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Abstract of the Dissertation 

A Study of Instance-Based Algorithms 
for Supervised Learning Tasks: 

Mathematical, Empirical, and Psychological Evaluations 
by 

David William Aha 
Doctor of Philosophy in Information and Computer Science 

University of California, Irvine, 1990 
Professor Dennis F. Kibler, Chair 

This dissertation introduces a framework for specifying instance-based algorithms that 
can solve supervised learning tasks. These algorithms input a sequence of instances and 
yield a partial concept description, which is represented by a set of stored instances and 
associated information. This description can be used to predict values for subsequently 
presented instances. The thesis of this framework is that extensional concept descriptions 
and lazy generalization strategies can support efficient supervised learning behavior. 

The instance-based learning framework consists of three components. The pre-processor 
component transforms an instance into a more palatable form for the performance compo­
nent, which computes the instance's similarity with a set of stored instances and yields a 
prediction for its target value(s). Therefore, the similarity and prediction functions impose 
generalizations on the stored instances to inductively derive predictions. The learning com­
ponent assesses the accuracy of these prediction(s) and updates partial concept descriptions 
to improve their predictive accuracy. 

This framework is evaluated in four ways. First, its generality is evaluated by mathe­
matically determining the classes of symbolic concepts and numeric functions that can be 
closely approximated by !Bl, a simple algorithm specified by this framework. Second, this 
framework is empirically evaluated for its ability to specify algorithms that improve IBl 's 
learning efficiency. Significant efficiency improvements are obtained by instance-based al­
gorithms that reduce storage requirements, tolerate noisy data, and learn domain-specific 
similarity functions respectively. Alternative component definitions for these algorithms are 
empirically analyzed in a set of five high-level parameter studies. Third, this framework is 
evaluated for its ability to specify psychologically plausible process models for categorization 
tasks. Results from subject experiments indicate a positive correlation between a models' 
ability to utilize attribute correlation information and its ability to explain psychological 
phenomena. Finally, this framework is evaluated for its ability to explain and relate a dozen 
prominent instance-based learning systems. The survey shows that this framework requires 
only slight modifications to fit these highly diverse systems. Relationships with edited nearest 
neighbor algorithms, case-based reasoners, and artificial neural networks are also described. 
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Chapter 1 

Context, History, and Objectives 

Our ultimate objective is to make programs learn from their experience 
as effectively as humans do. - John McCarthy (1985, page 300) 

Most important of all, perhaps, is making such machines learn 
from their own experience. - Marvin Minsky (1983, page 70) 

"What's all this about machine learning? ... Who - what madman -
would put a computer through twenty years of hard labor to make a 

cognitive scientist of computer scientist out of it? Let's forget 
this nonsense - just program it." - Herbert Simon (1983, page 27) 

Perhaps the deepest legitimate reason for doing machine learning 
research is that .. .learning will turn out to be more efficient 

than programming ... - Herbert Simon (1983, page 36) 

Learning is an essential aspect of human behavior. We continually learn to extend and 
modify our understanding of the environment in which we live. Learning allows us to interact 
with the world more efficiently over time, whether the task involves reading music, speaki11;g 
a second language, or controlling our own motor behavior. Learning is generally defined in 
terms of an improvement in performance for a specified task. For example, Simon's (1983) 
definition is: 

Learning denotes changes in the system that are adaptive in the sense that they 
enable the system to do the same task or tasks drawn from the same population 
more efficiently and more effectively the next time. (page 28) 

There are two principal reasons that computer scientists investigate theories and computa­
tional simulations of learning: to gain insight on how learning takes place and to implement 
its benefits in man-made devices such as expert systems and robots. The first reason is the 
principal objective of cognitive psychology. The latter is an objective of the artificial intelli­
gence field and is of particular interest to the machine learning community. Cognitive science 
attempts to combine these objectives - to create systems that faithfully model aspects of 
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2 David W. Aha 

animate learning behavior. This dissertation describes an investigation of machine learning 
systems that was inspired by research in cognitive psychology. Most of the algorithms ex­
amined here focus on computational concerns and do not attempt to model psychological 
phenomena. However, one chapter focuses exclusively on modeling human categorization 
behavior; it should interest cognitive scientists. 

The problem investigated in this dissertation concerns the application of instance-based 
algorithms to incremental, supervised learning tasks. The following sections characterize 
these tasks and the instance-based approach. Supervised learning is an important subtask 
for supporting intelligent behavior, especially those involved with forming concepts for the 
purpose of generating accurate predictions. We continually depend on our ability to make 
accurate predictions in our daily lives for tasks such as predicting when to change lanes on 
a freeway, predicting the weight of objects we wish to lift, predicting the time required to 
complete our tasks, and predicting how others will react to our communications. Since our 
ability to generate accurate predictions is crucial to determining how well we interact with our 
environment, methods for learning to improve predictive accuracy are also crucial. Similarly, 
automated learning methods for improving predictive accuracy are important for robotic 
and expert systems applications, as well as other tasks of interest to AI practitioners. The 
instance-based approach has often been applied to supervised learning tasks, but previous 
research left several questions unanswered, including whether this approach is limited to 
the applications studied. This dissertation examines the instance-based approach in detail, 
characterizes the set of supervised learning problems that it can solve, and describes empirical 
evidence that shows how these algorithms can perform well when confronted with problems 
such as noisy and irrelevant data. I will also describe results that show how instance-based 
methods developed for solving supervised learning problems enhance the ability of exemplar­
based models of categorization to explain psychological phenomena. 

1.1 Taxonomic Categorization of the Approach 

Carbonell, Michalski, and Mitchell (1983) presented a useful taxonomy for describing 
research in machine learning along the following three dimensions: 

1. underlying learning strategy, 

2. representation of knowledge, and 

3. application domain. 
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1.1.1 Learning Strategy 

Several strategies for learning have been studied. These include 

• rote learning, 

• learning from instruction, 

• learning from analogy, 

• learning from examples, and 

• learning from observation or discovery. 

The predominant strategy studied in machine learning has been supervised learning from 
examples, wherein a learner is given a set of training instances, is told that it should predict 
values for one of the dimensions used to describe these instances, and induces a function 
called a concept description for distinguishing positive and negative examples (Winston, 
1975; Mitchell, 1982; Dietterich & Michalski, 1983; Quinlan, 1986a; Clark & Niblett, 1989). 
That is, they traditionally predict whether instances are members of a given class. The 
investigations in this dissertation involve an extension of this task; instances will not be 
restricted to have Boolean-valued target values (i.e., "positive" or "negative"). Instead, they 
can also have numeric- or categorical-valued target values. I will refer to problems involving 
the prediction of Boolean or categorical target values as symbolic prediction tasks. Problems 

· involving the prediction of numeric values will be referred to as numeric prediction tasks. 
In both cases, the source of the instances will be the external environment; the instance 
generation process will not be controlled either by a teacher or the learning algorithm itself. 
Nonetheless, I will refer to this as supervised learning because the algorithms will be given 
the target values for the training instances and will be told which values to predict for the 
test instances. This information is used by instance-based algorithms that save only a subset 
of the training instances to help determine which instances to retain. Finally, the instances 
are assumed to be presented sequentially; I will focus on the study of incremental rather 
than non-incremental strategies for supervised learning. 

1.1.2 Representation 

Many different approaches have been used to represent the functions induced by super­
vised learning algorithms. Some of these include decision trees (Quinlan, 1986a; Cestnik, 
Kononenko, & Bratko, 1987; Michie, Muggleton, Riese, & Zubrick, 1984), artificial neu­
ral networks (Rumelhart, McClelland, & the PDP Research Group, 1986; Kohan.en, 1988; 
Towell, Shavlik, & Noordewier, 1990), and rules (Michalski, Mozetic, Hong, & Lavrac, 1986; 
Clark & Niblett, 1989; Holland, 1986; Wilson, 1987). The representation studied in this 
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dissertation is one called the instance-based approach, wherein target value predictions are 
derived solely from specific instance information. 1 

1.1.3 Application Domain 

The algorithms studied in this dissertation are not domain-specific. That is, they were 
not constructed to work for a pre-determined application or set of applications. However, 
they can be tuned to exploit domains-specific knowledge. Chapter 7 surveys instance-based 
algorithms of this genre. Therefore, I will not refer to the algorithms described in this 
dissertation as empirical learning algorithms, lest the framework introduced in Chapter 2 be 
incorrectly identified as specifying only knowledge-poor algorithms. 

1.2 The Instance-Based Approach in Perspective 

This dissertation investigates an alternative learning strategy called instance-based learn­
ing (IBL), which is a form of exemplar-based learning where abstractions are not maintained 
for the purpose of solving prediction tasks. These algorithms can be interpreted as case-based 
reasoning algorithms in that they rely on specific instances. However, IBL algorithms focus 
primarily on learning issues, which are only one of many concerns addressed by case-based 
reasoning algorithms. Nonetheless, several IBL algorithms address additional issues that are 
also of interest to the case-based reasoning community. These relationships will be discussed 
further in Section 7.3.1. 

1.2.1 Characterization of Instance-Based Learning 

The IBL approach differs from other methods for solving supervised learning tasks in 
several respects. 

• IBL algorithms have an extensional representation; concepts are represented by their 
exemplars and are not assumed to be conjunctive. 

• IBL algorithms are lazy generalizers. In comparison with other approaches, they do 
less work at the time a training instance is presented and more work when predictions 
are required. Thus, they are appropriate for applications where the probability is low 
that generalizations derived from training instances at the time of their presentation 
will be used to derive predictions for subsequently presented instances. 

1This is not quite true. Effective instance-based learning algorithms associate additional information with 
stored instances or the predictor attributes describing them. This is discussed further in Chapter 2. 
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o IBL algorithms have a general learning bias. Unlike some learning algorithms, they 
do not require that symbolic concepts be hyper-rectangular in shape. Instead, they 
assume that concepts have hyper-polygonal shapes. Thus, they will tend to learn more 
quickly than rule-based or decision tree learning algorithms when the target concept 
is not easily describable by hyper-rectangles. 

• IBL algorithms naturally support efficient methods for incremental learning (Schlimmer 
& Fisher, 1986; Utgoff, 1989). Updating concept descriptions consists mainly of adding, 
deleting, or editing stored instances. 

• IBL algorithms naturally support partial matching; they calculate the similarity be­
tween pairs of instances. Thus, these algorithms can represent graded concepts, where 
concept members differ in their typicality ratings. An instance's rating is defined as an 
increasing function of its similarity to instances in the same concept and a decreasing 
function of its similarity to all other instances. 

All of these distinguishing characteristics are also true, to some degree, for the more general 
class of exemplar-based learning algorithms. 

1.2.2 Historical Overview in Machine Learning 

A simple IBL algorithm is the k-nearest neighbor ( k-NN) pattern classifier (Fix & Hodges, 
1951), which classifies an instance according to the majority classification of its k nearest 
neighbors. Several AI researchers have included k-NN in their comparison studies of learn­
ing algorithms because it is well-known, easy to implement, and serves as a good strawman 
algorithm. For example, Shepard (1983) tested several algorithms on a task involving the 
classification of chocolate images. He was satisfied that the ACLS decision tree algorithm 
could achieve accuracies on par with k-NN, which he called a "practical alternative classi­
fier." Shepard noted that k-NN had a faster learning rate hut could not yield an intelligible 
summary of the concept being learned. Weiss and Kapouleas (1989) included the 1-NN al­
gorithm in their large set of comparison algorithms. They found that it performed well when 
given relevant attributes but poorly when instances are described by irrelevant attributes. 
Towell, Shavlik, and Noordewier (1990) included 1-NN in their comparison of five learning 
algorithms to a problem in molecular biology. They found that, although it outperformed 
ID3 (Quinlan, 1986a), it performed more poorly than both backpropagation (Rumelhart et 
al., 1986) and an algorithm that was given domain-specific information. Finally, Robinson 
(1989) compared the 1-NN algorithm and 15 different connectionist algorithms on a task in­
volving vowel classification. Surprisingly, he found that 1-NN performed best and suggested 
that this result poses a challenge to improve the abilities of connectionist algorithms. This 
does not always occur; Robinson also found that 1-NN did not outperform all connectionist 
algorithms in other applications. However, none of these researchers explored extensions of 
k-nearest neighbor algorithms that could improve their learning behavior. This is under­
standable since they were not proponents of the instance-based approach. 
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The first proponent of the instance-based approach in the machine learning literature 
was Bradshaw (1985, 1986, 1987), who introduced the NEXUS speech recognition system. 
He showed that the IBL approach could be used for practical applications and detailed 
an instance-averaging method that reduces storage requirements. There have since been 
five other prolific proponents of the exemplar-based approach for supervised learning tasks. 
First, Bareiss and his colleagues developed Protas and applied it to a clinical audiology 
task (Porter & Bareiss, 1986; Bareiss, Porter, & Wier, 1987; Bareiss, 1989a; 1989b). It 
was the first learning apprentice (Mitchell, Mahadevan, & Steinberg, 1985) that used the 
exemplar-based approach and its contributions included data structures and procedures for 
indexing domain specific information so that it can be retrieved efficiently and effectively. 
Second, Stanfill developed the MBRtalk word pronunciation system with Waltz (Stanfill & 
Waltz, 1986; 1988; Stanfill, 1987; 1988; Waltz, 1990). Their central contributions include 
highlighting the parallel nature of IBL algorithms and introducing a function that can com­
pute similarities for symbolic attribute values. Third, Clark (1988) published the only paper 
comparing exemplar-based and rule-based learning algorithms in the machine learning lit­
erature. He subsequently developed Optimist (Clark, 1989), an exemplar-based system for 
appraising oil prospecting sites that is currently being used by the Enterprise Oil Company. 
Fourth, Salzberg (1988; 1990) developed NGE, which derives hyper-rectangular abstractions 
from instances, and also helped develop PEBLS (Cost & Salzberg, 1990). These algorithms 
recorded good classification accuracies on several medical diagnosis applications. Finally, I 
have worked with Kibler and Albert on the development of a comprehensive sequence of IBL 
algorithms; we have evaluated them mathematically and empirically on several symbolic and 
numeric prediction tasks (Kibler & Aha, 1987; 1988; 1989; Aha & Kibler, 1989; Kibler, Aha, 
& Albert, 1989; Aha, Kibler, & Albert, 1991; Aha, 1989a; in press). 

Exemplar-based learning algorithms have been successfully applied to several challeng­
ing supervised learning applications, including such problems as speech recognition, word 
pronunciation, power load prediction, oil prospecting appraisal, medical diagnosis, learning 
to control robotic movements, and handwritten character recognition. However, most of the 
research on these learning algorithms in the machine learning literature have been limited 
to case-study demonstrations. Moreover, there have been no attempts to survey the field in 
an attempt to relate the myriad of IBL methods that have been used to solve these many 
problems. 

As a first attempt, these exemplar-based algorithms can be related and differentiated by 
whether they generalize their training instances, whether they store all training instances, 
and whether they encode a sizable amount of domain-specific knowledge. Figure 1.1 displays 
a simple decision tree that uses these dimensions to relate several of the more popular 
exemplar-based learning algorithms that have been developed since 1985. However, the 
decision tree in Figure 1.1 does not completely succeed in relating these algorithms; several 
of them would be grouped differently if a different ordering on the tests or a different set 
of attribute tests had been used. This tree hides several important relationships between 
these systems. For example, both Protas (Bareiss, 1989a) and Optimist (Clark, 1989) are 
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Figure 1.1: Relationships ·among exemplar-based learning systems. 
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taught information on how to compute the similarity between two instances, most of these 
algorithms attach weights with attribute dimensions describing the instances, and several of 
these algorithms can predict numeric values. Table 1.1 lists the values of nine properties for 
six of these algorithms. All of the algorithms mentioned in Figure 1.1 and Table 1.1 will be 
surveyed in Chapter 7 except IB4 (Aha, 1989a), which will be evaluated in Chapters 4 and 
5. I will introduce a more formal framework for relating these algorithms in Chapter 2. 

1.2.3 Relationship to Other Fields 

The instance-based approach has close ties with ongoing research in both pattern recog­
nition and psychology. In fact, this dissertation was directly inspired by research in both 
fields. 

Researchers in the pattern recognition community have long understood the utility of 
making predictions based on a stored set of similar instances. IBL algorithms are derived 
from variants of k-NN algorithms (Fix & Hodges, 1951; Sebestyen, 1962; Cover & Hart, 
1967; Cover, 1968; Duda & Hart, 1973). These algorithms represent an instance with a set 
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Tabl 1 1 A bb . t d. t b d d e .. na revia e ms ance- ase . f f . b dl escnp ion o six exemp ar- ase earm~sys terns. 
Property Optimist Protas NGE IB4 MBRtalk NEXUS 

Predicts Symbolic Values v v v v v 
Predicts Numeric Values v v 
Uses Attribute Weights v v v v v 
Generalizes Instances v v v 
Stores All Instances v v 
Taught Similarity Fn. v v 
Learns Similarity Fn. v v v 
Interactive v v 
Cognitively Plausible 

of n attribute-value pairs, which can be interpreted as a vector or point in an n-dimensional 
space. They predict an instance's target value from the target values of its k nearest neigh­
bors in this space. The similarity of two instances can be measured in many ways, although it 
is commonly defined as the inverse of their Euclidean distance. Cover and Hart proved that 
the I-nearest neighbor algorithm's expected misclassification rate does not exceed twice the 
Bayes optimal rate, which is a lower bound on misclassification rates given complete proba­
bility density information for every point in the space. They also showed that the difference 
between the misclassification rates of the k-nearest neighbor algorithm and the Bayes rate 
decreases exponentially with increasing values of k. Several researchers have subsequently 
investigated the behavior of edited k-nearest neighbor algorithms (Hart, 1968; Gates, 1972; 
Wilson, 1972; Penrod & Wagner, 1977; Dasarathy, 1980; Devijver, 1986; Voisin & Devijver, 
1987). The emphasis of their investigations was to show that these algorithms can decrease 
the time to convergence (i.e., the Bayes optimal misclassification rate). Although many 
mathematical and theoretical successes have been reported, the goals of pattern recognition 
researchers differ from those of the machine learning community. For example, a main con­
cern with edited nearest neighbor algorithms is that they perfectly classify the training set; 
few researchers who have studied edited k-NN algorithms have addressed issues of noise, 
irrelevant attributes, and over:fitting effects (Niblett & Bratko, 1986). Also, most of these 
algorithms repeatedly process instances and cannot process symbolic attribute values. In 
summary, the IBL approach has been studied in the pattern recognition literature, but with 
different goals and perspectives. This body of research is surveyed in Section 7.1. 

The IBL approach has also been studied in earnest by the cognitive psychology com­
munity, who were originally inspired by Sebestyen's (1962) work on the nearest neighbor 
pattern classification algorithm (Reed, 1970). The goals of this community include build­
ing models to explain observed psychological phenomenon associated with the processes of 
categorization. Three views of concepts have dominated the design of these models (Smith 
& Medin, 1981). First, the classical view assumes that concepts are conjunctive and that 
instances do not vary in their typicality. As an example, Mitchell's (1982) work on version 
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spaces assumed this viewpoint. Second, the probabilistic view also represents concepts with 
a centralized description, but attributes are assumed to have a probabilistic relationship to 
concepts. This view is well-represented in the machine learning literature (Rumelhart et al., 
1986; Schlimmer, 1987a; Fisher, 1987; Gennari, 1990; Langley, Thompson, Iba, Gennari, & 
Allen, 1989). The final view is the exemplar-based view, which has been under-represented in 
the machine learning literature. Although preliminary evaluations of exemplar-base models 
of categorization suggested that they provided poor fits to subject data, research beginning 
with Medin and Schaffer's (1978) investigations of more elaborate exemplar-based models 
have suggested otherwise (Medin & Schwanenflugel, 1981; Medin, Altom, Edelson, & Freko, 
1982; Medin, Dewey, & Murphy, 1983; Hintzman & Ludlam, 1984; Busemeyer, Dewey, & 
Medin, 1984; Nosofsky, 1984; 1986; 1987; 1989; Hintzman, 1984; 1986; 1988; Medin & 
Edelson, 1988; Nosofsky, Clark, & Shin, 1989). In fact, exemplar-based models have ex­
plained more psychological phenomenon than any other model of categorization. However, 
researchers in this field rarely attempt to design process components (i.e., learning algo­
rithms) for their models. Therefore, few of these models have been evaluated in terms of 
their computational efficiency. This body of research is surveyed in Section 6.3. 

1.3 Objectives of this Dissertation 

As portrayed in Figure 1.2, IBL algorithms have ties with pattern recognition, cognitive 
psychology, and machine learning. The primary objectives of this dissertation contribute to 
each of these areas, although its emphasis is on machine learning, cognitive psychology, and 
pattern recognition in decreasing order: 

1. Paradigm Framework: The relationships of IBL algorithms have rarely been system­
atically reported. Since their number continues to multiply, it is important to have 
some means for relating them and for describing improvements that are of general in­
terest to both practitioners and researchers. Therefore, I will describe a framework for 
instance-based learning algorithms2 that presents a coherent view of the IBL predic­
tion process. This framework will be used to guide the development of IBL algorithms: 
improvements will be described by how they improve on a specific component function 
of the framework. The IBL framework will also prove useful as a means for relating 
the multitude of existing IBL algorithms in the machine learning literature. 

2. Mathematical Analyses of Generality: No effort has been made by other groups to 
determine what IBL algorithms can learn efficiently. Therefore, I will present theorems 
that describe the classes of symbolic concepts and numeric functions that a simple 
IBL algorithm can probably, approximately learn with high confidence (i.e., with high 
probability). 

2This framework applies to exemplar-based learning in general, but I wanted to avoid using the acronym 
EBL, which commonly refers to explanation-based learning (Mitchell, Keller, & Kedar-Cabelli, 1986). 
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Figure 1.2: IBL algorithms have been studied in at least three areas. 

3. Empirical Analyses of Efficiency: Most empirical investigations of IBL algorithms have 
been case studies with few attempts to understand the limits of the algorithms' be­
havior, especially their sensitivity to challenging domain characteristics. 3 Therefore, 
I will describe empirical investigations for IBL algorithms that address the issues of 
storage requirements, noise, and irrelevant attributes respectively. Studies with artifi­
cial domains will be described that demonstrate the behavior of the algorithms under 
carefully controlled conditions. Studies with several database applications will be de­
scribed to demonstrate that these algorithms solve their respective problems in more 
practical settings. I will also conduct detai~ed investigations of these algorithms' high 

3Exceptions include Stanfill's (1987) study of MBRtalk's ability to tolerate noise and a few irrelevant 
attributes for the word pronunciation task, Bareiss's (1989b) lesion study investigations of Protos for the 
clinical audiology application, and Tan and Schlimmer's (1990) investigations of their algorithms' behavior 
with respect to irrelevant attributes and varying attribute evaluation costs. 
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level parameters to determine the range of settings for which good performance can be 
obtained. 

4. Psychological Plausibility Analyses: IBL algorithms have been developed in the ma­
chine learning literature without feedback or concern with psychologically plausible 
models of categorization. Therefore, I will describe simulations of and experiments 
with four exemplar-based process models whose designs are constrained by work in 
both cognitive psychology and machine learning. The objective of the simulations is to 
show that results from machine learning research on IBL algorithms can contribute to 
the literature on psychologically plausible models. The objective of the experiments 
is to analyze these models comparative abilities to fit subject data. These results 
will show that significantly better fits can be obtained by attending differentially to 
attributes in a context-dependent manner. This is a new contribution to research 
on psychologically plausible exemplar-based models: this behavior has not previously 
been displayed by a fully-specified exemplar-based process model. 

These objectives all concern a form of evaluation: evaluation of a framework for its ability 
to clarify design decisions, a mathematical evaluation of a simple IBL algorithm's generality, 
an empirical evaluation of a set of IBL algorithms' ability to solve challenging problems in 
supervised learning, and a comparative evaluation of an IBL algorithm's ability to fit data 
collected from human subjects. 

1.4 Methodology 

Several frameworks have been proposed for relating different methodological perspectives 
in artificial intelligence research (e.g., Newell, 1973; Feigenbaum, 1977; Ringle, 1979). More 
recently, Hall and Kibler (1985) developed a detailed topology after careful consideration of 
six previous frameworks. They used four dimensions for contrasting different methodological 
perspectives: 

1. Artificiality: This distinguishes research that attends to psychologically plausible con­
straints from research that develops "intelligent" systems without these concerns. 

2. Generality: This distinguishes research targeted for specific applications or cognitive 
functions from research that attempts to model general reasoning mechanisms or gen­
eral principles of cognitive behavior. 

3. Methodological direction: This distinguishes research that is characterized by a bottom­
up construction of systems from a more formal top-down decomposition. Hall and 
Kibler consider the work on DENDRAL (Buchanan, Sutherland, & Feigenbaum, 1970) 
to be an example of the bottom-up direction and Hart, Nilsson, and Raphael's (1968) 
work on search in heuristic graphs to be an example of top-down construction. 
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4. Method of verification: This distinguishes research that focuses on demonstrating the 
correspondence between computational simulations and collected subject data from 
research that is cognitively motivated but lacks these demonstrations. 

Hall and Kibler used their framework to distinguish five different classes of research perspec­
tives: 

1. Performance: artificial, specific applications 

2. Constructive: artificial, general principles, bottom-up approach 

3. Formal: artificial, general principles, top-down approach 

4. Speculative: natural, no detailed demonstrations of correspondence 

5. Empirical: natural, detailed demonstrations of correspondence 

Example of these approaches are Rl (McDermott, 1982), ARCH (Winston, 1975), A* (Hart, 
Nilsson, & Raphael, 1968), SAM (Schank & Abelson, 1977), and ACT* (Anderson, 1983) 
respectively. Fisher (1987) described a modification of this topology that demotes the im­
portance of the artificiality dimension and emphasizes an information-processing viewpoint. 

Hall and Kibler noted that researchers can shift their perspectives over time. Moreover, 
research cannot necessarily be categorized into only one of these perspectives; Fisher (1987) 
and Mooney (1987) both noted that their respective methodologies adopt several of these 
five perspectives. Likewise, the research presented in this dissertation also exhibits multiple 
perspectives: 

1. Constructive: The sequence of four comprehensive algorithms described in Chapter 4 
were developed in a bottom-up fashion with the goal of improving the robustness of 
their behavior. Issues of cognitive plausibility were ignored. 

2. Formal: A general framework will be introduced for unifying a body of disparate work 
(i.e., exemplar-based learning algorithms). Formal proofs of convergence for a simple 
algorithm specified by this framework will also be described. 

3. Empirical: IBL algorithms constrained by known psychological phenomena will be 
evaluated for their fits to subject data. 

The contributions of this dissertation cannot be viewed from a performance perspective since 
no single application provides a focus for the development of the framework or the algorithms 
that will be evaluated. Likewise, these contributions cannot be viewed as using a speculative 
methodology; psychological models will be evaluated according to their ability to simulate 
data collected from human subjects. 

Hall and Kibler's (1985) topology is described by a decision tree. The four dimensions on 
which to judge perspectives are assumed to be Boolean in nature (i.e., natural or artificial). 
However, some of these dimensions would be better interpreted as having continuous values 
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(e.g., the artificiality dimension); this is an example of a numeric discretization process 
that is often used with decision trees. Also, their tree tends to hide relationships, such 
as a constructive perspective for research inspired by cognitive science. The four cognitive 
models described in Chapter 6 are an example of this perspective; I will define the models 
of categorization using a bottom-up approach. Decision trees, and abstractions in general, 
are useful for providing summary descriptions. However, they are not necessarily robust or 
useful when they are asked to provide detailed information characterizing specific instances. 
This dissertation's theme argues that the storage of specific instances can help to support 
these capabilities. Therefore, perhaps a better way to characterize my research perspectives 
is to use the simple instance-based strategy proposed by Carbonell et al. (1983). 'They 
argued that research in machine learning is organized around three foci: 

1. task-oriented studies, 

2. cognitive simulation, and 

3. theoretical analysis. 

All three of these methods are used to evaluate IBL algorithms in this dissertation. 

1.5 Overview of this Dissertation 

This dissertation describes a unifying framework for and evaluations of instance-based 
learning algorithms. Chapter 2 introduces the IBL framework and !Bl, a simple algorithm 
that the framework specifies. Detailed examples are provided to explain how !Bl incremen­
tally improves its predictive accuracy for both symbolic and numeric prediction tasks. The 
performance dimensions used to evaluate IBL algorithms in the rest of this dissertation are 
also presented. 

Chapter 3 describes convergence proofs for IBl for both symbolic and numeric prediction 
tasks. They are distribution free, apply to any value of k (i.e., the number of nearest 
neighbors used to derive predictions), and apply to any number of attribute dimensions. 
The proofs show that IBl can PAC-learn the class of concepts that are describable as a finite 
union of finite-sized regions in the instance space and the class of continuous functions with 
bounded slope. Efficiency concerns are also addressed. 

Chapter 4 describes empirical investigations with three extensions of IBl, named IB2, 
IB3, and IB4. These three algorithms will address the tasks of reducing storage requirements, 
tolerating noise, and learning relative attribute relevance respectively. Their relationships 
will be detailed using the IBL framework. 

Chapter 5 describes five parametric studies for these IBL algorithms. The parameters 
chosen correspond to important functions and parameters of the IBL framework, including 
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the function for processing symbolic attributes, the function for processing missing values, 
and the value for k. Each investigation includes both a lesion study and an examination of 
at least one intuitively pleasing alternative definition. 

Chapter 6 surveys the literature on psychological models of categorization, introduces 
four psychologically plausible exemplar-based process models, and evaluates them in com­
parison simulations and on their ability to fit data collected from two experiments with 
human subjects. Both the survey and the experimental results suggest a positive correlation 
between the ability of a model of categorization to utilize attribute correlation information 
and the number of psychological phenomena it can model. 

Chapter 7 describes a survey of related research on pattern recognition algorithms, IBL 
algorithms in the machine learning literature, and related learning paradigms that specify 
algorithms which exploit specific instance information. The IBL framework is used to relate 
the IBL algorithms surveyed. 

Chapter 8 finishes with a summary of contributions, a discussion of the limitations and 
advantages of the framework, and suggestions for future research goals. 



Chapter 2 

Framework 

This chapter introduces instance-based learning (IBL) algorithms. The focal point of this 
introduction is the framework for this class of algorithms, which is detailed in Section 2.2. A 
simple IBL algorithm, named !Bl, is described in Section 2.3 to exemplify how the compo­
nents of this framework can be instantiated. Section 2.4 summarizes how the performance of 
IBL algorithms is evaluated in Chapters 4-6. Section 2.1 begins by defining the terminology 
used in this dissertation to describe how IBL algorithms operate. 

2.1 Terminology and Representation 

The topic of this dissertation is the study of instance-based learning algorithms as applied 
to incremental, supervised learning tasks when the source of the instances is the external 
environment. That is, the algorithms studied here passively accept instances from an exterior 
process rather than request or choose specific ones for input. Each instance is assumed to 
be represented by a set of attribute-value pairs. Many supervised learning algorithms have 
employed this representation to describe instances (e.g., Mitchell, 1982; Breiman, Friedman, 
Olshen, & Stone, 1984; Michalski et al., 1986; Quinlan, 1986a; Sejnowski & Rosenberg, 1987; 
Wilson, 1987; Bradshaw, 1987). This is also the common representation for instances in the 
literature on computational learning theory (e.g., Valiant, 1984; Kearns, Li, Pitt, & Valiant, 
1987; Haussler, 1987). Most studies of concept formation in the literature on experimental 
psychology also adopt this representation for instances (Hayes-Roth & Hayes-Roth, 1977; 
Medin & Schaffer, 1978; Gluck, Bower, & Hee, 1989). The attribute-value representation is 
appealing because it is simple and amenable to analyses. However, it is restrictive: attribute­
value pairs do not encode relationships among sets of attributes that can be used to assist 
in making accurate predictions. Branting (1989), among others, has consequently advocated 

15 



16 David W. Aha 

using semantic networks to represent instances. 1 Although these representations would be 
useful, they have not yet been used to represent instances for IBL algorithms. 

Instances that are described by n attributes are points in an n-dimensional instance 
space. Each attribute is defined over a set of totally-ordered (e.g., numeric) or unordered 
(e.g., symbolic) values. Functions for processing elaborate types of values, including internal 
disjunction (Michalski, 1983) and structured attribute values (Wasserman, 1985; Stepp & 
Michalski, 1986; Thompson & Langley, 1989), have not yet been implemented. However, 
IBL algorithms can tolerate missing attribute values (see Section 2.3). 

Traditionally, exactly one of the attributes used to describe instances is a distinguished 
target attribute. The remaining attributes are predictors. An important purpose of the 
learning algorithm is to learn to accurately predict the target attribute's value when given 
an instance whose target value is missing. As mentioned earlier, IBL algorithms can learn 
multiple concepts simultaneously. Therefore, they are told which set of attributes are targets 
and which set of attributes are predictors (for each target). Target attributes are traditionally 
assumed to have only two possible values (e.g., "positive" and "negative"). IBL algorithms 
instead allow them to have either totally-ordered or unordered values. 

The set of all instances in the instance space that have the same value for a target 
attribute form a category (or class). A concept is a purposeful description of a category 
(Matheus, 1987). 2 IBL algorithms are given a sequence of training instances and learn 
concepts for each symbolic-valued target attribute for the purpose of accurately predicting 
the targets' values. Concepts are functions that map instances to categories. Given an 
instance x drawn from an instance space, a concept learned for target attribute t yields a 
prediction for Xt, the value that x is predicted to have for attribute t. 

IBL algorithms learn a different type of mapping for numeric-valued target attributes. 
In these situations, there can be a large number of distinct numeric target values in the data. 
The notion of a concept is not as useful here because it doesn't capture or exploit the total 
ordering on the numeric-valued target attribute. Therefore, IBL algorithms make explicit use 
of this information when learning to predict numeric values. However, it is still convenient 
to refer to these learned numeric functions as concept descriptions. Section 2.3 includes 
detailed examples that shows how an IBL algorithm learns accurate concept descriptions for 
both symbolic- and numeric-valued targets. 

