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Glycan susceptibility factors in autism spectrum disorders

Chrissa A. Dwyer and Jeffrey D. Esko*

Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, 
University of California, San Diego, La Jolla, CA 92093, USA

Abstract

Idiopathic autism spectrum disorders (ASDs) are neurodevelopmental disorders with unknown 

etiology. An estimated 1:68 children in the U.S. are diagnosed with ASDs, making these disorders 

a substantial public health issue. Recent advances in genome sequencing have identified numerous 

genetic variants across the ASD patient population. Many genetic variants identified occur in 

genes that encode glycosylated extracellular proteins (proteoglycans or glycoproteins) or enzymes 

involved in glycosylation (glycosyltransferases and sulfotransferases). It remains unknown 

whether “glycogene” variants cause changes in glycosylation and whether they contribute to the 

etiology and pathogenesis of ASDs. Insights into glycan susceptibility factors are provided by 

studies in the normal brain and congenital disorders of glycosylation, which are often 

accompanied by ASD-like behaviors. The purpose of this review is to present evidence that 

supports a contribution of extracellular glycans and glycoconjugates to the etiology and 

pathogenesis of idiopathic ASDs and other types of pervasive neurodevelopmental disorders.
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1. Introduction

Autism spectrum disorders (ASDs) are neurodevelopmental disorders characterized by a 

wide range of symptoms that include abnormal social interactions, limited interests, and 

stereotypic and repetitive behaviors (American Psychiatric Association, 2013). Hallmark 

symptoms typically arise in the second or third year of life, following a period of normal 
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development or accompanying prolonged developmental delay (Newschaffer et al., 2007). 

Currently 1 out of 68 children are diagnosed with ASDs, with males having a four times 

greater risk than females. In the past decade the prevalence of ASDs has more than doubled, 

which emphasizes the need for improved early diagnosis and therapeutic intervention 

(Autism and Developmental Disabilities Monitoring Network Surveillance Year 2008 

Principal Investigators and Centers for Disease Control and Prevention, 2012).

Idiopathic ASDs arise from an unknown cause, where as syndromic ASD is secondary to a 

primary condition caused by a single gene mutation, for example Fragile X syndrome. ASD 

patients exhibit a wide range of behaviors, which is mirrored by equally impressive genetic 

heterogeneity. Recent findings support a significant genetic contribution to idiopathic ASD 

(Geschwind, 2011; Geschwind and State, 2015; Murdoch and State, 2013); however disease 

etiology and pathophysiology remain largely unclear. Efforts to associate genetic risk factors 

into common biochemical pathways and developmental processes have been made 

(Geschwind, 2008; Parikshak et al., 2013; Rubenstein and Merzenich, 2003; Subramanian et 

al., 2015). This approach has led to new theories on the etiology of ASD, which place 

alterations in developmental transcriptional regulation, brain growth, changes in the 

excitatory/inhibitory balance of the neural network, and abnormalities in neural plasticity at 

the crux of disease pathogenesis. It is also known that inflammation in the developing brain 

can lead to ASD-like behaviors (Kern et al., 2015). Thus genetic heterogeneity in the patient 

population may reflect a series of different genetic insults that converge on common 

neurodevelopmental processes that when perturbed have a similar impact on brain function.

The genetic heterogeneity of ASD introduces a significant challenge in understanding 

disease etiology. The complexity of the genetic architecture arises from numerous factors 

including (i) many chromosomal loci and common and rare genetic variants, which are 

either inherited or acquired de novo; (ii) genetic perturbations that range from single 

nucleotide substitutions to large chromosomal deletions/duplications; and (iii) genetic 

perturbations that range from single (monogenic) to multiple genes (polygenic). Despite 

these challenges the identification of genetic variants, including single nucleotide 

polymorphisms (SNPs) and copy number variations (CNVs), provide insight into the factors 

that may contribute to ASDs. Interestingly a number of these variants occur in genes 

(“glycogenes”) that encode glycosylated extracellular proteins (proteoglycans or 

glycoproteins) and lipids (glycosphingolipids) or enzymes involved in glycosylation 

(glycosyltransferases and sulfotransferases).

