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A projection pursuit framework for testing general
high-dimensional hypothesis

Yinchu Zhu
Rady School of Management, University of California, San Diego

and
Jelena Bradic ∗

Department of Mathematics, University of California, San Diego

May 2, 2017

Abstract

This article develops a framework for testing general hypothesis in high-dimensional models
where the number of variables may far exceed the number of observations. Existing literature has
considered less than a handful of hypotheses, such as testing individual coordinates of the model
parameter. However, the problem of testing general and complex hypotheses remains widely open.
We propose a new inference method developed around the hypothesis adaptive projection pursuit
framework, which solves the testing problems in the most general case. The proposed inference
is centered around a new class of estimators defined as l1 projection of the initial guess of the
unknown onto the space defined by the null. This projection automatically takes into account
the structure of the null hypothesis and allows us to study formal inference for a number of long-
standing problems. For example, we can directly conduct inference on the sparsity level of the
model parameters and the minimum signal strength. This is especially significant given the fact
that the former is a fundamental condition underlying most of the theoretical development in
high-dimensional statistics, while the latter is a key condition used to establish variable selection
properties. Moreover, the proposed method is asymptotically exact and has satisfactory power
properties for testing very general functionals of the high-dimensional parameters. The simulation
studies lend further support to our theoretical claims and additionally show excellent finite-sample
size and power properties of the proposed test.

Keywords: high-dimensional inference, linear model, generalized linear model, non-convexity, robust
test, p-values, bootstrap
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1 Introduction

High-dimensional statistical inference of models in which the number of variables pmight be much larger

than the sample size n (i.e., p � n) has become a fundamental issue in many areas of applications.

Examples include image analysis, analysis of high-throughput genomic sequences, speech analysis, etc

where the HDLSS (high-dimensional low sample size with p/n→∞) data structure is apparent. The

goal of many empirical analyses is to understand the parameter structure of the model at hand, hence

developing methodology that is flexible and broad-ranging as far as the hypotheses are concerned, is

of great practical importance. Our goal is to construct a test that can perform well for a large class of

high-dimensional null hypothesis.

In this paper, we consider a general model based on n independent and identically distributed

observations z1, z2, . . . , zn of a random variable (vector) z with support Z, a loss function l(·, ·) :

Z × B → R a parameter space B ⊆ Rp and a true parameter value defined as

β∗ = arg min
β∈B

L(β), (1.1)

with L(β) = E[l(z, β)]. The above formulation covers many important statistical models; for the

parametric likelihood models, z is generated from a distribution Pβ with the true value β∗ defined by

(1.1) with l(z, β) = − log pβ(z), where pβ(·) is the probability density function corresponding to Pβ .

The main goal of this paper is to fill in the gap in the current high-dimensional literature and

present a comprehensive methodology for the following testing problem

H0 : β∗ ∈ B0 vs H1 : β∗ /∈ B0, (1.2)

for a given set B0 ⊂ B. Here, no restrictions, such as convexity or dimensionality, are imposed on

the set B0. Explicitly, we would like to design a test that is asymptotically exact irrespective of the

geometry of the set B0.

This problem can be motivated first as a high-level approach to performing inference in high-

dimensions for complex hypothesis. Since p � n, further assumptions, such is sparsity have been

naturally exploited. There one assumes that the number of non-zeros of β∗, ‖β∗‖0, is smaller than n.

Despite the fact that hypothesis testing problem (1.2) is a difficult problem, it is naturally related to

a number of important questions.

Example 1.1 (Testing the sparsity level). Over the past decade, sparsity assumption has become
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the prime measure of regularity. In particular, smooth functions can be viewed as functions with a

sparse expansion in an appropriate basis. While the estimation of sparse parameters has been well

established across many different models (Meinshausen and Bühlmann, 2006; Van de Geer, 2008; Zhang

and Huang, 2008; Bickel et al., 2009; Negahban et al., 2012), this paper, to the best of our knowledge,

provides the first testing procedure for the sparsity of the model. Indeed, the sparsity assumption is

more often than not poorly justified and has been unverified. As such, our work has direct impact

on real applications. In the setup (1.2), we consider B0 = {β ∈ B | ‖β‖0 ≤ c} for some pre-specified

constant c ≥ 0.

Example 1.2 (Testing minimum signal strength). The three main themes in high-dimensional

statistics which have been considered in the past are: prediction of the regression surface, estimation

of the parameter vector and variable selection. The last theme concerns with finding a set Ŝ such that

P(Ŝ = S0) is large, where S0 = supp(β∗) := {j | β∗,j 6= 0} is often referred to as the active set. In

order for any regularized estimator to be sign consistent for the active set S0, we have to require that

the non-zero regression coefficients are sufficiently large by imposing a “beta-min” assumption whose

asymptotic form reads

min
j∈S0
|β∗,j | �

√
‖β∗‖0 log(p)/n.

The “beta-min” assumption is restrictive and non-checkable. Furthermore, these conditions are neces-

sary (Fan and Li, 2001; Zhao and Yu, 2006; Meinshausen and Yu, 2009; Fan and Lv, 2011). Hence,

for real application it is of paramount importance to verify whether “beta-min” condition holds. To

the best of our knowledge, our work is the first that provides a valid test that is asymptotically exact.

In the setup (1.2), we consider B0 = {β ∈ B | minj∈supp(β) |βj | ≥ c} for some prespecified c > 0.

If supp(β) = ∅, the convention is minj∈supp(β) |βj | = +∞ – that is, β = 0 satisfies the “beta-min”

condition.

Example 1.3 (Testing quadratic forms). Suppose now that our goal is to construct a two-sided

confidence interval (CI) for the signal squared magnitude ‖β∗‖22. In linear models, this is related to

inference on the signal-to-noise ratio and the noise level; see (Dicker, 2014; Fan et al., 2012; Sun and

Zhang, 2012; Janson et al., 2015; Verzelen and Gassiat, 2016). This is a fundamental statistical problem

not only for linear models but also for many nonlinear models that are popular in applications. However,

this problem has not been discussed much beyond high-dimensional linear models. Our method allows

us to test the more general hypotheses of the form

H0 : ‖Qβ∗‖2 ∈ A
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for some pre-specified set A ⊆ [0,∞) and a matrix Q ∈ Rp×p, where β∗ is the parameter in a general

model defined in (1.1). In the setup (1.2), we shall consider B0 = {β ∈ B | ‖Qβ‖2 ≤ c} for some

prespecified c > 0.

Many important problems in practice reduce to the inference problem of complex hypotheses in

nonlinear models. Consider the problem of testing H0 : ψ(β∗) ≤ 0 for some functional ψ(·) defined

on B. In our framework, this hypothesis is equivalent to (1.2) with B0 = {β ∈ B | ψ(β) ≤ 0}. The

literature has seen some progress in this direction for linear models, such as Cai and Guo (2015) for

linear functionals, however, more general functionals have not been discussed yet. A practical example

is whether an individual with feature x1 is twice as likely as the one with feature x2 to contract the

disease (event). In this case the functional of interest would be ψ(β) = g(x>1 β)−2g(x>2 β) in the logistic

regression model where g(·) is the distribution function for the standard logistic distribution. Notice

that when B0 is written in terms of a functional on β∗, we do not require properties such as convexity

or smoothness in the functional under testing.

In this article, we propose a method that can be used for general hypotheses (1.2), including all

the aforementioned inference problems. We start with the testing problem (1.2) in linear models and

extend the methodology to various regression models. The test we propose uses bootstrap to obtain

critical values and is computationally simple as we do not need to re-estimate the model in bootstrap

samples. Under mild regularity conditions, we show that our test provides an asymptotically exact

inference procedure and also possesses satisfactory power properties.

1.1 Related Work

A significant understanding has emerged over the past few years that statistical inference of parameters

with dimension much larger than the sample size can be problematic in the situation of an “imperfect

model selection”, which can arise when the features corresponding to the true model parameters and the

nuisance parameters have a high degree of correlation (Zhao and Yu, 2006). The situation of parameter

estimation has been studied extensively in the presence of “imperfect model selection” (Bunea et al.,

2007; Bickel et al., 2009); however, the literature on high-dimensional testing of complex hypothesis is

very light. In the context of high dimensional linear models, Zhang and Zhang (2014) have introduced

tests to compare a single variable to a prescribed value. In the spirit of the Wald test, their methodology

named “debiasing” is based on exploiting optimal low-dimensional projections of the parameter of the

model. The methodology has been extended to problem-specific settings of generalized linear models

(Van de Geer et al., 2014), gaussian graphical models (Ren et al., 2013), matrix estimation (Cai
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et al., 2014; Janková and van de Geer, 2015) and etc. Ning and Liu (2014) developed a parallel

approach, named score tests, based on optimal projections of the score vector instead. A competing

method of Javanmard and Montanari (2014) guarantees a test of an asymptotically exact size and

relaxes the sparsity of the inverse covariance matrix. The authors provide an optimal sample size

computation for their method in Javanmard and Montanari (2015). Recently, Zhang and Cheng

(2016) and Dezeure et al. (2016), adopted a gaussian multiplier bootstrap approach of Chernozhukov

et al. (2013) in an adaptation of the debiasing procedure to the simultaneous testing of groups of

variables. However, existing literature only considers only simple hypotheses that specify one or some

of the entries of the parameter to be given values. In contrast, complex null hypotheses (both convex

and non-convex) – hypotheses that depend on all the entries of β∗, not just a few and those that

allow general interactions between all elements of β∗ – in high-dimensional models have presented

significant challenges and have not been successfully solved. Moreover, we observe that these existing

approaches do not extend naively to general complex null hypotheses, due to error accumulation in

high-dimensions; thus, new methodology is required. Meinshausen (2015) and Mandozzi and Bühlmann

(2016) build the testing strategy upon the knowledge of the distributional form of the error term and

design tests adaptive to highly correlated designs. However, their approach is not asymptotically exact

and provides conservative inference bounds.

In addition to being able to test general functionals of β∗, what methodologically distinguishes our

treatment from the above existing literature, is that our proposal is not centered around a construc-

tion of an unbiased estimator or unbiased score equations, as those would not be possible for many

functionals of interest (including but not limited to the Examples 1.1–1.3) – estimation of non-smooth

functionals is particularly hard even for low-dimensional problems. In fact, it is not clear what one

should estimate to test the general hypothesis (1.2). To overcome the inherited difficulty of estimation,

we create a projection pursuit suited for testing problems, by infusing the null hypothesis set B0 into

the construction of the `1-projection of a suitable estimator of β∗. When B0 is defined in terms of a

functional ψ(·) of β∗, our methodology allows us to bypass the estimation of ψ(β∗) and therefore relax

many assumptions on the functional ψ(·). Further details involve then a construction of a test statistic

related to the size of the residuals of the projection pursuit procedure.

1.2 Notations and organization of the paper

Throughout this paper, > denotes the matrix transpose and Ip denotes the p× p identity matrix with

its jth column denoted by ej . The (multivariate) Gaussian distribution with mean (vector) µ and
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variance (matrix) Σ is denoted by N(µ,Σ). For a vector v ∈ Rk, we denote its jth entry by vj and

define its `q-norm as follows: ‖v‖q = (
∑k

i=1 |vi|q)1/q for q ∈ (0,∞), ‖v‖∞ = max1≤i≤k |vi| and ‖v‖0 =
∑k

i=1 1{vi = 0}, where 1{} denotes the indicator function. We also define supp(v) = {j | |v|j > 0}.
For two sequences an, bn > 0, we use an � bn to denote that there exist positive constants C1, C2 > 0

such that ∀n, an ≤ C1bn and bn ≤ C2an. For two real numbers a and b, let a ∨ b and a ∧ b denote

max{a, b} and min{a, b}, respectively. For a differentiable real-valued function f(·) of x, we define

∇xf(x) = ∂f(x)/∂x and ∇2
xf(x) = ∂2f(x)/∂x∂x>. We use “s.t.” as the abbreviation for “subject to”.

We also introduce two definitions that will be used frequently. The sub-Gaussian norm of a random

variable X is defined as ‖X‖ψ2 = supq≥1 q
−1/2(E|X|q)1/q, whereas the sub-Gaussian norm of a random

vector Y ∈ Rk is ‖Y ‖ψ2 = sup‖v‖2=1 ‖v>Y ‖ψ2 . The sub-exponential norm of a random variable X

is defined as ‖X‖ψ1 = supq≥1 q
−1(E|X|q)1/q. A random variable is said to be sub-Gaussian (sub-

exponential) if its sub-Gaussian (sub-exponential) norm is finite.

The rest of the paper is structured as follows. Section 2 introduces `1 Projection Pursuit estimator,

its properties and guidelines on the implementation. Section 3 presents the Projection Pursuit Testing

methodology for the linear model and its theoretical properties. General Projection Pursuit Testing

methodology is introduced in Section 4 as well as its theoretical properties. In Section 5, we illustrate

the proposed methodology on the class of generalized linear models through a case of the logistic model.

In Section 6, we demonstrate the finite-sample performance in Monte Carlo simulations. The proofs

for the theoretical results are contained in the Supplementary Materials.

2 `1-projection pursuit estimator

In this section we introduce a new class of estimators, named `1-projection pursuit estimators designed

as hypothesis adaptive contrasts for the testing problem (1.2). Projection pursuit ideas originally devel-

oped for the multivariate analysis of high-dimensional point clouds, were designed to “pick” interesting

low-dimensional projections of a high-dimensional observations; see Friedman and Tukey (1974) and

Huber (1985) for example. Here, we propose a class of estimators in high-dimensional setting useful

for detecting deviations from the null hypothesis – they are designed to “pick” useful projections of the

unknown parameter to the null hypothesis set B0 that is of our interest.

We measure the deviations from H0 using the Hausdorff distance (based on the `1-norm), i.e.,

d(B0, β∗) = minv∈B0 ‖β∗ − v‖1. Observe that the null H0 : β∗ ∈ B0 is equivalent to the hypothesis

that d(B0, β∗) = 0. As β∗ is unknown, direct computation of this distance is not feasible. Instead, we

replace the unknown β∗ with its candidate estimate β̂u developed by utilizing observations z1, . . . , zn.
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This estimator is hypothesis blind, i.e. it is unconstrained by the definition of the null; hence, the

notation β̂u. For example, in linear models, we can take as β̂u the famous Dantzig selector, defined as

the solution to the following optimization problem

β̂u = arg min
β∈Rp

{
‖β‖1 s.t. ‖n−1X>(Y −Xβ)‖∞ ≤ λ

}
, (2.1)

where λ �
√
n−1 log p is a tuning parameter specifying the amount of sparsity to be encouraged at

estimation.

The element in B0 that matches the Hausdorff distance d(B0, β̂u) is referred to as the projection

pursuit estimator, i.e., the solution to the following optimization problem

β̂d = arg min
β∈Rp

‖β − β̂u‖1 (2.2)

s.t. β ∈ B0.

The distance ‖β̂d− β̂u‖1 serves as an estimate for d(B0, β∗), which takes value zero under H0. Such

a distance measure is a random variable, whose distribution can provide a benchmark to gauge whether

the deviations of the null hypothesis β∗ ∈ B0 are any better than a random chance. The choice of

`1-norm in the Hausdorff distance is motivated by the fact that for high-dimensional problems with

p� n, the `1-norm typically induces sparsity and enables consistent estimation. The following result

says that for an `1-consistent estimator β̂u, ‖β̂u− β∗‖1 = 0P (1), the introduced β̂d is also `1-consistent

whenever the null hypothesis is true.

Lemma 1. If the null hypothesis H0 : β∗ ∈ B0 holds, the `1 projection pursuit estimator β̂d (2.2)

satisfies ‖β̂d − β∗‖1 ≤ 2‖β̂u − β∗‖1.

The `1-norm is special in the sense that the above consistency property does not hold if we replace

the `1-norm in (2.2) with `q-norms for any q 6= 1. Below we illustrate the geometry of the proposed

`1 projection pursuit estimator for complex null sets B0, via examples introduced in Section 1. We

observe that for many non-convex sets B0 the proposed estimator possesses analytical solution – hence,

bypassing the difficult non-convex optimization.

2.1 Example 1.1 (continued)

Although the `0-ball B0 = {β | ‖β‖0 ≤ s0} is not convex, the computational burden is in fact negligible

due to exploitation of the geometric structure of B0. The following result characterizes projection onto
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Figure 2.1: `1-projection onto `0-balls in R2 where the black lines represent the `0-ball B0 = {β |
‖β‖0 ≤ 1} and rhombi centered at a denote the level sets {β | ‖β − a‖1 = c}.

“`0-balls” as the thresholding rule of keeping the largest entries and setting the others to zero.