1 I followed Bradshaw's (1987) lead here in referring to input objects as instances rather than examples. 
Another reason to refer to them as instances is to avoid confusion with the term exemplar, which Smith 
and Medin (1981) used to refer to both specific instances and sets of specific instances, otherwise known as 
exemplars. The algorithms that will be investigated in this dissertation input specific instances rather than 
exemplars. Also, I avoid the term case here to avoid confusion with its meaning in the case-based reasoning 
literature (Hammond, 1989), where Branting and others have argued that attribute-value representations 
are inadequate for challenging analogical problem-solving tasks. 

21 will use the terms "concept" and "concept description" synonymously as a matter of convenience. 
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2.2 The IBL Framework 

My goal in this dissertation is to introduce, evaluate, and explicate the utility of the 
instance-based paradigm for supervised learning tasks. This dissertation does not focus on a 
particular learning algorithm, but rather focuses on a computational paradigm from which an 
infinite number of learning algorithms can be specified. A sound way to describe a paradigm 
for learning is to present a concise yet illuminating framework for it, which is the topic of 
this section. 

A framework serves several purposes. First, it furnishes context so that the reader 
can gain insight to the perspective from which the framework evolved. Second, it provides 
an organizational structure that explicates the differences between algorithms specified by 
the framework. Third, frameworks can also be used to compare algorithms specified by 
different computational paradigms. They also help to distinguish the relative capabilities 
and limitations of these paradigms. Finally, frameworks are valuable because they serve as 
a tangible foundation that can be used by other researchers to improve the paradigm. 

Learning involves some improvement in the performance of some task (Langley, 1987; 
Kibler & Langley, 1988). Therefore, it is useful to partition the framework for IBL algorithms 
into two sets of components: performance and learning. Both components are used during 
training but only the performance component is used during testing. Both components use 
attribute information (i.e., attribute typing information and predictor/target labeling) to 
control their respective processes. The performance task, in this case, is to yield predictions 
for target values given a sequence of training instances. The learning task is to develop a 
concept for each of the target attributes. Figure 2.1 displays this abstract framework for the 
case where there is only one target concept. Figure 2.2 details the performance component. 
These figures use an SADT-style diagram to describe the framework pictorially (Ross, 1977). 
The boxes represent functions while the arrows refer to data structures that are passed among 
them. Arrows on the left, right, and top of a box are input, output, and control information 
respectively. This diagram shows that the performance component inputs a pre-processed 
training instance and a partial concept description, which includes a set of stored instances 
and, in more elaborate IBL algorithms (e.g., IB3 in Section 4.3 and IB4 in Section 4.4), 
prediction-related information such as attribute weight settings and a record of each stored 
instance's prediction accuracy. The performance component outputs a prediction for the 
target attribute's value. The learning component inputs the partial concept description, the 
processed training instance, and the prediction. It outputs a modification of the partial 
concept description. 
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The following four subsections briefly describe the four basic functions that constitute 
the IBL framework: 

1. Normalizer. Normalizes the numeric-valued predictor attributes 

2. Similarity: Computes the similarity of two instances 

3. Prediction: Generate a prediction, and 

4. Memory updater. Updates the partial concept description 

Each of these functions is used by one of the three IBL framework components. Normalization 
is the responsibility of the pre-processor component. The performance component is respon­
sible for computing similarities and generating predictions. Finally, the memory updating 
function is the primary function of the learning component. · 

2.2.1 Normalization Function 

The pre-processor component maintains and updates summary information concerning 
the values of each numeric attribute during the training process. This information is used by 
the normalizer function, which normalizes each numeric attribute's values. This forces the 
similarity function to assume that each of these attributes has the same range of values. This 
normalization process creates a bias; each attribute is assumed to have the same relevance 
for the purpose of the performance and learning components. In Section 4.4, I will argue 
that this is rarely true for most databases. However, this is a fair decision without additional 
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information concerning the relative relevance of attributes for the purpose of the learning 
algorithm. 

Re-normalization is required whenever determined by the pre-processor as new informa­
tion is collected from subsequently processed instances. A simple example of a normalization 
function is one that maintains the highest and lowest values for each numeric-valued attribute 
and uses them to linearly normalize these attributes. 

2.2.2 Similarity Function 

IBL algorithms are not limited to rote learning, defined as memorization without capa­
bility for inductive generalization (Carbonell et al., 1983). Instead, IBL algorithms derive 
predictions from a partial concept description using the two functions in the performance 
component. Its first function is the similarity function, which acts on a partial concept 
description and a pre-processed instance. It calculates and outputs the numeric-valued sim­
ilarity of the novel instance with each instance in the partial concept description. A simple 
similarity function is one that computes the inverse of the Euclidean distance of two instances 
x and y in the instance space, where the "distance" between two values of a symbolic-valued 
attribute is defined to be 0 if they are identical and 1 otherwise: 

Similarity( x, y) = 1 , 
/LJieP Attribute..difference(xi, Yi) 

(2.1) 

where 
Att "b t d".a: ( ) { (xi - Yi) 2 i is numeric-valued n u e_ 111erence Xi, Yi = -1- th . 

Xi r Yi o erw1se 
(2.2) 

and where the instances are described by the set P of predictor attributes. 
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2.2.3 Prediction Function 

The performance component's second function is the prediction function. This inputs 
the computed similarities and outputs a prediction of the target attribute's value for the 
instance given to the performance component. A simple prediction function, which can be 
used to predict either symbolic or numeric values, is the nearest neighbor prediction function, 
which outputs the target attribute value of the instance in the partial concept description 
with the highest similarity. 3 

2.2.4 Memory Updating Function 

The primary function in the learning component is the memory updater, which updates 
the partial concept description after each training instance is processed. As mentioned 
earlier, the partial concept description consists of a set of instances and, possibly, additional 
information related to the utility of the stored instances and the attributes that describe 
them. I do not mean to preclude the possibility that other types of useful information may 
be maintained by this function (e.g., parameters for the prediction function). However, I 
do mean to constrain the functionality of the memory updater to update either the partial 
concept description, the similarity function, or the prediction function. 

The most elementary memory updating function simply stores all training instances into 
the partial concept description. 

2.2.5 Summary of the Framework 

The performance and learning components in this framework are tightly coupled. The 
performance component yields predictions that determine how the learning component is 
updated. The learning component updates the partial concept description used by the per­
formance component. In some IBL algorithms, the partial concept description even contains 
parameters for the functions in the performance component. Thus the outputs of one com­
ponent strongly influence the processing of the other. 

This framework is relatively general. Several types of normalization, similarity, predic­
tion, and learning functions can be used to instantiate an IBL algorithm. Chapter 4 describes 
three IBL algorithms that are variants of IBl, which is detailed in the next section, that 
differ in terms of their selection of these three latter functions. Chapter 5 investigates sev­
eral additional IBL algorithms in which the component definitions are varied to determine 

3If at least two instances tie in maximal similarity, then a random choice is made to select one of them 
to be used to generate a prediction. 



A Study of Instance-Based Algorithms 

Table 2.1: The IBl trainin_g_ alg_orithm. 

Key: T: Training set 
P: Set of predictor attributes 
PCD: Partial concept description 

Train(T, P) 
1. Set global variables 
2. for each Xi E T do 

2.1 x; <- Pre_process(x;, P) 
2.2 Learn(x;) 

Set global variables: 
1. PCD <- 0 
2. Initialize min and max values for each predictor attribute 

Pre_process(x, P) 
1. if (x is a training instance) 

then Update_bounds(x) 
2. return Normalize( x) 

Learn(x) 
PCD .- PCD u {x} 
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whether the originally selected definitions were the best choices. Finally, Section 7.2 uses 
this framework to relate a dozen exemplar-based algorithms that have been described in the 
machine learning literature. In summary, the IBL framework specifies a large set of possible 
IBL algorithms. However, this framework has several limitations and restrictions. For ex­
ample, some useful extensions include using an indexing mechanism to minimize the number 
of instance and attribute references required to compute similarities. Chapter 8 examines 
the capabilities and limitations of this framework more extensively. 

2.3 The IBl Algorithm 

This section introduces the IB 1 (Instance-Based 1) algorithm, whose training algorithm 
is detailed in Table 2.1. IBl is a simple instance-based learning algorithm that closely 
resembles the k-nearest neighbor decision rule (Fix & Hodges, 1951; Cover & Hart, 1967; 
Duda & Hart, 1973). However, they are not identical; IBl normalizes its instances and, as 
described in the next paragraph, IBl has a policy for tolerating missing attribute values. 
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2.3.1 IB 1 's Component Functions 

IBl 's training algorithm inputs a training set of instances and the set of predictor at­
tributes. IBl begins by initializing some global variables: it sets its partial concept de­
scription to be empty, sets the "observed" lovver bound for each numeric-valued predictor 
attribute to infinity, and sets the "observed" upper bound for each numeric-valued predic­
tor attribute to negative infinity. Training on an instance involves only pre-processing and 
learning. Predictions aren't generated during training. 

Pre-processing: IBl 's pre-processor keeps a record of the highest and lowest values known 
for each numeric-valued attribute. Whenever the range of observed values for a numeric­
valued attribute a is extended by the value in a newly observed training instance, its value 
in all the stored instances is re-normalized. IBl employs a linear normalizing function. 
Attribute a's unnormalized values in instance xis normalized using Normalize(x ). This calls 
subfunction Normalize....attribute for each numeric predictor attribute a and normalizes its 
value using Xa 4-- Normalize....attribute(xa, a), where: 

Xa - amin 
Normalize....attribute(xa, a)=----­

amax - amin 

and where am.ax and amin are the largest and smallest values yet processed for a. 

(2.3) 
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Table 2.2: The IB 1 testin_g_ al_g_orithm. 

Key: T: Test set 
P: Set of predictor attributes 
t: The target attribute 
k: Number of most similar instances used 
PCD: Partial concept description 

Test(T, P, t, k) 
1. for each Xi E T do 

1.1 Xi +- Pre_process(xi, P) 
1.2 return Performance( xi, P, t, k) 

Performance(x, P, t, k) 
1. S+-0 
2. \:/yi E PCD:S +-SU {(yi,Similarity(x,yi,P))} 
3. KSET +- k...mosLsimilarinstances(S, k) 
4. return TargeLvalue_prediction(KSET,t, k) 
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Learning: IBl 's memory updating (learning) algorithm simply stores all processed training 
instances into the target's partial concept description. 

IBl 's testing algorithm is summarized in Table 2.2. IBl 's behavior during testing differs 
from its behavior during training. IBl 's testing algorithm is given the test set, the set of 
predictor attributes, the target attribute, and the value to be used for k. IBl first pre­
processes the test instance. The learning process for updating the numeric-valued predictor 
attributes observed minimum and maximum values is skipped during testing. Instead, the 
test instance is simply normalized by IBl 's pre-processor. IBl then calls on the performance 
component to compute the test instance's similarity to all processed training instances, 
selects the k most similar instances, and generates a target value prediction based on their 
target values. 

Similarity: IBl 's similarity function was informally described in the previous section, where 
it was not ma.de obvious that the set of predictors used can vary depending on the target 
attribute. Therefore, IBl 's similarity function is more appropriately described as a function 
of three inputs: 

1 
Similarity(x, y, P) = --;::===========, 

L:!~J Attribute_difference(xi, Yi) 

(2.4) 



24 David W. Aha 

where Attribute..difference is defined as 

Attribute_difference( Xi, Yi) = 

max(x; - 0, 1 - x;) 
max(y; - 0, 1 - yi) 
1 
(x;-y;)2 

X; #Yi 

if y; is missing 
if Xi is missing 
if both values are missing 
i is numeric-valued 
otherwise 

(2.5) 

IBl assumes that a missing attribute value is maximally different from the value present. If 
both values are missing for an attribute, then Attribute..difference yields 1. This algorithm 
for processing missing attribute values is evaluated in Section 5.2.1. 

IBl 's implementation is not specified. It could calculate similarities either iteratively or 
in parallel. The studies described in Chapter 4 concerning IBl 's efficiency are independent 
of its implementation. More specifically, IBl 's efficiency is defined as a function of the total 
number of attribute observations required for some (stated) purpose rather than in terms of 
elapsed cpu time. However, since similarity computations are independent, IBl's required 
cpu time could be significantly increased by evaluating them in parallel (Stanfill & Waltz, 
1986; Waltz, 1990). 

Prediction: IBl uses a k-most similar instance decision rule to predict both symbolic and 
numeric values. More precisely, IBl uses a simple majority vote function to determine the 
classification prediction for symbolic values; the predicted target value is the one that occurs 
most frequently among the k most similar- training instances. Ties result in random selection 
among the set of most frequent target values. The prediction function for numeric target 
values computes a weighted-similarity of its k most similar instances' target values: 

,,., al d' t" (KSET t k) ~ Similarity(KSETi] x KSETie i.argeLv ue_pre lC ion , , . = L-J Jc S" . . ( ] ' 
i=i 2:;=1 mular1ty KSET; 

(2.6) 

where KSET; is one of the k most similar stored instances, KSETie is instance KSET/s 
value for target attribute t, and Similarity[KSET;] is KSETi's pre-computed similarity with 
the current test instance x;. A majority vote function for predicting numeric values is not 
useful in many learning situations, namely those in which it is rare that two instances have 
the same value for the numeric-valued target attribute. This similarity-weighted function is 
more useful because it combines the predictions of similar instances based on their similarity 
to the instance given to the algorithm. 

The setting for k can substantially affect IB 1 's learning behavior. Although the empirical 
investigations in Chapter 4 assume that k = 1, Section 5.2.2 describes an investigation in 
which k's setting is varied. 
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2.3.2 Example Applications of IB 1 

The accuracy of !Bl 's concept descriptions usually improves from modifications during 
the incremental training process. Suppose that the concept was fast cars and that the only 
available information on the car was its width and horsepower, although I will give unique 
names to each car according to its make. If the first two instances were 

Instance Name 
Jaguar 
Toyota 

Width in Inches 
70.6 
64.4 

Horsepower 
262 
56 

Classification 
Fast 
Slow 

then they would be normalized by IB 1 to have the values 

Instance Name 
Jaguar 
Toyota 

Width in Inches 
1 
0 

Horsepower 
1 
0 

Classification 
Fast 
Slow 

Suppose that the third car has width 64.80, can generate 121 horsepower, and is considered 
to be fast. !Bl would normalize this car to have the values 

Instance Name Width in Inches Horsepower Classification 
BMW 0.06 0.32 Fast 

If asked to predict its classification when k = 1, then !Bl would rnisclassify this instance as 
a slow car because its normalized similarity to the Toyota 

Similarity(BMW,Toyota) = 1 = 3.03 
v'0.062 + 0.322 

is higher than to the Jaguar 

Similarity(BMW ,Jaguar) = 1 = 0.86 
v'0.942 + 0.682 

However, !Bl 's concept description improves with training. If the BMW instance is stored 
with the previous two training instances, then some subsequently presented instances will 
be correctly rather than incorrectly classified. For example, if the next car had a width of 
65.5 inches, generated 154 horsepower, and was considered to be fast, then the current set 
of normalized instances would be 

Instance Name Width in Inches Horsepower Classification 
Jaguar 1 1 Fast 
Toyota 0 0 Slow 
BMW 0.06 0.32 Fast 
Alfa Romero 0.18 0.48 Fast 
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and the new instance's similarities to the previous three instances would be 

Instance Name 
Jaguar 
Toyota 
BMW 

Similarity to the Alfa Romero 
1.03 
1.95 
5.00 

David W. Aha 

Therefore, IBl would classify the Alfa Romero according to the BMW's classification, which 
is fast. However, this instance would have been misclassified by the Toyota example if the 
BMW example had not yet been processed because the Toyota is more similar to the Alfa 
Romero than the Jaguar. 

It is instructive to examine an extended pictorial example of IBl 's behavior to visualize 
why these accuracy improvements occur. A visual description must display both the correct 
mapping of instances to target values and a summary of the predictions made by the current 
concept description. Accuracy improvements become obvious when comparing a sequence 
of figures that show this mapping at different points in time (i.e., after different numbers 
of training instances have been processed). For symbolic-valued targets, this improvement 
becomes vivid when a single target concept is defined by two numeric-valued dimensions, 
k is set to 1, and a Voronoi diagram (Voronoi, 1908; Shamos & Hoey, 1975; Bowyer, 1981; 
Watson, 1981; Seidel, 1987) is used to display the predictions made by IBl 's concept de­
scription. Voronoi diagrams are useful for this purpose because they partition the instance 
space into regions, one for each stored instance, such that a unique stored instance in the 
partial concept description is most similar (among all stored instances) to every instance 
in its region. Since k = 1, the diagram describes which instances will be classified by each 
stored instance. The diagram would explicitly show the complete mapping of instances to 
symbolic-valued target values. 

For example, Figure 2.3 shows how IBl 's predictions change as it processes the first four 
instances in a training set. These instances were drawn randomly according to a uniform 
distribution from the two-dimensional space shown in each of the four snapshots of the 
instance space. The variable k (i.e., the number of most similar instances used to derive 
predictions) is set to 1 - it is far more difficult to generate detailed and clear descriptions 
of IBl 's behavior for higher values of k. In this case, there is one symbolic concept to 
learn, which is defined by the four disjuncts delineated by the dashed lines in the snapshots. 
Instances in any of the disjuncts have a "+" target value; all others have a "-" value. 
The first instance happens to be positive. At this point, IBl assumes that all instances 
are positive. It recorded a 27.8% classification accuracy on a separate test set of 1000 
instances. After the second instance is processed, IBl 's most similar neighbor prediction 
function predicts that all instance's closer to the first instance would be positive and all 
others are negative. The Voronoi diagramming line shown in the second snapshot shows 
this implicit partitioning of the instance space. IBl 's accuracy increased dramatically after 
it processed the second instance. This was expected since the majority of the instances in 
this space would be classified as negative. The third instance, shown near the bottom of the 
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After 4 
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45.3% 

Figure 2.3: Voronoi diagrams describing IB 1 's classification predictions as the first four 
instances are processed. IBl 's predictions, denoted by the solid lines, improves with training. 
Dashed lines delineate the four disjuncts of the target concept. The positive ( +) and negative 
(-) training instances are shown. IBl 's classification accuracy on a test set of 1000 instances 
is listed below each snapshot. 

After 6 Instances After 25 After 50 After 100 

Accuracy: 51.1 % 71.3% 83.8% 88.4% 

Figure 2.4: Voronoi diagrams describing IBl 's classification predictions after 6, 25, 50, and 
100 training instances have been processed. The training instances aren't shown in the latter 
two snapshots to reduce clutter. Classification accuracy, listed below the snapshots, improves 
with training. 

third snapshot, introduced a third line segment into the diagram between the second and 
third instances (segments in the Voronoi diagram that delineate adjacent instances with the 
same target value are not shown). The size of the region predicted to contain only negative 
instances has decreased. Therefore, it is not surprising that IBl 's classification accuracy 
decreased on the test set. Finally, the fourth instance increased the area predicted to contain 
negative instances, but simultaneously increased the area in the class's disjuncts that are 
also predicted to be negative. Accuracy increased only slightly. This process continues in 
Figure 2.4, which shows how the Voronoi diagram continues to improve its approximation's 
accuracy of the target concept as training continues. After 100 instances, it achieves an 
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Figure 2.5: IBl 's learning curves for predicting values for the symbolic concept shown in the 
previous figures. Its behavior is shown for two settings for k. 

After 25 Instances After 50 After 100 After 250 
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Accuracy: 70. 7% 68.8% 75.2% 92.5% 
Figure 2.6: C4's extension eventually converges to an approximation similar to IBl's on this 
same training set, although C4's significance testing slows its learning rate. 

88.4% classification accuracy on the same test set. IBl's learning curve for this example 
is detailed in Figure 2.5. This figure shows that, for this application, IBl 's behavior when 
k = 1 is similar to its behavior when k = 2. I will detail the relative benefits for different 
values of k in Section 5.2.2. 

It is interesting to compare IBl's snapshots with those generated by other learning al­
gorithms to see how they differ. For example, the concept description learned by Quinlan's 
(1987) C4 decision tree algorithm yields the snapshots shown in Figure 2.6. It is somewhat 
unfair to compare IBl to C4 here since the latter employs a significance test that slows 
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After 1 Instance After 2 After 3 
Mean error: 7.00/7.00 5. 71/5.57 5.52/5.60 
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Figure 2.7: IBl's predictions for a simple cubic function (solid line) after processing the first 
4 instances in the training set. The dashed line signifies IBl's predictions when k = 1 while 
the dotted line is for k = 2. IB l's mean error is shown above each snapshot for k = 1 and 
k = 2 (e.g., 5.71/5.57 indicates that 5.71 is k = l's mean error and 5.57 is k = 2's). The 
test set contains the set of instances whose values for attribute x ranges from -2 to 5 by 0.1. 

its learning rate. 4 My point here is that both algorithms will eventually converge to ap­
proximately the same concept description. Furthermore, the results described in Chapter 3 
suggest that IBL and learning algorithms that build decision trees can PAC-learn the same 
class of concepts. However, I will show in Chapter 4 that their efficiency varies greatly 
depending on the characteristics of the application domain. 

It is important to note that IBL algorithms do not reason from Voronoi diagrams. These 
diagrams reside only implicitly in the partial concept description as operated on by the 
similarity and prediction functions. 

Voronoi diagrams are not useful for describing IBl 's behavior as it learns to predict nu­
meric values. Instead, its behavior can be observed more easily when its predicted values 
are shown periodically across the entire range of the target function. This can be described 
clearly when there is only one predictor attribute. For example, Figures 2. 7 and 2.8 detail 
IBl 's behavior as it learns to predict numeric values for a simple cubic function. The predic­
tor attribute's values for the training instances were again drawn randomly according to a 
uniform distribution. Training instances are shown as circles in the eight snapshots in these 

4 C4 generates a complete decision tree for classifying all of the training instances. It then employs a test 
to determine which of the tree's nodes reflect statistically significant information. Nodes that don't pass 
this test are removed from the tree because they may represent noisy information. When no noise is present 
in the training instances, this pruning process results with fewer instances being used to generate the tree. 
Consequently, this reduces C4's learning rate. 
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After 6 Instances After 25 After 50 
Mean error: 4.74/5.06 1.91/1.82 0.80/0.55 
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After 100 
0.35/0.30 

-2-1 0 1 2 3 4 5 -2-1 0 1 2 3 4 5 -2-1 0 1 2 3 4 5 -2-1 0 1 2 3 4 5 
- Predictor Attribute x -

Figure 2.8: IBl 's predictions after processing 6, 25, 50, and 100 instances respectively from 
the same training set. 

figures (except where cluttering becomes a problem). As expected, IBl's approximation of 
the target function is poor until after several training instances have been processed. The 
mean errors were computed from a set of test instances whose values for the horizontal pre­
dictor attribute were spread evenly across its range with a resolution of 0.1. These errors 
decrease monotonically with the number of training instances. IBl 's behavior here is slightly 
better when k = 2. However, the learning curves for this example, shown in Figure 2.9, shows 
that IBl 's behavior is highly similar for these two settings of k. 

2.3.3 Summary of IBl 

IBl is a simple algorithm that is amenable to mathematical analysis, which is the topic of 
the next chapter. However, it has high storage requirements (equal to the number of instances 
in the training set), which negatively impacts its efficiency. Section 4.2 examines an extension 
of IBl that reduces its storage requirements. IBl is also insensitive to the relative relevance of 
the predictor attributes used to describe instances. This causes problems since less relevant 
attributes should have less affect on prediction decisions. IBl must learn these relative 
relevances and provide this information to its similarity and prediction functions so that its 
learning rate is not impaired by the introduction of additional irrelevant attributes. This 
problem is examined in Section 4.4. The next section surveys the performance dimensions 
that will be used to measure the capabilities of IBL algorithms in the rest of this dissertation. 
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Figure 2.9: IBl 's learning curves when k = 1 and k = 2. The numeric target function is 
f(x) = (x - 2)(x + l)(x - 3). 

2.4 Performance Dimensions 

Learning always takes place in the context of a particular purpose or set of purposes. IBL 
algorithms can be used to assist in solving several distinct problems, such as unsupervised 
learning (Stanfill, 1988) and learning from a helpful teacher (Salzberg, Delcher, Heath, & 
Kasif, 1990). I will focus on only one purpose in this dissertation: supervised learning from 
examples that are supplied by the external environment. This focus allows me to describe 
an exhaustive examination of IBL algorithms for this task instead of a brief treatment of 
several different tasks. 

The capability of a learning algorithm can be measured by determining how well it sat­
isfies its intended purpose(s). There are several good reasons to measure the performance of 
learning algorithms. First, they allow for comparisons between different learning algorithms 
targeted for satisfying the same purpose. System builders can then use these comparisons 
to predict more accurately which algorithms are useful for their purposes. Second, they 
describe the overall capabilities of learning algorithms for specific tasks. This highlights the 
limitations of currently existing approaches and suggests useful goals for further research. 
Finally, measurements can be used to refute or support (perhaps even validate) hypotheses 
that scientists want to state for a particular learning algorithm. 

The next four chapters of this dissertation focus on measuring the performance of IBL 
algorithms along the following dimensions: 
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1. Generality of Applicability: This concerns the class of concepts that are describable 
by the representation and learnable by the algorithm. In Chapter 3, I will show that 
IBL algorithms can PAC-learn (Valiant, 1984) any symbolic concept whose boundary 
is a union of a finite number of closed hyper-curves of finite size and any continuous 
function with a bounded derivative. 

2. Resource Efficiency: This encompasses a number of dimensions that measure the re­
sources required to learn concepts that are learnable by the algorithm. 

(a) Learning Rate: This is the speed at which classification accuracy increases during 
training. It can be measured in many ways, including by recording the num­
ber of instances required to attain a given accuracy in an application domain. 
Alternatively, the number of attribute references can be counted. Learning rate 
is a more useful indicator of the performance of the learning algorithm than is ac­
curacy for finite-sized training sets. It is often visually described using a learning 
curve. 

(b) Accuracy: This is the concept descriptions' prediction accuracy. It can be mea­
sured by testing on the training set itself (e.g., resubstitution estimates, recent 
training instances only, etc.) or by testing on a set of instances separate from the 
ones used during training (e.g., test sampling, cross-validation, etc.). I will use 
only the second method to measure accuracy. 

( c) Processing Costs: These are the costs involved with processing training instances. 
This includes a measure of the effort required to update concept descriptions, 
which is a relatively simple task for IBL algorithms but can be complex for algo­
rithms that maintain large abstractions. 

( d) Storage Requirements: This refers to the size of the partial concept description. 
For IBL algorithms, this usually means the number of saved instances used for 
classification decisions. 

3. Psychological Plausibility: This refers to the learning algorithm's ability to simulate 
behavior exhibited by humans (or, in some cases, other biological organisms). A psy­
chologically plausible learning algorithm is one that exhibits many traits associated 
with humans and few others. 

2.5 Chapter Summary 

This chapter described a general framework for IBL algorithms, showed how a simple 
algorithm instantiates this framework, and summarized the set of dimensions that will be 
used to measure the performance of IBL algorithms in the remainder of this dissertation. In 
effect, this chapter sets the stage for Chapters 3 through 7 of this dissertation. Chapter 3 
addresses the dimension of generality. It describes mathematical analyses for IBl. Proofs will 
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show that, for any value of k and any dimensionality, IBl converges to a close approximation 
of the target concept with high probability for a large class of target concepts and functions 
with respect to the size of the training set. Chapter 4 describes three extensions of !Bl and 
evaluates their ability to reduce storage requirements, tolerate noisy training data, and learn 
relative attribute relevances. Chapter 5 then describes parametric studies of !Bl 's extensions 
and evaluates alternative instantiations for their framework component functions. Chapter 6 
relates the IBL framework to cognitively plausible exemplar-based models of categorization. 
Finally, Chapter 7 reviews related IBL algorithms in terms of their contributions to the IBL 
framework. 
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Chapter 3 

Mathematical Analyses 

In this chapter I will mathematically examine the dimension of generality to determine 
which assumptions guarantee that IBL algorithms will converge. My goal is to prove that, 
under certain restrictions, IBL algorithms require only a polynomial number of instances 
to learn a large class of concepts. However, the analyses presented in this chapter are 
limited. First, they assume that all predictor attributes are numeric-valued, although IBL 
algorithms can also process symbolic-valued predictor attributes. This is in itself not unusual; 
most analyses on the convergence properties of instance-based learning algorithms in the 
pattern recognition literature have ignored symbolic-valued attributes. Second, the following 
analyses yield only worst-case bounds for the number of examples required to learn concepts. 
Although average-case analyses can often be more useful, few researchers have been able to 
report progress on this difficult topic, and then only for relatively simple learning algorithms 
(e.g., Pazzani & Sarrett, 1990). Finally, these analyses are only for the IBl algorithm, 
although they apply to all values for k (i.e., the number of most similar instances used 
to derive a prediction) and instance spaces of any dimensionality. More elaborate IBL 
algorithms are empirically evaluated in Chapter 4. 

Marc Albert and Dennis Kibler were primarily responsible for developing the proofs 
described in this chapter, which are extensions of the ones described in (Kibler, Aha, & 
Albert, 1989) and (Aha, Kibler, & Albert, in press). The significant contributions of these 
mathematical analyses are that (1) the !Bl algorithm is proven to be applicable to a iarge 
class of concepts and numeric functions, (2) the upper bound on the number of instances 
that it requires to PAC-learn a target concept is proven to be polynomial in the size of the 
target concept's boundary, and (3) this bound is proven to be polynomial in the magnitude 
of the target function's slope for numeric prediction tasks. 

The analysis is based on Valiant's (1984) probabilistic framework for the study of learning 
algorithms, which is known as the PAC-learning model. This model and related predeces­
sor models for studying algorithms similar to IBL algorithms are described in Section 3.1. 
Section 3.2 then introduces definitions and lemmas that are used in the theorems pre­
sented in Section 3.3. Problems with analyzing other IBL algorithms, including instance­
averaging algorithms (e.g., Sebestyen, 1962; Kohonen, 1986; Bradshaw, 1987), are discussed 
in Section 3.4. 

34 
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3.1 Style of Analysis 

This section briefly surveys previously reported mathematical analyses of IBL (and simi­
lar) algorithms, summarizes the Valiant (1984) model, motivates why this model was chosen 
to analyze IBL algorithms, and highlights how the following analyses depart from the cus­
tomary use of Valiant's model. 

Instance-based learning algorithms were derived from the nearest neighbor (NN) and 
k-nearest neighbor (k-NN) classification algorithms, which assign a classification to an in­
stance based on the classifications of the most similar or set of k most similar previously 
processed instances. These classification algorithms are nonparametric (Fukunaga, 1972) in 
that they are applicable in situations when the distributions of instances is not restricted to 
a specific parametric family (e.g., unimodal). Nonparametric algorithms directly compute 
classification decisions rather than estimate parameter settings for known density functions 
and use them as the basis for classifications. This is useful for such nonparametric problems 
as those involving multimodal densities. These characteristics make NN and k-NN attractive 
for investigation. 

The earliest published investigation on classification algorithms of the NN and k-NN 
variety was reported by Fix and Hodges (1951; 1952). They investigated the performance of a 
k-NN type of algorithm for both infinite- and small-sized training sets. Subsequently, several 
other researchers noted the appeal of the nearest neighbor algorithm. However, the first 
analytic results in the nonparametric case, for either infinite- or finite-sized training sets, was 
reported by Cover and Hart (1967). They were interested in evaluating the accuracy of NN in 
comparison with all other classification algorithms. Given complete information concerning 
the joint probability densities of all instances in an instance space, the optimal strategy for 
classifying instances is the Bayes decision strategy. That is, this strategy, which is described 
in more detail in Section section:relation-pattern-recognition, minimizes the probability of 
classification error. Cover and Hart showed that NN's probability of classification error was 
less than twice that of the Bayes optimal strategy. Therefore, it is less than twice the error 
rate of any decision algorithm. Subsequently, Duda and Hart (1973) showed that, with 
increasing odd values for k, k-NN's error rate quickly approaches the optimal Bayes rate, 
becoming identical with it when k reaches infinity. 

Although these results show that NN is a competent classifier, they assumed that the 
number of stored instances was infinite, which rarely occurs in practice. Also, previous 
investigations of these classification algorithms did not determine how many instances are 
required to assure that these classification algorithms will yield acceptably good classifica­
tion decisions. Hart (1968) posed this question to his readers after his introduction of the 
condensed nearest neighbor (CNN) algorithm. The analyses described in this chapter are 
used to answer his question in Section 4.2. 
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Our analysis employs Valiant's (1984) probabilistic model for investigating learnability 
issues. This model states that a class of concepts is polynomially learnable from examples 
if at most a polynomial number of instances1 is required to generate, with a certain level 
of confidence, a relatively accurate approximation of the target concept. This definition of 
learnability is more relaxed than the definitions used in most earlier studies, which required 
that the generated concept descriptions be completely accurate with 100% confidence. 

The classes of concepts most frequently studied using Valiant's model have involved 
Boolean formulae of n variables (e.g., DNF, CNF, decision lists, and their variants). The 
target attribute was assumed to have two values - positive and negative - corresponding 
to concept members and nonmembers respectively. This model does not specify learning 
algorithms for learnable concept classes. It only confirms whether there exists a learning 
algorithm such that, under any fixed probability distribution for the instances, can learn a 
good approximation of any concept in a given concept class in polynomial time with high 
confidence. Definition 3.1 formalizes this notion of learnability. 

Definition 3.1 A class of concepts C is polynomially learnable iff there exists a polynomial 
panda learning algorithm A such that, for any 0 < e, 5 < 1, if at lea.st p(;, t) positive and 
negative instances of a concept C E Care drawn according to an arbitrary fixed distribution, 
A will generate, with confidence at least (1 - 5), an approximation of C whose probability 
of error is no more than e. Moreover, A will halt in time bounded by a polynomial in the 
number of instances. 

This definition states that the approximation generated does not have to be perfect, but 
only with inaccuracy bounded by e. Also, A is not required to always generate sufficiently 
accurate concept descriptions (i.e., within e), but must do so only with probability at least 
(1 - 5). Thus, this is called the PAC-learning model (probably, approximately correct). 
Finally, the concept class C and the space of hypotheses generated by A are not required to 
be identical. For example, Pitt and Valiant (1986) showed that k-term-DNF is learnable by 
k-CNF. 

