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Phase transformations upon doping in WO3
Wennie Wang,a) Anderson Janotti,b) and Chris G. Van de Walle
Materials Department, University of California, Santa Barbara, California 93106-5050, USA

(Received 8 March 2017; accepted 11 May 2017; published online 7 June 2017)

High levels of doping in WO3 have been experimentally observed to lead to structural transforma-
tion towards higher symmetry phases. We explore the structural phase diagram with charge doping
through first-principles methods based on hybrid density functional theory, as a function of doping
the room-temperature monoclinic phase transitions to the orthorhombic, tetragonal, and finally cubic
phase. Based on a decomposition of energies into electronic and strain contributions, we attribute the
transformation to a gain in energy resulting from a lowering of the conduction band on an absolute
energy scale. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4984581]

I. INTRODUCTION

Tungsten trioxide (WO3) has a variety of applications,
including in gas sensors,1 as a photocatalyst for water split-
ting,2 and as electrochromic films in smart windows.3,4 As an
electrochromic film, the optical transmittance decreases with
higher levels of doping and the material colors from trans-
parent to blue. WO3 has an ABO3 perovskite structure with
a vacant A site, enabling high levels of doping up to stoi-
chiometric compositions.5 Monovalent species, such as H, Li,
and Na, are commonly used as dopants due to their fast dif-
fusivities. At increasingly high doping levels, WO3 has been
observed to undergo structural changes to higher symmetry
phases.5–9 The ability to dope with a variety of foreign species
makes the structure and electronic properties of WO3 highly
tunable.

At room temperature, WO3 is monoclinic, with off-
centered W ions surrounded by oxygen atoms in distorted
octahedra. As a function of doping, the highly distorted mon-
oclinic phase transforms to a tetragonal, and ultimately to a
cubic structure.7 These transformations have been experimen-
tally observed upon doping with Na5,8 and Li.9 A study from
Wang et al. used in situ transition electron microscopy to inves-
tigate the kinetics of dopant intercalation and structural trans-
formation in Li-intercalated WO3.10 Several computational
studies have investigated the influence of doping in WO3. One
such study compared and contrasted the electronic structure
and bonding environment of ReO3 with NaWO3, which are
isoelectronic.11 Another study showed that the relaxed vol-
ume increases and the bandgap decreases with the size of the
dopant at low doping concentrations (∼4%).12 Walkingshaw
et al. demonstrated, using density functional theory in the local
density approximation (LDA), that the structural transforma-
tions could be decomposed into certain modes of distortion
(e.g., changes of bond length in the xy-plane).13 However, the
physical mechanisms of this structural transformation have not
yet been fully explained.
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In the present work, we distill the observed structural
transformations to adding excess electrons to the system and
elucidate the mechanisms of the structural phase transforma-
tions using density functional theory with a hybrid functional.
We perform a detailed analysis of charge doping up to stoi-
chiometric concentrations to understand the driving force for
the structural transformation. We quantify the energetics of the
transformation and demonstrate that the lowering of the con-
duction bands between the monoclinic and higher symmetry
phases is the energetic driving force.

Experimentally, the addition of electrons is achieved by
doping with alkali atoms;5,8,9 it could also be associated with
the presence of oxygen vacancies.14 Explicit inclusion of
dopants or point defects in our calculations could affect the
quantitative results and shift the computationally determined
phase boundaries. Consideration of dopant-specific effects is
beyond the scope of the present work; the complexity of that
problem is illustrated by the differences observed between
experimental results that nominally use the same dopant (e.g.,
Na in Refs. 8 and 15). Our goal in the present paper is to show
that essential physics is captured by focusing on the addition
of excess electrons.

II. COMPUTATIONAL METHODOLOGY

Our calculations are based on (generalized) Kohn-Sham
theory16 using projector-augmented wave, pseudopotentials,17

as implemented in the Vienna Ab initio Simulation Package
(VASP).18,19 For W, the 5d and 6s states are treated as valence
states; for O, the valence states are the 2s and 2p states.
We use the hybrid functional of Heyd, Scuseria, and Ernz-
erhof (HSE),20,21 which mixes the short-range PBE exchange
with the screened Hartree-Fock exchange. The HSE mixing
parameter is chosen to be the standard 25%.