Lemma 2. Let v ∈ Rp and s0 be a nonnegative integer. Suppose that π : {1, · · · , p} → {1, · · · , p} is a
permutation such that |vπ(1)| ≥ |vπ(2)| ≥ · · · ≥ |vπ(p)|. Define ṽ ∈ Rp with ṽJ = vJ and ṽJc = 0 with

J = {π(1), · · · , π(s0)}.Then ṽ solves minβ∈Rp ‖β − v‖1 s.t. ‖β‖0 ≤ s0.

By Lemma 2, the computation of `1-projection pursuit estimator is extremely simple and does not

require any numerical optimization. Figure 2.1 illustrates the geometry of the computation for p = 2

and s0 = 1. To appreciate the convenience of the closed-end form solution in Lemma 2, we note that

optimization over `0-balls are in general very challenging. For example, if we replace the `1-norm with

`2-norm in (2.2) we would lose this property as the high-dimensional linear models can be estimated

using an `0-penalized least squared method, for which the computation is known to be NP-hard.

2.2 Example 1.2 (continued)

We begin by observing that the beta-min set B0 = {β ∈ B | minj∈supp(β) |βj | ≥ c} is highly nonconvex,

as illustrated in Figure 2.2 (left) with p = 2. Fortunately, the computation can be done efficiently due

to the following result, which provides a closed-end solution to the optimization problem.

Lemma 3. Let v ∈ Rp and c > 0. Define ṽ ∈ Rp with ṽj = ρ(vj , c) ∀1 ≤ j ≤ p, where ρ(a, c) =

sign(a)1{c/2 ≤ |a| < c}c+ 1{|a| ≥ c}a. Then ṽ solves minβ∈Rp ‖β − v‖1 s.t. minj∈supp(β) |βj | ≥ c.
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Figure 2.2: `1-projection onto the set B0 = {β ∈ B | minj∈supp(β) |βj | ≥ c} (left) and the thresholding
function ρ(·, c) (right).

The function ρ(·, c) can be viewed as a thresholding rule. Entries that are larger than c in magni-

tude are unchanged; otherwise, entries smaller than c/2 in magnitude are set to zero and those with

magnitude between c/2 and c are set to c or −c, depending on the sign (see Figure 2.2 (right)). Lemma

3 says that minimizing `1-distance over the beta-min set amounts to applying the thresholding rule

entrywise.

2.3 Example 1.3 (continued)

Figure 2.3 illustrates l1 projection onto the set B0 = {β ∈ B | ‖Qβ‖2 ≤ r0} with p = 2 and Q = Ip.

Notice that this is a convex optimization problem and thus it can be solved by efficient algorithms.

The result below provides an easy method that exploits fast computation packages that are widely

available for statistical analysis. Applying the duality theory, we show that the optimization problem

can be reduced to a one-dimensional problem once the solution path of a certain Lasso problem is

obtained.

Lemma 4 (Example 1.3 continued). Define the function t 7→ a(t) with a(t) ∈ arg mina∈Rp ‖Qv +

Qa‖22 + t‖a‖1. Let t∗ ≥ 0 solve mint≥0 ‖a(t)‖1 subject to ‖Qv + Qa(t)‖2 ≤ c. Then v + a(t∗) solves

minβ∈Rp ‖β − v‖1 subject to ‖Qβ‖2 ≤ c.

Notice that the function a(·) in Lemma 4 is the solution path of the Lasso regression in which Qv is

the response vector and −Q is the design matrix. Very efficient algorithms have been developed, such

as LARS by Efron et al. (2004). Once this solution path is computed Lemma 4 says that `1-projection
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pursuit estimation over an ellipsoid amounts to solving an optimization problem in t, a scalar. We

illustrate this projection on Figure 2.3.
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Figure 2.3: `1-projection of a onto `2-balls B0 = {β | ‖β‖2 ≤ r0} ⊂ R2.

3 Projection pursuit test statistic: the case of linear model

Although we will ultimately argue that our method applies much more broadly, we will begin the

exposition of the method by considering the following linear model,

Y = Xβ∗ + ε, (3.1)

where Y = (y1, · · · , yn)> ∈ Rn is the response and the error ε = (ε1, · · · , εn)> ∈ Rn is independent

of the design matrix X = (x1, · · · , xn)> ∈ Rn×p with independent rows xi ∈ Rp and such that

E[xi] = 0, E[ε] = 0 and E[εε>] = Inσ2
ε . We consider a random design setting, allow for p� n and do

not assume that the error variance σε is known. Our method will involve data splitting and we use

XA = (x1, · · · , xm)> ∈ Rm×p and XB = (xm+1, · · · , xn)> ∈ Rm×p with m = n/2 to denote the two

subsamples considered later on.

In this section we develop a novel method for constructing test statistics for testing the hypothesis

H0 : β∗ ∈ B0, vs. H1 : β∗ /∈ B0.
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Our framework does not require B0 to be a convex set. The only restriction we impose is that it is a

closed set; hence, it’s size may grow with p, its contours may be irregular, it does not have to be a convex

set, etc. The methodology we develop here is designed to test the implications of a null hypothesis,

whereas the Wald, Score or Likelihood ratio tests, aim to exploit specific parametric restrictions. The

score tests, for example, “eliminate” the set of nuisance parameters, whereas our procedure “eliminates”

the set of parameters of primary interest. We achieve that by designing a projection pursuit estimator

that directly utilizes the set B0 in the construction of the projection, hence avoiding a consistent

estimation of the possibly complicated functional of β∗ describing the set B0.

3.1 Construction of the test statistic

We now wish to introduce the test statistic Tn, which will help us contrast the two estimators, the

initial one β̂u and the newly constructed and hypothesis dependent, `1-projection pursuit estimate

β̂d. The test Tn is constructed so that large positive values are evidence against the null hypothesis

β∗ ∈ B0. One possible candidate would be a test defined as ‖β̂u − β̂d‖∞. However, for p � n, this is

not a good choice since the regularization in estimation can induce asymptotic degeneracy, making the

test impossible. Instead, we propose to consider the following test statistic, the projection pursuit test

(PPTest) statistic, defined as

Tn =
√
n max

1≤j≤p

∣∣∣β̂u,j − β̂d,j − δ̂j
∣∣∣ , (3.2)

where δ̂ ∈ Rp is a data-dependent vector, a suitably chosen estimate of the bias of the projection

residuals, i.e. such that under the null hypothesis H0, β̂u − β̂d − δ̂ “approximately” has zero mean.

Under the general methodology that we propose, possibly other measures of the size of β̂u− β̂d− δ̂
can be allowed. The `∞-norm allows for extremely large number of model parameters p, i.e., p � n;

for instance, instead of considering the `∞-norm, we can evaluate the `2-norm whenever p = o(n), that

is we can consider a test based on
{
n
∑p

j=1

(
β̂u,j − β̂d,j − δ̂j

)2
}
.

At the first glance, one might think that the construction of δ̂ depends on the model, the estimation

procedure of β̂u and the set B0. However, we advocate for a a simple unified method that only takes

into an account the model structure. Namely, we define the estimator of the projection bias of the

residuals, as the following vector δ̂ = δ̂SP1
{
‖δ̂SP ‖∞ ≤ n−1/4

}
with

δ̂SP = Θ̂m−1
m∑

i=1

xi(yi − x>i β̂u)− Θ̂m−1
n∑

i=m+1

xi(yi − x>i β̂d) (3.3)
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where the matrix Θ̂ ∈ Rp×p is defined as Θ̂ = (Θ̂1, · · · , Θ̂p)
> ∈ Rp×p. Here, we keep the smallest few

elements of δ̂SP to improve the sensitivity of the proposed test. Moreover, the thresholding level that

we advocate is universal, n−1/4 and does not need to be tuned in finite samples; i.e., the method is

not sensitive to big changes. Finally, for 1 ≤ j ≤ p, the columns Θ̂j are the solutions to the following

problem

Θ̂j = arg min
θ∈Rp

‖θ‖1 s.t. ‖m−1X>AXAθ − ej‖∞ ≤ η (3.4)

‖m−1X>BXBθ − ej‖∞ ≤ η

‖Xθ‖∞ ≤ µ.

In the above definition, tuning parameters are chosen as η �
√
n−1 log p and µ �

√
log(p ∨ n). Observe

that Θ̂ is constructed as a pooled variance estimator modifying the CLIME estimator introduced by

Cai et al. (2011). Alternatively, we can follow a similar algorithm as in Javanmard and Montanari

(2014). The node-wise Lasso studied by Meinshausen and Bühlmann (2006) can also be used if we

assume sparsity in rows of (Exix>i )−1.

3.2 Construction of the critical value

Due to highly complicated dependencies in high-dimensions, obtaining an asymptotic pivotal distri-

bution of Tn is difficult, if at all possible. Moreover, observe that the introduced test statistic Tn

changes its form with the change of the null set B0 via the introduced `1-projection pursuit estimator

β̂d, therefore introducing additional difficulties in computing its exact distribution. Hence, we instead

aim at finding a data-driven critical value of the test statistic Tn, i.e. value c such that whenever the

null hypothesis H0 : β∗ ∈ B0 holds, Tn > c holds with probability close to the prescribed level of the

test α ∈ (0, 1).

We introduce an efficient multiplier bootstrap procedure to achieve this goal. Namely, consider the

data-driven vectors R̂1, . . . , R̂n ∈ Rp

R̂i =




−2Θ̂xi(yi − x>i β̂u) for 1 ≤ i ≤ m

2Θ̂xi(yi − x>i β̂u) for m+ 1 ≤ i ≤ n
, (3.5)

together with their empirical average R∗ = n−1
∑n

i=1 R̂i ∈ Rp. Together with them we consider a

sequence of independent and identically distributed (i.i.d.) random vectors, the Gaussian multipli-
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ers ξ1, . . . , ξn, each with a standard normal distribution. We then propose to consider the following

bootstrap test statistics

TBSn = n−1/2 max
1≤j≤p

∣∣∣∣∣
n∑

i=1

(
R̂i,j −R∗j

)
ξi

∣∣∣∣∣ .

We will show that the resampled distribution of TBSn offers a good approximation of the distribution

of Tn. Hence, we can take as the critical value for Tn the (1 − α)-quantile of TBSn (while holding the

observations fixed), denoted by Q(1− α, TBSn ), where α is the nominal size of the test.

3.3 Theoretical properties

In this subsection we detail theoretical properties of the proposed test.

Theorem 1. For the linear regression model (3.1), consider a test that rejects the null iff Tn >

Q(1−α, TBSn ). Suppose that log p = o(n1/8) and ‖β∗‖0 = o(n1/4/
√

log p). Let σε and all the eigenvalues

of ΣX = E
[
x1x

>
1

]
lie in [κ1, κ2] for κ1, κ2 ∈ (0,∞). Additionally, assume there exists a constant

κ3 ∈ (0,∞) such that ‖Σ−1/2
X x1‖ψ2 ≤ κ3 and ‖ε1‖ψ2 ≤ κ3. Then, we have that under H0,

lim sup
n→∞

sup
α∈(0,1)

∣∣P
(
Tn > Q(1− α, TBSn )

)
− α

∣∣ = 0.

Note that Theorem 1 showcases that the proposed Projection Pursuit Test is an asymptotically α

level test, i.e., P (Type I error) → α. Observe that it allows for high-dimensionality, p � n, imposes

very mild assumptions on design, ΣX and the model error ε. In particular, we do not require Σ−1
X

to be sparse – a condition utilized in Belloni et al. (2014); Zhang and Cheng (2016) or Belloni et al.

(2016). In this way our test proposed a more robust alternative to the simultaneous tests above. To

achieve robustness we impose slightly stronger assumptions on sparsity and dimensionality; see the

assumption of ‖β∗‖0 = o(
√
n/ log p) in Van de Geer et al. (2014) for example and log p = o(n2) of Ning

and Liu (2014). The polynomial grow factors are a small price to pay for the complexity of the null

hypothesis – observe that the diameter of B0 can explode with n. This is somewhat expected as our

null hypothesis for example includes problems of high-dimensional simultaneous testing, as those of

Zhang and Cheng (2016); Dezeure et al. (2016); in comparison to those, our restriction on the growth

of p is related. We will showcase this general algorithm on all three Examples of Section 1, i.e. testing

for sparsity, testing for minimum signal strength and testing for quadratic functionals (see Section 6).

Next, we consider power properties of the proposed test. For that end, we consider the following
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alternative

H1,n : min
β∈B0

‖β − β∗‖∞ ≥ cn,

for a suitably chosen positive sequence cn.

Theorem 2. Let the assumptions in Theorem 1 hold. Suppose that cn � n−1/4. Then, under H1,n,

we have that ∀α ∈ (0, 1), lim infn→∞ P
(
Tn > Q(1− α, TBSn )

)
= 1.

Theorem 2 says that our test has power against alternatives with deviation larger than n−1/4.

Hence, our procedure is very sensitive in detecting sparse alternatives. Notice that this rate holds for

any B0 with unknown ΣX and σε. Deriving the optimal rate of detection of H1,n is quite difficult even

if we take into account the structure of B0. For example, inference on the `2-norm of β∗ has been

studied by Ingster et al. (2010) who derive the minimax detection rate under Gaussian design with

ΣX = Ip and unknown σε, see Theorem 4.5 and Proposition 4.6 therein; however, to the best of our

knowledge, the optimal rate with unknown ΣX for this problem is still an open question. Another

example is inference of H0 : a>β∗ = 0 with a known dense vector a. Cai and Guo (2015) study this

problem and derive the minimax rate for tests that use explicit knowledge of ‖β∗‖0; they also show

that tests without explicit knowledge of ‖β∗‖0 are strictly less powerful in detection rate. The minimax

detection rate for this problem without knowledge of the sparsity level is also an open question; in

fact, we cannot find such a test that does not use the sparsity level in the literature. Moreover, our

test is asymptotically exact and hence might deliver superior performance in finite sample than some

minimax tests that are only rate-optimal.

4 A Projection Pursuit Methodology

Here we provide a general projection pursuit methodology developed for testing the null β∗ ∈ B0; a

methodology that does not require the set B0 to be convex – with examples extending beyond non-

smooth functionals of β∗, quadratic functionals of β∗ and many more.

4.1 Construction of the test statistic

Step 1: Compute a consistent estimator of β∗. For the observations z1, . . . , zn compute the

preliminary estimate, β̂u by minimizing the sample analog of (1.1). We do not impose hard restrictions

on how such an estimator is computed, as long as ‖β̂u−β∗‖1 = oP (1). The liberty of choosing from the

most convenient estimator is one of the advantages of our method. For high-dimensional problems, we
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typically obtain β̂u through a regularized estimation, for example: β̂u = arg minβ∈B {Ln(β) + P (β)} ,
where Ln(·) is the sample analog of L(·) and P (·) is a penalty function, such as λ‖ · ‖1 in Lasso or the

non-convex function in SCAD. One can also use the Dantzig selector.

Step 2: Construct the `1-projection pursuit estimator. Compute the “projection” of the

initial estimate β̂u onto the null set B0, i.e., β̂d as in (2.2). Observe that this contrast estimate does

not depend on the regression model.

Step 3: Form the test statistic. Define the projection pursuit test (PPTest) statistic as

Tn =
√
n max

1≤j≤p

∣∣∣β̂u,j − β̂d,j − δ̂j
∣∣∣ , (4.1)

where for m = n/2, δ̂ = (δ̂1, ..., δ̂p)
> = δSP1{‖δSP ‖∞ ≤ n−1/4} with

δSP = m−1
m∑

i=1

Θ̂As(zi, β̂u)−m−1
n∑

i=m+1

Θ̂Bs(zi.β̂d), (4.2)

In the above display s(z, β) = ∇βl(z, β) is the gradient of the loss and l(·, ·) is the loss function in

(1.1). Matrices Θ̂A, Θ̂B ∈ Rp×p are candidate estimates for the precision matrix [∇2
βEl(z, β∗)]−1. We

note that the particular choice of the suitable estimates Θ̂A and Θ̂B is problem specific; however,

techniques advocated by Zhang and Zhang (2014), Van de Geer et al. (2014) and Javanmard and

Montanari (2014) can be adapted to many models. In Section 5, we discuss the particular case of

generalized linear models through a logistic model. Moreover, estimates Θ̂A and Θ̂B can be either

pooled (Θ̂A = Θ̂B) or unpooled (Θ̂A 6= Θ̂B); we showcase advantageous properties of both cases in

Section 5.

Step 4: Calculate the critical value via bootstrap.