Many classes of concepts are PAC-learnable when C matches the space of hypotheses 
generated by A. For example, Valiant (1984) showed that the class of concepts representable 
by k-CNF (for all k) is PAC-learnable from positive examples only, Rivest (1987) showed 
that the class of k-decision lists is PAC-learnable, and Haussler (1986) showed that the class 
of internal disjunctive formulae is PAC-learnable. Many proofs have also been published that 
show which classes of concepts are not PAC-learnable (Pitt & Valiant, 1986; Kearns, Li, Pitt, 
& Valiant, 1987a). Finally, Blumer, Ehrenfeucht, Haussler, and Warmuth (1989) extended 
Valiant's model to learning classes of concepts whose predictor attributes are numeric-valued. 

Valiant's model for analysis trades off accuracy for generality. It is extremely general; it 
applies to any fixed distribution. Thus it is said to be distribution-free. However, the number 

1That is, polynomial with respect to the parameters for confidence and accuracy. 
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of instances required to PAC-learn concepts is a loose upper bound that could be tightened, 
for example, by placing restrictions on the set of probability distributions to be analyzed. 
That is, this learnability model is frequently used to determine how many instances are 
required to PAC-learn a class of concepts C, but the result is indicative of only the concept 
in C that is most difficult to learn and the probability distribution that results in the slowest 
possible learning rate. Also, it does not specify which algorithm can PAC-learn a class of 
concepts, but only that one exists (although some authors do present an example algorithm 
that can PAC-learn the target class of concepts). 

Therefore, many researchers have adapted the model to their own needs by adding re­
strictions or analyzing a specific set of learning algorithms. For example, Li and Vitanyi 
(1989) showed that several more general classes of concepts are learnable under Valiant's 
model once the distribution-free assumption is replaced with a simple distribution assump­
tion. Kearns, Li, Pitt, and Valiant (1987b) have also discussed distribution-specific results. 
Littlestone (1988) used Valiant's model to analyze a specific learning algorithm, one that 
incrementally learns Boolean functions. Similarly, Valiant (1985), Haussler (1987), Rivest 
(1987), and Angluin and Laird (1988), have also examined specific learning algorithms using 
this model. 

The analyses presented in this chapter enforce similar restrictions on the use of the 
PAC-learning model. In particular, restrictions are placed on the set of allowable probability 
distributions of the instances in the instance space. Also, the analyses investigate the capa­
bilities of a specific learning algorithm, IBl, rather than focus on the learnability of concept 
classes in general. Finally, the predictor attributes are assumed to be numeric-valued and 
noise-free. 

Section 3.3.2 describes which classes of numeric functions are learnable by IBl. Few 
researchers have investigated the learnability of numeric functions. This is one of the more 
novel contributions of this chapter to the literature on computational learning theory. 

With these restrictions in place, the proofs in Section 3.3 show that IBl can learn a class 
of concepts with an infinite Vapnik-Chervonenkis (VG) dimension (Vapnik & Chervonenkis, 
1971). The VC dimension of a class of concepts is explained by the following two definitions. 

Definition 3.2 A set S C X of instances in an instance space X is shattered by a class C 
of concepts if, for every subset U C S of instances, there exists a concept description C E C 
such that C yields positive for instances in U and negative for instances in S - U. 

That is, a class C of concepts shatters a set X of instances if, for each subset S C X, a 
member of C perfectly classifies instances according to whether or not they are in S. 

Definition 3.3 The VG dimension of a non-empty class of concepts C is the cardinality of 
the largest set that is shattered by C. 
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Blumer and his colleagues (Blumer et al., 1986) proved that a concept class C is learnable 
with respect to the class of all probability distributions iff C has a finite VC dimension. The 
theorems in Section 3.3.1 show that IBl can learn the class of concepts describable by a 
finite union of closed hyper-curves of finite size, which has infinite VC dimension. This 
apparent contrary result is easily explained. Whereas Blumer et al. 's result is distribution­
free, the theorems in Section 3.3.1 place restrictions on the class of allowable probability 
distributions. 

3.2 Coverage Lemmas 

This section details four lemmas that are used to help prove the theorems described in 
Section 3.3, which concern the polynomial-time learning capabilities of IBl. These lemmas 
establish the number of training instances in a training set S that are required to give, with 
high confidence, a "good coverage" of an instance space. That is, they ensure that, for all 
instances x in the space, except for those in regions of low probability, there is an instance 
(or set of k instances) in S that is sufficiently similar to x (i.e., their similarity is above a 
threshold). 2 This information will be used in the learnability theorems to put a bound on 
IBl 's number (or amount) of prediction errors. 

These lemmas differ in terms of their generality. The first lemma applies to instance 
spaces with one dimension, the second applies to spaces with two dimensions, and the third 
applies to spaces with any number of dimensions. The fourth lemma extends the third to 
any value for k (i.e., the number of most similar instances to use for predictions of target 
values). All of the predictor attribute dimensions are assumed to be numeric-valued. 

The set of variables used in the definitions, lemmas, and proofs are summarized in 
Table 3.2. The first two variables are normally used in the PAC-learning model. The 
other variables refer to the notion of (a, 1)-nets, which are introduced in the following two 
definitions and are used in the proofs of the lemmas and theorems in this chapter. 

Definition 3.4 The a-ball about an instance x in ~d is the set of instances within distance 
a of x: {y E ~djdistance(x,y) <a}. 

Definition 3.5 Let X be a subset of ?Rd with an arbitrary but fixed probability distribution. 
A subset S ~Xis an (a, 1)-net for X if, for all x in X, except for a set S~a with probability 
less than 1, there exists an s E S such that distance(s, x) < a. Figure 3.2 displays an 
example (a, 1)-net for the unit interval domain, where a is set to 0.1. 

The definition of an (a, 1)-net applies to any probability distribution. There are many 
distributions such that, if a large set of instances was generated according to the distribution, 

2In this chapter, I will assume that similarity is defined as the inverse of Euclidean distance. 
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Table 3.1: Key to some of the variables used in the proofs. 
Name 

E (tolerance) 

5 (confidence) 

s 

a (raw error) 

0 

Description 
The upper bound on the probability of prediction error. 

(1 - 5) is the lower bound on the probability that the generated 
concept description's probability of prediction error is less than 
E. 

A sample set, or training set, from an instance space. It will 
always be assumed to be an (a, 1)-net. 

The set of instances in the instance space that are guaranteed 
to be within distance a of some instance in S. 
The set of instances in the instance space that are not guaran­
teed to be within distance a of some instance in S. 
The upper bound on the distance between an instance in S<cx 
and an instance in S. 
The upper bound on the probability that an arbitrary instance 
in the instance space is in S<-r· 

I • •I• I• • I• 
0.2 0.4 0.6 0.8 1 
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Figure 3.1: An example (a, 1)-net for the unit interval where a = 0.1 and 1 = 0. The 
training instances are marked by the black circles. Every instance along the interval is 
within 0.1 of some training instance. 

some of the instances in the instance space would have no highly similar neighbors in the 
generated set. This set of "lonely" instances will always be referred to as S~°'. 

The following proof shows that a sufficiently large random sample from the unit interval 
will probably be an (a, 1)-net. 

Lemma 3.1 Let 0 < a,/, 5 < 1. Then there exists a polynomial p such that a random sam­
ple S containing N > p( ~' ~' t) instances from [O, 1], drawn according to any fixed probability 
distribution, will form an (a,1)-net with confidence at least (l - 5). 

Proof 3.1 Let a,/, and 5 be arbitrary positive numbers less than 1 and let P be the fixed 
distribution of the instances. We prove this lemma by partitioning the unit interval into m 
equal-lengthed sub-intervals (i.e., the sub-intervals are disjoint and their union exhausts the 
unit interval). Let a > ! . This ensures that the every instance in a sub-interval is within 
a of every other instance in that sub-interval because the length of each sub-interval is ~· 
However, the proof is simplified, without loss of generality, if we set a= ! . 
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The probability of a sub-interval is the probability that a randomly-selected instance 
in the unit interval, drawn according to P, lies in it. By selecting enough instances we 
assure that, with high probability, each sub-interval of sufficient probability will contain at 
least one of the selected instances. Let S<a be the set of sub-intervals [x;, x;+i] such that 
Pr([x;, x;+l]) ~ ;;. These a.re the sub-intervals that will contain at least one instance from 
the sample. Let S?.a be the set of the remaining sub-intervals. Note that the summed 
probability of the sub-intervals in S?.a is Pr(S?. 0 ) < m x 1/m =I· 

Now we want to determine a lower bound for N, the number of sample instances required 
to ensure, with probability at least (1-5), that there is a sample instance in each sub-interval 
in S<o· The probability that an arbitrary instance i E [O, 1] selected according to P will not 
lie in some selected sub-interval in S<o is at most (1 - ;;). The probability that none of 
the N sample instances will lie in a selected sub-interval in S<o is at most (1 - ;;)N. The 
probability that any sub-interval in S<o is excluded by all N sample instances is at most 
m(l - ;; )N. 

At this step of the proof, it is convenient to reformulate this expression as a simpler ex­
pression of at least equal value. In doing so, the upper bound on this probability will be loos­
ened, but the comprehensibility of the eventual result is substantially improved. Specifically, 
I will show that 

The steps proceed as follows: 

I N -NJ 
m(l - -) < me m • 

m 

m(l - J_)N 
m 

(1- J_)N 
m 

ln(l - J_ )N 
m 

Nln(l-J_) 
m 

ln(l-J_) 
m 

( I ) -1 1 I 2 1 I 3 
lnl-m =-;:;;-2(m) -3(m) -··· 

? -NJ 

< me m 

? -NJ 

< e m 

? 
lne 

-NJ 

< m 

? -N1 
< 

m 
? -1 
< 

m 

< 
-1 
m 

This probability can be forced to be small by setting it to be less than 5. N is then solved 
for as follows: 

-NJ 
me m < b 

-NJ b 
e m < m 
N1 b 

< ln(-) 
m m 
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m 8 
N > --ln(-) 

I m 
m m 

N > :yln(-;f) 

1 1 
N > -ln(-) 

O:{ 0:8 
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Consequently, with probability at least (1-5), each sub-interval in S<a. contains some sample 
instance. Also, the total probability of all the sub-intervals in S>a. is less than 1m = /· Since 

- m 

each instance of [O, 1] is therefore in some sub-interval of S<a., except on a set of probability 
less than /, then, with probability at least (1 - 8), an arbitrary instance of [O, 1], selected 
according to the given probability distribution, is within o: of some sample instance (except 
on a set of probability less than /). II 

Since all attribute dimensions are normalized by IBL algorithms, this proof immedi­
ately generalizes to all bounded one-dimensional instance spaces whose predictor attribute 
is numeric-valued. 

Lemmas 3.2 and 3.1 are identical except that the latter applies to two-dimensional spaces. 
It is detailed here to convince the reader that the coverage lemma will extend to ?Rd, which 
is later addressed by Lemma 3.3. 

Lemma 3.2 Leto:, 5, and r be fixed positive numbers less than 1. There exists a polynomial 
p such that a random sample S containing N > p(~, ~' t) instances from {0-1,0-1}, drawn 
according to any fixed probability distribution, will form an (o:, 1)-net with probability at least 
(1 - 5). 

Proof 3.2 This lemma is proven by partitioning the unit square into m 2 disjoint sub-squares 
of equal area. Let the diagonal of each sub-square have length less than a. This ensures that 
all pairs of instances in the sub-square are within distance o: of each other. This proof ensures 
that, with high confidence, at least one of the N sample instances lies in each sub-square of 
sufficient probability. 

Let m = rv'2/o:l (We assume, without loss of generality, that rv'2/o:l > v'2/a.) Let 
S<a. be the set of sub-squares with probability greater than or equal to 1/m2 • Let S?:.a. be 
the set of remaining sub-squares, which will therefore have summed probability less than 
~m2 = I· The probability that an arbitrary instance i E [0-1,0-1] will not lie in some 
selected sub-square in S<a. is at most 1 -1/m2 • The probability that none of the N sample 
instances will lie in a selected sub-square in S<a. is at most (1 - I /m2)N. The probability 
that any sub-square in S<a. is excluded by all N sample instances is at most m 2(1-1 /m2)N. 
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As in Lemma 3.1, it is convenient to reformulate this expression by using a simpler one 
with a higher value, even though this loosens the upper bound we will derive for the number 
of instances required to yield a (a, 1)-net. In this case, we want to show that 

This can be shown as follows: 

m2(1- .]_)N ? 2 -~J < me m 
m2 

(1-.]_)N 
? -N;r 
< em 

m2 

ln(l - .]_ )N 
? ln e -:;i < m2 

I ? -N1 
Nln(l - -) < m2 m2 

I ? -1 
ln(l - -) < m2 m2 

I -1 1 I 2 1 I 3 ? -1 
ln(l - -) = - - -(-) - -(-) - · · · < m2 m2 m 2 2 m 2 3 m 2 

This probability can be forced to be small by setting it to be less than 8. N can then be 
solved for as follows: 

2 -N; 
me m < 8 

~ 8 
em < m2 
-N1 8 

< ln-
m2 m2 

N 
m2 m2 

> -ln-
I 8 

N 
r~l2 r~l2 

> -°'-In-°'-
I 8 

Consequently, with probability at least (1- 8), each sub-square in S<a contains some sample 
instance of S. Also, the total probability of all the sub-squares in S>a is less than (I /m2 )m2 = 
I· Since each instance of (0-1,0-1] is in some sub-square of S<a, except for a set of probability 
less than 1, then, with confidence at least (1- 8), an arbitrary instance of (0-1,0-1] is within 
a of some instance of S (except for a set of small probability). • 

This proof extends to any bounded two-dimensional space. Lemma 3.3 emerges from the 
pattern seen in these first two lemmas. 



A Study of Instance-Based Algorithms 43 

Lemma 3.3 Let a, h, and; be fixed positive numbers less than 1. There exists a polynomial 
p such that a random sample S containing N > p(~, ~' t) instances from a bounded subspace 
of ~d drawn according to any fixed probability distribution, will form an (a, ;)-net with 
probability at least ( 1 - h). 

Proof 3.3 Similar to the proofs for Lemmas 3.1 and 3.2. In this case, it can be shown that 

• 
Since IBL algorithms normalize the given attribute dimensions, Lemma 3.3 applies to any 
d-dimensional instance space. 

The first three lemmas assume that the value of k is one. That is, they assumed that 
only the most similar stored instance is used to derive predictions of target values. The 
following lemma extends Lemma 3.3 to k 2:: 1. The proof works by ensuring that there are 
at least k training instances in each sub-region of the partition. This will require that the 
confidence, represented by (1 - h), decreases with increasing values of k. 

Lemma 3.4 requires an extension to the definition of an (a, ;)-net. 

Definition 3.6 Let X be a subset of ~d with an arbitrary but fixed probability distribution. 
A subset S ~Xis an k-(a, ;)-net for X if, for all x EX, except for a set S~a with probability 
less than ; , there exists at lea.st k instances s E S such that distance( s, x) < a. 

Lemma 3.4 Let a, h, and; be fixed positive numbers less than 1. There exists a polynomial 
p such that a random sample S containing N > p( ~' ~, t) instances from ~d drawn according 
to any fixed probability distribution, will form a k-(a,;)-net with probability at least (1- h). 

Proof 3.4 This proof ensures that, with high confidence, at lea.st k of the N sample instances 
lies in each hyper-square of sufficient probability. 

This lemma is proven by partitioning a bounded subset of ~d into md disjoint hyper­
squares of equal area, each with diagonal (i.e., the line segment joining the two most distant 
instances in the hyper-square) less than a. This ensures that all pairs of instances in each 
hyper-square are within distance a of each other. 

The value for m is found using the Pythagorean Theorem, which shows that m = ['If' . 
(We assume, without loss of generality, that rv'd/al > Vd/a.) Let S<a be the subset 
of hyper-squares with probability greater than or equal to ;/md. Let S>cr be the set of 
remaining hyper-squares, which will therefore have summed probability less -than ;;amd = /. 
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The probability that arbitrary instance i in a bounded subset of 3td will not lie in some 
selected hyper-square in S<a is at most 1 - 1/md.. The probability that none of the N 
sample instances will lie in a selected hyper-square in S<a is at most (1 - 1/md)N. The 
probability that any hyper-square in S<a is excluded by all N sample instances is at most 
md.(l - 1/md.)N. 

As in the previous lemmas, it is convenient to reformulate this expression by using a 
simpler one with a higher value, even though this loosens the upper bound to be derived for 
the number of instances required to form a k-(a, 1)-net. In this case, it can be shown that 

md(l - I /mdt < mde-N-y/ma. 

This probability can be forced to be small by setting it to be less than 8'. The value of 8 
will later be solved for in terms of 8'. 

N can be solved for as in the previous lemmas. The resulting inequality is 

rfi1 d rfi1d 
N > -°'- ln -°'-. 

I 8' 

Consequently, with probability at least (1 - 8'), each hyper-square in S<a contains some 
sample instance of S. Also, the total probability of all the sub-squares in S>a is less than 
(r/md.)md =I· Since each instance of a bounded subset of 3td is in some hyper-square of 
S<a, except for a set of probability less than ""(, then, with confidence at least (1 - 8'), an 
arbitrary instance of this bounded subset is within a of some instance of S (except for a set 
of small probability). 

This process needs to be repeated k times. In each case, the set S>a is the same since 
the probability distribution (and, therefore, the set of hyper-squares with low probability) 
is the same. This yields the following inequality for assuring that k training instances are 
within a distance of each instance in S<a: 

k rfil d !ill d 
N> la ln-0 -

/ 8' 

Finally, 8' must be solved for in terms of 8. This can be done as follows: 

(1 - 8'l 1 - 8 
1 - 8' = ~1 - 8 

1- ~l - 8 = 8' 

Substituting this expression for 8', this yields 

kffild rfi1d. N> a ln--a __ 
I 1 - ~1 - 8 

• 
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Thus we are guaranteed that, by picking enough random samples, we will probably get a 
good coverage of any domain. However, the number of samples required to yield k-(o:, 1)­
nets (where k ;:::: 1) increases exponentially with the dimensionality of the instance space. 
This highlights the first problem addressed in Chapter 4: storage reduction. Methods for 
reducing the perceived dimensionality of the instance space are detailed in Section 4.4. 

3.3 Convergence Theorems 

This section details theorems that show that IBl can learn a large class of concepts and 
numeric functions in polynomial time. However, there are several classes of concepts that 
IBl will fail to learn. For example, it is unable to learn target concepts whose predictor 
attributes are logically inadequate for describing it (e.g., the concept of even numbers given 
positive and negative instances whose only attribute is their integer value). The proofs in 
this section show that IBl can PAC-learn two restricted but general classes of concepts. 

First, Section 3.3.1 describes theorems concerning IBl's ability to predict symbolic val­
ues. The proofs make a statistical assumption on the distributions of training sets, which 
requires a small extension of the PAC-learning model. They also make geometric assump­
tions to constrain the target concept. Rosenblatt (1962) demonstrated that if a concept is an 
arbitrary hyper-half-plane (i.e., the set of instances on one side of a hyper-plane), then the 
perceptron learning algorithm is guaranteed to converge. The proofs analyzing IBl 's ability 
to predict symbolic values use a more general geometric assumption: they prove that the 
class of concepts describable by a finite union of closed hyper-curves of finite size is PAC­
learnable by IBl. This may be the same requirement C4 (Quinlan, 1987), PLS (Rendell, 
1988), and back-propagation (Rumelhart et al., 1987) need to ensure that target concepts 
are learnable. Although they may have certain restrictions concerning the shape of their 
concept descriptions (e.g., a concept description formed by a decision tree that uses only 
single-attribute splits must consist of a union of hyper-rectangles), any concept description 
formed by an IBL algorithm can be closely approximated by a concept description generated 
by any of these algorithms. 

Section 3.3.2 details the theorems concerning IBl 's ability to predict numeric values. The 
corresponding proofs show that IBl can learn the class of continuous, real-valued numeric 
functions with bounded slope in polynomial time. The PAC-learning model has rarely been 
used to address the issue of learning numeric-valued functions. Therefore, a substantially 
different definition of polynomial learnability is used in Section 3.3.2, although it preserves 
the spirit of Valiant' s original model. 



46 David W. Aba 

3.3.1 Convergence Theorems: Predicting Symbolic Values 

This section details convergence theorems for the IBl algorithm. The following extension 
of the definition for polynomial learnability will be used. 

Definition 3. 7 A class of concepts C is polynomially learnable from examples with respect 
to a class of probability distributions P iff there exists an algorithm A and a polynomial p 

such that for any 0 < €, 8 < 1, and any C E C, if more than p( ~, t) examples are chosen 
according to any fixed probability distribution PEP, then, with confidence at least (1- 8), 
A will output a hypothesis for C that is a member of C which differs from C on a set of 
instances with probability less than €. 

This definition differs from Valiant's (1984) original model in that the class of allowable 
probability distributions P is constrained. 

Theorem 3.1 describes the relationship, for a particular class of concepts, between a 
target concept C and the concept description approximation C' converged on by IBl when 
the value of k is 1 and the dimensionality d is 2. Theorem 3.2 repeats Theorem 3.1 with 
k 2::: 1 and arbitrary d. Finally, Theorem 3.3 adds constraints so that these theorems also 
imply convergence in terms of the class of allowable probability distributions. This allows us 
to show that IBl can PAC-learn a large class of concepts, namely those describable as the 
finite union of finite-sized regions bounded by closed hyper-curves with finite hyper-length. 

A few more definitions are needed for the analysis. Figure 3.3.1 illustrates these defini­
tions. 

Definition 3.8 For any a > 0, let the a-core of a set C be all those instances of C such 
that the a-ball about them is contained in C. 

Definition 3.9 The a-neighborhood of C is the set of instances that are within a of some 
instance of C. 

Definition 3.10 The set of instances C' is an (a,1)-approximation of C if, ignoring some 
set S"?.a with probability less than /, it contains the a-core of C and is contained in the 
a-neighborhood of C. 

Note that, if the a-neighborhood of a set of instances contains the entire space, then that 
set is an (a, 0)-net for this space. 

The following theorem describes how accurately IBl 's derived concept description ap­
proximates the target concept. In particular, the IBl algorithm converges (with probability 
at least (1 - 8)) to a concept which, except for a set of instances with probability less than 
/,lies between the a-core and the a-neighborhood of the target concept. Theorem 3.1 then 
shows that IBl can polynomially learn any concept describable as a union of any regions 
bounded by a closed curve in the unit square [0-1,0-1]. 
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an a-approximation of C 

Boundary of C's a-core 

Boundary of C 

Boundary of C's a-neighborhood 

Figure 3.2: Exemplifying some terms used for analyzing learnability. This instance space 
has two numeric-valued attributes. 

Theorem 3.1 Let C be any region bounded by a closed curve in {0-1,0-1}. Given 0 < 
a, 8, / < 1, then the !Bl algorithm with k = 1 converges in polynomial time to C', where 

,. 
(a-core(C) - S>o:) ~ (C' - S>o:) ~ (a-neighborhood(C) - S>o:) - - -

with probability at least (1 - 8), where S?:.o: is a set with probability less than I. 

r~l2 r:.:::i:F Proof 3.1 Let 0 < a,8,1<1. Lemma 3.2 states that, if N > ~ln~, then any N 
randomly-selected training instances will form an (a, 1)-net (with probability at least ( 1 - 8) 
for C. Let S?:.a be the set of instances in [0-1,0-1] that are not within a of one of the N 
instances in the training set. 

By definition, C' is the set of instances that the !Bl algorithm predicts will belong to C. 
More precisely, C' is the set of instances whose nearest (i.e., most similar) training instance 
is in C. 

Two inclusions need to be proven. The first inclusion to prove is to show that, excluding 
the instances of S?:.a, the a-core of C is contained in C' (and thus in C' - S?:. 0 ). Let p be an 
arbitrary instance in the a-core of C not in S?:.o: and let s be its nearest training instance. 



48 David W. Aha 

Since the distance between s and p is less than a and p is in the a-core, then s is also in 
C. Thus s correctly predicts that p is a member of C. Equivalently, this shows that p is a 
member of C'. Consequently, (a-core (C) - S~0 ) ~ (C' - S~cr)· 

The second inclusion states that C' - S~cr is contained in the a-neighborhood of C. This 
can be proven by showing that, if p is outside the a-neighborhood of C, then p is outside 
of C' - S~cr· Let p be an arbitrary instance outside the a-neighborhood of C and let s be 
its most similar neighbor. If p is not in S~"'' then s is within a of p, so s is outside of C. 
In this case, s correctly predicts that p is not a member of C. Since no instance outside the 
a-neighborhood of C, excluding instances in S~"'' is predicted by C' to be a member of C, 
then (C' - S~a) ~ (a-neighborhood(C) - S~a)· ll 

Pictorially, this proof guarantees that, given a confidence, if a sufficient number of training 
instances are available (polynomially bounded), then the approximation C' of C is contained 
in the a-neighborhood of C and contains the a-core of C, ignoring a set of probability less 
than I· Thus there are exactly two situations that could occur that lead to prediction errors 
(i.e., where C' could falsely classify p): (1) when p E a-neighborhood of C and p ~ a-core 
of C or (2) when p E S~a· 

The following theorem extends this result to ?Rd and k ~ 1. 

Theorem 3.2 Let C be any region bounded by a closed curve in a bounded subset of ~d. 
Given 0 < a, 5, I < 1, then the !Bl algorithm with k ~ 1 converges in polynomial time to 
C', where 

(a-core(C) - S>a) ~ (C' - S>a) ~ (a-neighborhood(C) - S>a) - - -

with probability at least (1 - 5), where S~°' is a set with probability less than /. 

Proof 3.2 Let 0 < a, 5, I < 1. Lemma 3.4 states that, if 

kr~1d r~1d 
N> ln ~' I 1- 1-8 

then any N randomly-selected training instances will form a k-(a, 1)-net for C (with prob­
ability at least (1 - 8)). Let S~a be the set of instances in a bounded subset of ~d that are 
not within a of k of the N training instances. 

By definition, C' is the set of instances that the !Bl algorithm predicts will belong to 
C. More precisely, C' is the set of instances whose k nearest (i.e., k most similar) training 
instances are in C. 

Two inclusions need to be proven. The first inclusion to prove is to show that, excluding 
the instances of S°?.°', the a-core of C is contained in C' (and thus in C' - S"?.°'). Let p 
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be an arbitrary instance in the a-core of C not in S?.a and let K be its set of k nearest 
(most similar) training instances. Since the distance between each s E K and pis less than 
a and p is in the a-core, then each s is also in C. Thus K correctly predicts that p is a 
member of C. Equivalently, this shows that p is a member of C'. Consequently, (a-core 
(C) - S?.a) ~ (C' - S?.a). 

The second inclusion states that C' - S?.a is contained in the a-neighborhood of C. This 
can be proven by showing that, if pis outside the a-neighborhood of C, then pis outside of 
C' - S>a· Let p be an arbitrary instance outside the a-neighborhood of C and let K be its 
set of k most similar neighbors. If pis not in S?_a, then each s E K is within a of p, so each 
s is outside of C. In this case, K correctly predicts that pis not a member of C. Since no 
instance outside the a-neighborhood of C, excluding instances in S>a, is predicted by C' to 
be a member of C, then (C' -S?.a) ~ (a-neighborhood(C) -S?.a)· • 

Notice that Theorem 3.2 does not specify what the probability is of the set on which C' 
and C differ. Rather, it only shows where and how prediction errors could occur. Some 
constraints on both the length of the boundary of C and the probability of regions of a given 
area are needed to bound this probability of error. 

The following theorem adds these constraints and, in doing so, defines E, the total prob­
ability of prediction error, in terms of a and /· It makes the arbitrary assumption that 
the amount of prediction error in the two cases described above are equal (i.e., (1) when 
p E a-neighborhood of C and p ¢a-core of C or (2) when p E S~a)· The proof shows that, 
for a large class of probability distributions, the IBl algorithm will, with high probability 
(i.e., at least (1 - 8)), converge to an approximately correct definition of the target concept 
(i.e., a (a, 1)-approximation of it) for a large class of concepts in a bounded subset of /Rd for 
d ~ 1, except for a set with a small probability (i.e., less than 1). 

Theorem 3.3 Let C be the class of all concepts in a bounded subset of ~d that consist of a 
finite set of regions bounded by closed hyper-curves of total area less than L. Let P be the 
class of probability distributions representable by probability density functions bounded from 
above by B. Then C is polynomially learnable from examples with respect to P using !Bl. 

Proof 3.3 In Theorem 3.2, if the area of the boundary of C is less than L, then the total 
area between the a-core and the a-neighborhood of C is less than 2La. Then 2LBa is an 
upper bound on the probability of that area. The total error made by C' in Theorem 3.2 
is less than 2LBa + "f· If we fix/= 2LBa = ~'then a= 4lB and the theorem follows by 
substituting these expressions for / and a into the inequality derived in Lemma 3.2. This 
yields 

N > 
k r011 d r011 d a ln ___ a;o........-~ 

I 1 - ?fl - 8 
2k r4LB#l d r4LB#l d 
--~!.___In i • 

E 1- ?fl - 0 
N > 
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This proof showed that the number of instances required by IBl to learn this class of concepts 
is also polynomial in L and B. This suggests that IBl will perform best when the target 
concept's boundary size is minimized. 

These proofs imply several additional qualitatively important statements. 

1. If the a-core is empty, then C' could be any subset of the a-neighborhood of C. (C's a­
core is empty when all elements of Care within a of C's boundary, as could occur when 
C's shape is extremely thin and a is chosen to be too large.) The IBL approximation 
of C could be poor in this case. 

2. IBl cannot distinguish a target concept from anything containing the a-core and con­
tained in its a-neighborhood. Consequently, small perturbations in the shape of a 
target concept are not captured by this approach. However, only near-boundary in­
stances will provide IBl with information concerning where the concept boundary lies. 
Instances far from the concept boundary can be ignored without damaging the accuracy 
of the approximation. This is the thesis of IB2, discussed in Section 4.2, which reduces 
storage requirements without greatly sacrificing classification accuracy by storing only 
near-boundary instances. 

3. Except for a set of size less than/, the set of false positives is contained in the outer 
ribbon (the a-neighborhood of C excluding C) and the set of false negatives is contained 
in the inner ribbon. As we will see, IB2 works by saving only those instances for 
which prediction errors occur. These instances approximate the set of near-boundary 
instances in the training set. 

4. Noisy training instances will fool IBl into thinking that part of the concept boundary 
lies nearby the noisy instance. If such instances are distant from the actual concept 
boundary, then they will be misclassified and stored by IB2. This dramatically in­
creases its storage requirements and reduces its predictive accuracy (i.e., the stored 
noisy instance can misclassify subsequently presented and nearby noise-free training 
instances. Most noisy instances are distinguished by their poor predictive accuracy 
on subsequently presented training instances. IB3, an extension of IB2 described in 
Section 4.3, uses this information to detect and remove noisy instances from partial 
concept descriptions. 

5. As the dimensionality of a target concept increases, the expected number of instances 
required to learn (closely approximate) it will increase exponentially. In particular, 
IB 1 will require exponentially more training instances to closely approximate a concept 
with linear increases in the dimensionality of the instance space. Space transformation 
methods that reduce this dimensionality will significantly increase the efficiency of IBL 
algorithms. This is the basis of IB4, which will be described in Section 4.4. 
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6. No assumptions about the convexity of the target concept, its connectedness (number 
of components or disjuncts), nor the relative positions of the various components of 
the target concepts need be made. 

The primary conclusion of these proofs is that C is polynomially learnable by the IBl 
algorithm if both the a-core and a-neighborhood of C are good approximations of C. 

3.3.2 Convergence Theorems: Predicting Numeric Values 

The PAC-learning model required only a small extension to show which class of symbolic­
valued concepts are polynomially learnable by IBL A more radical extension of the model 
is required to show which class of numeric functions is polynomially learnable. This section 
introduces the notion of PAC-learnability for predicting numeric values and proves that IBl, 
given a sufficiently-sized training set drawn according to any arbitrary fixed distribution, can 
learn the class of continuous functions with bounded slope. Theorem 3.4 establishes this for 
the situation when k ~ 1 and the dimensionality d of the instance space is 1. Theorem 3.5 
extends this to the case when d ~ 1. 

A few definitions are needed for the theorems. 

Definition 3.11 The error of a real-valued Junction f' in predicting a real-valued function 
f, for an instance x, is lf(x) - f'(x)I. 

Definition 3.12 Let f be a real-valued target function. Let B1 be the least upper bound 
of the absolute value of the slope between any two instances on the curve off. If B1 is finite 
then we say that f has bounded slope. If C is a class of functions in which each f E C has 
bounded slope, then we say that C has bounded slope. 

As an example, the class of continuously differentiable functions on [O, 1] has bounded. slope. 
As a counterexample, the function J(x) =sin(~) does not have bounded slope. 

Definition 3.13 describes the extension of the PAC-learning model assumed by the the­
orems in this section. 

Definition 3.13 Let C be a class of functions for which each f E C is a function with 
bounded slope from the unit hyper-cube in ?Rd to ?R. C is polynomially learnable from ex­
amples if there exists an algorithm A and a polynomial p such that, for any 0 ~ a, a, h < 1 
and B > 0, given an f EC with B1 ~ B, if more than p(;, ~' t, B) examples are chosen 
according to any fixed probability distribution on [O, 1]. then, with confidence at least (1-h), 
A will output an approximation of f with error less than a (except on a set of instances 
with probability less than 1). 
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The variable / denotes the same value as it did for predicting symbolic values (i.e., the 
probability of the set to be ignored). However, this definition seems unusual because € is 
missing. In this case, the set on which prediction "errors" occur is 'Y. A prediction error is 
now defined as a prediction that differs by more than a from the actual target value. 

!Bl 's method for predicting numeric values was first described in Section 2.3. Given a 
good set of training instances, !Bl can generate a piecewise linear function that is a good 
approximation to an unknown continuous function. It calculates an instance's similarity to 
all instances in a concept description, selects the k most similar instances, and predicts that 
the target value is the similarity-weighted prediction derived from those instances. 