We choose the primitive 32-atom unit cell of the room-
temperature (RT) monoclinic phase (containing 8 W atoms).
Figure 1 shows this monoclinic structure as well as the tetrag-
onal, orthorhombic, and cubic unit cells. Varying degrees of
octahedral distortion and cation off-centering occur, with the
cubic phase having no distortions and being highest in sym-
metry. We used a 4 × 4 × 4 Γ-centered k-point mesh. We
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FIG. 1. Unit cells of WO3 in order of increasing symmetry: (a) room-
temperature (RT) monoclinic (space group P21/c), (b) orthorhombic (Pbcn),
(c) tetragonal (P4/nmm), and (d) cubic (Pm3̄m). An example of the relative
tilt angles φ1 and φ2 along x̂ between octahedra is indicated; the tilt angles
are similarly defined for ŷ and ẑ.

tested k-point meshes up to 8 × 8 × 8 and found that lattice
parameters changed by less than 0.25%, volumes by less than
0.5%, and relevant energy differences by less than 15 meV per
formula unit. All calculations had a plane-wave basis set
energy cutoff of 500 eV.

The majority of our calculations are performed for pure
charge doping, i.e., no dopant atoms are included and only elec-
trons are added to the system. At least one point is calculated
for every increment of x = 0.0625 electrons per formula unit up
until x = 0.75, beyond which no further phase changes occur.
A homogeneous compensating background provides charge
neutrality as it is standard practice in first-principles calcula-
tions for charged systems.22 In the real system, the electrons
would be supplied by dopant atoms that become ionized, and
these positive ions provide the compensating charge. Each cal-
culation is initiated with the 32-atom RT monoclinic phase
of WO3 with a given amount of electron charge added. All
calculations are converged until the residual forces are below
0.05 eV/Å, at which point the symmetry of the final structure is
determined.

III. RESULTS AND DISCUSSION
A. Investigation of bulk WO3

We begin with a description of the bulk phases of WO3.
Different phases of WO3 differ by the extent to which the
oxygen octahedra are distorted and the W atoms are off-
centered in the octahedra, as shown in the unit cells in Fig. 1.
In the cubic phase, the W ions are centered in straight,
upright octahedra of oxygen atoms. In the tetragonal struc-
ture, the W ions are displaced in an alternating pattern along
the [001] and [001̄] directions while the octahedra remain
upright. In the orthorhombic phase, the tilting of the octahedra

(i.e., φ1 and φ2) along x̂ and ŷ directions deviate from right
angles and the W ions are offset from the center of the octa-
hedra along non-Cartesian directions (e.g., [110]) in an alter-
nating fashion. In the monoclinic phase, the W ions further
displace along any direction, and the octahedra are free to
rotate, tilt, and distort in all directions. The β angle may take
on values different from 90◦ in the monoclinic phase, and is
taken as the angle between the [100] and [001] lattice vec-
tors. The rotations and tilts of octahedra corresponding to the
symmetry of the crystallographic space groups within Glazer
notation23 are well-documented for perovskites,24 including
WO3.25 The progression of these distortions as observed
during the phase transformations is described in detail in
Sec. III B.

Our calculated lattice parameters and bandgaps for the
unit cells of different phases shown in Fig. 1 are listed in
Table I. The structural parameters as calculated with HSE
compare well to experimental values. They also agree with
the previous hybrid functional calculations26 to within 0.5%.
Electronic band structures for the different phases are shown in
Fig. 2.