Under certain regularity conditions, we show that Tn can be approximated by n−1/2‖∑n
i=1Ri‖∞,

whenever the null hypothesis holds. Here, the vectors Ri ∈ Rp are defined as

Ri =





2ΘAs(zi, β∗) 1 ≤ i ≤ m

−2ΘBs(zi, β∗) m+ 1 ≤ i ≤ n.
(4.3)

We propose to adapt a multiplier bootstrap procedure developed in a series of papers Chernozhukov

et al. (2014); Zhang and Cheng (2016); Dezeure et al. (2016). By repeatedly drawing the i.i.d. standard
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Gaussian multipliers {ξi}ni=1, we define the bootstrapped test statistic

TBSn = n−1/2 max
1≤j≤p

∣∣∣∣∣
n∑

i=1

(
R̂i,j −R∗j

)
ξi

∣∣∣∣∣ with R∗j = n−1
n∑

i=1

R̂i,j (4.4)

where R̂i is an suitable estimator for Ri. For this purpose, we consider

R̂i =





2Θ̂As(zi, β̂u) 1 ≤ i ≤ m

−2Θ̂Bs(zi, β̂u) m+ 1 ≤ i ≤ n.
(4.5)

Point of departure from the mentioned work is that in many statistical models (where our general

methodology applies), the sequence {R̂1, . . . , R̂n} is not independent and identically distributed. Under

certain regularity conditions, we shall show that estimates R̂i are sufficiently good such that the

resampled distribution of TBSn offers a good approximation of the distribution of Tn. Hence, we can

take as the critical value for Tn the (1 − α)-quantile of TBSn (while holding the observations fixed),

denoted by Q(1− α, TBSn ), where α is the nominal size of the test.

With these steps in place, we are ready to define our procedure in Algorithm 1.

Algorithm 1 Projection pursuit testing (PPTest)

Require: Observations {z1, . . . , zn} and a test size α ∈ (0, 1)
Ensure: For a test with nominal size α, implement the following
1: Compute the initial estimator β̂u
2: Compute the projection pursuit estimator

β̂d = arg min
β∈Rp

{
‖β − β̂u‖1 , s.t. β ∈ B0

}
.

3: Compute R̂1, · · · , R̂n as in (4.5)
4: Compute the test statistic Tn =

√
nmax1≤j≤p

∣∣∣β̂u,j − β̂d,j − δ̂j
∣∣∣ as in (4.1).

5: for b = 1, · · · , B do
6: Generate {ξi}ni=1 a sequence of i.i.d N(0, 1) that are also independent of z1, . . . , zn
7: Compute bootstrap test statistic Tn,b = TBSn as in (4.4).
8: end for
9: Set Q(1− α, TBSn ) as (1− α) quantile of the sequence Tn,1, Tn,2, . . . , Tn,B.

return Reject H0 if and only if Tn > q1−α.
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4.2 Theoretical properties

In this section we outline theoretical guarantees for the Projection Pursuit Test. In order to encompass

various regression models we impose high-level assumptions on the vectors Ri as defined in (4.3).

We have seen that these assumptions for the case of linear models lead to extremely weak conditions.

Moreover, in Section 5 we show that they also lead to weak conditions for the case of logistic regression.

4.2.1 Size control

In this subsection, we study the size properties of the proposed test. We begin by outlining the

conditions imposed on the vectors Ri ∈ Rp, (4.3).

Assumption 1. There exists a σ-algebra Fn, such that δ̂ and Ri satisfy (i) {Ri}ni=1

are mean zero random vectors that, conditional on Fn are independent for all i; (ii)

max1≤j≤p
∑n

i=1

∣∣∣R2
i,j − E(R2

i,j | Fn)
∣∣∣ = oP (n) and max1≤j≤p |

∑n
i=1Ri,j | = oP (n);(iii) There ex-

ists a constant b > 0 such that limn→∞ P
(

min1≤j≤p
∑n

i=1 E(R2
i,j | Fn) > bn

)
= 1; (iv) There ex-

ists an Fn-measurable positive random variable Bn, such that B2
n log5(p ∨ n)/n = oP (1) and al-

most surely max1≤j≤p
∑n

i=1 E(|Ri,j |3 | Fn) ≤ nBn, max1≤j≤p
∑n

i=1 E(|Ri,j |4 | Fn) ≤ nB2
n and

max1≤i≤n, 1≤j≤p E(exp(|Ri,j |/Bn) | Fn) ≤ 2.

Assumption 1(i)-(v) guarantee the validity of the bootstrap procedure. Assumptions 1(i)-(ii) state

that the vectors Ri are centered and should concentrate well enough around its mean. They are trivially

satisfied for sub-exponential random vectors, for example. Assumption 1(iii) rules out asymptotically

vanishing variance in components of Ri and Assumption 1(iv) aims to guarantee that Ri’s do not have

extreme values that can dominate their partial sum.

Next, we present conditions needed to hold for the candidate estimates Θ̂A, Θ̂B of the precision

matrix; they specify the quality of the estimators β̂u, β̂d, Θ̂A and Θ̂B – a large class of sparsity-

encouraging estimators satisfy these conditions and allow PPTest to be a consistent test.

Assumption 2. Suppose that, under the null hypothesis H0, there exist sequences of positive con-

stants λ1,n, λ2,n = o(
√
n−1 log p) such that (i) supt∈[0,1] ‖[Ip − Θ̂AĤA(β̂u − t(β̂u − β∗))](β̂u − β∗)‖∞ =

OP (λ1,n) and supt∈[0,1] ‖[Ip − Θ̂BĤB(β̂d − t(β̂d − β∗))](β̂d − β∗)‖∞ = OP (λ1,n); (ii) For the σ-

algebra Fn defined in Assumption 1, there exist Fn-measurable matrices ΘA and ΘB such that

‖(Θ̂A − ΘA)
∑m

i=1 s(zi, β∗)‖∞/m = OP (λ2,n) and ‖(Θ̂B − ΘB)
∑n

i=m+1 s(zi, β∗)‖∞/m = OP (λ2,n).

Moreover, ‖β̂u − β∗‖1 = oP (s
√

log p/n).
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Note that the above conditions, although presented at the high-level, are quite mild. Assumption

2 (i) is related to the stability of the Hessian matrix and its estimator. In Section 3 and Section 5,

show that these are satisfied in linear and logistic linear models, respectively, with λ1,n of the order

of o(
√
n−1 log p) without many other model restrictions. Assumption 2 (ii) states certain consistency

condition for Θ̂A and Θ̂B (if suitably chosen) together with the average of the residual of the loss

function L. For the case of linear models with least squares loss, this condition disappears as we can

choose ΘA = Θ̂A and similarly ΘB = Θ̂B. However, for non-linear models, this condition is satisfied,

for ΘA = ΘB = [∇2
βEl(z, β∗)]−1 and as long as ‖Θ−1

A Θ̂A − Ip‖1 = oP (1) and s has bounded third

moment. The later two are satisfied for a large number of models; see Van de Geer et al. (2014) and

Javanmard and Montanari (2014). In particular, these assumptions are not stronger than those of Ning

and Liu (2014). However, unlike these works, we consider a much broader and more difficult/complex

null hypothesis – for example, the null can be in full p dimensional space.

Theorem 3. Consider Algorithm 1. Let log p = o(
√
n) and s = o(n1/4/

√
log p). Assume that the

estimating sequence R̂i is such that max1≤j≤p
∑n

i=1(R̂i,j − Ri,j)2 = oP (n/ log2(p ∨ n)). Moreover, let

Assumptions 1 and 2 hold. Then, under the null hypothesis (1.2) H0 : β∗ ∈ B0, the test statistic Tn is

asymptotically valid in that

lim sup
n→∞

sup
α∈(0,1)

∣∣P
(
Tn > Q(1− α, TBSn )

)
− α

∣∣ = 0.

Theorem 3 establishes the consistency of the proposed method. It says that Algorithm 1 provides

a testing procedure with asymptotically exact control of the size, independent of the structure of the

set B0. The approximation result above is obtained by developing new high-dimensional bootstrap

results; the bootstrap is based on dependent sequences whose correlations depends on the regression

model and needs to hold irrespective of the null set. As a result the proof is quite involved.

Remark 1. Given the generality of the structure of the null hypothesis, this result is quite remarkable.

Typically, proving asymptotically exact size control involves deriving the asymptotic distribution of

the test statistic. Even for tests of constraints for low-dimensional β∗, such as the classical Wald tests,

likelihood ratio tests and score tests, formulating the asymptotic distribution of the test statistics

requires regularity conditions on the constraint, e.g. differentiability and non-singular Jacobian matrix

of the function representing the constraint; see Chapter 12 in Lehmann and Romano (2006) or Chapter

6 in Shao (2003). In contrast, the size of our test is asymptotically exact for any hypothesis on β∗,

which can have a dimension much larger than the sample size.
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4.2.2 Power control

In this subsection, we discuss the power of the test. For a given sequence of positive numbers cn we

define a class of parameter spaces

B1(cn) =

{
β ∈ Rp : min

δ∈B0
‖δ − β‖∞ ≥ cn

}
.

If β∗ ∈ B1(cn) then at least one element of β∗ lies outside the null set B0.

Note that deriving the power properties for a general set B0 is extremely challenging. Even for

well-studied examples of B0, theoretical results regarding power properties can be extremely difficult

to establish. Consider, for example, the multiple testing case, where the test is required to control the

family-wise error rate (FWER) or false discovery rate (FDR). Many of the multiple testing problems

can be cast as testing β∗ ∈ B0, where B0 = {β | βJ = 0} and J is a known subset of {1, · · · , p}; see
Fan et al. (2012); Bühlmann (2013); Barber and Candès (2015) for example. The vast majority of the

literature in this area is concerned with the size properties in terms of FWER or FDR, while very little

work, except on the consistency of the tests, has been done regarding the power properties, such as

optimality and local power analysis. A careful characterization of the structure of the test statistic

under the alternative hypothesis is needed for such analysis and is typically only possible for a small

class of alternatives.

Despite these difficulties, we can establish some theoretical results on the power of the proposed

projection pursuit test without considering the structure of the set B0. Our result also has the flavor

of local power analysis because we allow cn to decay to zero.

Theorem 4. Consider Algorithm 1 with a nominal size α ∈ (0, 1). Let the assumptions in Theorem 3

hold. Suppose that cn � n−1/4. Then for any fixed a > 0, we have that under H1,n,

lim
n→∞

inf
β∗∈B1(cn)

P(Tn > Q(1− α, TBSn )) = 1.

A few comments are in order. It can be seen from Theorem 4 that it only requires one of the entries

β∗ to lie outside of the null set B0 with distance bigger than O(n−1/4) for the test to correctly reject

H0 : β∗ ∈ B0. Also the result holds true uniformly over a large class of sets B0 – we only require it to

be a closed set in Rp. Observe that the test depends on the null set B0 directly. However, power is

independent of the “difficulty” of the null set B0. In that sense PPTest is robust in the sense that its

properties do not change with the changes in B0.
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Rate optimality of PPTest is very difficult to verify. Although minimax theory has had some success

in high-dimensional models, the development of a satisfactory theory for general models or complex

hypothesis has proved to be extremely difficult. To the best of our knowledge there exists no results

that cover estimation of a general functional ψ(β∗) – existing results for β∗ extend to ψ(β∗) only in a

few special cases and are model specific. Naively, we can see that under a class of alternatives B1(cn),

the tests based on de-biased estimators would suffer suboptimal power – see Cai and Guo (2015) where

authors document that a>β∗ with dense vectors a cannot be tested in linear models without explicit

knowledge of ‖β∗‖0. Hence, in this way, our test and the rate of Theorem 4 serve as unique benchmarks.

For this reason, our test can be used in an extremely wide range of setups.

5 Applications to logistic regression

In Sections 4 we have introduced a general framework for testing H0 (1.1) and simple constructions that

can be applied to a wide range of models. In this section, we illustrate that the high-level conditions of

Section 4 are very mild and in fact match those of testing single entries of β∗ (a much simpler problem

than ours) – and are hence in this sense perhaps optimal.

Consider a logistic regression model, where the i.i.d. observations {(yi, xi)}ni=1, with yi ∈ {0, 1},
follow

P (yi = 1 | xi) = exp(x>i β∗)/[1 + exp(x>i β∗)]. (5.1)

Under the framework (1.1), we have zi = (yi, xi) and l(zi, β) = −yix>i β + b(x>i β) with b(u) =

log(1 + exp(u)). The true parameter value is defined by

β∗ = arg min
β∈Rp

L(β) with L(β) = El(z1, β). (5.2)

The construction in Section 4 demands a construction of two estimates. The initial one, can be

taken to be a `1-penalized logistic estimator

β̂u = arg min
β∈Rp

{
n−1

n∑

i=1

[−yix>i β + log(1 + exp(x>i β))] + λ‖β‖1
}
, (5.3)

for λ > 0 chosen as λ �
√
n−1 log p. Then, we construct a l1 projection pursuit estimate

β̂d = arg min
β∈Rp

{∥∥β − β̂u
∥∥

1
, s.t. β ∈ B0

}
. (5.4)
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We then move on to construct an estimate of the bias of the two regularized estimators. Following

the proposal presented in Section 4 we define

δ̂SP = Θ̂Am
−1

m∑

i=1

xi[−yi + b′(x>i β̂u)]− Θ̂Bm
−1

n∑

i=m+1

xi[−yi + b′(x>i β̂d)] (5.5)

where Θ̂A and Θ̂B are candidate estimates of the precision matrix Θ∗ := [E∇2
βl(z1, β∗)]−1 =

[Ex1x
>
1 b
′′(y1, x

>
1 β∗)]

−1 ∈ Rp×p. For estimating Θ∗, we use the node-wise Lasso estimator proposed by

Van de Geer et al. (2014). For that end, it is important to notice that the two contrasting estimators are

de-biased on two subsamples independently. Recall that m = n/2. Let ÛA = (ÛA,1, · · · , ÛA,p) ∈ Rm×p

with

ÛA,j =

(
x1,j

√
b′′(x>1 β̂u), · · · , xm,j

√
b′′(x>mβ̂u)

)>
∈ Rm.

and ÛB = (ÛB,1, · · · , ÛB,p) ∈ Rm×p with

ÛB,j =

(
xm+1,j

√
b′′(x>m+1β̂u), · · · , xn,j

√
b′′(x>n β̂u)

)>
∈ Rm.

Then, for 1 ≤ j ≤ p and η � n−1/2 log p, compute





γ̂A,j = arg min
γ∈Rp−1

{
(2m)−1‖ÛA,j − Û−A,jγ‖22 + η‖γ‖1

}

γ̂B,j = arg min
γ∈Rp−1

{
(2m)−1‖ÛB,j − ÛB,−jγ‖22 + η‖γ‖1

}
,

(5.6)

and set Θ̂A = (Θ̂A,1, · · · , Θ̂A,p)
> and Θ̂B = (Θ̂B,1, · · · , Θ̂B,p)

> as follows





Θ̂A,j,j = [m−1Û>A,j(ÛA,j − ÛA,−j γ̂A,j)]−1 and Θ̂A,j,−j = −Θ̂A,j,j γ̂A,j for 1 ≤ j ≤ p

Θ̂B,j,j = [m−1Û>B,j(ÛB,j − ÛB,−j γ̂B,j)]−1 and Θ̂B,j,−j = −Θ̂B,j,j γ̂B,j for 1 ≤ j ≤ p.
(5.7)

The tuning parameter can be chosen as η � n−1/2 log p. As an alternative to the Lasso-type

of estimators for Θ̂A and Θ̂B, one may use a CLIME-type estimator by imposing the constraint

‖ÛA,j>ÛAΘj/m − ej‖∞ ≤ η̄, while minimizing ‖Θj‖1, where the minimizer Θj is the estimate for

the jth column of Θ∗. This estimator would require a tuning parameter η̄ to depend on the rate of

convergence of the initial estimator β̂u. Since the rate of convergence typically depends on the spar-

sity level ‖β∗‖0, which is rarely known, CLIME-type estimators are less desirable in our setup. Here,

we differ from the case of linear models, in that Θ̂A 6= Θ̂B. This construction offers convenience in
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technicalities of the proof and delivers weaker regularity conditions.

Then, we have all the elements to define the test statistic

Tn =
√
n‖β̂u − β̂d − δ̂‖∞.

For computing its critical value, we compute the bootstrap test statistic

TBSn = max
1≤j≤p

n−1/2

∣∣∣∣∣
n∑

i=1

(R̂i,j −R∗j )ξi
∣∣∣∣∣ ,

where {ξi}ni=1 are i.i.d standard normal random variables and following Section 4 we define

R̂i =




−2Θ̂Axi[−yi + b′(x>i β̂u)] for 1 ≤ i ≤ m

2Θ̂Bxi[−yi + b′(x>i β̂u)] for m+ 1 ≤ i ≤ n
and R∗ = n−1

n∑

i=1

R̂i. (5.8)

Observe that the non-linearity of the model presents theoretical challenges, but not methodological

ones. We then reject the null H0 (1.2) if Tn > qn(1 − α). Despite high-dimensionality, non-linearity

and various dependence structure, we are able to obtain the next result confirming asymptotic Type I

error control of the above test procedure.