Glycans and their conjugates (glycoproteins, proteoglycans and glycolipids) are major 

constituents of the neural extracellular matrix (ECM). In this context, glycans and 

glycoconjugates participate in nearly every biological process in the developing brain. A 

potential link between ASDs and changes in glycosylation was initially noted in patients 

with congenital disorders of glycosylation (CDGs) (Freeze et al., 2015). These disorders 

result from rare homozygous recessive mutations causing the loss-of-function of a specific 

glycoconjugate or glycosyltransferase. Studies in mouse models of CDGs and behavioral 

phenotypes observed in CDG patients support the idea that glycogene variants either cause 

or contribute to the development of idiopathic ASDs. The purpose of this review is to 
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present evidence that supports a contribution of extracellular glycans and glycoconjugates to 

the etiology and pathogenesis of ASDs.

1.1. Organization and assembly of glycans and glycoconjugates in the brain

A glycan is defined generically as any sugar or assembly of sugars, in free form or attached 

to another molecule. Although some glycans are found as free chains (e.g. hyaluronan), most 

are found covalently linked to proteins or lipids, i.e. as glycoconjugates. These include 

glycoproteins, proteoglycans, and glycosphingolipids (Fig. 1). The assembly of glycans 

occurs in the endoplasmic reticulum and Golgi apparatus of cells by a series of 

glycotransferases. These enzymes catalyze glycan assembly using activated sugar nucleotide 

donor substrates (e.g. UDP-galactose, GDP-fucose, CMP-sialic acid) that are transferred to 

acceptor substrates. Many glycans are further modified by processing enzymes that catalyze 

removal of specific sugar residues, or sulfation, acetylation and phosphorylation (Fig. 1). 

These modifications fine-tune glycan structure and function. Regulation of glycan 

biosynthesis occurs at a variety of different levels, including the availability of high-energy 

nucleotide donors, enzyme expression levels, and competition among enzymes for common 

glycan precursors. The impact of reducing the expression or function of a 

glycosyltransferase gene, either through CNVs or a SNP, depends on the relationship 

between enzyme function and gene dosage. The majority of enzymes associated with ASDs 

show gene dosage effects, suggesting that they may be rate limiting in the formation of 

particular glycans.

Glycans and their glycoconjugates are abundant in the brain, in particular the ECM. All cell 

types including neurons, glia, and endothelial cells elaborate glycans and glycoconjugates. 

However, each cell type synthesizes a unique repertoire of glycan structures and 

glycoconjugates. For example, different antibody epitopes on different glycoforms of 

phosphacan label different types of cells in the developing cerebral cortex (Dwyer et al., 

2015), supporting the idea that glycoform specialization may tailor protein function at the 

cellular level in the brain. Additional complexity arises from changes in the expression of 

different glycans and glycoconjugates in different brain regions and across developmental 

stages (Matthews et al., 2002; Morawski et al., 2012; Torii et al., 2014). The purpose of 

these differences is not fully understood.

The ECM of the brain can be divided into extracellular substructures comprising the pial 

basement membrane, interstitial neural extracellular matrix and cell surface glycocalyx (Fig. 

2). The pial basement membrane covers the outermost surface of the brain and is comprised 

primarily of fibrillary proteins including laminin, fibronectin, collagen, and the secreted 

heparan sulfate proteoglycans agrin and perlecan (Fig. 2A). The predominant receptor for 

constituents of the pial basement membrane is the glycoprotein dystroglycan, which is 

expressed on the surface of radial glial cells and astrocytes comprising the limiting glial 

membrane. Interactions between dystroglycan and constituents of the pial basement 

membrane provide mechanical and structural integrity to the developing brain. The 

interstitial neural extracellular matrix fills the space between cells in the brain parenchyma 

and consists primarily of glycosaminoglycans and proteoglycans, hyaluronan and secreted 

chondroitin sulfate proteoglycans (Fig. 2B). The low abundance of fibrillary proteins such as 
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laminin and collagen distinguishes the parenchymal neural ECM from matrices of other 

peripheral organs and tissue types. Nevertheless, the neural ECM regulates diffusion of 

growth factors, morphogens, and ions as in other organs. Constituents of the neural ECM are 

also ligands for many cell adhesion receptors, facilitating communication between the 

extracellular space and plasma membrane. The cell-surface glycocalyx is comprised of 

plasma membrane associated proteoglycans, glycoproteins and glycolipids (Fig. 2C). In the 

brain the cell-surface glycocalyx covers the surface of endothelial cells, astrocytes and 

neurons, including neuronal synapses. Glypicans (GPC, glycosylphosphatidylinositol-linked 

heparan sulfate proteoglycans) and syndecans (SDC, transmembrane heparan sulfate 

proteoglycans) predominate. Most cell adhesion molecules, cell surface receptors, and 

integral membrane proteins carry asparagine N-linked or serine/threonine O-linked glycans 

(e.g. PSA-NCAM, polysialylated neural cell adhesion molecule). Dystroglycan is also an 

abundant receptor/adhesion molecule in the glycocalyx of neurons and glia. 

