τ)ζ(0)

= M1(τ/2)M2(τ)M1(τ/2)ζ(0) +O(τ3) (1)

where the transfer map M1 corresponds to the single particle Hamiltonian in-38

cluding external fields and the transfer mapM2 corresponds to the space-charge39

potential from the multi-particle Coulomb interactions. The numerical integra-40

tor Eq. 1 will be symplectic if both the transfer map M1 and the transfer map41

M2 are symplectic. For a coasting beam inside a rectangular perfectly conduct-42

ing pipe, the space-charge potential can be obtained from the solution of the43

Poisson equation using a spectral method [18]. The one-step symplectic transfer44

map M2 of particle i from the space-charge Hamiltonian is given as:45

xi(τ) = xi(0) (2)

yi(τ) = yi(0) (3)

pxi(τ) = pxi(0)− τ4πK
∑
I

∑
J

∂S(xI − xi)
∂xi

×

S(yJ − yi)φ(xI , yJ) (4)

pyi(τ) = pyi(0)− τ4πK
∑
I

∑
J

S(xI − xi)×

∂S(yJ − yi)
∂yi

φ(xI , yJ) (5)

where both pxi and pyi are normalized by the reference particle momentum p0,46

K = qI/(2πε0p0v
2
0γ

2
0) is the generalized perveance, I is the beam current, ε0 is47

the permittivity of vacuum, p0 is the momentum of the reference particle, v0 is48
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the speed of the reference particle, γ0 is the relativistic factor of the reference49

particle, S(x) is the unitless shape function (also called deposition function in50

the PIC model), and φ denotes the interaction potential between grid point I51

and J and is given as:52

φ(xI , yJ) =
4

ab

Nl∑
l=1

Nm∑
m=1

1

γ2
lm

∑
I′

∑
J′

ρ̄(xI′ , yJ′)×

sin(αlxI′) sin(βmyJ′) sin(αlxI) sin(βmyJ) (6)

where a and b are the horizontal (x) and the vertical (y) aperture sizes re-53

spectively, αl = lπ/a, βm = mπ/b, γ2
lm = α2

l + β2
m, the integers I, J , I ′, and54

J ′ denote the two dimensional computational grid index, and the summations55

with respect to those indices are limited to the range of a few local grid points56

depending on the specific deposition function. The density related function57

ρ̄(xI′ , yJ′) on the grid can be obtained from:58

ρ̄(xI′ , yJ′) =
1

Np

Np∑
j=1

S(xI′ − xj)S(yJ′ − yj), (7)

In the PIC literature, compact shape functions are used in the simulation.59

For example, a quadratic shape function can be written as [24, 25]:60

S(xI − xi) =



3
4 − (xi−xI

∆x )2, |xi − xI | ≤ ∆x/2

1
2 ( 3

2 −
|xi−xI |

∆x )2, ∆x/2 < |xi − xI |

≤ 3/2∆x

0 otherwise

(8)
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61

∂S(xI − xi)
∂xi

=



−2(xi−xI

∆x )/∆x, |xi − xI | ≤ ∆x/2

(− 3
2 + (xi−xI)

∆x )/∆x, ∆x/2 < |xi − xI |

≤ 3/2∆x, xi > xI

( 3
2 + (xi−xI)

∆x )/∆x, ∆x/2 < |xi − xI |

≤ 3/2∆x, xi ≤ xI

0 otherwise

(9)

where ∆x is the mesh size in x dimension. The same shape function and its62

derivative can be applied to the y dimension. The explicit shape function and its63

derivative in the above equations results from the requirement of the symplectic64

condition [18].65

Using the symplectic transfer map M1 for the single particle Hamiltonian66

including external fields from a magnetic optics code [26, 27, 28] and the transfer67

map M2 for space-charge Hamiltonian, one obtains a symplectic PIC model68

including the self-consistent space-charge effects.69

3. Numerical Emittance Growth in Long-Term Simulation70

In the long-term macroparticle space-charge tracking simulation, even with71

the use of self-consistent symplectic space-charge model, there still exists nu-72

merical emittance growth. To study this effect, we used a 1 GeV kinetic energy73

proton beam transporting inside a lattice that consists of 10 focusing-drift-74

defocusing-drift (FODO) lattice periods and one sextupole element per turn.75

The horizontal and the vertical aperture sizes are 6.5 millimeters. A schematic76

plot of the lattice is shown in Fig. 1. The zero current tune of the lattice is77

2.417. With 30 A beam current, the corresponding linear space-charge tune78

shift is 0.113. When the sextupole strength is set to zero, the lattice is a purely79
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linear FODO lattice. When the sextupole strength is nonzero, it can excite80

nonlinear resonance which will be further enhanced by the space-charge effects.81

Figure 1: Schematic plot of a periodic FODO and sextupole lattice.