Theorem 5. Consider the model (5.1). Let there exist constants κ1, κ2 ∈ (0,∞), such that the eigenval-

ues of ΣX = Ex1x
>
1 and Θ∗ = [Ex1x

>
1 b
′′(y1, x

>
1 β∗)]

−1 lie in [κ1, κ2], where b′′(u) = exp(u)/[1+exp(u)]2

Additionally, let the design xi = (1, z>i )> ∈ Rp is such that Ezi = 0 and there exists a constant

κ3 ∈ (0,∞) such that ‖Σ−1/2
X x1‖ψ2 ≤ κ3. Suppose that log p = o(n1/5),

‖β∗‖0 = o
(
n1/4/ log5/4(p ∨ n)

)
and max

1≤j≤p
‖Θ∗,j‖0 = o

(√
n/ log(p ∨ n)

)
.

Then

lim sup
n→∞

sup
α∈(0,1)

∣∣P
(
Tn > Q(1− α, TBSn )

)
− α

∣∣ = 0.

A few comments are needed. Assumptions utilized in Theorem 5 are very similar to the regularity

conditions commonly imposed for generalized linear models; see Theorem 3.3 in Van de Geer et al.

(2014) although we attack a more difficult problem than that of univariate testing; one special case

is simultaneous testing with growing number of tests or testing for signal to noise ratio in logistic

regression.
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Remark 2. Notice that the sparsity requirement for β∗ is ‖β∗‖0 = o
(
n1/4/ log5/4(p ∨ n)

)
appears

stronger than the usual requirement of ‖β∗‖0 = o
(
n1/2/ logc(p ∨ n)

)
for some constant c > 0. This

stronger condition on the sparsity can be viewed as the price we pay for allowing for general B0.

However, condition on the sparsity of the precision matrix is the same as those of linear models.

Moreover, it is worth pointing that with minor changes in the proof, we can allow for general

convex functions b(·) and establish the same results as in Theorem 5 for generalized linear models.

However, this typically requires additional restrictive assumptions on the design and link functions

and estimations, when the support of yi is unbounded, hence we do not provide further details.

Theorem 6. Consider the model (5.1). Let the assumptions in Theorem 5 hold. Suppose that

minβ∈B0 ‖β − β∗‖∞ ≥ cn with cn � n−1/4. Then we have that

lim
n→∞

P(Tn > Q(1− α, TBSn )) = 1.

The result above, although a corollary of Theorem 4 presents a unique power guarantees for gen-

eralized linear models in high-dimensions. Existing work only covers testing single elements of β∗.

Some attempts at simultaneous testing exists (e.g. Ning and Liu (2014)) but no power guarantees

are provided. Hence, even for simultaneous testing, Theorem 6 implies that our test provides novel

guarantees.

6 Numerical Examples

This section examines the finite-sample performance of the proposed method. We consider both the

linear regression model (3.1) and the logistic regression model (5.1). For both models, the design

matrix X has i.i.d rows generated from xi ∼ N(0,ΣX) with Toeplitz matrix ΣX,i,j = ρ|i−j| and the

model parameter β∗ = (1, · · · , 1, 0, · · · , 0)> ∈ Rp with ‖β∗‖0 = 4. In the linear model, we generate

ε ∼ N(0, In) and Y = Xβ + ε; for the logistic regression model, y = (y1, · · · , yn)> and yi = 1{ui ≤
exp(x>i β∗)/[1 + exp(x>i β∗)]}, where ui is independent of X and is drawn from the uniform distribution

on the interval (0, 1). We set n = 200 and compute the rejection probabilities based on 100 random

samples. We consider three hypotheses:

(a) H(A)
0 : ‖β∗‖0 ≤ s0

(b) H(B)
0 : minj∈supp(β∗) |β∗,j | ≥ r0
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(c) H(C)
0 : ‖β∗‖2 ≤ c0.

The initial estimators β̂u are computed as follows. For the linear model, we use the scaled-Lasso

(Sun and Zhang, 2012) with universal tuning parameter; for the logistic model, we use the Lasso

estimator with tuning parameter chosen by 10-fold cross validation.

The project pursuit estimators β̂d are defined as follows. For hypothesis H(A)
0 , let Ĵ ⊂ {1, ..., p} be

the indexes of the s0 largest entries in magnitude of β̂d, i.e., |Ĵ | = s0 and β̂u,j1 ≥ β̂u,j2 for any j1 ∈ Ĵ and

j2 /∈ Ĵ . Then we define β̂d as β̂d,j = β̂d,j1{j ∈ Ĵ}. For hypothesisH(B)
0 , β̂d,j = ρ(β̂u,j , r0) for all 1 ≤ j ≤

p, where ρ(·, ·) is defined in Lemma 3. For H(C)
0 , define t 7→ a(t) by a(t) = arg minv∈Rp ‖β̂u−v‖22+t‖v‖1

and t∗ = arg mint≥0 ‖a(t)‖1 s.t. ‖β̂u + a(t)‖2 ≤ c0. Then β̂d = a(t∗) + β̂u.

Table 1 summarizes the numerical performance of the projection pursuit test for three hypothesis

above. We set s0 = 4, r0 = 1 and c0 = 2 and report the average Type I error rates. We can see that

the projection pursuit test effectively deals with both the convex and non-convex null sets B0, and

performs very closely to the nominal size α. Moreover, the tests show stability across the dimension p

and the correlation of the design matrix. This numeric evidence is consistent with theoretical results

presented in Sections 3-5.

Table 1: Size properties

Linear regression model
H0 : ‖β∗‖0 ≤ s0 H0 : min

j∈supp(β∗)
|β∗,j | ≥ r0 H0 : ‖β∗‖2 ≤ c0

p \ ρ 0 0.25 0.50 0.75 0 0.25 0.50 0.75 0 0.25 0.50 0.75
200 0.04 0.02 0.03 0.05 0.03 0.02 0.03 0.01 0.06 0.05 0.06 0.05
350 0.04 0.03 0.02 0.04 0.01 0.03 0.04 0.02 0.07 0.05 0.06 0.03
500 0.03 0.05 0.03 0.04 0.01 0.03 0.04 0.02 0.05 0.05 0.06 0.03

Logistic regression model
H0 : ‖β∗‖0 ≤ s0 H0 : min

j∈supp(β∗)
|β∗,j | ≥ r0 H0 : ‖β∗‖2 ≤ c0

p \ ρ 0 0.25 0.50 0.75 0 0.25 0.50 0.75 0 0.25 0.50 0.75
200 0.04 0.02 0.03 0.05 0.03 0.02 0.03 0.01 0.06 0.05 0.06 0.05
350 0.04 0.03 0.02 0.04 0.01 0.03 0.04 0.02 0.07 0.05 0.06 0.03
500 0.03 0.05 0.03 0.04 0.01 0.03 0.04 0.02 0.05 0.05 0.06 0.03

Next, we compare the performance of the projection pursuit test in detecting alternative hypothesis

corresponding to the nulls H(A)
0 , H(B)

0 and H
(C)
0 . In each of the 100 replications we simulate the

Toeplitz design setting with correlation ρ = 0.5 and sample size p = 500. The averages of the rejection

probabilities are collected in in Table 2. This table shows that the proposed PPTests reach power
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Table 2: Power properties

H0 : ‖β∗‖0 ≤ s0 H0 : min
j∈supp(β∗)

|β∗,j | ≥ r0 H0 : ‖β∗‖2 ≤ c0

s0 Linear Logit r0 Linear Logit c0 Linear Logit
4 0.05 0.09 1.0 0.06 0.06 2.0 0.04 0.08
3 0.99 0.19 1.2 0.23 0.18 1.2 0.37 0.40
2 0.99 0.58 1.4 0.54 0.48 1.0 0.76 1.00
1 1.00 1.00 1.6 0.95 0.78 0.9 0.91 1.00

against all the alternatives in both linear and logistic model.

7 Conclusion and discussion

In this article, we propose a unified method for testing a widespread collection of hypotheses of re-

gression parameters in sparse high-dimensional models. The methodology is centered around a newly

introduced high-dimensional projection pursuit estimator. As a hypothesis-driven projection of the

initial estimator, projection pursuit estimator is the estimator closest to the initial one that is si-

multaneously forced to satisfy the null hypothesis. In this way the geometry of the null set is directly

embedded in the estimator and further in the test statistic, making it highly robust to the specifications

of the null.

It is worth emphasizing that this estimator and the projection pursuit test are valid even in low-

dimensional problems and provide new inference principles. Without imposing any constraint on the

structure of the null hypothesis, the proposed projection pursuit inference method is with asymptoti-

cally exact size control for a broad spectrum of high-dimensional models. Therefore, this work widens

the scope of the state-of-the-art methodology. For the first time, we were able to test the sparsity of

the model and the beta-min condition of the model parameters for example. Moreover, the proposed

methodology opens doors to many unexplored areas in high-dimensional inferential statistics. Examples

include tests of monotonicity, unimodality or concavity of high-dimensional regression functions.

Additionally, the proposed methodology leaves open numerous avenues for further study. Although

in our work we focused on a specific sparsity structure (defined through the `0-norm of the model

parameter), our methodology extends far beyond this kind of sparsity considerations. Namely, group

or hierarchical sparsity structures are particularly important in applications and our test opens the

door to designing tests suitable for these models. Moreover, although in this work we consider a

statistic that is linear in the Ri, the framework and ideas of this work are not intimately tied to this
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formulation.

Finally, our test provides power guarantees for an extremely large set of problems in high-

dimensions. For many testing procedures it is extremely difficult, if not impossible, to establish

theoretical results regarding optimality/efficiency. However, due to its direct utilization of the set

B0, we believe that it opens the door to many open problems in the minimax theory of estimation in

high-dimensions and serves as a benchmark when no other tests are available. We shall leave these

unexplored issues to future research.
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Supplementary Materials
Here, we provide details of all of the theoretical statements made in the main document. We first

show the results in Section 2. Then the proof of master theorems in Section 4 will be provided. We

continue by proving the results in Sections 3 and 5. Lastly, we provide details of the proofs of a number

of lemmas and technical tools.

A Proof of results in Section 2

Proof of Lemma 1. By the triangular inequality, ‖β̂d − β∗‖1 ≤ ‖β̂u − β∗‖1 + ‖β̂u − β̂d‖1. Under H0,

β∗ ∈ B0 and thus ‖β̂d − β̂u‖1 ≤ ‖β∗ − β̂u‖1. The desired result follows.

Proof of Lemma 2. Fix an arbitrary u ∈ Rp with ‖u‖0 ≤ s0. We have that

‖u− v‖1 =

p∑

j=1

|uπ(j) − vπ(j)|

=
∑

j∈supp(u)

|uπ(j) − vπ(j)|+
∑

j /∈supp(u)

|vπ(j)|

≥
∑

j /∈supp(u)

|vπ(j)|
(i)

≥ min
J⊆{1,··· ,p} |J |≥p−s0

∑

j∈J
|vπ(j)|

(ii)
=

p∑

j=s0+1

|vπ(j)|,

where (i) follows by the fact that |{1, · · · , p}\supp(u)| ≥ p−s0 and (ii) follows by the ranking property

of π (i.e., |vπ(1)| ≥ · · · ≥ |vπ(p)|). Since u is arbitrary, we have

min
‖β‖0≤s0

‖β − v‖1 ≥
p∑

j=s0+1

|vπ(j)| = ‖ṽ − v‖1.

Since ‖ṽ‖0 ≤ s0, the desired result follows.

Proof of Lemma 3. Let S = arg minβ∈Rp ‖β−v‖1 s.t. minj∈supp(β) |βj | ≥ c. Fix any j0 ∈ {1, · · · , p}
and v̂ ∈ S. Define v̇ ∈ Rp with v̇k = v̂k for k 6= j0 and v̇j0 = ρ(vj0 , c). It is not hard to see that

|v̇j0 − vj0 | = inf
|x|∈{0}⋃[c,∞)

|x− vj0 |.

Thus, ‖v̂ − v‖1 − ‖v̇ − v‖1 = |v̂j0 − vj0 | − |v̇j0 − vj0 | ≥ 0. Since minj∈supp(v̇) |v̇j | ≥ c, we have v̇ ∈ S.
Hence, ∀v̂ ∈ S and ∀j0 ∈ {1, · · · , p}, we have tj0(v̂) ∈ S, where ∀u ∈ Rp, tj0(u) is the vector u with

its j0th coordinate set to ρ(vj0 , c). Thus, by induction, (t1 ◦ t2 ◦ · · · ◦ tp)(v̂) ∈ S. The proof is complete
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since ṽ = (t1 ◦ t2 ◦ · · · ◦ tp)(v̂) ∀v̂ ∈ Rp.

Proof of Lemma 4. By introducing the Lagrangian multiplier, we have that, for some constant λ >

0,

arg min
‖Qβ‖22≤c2

‖β − v‖1 = arg min
β∈Rp

[
‖β − v‖1 + λ(‖Qβ‖22 − c)

]
= arg min

β∈Rp

[
1

λ
‖β − v‖1 + ‖Qβ‖22

]
.

By a change of variables, we obtain

arg min
β∈Rp

[
1

λ
‖β − v‖1 + ‖Qβ‖22

]
= v + a(1/λ).

Hence, min‖Qβ‖22≤c2 ‖β − v‖1 = ‖a(t0)‖1 for t0 = 1/λ. Notice that ‖Q(v + a(t0))‖2 ≤ c. Therefore,

min
t>0, ‖Q(v+a(t))‖2≤c

‖a(t)‖1 ≤ ‖a(t0)‖1 = min
‖Qβ‖22≤c2

‖β − v‖1. (A.1)

On the other hand, for β̇ = v + a(t∗), we have ‖Qβ̇‖2 ≤ c and thus

min
‖Qβ‖22≤c2

‖β − v‖1 ≤ ‖β̇ − v‖1 = ‖a(t∗)‖1 = min
t>0, ‖Q(v+a(t))‖2≤c

‖a(t)‖1. (A.2)

It follows, by (A.1) and (A.2), that

min
t>0, ‖Q(v+a(t))‖2≤c

‖a(t)‖1 = min
‖Qβ‖22≤c2

‖β − v‖1.

The desired result follows.

B Proof of results in Section 4

B.1 Proof of Theorem 3

Lemma 5. Suppose that Assumption 2 hold. Let δ̂SP and Ri be defined in (4.2) and (4.3). Then

under H0, we have
∥∥∥β̂u − β̂d − δ̂SP − n−1

∑n
i=1Ri

∥∥∥
∞

= OP (λ1,n ∨ λ2,n) and P (δ̂SP = δ̂)→ 1.

Proof of Lemma 5. By the triangular inequality and the definition of δ̂SP (4.2), we have

∥∥∥∥∥β̂u − β̂d − δ̂SP − n
−1

n∑

i=1

Ri

∥∥∥∥∥
∞
≤
∥∥∥∥∥β̂u − β∗ − Θ̂Am

−1
m∑

i=1

s(zi, β̂u)− n−1
m∑

i=1

Ri

∥∥∥∥∥
∞︸ ︷︷ ︸

J1
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+

∥∥∥∥∥β̂d − β∗ − Θ̂Bm
−1

n∑

i=m+1

s(zi, β̂d) + n−1
n∑

i=m+1

Ri

∥∥∥∥∥
∞︸ ︷︷ ︸

J2

. (B.1)

Notice that

J1 =

∥∥∥∥∥β̂u − β∗ − Θ̂Am
−1

m∑

i=1

s(zi, β̂u) + ΘAm
−1

m∑

i=1

s(zi, β∗)

∥∥∥∥∥
∞

≤
∥∥∥∥∥β̂u − β∗ − Θ̂Am

−1
m∑

i=1

[
s(zi, β̂u)− s(zi, β∗)

]∥∥∥∥∥
∞

+

∥∥∥∥∥
(

Θ̂A −ΘA

)
m−1

m∑

i=1

s(zi, β∗)

∥∥∥∥∥
∞

(i)
=

∥∥∥∥β̂u − β∗ + Θ̂A

∫ 1

0
ĤA

(
t(β∗ − β̂u) + β̂u

)
(β∗ − β̂u)dt

∥∥∥∥
∞

+OP (λ2,n)

=

∥∥∥∥
∫ 1

0

[
Ip − Θ̂AĤA

(
t(β∗ − β̂u) + β̂u

)]
(β̂u − β∗)dt

∥∥∥∥
∞

+OP (λ2,n)

≤ sup
t∈[0,1]

∥∥∥
[
Ip − Θ̂AĤA

(
t(β∗ − β̂u) + β̂u

)]
(β̂u − β∗)

∥∥∥
∞

+OP (λ2,n)

(ii)
= OP (λ1,n) +OP (λ2,n),

where (i) holds by Taylor’s Theorem (Theorem C.15 of Lee (2012)) at β = β̂u and Assumption 2(ii)

and (ii) holds by Assumption 2(i). Similarly, we can show that J2 = OP (λ1,n + λ2,n). The first claim

result follows by (B.1).