Glycosphingolipids are abundant constituents of the cell surface glycocalyx. Constituents of 

the cell surface glycocalyx function as adhesion molecules, regulate local concentrations and 

the availability of growth factors and morphogens, and modulate receptor engagement and 

signaling.

Glycans in the brain function as master regulators of nearly all neurodevelopmental 

processes including neurogenesis, neuronal migration, axon outgrowth and guidance, 

synaptogenesis, and neural plasticity. Previous studies have shown that deleting any glycan 

class has deleterious effects on brain development. Thus, it is not surprising that changes in 

glycan expression can underlie various diseases, including ASDs.

2. The dystrophin glycoprotein complex

Components of the dystrophin glycoprotein complex play essential roles in establishing 

gross brain architecture in the developing brain. Radial glial cells (neural stem cells of the 

developing cerebral cortex) residing in the ventricular zone of the developing brain extend 

processes outward to the marginal surface of the brain, physically anchoring the cells to the 

pial basement membrane (Fig. 2A). The glycoprotein, dystroglycan, expressed on the end 

feet of radial glial cells, binds to laminin present in the pial basement membrane. Anchoring 

provides mechanical strength to the radial glial scaffold as the brain expands during 

development. Campbell and colleagues determined that the “Large” glycan (also called 

matriglycan) modification on α-dystroglycan, synthesized by the Large glycosyltransferase 

complex, is required for binding of dystroglycan to its respective ECM constituents 

(Yoshida-Moriguchi and Campbell, 2015; Yoshida-Moriguchi et al., 2010). Newly generated 

neurons migrate along the radial glial scaffold and settle into their predetermined cortical 

layers, a process that gives rise to the lamination of the cerebral cortex.

Duplication and deletion CNVs at 22q12.3 encompassing the LARGE gene, encoding the 

Large glycosyltransferase, have been identified in cases of non-complex autism (van der 

Zwaag et al., 2009) (Table 1). Large is a dual-function glycosyltransferase, exhibiting the 

ability to synthesize repeating disaccharide units of xylose and glucuronic acid. To date, the 

only know protein modified by Large is dystroglycan. Recent work has shown that the 

length of the Large-glycan can be altered by changes in the expression of LARGE, which in 
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turn affects the ligand-binding capacity of α-dystroglycan (Goddeeris et al., 2013). These 

results support the function of the Large-glycan as a tunable matrix scaffold and suggest that 

subtle changes in the expression of LARGE may have a substantial impact on Large-glycan 

biosynthesis, its ligand-binding properties, and biological function (Goddeeris et al., 2013).

Mutations in protein O-linked mannose N-acetylglucosaminyltransferase 1 (POMGNT1) 

have also been associated with inherited forms of ASDs (Yu et al., 2013). POMGnT1 

catalyzes the elaboration of core M1 and M2 glycans on dystroglycan (Stalnaker et al., 

2010) and other extracellular proteins such as phosphacan (Dwyer et al., 2012, 2015), 

CD-24 (Bleckmann et al., 2009) and Cadherins (Vester-Christensen et al., 2013). 

Interestingly loss of POMGnT1 activity affects the production of dystroglycan carrying the 

Large-glycan modification that is capable of functioning as an ECM receptor, suggesting a 

common glycosylation pathway. Homozygous recessive disorders caused by the loss-of-

function mutations in LARGE or POMGNT1 give rise to dystroglycanopathies, a form of 

congenital muscular dystrophy with severe central nervous system abnormalities. 

Dystroglycanopathy patients and mouse models bearing mutations in Large or Pomgnt1 
exhibit abnormalities in neuronal migration, cortical and cerebellar lamination defects, 

heterotopias, and hydrocephalus (Moore et al., 2002). Many dystroglycanopathy patients 

display ASD-like behavioral phenotypes (Hehr et al., 2007).