B. Phase diagram with electron doping

We first describe the structural changes associated with the
phase transformation observed with electron doping, begin-
ning with the monoclinic structure at low electron concentra-
tions. We perform calculations at discrete values of electron
concentrations and report the phase observed for the lowest-
energy structure at each concentration. Due to this discrete
sampling, the electron concentrations at which phase bound-
aries occur are approximate. As these structural transforma-
tions are gradual, the marked phase boundaries represent not
a sudden change in structure, but a rough delineation between
two observed phases. We note that similar issues arise in
an experimental determination of phase boundaries. In our

TABLE I. Experimental and calculated lattice parameters and bandgaps for
WO3; “ind” indicates indirect, “dir” direct bandgaps. For calculated indirect
gaps, the location of the valence-band maximum (VBM) and conduction-band
minimum (CBM) in the Brillouin zone is indicated as (ind: VBM, CBM).

a (Å) b (Å) c (Å) β (◦) Eg (eV)

RT Monoclinic, P21/c
Expt.a 7.31 7.54 7.69 90.90 2.6-2.8 (ind)
HSE 7.41 7.63 7.79 90.15 2.56 (dir: Γ)

Orthorhombic, Pbcn
Expt.b 7.36 7.57 7.76 90.00 . . .
HSE 7.43 7.64 7.79 90.00 2.49

Tetragonal, P4/nmm
Expt.c 5.25 5.25 3.91 90.00 . . .
HSE 5.29 5.29 3.96 90.00 1.53 (ind: Z, Γ)

Cubic, Pm3̄m
Expt.d 3.78 3.78 3.78 90.00 . . .
HSE 3.79 3.79 3.79 90.00 1.53 (ind: R, Γ)

aReferences 27–30.
bReference 31.
cReference 32.
dReferences 8 and 33.
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FIG. 2. Calculated band structures
for different phases of WO3: (a)
room-temperature (RT) monoclinic, (b)
orthorhombic, (c) tetragonal, and (d)
cubic.

computational approach, we base the phase boundaries on
a collective examination of the structural parameters (lat-
tice parameters and internal distortion of atomic coordinates)
described below. Phase boundaries are indicated as solid
vertical lines in Figs. 3 and 4.

Figure 3 illustrates the evolution of the lattice parameters,
β angle, and volume as a function of electron concentra-
tion. The figure tracks the progression from the low-symmetry
monoclinic phase where a , b , c and β > 90o to the high-
symmetry cubic phase where lattice parameters become equiv-
alent and β approaches 90◦. The volume expansion shown
in Fig. 3(c) is largely determined by the degree of tilting of
the octahedra. A significant volume expansion occurs within
the monoclinic phase upon addition of electrons, due to the
decrease in the amount of tilting. Only a small amount of addi-
tional expansion occurs within the orthorhombic (Pbcn) and
tetragonal (P4

/
nmm) phases.

The distortions of the internal coordinates are shown
in Fig. 4. A useful metric for the overall distortion of the
octahedra is the mean of the quadratic elongation parameter,34

〈λoct〉 =

6∑
i=1

1
6

( li
l0

)2

, (1)

where l0 is the bond length of the pseudocubic structure with
the volume of the distorted perovskite and li is an actual bond
length of the distorted perovskite; λoct is a measure of the dis-
tortedness of a perovskite from a cubic symmetry and is thus
unity for the cubic phase. As shown in Fig. 4(a), the quadratic
elongation parameter approaches unity as a function of doping
when no distortions in bond lengths are present. The corre-
sponding evolution of bond lengths illustrating the internal
distortion of the octahedra along each direction is shown in
Fig. 4(b).

The bond angle variance σ2
θ , shown in Fig. 4(c), pro-

vides complementary information about the distortion of bond
angles in an octahedron, and is defined as the variance from

a right angle of the 12 O–W–O angles θ between adjacent O
atoms within an octahedron,34

σ2
θ =

12∑
i=1

1
11

(θi − 90o)2 . (2)

Finally, the relative tilt angles φ1 and φ2 between octahedra
are reported in Fig. 4(d) along the x̂, ŷ, and ẑ directions.

The initially monoclinic structure of space group P21/c
symmetry persists up to around x = 0.1875, where x is
defined as the number of electrons added per formula unit.
Within this phase, the tilts of the octahedra decrease with
increased doping, and the lattice parameters a and b con-
verge [Fig. 3(a)]. Six distinct W–O bond lengths are present
[Fig. 4(b)] due to the displacement of the W ion from the center
of the octahedra. The smallest displacements occur along the x̂
direction.