We now show the second claim. By the first claim and the assumption that λ1,n ∨ λ2,n =

o(
√
n−1 log p), we have that under H0, ‖β̂u − β̂d − δ̂SP − n−1

∑n
i=1Ri‖∞ = oP (

√
n−1 log p). Hence,

under H0, we have

‖δ̂SP ‖∞ ≤ ‖β̂u − β̂d‖∞ +

∥∥∥∥∥n
−1

n∑

i=1

Ri

∥∥∥∥∥
∞

+ oP (
√
n−1 log p)

(i)

≤ 3‖β̂u − β∗‖1 +

∥∥∥∥∥n
−1

n∑

i=1

Ri

∥∥∥∥∥
∞

+ oP (
√
n−1 log p) = o(n−1/4) +OP (

√
n−1 log p) = oP (n−1/4),

where (i) follows by ‖β̂u − β̂d‖∞ ≤ ‖β̂u − β̂d‖1 ≤ ‖β̂d − β∗‖1 + ‖β̂u − β∗‖1 and Lemma 1. The second

claim follows.

Recall the setup in Theorem 3 as well as in Assumption 1. Let Gn be the σ-algebra generated by
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Fn and the data. Define

SR = n−1/2
n∑

i=1

Ri, S̃R = n−1/2
n∑

i=1

(Ri − R̄)ξi, S̃R̂ = n−1/2
n∑

i=1

(R̂i −R∗)ξi,

where R̄ = n−1
∑n

i=1Ri and R∗ = n−1
∑n

i=1 R̂i. For notational simplicity, we denote P(· | Fn) and

P(· | Gn) by PFn(·) and PGn(·), respectively. Also, for x ∈ R

Qn(x) = PFn (‖SR‖∞ > x) , Q̃n(x) = PGn(‖S̃R‖∞ > x), Q̂n(x) = PGn(‖S̃R̂‖∞ > x).

Define an,1 = supx∈R |Qn(x)− Q̃n(x)| and an,2 = supx∈R |Q̃n(x)− Q̂n(x)|.

Proof of Theorem 3. The proof consists of three steps. First, we show the consistency in ap-

proximating PFn(‖SR‖∞ ≤ x) with PGn(‖S̃R‖∞ ≤ x); second, we show the equivalence between

PGn(‖S̃R‖∞ ≤ x) and PGn(‖S̃R̂‖∞ ≤ x); finally, we show the desired result.

We begin by decomposing Tn (4.1) as follows

Tn = ‖Ŝn‖∞ with Ŝn = ∆n + SR, (B.2)

where ∆n :=
√
n(β̂u − βd − δ̂ − SR).

For this end, we define an event Jn as

Jn :=

{
min

1≤j≤p
n−1

n∑

i=1

E(R2
i,j | Fn) > b and min

1≤j≤p
n−1

n∑

i=1

(Ri,j − R̄j)2 > b/2

}
. (B.3)

and observe that based on Assumption 1 (ii)-(iv), we have P(Jn)→ 1 .

Step 1: The validity of approximating PFn(‖SR‖∞ ≤ x) with PGn(‖S̃R‖∞ ≤ x).

Let {Φi}ni=1 be a sequence of random elements in Rp such that conditional on Fn, {Φi}ni=1 is

independent across i and Φi | Fn is Gaussian with mean zero and variance E(RiR
>
i | Fn). Notice that

for any x ∈ R, {a ∈ Rp | ‖a‖∞ ≤ x} is rectangle in Rp. By Proposition 2.1 of Chernozhukov et al.

(2014) applied to the conditional probability measure PFn(·), we have on the event Jn

sup
x∈R
|PFn (‖SR‖∞ ≤ x)− PFn (‖SΦ‖∞ ≤ x)| ≤ C1Dn a.s, (B.4)

where C1 > 0 is a constant depending only on b and Dn = (n−1B2
n log7(pn))1/6.
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Applying Corollary 4.2 of Chernozhukov et al. (2014) to the conditional probability measure PFn(·),
on the event Jn, we obtain that, for αn = exp{−[(n−1Bn log5(pn))−1/4 ∨ 1]},

PFn

[
sup
x∈R

∣∣∣PFn (‖SΦ‖∞ ≤ x)− PGn
(
‖S̃R‖∞ ≤ x

)∣∣∣ > C2D̃n

]
≤ αn a.s, (B.5)

where C2 > 0 is a constant depending only on b and D̃n = (n−1B2
n log5(pn) log2(α−1

n ))1/6. Straight-

forward computations show that αn, D̃n and Dn are oP (1). By (B.3), (B.4) and (B.5), we have

sup
x∈R

∣∣∣PFn (‖SR‖∞ ≤ x)− PGn
(
‖S̃R‖∞ ≤ x

)∣∣∣ = oP (1). (B.6)

Step 2: The equivalence between PGn(‖S̃R‖∞ ≤ x) and PGn(‖S̃R̂‖∞ ≤ x).

Define εn = q
1/4
n with qn = max1≤j≤p n−1

∑n
i=1(R̂i,j −Ri,)2. By Lemma 16,

sup
x∈R

∣∣∣PGn
(
‖S̃R‖∞ > x

)
− PGn

(
‖S̃R̂‖∞ > x

)∣∣∣

≤ PGn
(
‖S̃R − S̃R̂‖∞ > εn

)
+ sup
x∈R

PGn
(
‖S̃R‖∞ ∈ (x− εn, x+ εn]

)
. (B.7)

Notice that conditional on Gn, S̃R is a zero-mean Gaussian vector whose jth entry has variance of

n−1
∑n

i=1(Ri,j − R̄j)2. Hence, by Lemma 18, there exists a constant Cb > 0 depending only on b such

that on the event Jn

sup
x∈R

PGn
(
‖S̃R‖∞ ∈ (x− εn, x+ εn]

)
≤ Cbεn

√
log p. (B.8)

Also notice that conditional on Gn, S̃R − S̃R̂ is a zero-mean Gaussian vector whose jth entry has

variance equal to

n−1
n∑

i=1

[
(R̂i,j − ¯̂

Rj)− (Ri,j − R̄j)
]2

= n−1
n∑

i=1

(R̂i,j −Ri,j)2 − (
¯̂
Rj − R̄j)2 ≤ n−1

n∑

i=1

(R̂i,j −Ri,j)2.

Recall that for any Gaussian random variable Z ∼ N(0, σ2) and x > 0, P(|Z| > x) ≤
C exp(−Cσ−2x2) for some universal constant C > 0. This elementary fact implies that

PGn(‖S̃R − S̃R̂‖∞ > εn) ≤
p∑

j=1

PGn(|S̃R,j − S̃R̂,j | > εn) ≤ pC exp(−Cε2
nq
−1
n ). (B.9)
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Combining (B.7), (B.8) and (B.9), we have on the event Jn

sup
x∈R

∣∣∣PGn
(
‖S̃R‖∞ > x

)
− PGn

(
‖S̃R̂‖∞ > x

)∣∣∣ ≤ Cbεn
√

log p+ pC exp(−Cε2
nσ
−2
n,∗).

Since ε2
nq
−1
n / log p = (qn log2 p)−1/2 →∞, we have p exp(−Cε2

nσ
−2
n,∗) = o(1). Notice that εn

√
log p =

(qn log2 p)1/4 = o(1) and 1{J cn} = oP (1) (by (B.3)). The above display implies

sup
x∈R

∣∣∣PGn
(
‖S̃R‖∞ ≤ x

)
− PGn

(
‖S̃R̂‖∞ ≤ x

)∣∣∣ = oP (1). (B.10)

Step 3: Approximating the null distribution

Define tn = λ1,n ∨ λ2,n and sn = t
1/2
n n1/4 log−1/4 p. Notice that, ∀x ∈ R,

∣∣∣PFn (‖SR‖∞ ∈ (x− sn, x+ sn])− PGn
(
‖S̃R‖∞ ∈ (x− sn, x+ sn]

)∣∣∣

=
∣∣∣[Qn(x− sn)−Qn(x+ sn)]−

[
Q̃n(x− sn)− Q̃n(x+ sn)

]∣∣∣

≤
∣∣∣Qn(x− sn)− Q̃n(x− sn)

∣∣∣+
∣∣∣Qn(x+ sn)− Q̃n(x+ sn)

∣∣∣ ≤ 2an,1. (B.11)

Recall Ŝn and ∆n from (B.2). By assumption, under H0, ‖∆n‖∞ = OP (
√
ntn). Notice that

∣∣∣PFn

(
‖Ŝn‖∞ > x

)
− Q̃n(x)

∣∣∣ ≤
∣∣∣PFn(‖Ŝn‖∞ > x)−Qn(x)

∣∣∣+ an,1 (B.12)

(i)

≤ PFn(‖∆n‖∞ > sn) + PFn (‖SR‖∞ ∈ (x− sn, x+ sn]) + an,1

(ii)

≤ PFn(‖∆n‖∞ > sn) + PGn
(
‖S̃R‖∞ ∈ (x− sn, x+ sn]

)
+ 3an,1,

where (i) follows by Lemma 16 and (ii) follows by (B.11). Notice that conditional on Gn, S̃R is a

zero-mean Gaussian vector in Rp whose jth component has variance equal to n−1
∑n

i=1(Ri,j − R̄j)2.

By Lemma 18, there exists a constant Cb > 0 depending only on b such that on the event Jn

sup
x∈R

PGn
(
‖S̃R‖∞ ∈ (x− sn, x+ sn]

)
≤ snCb

√
log p a.s. (B.13)

Therefore, on Jn

sup
x∈R

∣∣∣PFn

(
‖Ŝn‖∞ > x

)
− Q̂n(x)

∣∣∣ ≤ sup
x∈R

∣∣∣PFn(‖Ŝn‖∞ > x)− Q̃n(x)
∣∣∣+ sup

x∈R
|Q̃n(x)− Q̃n(x)|

(i)

≤ PFn(‖∆n‖∞ > sn) + snCb
√

log p+ 3an,1 + an,2
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(ii)
= oP (1), (B.14)

where (i) follows by (B.12), (B.13) and the definition of an,2, whereas (ii) follows by P(J cn) = o(1),

an,1 = oP (1) (by (B.6)) and an,2 = oP (1) (by (B.10)), together with ‖∆n‖∞/sn = OP (
√
ntn/sn) =

OP ((t2nn log p)−1/4) = oP (1) and sn
√

log p = (t2nn log p)1/4 = o(1). It follows that ∀δ > 0,

E

[
sup

η∈(0,1)

∣∣∣PFn

(
‖Ŝn‖∞ > Q(1− η, ‖S̃R̂‖∞)

)
− η
∣∣∣
]

= E
[
sup
x∈R

∣∣∣PFn

(
‖Ŝn‖∞ > Q̂−1

n (η)
)
− η
∣∣∣
]

(i)

≤ E
[
δ + PFn

(
sup
x∈R

∣∣∣PFn(‖Ŝn‖∞ > x)− Q̂n(x)
∣∣∣ > δ

)]

= δ + P
(

sup
x∈R

∣∣∣PFn(‖Ŝn‖∞ > x)− Q̂n(x)
∣∣∣ > δ

)
(ii)

≤ δ + o(1) (B.15)

where (i) follows by Lemma 17 and (ii) follows by (B.14). Since δ is arbitrary, (B.15) implies

E

[
sup

η∈(0,1)

∣∣∣PFn

(
‖Ŝn‖∞ > Q(1− η, ‖S̃R̂‖∞)

)
− η
∣∣∣
]

= o(1).

The desired result follows by noticing that supη |E(Zn(η))| ≤ E supη |Zn(η)|, where Zn(η) =

PFn

(
‖Ŝn‖∞ > Q(1− η, ‖S̃R̂‖∞)

)
− η.

B.2 Proof of Theorem 4

Proof of Theorem 4. We first derive the rates for the critical value. Let Ω̂ = n−1
∑n

i=1 R̂iR̂
>
i and

Ω = n−1
∑n

i=1RiR
>
i . Recall S̃R and S̃R̂ defined in the proof of Theorem 3. Notice that conditional on

Gn, S̃R̂ ∼ N(0, Ω̂).

Recall that for any Gaussian random variable Z ∼ N(0, σ2) and x > 0, P(|Z| > x) ≤
C exp(−Cσ−2x2) for some universal constant C > 0. The union bound implies that P (‖S̃R̂‖∞ >

t | Gn) ≤ 2p exp(−Ct2/max1≤j≤p Ω̂j,j). Since max1≤j≤p
∑n

i=1(R̂i,j − Ri,j)2 = oP (n/ log2(p ∨ n)), we

have that ‖Ω̂ − Ω‖∞ = oP (log−2(p ∨ n)) = oP (1). Since max1≤j≤p Ωj,j = O(1), we have that for any

α ∈ (0, 1),

Q(1− α, TBSn ) = OP (
√

log p). (B.16)
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By triangular inequality, we have

Tn =
√
n‖β̂u − β̂d − δ̂‖∞

=
√
n‖(β̂u − β∗)− (β̂d − β∗)− δ̂‖∞

≥ √
n‖β̂d − β∗‖∞ −

√
n‖β̂u − β∗‖∞ −

√
n‖δ̂‖∞

(i)

≥ √
ncn −

√
n‖β̂u − β∗‖1 −

√
n‖δ̂‖∞

(ii)
=
√
ncn −OP (n−1/4), (B.17)

where (i) follows by the fact that β̂d ∈ B0 and thus ‖β̂d − β∗‖∞ ≥ minβ∈B0 ‖β − β∗‖∞ ≥ cn and (ii)

follows by the definition of δ̂ and Assumption 2.

Since cn � n−1/4 �
√
n−1 log p, the desired result follows by (B.16) and (B.17).

C Proof of results for Linear Model and Logistic Model

The following result is useful in proving both theorems in Section 5.

Lemma 6. Let X be a random variable. Suppose that there exists a constant c > 0 such that P(|X| >
t) ≤ exp(1− ct2) for all t > 0. Then, E exp(|X|/D) < 2, where D ≥

√
7/ [c log(3/2)].

C.1 Proof of Theorems 1 and 2

We begin by providing five useful lemmas for the proof. Lemma 7 provides an upper bounded for the

estimation error of the initial estimator β̂d as well as its feasibility.

Lemma 7. Consider model (3.1) and the estimator β̂d (2.1). Let Assumptions of Theorem 1 hold.

Then the constraint set of the optimization problem (2.1) is non-empty with probability approaching

one, ‖β̂u − β∗‖1 = OP (‖β∗‖0
√
n−1 log p) and ‖X(β̂u − β∗)‖22 = OP (‖β∗‖0 log p).

The above lemma is the extension of the results derived for the Dantzig selector (Theorem 7.1 of

Bickel et al. (2009)) to the designs that are have sub-Gaussian tails. It only suffices to show that the

design matrix X satisfies the restricted eigenvalue condition, which is guaranteed by Theorem 6 of

Rudelson and Zhou (2013). We omit the details for brevity.

Now in order to prove the theorem, let us define two quantities and treat them separately in the

following two lemmas. Let Fn denote the σ-algebra generated by the design matrix X. Recall that for
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the linear regression model (3.1), we have s(Wi, β) = −xi(yi − x>i β) and

Ri =




−2Θ̂xiεi 1 ≤ i ≤ m

2Θ̂xiεi m+ 1 ≤ i ≤ n.
(C.1)

Moreover, let ΩX = Σ−1
X . For 1 ≤ j ≤ p, we denote by ΩX,j the jth column of ΩX .

Lemma 8. Consider model (3.1) and suppose that the assumptions of Theorem 1 hold. Then there

exist constants a1, a2 > 0 depending only on κ1, κ2 and κ3 such that if we choose η ≥ a1

√
n−1 log p

and µ ≥ a2

√
log(p ∨ n) in (3.4), then P(A)→ 1, where

A =

p⋂

j=1

{ΩX,j is feasible in (3.4)} . (C.2)

Lemma 9. Consider model (3.1) and β̂u as in (2.1). Let the assumptions of Theorem 1 hold. Then

under H0 in (1.2),

max
1≤j≤p

n−1
n∑

i=1

(R̂i,j −Ri,j)2 = OP
(
n−1‖β∗‖0 log2(p ∨ n)

)
,

where R̂i and Ri are defined in (5.8) and (C.1), respectively.