Aside from its role in neuronal migration, dystroglycan also has a synaptic function. Loss of 

dystroglycan or the Large glycan substantially impairs hippocampal long-term potentiation, 

a form of cellular learning and memory (Moore et al., 2002; Satz et al., 2010). Dystroglycan 

localizes to post-synaptic sites (Zaccaria et al., 2001) and is found on a subset of GABAergic 

inhibitory synapses in hippocampal neurons (Levi et al., 2002). The amount of glycosylated 

dystroglycan increases under conditions of chronically elevated neuronal activity, which 

enhances the scaling of inhibitory synaptic strength to maintain homeostatic plasticity 

(Pribiag et al., 2014). A role for dystroglycan in specification of inhibitory neural circuit 

subpopulations has also been proposed, as dystroglycan binds to presynaptic α-neurexins 

and competes with binding of α-neurexins to other post-synaptic adhesion molecules, 

including neurexophilin-1 and neuroligins (Reissner et al., 2014). Binding of dystroglycan to 

α-neurexins depends on its modification with the Large glycan (Reissner et al., 2014). These 

findings suggest that dystroglycan may contribute to maintaining the excitatory/inhibitory 

network balance. An imbalance in excitatory/inhibitory neural networks is believed to 

contribute to some types of ASDs. Furthermore, the placement of glycosylated dystroglycan 

in inhibitory synaptic specification pathways regulated by α-neurexins emphasizes a 

potential link to a complex ASD network, as neuroligins and neurexins are high-confidence 

ASD risk factors (Chih et al., 2004; Jamain et al., 2003; Tong et al., 2015). Together these 

data suggest convergence of glycosylated dystroglycan with a common synaptic pathway 

linked to ASDs.

Loss of function of the X-linked dystrophin gene is associated with syndromic autism and 

causes Duchenne muscular dystrophy (DMD). DMD patients have impaired cognition and 

are also diagnosed with ASDs more frequently than the normal population (Wu et al., 2005). 

The mdx mouse model of DMD also exhibits autistic-like behaviors (Miranda et al., 2015). 

A role for the dystrophin gene in idiopathic ASDs has not been firmly established; however 
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many rare SNPs within the dystrophin gene have been identified (Koshimizu et al., 2013; 

Redin et al., 2014). A rare maternally inherited deletion of Xp21.2 encompassing the 

dystrophin gene was identified in a male ASD patient from a simplex family without 

accompanying muscular dystrophy (Pinto et al., 2014). In skeletal muscle, dystrophin 

interacts with dystroglycan to form the so-called dystrophin glycoprotein complex. A 

modified dystrophin glycoprotein complex is also present in the brain. While both 

dystroglycanopathy and DMD patients have congenital muscular dystrophy, DMD patients 

do not exhibit neuronal migration abnormalities. However dystrophin co-localizes with α 
and β-dystroglycan at inhibitory synapses in different brain regions (Levi et al., 2002; Waite 

et al., 2009). Reduced inhibitory synaptic function and clustering of the α1 subunit of 

GABAA receptor clusters has been described in mdx mice in hippocampal neurons and 

Purkinje cells of the cerebellum (Knuesel et al., 1999; Kueh et al., 2011). Recent evidence 

shows that deletion of dystrophin causes spatial reorganization of inhibitory synapses in the 

hippocampus, suggesting potential alterations at the level of inhibitory neural circuit 

function (Krasowska et al., 2014). These findings are consistent with the observation that 

GABAergic signaling is reduced in the brains of many ASD patients (Robertson et al., 

2016), and suggest changes in inhibitory synaptic function that may contribute to ASD and 

abnormal cognitive behaviors in DMD patients. These studies of glycosylated dystroglycan 

and dystrophin emphasize the potential contribution of a synaptic dystrophin glycoprotein 

complex in the pathogenesis of ASDs. Studies to identify other synaptic proteins that 

interact with the dystroglycan/dystrophin complex could provide additional candidates to 

explain idiopathic ASDs and related behavioral phenotypes in congenital muscular 

dystrophy.

3. Heparan sulfate and heparan sulfate proteoglycans

Heparan sulfate (HS) regulates nearly every biological process in the developing embryonic 

and early postnatal brain. Conditional deletion of Ext1 using a Nestin-cre driver, which 

deletes HS in neural stem cells at the onset of neurogenesis, revealed that HS is required for 

cortical neurogenesis, patterning of the midbrain and cerebellum and axon guidance of 

major commissural tracts (Inatani et al., 2003). As a result conditional deletion of Ext1 in 

the neural stem cell population is lethal at birth (Inatani et al., 2003). Deficits in HS-

modifying enzymes give rise to similar phenotypes. For example, inactivation of the 

sulfotransferases Ndst1 or Hs2st also impacts cortical neurogenesis (Grobe et al., 2005; 

McLaughlin et al., 2003). Similarly, inactivation of Ndst1, Hs2st or Hs6st in mice causes 

abnormalities in axon guidance at the developing optic chiasm and corpus callosum 

(Conway et al., 2011; Grobe et al., 2005; Pratt et al., 2006). HS also has a role in synapse 

formation and maintenance. Conditional deletion of Ext1 using a CAMKII-cre driver, which 

deletes HS in post-mitotic neurons, reduces excitatory synaptic function in pyramidal 

neurons of the basolateral amygdala (Irie et al., 2012).