Between x = 0.1875 and x = 0.25, a transition to the
orthorhombic Pbcn phase occurs, in which a and b are equal
and the angle β approaches a right angle with increased dop-
ing. In the orthorhombic symmetry, octahedral rotations (i.e.,
tilts measured by φ) are reduced around the x̂, ŷ, and ẑ direc-
tions, with tilts in the x̂ and ŷ directions becoming equal. In
terms of the W ions, the ŷ-direction displacements diminish,
as evidenced in Fig. 4(b).

The Pbcn orthorhombic phase is present up to around
x = 0.3125; a transition to the tetragonal P4/nmm phase
takes place between x = 0.3125 and x = 0.375. In going
from the orthorhombic to tetragonal phases, the relative tilting
between octahedra monotonically decreases [Fig. 4(d)]. With
increased doping in the tetragonal phase, the lattice param-
eter c approaches a = b. The x̂- and ŷ-displacements of the
W ions also vanish, as shown in Fig. 4(b). This is also evi-
dent in the decrease of the bond angle variance, shown in
Fig. 4(c). The remaining displacement of W ions along the
ẑ−direction results in an antiferroelectric-like pattern, with
alternating displacements in the +ẑ and −ẑ directions. With
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FIG. 3. Evolution of (a) lattice parameters, (b) β angle, and (c) volume as a
function of electron doping in HSE. Space groups and space-group numbers
for the various phases are indicated.

increasing doping, these bond lengths along the ẑ direction
become close to each other and to those in x̂ŷ-plane.

The tetragonal P4/nmm phase is stable up to around
x = 0.5000; then a transition to the cubic phase (Pm3̄m sym-
metry) takes place between x = 0.5000 and x = 0.5625. This
is evident in Fig. 3(a), in which a = b = c, and in Fig. 4,
where the quadratic elongation converges to unity, all W–O
bonds converge to a single value, and the bond angle variance
vanishes. Once the system is in the cubic phase, additional
doping merely results in an expansion of the unit-cell volume
[Fig. 3(a)].

C. Decomposition into strain and electronic energies

In order to elucidate the mechanisms driving the struc-
tural phase transformations, we decompose the total energy
change into its strain and electronic components. Our first-
principles methodology allows us to add or remove excess
fractional electrons, and to include or exclude relaxation of
lattice vectors and atomic positions. This yields four possible

FIG. 4. Evolution of (a) the quadratic elongation λoct , (b) variation of W–O
bond lengths, (c) bond angle variance σ2

θ , and (d) tilt angles of octahedra
φ1 and φ2 for each of the crystal directions as a function of electron doping
with boundaries between symmetry phases (solid lines), as defined in the text.
Space groups and space-group numbers for the various phases are indicated.

terms. We adopt the notation Ey(x) to mean the total energy of a
structure with an excess (fractional) concentration of electrons
x in the conduction band, but with an atomic structure relaxed
with y electrons in the conduction band. That is, the relaxed
structure obtained with x electrons in the conduction band has
energy Ex(x), and the relaxed ground-state monoclinic phase
with no excess doping has energy E0(0).

First, we add excess electrons to the system to obtain
E0(x), the total energy of the system with extra electrons
added, but with the atomic structure kept fixed to that of the
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monoclinic (undoped) ground state. We can then relax the lat-
tice vectors and atomic positions, leading to a relaxed structure
with energy Ex(x). At high enough doping, transformations
to phases with higher symmetry will be observed, as dis-
cussed in Sec. III B. We define Enet(x) as the energy difference
between the relaxed system with x electrons and the unre-
laxed system (i.e., fixed in the monoclinic structure) with x
electrons,

Enet(x) = Ex(x) − E0(x). (3)

Our aim is to provide insight into the driving force for energy
gain by decomposing this energy.