Figure 2: The 4D emittance growth evolution in a FODO lattice using 25, 50, 100, 200, and
1600 thousand macroparticles in the simulation.

Figure 2 shows the four dimensional (4D) emittance growth ( εxεx0

εy
εy0
− 1)%82

evolution of the 1 GeV, 30A current proton beam through 40, 000 turns of the83

above lattice with zero sextupole strength and using 25, 000, 50, 000, 100, 000,84

200, 000, and 1.6 million macroparticles and 64× 64 spectral modes. The initial85

0.5% jump of emittance growth is due to charge redistribution to match into86

the lattice. It is seen that with the increase of the number of macroparticles,87

the emittance growth decreases. With the use of 1.6 million macropartices,88

there is little emittance growth which is expected in this linear lattice. The89

extra emittance growth with smaller number of macroparticles is a numerical90

artifact.91

The cause of this numerical artifact can be understood using a one-dimensional92

model. Following the spectral method used in the above symplectic PIC model93

for the space-charge potential, we calculated the sine function expansion mode94
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Figure 3: A Gaussian function (top), and its spectral mode amplitude (bottom) as a function
of mode number from the smooth Gaussian function on the grid (red), from the linear particle
deposition (green), the quadratic particle deposition (blue), and the Gaussian kernel particle
deposition on the grid (magenta) using 25, 000 macroparticles and 128 grid cells. The small
plot inside the bottom figure is a zoom-in plot for mode number between 20 and 128.

amplitude from a smooth density distribution function on the grid and from a95

macroparticle sampled distribution function depositing onto the grid. Here, the96

amplitude of density mode l from the sampled macroparticle deposition is given97

as:98

ρl =
1

Np

2

Ng∆x

∑
i

∑
I

S(xI − xi) sin(αlxi) (10)

where Np is the total number of macroparticles and Ng is the total number of99

grid cells. Figure 3 shows the mode amplitude as a function of mode number100

from the smooth Gaussian function on the grid, from the linear particle de-101
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Figure 4: Mode amplitude of the Gaussian function as a function of mode number from the
quadratic particle deposition using 25, 000 (red), 50, 000 (green) and 100, 000 (blue) macropar-
ticles and 128 grid cells.

Figure 5: Mode amplitude of the Gaussian function as a function of mode number from the
quadratic particle deposition using 25, 000 and 128, 256 and 512 grid cells.

position, from the quadratic particle deposition, and from the Gaussian kernel102

particle deposition on the grid using 25, 000 macroparticles and 128 grid cells.103

Here, the Gaussian kernel particle deposition shape function is defined as:104

S(xI − xi) =

 exp (− (xi−xI)2

2σ2 ); |xi − xI | ≤ 3.5σ

0; otherwise
(11)

and σ is the chosen as the mesh size.105

It is seen that for the smooth Gaussian distribution function, with mode106

8



number beyond 20, the mode amplitude is nearly zero while the mode ampli-107

tude from the macroparticle deposition fluctuates with a magnitude of about108

10−4. Those nonzero high frequency modes cause fluctuation in density dis-109

tribution and induce extra numerical emittance growth. The high frequency110

mode fluctuation amplitude becomes smaller from the linear deposition, to the111

quadratic deposition, and to the Gaussian kernel deposition. The difference112

between the linear deposition and the quadratic deposition is small. The Gaus-113

sian kernel deposition shows significantly smaller fluctuation for mode number114

greater than 60 since it corresponds to the infinite limit order of the polyno-115

mial deposition function [29]. The higher order deposition scheme spreads the116

macroparitcle across multiple grid points and reduces the density fluctuation.117

However, the Gaussian kernel deposition is computationally more expensive in118

comparison to the other two deposition methods. It involves a number of expo-119

nential function evaluations (eight in this example) for each macroparticle and120

is a factor of about seven (or about five after some function optimization to re-121

duce the number of exponential function evaluation) slower than the quadratic122

deposition in this one dimensional example.123

Figure 6: Mode amplitude standard deviation as a function of mode number from the linear
particle deposition (green), the quadratic particle deposition (blue), and the Gaussian kernel
particle deposition on the grid (magenta) using 25, 000 macroparticles and 128 grid cells.
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Figure 7: Mode amplitude standard deviation as a function of mode number from the quadratic
particle deposition using 25, 000 (red), 50, 000 (green) and 100, 000 (blue) macroparticles and
128 grid cells.