HS chains are comprised of repeating disaccharide units of uronic acid (iduronic or 

glucuronic) and glucosamine. The HS chain is synthesized by the co-polymerase complex 

formed by Ext1 and Ext2 in the Golgi. A series of enzymes N-deacetylate, epimerize, and 

sulfate the HS chains at various positions, creating ligand-binding domains along the length 

of the chain. Many secreted growth factors and morphogens important for regulating 
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neurogenesis, patterning of the brain, and axon guidance bind HS chains with high affinity, 

including members of the fibroblast growth factor, bone morphogenic protein, Wnt, 

hedgehog, and Slit families. In some cases ternary signaling complexes are created from 

secreted ligands, receptors and HS (e.g. Slit-Robo-HS (Hussain et al., 2006)). Chemokines 

and cytokines also bind HS. Alterations in HS chain structure or chain length alters 

ligandbinding properties and the activation of downstream signaling cascades (Bishop et al., 

2007).

Systemic homozygous deletion of EXT1 results in complete loss of HS and early 

developmental arrest due to defective gastrulation (Lin et al., 2000). However, 

heterozygosity of EXT1 causes a 20–40% reduction in HS chain length and is tolerated, 

resulting in occasional osteochon-dromas on endochondral bones patients (Hereditary 

Multiple Exostoses, HME). Some HME patients have abnormal ASD-like social behaviors 

and are formally diagnosed with clinical autism (Li et al., 2002). In a remarkable study, 

Yamaguchi and colleagues showed a direct relationship between HS and autistic-like 

behavioral phenotypes in mice. Conditional deletion of Ext1 using a CAMKII-cre driver, 

which deletes HS in post-mitotic neurons, gave rise to social impairments, reduced anxiety, 

hyperactivity, and hypersensitivity to thermal stimuli (Irie et al., 2012). Rare CNVs and 

SNPs within EXT1 have been identified in patients with ASDs (De Rubeis et al., 2014; 

Kaminsky et al., 2011). The incomplete penetrance of ASD-like behaviors in HME patients 

suggests that neurological phenotypes caused by loss of EXT1 depend on the presence of 

other susceptibility traits with genetic, epigenetic or environmental origins.

B3GALT6, an enzyme involved in the biosynthesis of the HS linkage tetrasaccharide has 

also been associated with ASDs (van der Zwaag et al., 2009). A common intergenic variant 

of HS3ST5 has also been associated with ASDs as well (Connolly et al., 2013; Wang et al., 

2009). HS3ST5 is one of seven 3-O-sulfotransferases expressed in the brain. To date, no 

mouse model of HS3ST5 has been generated. Recent work has shown that the function of 3-

O-sulfation catalyzed by HS3ST2 depends on gene dosage, suggesting that 3-O-sulfation 

and 3-O-sulfate dependent activities may be generally regulated at the level of 

sulfotransferase expression (Thacker et al., 2016). Thacker and colleagues showed that 

neuropilin-1 binds to 3-O sulfated HS with high affinity and that genetic reduction of 3-O-

sulfation desensitized neuropilin-1 to semaphorin3A induced growth cone collapse in dorsal 

root ganglion explants (Thacker et al., 2016). Interestingly, gene polymorphisms in 

neuropilin-2 have been associated with autism in Chinese Han population (Wu et al., 2007). 

Determining whether 3-O-sulfation also modulates neuropilin-2 function would be an 

important area of future investigation. Future studies to assess the function of 3-O-sulfation 

of HS in the brain will shed light on its potential role in ASDs.

Reductions in the immunoreactivity of HS antibodies in mouse models of ASD and human 

post mortem brain samples have also been described (Mercier et al., 2012; Meyza et al., 

2012; Pearson et al., 2013). It is unclear whether these changes reflect a loss in HS content 

or alterations in HS fine structure that alters antibody affinity. Glycosaminoglycans in the 

urine of ASD patients have also been described (Endreffy et al., 2016). Release of HS also 

occurs in lysosomal storage disorders caused by mutations in lysosomal hydrolases that 
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degrade glycosaminoglycans, suggesting abnormalities in lysosomal HS degradation may 

occur in ASD patients.