The following theorem demonstrates that continuous, real-valued functions with bounded 
slope in the unit interval [O, l] are polynomially learnable by !Bl. Note that the class of 
functions with bounded slope includes the large class of continuously differentiable functions. 

Theorem 3.4 Let C be the class of continuous, real-valued functions on [O, l] with bounded 
slope. Then C is polynomially learnable by !Bl with k ~ 1. 

Proof 3.4 Let f be a continuous function on [O, l]. Let a,1, and 6 be arbitrary positive 
numbers less than 1. The bound Bl will be used to ensure that function f is guaranteed to 
not vary much on a small interval. 

The proof follows after assuming the training set forms a k-(a, 1)-net. Lemma 4.4 
guarantees that, if d = 1 and if 

N > k-1-ln---1-==~ 
a'1 a'(l - ~1 - 6)' 

then, with confidence at least (1 - 6), every instance of [O, 1] will be within a' of at least k 
of the selected N training instances, except on a set S?.a of probability less than 'Y· 

Let B1 be an upper bound on the slope off, let f' be the approximation (i.e., concept 
description) that IBl generates for f, and let instance x be an arbitrary instance in S<a, the 
set of instances not in S>a· The point is to ensure that the error of J', for every instance 
x E S<a, is small (i.e., le~ than a). That is, it must be shown that IJ(x) - J'(x)I <a. The 
proof will solve for a' in terms of B1 and a. 

!Bl 's approximation f' predicts that the target value of an instance x is the similarity­
weighted average of its k most similar training instance's target values. Let K be the set 
of x's k most similar training instances. Since f'(x) is a weighted-average of the values of 
the target values of each x' E K, it suffices to show that IJ(x) - f(x')I < a. If this can be 
proved, then we are guaranteed that lf(x) - f'(x)I <a. 

Because N is sufficiently large, the k most similar neighbors of x must all be within cl 
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of x. Also, we know that B1 is the upper bound on the slope between x's target value and 
the target value of x'. Thus, since 

lf(x) - J(x')I = slope(x, x') x distance(x, x'), 

then 
lf(x) - f(x')I < B1 x a'= a. 

Solving for a', we find that a'= a/ B1. Therefore, IBl will yield a prediction for x's target 
value that is within a of x's actual target value if at least 

N kB11 B1 > -- n -----'~--
a1 o:(l - ?"1 - 8) 

training instances are provided. Ill 

Notice that the above proof also shows that, for the class of continuous functions with slope 
bounded by a single constant B, the number of examples required (and consequently the 
time required) to learn any concept in the class is dependent only on the level of confidence 
and accuracy desired, and is independent of the particular element of the class to be learned. 
This permits IBl to learn concepts in the class, and know when it is safe to stop, without 
knowing the maximum value of the slope for the particular concept being learned. On the 
other hand, it requires that the value of a bound on the slope be known for the entire class 
of target concepts. 

This theorem indicates that, given an open domain, some constraints are required on 
the "wildness" of the function to ensure that the time to learn is polynomially bounded. In 
particular, looser constraints on the domain of the function are compensated for by tightening 
the constraints on how fast the function can change its value over a small interval. 

The following theorem extends Theorem 3.4 to instance spaces defined in ~d. 

Theorem 3.5 Let C be the class of continuous, real-valued functions on a bounded subset of 
~d with bounded slope. Then C is polynomially learnable by !Bl with k 2: 1. 

Proof 3.5 This theorem is identical to Theorem 3.4 except that the dimensionality is d 2: 1 
rather than d = 1. The proofs are almost identical. As before, the slope of the target 
function f is assumed to be bounded by B1. It can be shown that, if 

training instances are sampled, then, with confidence at least (1 - 8), lf(x) - f'(x)I <a is 
true for all instances x in the bounded subset of the instance space ~d (except for a set of 
instances with probability less than /). Ill 



54 David W. Aha 

Many functions have bounded slope. For example, any piecewise linear curve and any 
function with a continuous derivative has a bounded slope. Therefore, IBl can accurately 
learn a large class of numeric functions in polynomial time. However, it cannot PAC-learn 
numeric functions whose maximum absolute slope is unbounded. For example, IBl cannot 
learn f ( x) = sin(~) in polynomial time. As x approaches 0, the derivative (slope) of this 
function is unbounded. For every 0 < a < 1, there is no piecewise linear a-approximation 
of this function. 

3.4 Analyzing Other IBL Algorithms 

The preceding section is severely limited: the only IBL algorithm analyzed was IBl. This 
algorithm has several critical limitations that constrains the set of real-world applications 
for which it would be the most appropriate IBL algorithm. For example, it has high storage 
requirements. The theorems show that IBl 's storage requirements increase exponentially 
with the dimensionality of the instance space. Therefore, IBl would be a poor choice for 
applications involving multiple irrelevant attribute dimensions. 

The algorithms introduced in Chapter 4 are extensions of IBl that improve IBl 's learning 
behavior. However, they are far more complex than IBl. Consequently, they are not as 
amenable to analysis and no proofs of convergence have been constructed for them. Their 
complexities concern issues such as the presentation ordering of training instances, instance­
averaging, instance accuracy information, and attribute weights. These algorithms will be 
empirically investigated in Chapter 4 rather than mathematically analyzed here. 

It is useful to briefly examine one of these issues to demonstrate why these algorithms are 
more difficult to analyze. The theorems described in this chapter gave a good characterization 
of the classes of concepts learnable by an instance-saving IBL algorithm (IBl). The situation 
for instance-averaging IBL algorithms is more complex. Bradshaw (1987), Sebestyen (1962), 
Kohonen (1986), and several others have demonstrated that instance-averaging algorithms 
work in real domains. However, it is difficult to find any reasonable constraint on the concept 
shape that would guarantee convergence for these algorithms. 

For example, if the target concept was shaped like a ring and the learning algorithm 
was given only positive examples, then instance-averaging approaches would converge to the 
center of the mass (centroid) of the ring. Thus they would converge to an instance which 
was not even a member of the concept! Although this is an extreme example, there is always 
the possibility that an instance-averaging algorithm will converge to an instance that is not 
in the concept when its shape is not convex. 

A reasonable constraint might be that instance-averaging algorithms will converge if 
the concept is convex. However, even this strong constraint is not sufficient. Consider 
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Figure 3.3: An instance-averaging example. The darkened regions denote the sets of in­
stances that would be misclassified. 

the rectangular instance space in Figure 3.3. The boundary between positive and negative 
instances in this instance space is the diagonal delineated by the solid line. If the training 
set is ordered so that all positive instances precede all negative instances, then instance­
averaging algorithms will converge to the centroids (shown in the figure). The shaded area 
would then represent the error set for instance-averaging. 

It is not obvious how to prove which classes of concepts are polynomially learnable by 
IBL algorithms that perform instance-averaging. Empirical investigations (Chapter 4) have 
not yet confirmed that they are superior to instance-saving learning algorithms. Nor have 
they been shown to perform worse then other IBL algorithms in measures of classification 
accuracy and storage requirements. However, instance-saving algorithms seem to be more 
attractive because they are easier to analyze, are simpler, and have performed as well. 

3.5 Chapter Summary 

This chapter addressed the performance dimension of generality. Several theorems were 
detailed. They showed that IBl can learn, in polynomial time, a large class of concepts: (1) 
the class of concepts describable as a finite union of regions with finite boundary length and 
(2) the class of continuous functions with bounded slope. Extensions of the Valiant (1984) 
PAC-learning model were introduced to allow for the analysis of IBL algorithms with respect 
to a given class of probability distributions. The theorems described in this chapter are 
unusual for PAC-learning analyses in that the instance space consists only of numeric-valued 
attribute dimensions, the target concept being learned could be a numeric-valued function, 
and the focus was on a particular algorithm (IBl ). Furthermore, the proofs relied heavily on 
geometric interpretations of the instance space. However, they have been presented in a form 
that preserves the central focus of the PAC-learning model (i.e., learnability in polynomial 
time). 
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Convergence theorems have only been provided for IBl, and only for numeric-valued 
predictor attribute dimensions. !Bl is far more simple to analyze than are the other IBL 
algorithms described in this dissertation. Empirical analyses will be described in Chapter 4 
for investigations involving symbolic-valued attributes and more elaborate IBL algorithms. 
Although it is possible to show that the class of concepts learned by these algorithms is 
PAC-learnable (i.e., by some algorithm), it is difficult to generate these proofs for the specific 
algorithms detailed in Chapter 4 (Volper & Shackelford, 1987). 

The analyses presented in this chapter suggest how storage requirements could be de­
creased and how irrelevant attributes could be tolerated. These are some of the topics that 
are investigated in the next chapter, which details empirical analyses of IBL algorithms that 
are extensions of IBl. 

Chapter Acknowledgements 

Marc Albert and Dennis Kibler were primarily responsible for the development of the 
proofs described in this chapter. Dennis Volper also provided several key insights concerning 
these analyses. Thanks to Marc and Wendy Sarrett for reading and providing comments on 
earlier drafts of this chapter. 





Chapter 4 

Empirical Analyses 

Murphy's corollary: if you can analyze it mathematically, the 
algorithm is far too slow and space consumptive to work in practice. 

-Dennis Volper 

The significant contribution of this chapter is a demonstration that the IBL paradigm 
specifies algorithms for efficiently solving difficult problems associated with supervised learn­
ing tasks. In this chapter I empirically examine a comprehensive sequence of three extensions 
to IBl. Each extension addresses a specific limitation inherent in IBl that was anticipated 
by the mathematical analysis in Chapter 3. In this sense, our mathematical analyses directed 
our empirical analyses of IBL algorithms. 

The three algorithms that will be studied in this chapter are named IB2, IB3, and IB4. 
IB2 (Section 4.2) addresses the problem of excessive storage requirements. Our PAC-learning 
analyses suggested that only near-boundary instances need to be saved to distinguish where 
a concept's boundary lies when IBl is used to learn symbolic-valued concept descriptions. 
Similarly, when predicting numeric values, IBl needs to save only those instances that lie 
in areas of the instance space where the target function has a sufficiently high absolute 
slope. More generally, the most informative instances are those that lie near areas where the 
derivative of the instance space with respect to the target values is high. Given only these 
instances, IBl would still generate a reasonably accurate approximations. IB2 attempts to 
save only these instances in its partial concept descriptions. 

However, IB2 can easily be fooled. IB2 is highly sensitive to noisy instances, which 
usually tend to resemble boundary instances (or instances in areas of high absolute slope). 
Moreover, this problem isn't limited to applications with noisy instances. Noise-free instances 
can sometimes resemble noisy instances when the attributes used to describe them cannot 
perfectly distinguish concept members from non-members. IB3 (Section 4.3) is an extension 
of IB2 that corrects this problem. It allows only instances that perform well (i.e., that 
have recorded significantly good predictive accuracies on subsequently presented training 
instances) to assist in generating classification decisions. 

IB3 is also fl.awed. Like its predecessors, it assumes that the predictor attributes are 
equally relevant for predicting target values. This is often an incorrect assumption. IB4 
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(Section 4.4) is an extension of IB3 that learns the relative relevance of attributes for pre­
dicting a target attribute's values. This significantly speeds up IB3's learning rate, which, 
as the mathematical analysis hinted, decreases exponentially with linear increases in the 
number of predictor attributes. 

These three algorithms are difficult to examine mathematically due to their complex­
ity. Furthermore, mathematical analyses, which are usually restricted to simple artificial 
domains, are not especially appropriate for the goals of this chapter, which are to show 
that, the IBL paradigm specifies algorithms that can perform as efficiently as other estab­
lished algorithms in practical supervised learning applications. This chapter begins with a 
discussion in Section 4.1 concerning the scope and experimental methodology used in the 
experiments in this chapter. These experiments investigate claims for IB2, IB3, and IB4's 
learning behavior. Sections 4.2 through 4.4 summarize evidence of these algorithms' ability 
to solve their intended tasks. Finally, Section 4.5 summarizes some of the problems with 
IB4. 

Noticeably absent from this chapter are parametric studies, which are evaluations of the 
sensitivity of design choices made by algorithm designers. For example, only one setting 
for k is used in all the experiments described in this chapter (i.e., k = 1). Instead, this 
chapter focuses on task-specific solutions, simply showing that some IBL algorithms exist 
for solving well-known problems encountered in supervised learning tasks. Parametric studies 
are postponed until Chapter 5. 

4.1 Scope and Experimental Methodology 

IBl is identical to the k-nearest neighbor algorithm except that it normalizes the ranges 
of the numeric-valued predictor attributes, employs a weighted-similarity prediction algo­
rithm for numeric prediction tasks, and processes instances incrementally rather than in 
batch. Domain-independent IBL algorithms like IBl suffer from several problems that must 
be solved before they can be expected to perform well in practical learning applications. 
Breiman, Friedman, Olshen, and Stone (1984) wrote what is probably the most compre­
hensive critique of the nearest neighbor algorithm published by practitioners interested in 
learning algorithms. Their critique, taken both from the list on page 17 and from statements 
throughout their book, included the following observations: 
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1. they are computationally expensive classifiers because they save and compute similar-
ities to all training instances, 

2. they are intolerant of noise, 

3. they are intolerant of irrelevant attributes, 

4. they are sensitive to the choice of the algorithm's similarity function, 

5. there is no natural or simple way that they can use to tolerate missing attribute values, 

6. there is no natural or simple way they can use to process symbolic-valued attribute 
values, and 

7. they give little usable information regarding the structure of the data. 

These claims are probably sufficient to frighten most users from considering using a learning 
algorithm based on the nearest neighbor approach! However, Breiman and his colleagues 
didn't investigate potential solutions to these problems with the basic algorithm. Several 
of these problems with the basic approach are at least partially solvable through suitable 
extensions to the nearest neighbor algorithm. 

The algorithms introduced in this chapter are extensions of IBl that have different 
definitions for their framework components. Therefore, they can be viewed as improvements 
to the k-nearest neighbor algorithm (k;::: 1). More specifically, IB2, IB3, and IB4 represent 
efficiency improvements to IBl measured in terms of reduced storage requirements and/or 
increased learning rate, where this rate is defined as the number of instances that are required 
to attain a given classification accuracy on a set of test instances. IB2 addresses the first 
problem listed above. It is more storage efficient than IBl. IB3 addresses the second problem. 
It is both more storage efficient than IB2 and has a faster learning rate than both IBl and 
IB2 when noise exists in the training set. Finally, IB4 addresses problem numbers 3 and 
4. It tolerates irrelevant attributes by tailoring its similarity function to the application 
domain. This allows IB4 to have a faster learning rate than its predecessor IBL algorithms 
when the attributes used to describe instances vary greatly in their relevance for predicting 
target values. 

Progress has also been made on the remaining problems listed above. I described a sim­
ple method for tolerating missing attribute values in Section 2.3. However, it is a primitive 
algorithm that conveniently ignores deeper issues involved with missing values. Section 5.2.1 
presents an improved method for tolerating missing attribute values. Section 2.3 also de­
scribed a trivial algorithm for defining similarity over symbolic-valued attributes. However, 
Stanfill and Waltz (1986), among others, have already demonstrated that there exist similar­
ity functions defined for symbolic-valued attributes which support efficient learning behav­
ior. Cost and Salzberg (1990) demonstrated that this similarity function can work well on 
other applications. Finally, Salzberg (1990) described an IBL algorithm that builds hyper­
rectangular partitions of the instance space. These partitions, once ordered, resemble the 
same partitions learned by decision tree algorithms. Many researchers have argued that 
decision trees yield comprehensible concept descriptions that reveal the structure of the 
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data (Breiman et al., 1984; Quinlan, 1986a; Michie, 1990). It appears that extended IBL 
algorithms can also yield concise descriptions of concepts. 

Some of the empirical analyses described in this chapter will use artificial domains, which 
allow for the systematic variation of the settings for independent variables. These analyses 
enable studies of the affect that an independent variable's setting has on a dependent variable 
(e.g., classification accuracy as the probability of noise-corrupted training instances is var­
ied). Although it is possible to carry out these studies using databases with unknown target 
concepts (Quinlan, 1986b), the experimenter runs the risk of not knowing the specific inter­
dependencies among the characteristics that define the application domain. For example, if 
some of the attributes describing the database's instances are unknowingly irrelevant, then 
evaluations of an algorithm's sensitivity to noise added to these attributes can lead to in­
correct conclusions. However, results from studies with artificial domains do not necessarily 
reflect how algorithms will perform on databases whose instances were derived from real­
world observations. Therefore, empirical analyses with databases containing collected sets of 
instances pertaining to real-world prediction tasks will also be described. These studies will 
be used to determine whether certain domain characteristics that are typical of real-world 
databases have been overlooked. Comparisons with other inductive learning algorithms will 
also be used to evaluate the learning behavior of the IBL algorithms. 

The dependent variables examined in the empirical analyses described in this chapter 
include learning rate, storage requirements, predictive accuracy (i.e., classification accuracy 
for symbolic prediction tasks and average relative error for numeric prediction tasks), and 
the quality of the instances in the concept description, defined as the percentage of instances 
used in classification predictions that are not noisy. Independent variables will include 
the amount of training, the probability of noise among training instances, the number of 
irrelevant attributes used to describe instances, the learning algorithm, and the application 
domain. 

Several dimensions of potential empirical analysis are ignored in this chapter. This 
allows the discussion to focus on the main problem addressed by algorithms IB2, IB3, and 
IB4 respectively. The ignored dimensions include, among others, the algorithm used to 
tolerate missing attribute values, the definition of similarity for symbolic-valued attributes, 
the types of attributes used to describe instances, and the value of k (the number of most 
similar instances used to determine predictions). The settings for these dimensions will be 
held fixed in the experiments in this chapter rather than varied as independent variables. 
However, several of these variables will be investigated in Chapter 5. 
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4.2 IB2: Reducing Storage Requirements 

Breiman and his colleagues are correct; learning algorithms based on variants of the 
nearest neighbor classification strategy need to address the problem of high storage require­
ments. A critical reason for reducing storage requirements is to decrease the time required 
to make predictions, which depend on computing the similarity of a novel instance with all 
the instances stored in a partial concept description. 

4.2.1 Methods for Improving Retrieval Efficiency 

One way to alleviate this problem is to use a smart indexing strategy. For example, Moore 
(1990) used a k-d tree to index instances in his application of the nearest neighbor function 
to solve robotic manipulation tasks. A k-d tree is a binary tree such that at each depth 
a different attribute value is tested to determine which branch is to be followed. Moore 
reported O(log n) time requirements for an algorithm that locates an instance's nearest 
observed instance in a k-d tree. However, this level of performance is an artifact of Moore's 
specific applications and cannot be duplicated in general. Sproull (in press) showed that the 
number of instances in the tree must grow exponentially with k to preserve logarithmic search 
times. Sproull's empirical studies showed that, although logarithmic behavior is attainable 
for all but tiny trees, extremely large numbers of instances are required (i.e., for k = 16, 
a search of a 76,000-instance k-d tree examines almost every instance). Not surprisingly, 
Moore's k-d trees displayed logarithmic retrieval behavior because his applications involved 
using thousands of instances with low dimensionality (i.e., a low value for k). 

Moreover, this does not reduce overall storage requirements. Moore postulated that the 
size of the trees produced could be reduced by an order of magnitude if only a subset of the 
instances were saved. I agree; perhaps IB2 (detailed below) could be used to accomplish this 
task. 

Several researchers have demonstrated that, without some means of restraint, learn­
ing algorithms tend to over.fit their application domain (Sturt, 1981; Breiman et al., 1984; 
Quinlan, 1986a; Michalski et al., 1986; Clark & Niblett, 1989). Overfitting occurs when 
the concept description output by a learning algorithm relies too heavily on the assumption 
that the training data completely accounts for the idiosyncrasies inherent in the applica­
tion domain. Subsequently, several experiments showed that higher classification accuracies 
can be obtained by post-pruning lower nodes from decision trees and truncating rules that 
account for few instances. The removed parts of the concept description did not assist in 
maximizing predictive accuracy on test instances. Similar storage techniques can be used in 
IBL algorithms, which is the topic of Section section:ib2-description. 
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4.2.2 Description of the IB2 Algorithm 

The mathematical analyses in Chapter 3 showed that, although instance-based learning 
algorithms have high storage requirements, they do not always need to save all observed 
training instances to maximize predictive accuracy. In particular, only those instances nearby 
the concept boundary need be saved for this purpose when predicting symbolic values. For 
numeric prediction tasks, those instances located in areas of the space where the target 
value changes rapidly (i.e., where the second derivative with respect to the target value 
is high) should be saved. Instances that are distant from the concept boundary do not 
contain information required to obtain accurate predictions because they do not delineate 
where the concept boundary lies. This is also true for instances that are in areas where the 
target function has ; accurate numeric predictions can be obtained without reference to these 
instances. 

However, IBL algorithms are not told where the concept boundary lies or where in the 
instance space the target function varies greatly. (If this information was available, then 
the problem, that of supervised concept learning, would be solved.) One way to estimate 
the amount of prediction-related information contained in an instance is to evaluate the 
degree to which the predictions made by the concept description change when an instance is 
included in it. Since IBL algorithms do not maintain abstractions, this approach is expensive; 
it requires testing many instance's classification before and after the inclusion of the new 
instance to estimate the amount of change in the algorithm's predictive behavior. 

An alternative method for reducing storage requirements is based more closely on the 
mathematical analysis, which showed that, once given enough instances, prediction errors 
are constrained to occur only nearby the concept boundary or in areas where the numeric 
target value changes rapidly. An IBL storage reducing algorithm could possibly wait until 
it has saved sufficient numbers of instances and then discard those that would otherwise be 
classified correctly (Kibler & Aha, 1987). However, this approach is unsatisfactory since it 
saves many instances before deleting them. Instead, this behavior can be approximated by 
incrementally retaining only those instances for which predictions are inaccurate. 

This behavior describes IB2's training algorithm, which is detailed. in Table 4.1. 1 For 
symbolic prediction tasks, it saves only misclassified instances (i.e., the tolerance_threshold 
is set to 0). For numeric prediction tasks, it saves only those instances whose target value 
prediction error is above a parameterized tolerance threshold. This allows IB2 to save a set 
of instances that closely approximates those that should be saved. 

In summary, IB2's training algorithm is identical to IBl 's except that it saves only a 
subset of the training instances. Its testing algorithm is identical to IBl 's, shown in Table 2.2 

1See Table 2.1 on page 21 and Section 2.3 for a description of IB2's sub-functions that are not defined in 
Table 4.1. 
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Table 4.1: The IB2 training algorithm. 

Key: T: Training set 
P: Set of predictor attributes 
t: The target attribute 
k: Number of most similar instances used 
PCD: Partial concept description 

Train(T, P, t, k,tolerance_threshold) 
1. Set global variables 
2. for each x; E T do 

2.1 x; +-- Pre_process(x;,P) 
2.2 prediction+-- Performance(x;, P, t, k) 
2. 3 Learn( x; ,prediction,t, tolerance..thr:eshold) 

Learn( x ,prediction,t, tolerance..threshold) 
if (lxt - prediction! > tolerance_threshold) 

then PCD +-PCD u {x} 
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on page 23. The following sections examine IB2 when k = 1. Section 5.2.2 summarizes IB2's 
behavior when k ~ 1. 

4.2.3 An Examination of IB2's Learning Behavior 

Symbolic Prediction Tasks 

Figure 4.1 summarizes IB2's behavior on the training set given previously to IBl (See 
Figures 2.3 and 2.4 on pages 27 and 27). At first, IB2's behavior is identical to IBl 's because 
they both save the first six instances, which were misclassified by IB2. IB2's accuracy is 
higher than IBl 's after processing the first 25 and first 50 training instances even though 
it saved fewer instances. Although IB2 saved only 24 training instances, its accuracy after 
processing 100 training instances is almost as good as IBl 's. Its accuracy would have been 
as good as IBl's had it saved only a few more near-boundary instances. 

Although the application shown in Figure 4.1 demonstrates how IB2's accuracy can be 
nearly as good as IBl 's with only a fraction of the storage requirements, it is difficult to see 
that IB2's saved instances were primarily near-boundary instances. It is more obvious that, 
after the first few training instances have been presented, IB2 primarily saved only near­
boundary instances in the application summarized by Figure 4.2, where the two-dimensional 
target concept has only one disjunct. A clear majority of the misclassified instances lie inside 
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After 6 Instances After 25 (12 saved) After 50 (19 saved) After 100 (24 saved) 

IB2's Accuracy: 51.1 % 
IBl's Accuracy: 51.1% 

74.1% 
71.3% 

79.9% 
83.8% 

86.0% 
88.4% 

Figure 4.1: IB2's saved instances and its predicted concept boundaries after 4 points during 
the training process. In this case, the value for k was set to 1. 

+ 

+ 

+ 

Figure 4.2: The majority of IB2's saved instances are close to the concept's boundary (de­
noted by the jagged solid line). Concept members and non-members are labeled with "+" 
and "-" respectively. 

the a-neighborhood and outside the a-core of the target concept, where a's value decreases 
with training. These observations lead to an answer for Hart's (1968) question concerning 
CNN: what are its expected storage requirements?2 The expected storage requirements for 
CNN, which also saved instances primarily along concept boundaries, are polynomial in the 
size of the concept boundary. 

IB2 was evaluated on a set of seven carefully chosen applications with diverse instance 
space characterizations.3 These application domains, which are available from the University 
of California at Irvine's repository of machine learning databases and domain theories (send 
requests to ml-repository@ics.uci.edu), are briefly summarized in Table 4.2. The following 

2 As described in Chapter 7, CNN is identical to IB2 except that it cycles repeatedly through the training 
set and doesn't normalize its instances. 

3However, the majority of the attributes describing instances in these applications are Boolean- or 
numeric-valued. Section 5.2.l describes experiments with symbolic-valued attributes. 
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Table 4 2· Database characteristics .. 
Database Training Test Number of Number of 
Name Set Size Set Size Attributes Classes 

LED-7 Display 200 500 7 Boolean 10 
Waveform-21 300 100 21 Continuous 3 
Cleveland 212 91 13 Continuous 2 
Hungarian 206 88 13 Continuous 2 
Voting 305 130 16 Boolean 2 
LED-24 Display 1000 200 24 Boolean 10 
Waveform-40 300 100 40 Continuous 3 

paragraphs briefly summarizes these applications while Appendix A describes them in more 
detail. 

1. The LED-7 display domain is an artificial domain described in (Breiman et al., 1984, 
pp. 43-49). Each of the ten target concepts refers to a unique decimal digit's Boolean ' 
on/off pattern as described by a set of seven light-emitting diodes. This domain was 
chosen because it contains noise (i.e., each instance's attribute value is corrupted 
(negated) with probability 10%) and most of its attributes have high attribute rel­
evance. The experiments with this application should distinguish the behaviors of IB2, 
which I will show is sensitive t<_:> noisy data, and IB3, a noise-tolerant extension of IB2 
that is examined in Section 4.3. 

2. The Waveform-21 domain, (Breiman et al., 1984, pp. 49-55) is another noisy artificial 
domain. It is valuable for these experiments because its attributes are continuous 
rather than Boolean-valued. Furthermore, many of its attributes can be disregarded 
without sacrificing predictive accuracy. Section 4.4 will examine IB4, an extension of 
IB3 that can tolerate irrelevant attributes. IB4 should perform well on this domain 
but poorly on the LED-7 domain, where most of the attributes are highly relevant for 
predicting classifications. 

3. The Cleveland database (Detrano, et al., 1989) contains cardiological diagnoses. It is 
a less contrived database then the LED-7 and Waveform-21 artificial domains. It is 
also known to contain noise in the sense that the attributes used to describe the di­
agnoses/instances are insufficient for achieving perfect classification accuracy; Detrano 
and his colleagues reported classification accuracies of approximately 75% with this 
database. IB3's behavior should be easily distinguished from IB2's in this application 
due to its high level of noise. Some of the attributes used in this database are irrelevant; 
IB4 should perform relatively well here for this reason. 

4. The Hungarian database also contains cardiological diagnoses and was obtained from 
the same source. It is being used here because previous experiments have shown that 
!Bl and IB2 perform comparatively poorly on this domain due to its large number 
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(i.e., 781) of missing attribute values. Results with this database should reinforce the 
conclusions drawn from the experiments with the Cleveland database. Section 5.2.l de­
scribes an investigation concerning the IBL algorithms' sensitivity to missing attribute 
values. 

5. Many of the attributes describing instances in the Congressional Voting database can 
also be ignored without sacrifice. However, it is unique here in that it contains only 
small amounts of noise. IB3 is not expected to perform particularly well on this 
application application because it is designed to expect that instances are noisy, but 
IB4's benefits should be evident since several of the attributes are essentially irrelevant 
(i.e., they are redundant). 

6. IB4 is even better suited for the LED-25 artificial domain, which contains an additional 
17 irrelevant Boolean attributes. One reason that the LED and Waveform domains 
are included in this study is that Breiman (et al., 1984) published the results from 
applying CART and the nearest neighbor algorithm to these domains. These results 
will be used for comparison purposes. 

7. Finally, the Waveform-40 artificial domain was included in this study to show that IB4 
can outperform the other IBL algorithms in applications involving many irrelevant 
and continuously-valued attributes. This domain is a variant of Waveform-21 with an 
additional 19 irrelevant attributes, whose values are normally distributed with a mean 
of 0 and a variance of 1. 

Some of these applications involve finite-sized databases rather than artificial domains 
from which an infinite number of instances can be generated. In these cases, 70% of the 
databases' instances were randomly chosen to be used as training instances. The remaining 
instances were used to test the algorithms' predictions. Although this 70-30 split method 
has no theoretical basis, it has often been used in empirical comparisons (e.g., Breiman et 
al., 1984; Clark & Niblett, 1989) and therefore allows for comparisons with results reported 
for other learning algorithms. Moreover, it is far less expensive to use than a "leave one 
out" strategy, an extreme form of a cross-validation study, which is an excellent evaluation 
method, but is practical for only small-sized databases (e.g., Towell, Shavlik, & Noordewier, 
1990). The same number of training instances were used for the LED-7 and the two Waveform 
artificial domains as were used in the CART book (Breiman et al., 1984). A larger number 
of instances (1000) were used to train the algorithms on the LED-25 artificial domain than 
used to test CART (Breiman et al., 1984) to show how IB4 learns more quickly than the 
other IBL algorithms in the presence of numerous irrelevant attributes. The reported results 
are averages from 25 trials, where different training and test sets were generated for each 
trial. 

Table 4.3 summarizes the results obtained from applying IBl and IB2 to these data sets. 
In summary, these results show that IB2 can significantly reduce IBl's storage requirements. 
However, IB2 sacrifices classification accuracy; its accuracy was consistently lower than IBl 's. 
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Table 4.3: Percent accuracy ± standard error and percent storage requirements. 
I Application )) IBl ) IB2 ) 

LED- 7 display 
Waveform-21 

Cleveland 
Hungarian 

Voting 
LED-24 display 

Waveform-40 

Average Accuracy 
75 

50 

25 

71.6±0.4 100 63.0±0.9 41.6 
75.5±1.1 100 68.4±1.1 32.3 
75.1±0.8 100 71.4±0.9 32.0 
56.1±2.2 100 53.1±2.4 36.9 
91.8±0.4 100 90.9±0.5 11.6 
47.9±0.6 100 43.7±0.8 60.1 
68.6±0.7 100 64.0±0. 7 38.3 

IBl 
. [J .... 13 .... D .... 13 .... 0 IB2 

o--~~~~--~~~~--..~~~~--......-~~~--. 

0 50 100 150 200 

Number of Training Instances 
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Figure 4.3: IBl 's learning curve rises significantly faster than IB2's for the LED-7 application. 

For example, Figure 4.3 shows their average learning curves for the LED-7 domain appli­
cation. IBl's average learning curve rises significantly faster than IB2's (t(7) = 4.23,p < 
0.0025). More detailed analyses are presented in the following paragraphs. 

Noisy Artificial Domains: 

The results with the first two artificial domains showed that training set noise strongly 
degrades IB2's performance. The LED-7 and Waveform-21 artificial domains both contain 
large amounts but different types of training set noise. The noise added to the first domain 
logically negates attribute values with a probability of 10%. The noise in the second do­
main is the addition of a normally distributed error (with mean 0 and variance 1) to each 
continuously-valued attribute. The value predicted in the LED-7 domain is the digit rep­
resented by the seven LED displays. The target value in the Waveform-21 domain is the 
class of the waveform, which is described by a linear combination of two (of three) waves, 
where each wave is represented by 21 continuously-valued attributes values. Although IB2 
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significantly reduced IBl 's storage requirements in both applications (i.e., it saved an average 
of less than 42% of the training instances in both applications), it sacrificed classification 
accuracy (i.e., at least 7% for each application). This occurred because IB2 misclassified 
and, subsequently, saved most of the noisy instances. Saved noisy instances were then used, 
without discretion, to misclassify subsequently presented training instances. This motivates 
the need for IB3, the noise-tolerant extension of IB2 described in Section 4.3. 

Learning Concepts with Imperfect Attribute Sets: 

A set of attributes are imperfect when they cannot completely distinguish positive from 
negative instances. The attribute sets for the noisy artificial domains are perfect, but 
additional noise prevents perfect classification accuracies. However, the attribute sets for 
the Cleveland and Hungarian databases are imperfect; perfect classification accuracies are 
unattainable even though no additional noise is added. This occurs because the descrip­
tion language, defined by the set of predictor attributes, can describe only a limited set 
of potential concept descriptions and does not include a description that perfectly classifies 
these databases' instances, which denote heart disease diagnoses collected from the Cleveland 
Clinic Foundation and the Hungarian Institute of Cardiology, respectively. Diagnoses are 
described by thirteen Boolean and numeric-valued attributes (e.g., sex, age, fasting blood 
sugar level). The target attribute is the Boolean-valued diagnosis indicating whether the 
corresponding patient has heart disease. 

IB2 again significantly reduced storage requirements for both databases and also sac­
rificed classification accuracy. This occurred because the attributes used to describe the 
instances/ diagnoses do not completely describe the target concept. This results with a large 
number of what appear to be exceptional instances. These instances resemble noisy in­
stances since they are poor classifiers of similar instances. Therefore, IB2's accuracy suffered 
in these applications due to the same reasons it performed poorly in the noisy artificial 
domain applications. 