The next two lemmas discuss validity of the various parts of the Assumption 1 needed for the

successful approximation of the null distribution. The first verifies “Lyapunov-type” conditions whereas

the second verifies the assumptions of the bootstrap approximation.

Lemma 10. Consider model (3.1) and let the assumptions of Theorem 1 hold. Let Ri be defined in

(C.1). Then there exists a constant K > 0 such that for

Bn = 8K
(
‖XΘ̂‖∞ ∨ 1

)3
,

we have that, almost surely, (1) max1≤i≤n,1≤j≤p E[exp(|Ri,j |/Bn) | Fn] ≤ 2; (2)

max1≤j≤p
∑n

i=1 E(|Ri,j |3 | Fn) ≤ nBn; (3) max1≤j≤p
∑n

i=1 E(R4
i,j | Fn) ≤ nB2

n.

Lemma 11. Consider model (3.1) and let Assumptions of Theorem 1 hold. Let Ri be defined in (C.1).

Then,

(1) there exist a constant b > 0 such that P
(

min1≤j≤p n−1
∑n

i=1 E(R2
i,j | Fn) ≥ b

)
→ 1,
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(2) ‖n−1
∑n

i=1Ri‖∞ = oP (1),

(3) max1≤j≤p
∣∣∣n−1

∑n
i=1[R2

i,j − E(R2
i,j | Fn)]

∣∣∣ = oP (1).

The proofs of the above five lemmas will be given in Appendix D.

Proof of Theorem 1. By Theorem 3, it suffices to verify Assumption 1 (i)-(v), Assumption 2 and

max1≤j≤p
∑n

i=1(R̂i,j −Ri,j)2 = oP (n/ log2(p ∨ n)).

Observe that for the linear model l(zi, β) = (yi − x>i β)2/2 with zi = (yi, xi) leading to s(zi, β) =

xi(x
>
i β − yi) and ∇2

βl(zi, β) = xix
>
i .

(1) We first show Assumption 2. Under the notation of Assumption 2, ĤA(β) = m−1X>AXA and

ĤB = m−1X>BXB. Notice that

sup
t∈[0,1]

‖[Ip − Θ̂AĤA(β̂u − t(β̂u − β∗))](β̂u − β∗)‖∞

= ‖[Ip − Θ̂X>AXA/m](β̂u − β∗)‖∞
(i)

≤ ‖Ip − Θ̂X>AXA/m‖∞‖β̂u − β∗‖1
(ii)
= OP (‖β∗‖0n−1 log p),

where (i) follows by Holder’s inequality and (ii) follows by ‖Ip−Θ̂X>AXA/m‖∞ = OP (
√
n−1 log p)

(the constraint in (3.4) and Lemma 8) and ‖β̂u − β∗‖1 = OP (‖β∗‖0
√
n−1 log p) (Lemma 7).

Similarly, we have that, under H0,

sup
t∈[0,1]

‖[Ip − Θ̂BĤB(β̂d − t(β̂d − β∗))](β̂d − β∗)‖∞

≤ ‖Ip − Θ̂X>BXB/m‖∞‖β̂d − β∗‖1
(i)
= OP (‖β∗‖0n−1 log p),

where (i) follows by ‖Ip− Θ̂X>BXB/m‖∞ = OP (
√
n−1 log p) (the constraint in (3.4) and Lemma

8) and ‖β̂d− β∗‖1 = OP (‖β∗‖0
√
n−1 log p) (Lemma 7 and Lemma 1). By the above two displays

and the rate for ‖β∗‖0, Assumption 2(i) holds.

Since Θ̂ is Fn-measurable, we can take ΘA = ΘB = Θ̂. Thus, Assumption 2(ii) holds. Lastly,

Lemma 7 and ‖β∗‖0 = o(n1/4/
√

log p) imply ‖β̂u − β∗‖1 = o(n−1/4). Assumption 2 holds.

(2) Since ε is independent of X and Θ̂ only depends on X, Assumption 1 (i) holds.
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(3) Assumption 1 (ii) and (iii) hold by Lemma 11.

(4) By Lemma 10, the first three inequalities in Assumption 1 (v) hold with Bn = O(‖XΘ̂‖3∞ ∨ 1).

Notice that on the event A defined in (C.2), ‖XΘ̂‖∞ ≤ µ = O(
√

log(p ∨ n). Since P(A) → 1

(Lemma 8), Bn = OP (log3/2(p∨n)). Simple computations yield the last inequality in Assumption

1(iv).

(5) By Lemma 9, max1≤j≤p
∑n

i=1(R̂i,j −Ri,j)2 = OP (‖β∗‖0 log2(p∨ n))
(i)
= oP (n/ log2(p∨ n)), where

(i) holds by ‖β∗‖0 = o(n1/4/
√

log p) and log p = o(n1/8).

The proof is complete.

Proof of Theorem 2. We apply Theorem 4. Notice that the conditions we need to verify are exactly

the same as in the proof of Theorem 1. Hence, the same arguments apply.

C.2 Proof of Theorems 5 and 6

We begin by providing four lemmas, tailored to the logistic regression model, which are useful for the

proof. We define sΘ = max1≤j≤p ‖Θ∗,j‖0 and sβ = ‖β∗‖0.

Lemma 12. Consider the model (5.2) and β̂u in (5.3). Let assumptions of Theorem 5 hold. Then

‖β̂u − β∗‖1 = OP (sβ
√
n−1 log p).

The above lemma is the extension of the results derived for the Lasso estimator in the generalized

linear models (see proof of Theorem 3.3 Van de Geer et al. (2014) for condition (C2) therein) to the

designs that have sub-Gaussian tails. With similar techniques to those developed in Van de Geer

(2008), we can obtain the above lemma. The details are omitted for the brevity.

Throughout this subsection, we use the definitions in Section 5. We introduce the following nota-

tions:

Ri =




−2Θ∗xi[−yi + b′(x>i β∗)] 1 ≤ i ≤ m

2Θ∗xi[−yi + b′(x>i β∗)] m+ 1 ≤ i ≤ n.
(C.3)

For for zi = (yi, xi), let s(z, β) = xi[−yi + b′(x>i β)] with ĤA(β) = m−1
∑m

i=1 xix
>
i b
′′(x>i β) and

ĤB(β) = m−1
∑n

i=m+1 xix
>
i b
′′(x>i β).

The next two lemmas verify Assumption 2 for the case of logistic regression model.
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Lemma 13. Consider the model (5.2) and β̂u in (5.3). Let assumptions of Theorem 5 hold. Then

sup
t∈[0,1]

∥∥∥Ip − Θ̂AĤA(β̂u − t(β̂u − β∗))](β̂u − β∗)
∥∥∥
∞
∨
∥∥∥∥∥(Θ̂A −Θ∗)m−1

m∑

i=1

s(zi, β∗)

∥∥∥∥∥
∞

= OP

([
sΘ ∨

(
s2
β log3/2(p ∨ n)

)]
n−1 log3/2(p ∨ n)

)
.

Lemma 14. Consider the model (5.2) and β̂u in (5.3). Let assumptions of Theorem 5 hold. Then,

sup
t∈[0,1]

∥∥∥Ip − Θ̂BĤB(β̂d − t(β̂d − β∗))](β̂d − β∗)
∥∥∥
∞
∨
∥∥∥∥∥(Θ̂B −Θ∗)m−1

m∑

i=1

s(zi, β∗)

∥∥∥∥∥
∞

= OP

([
sΘ ∨

(
s2
β log3/2(p ∨ n)

)]
n−1 log3/2(p ∨ n)

)
.

Lastly, we present Lemma on the error of the plug-in estimates R̂is in estimating the main term of

the linearization step of the Algorithm 1.

Lemma 15. Consider the model (5.2), β̂u in (5.3), Ri in (C.3) and R̂i of Section 5. Let assumptions

of Theorem 5 hold. Then

max
1≤j≤p

n−1
n∑

i=1

(R̂i,j −Ri,j)2 = OP ([s2
Θ ∨ (K2

ns
2
β)]K4

nn
−1 log p),

where Kn =
√

log(p ∨ n).

The proofs of the above four lemmas will be given in Appendix D.

Proof of Theorem 5. Consider Ri defined in (C.3). By Theorem 3, it suffices to verify Assumption

1 (i)-(v), Assumption 2 and max1≤j≤p
∑n

i=1(R̂i,j −Ri,j)2 = oP (n/ log2(p ∨ n)), where R̂i is defined in

(5.8).

(1) By Lemmas 13 and 14, the rates λ1,n, λ2,n in Assumption 2(i)-(ii) are λ1,n = λ2,n =[
sΘ ∨

(
s2
β log3(p ∨ n)

)]
n−1 log3/2(p ∨ n), where Fn is the σ-algebra generated by X. Simple

computation yields λ1,n ∨ λ2,n = o(
√
n−1 log p). Lastly, by Lemma 12 and sβ = o([n/ log5 p]1/4),

we have ‖β̂u − β∗‖1 = o(n−1/4). Hence, Assumption 2 holds.

(2) By (5.1), E[−yi + b′(x>i β∗) | X] = E[exp(x>i β∗)/(1 + exp(x>i β∗)) − yi | X] = 0. Thus, ERi = 0

and Assumption 1 (i) holds.
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(3) To verify Assumption 1 (ii) and (iii) notice that |Ri,j | = 2|Θ>∗,jxi| · |b′(x′β∗) − yi|. Also notice

that Θ>∗,jxi has bounded sub-Gaussian norm and both |b′(x′iβ∗)| and |yi| are bounded by 1.

Therefore, Ri,j has bounded sub-Gaussian norms and R2
i,j has bounded sub-exponential norms.

By Hoeffding’s inequality and Bernstein’s inequality, together with the union bound, we have

that 



max1≤j≤p |n−1
∑n

i=1Ri,j − ERi,j | = oP (1)

max1≤j≤p |n−1
∑n

i=1[R2
i,j − ER2

i,j ]| = oP (1).

Assumption 1 (ii) follows by ERi,j = 0. Notice that

min
1≤j≤p

n−1
n∑

i=1

E(R2
i,j) = 4 min

1≤j≤p
Θ>∗,j

(
Ex1x

>
1 [−y1 + b′(x>1 β∗)]

2
)

Θ∗,j = 4 min
1≤j≤p

Θ>∗,jΘ
−1
∗ Θ∗,j

is bounded away from zero by assumptions of Theorem 5. Assumption 1 (iii) follows.

(4) Finally, we show Assumption 1(iv). Since Ri,j has bounded sub-Gaussian norms, it follows, by

Lemma 6, that there exists a constant D1 > 0 such that E exp(|Ri,j |/D1) ≤ 2. The sub-Gaussian

property also implies that there exists a constantD2 > 0 such that E|Ri,j |3 ≤ D2 and ER4
i,j ≤ D2.

Hence, Assumption 1 (iv) holds with Bn = D2 ∨
√
D2 ∨D1.

(5) By Lemma 15 and the rate conditions for sΘ and sβ , we have max1≤j≤p
∑n

i=1(R̂i,j − Ri,j)2 =

oP (n/ log2(p ∨ n)).

The proof is complete.

Proof of Theorem 6. We apply Theorem 4. Notice that the conditions we need to verify are exactly

the same as in the proof of Theorem 5. Hence, the same arguments apply.

D Proofs of Lemmas

Proof of Lemma 6. Let Z = exp(|X|/D). Since Z ≥ 1, we have the decomposition Z =
∑∞

i=1 Z1{i−
1/2 < Z ≤ i+ 1/2}. Define the sequence bi = (i− 1/2)2 exp[−cD2 log2(i− 1/2)]. By Fubini’s theorem,

EZ =

∞∑

i=1

EZ1{i− 1/2 < Z ≤ i+ 1/2} ≤
∞∑

i=1

(i+ 1/2)P(Z > i− 1/2)

= 3/2 +

∞∑

i=2

(i+ 1/2)P(Z > i− 1/2)
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= 3/2 +

∞∑

i=2

(i+ 1/2)P [|X| > D log(i− 1/2)]

(i)

≤ 3/2 + e
∞∑

i=2

(i+ 1/2) exp[−cD2 log2(i− 1/2)],

(ii)

≤ 3/2 + e
∞∑

i=2

bi, (D.1)

where (i) follows by P(|X| > t) ≤ exp(1 − ct2) ∀t > 0 and (ii) follows by the elementary inequality

that (i+ 1/2) ≤ (i− 1/2)2 for i ≥ 2. Notice that, for i ≥ 2,

log bi − log(i−4) ≤ log bi − log(i− 1/2)−4 =
[
6− cD2 log(i− 1/2)

]
log(i− 1/2)

(i)

≤
[
6− cD2 log(3/2)

]
log(i− 1/2)

(ii)

≤ − log(i− 1/2) ≤ 0,

where (i) holds by i ≥ 2 and (ii) holds by the definition of D in the statement of the lemma. The

above display implies that, ∀i ≥ 2, bi ≤ i−4. It follows, by (D.1), that

EZ ≤ 3/2 + e
∞∑

i=2

i−4.

It can be shown that
∑∞

i=2 i
−4 = π4/90− 1 ≤ 1/10. Thus, EZ < 3/2 + e/10 < 2.

Proof of Lemma 8. Notice that for 1 ≤ j ≤ p,

m−1X>AXAΩX,j − ej = m−1
m∑

i=1

(xix
>
i ΩX,j − ej).

Since x>i ΩX,j has bounded sub-Gaussian norm, it follows, by Lemma 19, that entries of xix>i ΩX,j have

sub-exponential norms upper bounded by a constant K1 > 0. Notice that E(xix
>
i ΩX,j − ej) = 0. By

Proposition 5.16 in Vershynin (2010) and the union bound, that for any t > 0,

P

(
max

1≤j≤p

∥∥∥∥∥m
−1

m∑

i=1

(xix
>
i ΩX,j − ej)

∥∥∥∥∥
∞
> t

)

≤
p∑

j=1

p∑

k=1

P

(∣∣∣∣∣m
−1

m∑

i=1

(xi,kx
>
i ΩX,j − 1{k = j})

∣∣∣∣∣ > t

)
≤ 2p2 exp

[
−cmin

(
mt2

K2
1

,
mt

K1

)]
,
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where c > 0 is a universal constant. Therefore,

P

(
max

1≤j≤p

∥∥∥∥∥m
−1

m∑

i=1

(xix
>
i ΩX,j − ej)

∥∥∥∥∥
∞
> 4c−1K1

√
m−1 log p

)
→ 0. (D.2)

Similarly, we can show that

P


max

1≤j≤p

∥∥∥∥∥m
−1

n∑

i=m+1

(xix
>
i ΩX,j − ej)

∥∥∥∥∥
∞
> 4c−1K1

√
m−1 log p


→ 0. (D.3)

Let K2 > 0 be a constant that upper bounds the sub-Gaussian norm of x>i ΩX,j ; such a constant

exists because ΣX has eigenvalues bounded away from zero and infinity and xi has bounded sub-

Gaussian norms. By the union bound, we have that ∀t > 0,

P
(

max
1≤j≤p

‖XAΩX,j‖∞ > t

)
≤

n∑

i=1

p∑

j=1

P
(
|x>i ΩX,j | > t

)
≤ np exp

(
1− c2

0t
2K−2

2

)
,

where c0 > 0 is a universal constant and the last inequality holds by the sub-Gaussian condition (see

Lemma 5.5 of Vershynin (2010)). Thus,

P
(

max
1≤j≤p

‖XAΩX,j‖∞ > 4K2c
−1
0

√
log(p ∨ n)

)
→ 0. (D.4)

Similarly, we can show that

P
(

max
1≤j≤p

‖XBΩX,j‖∞ > 4K2c
−1
0

√
log(p ∨ n)

)
→ 0. (D.5)

The desired result follows by (D.2), (D.3), (D.4) and (D.5).

Proof of Lemma 9. Let ε̂i = yi − x>i β̂u. Notice that for 1 ≤ j ≤ p,

R̂i,j −Ri,j =




−2Θ̂>j xi(ε̂i − εi) 1 ≤ i ≤ m

2Θ̂>j xi(ε̂i − εi) m+ 1 ≤ i ≤ n.
(D.6)

Therefore, on the event A,

max
1≤j≤p

n−1
n∑

i=1

(R̂i,j −Ri,j)2
(i)

≤ max
1≤j≤p

n−1
m∑

i=1

4(Θ̂>j xi)
2(ε̂i − εi)2
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+ max
1≤j≤p

n−1
n∑

i=m+1

4(Θ̂>j xi)
2(ε̂i − εi)2

(ii)

≤ 4µ2n−1
m∑

i=1

(ε̂i − εi)2 + 4µ2n−1
n∑

i=m+1

(ε̂i − εi)2

= 4µ2n−1
n∑

i=1

(ε̂i − εi)2 = 4µ2n−1‖X(β̂u − β∗)‖22,

where (i) follows by (D.6) and (ii) follows by ‖XΘ̂‖∞ ≤ µ on A (the constraint in (3.4)). The

desired result follows by the above display, together with P(A) → 1 (Lemma 8), ‖X(β̂u − β∗)‖22 =

OP (‖β∗‖0 log p) (Lemma 7) and µ = O(
√

log(p ∨ n).