HS chains are covalently attached to a subset of extracellular proteins called HS 

proteoglycans (HSPGs), which are abundant in the cell surface glycocalyx. Unlike mutations 

of HS, the deletion of a single HSPG does not typically cause overt changes in gross brain 

structure. An exception to this generalization is Gpc1; Gpc1 knockout mice have reduced 

brain size due to abnormal neurogenesis (Jen et al., 2009). Recent work has revealed the 

contribution of HSPGs to synaptogenesis. A remarkable study by Allen and colleagues 

showed that astrocytes release the glycosylphosphatidylinositol-linked HSPGs Gpc4 and 

Gpc6, which enhance the insertion of AMPA receptors at the post-synaptic membrane of 

excitatory synapses (Allen et al., 2012). As predicted by this observation, Gpc4 knockout 

animals show reduced hippocampal excitatory synaptic strength (Allen et al., 2012). 

Presynaptic Gpc4 also functions as a cell-adhesion receptor for post-synaptic LRRTM4, 

thereby regulating the number of excitatory synaptic connections (de Wit et al., 2013). The 

HS chains of Gpc4 and Gpc6 play an essential role in synaptogenesis (Allen et al., 2012; Ko 

et al., 2015). Sdc2, a transmembrane HSPG, is required for maturation of dendritic spines in 

hippocampal neurons (Ethell and Yamaguchi, 1999). The biological functions of HSPGs in 

normal development suggest potential contributions of these molecules in pervasive 

developmental disorders.

Simpson–Golabi–Behmel is a rare overgrowth syndrome caused by the loss of function in 

the X-linked gene GPC3 and occasionally GPC4. Diagnosis of ASD and ADHD has been 

confirmed in one patient with Simpson–Golabi–Behmel (Halayem et al., 2016). 

Developmental delay has also been described in patients with autosomal-recessive 

omodysplasia, which is caused by homozygous loss of GPC6 (Campos-Xavier et al., 2009). 

Rare CNVs affecting GPC5/6, involving both deletions and duplications, have also been 

identified in several idiopathic ASD patients (Pinto et al., 2010). These findings suggest 

altered expression of GPCs may contribute to certain ASD subtypes.

Interestingly loss of function of lysosomal hydrolases that degrade HS is also associated 

with ASD-like behaviors. Patients with Sanfilippo Syndrome (Mucopolysaccharidosis III 

[MPS] A-D), a type of lysosomal storage disorder, are severely hyperactive and aggressive at 

disease onset. Many patients also display social behaviors consistent with ASDs (Rumsey et 

al., 2014; Valstar et al., 2011). Interestingly, these behaviors are not observed in other types 

of lysosomal storage disorders, suggesting a potential causative role of HS in their 

manifestation.

These data provide a circumstantial link between alterations in HS and ASD, but additional 

work is needed to establish a cause-and-effect relationship. It seems likely that the 

incomplete penetrance of ASD-like behaviors reflects in HME the contribution of other 

pathways and modulatory factors. Efforts to assemble a functional HS-interactome in the 

brain might lead to other genetic susceptibility factors that when compounded with 

deficiencies in HS cause synergistic/epistatic risk for ASDs.
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4. N- and O-linked glycans

Several essential proteins involved in cell adhesion and migration, synaptic transmission, 

and signal transduction are decorated with asparagine N-linked or serine/threonine O-linked 

glycans. This form of glycosylation is common; as much as 85% of secreted and membrane 

proteins contain one or more N-linked and/or O-linked glycans, which are designated 

generically as glycoproteins. The glycan chains play many different roles, including protein 

folding and quality control, sites for ligand-recognition, protein oligomerization, protein 

stability and biological activity, and host–pathogen interactions. From the study of CDGs, it 

is known that N-linked glycosylation is important in brain structure and function. Many of 

the CDGs alter overall glycosylation, and have profound effects on cognitive function. In 

contrast, mutations in glycogenes that associate with ASDs affect downstream steps in N-

glycan biosynthesis and presumably do not result in loss of chains, but rather in alterations 

in their structure. CNVs in B3GALT1, GCNT2, and GAL3ST2 have been identified (van der 

Zwaag et al., 2009) (Table 1). These CNVs also affect other genes, thus further work is 

needed to establish if ASD is directly related to loss-of-function of these 

glycosyltransferases.

B3GALT1 belongs to the β1,3 galactosyltransferase gene family that catalyzes the formation 

of Type I polylactosamine units (Galβ1,3GlcNAc) on N- and O-glycans. Early studies 

documented that B3GALT1 and B3GALT2 have similar kinetic properties and are both 

expressed in the brain. However, B3GALT1 expression is restricted to the brain; its 

association with ASD supports the idea that brain glycoproteins containing this structure are 

important (Amado et al., 1998).