Once x electrons have been added and the structure is
relaxed, we can consider this atomic structure, remove the
excess electrons, and calculate the total energy of this struc-
ture, denoted Ex(0). The difference between this energy and the
energy of the undoped monoclinic structure provides a mea-
sure of the energy cost involved in deforming the structure; we
will refer to this as “strain energy,” Estrain(x),

Estrain(x) = Ex(0) − E0(0). (4)

The fact that transformations to other structures take place
at higher doping levels indicates that placing the electrons
in the conduction band leads to an energy gain, which we
will refer to as Eelec(x). We decompose the energy Enet(x) as
follows:

Enet(x) = Estrain(x) + Eelec(x) (5)

Combining Eqs. (3)–(5) leads to

Eelec(x) = Enet − Estrain (6a)

= [Ex(x) − E0(x)] − [Ex(0) − E0(0)],

= [Ex(x) − Ex(0)] − [E0(x) − E0(0)] . (6b)

The rearrangement of the terms provides insight into the
physical origin of this “electronic energy.” The first term
in square brackets in Eq. (6b), [Ex(x) � Ex(0)], is a mea-
sure of the change in energy associated with changes in
the electronic structure upon adding x electrons (to a fixed
atomic structure). However, to make this term meaningful,
we need to define a reference energy for those electrons; this
is encapsulated in the second term, [E0(x) � E0(0)], which
is the energy of adding x electrons to the fixed monoclinic
structure.

Figure 5 shows the decomposition of the net energy into its
strain and electronic components. The strain cost to transform
to a higher-symmetry phase is more than compensated by the
electronic energy gain.

For the strain energy, further insight is provided by decom-
posing the strain energy into contributions related to volume
expansion and to displacement of atomic positions. The volu-
metric component can be determined by considering the total
energies associated with doping the cubic phase. An analogous
strain energy Estrain

volume is thus calculated as in Eq. (7), but taking
the undoped cubic phase as the reference state. The remain-
der in the strain energy, labeled Estrain

disp (x), is then attributed to
the energy associated with non-hydrostatic changes in lattice

FIG. 5. Decomposition of energy into strain and electronic components, as
described in the text.

vectors and with displacement of atomic positions,

Estrain(x) = Ex(0) − E0(0)

= Estrain
volume(x) + Estrain

disp (x), (7a)

Estrain
volume(x) = [Ecubic

x (0) − Ecubic
0 (0)], (7b)

Estrain
disp (x) = Estrain(x) − Estrain

volume(x), (7c)

= [Ex(0) − E0(0)] − [Ecubic
x (0) − Ecubic

0 (0)]. (7d)

Figure 6 shows this decomposition of the strain energy. Below
the concentration for the onset of the cubic phase, the terms
due to volumetric expansion and due to distortions contribute
roughly equally to the overall strain. Once the cubic phase
is reached, strain energy associated with distortions becomes
constant and any additional strain energy is strictly due to
volume expansion with additional electron doping.

D. Driving force for phase transformation

As shown in Secs. III A–III C, the transfer of the electron
from the dopant to the host lattice leads to the structural trans-
formations earlier characterized. We now demonstrate that the

FIG. 6. Decomposition of strain energy into volumetric and internal displace-
ment components.
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gain in electronic energy, which drives the phase transforma-
tion (Fig. 5), is primarily due to a lowering of the conduction
band on an absolute energy scale. Table I shows bandgaps for
the various phases of WO3. The higher the symmetry of the
phase, the smaller is the bandgap. This trend can be attributed
to the correlation between the bandwidth of the conduction
band (composed primarily of W d states) and the degree of
octahedral tilting and off-centering of W. Overlap between d
orbitals is maximized in the highest-symmetry (cubic) struc-
ture. Strong overlap leads to large bandwidth and hence small
bandgap. Lower-symmetry phases exhibit distortions of the
octahedra that result in narrowed bandwidths and thus larger
bandgaps. We explicitly demonstrate and quantify how distor-
tions play a role in the phase transformations for electronically
doped WO3.