Proof of Lemma 10. Since εi has a sub-Gaussian norm bounded by a constant K1 > 0, it follows by

Lemma 6, that there exists a constant K2 > 0 with E exp(|εi|/K2) ≤ 2. Let K3 > K2 be a constant

such that E|ε1|3 ≤ K3 and E|ε1|4 ≤ K2
3 . Define

Bn = 8K3

(
‖XΘ̂‖∞ ∨ 1

)3
.

To see part (1), notice that E[exp(|Ri,j |/Bn) | Fn] ≤ E[exp(|εi|/K2) | Fn] ≤ 2. Part (2) follows by

max
1≤j≤p

n∑

i=1

E(|Ri,p|3 | Fn) = 8 max
1≤j≤p

n∑

i=1

|Θ̂>j xi|3E|εi|3 ≤ 8n‖XΘ̂‖3∞E|ε1|3 ≤ Bn.

Part (3) follows by

max
1≤j≤p

n∑

i=1

E(|Ri,j |4 | Fn) = 16 max
1≤j≤p

n∑

i=1

|Θ̂>j xi|4E|εi|4 ≤ 16n‖XΘ̂‖4∞E|ε1|4 ≤ B2
n.

The proof is complete.

Proof of Lemma 11 . Recall the event A defined in Lemma 8, by which we have P(A) → 1. Notice

that

min
1≤j≤p

n−1
n∑

i=1

E(R2
i,j | Fn) = min

1≤j≤p
n−1

n∑

i=1

4(Θ̂>j xi)
2σ2
ε = 4σ2

ε min
1≤j≤p

‖XΘ̂j‖22/n. (D.7)

Also notice that, on the event A,

‖X>AXAΘ̂/m− Ip‖∞ ∨ ‖X>BXBΘ̂/m− Ip‖∞ ≤ η.
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Since n−1X>X − Ip = (X>AXAΘ̂/m − Ip)/2 + (X>BXBΘ̂/m − Ip)/2, we have that, on the event A,
‖n−1X>XΘ̂− Ip‖∞ ≤ η, i.e.,

|X>j XΘ̂j/n− 1| ≤ η = o(1) ∀1 ≤ j ≤ p .

Thus |X>j XΘ̂j | ≥ n(1−η) > 0 for 1 ≤ j ≤ p on A. By Cauchy-Schwarz inequality, ‖Xj‖2‖XΘ̂j‖2 ≥
|X>j XΘ̂j | and thus, on the event A,

min
1≤j≤p

‖XΘ̂j‖2 ≥
n(1− η)

max1≤j≤p ‖Xj‖2
. (D.8)

By the bounded sub-Gaussian norm of xi,j , together with Lemma 5.14, Proposition 5.16 in Ver-

shynin (2010) and the union bound,

max
1≤j≤p

∣∣∣∣∣n
−1

n∑

i=1

(x2
i,j − Ex2

i,j)

∣∣∣∣∣ = OP (
√
n−1 log p).

The above display, (D.7) and (D.8) imply that

P

(
min

1≤j≤p
n−1

n∑

i=1

E(R2
i,j | Fn) ≥ (1− η)2σ2

ε

max1≤j≤p ΣX,j,j

)
→ 1.

Since the diagonal entries of ΣX as well as σε are bounded away from zero and infinity, part (1)

follows.

Now we show part (2). Let

ai = 1{i ≤ m} − 1{i > m}.

Thus, a2
i = 1. By the bounded sub-Gaussianity of εi and Proposition 5.10 in Vershynin (2010) (applied

to the conditional probability measure P(· | Fn)), we have that, on the event A, ∀t > 0,

P

(∥∥∥∥∥n
−1

n∑

i=1

Ri

∥∥∥∥∥
∞
> t | Fn

)
= P

(∥∥∥∥∥2n−1
n∑

i=1

aiΘ̂
>
j xiεi

∥∥∥∥∥
∞
> t | Fn

)

≤
p∑

j=1

P

(∣∣∣∣∣
m∑

i=1

aiΘ̂
>
j xiεi

∣∣∣∣∣ > nt | Fn
)

≤ p exp

(
1− K1n

2t2

max1≤j≤p
∑n

i=1(Θ̂>j xi)
2

)
(i)
= oP (1)
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for some constant K1 > 0, where (i) follows by P(A)→ 1 and the fact that, on the event A,

max
1≤j≤p

n∑

i=1

(Θ̂>j xi)
2 ≤ n‖XΘ̂‖2∞ ≤ nµ2 = O(n log(p ∨ n)).

Since t is arbitrary, part (2) follows.

We apply a similar argument to part (3). Notice that, for 1 ≤ j ≤ p,

R2
i,j − E(R2

i,j | Fn) = 4(Θ̂>j xi)
2(ε2

i − σ2
ε),

where, by Lemma 5.14 in Vershynin (2010), ε2
i − σ2

ε has a sub-exponential norm upper bounded by

some constant K2 > 0. Notice that, on the event A, ∀t > 0,

P

(
max

1≤j≤p

∣∣∣∣∣n
−1

n∑

i=1

[R2
i,j − E(R2

i,j | Fn)]

∣∣∣∣∣ > t

∣∣∣∣∣Fn
)

≤
p∑

j=1

P

(∣∣∣∣∣n
−1

n∑

i=1

4(Θ̂>j xi)
2(ε2

i − σ2
ε)

∣∣∣∣∣ > t

∣∣∣∣∣Fn
)

(i)

≤ 2p exp

[
−c0 min

(
n2t2

16K2
2 max1≤j≤p

∑n
i=1(Θ̂>j xi)

2
,

nt

4K1 max1≤j≤p,1≤i≤n(Θ̂>j xi)
2

)]

(ii)

≤ 2p exp

[
−c0 min

(
n2t2

16K2
2nO(log(p ∨ n))

,
nt

4K1O(log(p ∨ n))

)]
(iii)
= oP (1)

for some universal constant c0 > 0, where (i) follows by Proposition 5.16 in Vershynin (2010) (applied

to the conditional probability measure), (ii) follows by the fact that, on A, max1≤j≤p,1≤i≤n(Θ̂>j xi)
2 ≤

µ2 = O(log(p ∨ n)) (the constraints in (3.4)) and (iii) holds by log2(p ∨ n) = o(n). Since t > 0 is

arbitrary, part (3) follows. The proof is now complete.

Proof of Lemma 13. For notational simplicity, we write Θ̂ instead of Θ̂A. Notice that, under the

assumptions of Theorem 5, the conclusions in Theorem 3.2 of Van de Geer et al. (2014) continue to

hold uniformly in j:





max1≤j≤p ‖Θ̂j −Θ∗,j‖1 = OP ([sΘ ∨ (sβKn)]Kn

√
n−1 log p).

max1≤j≤p
∣∣∣[Û>j (Ûj − Û−j γ̂j)]/m−Θ∗,j,j

∣∣∣ = OP (
√

(K2
nsβ) ∨ sΘKn

√
n−1 log p).

(D.9)

The proof for (D.9) is largely the same as in Van de Geer et al. (2014) with uniformity in j added

in the argument and is thus omitted. The rest of the proof establishes the rates in two steps.
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Step 1: show the rate for supt∈[0,1] ‖[Ip − Θ̂ĤA(β̂u − t(β̂u − β∗))](β̂u − β∗)‖∞.

By the triangular inequality, we have

sup
t∈[0,1]

‖[Ip − Θ̂ĤA(β̂u − t(β̂u − β∗))](β̂u − β∗)‖∞

≤ ‖[Ip − Θ̂ĤA(β̂u)](β̂u − β∗)‖∞︸ ︷︷ ︸
J1

+ sup
t∈[0,1]

‖Θ̂[ĤA(β̂u − t(β̂u − β∗))− ĤA(β̂u)](β̂u − β∗)‖∞
︸ ︷︷ ︸

J2

. (D.10)

For j ∈ {1, · · · , p}, recall that Θ̂j = (Θ̂j,j , Θ̂
>
j,−j)

> with Θ̂j,−j = −Θ̂j,j γ̂j and

Θ̂j,j = m/[Û>j (Ûj − Û−j γ̂j)],

where γ̂j = arg minγ ‖Ûj − Û−jγ‖22/(2n) + η‖λ‖1. By the KKT condition of this optimization problem,

we have ‖Û>−j(Ûj − Û−j γ̂j)‖∞ ≤ η. This means that

max
1≤j≤p

‖m−1Û>−jÛΘ̂j‖∞ = max
1≤j≤p

|Θ̂j,j | · ‖m−1Û>−j(Ûj − Û−j γ̂j)‖∞

≤ η max
1≤j≤p

|Θ̂j,j |

=
η

min1≤j≤p[Û>j (Ûj − Û−j γ̂j)]/m
(i)
=

η

min1≤j≤p Θ∗,j,j + oP (1)
= OP (η),

where (i) holds by (D.9). Also notice that for 1 ≤ j ≤ p,

m−1Û>j ÛΘ̂j = m−1[Û>j (Ûj − Û−j γ̂j)]Θ̂j,j = 1

by the definition of Θ̂j,j . Hence,

‖m−1Û>ÛΘ̂j − ej‖∞ = OP (η) = OP (
√
n−1 log p).

Therefore, by Holder’s inequality and Lemma 12, we have

‖J1‖∞ = ‖(m−1Û>ÛΘ̂j − ej)δ‖∞ ≤ ‖m−1Û>ÛΘ̂j − ej‖∞‖δ‖1 = OP (sβn
−1 log p). (D.11)
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Notice that |b′′′(z)| = exp(z)| exp(z)− 1| · [1 + exp(z)]−3 ≤ 1 ∀z ∈ R. Hence,

‖J2‖∞ = sup
t∈[0,1]

‖Θ̂[ĤA(β̂u − t(β̂u − β∗))− ĤA(β̂u)](β̂u − β∗)‖∞

= sup
t∈[0,1]

max
1≤j≤p

∣∣∣∣∣m
−1

m∑

i=1

Θ̂>j xix
>
i (β̂u − β∗)

[
b′′(x>i [β̂u − t(β̂u − β∗))]− b′′(x>i β̂u)

]∣∣∣∣∣

≤ sup
t∈[0,1]

max
1≤j≤p

m−1
m∑

i=1

∣∣∣Θ̂>j xix>i (β̂u − β∗)
∣∣∣ ·
∣∣∣b′′(x>i [β̂u − t(β̂u − β∗))]− b′′(x>i β̂u)

∣∣∣

(i)

≤ max
1≤j≤p

m−1
m∑

i=1

∣∣∣Θ̂>j xix>i (β̂u − β∗)
∣∣∣ ·
∣∣∣x>i (β̂u − β∗)

∣∣∣

≤ ‖XΘ̂‖2∞‖X‖2∞‖β̂u − β∗‖21
(ii)
= OP (K4

ns
2
βn
−1 log p), (D.12)

where (i) follows by the fact that ∀u1, u2 ∈ R,

|b′′(u1)− b′′(u2)| ≤ sup
u∈R
|b′′′(u)| · |u1 − u2| ≤ |u1 − u2|

and (ii) follows by ‖X‖∞ = OP (Kn), ‖XΘ∗‖∞ = OP (Kn) and ‖β̂u − β∗‖1 = OP (sβ
√
n−1 log p)

(Lemma 12). The rate for supt∈[0,1] ‖[Ip − Θ̂ĤA(β̂u − t(β̂u − β∗))](β̂u − β∗)‖∞ follows by (D.10),

together with (D.11) and (D.12).

Step 2: show the rate for ‖(Θ̂−Θ∗)m−1
∑m

i=1 s(zi, β∗)‖∞.

Notice that |b′(u)| = exp(u)/[1+exp(u)] ≤ 1 and yi ∈ {0, 1}. Hence, |xi,j [−yi+b′(x>i β∗)]| ≤ 2|xi,j |,
which has bounded sub-Gaussian norms. By Proposition 5.10 of Vershynin (2010), we have that ∀t > 0,

P

(
max

1≤j≤p

∣∣∣∣∣
m∑

i=1

xi,j [−yi + b′(x>i β∗)]

∣∣∣∣∣ > t

)
≤

p∑

j=1

P

(∣∣∣∣∣
m∑

i=1

xi,j [−yi + b′(x>i β∗)]

∣∣∣∣∣ > t

)
≤ 2p exp

[
−Ct2/m

]
,

where C > 0 is a constant depending only on the sub-Gaussian norm of xi,j . Hence,

‖∑m
i=1 s(zi, β∗)‖∞ = OP (

√
n log p) and by Holder’s inequality

∥∥∥∥∥(Θ̂−Θ∗)m−1
m∑

i=1

s(zi, β∗)

∥∥∥∥∥
∞
≤ max

1≤j≤p
‖Θ̂j−Θ∗,j‖1

∥∥∥∥∥m
−1

m∑

i=1

s(zi, β∗)

∥∥∥∥∥
∞

= OP
(
[sΘ ∨ (Knsβ)]Knn

−1 log p
)
,

where the last equality follows by (D.9).

Proof of Lemma 14. The proof is almost the same as that of Lemma 13. We only outline the key steps

here. Again, we write Θ̂ instead of Θ̂B for notational convenience.

46



Step 1: show the rate for supt∈[0,1] ‖[Ip − Θ̂ĤB(β̂d − t(β̂d − β∗))](β̂d − β∗)‖∞.

Let Kn =
√

log(p ∨ n). Similar to (D.10), we still have

sup
t∈[0,1]

‖[Ip − Θ̂ĤB(β̂d − t(β̂d − β∗))](β̂d − β∗)‖∞

≤ ‖[Ip − Θ̂ĤB(β̂u)](β̂d − β∗)‖∞︸ ︷︷ ︸
J1

+ sup
t∈[0,1]

‖Θ̂[ĤB(β̂d − t(β̂d − β∗))− ĤB(β̂u)](β̂d − β∗)‖∞
︸ ︷︷ ︸

J2

. (D.13)

Notice that under H0, ‖β̂d−β∗‖1 ≤ 2‖β̂u−β∗‖1 by Lemma 1. Thus, the same argument for (D.11)

still yields

‖J1‖∞ = OP (sβn
−1 log p). (D.14)

Moreover, under H0,

sup
t∈[0,1]

‖β̂d− β̂u− t(β̂d− β∗)‖1 ≤ ‖β̂d− β∗‖1 + ‖β̂u− β∗‖1 + sup
t∈[0,1]

‖t(β̂d− β∗)‖1 ≤ 5‖β̂u− β∗‖1. (D.15)

Similar to (D.12), we have that

‖J2‖∞ = sup
t∈[0,1]

‖Θ̂[ĤB(β̂d − t(β̂d − β∗))− ĤB(β̂u)](β̂d − β∗)‖∞

≤ sup
t∈[0,1]

max
1≤j≤p

m−1
m∑

i=1

∣∣∣Θ̂>j xix>i (β̂d − β∗)
∣∣∣ ·
∣∣∣x>i (β̂d − β̂u − t(β̂d − β∗))

∣∣∣

(i)

≤ max
1≤j≤p

m−1
m∑

i=1

∣∣∣Θ̂>j xix>i (β̂d − β∗)
∣∣∣ · ‖X‖∞ sup

t∈[0,1]
‖β̂d − β̂u − t(β̂d − β∗)‖1

(ii)

≤ max
1≤j≤p

m−1
m∑

i=1

∣∣∣Θ̂>j xix>i (β̂d − β∗)
∣∣∣ · ‖X‖∞ · 5‖β̂u − β∗‖1

(iii)

≤ 10‖XΘ̂‖2∞‖X‖2∞‖β̂u − β∗‖21 = OP (K4
ns

2
βn
−1 log p), (D.16)

where (i) follows by Holder’s inequality, (ii) follows by (D.15) and (iii) follows by Holder’s inequality

and ‖β̂d − β∗‖1 ≤ 2‖β̂u − β∗‖1. Hence, we have the same conclusion as Step 1 in the proof of Lemma

13.