Figure 8: Mode amplitude standard deviation as a function of mode number from the quadratic
particle deposition using 25, 000 and 128, 256 and 512 grid cells.

The mode amplitude fluctuation from macroparticle deposition depends on124

the number of macroparticles used to sample the density distribution and the125

number of grid points. Figure 4 shows the mode amplitude of the Gaussian126

function as a function of mode number (≥ 20) from the quadratic deposition127

using 25, 000, 50, 000, and 100, 000 macroparticles and 128 grid cells. With128

the increase of the number of macroparticles, the mode amplitude fluctuation129

becomes smaller. For a fixed macroparticle number, the mode amplitude fluctu-130

ation also depends on the number of grid cells used in the deposition. Figure 5131
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shows the mode amplitude of the Gaussian function as a function of mode num-132

ber (≥ 20) from the quadratic deposition using 128, 256, and 512 grid cells and133

25, 000 macroparticles. As the number of grid cells increases, the mode am-134

plitude fluctuation becomes larger especially towards the larger mode number135

( ≥ 70). The larger mesh size of less grid cell helps smooth out high frequency136

fluctuation.137

The above fluctuation of the density mode amplitude from macroparticle138

deposition can be estimated quantitatively using the standard deviation (or139

variance) of the mode amplitude. Given the mode amplitude ρl in Eq. 10, the140

variance of ρl is given as:141

var(ρl) =
1

Np
var(

2

Ng∆x

∑
I

S(xI − xi) sin(αlxi)) (12)

where142

var(
2

Ng∆x

∑
I

S(xI − xi) sin(αlxi)) ≈ 1

Np
(

2

Ng∆x
)2

∑
i

[
∑
I

S(xI − xi) sin(αlxi)]
2 − (ρl)2(13)

From the variance of each mode amplitude, one can calculate the standard143

deviation (std) of each mode amplitude by taking the square root of the variance.144

Figure 6 shows the mode amplitude standard deviation as a function of mode145

number for the above Gaussian function by using the linear deposition, the146

quadratic deposition, and the Gaussian kernel deposition. The mode amplitude147

standard deviation is small at small mode number and grows quickly to 10−4
148

level and start to decrease after about 10 modes. The standard deviation among149

the three deposition schemes becomes smaller as the order of deposition scheme150

becomes higher. The Gaussian kernel deposition shows least mode amplitude151

standard deviation which is consistent with the results in Fig. 3.152

In Fig. 7, we show the mode amplitude standard deviation as a function of153
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Figure 9: The 4D emittance growth rate as a function of the simulation macroparticle number
using the FODO lattice.

mode number using 25, 000, 50, 000, and 100, 000 macroparticle sampling of the154

Gaussian distribution. The standard deviation decreases with the increase of the155

macroparticle number and scales as 1/
√
Np as expected from Eq. 12. Figure 8156

shows the mode amplitude standard deviation as a function of mode number157

using 128, 256, and 512 grid cells and 25, 000 macroparticles for the above158

Gaussian distribution. For small mode number (less than 10), the standard159

deviation is close among three numbers of grid cells. For larger mode number,160

the standard deviation of the small number of grid cells is smaller, which is also161

seen in Fig. 5.162

The error in the charge density mode amplitude results in error in the solu-163

tion of space-charge potential and the corresponding force in momentum update164

in Eqs. 4-5. Assume that the error of force in x momentum update is δF , after165

one step τ , i.e. x2 = x1, x′2 = x′1 + δFτ , the new emittance under the effect of166

this force will be:167

ε22 = < x2
2 >< x′22 > − < x2x

′
2 >

2

= < x2
1 >< x′21 > − < x1x

′
1 >

2 +

2(< x2
1 >< x′1δF > − < x1x

′
1 >< x1δF >)τ + (< x2

1 >< δF 2 > − < x1δF >2)τ2(14)
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where <> denotes the average with respect to the particle distribution. The168

above equation can be rewritten as:169

ε22 = ε21 +

2(< x2
1 >< x′1δF > − < x1x

′
1 >< x1δF >)τ + (< x2

1 >< δF 2 > − < x1δF >2)τ2(15)

and the emittance growth due to this error will be:170

∆ε ≈ (< x2 >< x′δF > − < xx′ >< xδF >)τ/ε+
1

2
(< x2 >< (δF )2 > − < xδF >2)τ2/ε(16)