GCNT2 encodes β1,6 N-Acetylglucosaminyltransferase, which initiates β1,6 branching of 

polylactosamine chains on type II polylactosamine containing N-glycans. Its expression is 

abundant in the olfactory neurons (Henion and Schwarting, 2014), but little is known about 

GCNT2 function in the brain. A reduction of β1,6 branching of N-glycans has been 

associated with familial ASD in which afflicted patients also presented with arthrogryposis 

and epilepsy. However, this was not linked to GCNT2, but rather to the uridine diphosphate 

N-acetylglucosamine (UDP-GlcNAc) transporter, SLC35A3 (Edvardson et al., 2013), which 

is required for import of UDP-GlcNAc into the Golgi. These data support the idea that a 

reduction in β1,6 branched N-glycans as a risk factor for ASD.

GAL3ST2 encodes galactose-3-O-sulfotransferase, which is unrelated to the enzyme 

involved in 3-O-sulfation of HS. GAL3ST2 adds sulfate groups to terminal galactose 

residues on N- and O-glycans. The function of this modification is unknown.

Many proteins undergo N- and O-linked glycosylation, making it difficult to identify the 

specific glycoprotein targets that result in altered brain development or function. For 

additional information, see Scott and Panin (2014). Two examples are worth mentioning. 

Many voltage dependent ion channels are modified with N-glycans, which affect their 

expression and permeability. For example, rare missense SNP mutations have been identified 

in the voltage dependent calcium channel gene CACNA1H (T-type Cav3.2), which reduce 

Cav3.2 channel activity (D'Gama et al., 2015; Iossifov et al., 2014; Karaca et al., 2015; 
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Splawski et al., 2006). N-glycans at N192 regulate surface expression of Cav3.2, while N-

glycans at Asn1466 regulate activity by enhancing channel permeability or regulating pore 

opening (Ondacova et al., 2016; Weiss et al., 2013). Together these data provide 

circumstantial evidence to suggest that alteration in N-glycans on Cav3.2 might have an 

effect similar to SNP mutations on channel function and brain physiology.

A small set of N-linked glycoproteins contains polysialic acid (PSA, α2,8-linked) in the 

brain, including neural cell adhesion molecule (NCAM) and synaptic cell adhesion molecule 

SynCAM-1. PSA-NCAM is involved in neuronal migration, axon guidance and synaptic 

plasticity. Copy number loss and SNPs in the polysialic acid synthesizing enzyme, 

ST8SIAII, are associated with ASDs (Anney et al., 2010; Kamien et al., 2014). ST8SIAII is 

one of two enzymes involved in modifying NCAMs with PSA. In mice complete deletion of 

PSA (achieved by inactivation of ST8SIAII and ST8SIAIV) causes a gain of NCAM 

function and a variety of developmental phenotypes that can be restored by deleting NCAM 

(Eckhardt et al., 2000; Weinhold et al., 2005). These findings emphasize the importance of 

the PSA glycan in regulating glycoprotein function (Weinhold et al., 2005). More recent 

work has shown a direct connection between PSA and ASD-like behaviors, as mice deficient 

in ST8SIAII have reduced social motivation, increased aggression and hyperactivity 

(Calandreau et al., 2010).

5. Glycosphingolipids

Glycosphingolipids (GSLs) are the most abundant glycoconjugate in the brain, constituting 

∼80% of brain glycans. Enriched in the outer leaflet of the plasma membrane, the GSLs 

mediate cell–cell interactions and modulate activities of proteins by way of clustering in so-

called “lipid rafts.” In spite of their documented importance in my elination and nerve 

conduction, GSLs have not been associated with ASDs, with the exception of the enzyme 

B3GNT5 (van der Zwaag et al., 2009), which synthesizes lactosyltriosylceramide, the core 

of lactoseries derived glycosphingolipids. Mutations in ganglioside assembly (GM3 synthase 

and GM2/GD2 synthase) cause seizures, cognitive and motor decay, spastic paraplegia and 

intellectual disability. Thus, it seems likely that alterations in GSL biosynthesis might 

contribute to ASD etiology. GSL compositional studies in ASD patients are lacking.