Step 2: show the rate for ‖(Θ̂−Θ∗)m−1
∑m

i=1 s(zi, β∗)‖∞.
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Using the same argument as in Step 2 of the proof of Lemma 13, we have

∥∥∥∥∥(Θ̂−Θ∗)m−1
n∑

i=m+1

s(zi, β∗)

∥∥∥∥∥
∞

= OP
(
[sΘ ∨ (Knsβ)]Knn

−1 log p
)
.

The proof is complete.

Proof of Lemma 15. Notice that ‖X‖∞ = OP (Kn) and ‖XΘ∗‖∞ = OP (Kn). Observe that

max
1≤j≤p

m−1
m∑

i=1

(R̂i,j −Ri,j)2 (D.17)

= max
1≤j≤p

4m−1
m∑

i=1

(
Θ̂>A,jxi[−yi + b′(x>i β̂u)]−Θ>∗,jxi[−yi + b′(x>i β∗)]

)2

(i)

≤ 8 max
1≤j≤p

m−1
m∑

i=1

[
(Θ̂A,j −Θ∗,j)>xi

]2 (
−yi + b′(x>i β̂u)

)2
(D.18)

+ 8 max
1≤j≤p

m−1
m∑

i=1

(Θ>∗,jxi)
2
(
b′(x>i β̂u)− b′(x>i β∗)

)2

(ii)

≤ 8‖X‖2∞ max
1≤j≤p

‖Θ̂A,j −Θ∗,j‖21m−1
m∑

i=1

(
−yi + b′(x>i β̂u)

)2
(D.19)

+ 8‖XΘ∗‖2∞m−1
m∑

i=1

(
b′(x>i β̂u)− b′(x>i β∗)

)2

(iii)
= OP ([s2

Θ ∨ (K2
ns

2
β)]K4

nn
−1 log p) +OP (K2

n)m−1
m∑

i=1

(
b′(x>i β̂u)− b′(x>i β∗)

)2
,

where (i) holds by the elementary inequality (a + b)2 ≤ 2a2 + 2b2, (ii) follows by Holder’s inequality

and (iii) follows by (D.9) in the proof of Lemma 13, ‖X‖∞ = OP (Kn), ‖XΘ∗‖∞ = OP (Kn) and the

fact that |yi| ≤ 1 and supu∈R |b′(u)| ≤ 1.

Let δ = β̂u − β∗ and notice that, by Lemma 12, ‖δ‖1 = OP (sβ
√
n−1 log p). Notice that ∀u ∈ R,

|b′′(u)| = exp(u)/[1 + exp(u)]2 ≤ 1. We have

|b′(x>i β̂u)− b′(x>i β∗)| ≤ |x′iδ|

and thus

m−1
m∑

i=1

(
b′(x>i β̂u)− b′(x>i β∗)

)2
≤ m−1

m∑

i=1

(x>i δ)
2

(i)

≤ ‖XA‖2∞‖δ‖21 = OP (K2
ns

2
βn
−1 log p), (D.20)
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where (i) follows by Holder’s inequality. Thus, (D.17) and (D.20) imply

max
1≤j≤p

m−1
m∑

i=1

(R̂i,j −Ri,j)2 = OP ([s2
Θ ∨ (K2

ns
2
β)]K4

nn
−1 log p).

A similar argument yields max1≤j≤pm−1
∑n

i=m+1(R̂i,j −Ri,j)2 = OP ([s2
Θ ∨ (K2

ns
2
β)]K4

nn
−1 log p). We

conclude the proof by observing

max
1≤j≤p

n−1
n∑

i=1

(R̂i,j −Ri,j)2 ≤ 1

2
max

1≤j≤p
m−1

m∑

i=1

(R̂i,j −Ri,j)2 +
1

2
max

1≤j≤p
m−1

n∑

i=m+1

(R̂i,j −Ri,j)2.

E Technical tools

Lemma 16. Let X and Y be two random vectors. Then ∀t, ε > 0, |P (‖X‖∞ > t)− P (‖Y ‖∞ > t)| ≤
P (‖X − Y ‖∞ > ε) + P (‖Y ‖∞ ∈ (t− ε, t+ ε]) .

Proof of Lemma 16. The result holds by the following observations using the triangular inequality: (1)

P(‖X‖∞ > t) ≤ P(‖X−Y ‖∞ > ε)+P(‖Y ‖∞ > t−ε) = P(‖X−Y ‖∞ > ε)+P(‖Y ‖∞ > t)+P(‖Y ‖∞ ∈
(t− ε, t]) and (2) P(‖X‖∞ > t) ≥ P(‖Y ‖∞ > t+ ε)− P(‖X − Y ‖∞ > ε) = P(‖Y ‖∞ > t)− P(‖Y ‖∞ ∈
(t, t+ ε])− P(‖X − Y ‖∞ > ε).

Lemma 17. Let X and Y be two random vectors and F and G two σ-algebras. De-

fine FX(x) = P (‖X‖∞ ≤ x | F) and FY (x) = P (‖Y ‖∞ ≤ x | G). Then ∀ε > 0,

supα∈(0,1)

∣∣P
(
‖X‖∞ > F−1

Y (1− α) | F
)
− α

∣∣ ≤ ε+ P (supx∈R |FX(x)− FY (x)| > ε | F).

Proof of Lemma 17. For simplicity, we use PF (·) to denote P(· | Fn). Fix α ∈ (0, 1) and notice that

PF
(
‖X‖∞ > F−1

Y (1− α)
)

(E.1)

≤ PF
(
‖X‖∞ > F−1

Y (1− α) and sup
x∈R
|FX(x)− FY (x)| ≤ ε

)
+ PF

(
sup
x∈R
|FX(x)− FY (x)| > ε

)

(E.2)
(i)

≤ PF
(
‖X‖∞ > F−1

X (1− α− ε)
)

+ PF
(

sup
x∈R
|FX(x)− FY (x)| > ε

)
(E.3)

= α+ ε+ PF
(

sup
x∈R
|FX(x)− FY (x)| > ε

)
, (E.4)
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where (i) follows from Lemma A.1(ii) in Romano and Shaikh (2012) (if supx∈R[FY (x) − FX(x)] ≤ ε

then F−1
X (1− α− ε) ≤ F−1

Y (1− α)). Also notice that

PF
(
‖X‖∞ > F−1

Y (1− α)
)
≥ PF

(
‖X‖∞ > F−1

Y (1− α) and sup
x∈R
|FX(x)− FY (x)| ≤ ε

)

(i)

≥ PF
(
‖X‖∞ > F−1

X (1− α+ ε) and sup
x∈R
|FX(x)− FY (x)| ≤ ε

)

≥ PF
(
‖X‖∞ > F−1

X (1− α+ ε)
)
− PF

(
sup
x∈R
|FX(x)− FY (x)| > ε

)

= α− ε− PF
(

sup
x∈R
|FX(x)− FY (x)| > ε

)
(E.5)

where (i) follows from Lemma A.1(ii) in Romano and Shaikh (2012) (if supx∈R[FX(x) − FY (x)] ≤ ε

then F−1
Y (1− α) ≤ F−1

X (1− α+ ε)). The desired result follows by (E.4) and (E.5).

Lemma 18. Let Y = (Y1, · · · , Yp)> be a random vector and F a σ-algebra. If E(Y | F) = 0, Y | F
is Gaussian and minE(Y 2

j | F) ≥ b a.s. for some constant b > 0, then there exists a constant Cb > 0

depending only on b such that ∀ε > 0.

sup
x∈R

P (‖Y ‖∞ ∈ (x− ε, x+ ε] | F) ≤ Cbε
√

log p a.s.

Proof of Lemma 18. By Nazarov’s anti-concentration inequality (Lemma A.1 in Chernozhukov

et al. (2014)), there exists a constant Cb
> depending only on b such that almost surely,

supx∈R P(max1≤j≤p Yj ∈ (x−ε, x+ε] | F) ≤ 2Cb
>ε
√

log p and supx∈R P(max1≤j≤p(−Yj) ∈ (x−ε, x+ε] |
F) ≤ 2Cb

>ε
√

log p.

Since ‖Y ‖∞ = max{max1≤j≤p Yj ,max1≤j≤p(−Yj)}, the desired result follows by supx∈R P(‖Y ‖∞ ∈
(x−ε, x+ε] | F) ≤ supx∈R P(max1≤j≤p Yj ∈ (x−ε, x+ε] | F)+supx∈R P(max1≤j≤p(−Yj) ∈ (x−ε, x+ε] |
F) ≤ 4Cb

>ε
√

log p.

Lemma 19. Let X and Y be two sub-Gaussian random variables. Then XY is sub-exponential.

Proof of Lemma 19. Since X and Y are sub-Gaussian, there exist constants C1, C2 > 0 such that

P(|X| > z) ≤ exp(−C1z
2) and P(|Y | > z) ≤ exp(−C2z

2) ∀z > 0.

Let C = min{C1, C2}. Fix any constant t > 0. We have that

P (|XY | > t) ≤ P
(
|XY | > t and |Y | >

√
t
)

+ P
(
|XY | > t and |Y | ≤

√
t
)

≤ P
(
|Y | >

√
t
)

+ P
(
|X| >

√
t
)
≤ exp(−C2t) + exp(−C1t) ≤ 2 exp(−Ct).
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Thus, XY is sub-exponential.

References

Barber, R. F. and E. J. Candès (2015). Controlling the false discovery rate via knockoffs. The Annals

of Statistics 43 (5), 2055–2085.

Belloni, A., V. Chernozhukov, D. Chetverikov, and Y. Wei (2016). Uniformly Valid Post-Regularization

Confidence Regions for Many Functional Parameters in Z-Estimation Framework. The Annals of

Statistics, to appear .

Belloni, A., V. Chernozhukov, and C. Hansen (2014). Inference on treatment effects after selection

among high-dimensional controls. The Review of Economic Studies 81 (2), 608–650.

Bickel, P. J., Y. Ritov, and A. B. Tsybakov (2009). Simultaneous analysis of lasso and dantzig selector.

The Annals of Statistics 37 (4), 1705–1732.

Bühlmann, P. (2013). Statistical significance in high-dimensional linear models. Bernoulli 19 (4),

1212–1242.

Bunea, F., A. Tsybakov, and M. Wegkamp (2007). Sparsity oracle inequalities for the lasso. Electron.

J. Statist. 1, 169–194.

Cai, T., W. Liu, and X. Luo (2011). A constrained l1 minimization approach to sparse precision matrix

estimation. Journal of the American Statistical Association 106 (494), 594–607.

Cai, T. T. and Z. Guo (2015). Confidence intervals for high-dimensional linear regression: Minimax

rates and adaptivity. arXiv preprint arXiv:1506.05539 .

Cai, T. T., T. Liang, and A. Rakhlin (2014). Geometric inference for general high-dimensional linear

inverse problems. ArXiv e-prints: 1404.4408 .

Chernozhukov, V., D. Chetverikov, and K. Kato (2013). Testing many moment inequalities. arXiv

preprint arXiv:1312.7614 .

Chernozhukov, V., D. Chetverikov, and K. Kato (2014). Central limit theorems and bootstrap in high

dimensions. arXiv preprint arXiv:1412.3661 .

Dezeure, R., P. Bühlmann, and C.-H. Zhang (2016). High-dimensional simultaneous inference with the

bootstrap. ArXiv e-prints: 1606.03940 .

Dicker, L. H. (2014). Variance estimation in high-dimensional linear models. Biometrika.

Efron, B., T. Hastie, I. Johnstone, and R. Tibshirani (2004). Least angle regression. The Annals of

statistics 32 (2), 407–499.

Fan, J., S. Guo, and N. Hao (2012). Variance estimation using refitted cross-validation in ultrahigh

51



dimensional regression. Journal of the Royal Statistical Society: Series B (Statistical Methodol-

ogy) 74 (1), 37–65.

Fan, J., X. Han, and W. Gu (2012). Estimating false discovery proportion under arbitrary covariance

dependence. Journal of the American Statistical Association 107 (499), 1019–1035.

Fan, J. and R. Li (2001). Variable selection via nonconcave penalized likelihood and its oracle proper-

ties. Journal of the American statistical Association 96 (456), 1348–1360.

Fan, J. and J. Lv (2011, Aug). Nonconcave penalized likelihood with np-dimensionality. IEEE Trans-

actions on Information Theory 57 (8), 5467–5484.

Friedman, J. H. and J. W. Tukey (1974). A Projection Pursuit Algorithm for Exploratory Data

Analysis. IEEE Trans. Comput. 23 (9), 881–890.

Huber, P. J. (1985). Projection pursuit. The Annals of Statistics 13 (2), 435–475.

Ingster, Y. I., A. B. Tsybakov, and N. Verzelen (2010). Detection boundary in sparse regression.

Electron. J. Statist. 4, 1476–1526.

Janková, J. and S. van de Geer (2015). Confidence intervals for high-dimensional inverse covariance

estimation. Electron. J. Statist. 9 (1), 1205–1229.

Janson, L., R. F. Barber, and E. Candès (2015). Eigenprism: Inference for high-dimensional signal-to-

noise ratios. arXiv preprint arXiv:1505.02097 .

Javanmard, A. and A. Montanari (2014). Confidence intervals and hypothesis testing for high-

dimensional regression. The Journal of Machine Learning Research 15 (1), 2869–2909.

Javanmard, A. and A. Montanari (2015). De-biasing the lasso: Optimal sample size for gaussian

designs. ArXiv e-prints: 1508.02757 .

Lee, J. (2012). Introduction to smooth manifolds, Volume 218. Springer.

Lehmann, E. L. and J. P. Romano (2006). Testing statistical hypotheses. springer.

Mandozzi, J. and P. Bühlmann (2016). Hierarchical testing in the high-dimensional setting with

correlated variables. Journal of the American Statistical Association 111 (513), 331–343.

Meinshausen, N. (2015). Group bound: confidence intervals for groups of variables in sparse high

dimensional regression without assumptions on the design. Journal of the Royal Statistical Society:

Series B (Statistical Methodology) 77 (5), 923–945.

Meinshausen, N. and P. Bühlmann (2006). High-dimensional graphs and variable selection with the

lasso. The Annals of Statistics 34 (3), 1436–1462.

Meinshausen, N. and B. Yu (2009, 02). Lasso-type recovery of sparse representations for high-

dimensional data. The Annals of Statistics 37 (1), 246–270.

52



Negahban, S. N., P. Ravikumar, M. J. Wainwright, and B. Yu (2012, 11). A unified framework for

high-dimensional analysis of m-estimators with decomposable regularizers. Statistical Science 27 (4),

538–557.

Ning, Y. and H. Liu (2014). A general theory of hypothesis tests and confidence regions for sparse high

dimensional models. arXiv preprint arXiv:1412.8765 .

Ren, Z., T. Sun, C.-H. Zhang, and H. H. Zhou (2013). Asymptotic normality and optimalities in

estimation of large Gaussian graphical models. ArXiv e-prints: 1309.6024 .

Romano, J. P. and A. M. Shaikh (2012). On the uniform asymptotic validity of subsampling and the

bootstrap. The Annals of Statistics 40 (6), 2798–2822.

Rudelson, M. and S. Zhou (2013). Reconstruction from anisotropic random measurements. Information

Theory, IEEE Transactions on 59 (6), 3434–3447.

Shao, J. (2003). Mathematical Statistics (2nd ed.). Springer-Verlag New York Inc.

Sun, T. and C.-H. Zhang (2012). Scaled sparse linear regression. Biometrika 99 (4), 879–898.

Van de Geer, S., P. Bühlmann, Y. Ritov, R. Dezeure, et al. (2014). On asymptotically optimal

confidence regions and tests for high-dimensional models. The Annals of Statistics 42 (3), 1166–

1202.

Van de Geer, S. A. (2008). High-dimensional generalized linear models and the lasso. The Annals of

Statistics 36 (2), 614–645.

Vershynin, R. (2010). Introduction to the non-asymptotic analysis of random matrices. arXiv preprint

arXiv:1011.3027 .

Verzelen, N. and E. Gassiat (2016). Adaptive estimation of High-Dimensional Signal-to-Noise Ratios.

ArXiv e-prints: 1602.08006 .

Zhang, C.-H. and J. Huang (2008). The sparsity and bias of the lasso selection in high-dimensional

linear regression. The Annals of Statistics 36 (4), 1567–1594.

Zhang, C.-H. and S. S. Zhang (2014). Confidence intervals for low dimensional parameters in high

dimensional linear models. Journal of the Royal Statistical Society: Series B (Statistical Methodol-

ogy) 76 (1), 217–242.

Zhang, X. and G. Cheng (2016). Simultaneous inference for high-dimensional linear models. Journal

of the American Statistical Association to appear(ja), 0–0.

Zhao, P. and B. Yu (2006). On model selection consistency of lasso. Journal of Machine Learning

Research 7, 2541–2563.

53