If δF is a linear function of the position x, the emittance growth will be zero as171

expected since the linear force will not change the beam emittance. If δF is a172

random error force with zero mean and independent of x and x′, the emittance173

growth would be174

∆ε

τ
≈ 1

2
< x2 >< (δF )2 > τ/ε (17)

which is in agreement with the result of reference [23]. Assume that this error175

is due to mode amplitude fluctuation of the finite number of macroparticles176

sampling, from the above example, we see that < (δF )2 >∝ 1/Np. This suggests177

that the numerical emittance growth would decrease as more macroparticles are178

used. If δF is not a purely random error force (e.g. due to systematic truncation179

error), the dependence of the emittance growth on the number of macroparticle180

is more complicated. Figure 9 shows the 4D emittance growth rate as a function181

of macroparticle number in the linear FODO lattice using 256× 256 grid cells.182

It is seen that the emittance growth rate scales as 1/Np, which agrees well with183

the scaling of the random sample fluctuation induced emittance growth.184

In the above example, we used a linear FODO lattice with zero sextupole185
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Figure 10: The 4D emittance growth evolution in the FODO and sextupole lattice using 25,
50, 100, 200, and 1600 thousand macroparticles in the simulation.

Figure 11: The 4D emittance growth rate as a function of macroparticle number using the
FODO and sextupole lattice.

strength. When the sextupole strength is nonzero, it can excite third order186

resonance. Figure 10 shows the 4D emittance growth evolution of the 30 A187

proton beam inside a lattice with an effective 10/m/m integrated sextupole188

strength using several macroparticle numbers and 64 × 64 modes. Besides the189

physical emittance growth caused by the resonance, there also exists significant190

numerical emittance growth due to the finite macroparticle sampling. Figure 11191

shows the emittance growth rate in this case as function of the macroparticle192

number. It appears that in this case, the emittance growth rate scales close193

to 1/
√
Np. This slower scaling with respect to the Np might be due to the194

14



interaction between the numerical force error and the nonlinear resonance.195

Figure 12: The mode amplitude of a 2D Gaussian distribution without (top) and with 1%
threshold filter (bottom).

The charge density fluctuation from the macroparticle sampling can be fur-196

ther smoothed out by using a numerical filter in frequency domain besides em-197

ploying the shape function for particle deposition. As seen from the above one-198

dimensional example, the shape function helps suppress high frequency errors.199

However, even with the use of the shape function, there still exists significant200

level of mode amplitude error fluctuation for mode number greater than 20.201

Those mode amplitude errors can be removed by numerical filtering in the fre-202

quency domain. Instead of using a standard cut-off method that removes all203

modes beyond a given mode number (i.e. cut-off frequency), we proposed using204

an amplitude threshold method to remove unwanted modes. The mode with205
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Figure 13: The mode amplitude of a 2D Gaussian distribution with two sigma standard
deviation (top) and with four sigma standard deviation threshold filter (bottom).

an amplitude below the threshold value is removed from the density distribu-206

tion. The advantage of this method is instead of removing all high frequency207

modes, it will keep the high frequency modes with large amplitudes. These208

modes can represent real physics structures inside the beam. The threshold209

also removes the unphysical low frequency modes associated with the small210

number of macroparticle sampling. Here, we explored two threshold methods.211

In the first threshold method, the threshold value is calculated from a given212

fraction of the maximum amplitude of the density spectral distribution. In the213

second method, the threshold value is defined as a few standard deviations of214

the mode amplitude as shown in the one-dimensional Gaussian function exam-215

ple. The mode with an amplitude below the threshold value is regarded as216
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numerical sampling error due to the use of small number of macroparticles and217

is removed from the density distribution. The advantage of the first method218

is that the threshold value is readily attainable from the density spectral dis-219