Both algorithms performed terribly when applied to the Hungarian database. Their 
classification accuracies were below the frequency of the most frequent target value in this 
application (i.e., 63.9%). This occurred because this domain contains both imperfect at­
tributes and a large number of missing attribute values. Figure 4.4 displays IBl 's average 
learning curve (IB2's is similar) for this application. IBl 's accuracy raised initially to about 
80% and, surprisingly, trailed off slowly to about 56%. Section 4.3.3 will show that IB3 
does not suffer this same fate. Section 5.2.1 explores whether alternatives to IBl 's primitive 
algorithm for processing missing attribute values results with better learning behavior. 

Noise-Free Databases: 

The Congressional Voting database is linearly separable (Hampson, personal communi­
cation), which demonstrates that the attributes used to describe its instances (i.e., sixteen 
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Figure 4.4: IBl's average learning curve for the Hungarian database. 

Boolean voting records of the 1984 United States House of Representatives) are sufficient to 
correctly identify the target value (e.g., Democrat and Republican). 

As expected, IB2 performed relatively better in comparison with IBl than it did in the 
applications with noisy training instances. Although IB2 saved an average of less than 123 
of the training instances, it still recorded an average classification accuracy that was closer 
to IBl 's than in the previous applications. I observed similar behavior in experiments with 
several other databases with similar domain characteristics. 

These results show that IB2 learns more slowly than IBl even when the data is relatively 
free of noise. This occurred because IB2 is sensitive to the ordering of the training instances; 
it saves different instances depending on this order. If the ordering fools IB2 into saving 
a poor set of instances, then IB2's accuracy can suffer. IB3, which will be introduced in 
Section 4.3 to reduce IB2's sensitivity to noise, also reduces IB2's sensitivity to the poor 
instance orderings. For example, I re-ran both algorithms on this database but held the 
training and test sets constant. However, the order of the training instances was randomized 
for each of the 25 trials. IB2's accuracy varied from 83.83 to 93.83 with a standard deviation 
of 2.63 and. a mean of 90.7%. IB3 accuracies varied from 90.0% to 96.23 with a standard 
deviation of 1.61 and a mean of 92.8%. IB2's range of accuracies (10.03) was much higher 
than IB3's (6.2%), as was its standard deviation. (I found this behavior to be repeated in 
a similar experiment with the Cleveland database. IB2's range of accuracies (18.7%) and 
standard deviation ( 4.58) were again higher than IB3's (15.4% and 3.99).) Although this is 
only preliminary evidence, it appears that IB3 is more stable than IB2. That is, IB2 is more 
sensitive to malicious instance orderings than is IB3. Since IBl should perform as well as or 
better than IB2 by saving all training instances for the relatively noise-free voting database, 
it is not surprising that IB2's average accuracy is lower than IBl 's in this application. 
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Noisy Domains with Irrelevant Attributes: 

The presence of irrelevant attributes slowed IBl and IB2's learning rates in the LED and 
Waveform applications. The LED display domain was extended with 17 irrelevant Boolean 
attributes while the Waveform domain was extended with 19 irrelevant continuous-valued 
attributes with randomly assigned value having a mean of 0 and a variance of 1. The algo­
rithms' accuracies decreased and IB2's storage requirements increased. These results were 
expected since the mathematical analyses predicted that instance-based learning algorithms 
require exponentially more instances to learn accurate concept descriptions with linear in­
creases in instance space dimensionality. 

However, IB l's performance suffered more than IB2's. This occurred largely because 
IB2's partial concept descriptions grew in size and consequently resemble IBl 's more closely. 
Therefore, the difference between these algorithms' predictive performance decreased. 

Summary: 

In summary, IB2 significantly reduced storage requirements in each of the seven ap­
plication domains. However, it also sacrificed classification accuracy, especially when the 
domains were noisy or had many exceptional instances (due to imperfect predictor attribute 
sets). Sections 4.3 and 4.4 describe additional experiments with these applications, including 
comparisons with the results generated by IB3, IB4, and an algorithm that builds decision 
trees. 

Numeric Prediction Tasks 

IB2 reduces storage requirements but sacrifices classification accuracy in symbolic pre­
diction tasks. Its behavior is similar in numeric prediction tasks. Figure 4.5 provides some 
intuition to explain why this occurs. IBl (with k = 1) would form the approximation ·de­
noted by the dashed line when given the ten instances shown as boxes in this one-dimensional 
instance space. The solid line represents the numeric target function. If the training set con­
tains enough instances, then IBl does not need to save many instances along subintervals 
with near-zero slope to ensure small errors for predictions of target values along them (e.g., 
the instance highlighted in the above figure can be removed). However, IBl should retain all 
instances along subintervals where the absolute slope of the function is high. When k > 1, 
IBl generates predictions by interpolating from stored instances. In such cases, it is not the 
target function's slope that determines which instances should be saved, but rather its accel­
eration (i.e., its second derivative); instances should be saved in areas of the instance space 
where the target function's values change quickly. Although IBl is not told this information, 
it can be estimated by comparing (1) the similarity of a most similar saved instance i to a 
novel instance x with (2) the error resulting from using i to predict x's target value. If their 
similarity is high and the prediction error is low, then the accuracy of IBl 's approximation 
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Figure 4.5: The highlighted instance is not a useful predictor. 
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Figure 4.6: These graphs show which of 100 training instances were saved by these algo-
rithms. The target function was f(x) = 1/(1 + e-x/2 ) with no noise. IB2 saved only 22 and 
9 instances when its error threshold was set to 0.1 % and 25% respectively. On a disjoint 
test set, IBl's average relative error was 0.25%. The errors of the two versions of IB2 were 
0.27% and 1.53% respectively. 

would probably not be substantially increased by including this instance in the partial con­
cept description. If we assume that this similarity is sufficiently high, then the prediction 
error alone can be used to determine whether the novel instance should be saved. This is 
exactly how IB2 decides which instances to save. 

Figure 4.6 demonstrates IB2's capability to reduce storage without greatly sacrificing 
classification accuracy for numeric prediction tasks. This figure shows which instances from 
a 100-instance training set were saved by IBl and IB2 (for two settings of IB2's error thresh­
old) for a simple target function. IB2 safely discarded several instances along the two long 
subintervals where the target function's slope is zero. IB2 behaves conservatively, saving 
comparatively many instances, when the error threshold's value is low. Although higher set­
tings decrease IB2's storage requirements, they also decrease its predictive accuracy. Informal 
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Table 4 4· Database characteristics .. 
Database Training Test Number of Mean Standard 
Name Set Size Set Size Attributes Deviation 

Hungarian Heart Disease 206 88 14 24.4 10.5 
Cleveland Heart Disease 212 91 14 0.4 0.5 
Horsepower 144 61 26 104.3 39.7 
Number of Months 92 40 10 22.2 15.8 
Cholesterol Level 212 91 14 246.7 51.8 
Tumor Size 200 86 10 24.4 10.5 

sensitivity experiments suggested that an tolerance_threshold setting of 15% is a good com­
promise value for IB2's only parameter. This setting is used in all the numeric-prediction 
applications of IB2 and IB3. 

I applied IBl and IB2 to six numeric prediction tasks, most of which involve medical 
diagnosis. The associated databases are briefly summarized in Table 4.4 and are detailed 
in more depth in Appendix A. As with the symbolic prediction experiments, 70% of the 
instances were used for training and the remaining 30% were used for testing. The purpose 
of these experiments is to examine the extent of IB2's tradeoff of predictive accuracy for 
reduced storage requirements in tasks involving functions from less contrived databases than 
the simple sigmoid function examined in the previous paragraph. 

These six applications were chosen with care according to their unique domain charac­
teristics (including distribution of values, mean and standard deviation). They are presented 
in order of increasing resemblance of their target function's distribution to a normally dis­
tributed curve. The first three functions have highly skewed distributions. The fourth has 
a spike in the beginning of its distribution, but otherwise resembles a normal curve. The 
target functions in the last two applications most closely resemble normal curves. These 
applications are described in more detail in the following list. 

1. The first application involves the Hungarian heart disease database described earlier 
(Detrano et al., 1989). The target function is degree of heart disease, but in this 
case there are only two values, 0 and 1, corresponding to no presence and presence 
respectively. Its distribution is polarized. This function was picked to see how the 
IBL algorithms perform when the instances contain the fewest possible distinct target 
values. 

2. The second application concerns the same target function for the Cleveland heart 
disease database, which was also described earlier (Detrano et al., 1989). However, in 
this case the target can have one of five possible values (i.e., the integers lie in the 
range [O, 4]). This function's distribution is also badly skewed; most of the diagnoses 
describe patients without signs of heart disease (value 0) and the fewest target values 
are for patients with extensive heart disease (value 4). 
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T bl 4 5 A a e . . 1 t' ver~e re a ive error ± d d stan ar error an d percent storage reqmrement s . 
Target function IBl IB2 Average Guess 

Hungarian Heart Disease 0.39±0.022 100 0.43±0.026 36. 7 0.46±0.002 
Cleveland Heart Disease 0.19±0.005 100 0.20±0.005 52.9 0.25±0.003 
Horsepower 0.04±0.002 100 0.06±0.003 24.9 0.14±0.006 
Number of Months 0.20±0.006 100 0.22±0.006 57.4 0.24±0.004 
Cholesterol Level 0.14±0.007 100 0.15±0.007 52.3 0.11±0.005 
Tumor Size 0.22±0.004 100 0.23±0.004 62.0 0.17±0.003 

3. The third target function, horsepower, is an attribute in the import automobile data­
base (Schlimmer, 1987b). Its skewed distribution resembles one-half of a normal curve 
with a few outliers. 

4. The fourth application is taken from Evlin Kinney's Echocardiogram database, which 
was donated by Miami's Reed Institute. The target function is the number of months 
that a patient survived after a heart attack. The predictor attributes include age, 
whether fluid has built up around the heart, and measures of contractability around 
the heart. Its distribution has a spike near 0 and is otherwise normally distributed 
with a large variance. 

5. The fifth task is to predict the level of serum cholesterol for the diagnoses in the 
Cleveland database mentioned earlier. It has a relatively normal distribution, although 
it has several outliers. 

6. The task in the final application is to predict tumor size. It is an attribute in the 
Breast Cancer database donated by the Ljubljana Institute of Oncology. Its values 
were discretized, which caused its distribution to more closely resemble a perfect normal 
distribution. 

The experiments with the numeric prediction tasks had the same form as those for 
the symbolic prediction tasks. The instances chosen for the disjoint training and test sets 
were always randomly selected from the databases. The results, averaged over 25 trials, are 
summarized in Table 4.5. Average guess results, whereby the average of the training instances 
processed to date is used as the prediction, are listed alongside IBl and IB2's results. In 
summary, IB2 again saved significantly fewer instances than IBl, but its predictive accuracy 
(in this case, relative error) increased slightly. The average guess method worked poorly for 
the target functions with skewed distributions but extremely well for those with relatively 
normal-shaped distributions. These results are examined in more detail in the following 
paragraphs. 
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Skewed Distributions: 

IB2 saved less than 40% of the instances and sacrificed only 4% relative error for the 
Hungarian heart disease prediction task. Section 4.3.3 will show that, in fact, both IBl and 
IB2 performed poorly here, mimicing their lackluster performance for the equivalent symbolic 
prediction task as described in Section 4.3.3 However, these IBL algorithms outperform 
average guess in applications with polarized distributions. Average guess works poorly in 
these situations since the average value lies far from both poles (i.e., 0 and 1 were the only 
target values in this application). 

The IBL algorithms' performance improved when predicting the degree of heart disease 
for the Cleveland database diagnoses. As in all these applications, IB2's reduction in storage 
requirements cost a small amount in predictive accuracy (here about 1.5% relative error). 
The average guess algorithm's predictions were less accurate, mainly because there were a 
large number of values lying at one end of the target function's distribution while the others 
were dispersed in a half-normal curve. Thus, the average guess was distant from the majority 
of the target values in this function. 

The results were similar for the horsepower target function, whose skewed distribution 
is also shaped like half of a normal curve. IBl 's accuracy here was almost identical to 
the maximum accuracy recorded by CLASSIT (Gennari, 1990). IBL algorithms can learn 
more accurate approximations of this target function than it can for the others because it is 
relatively noise-free and its attributes are relevant to the target function. Not surprisingly, 
IB2's storage requirements were lower in this application, as they were for the sigmoid target· 
function application with low levels of noise. 

Normal Distributions: 

The results for the task involving predicting the number of months that patients will live 
after suffering a heart attack are markedly different from those with the first three tasks. In 
this case, the average guess algorithm's error rate was lower than IB2's. It was also closer to 
IBl 's error rate than in the previous applications. This occurred because the distribution of 
the target function approximates the normal, other than for a spike at its low end. For most 
instances, the average guess prediction should be accurate. In Section 5.2.2, I will show 
that IBl 's accuracy improves dramatically when more than one instance is used to make 
predictions (i.e., k > 1). 

Average guess performed clearly better than IBl when predicting a patient's level of 
serum cholesterol. This occurred because the distribution of the target function is normal. 
However, I will show in Section 5.2.2 that IBl's accuracy is better than average guess's if 
IB l's setting for k is sufficiently large. 

Average guess also outperformed IBl when predicting breast cancer tumor size, whose 
values are also normally distributed. Figure 4. 7 shows their learning curves for this target 
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Figure 4.7: IBl's learning rate is slow for the tumor size application. 

function. It is possible that, given enough instances, IBl 's error rate might eventually reach 
average guess's error rate. However, its learning rate is obviously slower in applications to 
some database applications. 

Summary: 

As in symbolic prediction tasks, IB2 reduces IBl 's storage requirements at the cost of 
increased predictive error. The experiments in this section also showed that IBL algorithms 
in general perform comparatively better than average guess when the target function's dis­
tribution is not normal. Although many functions are not normally distributed, this still 
bodes poorly for the numeric prediction capability of IBL algorithms. However, they can be 
improved in several ways. Section 5.2.2 shows that higher values for k yield more accurate 
prediction behavior. 

Another way to improve the predictive accuracy of IBL algorithms is to restrict which 
instances are used to generate predictions. The next section demonstrates this approach 
and describes IB2's sensitivity to noise. Section 4.3 then shows how IB3 improves IB2's 
predictive accuracy by using a selective utilization filter (Markovitch & Scott, 1989) on the 
instances saved in the partial concept description. 
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Figure 4.8: An instance's classification accuracy quickly reaches 100% with increasing dis­
tance from the concept boundary. 

4.2.4 IB2's Behavior in the Presence of Noise 

The Effect of Noise on Symbolic Prediction Tasks 

An analysis of the predictive behavior of the saved instances shown in Figure 4.2 on 
page 64 shows that boundary instances can be distinguished from non-boundary instances 
according to their accuracy in nearest neighbor classification predictions for subsequently 
presented training instances. Figure 4.8 displays a scatter plot of these saved instance's 
classification accuracies versus their distance from the concept boundary. This plot shows 
that the accuracy of an instance rises quickly with its distance from the concept boundary. 
In fact, none of the instances saved by IB2 that were far from the concept boundary had low 
classification accuracies. However, this occurred only because the instances in the application 
domain were not corrupted by noise. 

Figure 4.9 describes average results (over fifty trials) for IBl and IB2 where the applica­
tion domain is the same symbolic prediction task as shown in Figure 4.2 on page 4.2. IB2's 
reduction in storage requirements is most dramatic when none of the training instances are 
noisy. However, IB2 is more sensitive to the attribute noise level in the training set than is 
IBl, where the attribute noise level is defined as the probability that each attribute value 
(except the class attribute) of each instance is replaced with a randomly-selected value from 
the attribute's domain (according to the attribute's distribution). Given this definition for 
noise, the probability that a training instance will be misclassified by noise corruption is 
(52.3 x N)% in this application, where N is the noise level. This is almost identical to 
the probability that noise in the class attribute will result with a misclassification, which is 
(50.0 x N)%. An investigation of the effects of either type of noise will show highly similar 
behavior. Therefore, is is sufficient to demonstrate IB2's behavior on only one type of noise 
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Figure 4.9: IB2 reduces storage requirements but is sensitive to noise. 
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(I chose to look at attribute noise). For other instance spaces, the probability of misclassifi­
cations in the training set can differ greatly, depending on whether all-attribute or class noise 
is used to corrupt the instances. In such cases, the type of noise with a higher probability 
of misclassification will result with accelerated degradations of IB2, but will not otherwise 
alter its relative behavior. 

Figure 4.9 shows that IB2's classification accuracy decreases more quickly than does IBl 's 
as the level of noise increases. This occurs because noisy instances are, naturally, almost 
always misclassified. Since IB2 saves only a small percentage of the non-noisy training 
instances, its saved noisy instances are more frequently used than IBl 's to generate incorrect 
classification decisions. 

Figure 4.9 also shows that, in this artificial domain, IB2's storage requirements increase 
quickly as the noise level increases and reaches an asymptote at 50%. This increase is 
greater than linear in the noise level because noisy instances will, with a high probability, 
be misclassified and, consequently, saved. These noisy instances will in turn misclassify 
non-noisy instances, which will also be saved. When approximately half the instances are 
noisy, then the accuracy of IB2's classification guesses approaches chance. About 50% of the 
training instances will be misclassified under these conditions, which explains the asymptote 
for IB2's storage requirements. 

IB2's behavior in the presence of noisy instances can be clarified with a detailed example. 
Figure 4.10 summarizes IB2's behavior when the 250-instance training set was corrupted at 
the 10% noise level. In this case, twenty of IB2's 76 saved instances (26.3%) were noisy. This 
is not an unusual result; Figure 4.9 shows that an average of 28.3% of IB2's saved instances (at 
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Figure 4.10: The figure on the left shows which training instances were saved by IB2 when 
the noise level was 10%. Noisy instances are circled and labeled as members ("+") or non­
members ( "-"). Those instances that participated in classification decisions are plotted at 
the right, where noisy instances are denoted by black boxes. Box sizes correspond to the 
number of classification decisions they made. 

this noise level) were noisy. The scatter graph in Figure 4.10 shows that the noisy instances 
(black boxes) are easily distinguished from non-noisy instances (white boxes). The noisy 
instances invariably had poor classification accuracies on subsequently presented training 
instances, especially when they were located far from the concept boundary. However, a few 
(three, in this case) of the non-noisy instances also had poor classification accuracies. These 
classifiers were each used only once; they each misclassified a subsequently presented, noisy 
training instance. Their classification accuracies would have been higher if they were used to 
classify other instances. In summary, with sufficient numbers of classification attempts, non­
noisy instances will have high classification accuracies. This will distinguish them from noisy 
instances located far from the concept boundary, which will have relatively poor classification 
accuracies. 

The Effect of Noise on Numeric Prediction Tasks 

IB2's numeric predictions are also sensitive to training set noise because the target 
values of a noisy instance and its classifying instance normally differ greatly. As before, 
most noisy instances are saved and they generate inaccurate predictions for subsequently 
presented non-noisy instances, which are then saved. Thus noisy instances increase IB2's 
storage requirements and decrease its predictive accuracy for numeric prediction tasks. 

This behavior is exemplified in Figure 4.11, which displays which instances were saved 
by IBl and IB2 when 250 training instances from the sigmoid application were subjected to 
attribute noise (i.e., there was a 20% chance that each instance's predictor attribute value 
was replaced with a randomly selected valued in [-25, 25]). Although IB2 saved only 103 
of the 250 training instances in this application, 37 (36%) of its saved instances were noisy. 
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Figure 4.11: A larger percentage of the instances stored by IB2 were noisy (363) than stored 
by IBl (203). 
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Figure 4.12: IB2 (dashed line) reduces IBl 's (solid line) storage requirements but sacrifices 
some predictive accuracy. The target function is J(x) = 1/(1 + ex/2) and these results are 
averages from 25 trials. 

IB2's average relative error on a (noisy) test set was 14.83 whereas IBl 's was only 12.03. 
(IB2's accuracy with a low error threshold of 0.13 was also poor (14.33).) As expected, the 
percentage of IB2's predictions for this application that were below the error threshold (i.e., 
153 absolute error) was much lower for noisy instances (9.63) than it was for non-noisy 
instances (80.43). 

Figure 4.12 summarizes the average results from applying the IBL algorithms to this 
sigmoid function, where each of the 25 disjoint training and test sets contained 200 and 100 
instances respectively. The example shown in Figure 4.11 was typical of IB2's behavior; an 
average of 35.43 of the instances stored in IB2's partial concept description were noisy for 
the 20% noise level. 
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4.3 IB3: Tolerating Noise 

The investigations described in Section 4.2 showed that, while IB2 significantly reduces 
storage requirements, it does not attain the same learning rate as IBl. Furthermore, exper­
iments with several artificial domains and databases showed that IB2 is sensitive to noisy 
instances. This section introduces IB3, an extension of IB2 that increases its learning rate, 
decreases its sensitivity to noisy instances, and further reduces IB2's storage requirements. 

4.3.1 Methods for Tolerating Noise 

Several methods for tolerating noise have been published in the machine learning liter­
ature. Some of these succeed by testing whether perturbations of suspected noisy instances 
removes their noise. For example, MIRO's ECM (Error Correcting Module) locates clusters 
of instances that are suspected of being noisy and evaluates whether they are noisy be check­
ing whether small perturbations in their attribute values would place them in a non-noisy 
cluster (Drastal, Meunier, & Raatz, 1989). Hirsh (1990) uses a similar technique for locating 
noisy instances. His algorithm generates a set of perturbations for each instance, constructs 
a version space for each perturbation, and then intersects the version spaces to reduce the 
effects of noise. 

Most primitive empirical learning algorithms will overfit data containing noisy instances. 
Noise-tolerant extensions of these algorithms use statistical rather than analytic methods to 
reduce overfitting effects. For example, Clark and Niblett (1989) used a test of significance 
in an extension of the AQ15 algorithm (Michalski, et al., 1986) that uses estimates of each 
rule's quality to determine whether it should be discarded. Similarly, Breiman et al. (1984), 
Quinlan (198(3a), and Niblett and Bratko (1986) have all described non-incremental methods 
for post-pruning decision trees that discard nodes with low information content. These 
pruning methods all discard parts of a concept description that have little comparative 
information content and, because of this, may perform poorly during prediction attempts. 

IB3's approach does not rely on the availability of domain-specific explanations, does 
not involve perturbing instances, and does not involve discarding abstractions. However, 
its method shares some similarities with methods developed to generate noise-tolerant rules 
and decision trees: it uses a test of statistical significance to discard parts of its concept 
description. However, IB3 is an incremental algorithm that uses a selective utilization filter 
(Markovitch & Scott, 1989) to determine which stored instances should be used to classify 
subsequently presented instances. 
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Table 4.6: The IB3 training algorithm. 

Key: T: Training set 
P: Set of predictor attributes 
t: The target attribute 
k: Number of most similar instances used 
a & 8: Confidence thresholds for acceptance and dropping 
PCD: Partial concept description 

Train(T, P, t, k,tolerance_threshold,a,8) 
1. Set global variables 
2. for each x; E T do 

2.1 x; +-- Pre_process(x;,P) 
2.2 prediction +-- Performance(x;, P, t, k,a) 
2.3 Learn( x; ,prediction,t, tolerance...threshold,8) 

Performance(x, P, t, k, a) 
1. S+-0 
2. Vy; E PCD: S +--SU { (y;, Similarity(x, y;, P))} 
3. KSET +-- k...most...similar..acceptablejnstances(S, k, a) 
4. return TargeLvalue_prediction(KSET ,t, k) 

Learn( x ,prediction,t, tolerance...threshold,8) 
1. if (lxt - prediction! > tolerance_threshold) 

then PCD +-- PCD u {x} 
2. S +-- set of stored instances at least as similar as 

the ph most similar acceptable instance 
3. U pdate_prediction_records( S) 
4. Discard...significantly _poor instances( S, 8) 

4.3.2 Description of the IB3 Algorithm 
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Table 4.64 details the IB3 training algorithm, which is a noise-tolerant extension of IB2. 
It has two additional inputs, denoted by parameters a and 8, that correspond to the level of 
confidence used to generate confidence intervals in IB3's test of significance. The parameter 
a represents the level of confidence used to generate intervals when IB3 evaluates whether 
an instance is acceptable and the parameter 8 is used when IB3 decides whether to discard 
an instance from a partial concept description. IB3's testing algorithm is identical to IB2's 
except that the k most similar acceptable stored instances are used to derive target value 
predictions for test instances. 

4The sub-functions not described in this section were previously described in Table 2.1 on page 21. 
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IB3's training algorithm is identical to IB2's except that it employs a "wait-and-see" 
evidence-gathering attitude to determine which of the saved instances are expected to ac­
curately predict similar instance's target values. Its pre-processing and similarity functions 
are identical to IB2's. However, its prediction-generating and memory-updating components 
differ as follows: 

1. Prediction function: 

(a) Instead of using the k most similar instances for generating a prediction, IB3 uses 
the k most similar acceptable instances for this purpose. 

(b) If only k' < k stored instances are acceptable, then IB3 generates a prediction 
from these k' instances and the most similar non-acceptable k-k' instances. If less 
than k - k' non-acceptable instances have been saved, then all the non-acceptable 
instances are used to help generate predictions. 

2. Memory updating function: 

(a) IB3 maintains a prediction record with each saved instance y. This is a record of 
the number of correct and incorrect prediction attempts made by y (i.e., when 
simulating k = 1), where an attempt's success is determined by a comparison of 
y 's prediction error and the Tolerance_threshold (as is done to determine whether 
to store a training instance). A prediction record summarizes an instance's classi­
fication performance on subsequently presented training instances. IB3 uses this 
record to predict how well it will perform in future prediction attempts. 

(b) After each prediction attempt, Update_prediction...records will update the predic­
tion records for the set of instances that are at least as similar as the most similar 
acceptable instance to the instance being classified. If none of the instances are 
acceptable, then IB3 simulates what would have happened had there been at least 
k acceptable instances. First, it generates a random number r between 1 and the 
number of stored instances. It then updates the prediction records of the most 
similar r stored instances. This process is depicted in Figure 4.13. If none of the 
saved instances are acceptable, then y in this figure denotes the rth most similar 
instance to x. 

( c) IB3 employs a significance test to determine which of its saved instances are 
acceptable classifiers, which ones are believed to be noisy, and which currently 
appear to be neither. Only acceptable instances are used to classify subsequently 
presented instances. Noisy instances are discarded from the concept description 
by Discard...significantly _poor Jnstances. All other stored instances are retained 
but not used to generate predictions. 

In summary, IB3's policy for updating prediction records is such that it updates the records 
of all instances that lie within a hyper-sphere in the instance space whose radius is the dis­

tance between the instance being classified and the kth most similar instance. If between 
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Figure 4.13: If the instance to be classified is x and its kth most similar accepted instance 
is y, then the circle shown delineates the set of instances whose prediction records will be 
updated. 

1 and k instances are acceptable, then this radius is the distance to the least similar ac­
ceptable instance. A similar hyper-sphere is generated when none of the saved instances are 
acceptable. 

An acceptable instance is one that, after being stored, displays significantly accurate 
predictive behavior. An instance y's predictive behavior is defined as its number of success­
ful versus total prediction attempts. That is, y's prediction record on those subsequently 
presented instances x that it was at least as similar to as was the kth most similar stored 
instance. This value can be interpreted as an estimate of the conditional probability 

Prx(I prediction - Xtl ~ tolerance_threshold I Similarity(x, y, P) is high) 

This conditional probability is compared with the unconditional probability 

Prx(I prediction - Xtl ~ tolerance_threshold) 

to determine whether an instance is acceptable, noisy, or neither. IB3 accepts an instance 
y if y 's conditional probability is significantly greater than the unconditional probability. 
(Notice, however, that the unconditional probability is a parameter of y.) The instance 
is deemed noisy and is removed from the concept description if its predictive accuracy is 
significantly less. A confidence intervals of proportions test is used to determine whether an 
instance is acceptable, mediocre, or noisy. Confidence intervals are constructed around both 
the estimated conditional and unconditional probabilities using 

p + z2 /2n ± zjp(l - p)/n + z2 /4n2 

1 + z2 /n ( 4.1) 

where pout of n samples have succeeded (for the test being evaluated) and z, which can be 
read from a normal-curve area table, refers to the confidence level desired (Spiegel, 1988). 
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The following conservative test for statistical significance is used. 5 If the lower endpoint for 
the interval generated for the conditional probability is greater than the higher endpoint 
generated for the unconditional probability, then the instance is acceptable. Similarly, in­
stances are dropped when their conditional probability interval's higher endpoint is less than 
their unconditional probability interval's lower endpoint. Finally, if the two intervals overlap, 
then a decision on whether to accept or discard the instance is postponed until after further 
training. Again, only acceptable instances are allowed to participate in prediction decisions. 

The interpretation of the conditional and unconditional probabilities differ depending 
on whether the prediction task involves symbolic or numeric target values. When predicting 
symbolic values, the conditional probability is y's number of correct classifications divided 
by its number of classification attempts. Its unconditional probability is the observed rela­
tive frequency of its class. For example, if the task is a binary classification task and y is 
a negative instance, then its unconditional probability is the number of negative instances 
processed to date divided by the number of total instances processed to date. When con­
structing the interval for the instance's classification accuracy, p is the instance's observed 
accuracy and n is the instance's number of classification attempts. When constructing the 
interval for the instance's class's frequency, p is the class's observed frequency and n is the 
number of processed training instances. The value for z is obtained from a standard table 
of normal distributions corresponding to the selected confidence level to be used to generate 
the confidence intervals. 

The interpretations of these estimated probabilities are more complex when the task is 
to predict numeric values. Although the same definition for is used for instance acceptability, 
the unconditional probabilities must be estimated differently since class frequencies do not 
exist. IB3 instead uses a method similar to coarse-coding (Rumelhart et al., 1987); the target 
function's dimension is partitioned into a set of equal-sized and overlapping target intervals. 
The estimated unconditional probability, for some saved instance y, is the percentage of 
processed training instances whose target values are in the target interval that most closely 
centers y 's target value. That is, the unconditional probability is 

Pry(Xt E Centeringjnterval(yt)) (4.2) 

where Xt and Yt are those instance's target values. Estimated conditional probabilities are 
defined as the percentage of similar instances that have target values in this same target 
interval, which is expressed as 

Pr(xt E Centeringjnterval(yt) I Similarity(x, y, P) is high). (4.3) 

5This significance test assumes that the number of successes (i.e., classification accuracies or class frequen­
cies) are binomially distributed. While this assumption may not be correct, several of my IBL algorithms 
that employ this significance test have performed well in many applications. Some of these applications will 
be described later in this section. 
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Accepted instances are those whose accuracy's confidence interval is above the confidence 
interval constructed around the frequency with which instances are indexed into its centering 
target interval. 

The advantage gained by comparing a saved instance's accuracy with its class's ob­
served relative frequency (or its target interval's frequency) requires further explanation. 
IB3 normalizes the acceptance of an instance with respect to these frequency distributions 
to decrease its sensitivity to skewed distributions. Instances in concepts/intervals with high 
observed relative frequencies are expected to have relatively high classification accuracies 
since a relatively high percentage of its possible prediction attempts will be for instances 
that are similar to it. Similarly, instances in concepts/intervals with low observed relative 
frequencies are expected to have relatively low classification accuracies. By comparing an 
instance's accuracy against its class's frequency, IB3 can more easily tolerate skewed con­
cept/interval distributions. 

The preceding discussion on confidence intervals lends little intuition concerning how 
they are altered during training (i.e., over time). Confidence intervals are initially wide. They 
shrink monotonically in width with the number of classification attempts. Figure 4.14 details 
how the confidence intervals for an instance's accuracy and its class's frequency changes 
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Figure 4.14: Confidence intervals shrink in width over time. This is an example of an accepted 
(good) instance in the LED-7 Display domain. The middle curve in each graph denotes the 
actual value. The other two curves in each figure denote the respective confidence interval's 
upper and lower bounds. 

during training. This instance, taken from the LED-7 Display domain, was accepted since 
its classification accuracy, which reached 46%, is significantly better than its class's observed 
relative frequency, which reached 12%. This training instance was not accepted until after 
12.0 training instances were processed. At that point, the accuracy interval's lower bound 
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first became higher than the frequency interval's upper bound. The instance's accuracy 
remained significantly higher than its class's frequency for the duration of training. 

Both confidence intervals are initially large in width and gradually shrink. The fre­
quency interval is smaller in size because it is computed over the entire set of observed 
training instances (250 total), whereas the accuracy interval is instead computed only over 
this instance's classification attempts (i.e., 53). The accuracy interval's upper endpoint and 
the concept frequency interval's lower endpoint are closer to the actual values than are the 
other two endpoints. This is because IB3 used a looser bound (753 confidence level) to 
determine which instances to drop than the bound it used to determine which instances to 
accept (903 confidence interval). These parameter settings were chosen to make it difficult 
for instances to be accepted. Thus, a high confidence level was selected for the acceptance 
parameter. However, a lower confidence level was selected for dropping to encourage IB3 to 
drop those instances with even moderately poor classification accuracies. These are the only 
two additional parameters required by IB3 for symbolic prediction tasks and these settings 
are used in all the symbolic prediction experiments with IB3 (and IB4) unless otherwise 
noted. An analysis of IB3's sensitivity to the settings of these parameters is described at the 
end of Section 4.3.3. 

However, a lower setting (753) was used for acceptance in the experiments with numeric 
prediction tasks. Informal sensitivity experiments indicated that this setting gave the best 
results for IB3 in these experiments. The values for IB3's other parameters are also fixed 
across all the numeric-prediction experiments described in this chapter. IB3's error threshold 
parameter value is set to 153 (as is IB2's), which also determines the (normalized) length of 
the target intervals (0.3). Finally, 20 target value intervals are used to partition the target 
function's range. 

4.3.3 An Examination of IB3's Learning Behavior 

This section examines IB3's learning behavior in applications to the same artificial do­
mains and database applications used to evaluate IBl and IB2 in Section 4.2.3. The following 
sections investigate IB3's behavior on symbolic and numeric prediction tasks respectively. 