6. Glycogenes as risk factors for ASDs

As should be clear from the above examples, additional work is needed to determine the 

contribution of glycosylation to the etiology and pathogenesis of ASDs. Table 1 outlines 

glycogenes that have been identified or associated with ASDs. Both gain of expression, 

induced by CNV duplication, as well as loss of expression due to SNPs and CNV loss could 

impact the glycan repertoire expressed by relevant cell types in the brain. Other mutations 

should be considered as well. For example, a SNP that introduces a single amino acid 

mutation in a glycan attachment site would interfere with the formation of specific protein 

glycoforms. Recent evidence suggests site-specific glycosylation is conferred in part by 

peptide sequence adjacent to a glycosylation site, as local protein surface influences enzyme 

accessibility to individual glycans during biosynthesis (Hang et al., 2015). Tools to study 

site-specific glycosylation (glycoproteomics) have matured over the last decade allowing 
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analysis of site-specific glycan structures in brain glycoconjugates. Gain-of-glycosylation 

can also occur (Prada et al., 2012). It is also possible that alterations in glycosylation may 

arise indirectly from changes in cell metabolism or in the organization of cellular 

glycosylation machinery in the ER and Golgi.

The following multidisciplinary studies are needed to more firmly establish a link between 

glycosylation and ASD.

1. ASD-like behaviors should be studied in existing mutant mouse strains lacking 

specific enzymes and glycoconjugates. The incomplete deletion of 

glycosyltransferases and glycoconjugates genes in ASDs places emphasis on the 

importance of evaluating neurological phenotypes in heterozygous mice, which 

in general exhibit subtle glycan perturbations. About 1% of the human genome is 

dedicated to glycosylation, but only a small fraction of these genes have been 

studied in the context of neurological disorders and ASD.

2. The available association studies linking glycosylation to ASD are mostly 

correlative. Novel knock-in mouse models are needed bearing human genetic 

mutations associated with ASD. The availability of gene targeting methods, such 

as CRISPR/Cas9, makes this approach feasible.

3. Characterization of glycan structures in postmortem brain tissues from patients 

with ASD and other neuropsychiatric and neurodegenerative disorders might 

provide important insight into changes in the glycan landscape in these disorders. 

The long-term stability of glycans and ability to assess glycan structure in fixed 

specimens removes many technical limitations associated with evaluating post-

mortem samples.

4. Studies should be undertaken to define high-confidence candidate ASD risk 

factors that create epistatic or synergistic risk when compounded with rare 

glycan-related risk factors. These studies will reveal important insights about 

comorbidity and further delineate key biochemical pathways that may confer 

heightened risk for ASD.

5. Diagnostic methods should be developed to examine plasma and urine glycans 

and related metabolites to identify potential biomarkers of ASD.

The identification of glycan susceptibility factors in ASDs will undoubtedly reveal new and 

exciting functions of brain glycans. Moreover, they may suggest glycan-based avenues for 

therapeutic intervention, such as gene therapy, glycoengineering, and development of drug-

like agents for restoring glycan function.
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GPC glypicans

HS heparan sulfate
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SDC syndecan
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Fig. 1. 
Common classes of animal glycans found in the extracellular environment of the brain. The 

glycans are depicted as parts of hypothetical glycoconjugates. The representative sugars are 

depicted by colored symbols as described in the legend. GalNAc, N-acetylgalactosamine; 

GlcNAc, N-acetylglucosamine; Gal, galactose; Glc, glucose; Man, mannose; Fuc, fucose; 

Xyl, xylose; GlcA, glucuronic acid; IdoA, iduronic acid. (Figure modified and reprinted with 

permission from Chapter 1 from Essentials of Glycobiology, 2nd edition).
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Fig. 2. 
Extracellular substructures in the brain. The organization of free glycans and 

glycoconjugates in extracellular substructures in the brain is depicted. (A) Organization of 

the pial basement membrane is supported by interactions between glycosylated dystroglycan 

and extracellular matrix proteins. (B) The interstitial neural extracellular matrix fills the 

extracellular space between cells in the brain and is comprised predominately of secreted 

hyaluronan (HA), chondroitin sulfate proteoglycans (CSPGs), hyaluronan and link proteins 

(HAPLNs), and shed heparan sulfate proteoglycans (HSPGs). (C) The cell surface 

glycocalyx is comprised of glycoconjugates localized to the plasma membrane including 

glycosphingolipids, heparan sulfate proteoglycans (HSPGs), glycosylated dystroglycan, and 

glycoproteins carrying N- or O-linked glycans (e.g. polysialylated NCAM, PSA-NCAM). 

Constituents of the cell surface glycocalyx are also abundant in neuronal synapses (inset).
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