tribution. The disadvantage of this method is that the threshold fraction is220

an external supplied hyperparameter. The advantage of the second method is221

that the threshold value is calculated dynamically through the simulation. The222

disadvantage of this method is the computational cost to obtain the standard223

deviation of each mode. The total computational cost of those standard de-224

viations is proportional to the number of modes multiplied by the number of225

macroparticles. This makes computing the mode amplitude standard deviations226

more expensive than computing the mode amplitudes (proportional to the num-227

ber of macroparticles) and not affordable at every time step. In practice, these228

mode amplitude standard deviations can be computed once (or once in while)229

during the simulation and reused in the following simulation. Figure 12 shows230

the spectral amplitude of a 2D Gaussian density distribution without and with231

0.01 threshold filter using 128 × 128 grid cells and 25, 000 macroparticles with232

the quadratic deposition method. The standard cut-off filter with 16 × 16 and233

32 × 32 modes are also indicated in above plot. Most high frequency noise is234

removed in this distribution by using the threshold filtering method. Figure 13235

shows the above sampled spectral amplitude distribution by using the threshold236

values of two-sigma standard deviation and four-sigma standard deviation. The237

two-sigma standard deviation threshold value does not remove all the higher238

frequency errors.239

As a test of the threshold filtering method, we reran the above space-charge240

long-term simulation in the linear FODO lattice using 0 (no filtering), 0.005,241

0.01 and 0.05 threshold filtering the charge density in the simulation and 25, 000242

macroparticles and the brute force direct cut-off filtering. Here, the larger243
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Figure 14: The 4D emittance growth with 64 × 64, 32 × 32, 16 × 16 modes cut-off filtering of
the charge density distribution using 25k in the FODO lattice.

Figure 15: The 4D emittance growth with 0 (no filtering) with 0.005, 0.01 and 0.05 threshold
filtering of charge density distribution using 25k macroparticles and 0 filtering using 1600k
macroparticles in the FODO lattice.

threshold value, the less number of modes will be included in the simulation.244

Those results are shown in Figs. 14-15. It is seen that without numerical fil-245

tering, there is significant emittance growth after 40, 000 turns. With 0.05246

threshold filtering, there is little emittance growth, which is consistent with the247

expected physics emittance growth by using 1600k macroparticles without fil-248

tering. Both the brute force filtering and the threshold filtering work well in249

this case.250

We also reran the simulation of 30A proton beam transport in a lattice in-251
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Figure 16: The 4D emittance growth using 64 × 64, 32 × 32, 16 × 16 modes (top) and with 0
(no filtering) with 0.01, 0.05 and 0.1 threshold filtering (bottom) of charge density distribution
using 25k macroparticles in a FODO and sextupole lattice.

cluding nonlinear sextupole element shown in Fig. 10. The 4D emittance growth252

evolutions using the brute force cut-off and the threshold filtering are shown in253

Fig. 16. It is seen that even with 16 × 16 mode cut-off filtering, there still ex-254

ists significant emittance growth, while a threshold value 0.1 helps significantly255

lower the emittance growth. Using the four-sigma standard deviation threshold256

value yields similar emittance growth to the fraction threshold (0.1) as shown in257

Fig. 17. The amplitude threshold filtering works better than the cut-off filtering258

in this case because it removes not only the unwanted high frequency errors259

but also the unwanted low frequency errors, while the cut-off filtering removes260

only the high frequency errors. Those low frequency errors interact with the261
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Figure 17: 4D emittance growth with one sigma, two sigma, four sigma standard devation and
0.1 maximum amplitude threshold filtering of charge density distribution using 25k macropar-
ticles in a FODO and sextupole lattice.

nonlinear resonance and cause extra emittance growth.262

4. Frozen Space-Charge Simulation263

In order to improve computational speed in the long-term simulation, we also264

explored a frozen space-charge model during the simulation [30, 31, 32]. Here,265

instead of self-consistently updating the space-charge calculation at every time266

step, after some initial time steps, we store the solutions of the space-charge267

potential along the lattice and reuse those stored space-charge potentials for268

the following long-term simulation. This model assumes that after some initial269

time steps, the charge density distribution will not vary significantly from turn270

to turn.271

Figure 18 shows the total 4D emittance growth evolution inside the above272

linear FODO lattice example from the simulation using the self-consistent track-273

ing and from the simulation using the frozen space-charge model after initial 200274

turns with 0.05 threshold filtering, 128 × 128 grid cells, and 25, 000 macropar-275

ticles. It is seen that emittance growth evolution from the frozen space-charge276

simulation agrees with that from the self-consistent simulation quite well. The277

computational speed of the frozen space-charge simulation is about a factor of278
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Figure 18: The 4D emittance growth evolution from the self-consistent simulation (red) and
the frozen space-charge simulation (green) in a FODO lattice.