Symbolic Prediction Tasks 

IB3 assumes that the prediction records of noisy instances will distinguish them from non­
noisy instances. Noisy instances will have poor prediction accuracies because their nearby 
neighbors in the instance space will invariably have other classifications. This assumption is 
exemplified in Figure 4.15, which summarizes IB3's performance on the same data set given 
to IB2 to produce Figure 4.10 on page 78. Their are several striking differences between 



A Study of Instance-Based Algorithms 

+ 

+ 
+ 

++ 

Saved Instances' Accuracy on 
Subsequent Training Instances 

i oo % rv-::::;r::::c:;:::::::=;r=:s~;:::;i 
0 

0% ----------l 
0 1'1ax 

Distance from Concept Boundary 

87 

Figure 4.15: IB3's saved instances and their scatter plot of accuracy versus distance from 
concept boundary when applied to the same training set as was IB2 to produce Figure 4.10 
on page 78. No noisy instances were used by IB3 for classification purposes (IB2 used 20). 
Box sizes correspond to the number of classification attempts they made. 

these two figures. First, IB3 used zero noisy instances for prediction tasks whereas IB2 used 
twenty. This p~ovides the first piece of evidence that IB3's selective utilization filter works 
in noisy domains. Second, IB3 used only 25 instances to generate predictions whereas IB2 
used 76. Third, IB3's acceptable instances recorded relatively high classification accuracies. 
This is another consequence of IB3's noise-tolerant filter. Next, several of IB3's acceptable 
instances were frequently used for prediction (as denoted by the large sizes of the boxes in 
the scatter plot in Figure 4.15) because fewer instances were used to classify subsequent 
training instances. Finally, IB3's acceptable instances, in comparison to IB2's set of saved 
instances, are located relatively far away from the concept boundary. This occurs because 
IB3 accepts only those saved instances with significantly good classification accuracies and, 
in the limit, non-boundary instances will always have higher classification accuracies than 
near-boundary instances. 

In summary, Figure 4.15 shows that IB3 displays superior learning performance on this 
training set both in terms of storage requirements and in its ability to filter noise from 
the partial concept description. In fact, this example is typical of IB3's performance on 
this artificial domain. Figure 4.16 summarizes IB3's learning performance in comparison 
with IBl and IB2. These results are averaged from 50 learning trials. The independent 
measure was the level of attribute noise in the artificial domain. The dependent measures 
were classification accuracy, storage requirements, and the percentage of noisy instances in 
the partial concept description. When the training set was corrupted at the 10% noise level, 
IB3 used an average of only 5.8% of the training instances for its classification judgments. 
In contrast, IBl and IB2 used 100% and 28.2% of their training instances, respectively. 

Figure 4.16 also shows that IB3's storage requirements approached zero at high noise 
levels. This occurred because few instances have good prediction accuracies when the noise 
level is high. In the extreme case, none of the saved instances will have good prediction 
accuracies. When this occurs, IB3 will not accept any of the saved instances. 
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Figure 4.16: IB3 :filters noise better than either IB2 or IBl. 

IB3 successfully detected and eliminated noisy instances from the partial concept de­
scription. Its percentage of noisy instances in the partial concept description remained low 
until the 45% noise level. Since IB3 used few noisy instances to classify subsequently pre­
sented training instances, its classification accuracy degraded more slowly with the noise 
level than did the accuracy of the other algorithms. 

In summary, IB3 performed well on a simple artificial domain, successfully prevent­
ing most of the noisy instances from participating in prediction decisions. IB3 recorded 
higher classification accuracies and lower storage requirements than did IBl and IB2 when 
the training instances were corrupted with noise. However, its classification accuracy was 
slightly lower when no noise existed in the training set. This occurred because IB3 mistak­
enly suspected that some near-boundary instances with poor classification accuracies were 
noisy. This problem is intensified when the application domain contains several exceptional 
instances that form small disjuncts, each located far from the others in the instance space. 
Therefore, IB3's benefits are most noticeable in applications with noisy domains in which 
the vast majority of instances have the same classification as their neighbors. Otherwise, 
IB3's learning rate will be slightly slower than IB2's. 

Although IB3 performed comparatively well on this artificial domain, this does not en­
sure that IB3 will continue to do so in other applications. Therefore, it was applied to the 
same set of databases (including training and test sets) used to evaluate IBl and IB2 in 
Section 4.2.3. Table 4. 7 summarizes the results. As expected, IB3 outperformed IB2 in all 
seven applications. The results for C4, Quinlan's (1987) extension of ID3 that post-prunes 
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Table 4.7: Percent Accuracy ± Standard Error and Percent Storage Requirements. IB3 
recorded higher classification accuracies and lower storage requirements than IB2. In most 
cases its classification accuracy also compares favorably with IBl 's and C4's. 

I Database II IBl I IB2 I IB3 I C4 

LED- 7 display 71.6±0.4 100 63.0±0.9 41.6 72.5±0.4 20.l 68.9±0.5 
Waveform-21 75.5±1.1 100 68.4±1.1 32.3 74.2±1.2 11.1 71.5±1.2 

Cleveland 75.1±0.8 100 71.4±0.9 32.0 78.4±0.9 3.9 75.2±1.2 
Hungarian 56.1±2.2 100 53.1±2.4 36.9 79.4±0.9 4.3 77.6±0.9 

Voting 91.8±0.4 100 90.9±0.5 11.6 90.6±0.6 3.5 96.1±0.6 
LED-24 display 47.9±0.6 100 43.7±0.8 60.l 46.6±0. 7 25.3 66.9±2.1 

Waveform-40 68.6±0. 7 100 64.0±0. 7 38.3 67.2±1.1 11.8 70.9±1.0 

decision trees, are also presented. 6 C4 achieved high accuracies on real-world medical appli­
cations (Quinlan, Compton, Horn, & Lazurus, 1986), recorded dramatically faster learning 
rates than genetic algorithms on multiplexor learning tasks (Quinlan, 1988), and has gener­
ally performed well on a large and varied set of learning tasks that are similar to the ones 
chosen for these experiments (Quinlan, 1987). Furthermore, C4 is highly similar to a set 
of decision tree algorithms that have performed well in a large number of research experi­
ments and industrial applications (Breiman et al., 1984; Michie et al., 1984; Cestnik et al., 
1987) Therefore, C4's results provide a good comparison for judging the accuracy of the IBL 
algorithms' predictions. The remainder of this section describes IB3's results in more detail. 

Noisy Artificial Domains: 

IB3's significantly outperformed IB2 in the experiments with the noisy LED-7 Display 
and Waveform-21 domains, where it recorded higher classification accuracies and substan­
tially lower storage requirements. This was expected since the same qualitative results 
occurred in the experiments with the simple noisy artificial domains described earlier. These 

·experiments also correctly anticipated that IB3's accuracy would be higher than IBl 'son the 
noisy LED-7 domain. Since all the attributes in this domain have the same (Boolean) range, 
IBl becomes identical to the nearest neighbor (NN) algorithm in this application. Breiman 
(et al., 1984) reported that the NN algorithm recorded a 71 % classification accuracy on 5000 
test instances (in a single learning trial). IBl's accuracy (71.6%) is, as expected, highly sim­
ilar. C4's accuracy (68.9%) was similar to the C4 decision tree learning algorithm's accuracy 
(70%) on a single learning trial (Breiman et al., 1984). IB3's slightly faster learning rate 
(72.5% after 200 instances, where 74% is the Bayes optimal accuracy) is due to its learning 
bias; the LED-7 domain can more easily be described by a set of prototypical instances than 
by decision trees. This is because the instances in each concept are normally distributed 

6Storage requirements are not presented for C4, which was tested only to judge whether the IBL algo­
rithms' accuracies were similar to those obtainable by more popular machine learning algorithms. 
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Figure 4.17: Learning curves for the LED-7 application. 

around a single prototype. Most correct classification judgments will follow once each proto­
typical instance is saved and used for classification predictions. Figure 4.17 shows that IBl 
does indeed learn the LED-7 concepts more quickly than does C4. IB3 learns far more slowly 
since it requires statistical evidence that an instance is a significantly good classifier before 
it is used in prediction decisions. This is a much more time-consuming process than C4's 
requirement that interior nodes contain significantly informative classification information. 

The Waveform-21 domain adds an additional problem to the learning task; not all at­
tributes are equally relevant for the purposes of prediction. As evidence, only eight of the 21 
predictor attributes were required in a CART-generated decision tree to achieve an accuracy 
of 72% (Breiman et al., 1984), which I found to be approximately the same accuracy recorded 
by C4 (71.5%). Furthermore, IB3's learning rate will be slower than IBl's in the presence 
of irrelevant attributes because a higher percentage of instances with different classifications 
will be among those that seem similar to each saved instance, thus making it more difficult for 
them to achieve acceptability. Therefore, IB3 does not outperform IBl in terms of classifica­
tion accuracy in this domain, even though it is noisy. However, both algorithms outperform 
C4 and CART in this application. This is again due to the IBL algorithms' less restrictive 
learning bias; the concept descriptions for this application are more easily expressed using 
IBL's piecewise-linear approximations, which are not restricted to being orthogonal to the 
given attribute dimensions. Subsequently, the learning rates of algorithms that build deci­
sion trees is sufficiently decreased so that they record lower classification accuracies than IB3 
in this application. 

Interestingly, Breiman and his colleagues reported that the NN algorithm recorded a 
surprisingly high accuracy on this domain (78%). However, this result was for a single 
learning trial and might be due to the choice of training instances in the training set. A more 
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Figure 4.18: IBl and IB3's average learning curves for the Hungarian database. 

plausible reason for NN's outstanding accuracy here is that, by good fortune, the attribute 
values deemed most relevant by NN for the waveform-21 domain happen to closely correspond 
to those attributes that are the most relevant for predicting classifications. Since IBl does 
not normalize the values of numeric-valued attributes, its similarity function (Euclidean 
distance) assumes that the attribute with the highest range of numeric values has the most 
relevance (assuming other factors remain constant). The most relevant attributes for the 
vVaveform-21 domain are in fact those with the largest range of values. Unfortunately, the 
three IBL algorithms did not receive this information and, therefore, have slower learning 
rates than NN for this application. Section 4.4 reports that IB4 is able to uncover most of 
this information, which allows it to record faster learning rates than IBl, IB2, and IB3 in 
this application. 

Databases with Imperfect Attribute Sets: 

IB3's advantages are far more pronounced in the applications to the two heart disease 
databases, where it recorded the highest average classification accuracy and the lowest aver­
age storage requirements among the IBL algorithms. In fact, less than 5% of the instances 
for these databases are required to achieve these high accuracies. IB3's results are most 
striking for the noisy Hungarian database, where its average accuracy is 20% higher than 
IBl 's and IB2's. Figure 4.18 shows that IB3's average learning curve, which first dips to 
random choice when none of the instances are acceptable, eventually rises far above IBl 's. 
After 200 instances, IB3's accuracy is significantly higher than IBl's (t(24) = 2.02,p < 0.05). 
This is an excellent example of a situation in which instances should prove their utility before 
being allowed to partake in classification decisions. C4's test of statistical significance also 
helped it achieve a relatively high accuracy. However, IB3's more relaxed learning bias again 
allowed it to perform favorably in comparison. 
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Noise-Free Database: 

The results with the experiments with the noise-free artificial domain suggest that IB3's 
learning rate will be slower than IBl's in some noise-free situations. This proved true in the 
experiment with the relatively noise-free Congressional Voting database. IB3's performance 
improvement over IB2 is not substantial in this application. This was predicted since they 
performed equally well under similar conditions, as described in Section 4.2.3 (i.e., when 
applied to the 2-dimensional artificial domain at the 0% noise level). C4 outperformed the 
IBL algorithms in this application because it found that few attributes were required (i.e., 
between 1 and 5 attributes) to yield accurate trees. This was also expected since this domain 
is linearly separable (Hampson, personal communication). 

Although IB3 sacrificed classification accuracy in this application, its storage require­
ments were still extremely low (i.e., IB3 accepted an average of only 3.5% of the training 
instances). 

Domains with Irrelevant Attributes: 

IB3's classification accuracy on the LED-24 domain is comparatively terrible: it was 
27.4% below the Bayes optimal limit and about 20% below C4's accuracy. C4's results are 
useful because they show that IBl and IB2 also performed poorly in this application. This 
occurred because these IBL algorithms do not perform well in applications with multiple 
irrelevant attributes. Breiman (et al., 1984) reported that the NN algorithm achieved a 41 % 
accuracy on this domain, which appears plausible considering that IBl 's accuracy was only 
a 6.9% higher. However, the reliability of this figure must be questioned since the algorithm 
was tested on only one training set, which may not have been highly representative. 

CART achieved a 70% classification accuracy on this domain (Breiman et al., 1984), 
which is somewhat similar to C4's here (66.9%) (again, this discrepancy is probably due to the 
single learning trial problem). The decision tree algorithms outperform the IBL algorithms in 
this application because they measure the information content of each attribute, which allows 
them to discover which attributes are irrelevant. I will later show that IB4 (Section 4.4) can 
also discover this information. 

The situation with the Waveform-40 domain is not much better; C4 outperforms all three 
IBL algorithms (CART's accuracy was 72%). Surprisingly, Breiman reported that the NN 
algorithm's classification accuracy was only 38% on this domain, which is far lower than IBl 's 
classification accuracy (68.6%). Either the accuracy of the NN algorithm was incorrectly 
reported (i.e., the classification accuracy was reported rather than the misclassification rate) 
or the single learning trial was not sufficient to accurately determine NN's capabilities on 
this domain. Therefore, I decided to test NN on this application. It's average classification 
accuracy on these same set of 25 training and test sets was 66.4%. The accuracies of the 25 
tests varied from 55% to 74% with a standard deviation of 5.3. Although it is possible, the 
probability is low that a randomly chosen training and test set would yield a 38% accuracy. 
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Figure 4.19: Many settings for IB3's parameters resulted in good performance. 

Therefore, I believe that their reported figure was actually NN's correct classification rate 
rather than its misclassification rate. Nonetheless, these results show that IBL algorithms will 
not perform well in domains with numerous irrelevant attributes without suitable extensions 
that allow them to determine the relative relevances of attributes. 

Summary: 

In summary, IB3 demonstrated significant improvement over IB2 in these applications. 
It consistently recorded lower storage requirements and higher learning rates. IB3 also 
compared favorably with IBl in measurements of classification accuracy. Finally, IB3's 
relatively weak learning bias for piecewise-linear approximations of concept descriptions often 
allowed it to achieve slightly faster learning rates than C4 in these applications. However, 
the results with domains containing high numbers of irrelevant attributes exposed the fact 
that IBl, IB2, and IB3 do not perform well when instances are described by many irrelevant 
attributes. This observation was anticipated by the mathematical analyses in Chapter 3, 
which predicted that IBl requires exponentially more instances to achieve similar accuracies 
with linear increases in dimensionality. 

It is possible that IB3's performance in these applications is highly sensitive to its pa­
rameter settings (i.e., the confidence levels for accepting and dropping instances). This 
hypothesis was tested in a sensitivity analysis using a factorial design, where the two param­
eters were varied from 75% to 95% in 5% increments. The test application was the LED-7 
domain and the results were averaged over five trials for each pair of settings. Figure 4.19 
shows that the settings chosen for IB3, 90% for acceptance and 75% for dropping, do not 
yield ideal learning behavior. Furthermore, it appears that IB3's behavior in this application 
is relatively robust with respect to these two parameters' settings. However, settings below 
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Figure 4.20: These graphs show which instances were saved by the three algorithms in an 
application to the J(x) = 1/(1 + e-xl2 ) target function at the 20% attribute noise level. IB3 
accepted only two noisy instances in this example. 

80% or above 90% for acceptance begin to deteriorate IB3's performance. Although not 
shown in the figure, this experiment also indicated that IB3 will accept more instances as 
the confidence level for dropping increases. At the 90% acceptance level, the 75% dropping 
level resulted with the lowest storage requirements (average storage requirements ranged 
from 56.0 to 70.2 instances as the confidence level for dropping instances was raised from 
75% to 95%). Although these were the parameters settings chosen for testing IB3, several 
other settings resulted with similar average classification accuracies and storage requirements 
for this application. However, this is not true for all applications, as demonstrated in another 
sensitivity analysis in Section 4.5. 

Numeric Prediction: An example 

IB3 also improves IB2's performance on numeric prediction tasks. This section examines 
IB3's learning behavior in an application to a simple numeric prediction task that was used 
in Section 4.2.3 to evaluate IB2's learning behavior. 

Figure 4.20 summarizes the first piece of evidence that IB3's benefits are also noticeable 
m numeric prediction tasks. This figure is an extension of Figure 4.11 on page 79. It 
shows which instances were accepted by IB3 alongside those saved by IBl and IB2 when the 
attribute noise level was 20% and the application is the simple sigmoid function. Only two of 
the 37 instances accepted by IB3 were noisy. That is, only 5.4% of IB3's accepted instances 
were noisy whereas the percentage of noisy instances saved by IBl and IB2 were 20.0% and 
35.9% respectively on this example. IB3's mean error on this training set was 8.2%, far better 
than IBl 's 12.0% and IB2's 14.8%. Figure 4.21 is an extension of Figure 4.12 on page 79 
that also includes IB3's averaged results (from 25 trials). (Note how closely this resembles 
the averaged results with the simple symbolic application, which is shown in Figure 4.16 on 
page 88. IB3's mean prediction error and storage requirements were lower than those of the 
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Figure 4.21: IB3's error rate degrades more slowly with increasing noise levels. Its storage 
requirements and percentage of noise among its accepted instances is also lowest among the 
three IBL algorithms (target function: 1/(1 + exf2 )). 

other two algorithms for all non-zero noise levels. IB3's performance was superior in this 
application because it used a lower percentage of noisy instances in its prediction decisions. 

Summary of Empirical Studies 

IB3's solid performance in the sigmoid function application does not guarantee that it will 
perform well in other numeric-prediction applications. Therefore, IB3 was evaluated on the 
same set of applications that IBl, IB2, and the average guess algorithm were evaluated on in 
Section 4.2.3. The results are listed in Table 4.8, which is an extension of Table 4.5 on page 73. 
This table shows that IB3's learning behavior, measured in dimensions of predictive accuracy 
and storage requirements (i.e., number of acceptable instances), is comparatively consistent 
with respect to IB2's learning behavior in these applications. IB3 recorded lower average 
relative errors than IB2 in five of the six applications. Also, IB2's storage requirements were 
at least three times that of IB3's in these same five applications. IB3's error rates were 
also at least as low as IBl 's in these five applications. IB3's large improvement in IBl 's 
predictive accuracy for the Hungarian data base application was, as expected, similar to its 
improvement in the equivalent symbolic prediction task as described in Section 4.3.3. 

However, IB3 recorded a higher average relative error than its predecessor IBL algorithms 
for the automobile horsepower prediction task. Its reduction in storage requirements, relative 
to IB2's, was also smaller for this application. This suggests that the horsepower target 
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Table 4.8: Average relative error ± standard error and percent storage requirements. IBl 
alwa t d lOOo/c f th t · · t ys s ore 0 0 e ramm_g_ ms ances. 

Target Function [ IBl IB2 IB3 I Ave Guess 

Hungarian 0.39±0.022 0.43±0.026 36. 7 0.23±0.013 6.3 0.46±0.022 
Cleveland 0.19±0.005 0.20±0.005 52.9 0.19±0.005 14.2 0.25±0.003 
Horsepower 0.04±0.002 0.06±0.003 24.9 0.08±0.004 16.8 0.14±0.006 
Number 0.20±0.006 0.22±0.006 57.4 0.20±0.005 18.4 0.24±0.004 
of Months 
Cholesterol 0.14±0.007 0.15±0.007 52.3 0.13±0.007 13.6 0.11±0.005 
Level 
Tumor 0.22±0.004 0.23±0.004 62.0 0.21±0.003 16.1 0.17±0.003 
Size 

function is different than the other five applications. In fact, it is distinguished in at least two 
ways that affect IB3's behavior. First, there are many more predictor attributes (25) in this 
application than are used in the other applications. I will present evidence in Section 4.3.4 
that, at least for symbolic prediction tasks, IB3's comparative gains in predictive accuracy 
diminishes (if not vanishes) when the application involves several irrelevant attributes. It is 
highly probable that some of the 25 predictor attributes are far less relevant for predicting 
horsepower than others in this task. Second, the average relative errors for the horsepower 
target function are much smaller than the errors for the other applications. This indicates 
that the information in the attributes is relatively complete; a strong argument can be made 
that this application has relatively small amounts of noise. Since the experiments with the 
sigmoid function showed that IB3's error rate is not lower than the error rates for the other 
algorithms in non-noisy applications, it is not surprising that IB3 did not outperform the 
other algorithms in this application. 

In summary, IB3 further reduced storage requirements, accepting an average of less than 
20% of the instances in each of the applications. Moreover, IB3's average relative error .was 
lower than both IBI 's and IB2's in all but one application, which was relatively noise-free. 
However, its accuracy was better than the accuracy of the simple average guess algorithm in 
only four of the six applications. Average guess recorded better accuracies than IB3 when the 
target functions values were normally distributed. It appears that IB3 shares IB l's weakness 
for this domain characteristic. 

Discussion: Other Numeric Prediction Algorithms 

These are not the only machine learning algorithms that fare poorly with respect to 
average guess in some applications. John Gennari (personal communication) also found 
that, although his CLASSIT algorithm (Gennari, 1990) performed well in comparison to 
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average guess in the horsepower and three other applications, it also performed comparatively 
poorly in some of the medical applications used here. In some situations, the average guess 
algorithm, which was meant to be a "strawman" comparison algorithm, outperforms both 
the CLASSIT and IBL algorithms. 

The CART regression tree algorithm (Breiman et al., 1984) will also perform relatively 
poorly in some applications. Regression trees are similar to decision trees except that they 
predict numeric rather than symbolic values; the prediction is the average of the target 
values of the training instances that were funneled to the leaf chosen to classify the current 
instance. Also, regression trees choose attribute tests differently, based on their ability to 
decrease the mean squared difference of the instances' target values in the two subtrees. In 
a previous study, I empirically compared CART with these IBL algorithms (Aha, 1990). I 
chose CART because it is an elegant, well-known algorithm for predicting numeric values 
in the machine learning literature. 7 CART uses the average target value of the training 
instances that were grouped in each of its leaves as the predicted target value for instances 
that are indexed to those leaves. In my experiments with CART, Some of the data sets were 
the same as those used in this present study, although the specific experiments differed. The 
results showed that the IBL algorithms performed about as well as CART; IB3 had a lower 
average relative error in half the applications and the difference between their error rates 
was small. Therefore, CART also performed rather poorly in comparison with the simple 
average guess algorithm in several applications. 

Breiman and his colleagues described case studies in their book that suggested CART 
performed well in some applications, although no comparisons were made with other numeric 
prediction algorithms. However, they did note that regression trees have been compared with 
linear regression in several case studies. They mentioned that CART performed better when 
the target function was nonlinear and performed worse when the target function was linear. 
Previous comparative studies have shown that IBl performed similarly in comparison with 
linear regression (Kibler, Aha, & Albert, 1989). 

I am not aware of any careful domain characterization studies of published machine 
learning algorithms for numeric prediction that showed when they will outperform such 
standard methods as linear regression and average guess. There is a great need for these 
analyses so that users can determine when CART, CLASSIT, and IBL algorithms will display 
comparatively good predictive behavior. Some arguments have been made that they are more 
flexible than standard algorithms because they can tolerate missing attributes and process 
symbolic attribute values. However, extensions of standard statistical algorithms also have 
these capabilities. CLASSIT and CART's primary contribution appears to be their ability to 
convey the structure of the target function in a tree-structured hierarchy. The IBL algorithms 
described in this chapter do not address the issue of comprehensibility. However, they do 

7To my dismay, I also found the commercial CART software (California Statistical Software, 1984) to be 
exceedingly difficult to use. This convinced me to avoid using it in this present study. 
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Figure 4.22: IB3's storage requirements (averaged over 25 trials) increase exponentially with 
the number of irrelevant attributes. All of the attributes are Boolean-valued. Each domain 
contains only one symbolic target concept and only one attribute is relevant for predicting 
class membership. 

have a contribution; they are comparatively inexpensive to use in an incremental manner. 
This point is discussed in more detail in. Section 8.2.2. 

4.3.4 The Effects of Irrelevant Attributes 

Although IB3 performed well in the applications described earlier in Section 4.3.3, it 
has several limitations. Foremost among these limitations is that it does not address the 
most pressing problem highlighted by the mathematical analyses; it does not attempt to 
reduce the dimensionality of the instance space. Therefore, it will learn slowly when the 
dimensionality of the instance space it high. 

IB3's flaw can be traced to the design of its primitive similarity function, which in­
correctly assumes that all attributes have the same relevance for predicting target values. 
IB3 could effectively reduce the dimensionality of instance spaces if it could learn to ignore 
irrelevant attributes. Unfortunately, it does not have this capability. 

Figure 4.22 displays a vivid example of this problem. This figure summarizes the results 
of an experiment where IB3 was applied to a simple binary classification task. All of the 
predictor attributes were Boolean-valued. Only one of these was relevant for determining 
class membership. The left-hand graph displays IB3's learning curves when the number of 
irrelevant attributes was varied. This graph shows that, to reach a criterion accuracy of 
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95%, IB3's training requirements increase quickly with the number of irrelevant predictor 
attributes. The graph on the right-hand side of this figure displays this information more 
clearly. In fact, the number of instances required by IB3 to reach a criterion accuracy goes 
up exponentially with dimensionality. This observation agrees with the results from the 
mathematical analysis Chapter 3. 

4.4 IB4: Learning Relative Attribute Relevance 

This section describes IB4, an extension of IB3 that improves its performance in applica­
tions where instances are described by many irrelevant attributes. Results for both symbolic 
and numeric prediction tasks are described. 

IB4 was designed to repair one of the more obvious flaws with IB3, which assumes that 
the attributes used to describe instances are equally relevant for the purposes of generating 
accurate target value predictions. IB3's initial assumption seems sound; without further 
information, there is no reason to believe that some (specified) attributes are more relevant 
than others for solving prediction tasks. However, IB3 needs to be extended to use feedback 
from its environment to incrementally learn domain-specific relevance information. IB3 then 
needs to use this information during classification tasks. 

4.4.1 Methods for Learning Attribute Relevance 

Algorithms derived from other learning paradigms use different methods to learn at­
tribute relevance. TD IDT algorithms, which induce decision trees using a top-down approach 
(e.g., Breiman et al., 1984; Quinlan, 1986a; Michie et al., 1984), evaluate each attribute's 
localized relevance (with respect to a pre-specified prediction task) by measuring its informa­
tion gain for the set of instances located in a specified region of an instance space. Attributes 
with high information gains are used in the concept description and the other attributes are 
ignored. Incremental TDIDT algorithms have successfully used this method for solving su­
pervised learning tasks (Utgoff, 1989; Van de Velde, 1990). This evaluation function also 
served as a good guide for pre-selecting attributes that significantly improved the perfor­
mance of IBL algorithms (Kibler & Aha, 1987). However, incremental TDIDT algorithms 
that use this method are currently limited to symbolic-valued attributes. Furthermore, these 
limited algorithms cannot tolerate noise. Finally, this information is expensive to compute 
if done in a non-incremental manner and it is not obvious how it can be efficiently computed 
when the set of accepted instances changes with each prediction attempt. Therefore, this 
method is not used for IB4, although it may prove to be useful once these problems are 
solved. 
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Classifier systems (Holland, 1986; Wilson, 1987) learn attribute relevance in a manner 
more similar to the method employed by IB4 in that they incrementally receive feedback 
concerning predictive accuracy and use it to reward parts of the concept description that lead 
to accurate predictions. In this case, rewards are given to rules that correspond to the region 
of the instance space that contains the current training instance. Highly rewarded rules are 
copied and modified while less rewarded rules are eliminated. Attributes that are irrelevant 
will tend to have their values generalized in rules to "don't care" values. An analogous 
process could be implemented in IBL algorithms whereby instances could be associated 
with strengths and reinforcement could lead to the introduction of perturbations of strong 
instances. However, this process is antithetical to the IBL approach, which states that 
instances should not be generalized but rather used differently for different purposes. That 
is, IBL algorithms that learn attribute relevance should update the instance-interpretation 
process rather than the instances themselves. Michalski (1990) used similar arguments to 
motivate the need for concept representations that support multiple interpretations. 

The AQ class of rule-based systems (e.g., Michalski et al., 1986; Clark & Niblett, 
1989) use yet another approach for identifying relevant attributes. These algorithms build 
maximally-general rules corresponding to areas in instance space populated by subsets of 
training instances. Rules are built using a general-to-specific search through the space of 
attributes. This process retains in a rule's conditions references to the minimal set of at­
tributes required to correctly categorize the corresponding set of instances. Although this 
method focuses prediction on a subset of the attributes that are presumed to be relevant 
for a given region of instance space, it is non-incremental. Furthermore, it is not obvious 
that efficient incremental variants exist for this approach since, unlike in decision trees, there 
is no simple representation modification process analogous to "pulling up" attributes in a 
decision tree. Therefore, it is unlikely that this method for locating relevant attributes is 
useful for incremental IBL algorithms. 

However, there is an incremental exemplar-based learning algorithm that builds rules of 
this form (Salzberg, 1988), but it neither assigns attribute relevance based on the attributes 
used in rule conditions nor perform a general-to-specific search for rules. Instead, Salzberg's 
NGE algorithm learns estimates of attribute relevance that correspond to the entire instance 
space (rather than rule-localized relevance information). This information is in the form 
of attribute weight settings. These weights are similar to the those used in connectionist 
learning systems (Rumelhart et al., 1987) in that they are attached directly to attributes. 
However, NGE updates the weights' settings differently. While weights in a connectionist 
network are updated by propagating rewards through a network, NGE updates its weights 
by explicitly comparing the attribute values of two instances (i.e., a novel instance and 
previously processed instance that was used to generate a target value prediction). 

IB4's method for representing and updating attribute relevance information was inspired 
by the methods used in NGE. Dennis Kibler and I reviewed several methods for learning 
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and representing relevance information that learned useful weight settings but was compu­
tationally expensive. As a first step, NGE's suggestion for using attribute weights is quite 
sound. However, its algorithm for updating weights can be improved. For example, Salzberg 
(1988) noted that NGE's weight-learning algorithm should reduce the rate of modification 
change to attribute weight settings over time. Also, this representation assumed that an 
attribute's relative relevance was invariant across target concepts. IB4's weight-learning 
algorithm includes solutions to these problems. 

4.4.2 Description of the IB4 Algorithm 

Table 4.9 details IB4's memory updating algorithm. IB4 is an extension of IB3 that 
learns attribute relevance information, represented by attribute weight settings. Therefore, 
IB4's training algorithm is identical to IB3's with two exceptions. First, IB4's similarity func­
tions uses this attribute relevance information so that more relevant predictor attributes are 
emphasized (i.e., their relative Attribute_difference range is stretched) and less relevant pre­
dictor attributes are de-emphasized (i.e., their relative Attribute_difference range is shrunk). 
Second, IB4's learning algorithm extends IB3's to update these attribute weights settings. 
IB4 uses a nonparametric reinforcement learning strategy to assign higher weight settings 
to attributes that assist in correct classifications and lower settings to other attributes. IB4 
effectively transforms the initial instance space so that attributes with high relevance have 
larger ranges of values. IB4's testing algorithm is identical to IB3's except for its modified 
similarity function. 

IB4's similarity function is defined as 

Similarity(x,y,t,P) = 1 , 
)ZieP Wt, x Attribute_difference( x;, y;) 

( 4.4) 

where Wt; is predictor attribute i's weight when predictions are requested for target concept 
t. A unique set of attribute weights is learned for each target concept. IB4 has great 
flexibility; it assigns an attribute's relevance based on the prediction task. Therefore, its 
similarity definition is task-dependent. This capability is not shared by IB4's predecessors 
but is shared by other learning algorithms (e.g., decision-tree, rule-based) that use different 
attributes to classify instances dependent on the target concept. For example, the similarity 
of a tiger and a cat is higher if the task is to predict whether they are animals than whether 
they are potential pets. 

IB4's prediction function is similar to IB3's in that only acceptable instances are used to 
generate target value predictions. However, IB4 maintains a separate set of attribute weight 
settings and partial concept description for each target concept (i.e., each different target 
attribute value). This endows IB4 with yet another ability not shared with its predecessors: 
IB4 does not assume that concepts are disjoint and exhaustive. Instead, instances can be 
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Table 4.9: IB4's definition for its memory updating function. 

Key: T: Training set 
P: Set of predictor attributes 
t: The target attribute 
k: Number of most similar instances used 

David W. A.ha 

a & 8: Confidence thresholds for acceptance and dropping 
PCD: Partial concept description 

Train(T, P, t, k,tolerance_threshold,a,8) 
1. Set global variables 
2. for each Xi E T do 

2.1 x; +- Pre_process(xi,P) 
2.2 prediction +- Performance(x;, P, t, k,a) 
2.3 Learn( Xi ,prediction,t,toleranceJ;hreshold,8) 

Performance(x, P, t, k, a) 
1. S+-0 
2. Vyi E PCD: S +-SU { (y;, Similarity(x, y;, t, P))} 
3. KSET +- k_mosLsimilar....acceptableinstances(S, k, a) 
4. return TargeLvalue_prediction(KSET,t, k) 

Learn( x ,prediction,t, toleranceJ;hreshold,8) 
1. if (I Xt - prediction I > tolerance_threshold) 

then PCD +- PCD U {x} 
2. S +- set of stored instances at least as similar as 

the kth most similar acceptable instance 
3. Update....attribute_weights(S, x,prediction,t) 
4. Update_prediction..records( S) 
5. Discard...significantly _poorinstances( S, 8) 

predicted to have multiple, single, or no target values. Aha (1989b) described experiments 
that showed how IB4 can learn overlapping concepts. 