The overall change in the bandgap as a function of doping,
going from x = 0 to x = 1 is ∆Eg = −1.45 eV. To demonstrate
that this change in gap is driven primarily by the structural dis-
tortions and only partially by volume expansion, we calculate
the change in gap due to the individual contributions (with-
out electron doping). We use the bandgap change observed for
the expanded cubic phase as an indicator of what fraction of
the bandgap change can be attributed to volume expansion.
For the volume change corresponding to x = 1 [Fig. 3(c)],
this yields a change in the bandgap of ∆Eg = �0.26 eV. To
determine how the bandgap changes with internal structural
distortions, we introduce either just the tilting of the octahe-
dra or only the offset of the W ions into the cubic structure
at the (smaller) monoclinic volume. With only octahedral tilt-
ing, ∆Eg = �0.16 eV; with only the offset of W ions, ∆Eg

= �1.29 eV; including both octahedral tilting and offset of W
atoms of the monoclinic phase into the cubic structure, ∆Eg

= �0.92 eV. We note that the bandgap changes due to octa-
hedral tilting, W offset, and volume change are not simply
additive, since the various types of distortions interact. Still,
these results indicate that while volume expansion does lead
to a reduction in the bandgap, it is the structural distortions
and in particular the offset of the W ions that are primarily
responsible for the decrease in the bandgap.

While the change in bandgap is suggestive, we still need
to demonstrate that the conduction band itself is lowered
in energy. For that purpose we calculate the alignment of
band structures between the cubic and monoclinic phases. In
principle this requires a calculation for an interface between
the two phases.35,36 Such a calculation should be performed
on a superlattice containing layers of each phase, which
allows determining the alignment of the average electrostatic
potentials within each phase. The position of the CBM with
respect to the average electrostatic potential Ṽ is obtained
from separate calculations of the bulk phases. Combining the
superlattice with the bulk results yields the conduction-band
offset.

Unfortunately, constructing a pseudomorphic interface
between the cubic and monoclinic structures is challenging.
The distortions of the monoclinic phase lead to disparate bond
lengths at the cubic-monoclinic interface that result in dipoles,
which makes extracting a meaningful average electrostatic
potential difficult. We therefore make the plausible assump-
tion that the change in average electrostatic potential between

monoclinic and cubic depends primarily on volume, and con-
tributions related to additional distortions of the cell and to
changes in internal coordinates can be neglected. Based on
this assumption, the average electrostatic potentials Ṽ in the
cubic phase is equal to the average electrostatic potential in the
monoclinic phase if the cubic phase is strained (expanded) to
be at the same volume as the monoclinic phase. To obtain the
alignment between the strained and unstrained cubic phase,
we perform a calculation for a superlattice in which one layer
consists of cubic material at its equilibrium volume, and the
other layer is strained to reflect the volume change between
cubic and monoclinic phases. This calculation yields the result
that the average electrostatic potential in cubic WO3 at its
equilibrium volume is 0.16 eV lower than in cubic WO3,
which is expanded to match the volume of the monoclinic
structure.

Figure 7 shows the resulting alignment of the electro-
static potential as well as the position of the CBM and the
VBM referenced to the average electrostatic potential in the
monoclinic and cubic phases. The resulting conduction-band
offset between the cubic and monoclinic phases is 1.05 eV. The
corresponding valence-band offset is much smaller, 0.02 eV.
The insensitivity of the valence-band offset to the difference
in structure between the cubic to monoclinic phases can be
attributed to the fact that the O 2p states at the VBM are com-
posed of non-bonding oxygen p-states,37 which are relatively
unaffected by distortions.

We note that the bandgap difference between the mon-
oclinic and cubic phases reported in Fig. 7 is different from
the value ∆Eg =−1.45 eV reported above for the difference
between x = 0 and x = 1. The difference is due to the fact that
the bandgap for the cubic phase in Fig. 7 is for the undoped
cubic phase at its equilibrium volume (as also reported in
Table I), while the bandgap for x = 1 reflects the presence
of a large concentration of electrons, leading to a volume
expansion as well as additional conduction-band lowering
due to bandgap renormalization. The purpose of Fig. 7 was

FIG. 7. Band alignment between the cubic and monoclinic phases of WO3.
The positions of the VBM and CBM are shown with respect to the average
electrostatic potential Ṽ in each phase.
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to demonstrate that the CBM of the cubic phase is signifi-
cantly lower than that of the monoclinic phase, providing a
driving force for the phase transition to the higher-symmetry
structure when electrons are placed in the conduction
band.