Figure 19: The 4D emittance growth evolution from the self-consistent simulation (red) and
the frozen space-charge model (green) in a FODO and sextupole lattice.

six faster than the self-consistent simulation in this case.279

We also ran the 30 A proton beam through the FODO and sextupole lat-280

tice using the frozen simulation and the self-consistent simulation. Figure 19281

shows the 4D emittance growth evolution from the frozen space-charge simula-282

tion together with the emittance growth from the self-consistent space-charge283

simulation with 1.6 million macroparticles and 0.1 threshold filtering. The emit-284

tance growth from the self-consistent simulation has converged with respect to285

the number of macroparticles. In this example, both the frozen space-charge286

simulation and the self-consistent simulation show emittance growth driven by287
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Figure 20: The 4D emittance growth evolution from the frozen space-charge model simulation
with 10A, 20A and 30A beam currents in a FODO and sextupole lattice.

the third order resonance, while the frozen simulation shows significantly less288

emittance growth.289

Figure 20 shows the 4D emittance growth evolution of the 1 GeV proton290

beam through the above FODO and sextupole lattice with 10A, 20A, and 30A291

beam current from the frozen space-charge simulation. It is seen that with small292

current, there is little emittance growth caused by the third-order resonance.293

This is due to the fact that the lattice tune working point is 2.417, and the lin-294

ear space-charge tune shift 0.038 with 10A, 0.075 with 20A, and 0.113 with 30A295

current. With the increase of the current from 10A to 30A, more and more par-296

ticles move into the 3rd order (2.333) resonance and results in larger emittance297

growth as observed in the simulation. The frozen space-charge simulation qual-298

itatively reproduce the physical results of resonance driven emittance growth,299

which was also observed in the self-consistent space-charge simulation [18].300

5. Conclusion301

The long-term macroparticle tracking simulation is computationally chal-302

lenging but needed for the study of space-charge effects in high intensity circular303

accelerators such as a synchrotron. In this study, we propose using symplectic304
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PIC model with the threshold filtering in frequency domain and frozen space-305

charge model to address those challenges.306

There exists slow numerical emittance growth in the long-term simulation307

even with the use of symplectic space-charge model. This numerical emittance308

could be caused by the high frequency density fluctuation or unphysical low fre-309

quency density modes associated with the use of small number of macroparticles.310

In a linear lattice without nonlinear resonance, the artificial emittance growth311

rate scales inversely as the number of macroparticles when the random sam-312

pling error is dominant. In a nonlinear lattice, the artificial emittance growth313

rate scaling becomes more complicated due to the interaction between the low314

frequency error and the nonlinear resonance.315

The numerical artifacts from macroparticle sampling can be mitigated by316

the use of threshold filtering in frequency domain. By appropriately choosing317

threshold value, the numerical emittance growth can be significantly reduced318

in the long-term simulation. Here, we proposed two types of threshold values.319

One type of threshold value is a predefined fraction of the maximum amplitude320

of the charge density spectral distribution. The other type of threshold value321

is based on the standard deviation of mode amplitude and can be dynamically322

calculated from the particle distribution in the simulation (this can be compu-323

tationally expensive). Both types of threshold values yield similar simulation324

results with appropriate choice of threshold values. The use of numerical filter-325

ing is under the situation where significant numerical emittance growth observed326

in the simulation.327

In order to improve the computing speed, we also explored a frozen space-328

charge model that stores the space-charge potential solutions after some initial329

time steps and reuse those space-charge potentials in the following long-term330

simulation. This method significantly reduces the computing time and yields331
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qualitatively reasonable simulation results in comparison to the self-consistent332

space-charge simulation in the examples used in this study. The frozen space-333

charge model can be used when the beam charge density does not vary signif-334

icantly from turn to turn. This corresponds to the situation that the particle335

beam is not subject to any coherent instability or strong resonance.336
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