This strategy requires additional work because an instance is classified with respect 
to n concept descriptions when a target has n potential values. Whenever an instance is 
misclassified, it is added to the corresponding target value's partial concept description. 
Since IB4 represents concepts independently of each other, instances are either members 
("positive") or non-members ("negative") of a concept. Therefore, each target concept's 
description groups all non-members together, independent of their other classifications. 
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IB4's prediction that an instance x has target value v for some target attribute tis decided 
by a vote among the k most similar acceptable instances in t's partial concept description 
for target value v. One prediction is made for each potential target value. However, many 
prediction tasks assume that concepts are disjoint and exhaustive. This is true for the 
seven applications used previously to evaluate algorithms IBl, IB2, and IB3. IB4 must act 
differently during testing to exploit this information. Therefore, I modified IB4's prediction 
function so that, when a target attribute has more than two possible values, IB4's estimate 
of membership is defined as a function of the most similar acceptable instance in v 's partial 
concept description that is a concept member and the most similar acceptable that is not a 
concept member. The intuition is that an instance's estimate of membership is defined to 
increase with its similarity to the most similar acceptable instance with target value v and 
decreases with its similarity to the most similar acceptable instance with a different target 
value. This estimate of membership function is defined as 

Estimate_ofJnembership(x, t, v, P) = 
l/Similarity(x, neg, t, P) 

l/Similarity(x, neg, t, P) + l/Similarity(x,pos, t, P) 

where pos is a nearest acceptable neighbor of x whose target value is v and neg is a nearest 
acceptable neighbor of x that has a different (i.e., negative) target value. 8 The target value 
with the highest estimate of membership is then selected as IB4's prediction for the test 
instance's target value. (Ties are randomly broken among the target values with the highest 
estimate.) 

IB4's memory updating function is an extension of IB3's. In addition to maintaining 
prediction records for each stored instance, IB4 also learns each target concept's attribute 
weights through another performance feedback process. Attribute weights are initialized to 
be equal, vary in the range [O, l], and are normalized to sum to one. Each weight is updated 
after each prediction attempt during the training process. Weights are derived from two 
other variables as follows: (for attribute i and some target concept t) 

W . h _ (Cumulative Weightt, ) 
e1g tt· - max W . h N r - 0.5, 0 • eig t orma izert, 

(4.5) 

All attribute weights are updated after each training instance x is classified. The k most sim­
ilar acceptable instances in the partial concept description are used to update the weights, 
as described in Table 4.10. The CumulativeWeight numerator is incremented by a frac­
tion of the value added to the WeightNormalizer denominator. Attribute weights are in­
creased when they correctly predict classifications and are otherwise decreased. That is, the 
Cumulative Weight's increment is high when its attribute's value assists making a correct 
classification decision and is otherwise low. An attribute's pair of values assists in making 

8 Recall that instances are either members or non-members of a given concept. Therefore each concept 
description groups all non-member instances together, independent of their other concept memberships. 
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Table 4.10: IB4's we~ht-updati~ a!g_orithm. 

Variable Key:x - instance being classified 
y - one of the k most similar acceptables 
t - the target concept 
A - the higher observed frequency among tv 's 

actual and predicted class members 
,\ - the observed frequency of y's membership status in tv 

for each attribute i: 
1. let Difference= Ix; - y;I 
2. if (x's classification was correctly predicted) 

then 

David W. Aha 

2.la CumulativeWeightt, = CumulativeWeightt, + (1-.\) x (I-Difference) 
2.2a WeightNormalizerti = WeightNormalizert, + (1-.\) 

else 
2.lb CumulativeWeightti = CumulativeWeightti + (1-A)xDifference 
2.2b WeightNormalizert, = WeightNormalizerti + (1-A) 

correct classifications when either (1) a correct classification occurs and the two instances' 
attribute values are similar to each other or (2) an incorrect classificatipn occurs and they 
are dissimilar. Otherwise, the CumulativeWeight's increment is small. 

IB4's weight updating algorithm, like IB3's significance test, attends to classes with low 
observed relative frequency to tolerate skewed concept frequency distributions. The variable 
A refers to the higher frequency for instances in the concept distribution (which are labeled 
as either "positive" or "negative"). Variable ,\ refers to this same frequency for the saved 
instance's target value, which may either be the lower or the higher of the two frequencies. 
Matches of instances of the less frequent value yield larger adjustments of attribute weights. 
Otherwise, the more frequent value's instances would have an overwhelming affect on the 
settings of the weights. 

The best way to understand this weight-learning algorithm is to work through a detailed 
example. Suppose the target concept is "Ph.D. student" and the instances (people) are de­
scribed with three Boolean attributes ("is enrolled", "has M.S. degree", and "is married"). 
Suppose also that IB4 has been trained on four instances, only one of which was a Ph.D. stu­
dent (with attribute values <True, True, True>), the resulting Cumulative Weights settings 
are (0.65,0.65,0.65), the WeightNormalizers are all 0. 75, and k = 1. Finally, assume for the 
moment that this positive instance is acceptable throughout this example. These settings 
and the derived attribute weights are listed in the first two rows of Table 4.11 The next 
three lines in this table describe (1) which attributes' values match between the fifth train­
ing instance and its most similar acceptable instance, (2) the resulting CumulativeWeight 
and WeightNormalizer settings, and (3) the attribute weight settings after the fifth train­
ing instance has been processed. If the fifth instance is incorrectly classified as a Ph.D. 
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Table 4.11: Intermediate results of IB4's weight-learning algorithm. 
Prediction Membership Attributes 

Result Frequency Enrolled Degree Married 

0.25 0.65/0. 75 0.65/0. 75 0.65/0. 75 
o.3 0.3 o.3 

wrong 0.2 mismatch mismatch match 
0.90/1.00 0.90/1.00 0.65/1.00 

0.42 0.42 0.16 
correct 0.3 match mismatch mismatch 

l. 70/1.80 0.90/1.80 0.65/1.80 
1.0 0.0 0.0 

student and has attribute values <False,False,True> (i.e., not enrolled, no M.S., married), 
then the new CumulativeWeight settings are (0.9,0.9,0.65) and the WeightNormalizers all 
become 1.0. Finally, the last three lines describe the situation after the sixth training in­
stance was processed. If the sixth instance is correctly classified as a Ph.D. student and 
has attribute values <True,False,False> (i.e., enrolled, no M.S., not married), then the new 
Cumulative Weight settings are (1.7,0.9,0.65) and the new WeightNormalizers are 1.8. This 
indicates that IB4 has learned that the attribute "is enrolled" is more predictive of the Ph.D. 
student class than either "has M.S. degree" or "is married" for these training instances. This 
weight-learning algorithm assigns higher weight settings to predictive attributes than to less 
relevant attributes. 

In summary, IB4 is an extension of IB3 that does not assume all attributes have equal 
predictive relevance. Instead, it incrementally learns settings for attribute weights that de­
note relative attribute relevance. These weights are then used in IB4's similarity function. 
Updating the attribute weights after each classification attempt continuously changes a con­
cept's similarity function. Thus IB4 learns domain-specific similarity functions independently 
for each target concept. 

4.4.3 Empirical Results with IB4 

Symbolic Prediction Tasks 

IB4 can outperform IB3 in many applications whose instances are described by multiple 
irrelevant attributes. For example, Figure 4.23 shows an extension of the right-hand graph 
in Figure 4.22 on page 98. Although IB3's storage requirements for attaining criterion (i.e., 
95% classification accuracy) increase exponentially with the number of irrelevant attributes, 
IB4's storage requirements remain relatively the same. IB4's learning rate will not decrease 
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Figure 4.23: IB4's storage requirements (averaged over 25 trials) for achieving a criterion 
classification accuracy increase more slowly than IB3's with the number of irrelevant at­
tributes. 

as quickly as will IB3's when applied to some domains whose attributes vary greatly in their 
relevance for generating predictions. 

Of course, IB4's benefits on this example may be restricted to this application domain. 
Therefore, IB4 was evaluated on the set of applications described in Table 4.2 on page 65. 
The results are summarized in Table 4.12 alongside the results obtained for the other algo­
rithms tested and are discussed in detail in the following paragraphs. IB4 achieved higher 
classification accuracies than the other IBL algorithms when the application's instances were 
described by numerous irrelevant attributes. However, IB4 performed poorly when trained 
on small numbers of instances. IB4's storage requirements are defined as the number of 
unique training instances that it accepted among its set of partial concept descriptions .. 

Noisy Artificial Domains: 

IB4 performed terribly on the LED-7 domain. It's average accuracy after 200 training 
instances was 32.1 %, which is about 40% lower than the accuracies recorded by the other 
algorithms. The main reason that IB4 learns slowly here is that few (about 10) positive 
non-noisy instances of each concept are expected to exist in a training set of 200 instances. 
This isn't a problem for the other IBL algorithms because they assume that the concepts 
are disjoint and exhaustive. However, IB4 doesn't make this assumption and learns a partial 
concept description for each target value. Since it does not benefit from the knowledge that 
an instance must be a member of exactly one concept, IB4 requires more instances to learn 
concepts when this information is useful. However, it eventually achieves reasonably high 
classification accuracies. Figure 4.24 shows IB4's average learning curve for this domain over 
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Table 4.12: Average% accuracy± standard error and% storage requirements (lower lines). 
I Database II IBl j IB2 j IB3 j IB4 j C4 l 

LED-7 71.6±0.4 63.0±0.9 72.5±0.4 32.1±3.0 68.9±0.5 
41.6 20.1 21.3 

Waveform-21 75.5±1.1 68.4±1.l 74.2±1.2 76.9±1.0 71.5±1.2 
32.3 11.1 13.4 

Cleveland 75.1±0.8 71.4±0.9 78.4±0.9 78.1±0.7 75.2±1.2 
32.0 3.9 4.2 

Hungarian 56.1±2.2 53.1±2.4 79.4±0.9 79.8±0.7 77.6±0.9 
36.9 4.3 3.9 

Voting 91.8±0.4 90.9±0.5 90.6±0.6 93.8±0.4 96.1±0.6 
11.6 3.5 3.0 

LED-24 4 7.9±0.6 43.7±0.8 46.6±0.7 66.1±0.6 66.9±2.1 
60.1 25.3 25.4 

Waveform-40 68.6±0.7 64.0±0.7 67.2±1.1 72.1±1.2 70.9±1.0 
38.3 11.8 12.6 

Average Accuracy 
75% 

IBl • • 
60% IB2 0· ... 0 

IB3 . - __. 
45% IB4 o 0 

30% C4 •· .. ·• 
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Figure 4.24: Learning curves for the LED- 7 application. 

larger-sized training sets; it is an extension of Figure 4.17 on page 90. IB4's classification 
accuracy begins to level off and approximate the other algorithm's accuracies after 500 
training instances. 

IB4 recorded the highest classification accuracy among the algorithms tested on the 
Waveform-21 noisy artificial domain (CART's accuracy was 70% (Breiman et al., 1984)). 
This occurred because the domain's instances were described by many irrelevant attributes 
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(i.e., recall that CART and C4 learned accurate decision trees that used few attributes). 
IB4's storage requirements were also low, almost matching IB3's. 

Although the accuracies recorded from the experiment with the LED-7 domain approx­
imated the Bayes optimal rate (74%), none of the algorithms approached this rate for the 
vVaveform-21 domain (86%). This leaves open to question why the biases of these learning 
algorithms more easily match the characteristics of the LED-7 domain. Both the IBL and 
decision tree algorithms required that similar instances have similar classifications to ensure 
high classification accuracies. It's probable that the Waveform-41 domain is highly disjunc­
tive, which would cause these algorithms to perform sub-optimally. Additional analyses of 
this domain would be required to evaluate this possibility. 

Databases with Imperfect Attribute Sets: 

IB4 performed well in the experiments with the cardiology databases; its classification 
accuracies and storage requirements were similar to IB3's. It also had higher classification 
accuracies than IBl and C4 on both data sets. This is typical of IB4's behavior when the 
application involves few target concepts and the instances are described by relatively small 
numbers of attributes, some of which are irrelevant. 

Noise-Free Database: 

The instances contained in the Congressional Voting database are described by many 
attributes that can be safely ignored without sacrificing classification accuracy. Therefore, 
it is not surprising that IB4's accuracy on this domain is superior to that of the other IBL 
algorithms. In some sense, IB4 corrects IB3's bias to expect noise by performing simple 
transformations on the instance space (i.e., it stretches and shrinks the predictor attribute 
dimensions) that yield simpler spaces in which higher classification accuracies can be ob­
tained. IB4's storage requirements were also lower than IB3's in this application. However, 
IB4's accuracy is still lower than C4's in this application. The latter algorithm's learning 
bias for this application is clearly superior than the IBL algorithm's. 

Domains with Irrelevant Attributes: 

IB4's benefits were most apparent in the experiments with the LED-24 and Waveform-40 
domains, which contain 17 and 19 additional irrelevant attributes respectively. The algo­
rithms' average learning curves for the LED-24 attribute domain are displayed in Figure 4.25. 
As mentioned earlier, IB4's initially slow learning curve is due to its lack of information that 
the concepts are disjoint and exhaustive in these domains. However, IB4's learning curve 
eventually rises above the other algorithms' curves. After the first 300 training instances, 
IB4's average learning curve is significantly higher than IBl's (t(13) = 7.20,p << 0.0005). 
Likewise, after the first 200 training instances, IB4's average learning curve for the Waveform-
40 domain is significantly higher than IBl's (t(3) = 7.96,p < 0.0025). IB4 performs well in 
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Figure 4.25: Learning curves for the LED-24 application. 
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these applications, recording accuracies similar to C4's, by learning the relative relevance of 
the predictor attributes for generating accurate predictions. 

Numeric Prediction Tasks -

IB4 was also applied to the six numeric-.prediction tasks used in Sections 4.2 and 4.3. 
Its weight-learning algorithm is slightly~diiferent for numeric prediction tasks. In this case, 
the frequency of an instance's class is replaced by the observed frequency that training 
instance's target values are in the same target interval. Similarly, the frequency for instances 
with different classifications is replaced by the frequency of instances whose target values 
lie in different intervals. Furthermore, I have not yet investigated IB4's learning behavior 
for learning separate sub-intervals of the target function. Although it would be possible to 
study IB4's behavior in this mode, it would be difficult because the set of target function 
intervals change each time a new maximum or minimum target function value is processed 
during training. Therefore, IB4 maintains a single partial concept description for numeric 
prediction tasks. 

The results of the six applications are summarized in Table 4.13. In general, IB4's 
behavior is highly similar to IB3's for these applications. IB4's error rates were lower in for 
four and its storage requirements were lower for three of the six applications. However, these 
differences were small. The reasons for this is that none of these applications' instances are 
described by numerous irrelevant attributes, which have been removed during the process 
of selecting attributes for describing instances in these databases. IB4 should record faster 
learning rates in applications with numerous irrelevant attributes. 
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Table 4.13: Average relative error ± standard error results. Percent average storage require-
ment h th d r s ares own on e s.e_con ines. 

Target Fn IBl IB2 IB3 IB4 Ave Guess 

Hungarian 0.39±0.022 0.43±0.026 0.23±0.013 0.20±0.008 0.46±0.022 
1003 36.73 6.33 7.53 

Cleveland 0.19±0.005 0.20±0.005 0.19±0.005 0.18±0.005 0.25±0.003 
1003 52.93 14.23 13.93 

Horsepower 0.04±0.002 0.06±0.003 0.08±0.004 0.07±0.003 0.14±0.006 
1003 24.93 16.83 17.83 

Number 0.20±0.006 0.22±0.006 0.20±0.005 0.20±0.007 0.24±0.004 
of Months 1003 57.43 18.43 17.33 

Cholesterol 0.14±0.007 0.15±0.007 0.13±0.007 0.14±0.007 0.11±0.005 
Level 1003 52.33 13.63 13.33 
Tumor 0.22±0.004 0.23±0.004 0.21±0.003 0.21±0.003 0.17±0.003 
Size 1003 62.03 16.13 17.53 

Table 4.14: Average relative error ± standard error results and average percent storage 
requirements. The second column lists the results for the original horsepower function while 
the second list the results when 20 additional irrelevant attributes were used. 

/ Algorithm II Original Function I Modified Function I 
IBl 0.0434±0.002 100.0 0.0881±0.004 100.0 
IB2 0.0593±0.003 24.9 0.1012±0.002 35. 7 
IB3 0.0764±0.004 16.8 0.1074±0.004 18.9 
IB4 0.0697±0.003 16.0 0.0785±0.004 17.8 

To test this claim, I applied these IBL algorithms to a variant of the horsepower target 
function application, whose instances were described by twenty additional irrelevant Boolean­
valued attributes. The values of these additional attributes were randomly determined. 
The results, summarized in Table 4.14, show that IB4 recorded lower error rates and lower 
storage requirements than the other three algorithms. IB4's increase in predictive accuracy 
after 144 training instances is significant in comparison with each of the other algorithms 
(IBl: t(24) = 1.32,p < 0.1, IB2: t(24) = 2.00,p < 0.05, IB3: t(24) = 1.76,p < 0.05). 
Their average learning (error) curves are shown in Figure 4.26. After processing 50 training 
instances, IB4's average learning curve was significantly lower than the other algorithms' 
curves (IBl: t(4) = 4.76,p < 0.005, IB2: t(4) = 4.49,p < 0.01, IB3: t(4) = 9.28,p < 
0.0005). Therefore, IB4 can significantly increase predictive accuracy and learning rate in 
some numeric prediction tasks that contain large numbers of irrelevant attributes. 
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Figure 4.26: Learning curves for the horsepower plus 20 irrelevant attributes target function. 

4.5 Discussion 

IB4 has many flaws and is not a polished algorithm. Rather, it is a first step towards 
solving one of the most critical problems affecting the instance-based approach, commonly 
known as the "curse of dimensionality." This problem was anticipated by the mathematical 
analyses in Chapter 3, where it was proved that a concept's boundary area grows exponen­
tially in size with an increased number of predictor attributes. Therefore, an exponentially 
larger number of training instances is required to yield accurate concept descriptions when 
the dimensionality is increased. 

The experiments have shown that IB4's learning rate is initially slow. However, in several 
cases IB4's learning curve rises far above those for the other IBL algorithms. Fortunately, 
the behaviors of the other algorithms suggest several ways in which IB4 can be improved. 
Considering how slow both IB3 and IB4 are, it would seem prudent to allow these algorithms 
to behave like IBl during the early stages of the training process. One way to accomplish 
this is to save more of the training instances by relaxing the error threshold. 

However, this will not necessarily result with higher numbers of acceptable instances. 
Therefore, the confidence level parameter for accepting instances also needs to be relaxed, 
but should later be reset to a higher (tighter) value to reduce the number of noisy instances 
used for generating predictions. The confidence level parameter for dropping instances should 
also follow this pattern to ensure that instances aren't dropped prematurely but are dropped 
after proving themselves to be poor classifiers. That is, the correct setting for these param­
eters should be learned. One demonstration where this method might prove effective is in 
application to learning the exclusive-or function when 25 additional irrelevant attributes are 
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Figure 4.27: IB4 learns more quickly with a lower setting for its confidence level for accep­
tance parameter when applied to the exclusive-or function in the presence of 25 irrelevant 
attributes. 

used to describe each instance. IB4's learning behavior will vary greatly depending on the 
setting of the confidence level for acceptance parameter. In this case, Figure 4.27 shows that 
IB4 performs much better with a 75% setting than with a 90% setting. This is because the 
higher setting makes it more difficult for instances to become acceptable; too few instances 
were accepted by IB4 with the higher parameter value setting. In fact, no instances were 
accepted in some of the 25 learning trials with the 90% setting there were 100 test instances 
per trial). Methods for learning the settings of IB3's parameters is a fertile avenue for future 
research of instance-based learning algorithms. 

In the previous experiments, it would seem that IB4's learning rate cannot compete 
with C4's. However, this is not completely true. If C4 is trained on applications in which it 
must learn a relatively large tree and many attributes are relevant, then IB4's learning curve 
could reach an asymptote sooner than C4's. This occurred in experiments with variants of 
the LED-24 domain. The four IBL algorithms and C4 were applied to two variants of this 
domain in which the relevant attributes were randomly selected for each concept. That is, 
instead of using the same set of seven of the 24 attributes for describing the seven relevants, a 
different set was chosen for each of the digits. This choice was randomly selected and different 
for each of the 25 learning trials. The first experiment corresponds to the situation when 
no noise was added to the data (other than the 17 irrelevant attributes) while instances in 
the second experiment were subjected to a 53 noise probability. Table 4.15 summarizes the 
average results. As expected, IB4 outperformed the other algorithms in all four applications, 
both in terms of higher classification accuracies and lower storage requirements. However, 
IB4's average classification accuracy seems disturbingly higher than C4's. In fact, there is a 
simple reason why IB4 seemingly outperformed C4 here. C4's accuracy was lower because 
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Table 4.15: Average % classification accuracies and storage requirements on 2 variants of 
the LED-24 domain. IB4 performs well even when concepts don't share relevant attributes. 

Algorithm No Noise 5 Percent Noise 
Accuracy Storage Accuracy Storage 

IBl 78.8% 1000 62.4% 1000 
IB2 71.6% 316.3 58.0% 447.9 
IB3 74.5% 275.0 62.4% 276.7 
IB4 94.2% 255.9 80.1% 247.5 

C4 87.7% 69.6% 
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Figure 4.28: IB4 learned more quickly than C4, not more accurately, when the relevant 
attributes were randomly selected for each concept. 

the decision tree algorithm partitioned the training instances into leaves with small numbers 
of instances, which were subsequently pruned. A learning curve analysis for the second 
experiment, shows that C4 learns more slowly than IB4, but will probably achieve the same 
accuracies once these leaves become large enough to be statistically significant. Figure 4.28 
shows the average learning curves for IB4 and C4 through training set sizes of 2000 instances. 
This experiment demonstrated the utility of learning separate concept descriptions for each 
target concept. For example, C4's average learning curve would be higher if it was directed 
to create a separate decision tree for each digit, much as IB4 is directed to learn a separate 
partial concept description for each digit. 

IB4's weight-learning algorithm has not been analyzed mathematically and, given that 
PAC-learning algorithms are difficult to generate for IB3 (Volper, personal communication), 
it is difficult to specify precisely when IB4 will perform well. However, the case studies 



114 

Average Classification Accuracy 
100% 

90% 

80% 

70% 

60% 

50%.a-""'-~~~~~~....-~~~......-~~~ ............ ~~~~ 
0 100 200 300 400 500 

Number of Training Instances 

David vV. Aha 

IB 4 11111111---1111111 

IBl D · D 

Figure 4.29: IB4 can learn which of 251 predictor attributes is relevant. 

described in this section provided some clues. IB4 outperformed the previous IBL algorithms 
in applications where the instances are described by numerous irrelevant attributes. IB4 will 
perform well in idealized applications such as the one described in Figure 4.29, where the 
target concept is defined by a single relevant and 250 irrelevant attributes (the curves are 
averaged over 25 trials). IB4 can also learn graded and overlapping concepts (Aha, 1989b). 
However, it will learn more slowly than decision tree algorithms when irrelevant attributes 
abound and few attributes are relevant. Also, its initial learning rate is easily the slowest 
of the four IBL algorithms tested in this chapter. Finally, IB4's capability for predicting 
numeric values has not yet been analyzed. Chapter 5 highlights several other problems with 
IB4 (and the other algorithms) and discusses initial attempts to solve them. 

4.6 Chapter Summary 

This task-oriented chapter contained empirical analyses of three IBL algorithms for ad­
dressing three problems with the instance-based learning approach: excessive storage re­
quirements, sensitivity to noise, and sensitivity to irrelevant attributes. IB2 was developed 
to reduce IBl 's storage requirements. The only instances saved by IB2 are those that lie in 
or nearby regions of the instance space where the derivative of the target function is high. 
Although IB2 significantly reduces storage requirements, it also increases IBl 's sensitivity to 
noise. This lead to the development of IB3, a noise-tolerant extension of IB2 that employs a 
confidence intervals of proportions test to ensure that only instances with significantly good 
classification accuracy are allowed to partake in classification decisions. However, these three 
algorithms do not perform well when instances are described in part by numerous irrelevant 
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attributes. IB4, an extension of IB3, was developed to solve this problem. It uses perfor­
mance feedback information from classification outcomes to modify the impact of attributes 
in subsequent classification decisions. Experiments with IB4 showed that it extends the set 
of applications in which IBL algorithms can perform reasonably well. 

The next chapter reviews commonalities of these four IBL algorithms with respect to 
the framework described in Chapter 2. Several design decisions were made to simplify these 
IBL algorithms, thus making them easy to understand, implement, and test. However, this 
resulted with a set of highly constrained algorithms. Chapter 5 highlights many of these 
simplifications and suggests alternatives that will lead to improved learning behavior. 

Chapter Acknowledgements 
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Chapter 5 

Parametric Studies 

The previous chapter described empirical analyses for three IBL algorithms that address 
three problems left unsolved by IBl. Although the analyses proved useful for analyzing how 
well the algorithms fulfilled their intentions, no analyses of the algorithms' component-level 
design decisions were presented. That is, for each algorithm, a choice was made for instan­
tiating each of the IBL framework's components without analysis of alternatives. Potential 
alternatives are empirically analyzed in this chapter, which describes a set of five component­
level parameter studies. 

The analyses in this chapter are partitioned into three sections. Each section corre­
sponds to one of the three components in the IBL framework, which was described earlier 
in Section 2.2. The following list briefly reviews these components. 

1. Pre-processing: This component pre-processes the instances given to the performance 
and learning components. The only pre-processing function used in IBl through IB4 
is the normalization function, which linearly normalizes the ranges of numeric-valued 
attributes. 

2. Performance: This component is responsible for generating target value predictions 
given a set of partial concept descriptions. Its two sub-functions are the similarity and 
prediction functions. 

3. Learning: This component includes the memory updating function, which determines 
which instances to include in partial concept descriptions. It also maintains information 
concerning the predictive behavior of saved instances and predictor attributes. 

Alternative definitions for each of these components' functions are empirically investigated in 
this chapter. The purpose of these studies is to compare different algorithms for implementing 
component sub-functions and to characterize how they affect the behavior of IBL algorithms. 
The alternatives selected in these investigations were carefully chosen; they are intuitively 
appealing and most have been used previously in similar algorithms. 

Section 5.1 describes a comparison study of three different methods for normalizing 
instances. Section 5.2 describes studies of alternative definitions for the performance com­
ponent functions. It includes two investigations with the similarity function. The first in­
vestigation compares three methods for processing missing attribute values while the second 
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examines three methods for processing symbolic (i.e., categorical) attribute values. This is 
followed by a study of alternative prediction functions, ones that use more than one instance 
(i.e., k > 1) to generate target value predictions. Finally, Section 5.3 reviews an alternative 
for the IBL learning component. The extensions of IBl described in the previous chapter 
are instance-filtering IBL algorithms; they retain a subset of the training instances, filtering 
many from the target concepts' partial concept descriptions. Section 5.3 contains a study of 
instance-averaging IBL algorithms (e.g., Bradshaw, 1987), which average correctly classified 
instances with their classifiers. 

All of the comparison studies in this chapter almost always evaluate alternative function 
definitions by testing them on the seven symbolic and six numeric prediction tasks introduced 
in Chapter 4. The same training and testing methodologies are also used. 

These studies have not previously been conducted at the level of detail presented in 
this chapter. Thus, the results of these investigations allowed me to draw several useful 
conclusions in Section 5.4. However, this chapter's scope is limited: factorial analyses are 
not included, which would have required a large number (108) of additional experiments. 
Therefore, the results may be misleading and, in many cases, require additional testing to 
eliminate the influences of other potential variables. Nonetheless, the results show that 
( 1) choosing alternative component definitions can significantly affect the IBL algorithms' 
learning behavior and (2) future research is required to characterize the conditions under 
which each design alternative will support good learning behavior. 

5.1 Alternative Pre-Processing Components 

This section describes a comparison study that examines three different methods for nor­
malizing instances. The first method, named the linear normalization function, was used in 
all of the previous experiments and was also used by Salzberg (1988) in his NGE exemplar­
based learning algorithm. It normalizes the ranges of all numeric attributes to [O, 1 J. The 
motivation for this study is to investigate whether this method is :flawed. For example, IBl, 
IB2, and IB3 may perform better with unnormalized attribute values if the application's at­
tribute ranges correspond to their predictive relevance. In such cases, the similarity function 
should use the unnormalized values so that the relevant attributes have greater influence 
on similarity computations. This normalization method may also be insufficient when the 
numeric predictor attributes' distribution of values contains outliers. Figure 5.1 shows an 
example of this situation. This is the distribution of the main memory size attribute's val­
ues in Ein-Dor and Feldmesser's (1987) database on relative cpu performance. Four of the 
computers in their database have a 64M main memory size. When the linear normaliza­
tion method is used, these outliers cause the other attribute values to look more similar. 
For example, if two of this attribute's values are chosen at random from instances in this 
database, then there is a high probability that they will have a relatively small normalized 
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Figure 5.1: Distribution of the main memory size of 209 computers in megabytes. The four 
computers with 64M main memory sizes are outliers in this distribution. 

difference (i.e., never greater than 0.5). Other attributes will dominate the similarity compu­
tation because they will usually have larger pairwise normalized attribute value differences. 
However, if the four outlier values were removed from the distribution, then the normal­
ized difference of a randomly chosen pair of this attribute's values would increase because 
the values would be more evenly distributed. In summary, attributes with outliers tend to 
consistently contribute low values to similarity calculations, thus reducing their influence 
in target value predictions. Although IBL algorithms performed relatively well when using 
the linear normalization function, it is possible that alternatives will display better learning 
behavior. 
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The second alternative studied in this investigation is the no-normalization function, 
which eliminates the normalization process. 1 It addresses the first problem identified with 
linear normalization (i.e., that no normalization supports better learning behavior when the 
numeric attributes' ranges correspond with their relative predictive relevance). The main 
purpose for studying this "strawman" alternative, whose use equates the IBl algorithm with 
the nearest neighbor function, is to determine whether a lesion of the normalization function 
negatively impacts the learning behavior of the IBL algorithms. 

The third alternative, named the standard normalization function, addresses the sec­
ond problem identified with linear normalization (i.e., outliers). This alternative divides 
unnormalized numeric attribute values by the standard deviation of their attribute's previ­
ously processed values. This increases the normalized difference between non-outliers and 
still yields large normalized differences between a non-outlier and an outlier. The standard 
normalization function resembles the common statistical method for standardizing a nor­
mal distribution, where the standardized normal variable is defined as the the difference of 
the actual and mean values divided by the standard distribution (Spiegel, 1988). However, 
most of the numeric predictor attributes in the databases and domains used to evaluate the 
IBL algorithms do not have normal distributions. Nonetheless, this alternative seems to 
be more intelligent than the first two. It should support better learning behavior than the 
linear normalization function when the distributions of the application's numeric predictor 
attributes contain outliers. Unfortunately, it is also expected to decrease learning rates when 
the attribute ranges correspond to attribute relevance. 

Table 5.1 summarizes these three alternatives' results for the symbolic prediction tasks. 
The two LED Display domains and the Congressional Voting database are not included in 
this study since their attributes are all Boolean-valued. The three alternative normalization 
functions would yield identical learning behavior for these applications. However, the results 
with the two Waveform domains and the heart disease databases provide convincing evidence 
that the choice of the normalization function can influence the learning behavior of IBL 
algorithms. 

The no-normalization alternative supported the best learning behavior (i.e., the highest 
classification accuracies) for both of the Waveform domain applications. This was expected 
since the ranges of the numeric-valued attributes in these domains correspond to their relative 
relevance for predicting accurate classifications. IB4 still recorded the highest accuracy in 
both domains. IBl's accuracy on the Waveform-41 domain had the greatest increase (6.3%). 
This increase, measured individually over the 25 trials, is significant (t(24) = 24,p < 0.1). 
The linear and standard normalization methods yield highly similar learning behavior for 
these applications. 

1 However, IB4's weight-learning algorithm depends on the difference between two attribute values to be in 
the range [O, 1). Therefore, linear normalizations are computed by IB4 so that its weight-learning algorithm 
functions properly. 
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Table 5.1: Average percent accuracy ± standard error and % storage requirements for three 
alternative normalization functions. 

I Normalization II IBl I IB2 IB3 IB4 

Waveform-21 
None 75.7±1.0 70.0±1.1 30.7 74.6±1.0 11.1 78.3±1.1 13.1 
Linear 75.5±1.1 68.4±1.1 32.3 74.2±1.2 11.1 76.9±1.0 13.4 
Standard 74.7±1.2 67.5±0.8 33.0 73.5±1.1 12.0 76.0±0.9 13.0 

Waveform-40 
None 72.7±0.6 68.5±0.9 33.8 71.6±1.1 12.2 76.4±1.3 13.4 
Linear 66.4±1.1 64.0±0. 7 38.3 67.2±1.1 11.8 72.1±1.2 12.6 
Standard 66.5±0.8 63.4±1.0 39.5 63.9±1.2 12.0 70.7±1.0 12.8 

Cleveland 
None 59.3±1.0 57.2±1.0 44.2 54.8±1.6 1.3 55.7±1.8 1.6 
Linear 75.1±0.8 71.4±0.9 32.0 78.4±0.9 3.9 78.1±0.7 4.2 
Standard 76.2±0.7 72.2±0.8 31.2 79.0±0. 7 4.2 79.5±0.7 4.1 

Hungarian 
None 61.3±0.9 56.9±1.0 44.6 55.8±2.2 1.3 57.0±2.1 1.7 
Linear 56.1±2.2 53.1±2.4 36.9 79.4±0.9 4.3 79.8±0. 7 3.9 
Standard 76.5±0.7 69.1±1.0 31.9 80.9±0. 7 4.8 78.7±0.9 4.4 

However, the situation is reversed in the application to the Cleveland Clinic Foundation's 
database. In this case, the no-normalization method lead to comparatively poor results for 
all the algorithms. For example, IB3's learning rate was significantly faster (t(8) = 1.97,p < 
0.05) when it used the linear normalization method than when it did not normalize this 
application's instances. Its classification accuracy after processing the entire training set 
was also significantly higher (t(24) = 2.64,p < 0.01). An analysis of the distributions 
of the attributes in this database reveals why the no-normalization alternative performs 
poorly. Figure 5.2 shows the relative standard deviations of the attributes in the Cleveland 
database. This bar plot shows that the standard deviations of these fourteen attributes differ 
considerably. The standard deviation for the level of serum cholesterol, measured in mg/ dl, 
is 51. 78. The smallest standard deviations belong to the binary-valued attributes. These 
values are indicative of how large each attribute's pairwise differences are in the similarity 
computations. Since large ranges of differences affect the similarity function more than small 
ranges, the attributes with the larger standard deviations will have the most influence on the 
similarity function. The results depend on the unit used to measure each attribute's values. 
If the IBL algorithms were directed to measure serum cholesterol level in grams rather than 
milligrams per decaliter, then this attribute would have far less predictive influence. It is 
not obvious that the attributes with the largest standard deviations are the most relevant 
for predicting the presence of heart disease. Furthermore, the discrepancy in value size is so 
great that many of the relevant attributes are essentially ignored when the values are not 
normalized. 
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Figure 5.2: Relative standard deviations of the Cleveland database's attributes. 
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Figure 5.3: IBl 's average learning curves for the Hungarian database using two different 
normalization algorithms. 