E. Comparison with previous work
and with experiment

Walkingshaw et al.13 also investigated how electronic
doping of WO3 leads to phase transformations. They focused
on an examination of structural distortions rather than ener-
getics. While the trends in modes of distortion upon electron
doping are broadly similar to the ones found in our work, sig-
nificant quantitative differences are evident for lattice param-
eters and atomic positions. The phase boundaries found by
Walkingshaw et al.13 also occur at much higher doping lev-
els than in our study; for instance, the boundary between the
tetragonal and cubic phase occurs at x = 0.68 in Ref. 13
while we find it at around x = 0.531 25. We attribute these
differences mainly to their use of the LDA. The electronic
structure obtained with the HSE functional used in our work
is known to be much more accurate than that obtained with
LDA.38,39 Lattice parameters, and hence volume, are signifi-
cantly underestimated in LDA. A smaller volume corresponds
to greater octahedral tilting, and thus lower-symmetry phases
will appear stable up to higher electron concentrations in LDA
calculations.

Computations with electron doping were also performed
by Wang et al.,10 who report phase boundaries at smaller elec-
tron concentrations. Again, the difference can be attributed
to the use of a less accurate functional. Using GGA + U,
Wang et al.10 found lattice parameters for the monoclinic
phase (a = 7.68, b = 7.70, c = 7.76 Å) that are significantly
larger than those found experimentally or found with HSE
(see Table I). By similar logic as in the comparison with the
work of Walkingshaw et al.,13 a larger volume corresponds to
smaller octahedral distortions, and this will tend to stabilize
higher-symmetry phases at smaller electron concentrations.
Given the importance of electronic effects in driving the phase
transitions (see Sec. III D), our results can be considered more
reliable.

We now turn to a comparison with experiment. Zhong
et al.9 investigated charging with Li and reported that the phase
boundaries observed in the case of charging differed signifi-
cantly from those found in the case of discharging. Ranges of
overlap were interpreted as regions of two-phase coexistence,
but kinetic effects may also be playing a role. A compari-
son with our results, which are based purely on equilibrium
energies, can therefore be only qualitative. The experimentally
observed ranges of stability for different phases in the case of
Li charging were x ≤ 0.015 for monoclinic, 0.078 ≤ x ≤ 0.12
for tetragonal, and x ≥ 0.21 for cubic; in the case of discharg-
ing, the ranges were x ≤ 0.01 for monoclinic, 0.08 ≤ x ≤ 0.13
for tetragonal, and x ≥ 0.36 for cubic, with the measurements
going up to x = 0.50.9 Other experiments were performed with
Na:8,15 Brown and Banks8 observed the cubic phase for elec-
tron concentrations of x ≥ 0.26, whereas Egdell and Hill15

found that for 0.26 ≤ x ≤ 0.40 other phases were present
along with the cubic phase.

The difference between experimentally and computa-
tionally determined phase boundaries may be attributed to
several factors. First, our calculations describe the behav-
ior of bulk single crystalline material. This is not neces-
sarily the case for experimental samples, which may be
polycrystalline, contain impurities other than the intercalated
species, or be subject to stress due to thin-film prepara-
tion.7,9,15 We note that even studies that use the same dopant
species (e.g., the Na-doping experiments in Refs. 8 and 15)
report significant differences in the observed phase bound-
aries. Last but not least, our study was conducted for pure
electron doping and did not consider the influence of dopants
explicitly.

IV. CONCLUSIONS

We have performed a comprehensive first-principles treat-
ment of the structural transformation of tungsten trioxide
(WO3) as a function of electron doping using hybrid func-
tionals. A decomposition of energies into strain and electronic
energies sheds light on the physical mechanisms underly-
ing the transformations. We demonstrated that the structural
transformation to higher-symmetry phases is driven predom-
inantly by the lowering of the conduction band which occurs
as structural distortions become smaller.
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