The results with the Hungarian database are surprisingly different considering that the 
instances in these databases are described by the same set of attributes and the predictor 
attributes have similar relative standard deviations. Although the no-normalization method 
performed predictably poorly, as evidenced in comparisons with IB3 and IB4's performance 
for the other alternatives, the standard normalization alternative resulted with tremendously 
improved performance for the IBl and IB2 algorithms. For example, IBl 's average accu­
racy improved by 20%. Both its learning rate after 25 instances (t(7) = 1.71,p < 0.1) 
and its accuracy after processing the entire training set (t(24) = 1.84,p < 0.05) increased 
significantly. Figure 5.3 displays IBl 's learning curves for both the linear and standard 
normalization methods. These results beg the question: Why does the standard normaliza­
tion algorithm significantly improve the results for the Hungarian database application but 
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not for the Cleveland database? The main difference between these two databases is their 
number of missing attribute values. While the Hungarian database has 781 missing values, 
the Cleveland database has only six. More research is required to determine why the linear 
normalization method is sensitive to large numbers of missing values. It is possible that the 
algorithm used for processing missing attribute values, which assumes that a missing value 
is maximally different than the one present, affects the linear normalization method. In any 
case, the standard normalization method appears to be less sensitive to missing attribute 
values. 

The three normalization strategies were also evaluated on the six numeric prediction 
tasks. 2 The results of these applications are summarized in Table 5.2. The no-normalization 
strategy's error rate was comparatively high in all but the first application, indicating that 
the relationship of attribute value range with its predictive relevance is small for most of 
these applications. This strategy's storage requirements were consistently higher for IB2 
and lower for IB3 and IB4. This indicates that a flood of prediction errors occurred, which 
sharply increase IB2's storage requirements (i.e., causes more misclassifications) and sharply 
reduce IB3 and IB4's number of accepted instances (i.e., causes fewer instances to have 
significantly high accuracies). These applications seem to be extremely noisy from the no­
normalization method's perspective. The linear normalization strategy was clearly the best 
in the majority of these experiments. It also recorded lower storage requirements than the 
standard normalization method in almost all of these applications. 

The standard normalization method performed worse than expected in these applica­
tions. It is possible that the distributio~s of the predictor attributes in these databases 
are not highly skewed. If so, then the standard normalization method should not function 
better than the linear normalization method. Therefore, I also applied the three strategies 
to the relative cpu performance database to determine whether the standard normalization 
method would perform best in an application when all the predictor attributes had distribu­
tions such as the one shown in Figure 5.1 on page 118. Surprisingly, the linear normalization 
alternative again clearly recorded the lowest error rates (the no-normalization method clearly 
recorded the highest). This contradicted my expectations. One explanation for this behavior 
is that these predictor attributes' distributions with outliers correctly convey the informa­
tion that most of the values (i.e., everything but the outliers) are highly similar to each 
other. While the linear normalization method preserves this information, the standard nor­
malization method sacrifices it to some degree. However, when the outliers are due to noisy 
observations, the standard normalization method should support improved learning behav­
ior. In summary, it is not obvious that the linear normalization method is as sensitive to the 
predictor attributes' distributions as suggested earlier because the outliers may not be noise. 
An improvement to this normalization method should increase the perceived differences of 

2The target attribute's values were linearly normalized in these applications so that relative error rates 
could be generated. 
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Table 5.2: Average relative error ± standard error results and percent storage requirements 
for the six numeric prediction tasks. The three lines for each application refer to using the 
line i · t · d t d d l" t · 1 ·th t · 1 ar, no-norma 1za 10n, an s an ar norma 1za 10n a!_g_on ms re~ec 1 ve y. 

[Strategy IBl IB2 IB3 IB4 

Hungarian 
Linear 0.39±0.022 0.43±0.026 36. 7 0.23±0.013 6.3 0.20±0.008 7.5 
None 0.45±0.023 0.44±0.026 45.2 0.37±0.016 5.1 0.35±0.020 6.0 
Standard 0.24±0.008 0.30±0.010 30.8 0.21±0.009 7.9 0.22±0.009 7.6 

Cleveland 
Linear 0.19±0.005 0.20±0.005 52.9 0.19±0.005 14.2 0.18±0.005 13.9 
None 0.43±0.051 0.41±0.044 75.8 0.31±0.030 5.7 0.26±0.020 6.5 
Standard 0.21±0.006 0.22±0.005 53.3 0.19±0.006 15.8 0.20±0.004 15.4 

Horsepower 
Linear 0.04±0.002 0.06±0.003 24.9 0.08±0.004 16.8 0.07±0.003 17.8 
None 0.18±0.017 0.19±0.019 89.6 0.28±0.022 6.3 0.27±0.020 5.7 
Standard 0.09±0.004 0.10±0.004 34.2 0.11±0.006 19.7 0.12±0.007 19.4 

Number of Months to Live 
Linear 0.20±0.006 0.22±0.006 57.4 0.20±0.005 18.4 0.20±0.007 17.3 
None 0.35±0.013 0.36±0.016 74.3 0.31±0.012 9.7 0.30±0.015 11.2 
Standard 0.25±0.008 0.26±0.008 64.4 0.24±0.008 19.1 0.23±0.008 19.5 

Serum Cholesterol Level 
Linear 0.14±0.007 0.15±0.007 52.3 0.13±0.007 13.6 0.14±0.007 13.3 
None 0.15±0.017 0.16±0.016 63.6 0.17±0.013 4.3 0.17±0.014 5.0 
Standard 0.20±0.007 0.20±0.007 60.4 0.18±0.007 19.1 0.19±0.006 17.8 

Tumor Size 
Linear 0.22±0.004 0.23±0.004 62.0 0.21±0.003 16.1 0.21±0.003 16.5 
None 0.22±0.012 0.21±0.010 73.1 0.21±0.006 5.7 0.20±0.006 6.4 
Standard 0.23±0.005 0.24±0.004 65.4 0.22±0.004 18.4 0.20±0.004 18.9 

the majority of attribute values when the instances' containing the outlier values appear to 
be noisy. 

This study showed that the choice of the normalization method used in IBL algorithms 
can significantly affect their learning behavior. The no-normalization method worked well 
when the predictor attributes' ranges matched their relative relevance for predicting target 
values. However, both the linear and standard normalization methods performed signifi­
cantly better than no normalization in the clear majority of applications. The linear nor­
malization method performed best in the numeric prediction applications. Although more 
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research is required to characterize the weaknesses of (and subsequently improve) the lin­
ear normalization method, it is a better alternative than no normalization without prior 
information concerning attribute relevance. 

5.2 Alternative Performance Components 

This section describes high-level parameter studies with the functions composing the 
IBL framework's performance component. The purpose of these studies is to investigate 
some alternative and intuitively pleasing component definitions to determine whether they 
lead to improved learning behavior. Section 5.2.1 describes two studies with alternative 
similarity functions. Both investigations are similar to the one in Section 5.1 in that they 
compare three methods for accomplishing the same task. The first study concerns the 
processing of missing attribute values while the second concerns the processing of symbolic 
attribute values. Section 5.2.2 describes a study of the IBL algorithms' behavior when using 
a different prediction function, one where more than one instance is used to derive target 
value predictions (i.e., k > 1). 

5.2.1 Alternative Similarity Functions 

Missing Attribute Values 

Why would any data collector want to include missing attribute values in their database? 
Typical purposes for collecting databases such as the ones in the UCI repository are to 
discover regularities in the data and to derive accurate predictions for future data points. 
The presence of missing attribute values rarely assists in this process. Nonetheless, many 
databases contain missing attribute values. For example, 27 of the 49 databases in the UCI 
repository contain missing attribute values.3 Therefore, inductive learning algorithms must 
be able to process instances with missing values if they are going to be broadly applicable. 
It's possible that pre-processing methods can be used to eliminate missing attribute values, 
but this also constitutes a means for processing them and is, therefore, a choice point in the 
design of the learning algorithm. 

There are many ways to process missing attribute values in inductive learning algorithms. 
For example, Garns and Lavrac (1987) noted that Assistant-86 (Cestnik, et al., 1987), C4 
(Quinlan, 1987), CN2 (Clark & Niblett, 1989), AQ15 (Michalski et al., 1986), and CART 

3This does not include dataset generators, toy domains, and domain theories. 
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(Breiman et al., 1984) all process missing attribute values differently. Methods include ignor­
ing them, replacing them by most probable values, processing them as a separate symbolic 
value, replacing them by all possible values, and replacing them with value-probability pairs. 

Missing attribute values pose a problem for the similarity function in algorithms based on 
the nearest neighbor pattern classifier. Unfortunately, I have not (yet) found any published 
study, formal or informal, on methods for processing missing attribute values in nearest 
neighbor algorithms or similarity functions. Several potential methods seem intuitively sen­
sible. For example, the default method used in the four IBL algorithms, which I will refer 
to as the MaxDiff algorithm, assumes that missing attribute values are as different as pos­
sible from known attribute values in pairwise attribute-value comparisons. This prevents 
dissimilar instances from being used inappropriately as a target value predictor for novel 
instances. It worked relatively well for the IBL algorithms, which recorded predictive ac­
curacies similar to other supervised learning algorithms (Kibler & Aha, 1987; 1988; Aha & 
Kibler, 1989). However, the MaxDiff algorithm was never evaluated against alternatives to 
determine whether it supports comparatively good learning behavior. 

One obvious alternative is to replace the missing value with the most probable attribute 
value among the previously observed values, as was done in CN2. Similarly, missing numeric 
attribute values are replaced with the average of their observed values. This method, named 
Mode-Mean, is the second alternative investigated in the following empirical study. This 
alternative acts as a foil to the maximum difference method; similarities computed using 
Mode-Mean can be greater than the two instance's actual similarity, which can be computed 
only when all attribute values are known. 

The third alternative, which I will refer to as the Ignore method, amounts to a lesion 
study. It operates by essentially ignoring the missing attribute value. However, ignoring an 
attribute cannot be distinguished from assuming that the two values are identical, which 
yields the minimum potential difference between the two instances and, subsequently, yields 
their maximum potential similarity. Therefore, the Ignore algorithm normalizes the similarity 
function's result; it divides the computed distance by the square root of the num:ber of 
attributes that contribute to the distance measure (i.e., the number of attributes whose 
values are known in both instances) :4 

Similarity(x, y, t, P) = D' t P) 
istance x, y, t, 

(5.1) 

Distance(x, y, t, P) = 
/L.ieP BothJmown(x;, y;) x Attribute_difference(x;, y;) 

/L.ieP Both..known(x;, y;) 
(5.2) 

4An additional value of 0.001 is added to the denominator in Equation 5.2 to prevent division by zero. 
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Table 5.3: Average percent accuracy ± standard error and percent storage requirements for 
two symbolic prediction tasks. Three alternatives for processing missing attribute values are 
compared. 

~I ~M-et-h-od~~llr---IB-l~-.--~-IB-2~~r--~I~B-3~-,-~-IB-4~------. 

Hungarian database 
MaxDiff 56.1±2.2 53.1±2.4 36.9 79.4±0.9 4.3 79.8±0. 7 3.9 

Mode-Mean 76.1±0.8 69.2±1.0 29.3 80.0±0.7 4.3 79.7±0.6 3.6 
Ignore 74.8±0.7 70.1±0.8 29.9 81.3±0. 7 4.5 79.6±0.7 4.1 

Congressional Voting database 
MaxDiff 91.8±0.4 90.9±0.5 11.6 90.6±0.6 3.5 93.8±0.4 3.0 

Mode-Mean 93.4±0.4 88.9±0.6 12.6 91.5±0.8 3.5 94.3±0.5 3.5 
Ignore 88.6±0.7 86.3±0. 7 12.8 89.9±0.8 3.6 91.8±0.9 3.5 

where 
B h..k ( ) { 1 if the values of both Xi and Yi are known 

ot nown Xi, Yi = 0 th . o erw1se . (5.3) 

Only two of the databases and used for the seven symbolic prediction tasks contain 
substantial numbers of missing attribute value (i.e., Hungarian and Congressional voting 
databases are missing 781 and 288 values respectively). Table 5.3 summarizes the results of 
applying the three alternatives in these two experiments. 

The most noticeable result is that the Mode-Mean (t(24) = 1.88,p < 0.05) and Ignore 
(t(24) = 1.97, p < 0.05) strategies significantly increased IBl 's classification accuracy in 
the Hungarian heart disease application. Naturally, IB2's accuracy also increased by the 
same amount. The Mode-Mean and Ignore strategies performed about equally well in this 
application. 

However, the Mode-Mean strategy always recorded higher classification accuracies than 
the Ignore strategy for the Congressional Voting database. This increase was significant for 
IBl (t(24) = 1.67,p < 0.1). Based on these two applications, replacing by average or most 
frequent value appears to the most resilient of the three strategies for tolerating missing 
attribute values. 

Unfortunately, this is not true in general. The Mode-Mean strategy performs poorly in 
several variants of the LED-7 Display domain application examined previously by Quinlan 
(1989). Quinlan's intention was to investigate how variants of C4 performed when varying 
amounts of missing values occurred for each attribute. The first variant he investigated is 
the basic LED-7 Display domain application except that attribute values were deleted with 
a probability of 25%. Next, he investigated the step variant, which applies an unknown 
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Table 5.4: IBl 's average percent accuracy ± standard error for three variants the LED- 7 
Display domain task. Quinlan (1989) applied seven variants of C4 to these applications. The 
results for the best and worst-performing variation of C4 for each application are also shown 
in this table. 

Algorithm 25% Step Slope 
IBl MaxDiff 51.0±1.3 46.8±1.2 41.2±1.3 
IBl Mode-Mean 39.0±1.1 39.2±1.0 31.3±1.3 
IBl Ignore 54.8±1.2 44.5±1.2 43.3±1.4 
C4 best 56.2±0.3 50.6±0.6 38.0±0.6 
C4 worst 49.2±0.9 45.0±1.l 33.4±1.2 

rate of 50% to four of the attributes5 and 0% to the other three. Finally, Quinlan's slope 
variant applies a different probability to each attribute. The missing probability rate begins 
at 10% for the first attribute and increases by 10% to a maximum of 70% for the seventh 
(and final) predictor attribute. Table 5.4 summarizes these three studies. It includes the 
results of IBl, averaged over 25 trials for each of the three methods for tolerating missing 
values, and the best-performing variant that Quinlan found in each of the studies among 
the seven variants he evaluated. The Mode-Mean strategy for tolerating missing values 
performed worse than the Ignore strategy in all three applications, significantly worse for 
the 25% missing (t(24) = 2.7,p < 0.01) and slope (t(24) = 2.3,p < 0.025) applications. The 
Mode-Mean strategy was also the only strategy to fall below the range of results reported 
for C4 in all three applications. Interestingly, the other two strategies were far superior 
than C4's best for the slope application, suggesting that IBL algorithms can tolerate varying 
amounts of missing attribute values better than can decision tree algorithms. However, C4's 
best is clearly better than IBl 's best for the other two applications. 

The noise in these applications probably significantly affects the behavior of these three 
alternative algorithms for processing missing attribute values. I investigated the possibility 
that the Mode-Mean strategy's poor performance was due to the noise rather than to the 
missing attribute values. Figure 5.4 shows the average of the classification accuracies attained 
by IBl when using the three missing value strategies on the LED-7 Display domain when 
the noise level was 0%. These results confirm that Mode-Mean does not perform well on this 
domain even when there is no attribute noise. 

The reason that the Mode-Mean strategy performs poorly on the LED-7 Display do­
main variants is because it frequently overestimates two instance's similarity. The maximum 
difference strategy assumes that two instances are maximally different, thus never overesti­
mating their actual similarity. The Ignore strategy essentially ignores attributes with missing 
values and normalizes by the number of attributes whose values are known in both instances. 

5Quinlan (1989) didn't say which set of four attributes, or whether it varied. I chose the first four in my 
experiments. 
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Figure 5.4: IBl 's average classification accuracies on the LED-7 Display domain. This graph 
compares three strategies for processing missing attribute values. 

Although this strategy can yield higher values than the actual similarity, Mode-Mean will 
yield even higher values when the replacement value is highly similar to the missing value. 
Furthermore, when using the Mode-Mean strategy in a domain with a sufficient number of 
missing attribute values, the law of large numbers assures that at least one of the training 
instances replacement values will make a less similar instance look highly similar to the tar­
get instance (i.e., the instance being classified). In such cases, a clearly dissimilar instance is 
responsible for the classification, which can often cause prediction errors. This cannot occur 
as easily with the other strategies because the worst that they can do is make the most 
similar instance look less similar, thus replacing the best classifying instance with one that 
is, in general, only slightly less similar than it to generate the target value prediction. The 
Mode-Mean strategy should be especially susceptible to Boolean-valued attributes, where 
it can often replace the missing value by a value that matches the other instance's value. 
Mode-Mean should (and did) perform better in applications with numeric- rather than with 
Boolean-valued attributes. Finally, Mode-Mean assumes that a pair of missing values have 
the same value. This default assumption can occur often in applications and can easily 
modify the set of instance(s) used to generate target value predictions. 

Table 5.5 describes how the three strategies fared in the subset of numeric prediction 
tasks that whose target function is taken from a database containing substantial numbers of 
missing values (i.e., 59, 288, and 106 respectively). Since the majority of predictor attributes 
in these three applications are numeric-valued, it's not surprising that the Mode-Mean strat­
egy performed comparably well. As expected, both the Mode-Mean and Ignore strategies 
repaired IBl and IB2 in the Hungarian heard disease diagnosis application. Otherwise, the 
three algorithms appear to be equally good choices for processing missing attribute values. 
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Table 5.5: Average percent accuracy ± standard error and percent storage requirements 
for the three numeric prediction tasks with substantial numbers of missing attribute values. 
Thr lt t" £ . tt "b t 1 d ee a erna i ves or .E_rocess1~ nnssm__g_ a fl u e va ues are COII!E_are 

Method IBl IB2 IB3 IB4 

Horsepower 
MaxDiff 0.04±0.002 0.06±0.003 24.9 0.08±0.004 16.8 0.07±0.003 17.8 

Mode-Mean 0.04±0.002 0.06±0.003 24.8 0.07±0.003 17.6 0.08±0.003 18.0 
Ignore 0.04±0.002 0.06±0.003 25.1 0.07±0.003 17.4 0.08±0.003 18.6 

Hungarian Heart Disease 
MaxDiff 0.39±0.022 0.43±0.026 37.0 0.23±0.013 6.3 0.20±0.008 7.5 

Mode-Mean 0.23±0.008 0.30±0.011 28.2 0.21±0.010 7.5 0.20±0.008 7. 7 
Ignore 0.24±0.008 0.29±0.012 27.9 0.21±0.009 7.4 0.21±0.008 7.6 

Number of Months to Live 
MaxDiff 0.20±0.006 0.22±0.006 57.4 0.20±0.005 18.4 0.20±0.007 17.3 

Mode-Mean 0.19±0.006 0.21±0.006 55. 7 0.20±0.006 19.9 0.20±0.006 18.5 
Ignore 0.20±0.006 0.22±0.005 58.3 0.20±0.006 19.1 0.20±0.006 18.4 

In summary, none of these three strategies consistently supported superior learning be­
havior. The d~fault MaxDiff algorithm performed poorly in the Hungarian database appli­
cation. The Ignore strategy performed poorly in the application to the Congressional Voting 
database. Finally, the Mode-Mean strategy performed poorly when applied to variants of 
the LED-7 Display domain. The choice for how an IBL algorithm tolerates missing attribute 
values can lead to significantly improved or significantly worse learning behavior. However, 
further research will be needed to carefully characterize the conditions under which these 
alternatives will perform well. 

Symbolic Attribute Values 

Almost none of the predictor attributes in the two sets of prediction tasks are symbolic­
valued. Also, the mathematical analysis in Chapter 3 concerns only numeric-valued at­
tributes. Nonetheless, prediction systems based on IBL algorithms have performed well in a 
variety of learning and prediction tasks whose instances are described by symbolic attribute 
values. . 

This section compares three algorithms that define similarity for symbolic-valued at­
tributes. These algorithms vary in their definitions of Symbolic_di:fference, which is a sub­
function of the Attribute_difference function. This function is defined for !Bl as follows: 
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Similarity(x, y, t, P) = 
1 

)EieP Attribute_difference( Xi, yi) 

Attribute_difference(x;, y;) = 

{ (x; - y;) 2 i is numeric-valued 
Symbolic_difference( Xi, Yi) otherwise 

David W. Aha 

(5.4) 

(5.5) 

The three strategies to be examined were originally introduced by Stanfill and Waltz (1986; 
Stanfill, 1987), who described an application of their MBRtalk system to a phoneme and 
word pronunciation task. The first function, which they named the overlap metric, is the 
default method used in IBl through IB4. It is the identity check, defined as 

S b 1. d'ff ( ) { 0 if X; = Yi ym o ic_ I erence Xi, y; = 1 th . o erw1se 
(5.6) 

This simple function, like the two alternatives described in the following paragraphs, supports 
several valuable relational properties. These include a unit range, symmetry, identity, and 
transitivity: 

Similarity( a, a) = 0 

1 2:: Similarity( a, b) 2:: 0 

Similarity( a, b) = Similarity( b, a) 

Similarity( a, b) + Similarity(b, c) 2:: Similarity( a, c) 

(5.7) 

(5.8) 
(5.9) 

(5.10) 

The overlap metric is an oversimplified definition. One extension described by Stanfill 
and Waltz is the weighted-features metric. It also defines Similarity( a, a) = 0, but doesn't 
define Similarity( a, b) = 1 when a =/= b. Instead, it assigns weights to each attribute based 
on their observed ability to constrain the value of the target attribute among previously 
processed instances.6 This is a necessary property for a similarity function in their phoneme 
pronunciation task, where an instance had seven predictors (i.e., the three preceding letters, 
the letter of concern, and the three following letters in the word) and two target ("goal") fields 
(i.e., phoneme pronunciation and stress). Without this capability of differential weighting, 
each of the predictors would count equally towards the pronunciation of the for the letter 
of concern. For example, the overlap metric yields equal similarity scores to instances in 
the database that matched in all letters but the one in focus with instances that matched 

6Medin and Schaffer (1978) used this same pairwise function in their exemplar-based context model, 
although their similarity function was a product rather than a sum of the pairwise similarity values. Like 
Stanfill and Waltz, their intention was to capture the interrelationships of the predictor attributes. 
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in all but the third following letter. Obviously, matching the letter whose phoneme is to 
be predicted is often more valuable than matching the third following letter. The weighted 
features metric is described in Equation 5.11, where I've assumed that the three additional 
parameters are passed by Attribute_difference. Let t be the target attribute, Domain(t) 
be the set of values that may be assigned to t, y be a stored instance in t's partial concept 
description, and T( x) be the set of training instances processed before processing the current 
instance x. Then 

{ 0 if Xi = Yi 
Symbolicdifference(x, y, i, t, T(x)) = Weight(x, i, t, T(x)) otherwise (5.11) 

where the weight function is defined as 

Weight(x, i, t, T(x)) = L (1{zET(x)lzi=Xi/\Zt=v}1) 2 

D . l{z E T(x)lzi = Xi}I 
vE omam(t) 

(5.12) 

This metric fulfills some of the same purpose fulfilled by IB4: it weights attributes differen­
tially according to their estimated relevance for generating accurate predictions. Let T(xlxi) 
be the set of processed training instances whose value for predictor attribute i is Xi. This 
metric resembles Quinlan's (1986a) information gain function as used in ID3 and C4: It is 
maximized when the instances in T(xlxi) all have the same value for target attribute t and 
minimized when the the target attribute's values in T(xlxi) are evenly distributed. Thus, 
this metric measures the constraint that value Xi places on the possible values of Xt. 

Although the weighted features metric is more intuitively pleasing than the overlap 
metric, it fails to exploit partial ordering information inherent in an attribute's range of 
symbolic values. For example, if an attribute's set of symbolic values is {blue, green, tiger}, 
then we can imagine an ordering such that the similarity of the first two values is higher than 
the similarity of either to the third. In extreme cases, two of the attribute's symbolic values 
may be synonymous while another may be their antonym. This highlights the problem with 
the weighted features metric: its output should correspond to the degree to which the given 
pair of symbolic values differ. 

Therefore, Stanfill and Waltz proposed an extension of the weighted features metric 
named the value difference metric. It defines a similarity matrix for a predictor's range of 
values by comparing each pair of values' corresponding distribution of target values. That is, 
given symbolic values Xi and Yi, it compares the distribution of the target values in T(xi) with 
the distribution of target values in T(yi)· This metric still retains the notion of an attribute 
weight, which is multiplied by this measure of the values' difference. Equation 5.14 summa­
rizes the value difference metric, where the Weight function was defined in Equation 5.12. 

Symbolic_difference( x, y, i, t, T ( x)) = 

{ ~eight(x, i, t, T(x )) x Difference(x, y, i, t, T(x)) 
·if Xi= Yi 
otherwise 

(5.13) 

(5.14) 
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where the difference function is defined as 

Difference(x, y, i, t, T(x)) = 

L (l{z E T(xJx;)jzt = v}I _ l{z E T(xjy;)jzt = v}1) 2 

D . l{z E T(xjx;)}I l{z E T(xjyi)}I 
vE omam(t) 

(5.15) 

(5.16) 

Stanfill and Waltz (1986) used the value difference metric in their MERtalk system, which 
predicts phoneme pronunciations and stress. In one of their experiments, its predictions were 
evaluated by a set of human judges against a dictionary's predictions on a set of 100 test 
words after MERtalk was trained on a 4438-word subset of the Merriam- Webster's Pocket 
Dictionary. MERtalk was judged to have correctly pronounced 47% of the test words, which 
is quite an accomplishment considering that words consist of several phonemes. Most of the 
errors were due to lack of domain knowledge (e.g., grammatical information, word usage). 

The authors of MERtalk didn't compare their algorithm against other learning algo­
rithms. However, Cost and Salzberg (1990) recently compared PEELS, an IBL algorithm 
that uses a variant of the value difference metric, to several other learning algorithms on 
three well-known databases. They found that their algorithm recorded higher classification 
accuracies than reported by Qian and Sejnowski (1988) for predicting protein structure, per­
formed as well as KEANN (Towell, Shavlik, & Noordewier, 1990) on their promoter sequence 
database, and better than the back propagation, ID3, and perceptron training algorithms on 
the NETtalk database (Sejnowski & Rosenberg, 1987) when using a local output encoding. 
Although their prediction function differs from the one used in MERtalk (e.g., PEELS uses 
a 1-nearest neighbor while MERtalk uses a k-nearest neighbor prediction function), these 
results suggest that the value difference metric supports excellent learning behavior in IEL 
algorithms. 

Nonetheless, neither Stanfill and Waltz nor Cost and Salzberg compared the value differ­
ence metric with the other two metrics. Is it possible that the value difference metric doesn't 
always support the best learning behavior among these three algorithms? I investigated this 
possibility by comparing them a set of symbolic prediction tasks. This set of tasks does not 
include the six tasks used previously to study the IEL algorithms behavior because they 
contained few symbolic predictor attributes. Instead, the applications included: 

1. The automobile database from which the horsepower target function was taken. The 
target function is the car's assigned insurance risk rating, which has seven possible 
values. Five (20%) of this database's twenty-five predictor attributes are symbolic­
valued. 

2. The breast cancer database donated by the Ljubljana Institute of Oncology. The target 
function is whether the patient experienced signs of cancer recurrence. Three (33%) 
of this applications' nine predictor attributes are symbolic-valued. 
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Table 5.6: Average percent accuracy ± standard error and percent storage requirements for 
three symbolic prediction tasks. Three alternatives for processing symbolic attribute values 
are compared. 

,~-M-e-t-ri-c~il~I-B-l~-.--~-IB-2~~.,.-~-IB-3~~..--~I-B-4~_, 

Auto Imports Database 
Overlap 70.8±1.0 65.5±0.9 46.3 39.1±2.3 7.9 24.3±2.7 7.1 

Weighted 66.4±1.0 61.3±1.0 50.0 37.4±2.0 7.8 22.3±2.2 6.9 
ValueDiff 67.7±1.1 57.4±0.8 44.0 47.7±1.8 12.0 25.2±2.7 9.0 

Breast Cancer Database 
Overlap 65.4±1.0 60.8±0.9 38.9 60.0±3.2 1.6 60.2±3.l 2.0 

vVeighted 66.2±1.0 62.5±1.l 39.9 54.7±3.6 1.8 59.8±3.1 2.2 
ValueDiff 67.0±1.0 62.8±1.0 38.3 57. 7±3.9 2.0 54.0±3.4 1.9 

Lymphography Database 
Overlap 79.6±1.0 74.4±1.5 31.2 37. 7±4.4 1.9 38.8±4.0 2.9 

Weighted 80.5±1.3 73.4±1.3 31.0 44.5±4.6 2.0 38.5±3.3 3.5 
ValueDiff 76.9±1.3 71.0±1.0 27.7 43.8±5.4 2.4 46.7±3.2 4.8 

3. The lymphography database, which was also donated by the Ljubljana Institute of 
Oncology. The target function is patient diagnosis (four possible values). Six (33%) of 
the application's 18 predictor attributes are symbolic-valued. 

The results of these experiments are summarized in Table 5.6. Published results exist for 
the latter two applications (e.g., Clark & Niblett, 1989). Typical classification accuracies for 
predicting breast cancer recurrence range from 65% (a simple Bayes algorithm) to 72% (a 
simplification of Michalski's (et al., 1986) AQ15 algorithm). Accuracies for the lymphography 
database range from 76% (AQll) to 83% (Bayes). IBl 's performance is in both of these 
ranges. 

Unfortunately, few conclusions can be drawn from analyzing IB3 and IB4's learning 
behavior in these domains. These algorithms did not accept sufficient numbers of instances 
to allow them to record good classification accuracies. This was expected for the automobile 
database since this occurred when IB3 and IB4 tried to predict horsepower. These IBL 
algorithms' stringent requirements for instance acceptance must be relaxed before they will 
perform well in these applications. 

Fortunately, the results with IBl and IB2 are more useful for comparing the three metrics' 
capabilities in these applications. Somewhat surprisingly, the value difference and weighted 
features metric did not outperform the simple overlap metric in these applications. In fact, 
the overlap metric scored the highest average classification accuracy for the automobile 
database. It also scored the highest accuracy for IB2 in two of the three applications. These 
results contradict the intuitions that the weighted features and value difference metrics will 
outperform the overlap metric in most applications. 
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Table 5. 7: Average relative error and percent storage requirements for two numeric prediction 
tasks Th lt f b l' t 'b t 1 d ree a ernat1ves or 2_rocessm_g_ sym o 1c a tn u e va ues are com2_are 

Metric IBl IB2 IB3 IB4 

Tumor Size Target Function 
Overlap 0.22±0.004 0.23±0.004 62.0 0.21±0.003 16.1 0.21±0.004 16.6 

Weighted 0.22±0.003 0.23±0.003 62. 7 0.21±0.004 17.1 0.21±0.004 15.7 
ValueDiff 0.21±0.003 0.22±0.003 61. 7 0.21±0.004 16.9 0.21±0.003 16.0 

Horsepower Target Function 
Overlap 0.04±0.002 0.06±0.003 24.9 0.08±0.004 16.8 0.07±0.004 16.0 

Weighted 0.05±0.003 0.06±0.003 25. 7 0.08±0.004 16.4 0.06±0.003 16.5 
ValueDiff 0.05±0.003 0.07±0.003 25.1 0.07±0.003 16.8 0.07±0.003 16.3 

An analysis of the database's symbolic predictor attributes shows that some of them 
clearly have values that are more similar to each other than to others (e.g., the automobile's 
make attribute includes both high-priced and economy manufacturers). Therefore, there 
was ample opportunity for the weighted features and value difference metrics to outperform 
the overlap metric. It is probable that the large number of numeric predictor attributes in 
these databases may have reduced the impact of the three similarity functions studied in 
this experiment. Nonetheless, the point of this experiment is that the overlap metric is not 
always a bad choice for processing symbolic attribute values. 

I also applied these algorithms to the two (of the six) numeric prediction tasks that 
contain substantial numbers of symbolic predictor attributes. These include the tumor-size 
and horsepower prediction tasks, whose symbolic attributes account for 44.4% and 24% of 
the predictors respectively. The results, summarized in Table 5. 7, also suggest that the 
overlap metric is as useful as the others in many applications. However, this isn't surprising 
considering that these target functions were taken from two of the same datasets used in the 
symbolic prediction tasks (i.e., Breast Cancer and Auto Imports databases). Nonetheless, 
these results confirm the need for further analyses of metrics for processing symbolic attribute 
values in instance-based learning algorithms. The next step is to evaluate these three metrics 
on the larger applications investigated by Stanfill and Waltz (1986) and Cost and Salzberg 
(1990). This will remain as future research. 

5.2.2 Alternative Prediction Functions 

All of the previous studies have used variants of the nearest neighbor prediction function. 
This function is given a set of similarity measures and uses a single stored instance as the 
basis for which to generate target value predictions. This section examines the k-nearest 
neighbor prediction function, where k > 1. 
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The k-nearest neighbor ( k-NN) algorithm has been both theoretically analyzed and em­
pirically tested in the pattern classification and machine learning literatures. Duda and 
Hart (1973) showed that, as k increases to infinity, the k-NN algorithm's accuracy increases 
until it reaches the Bayes optimal limit. This suggests that IBL algorithms based on the 
k-NN prediction function may also generate more accurate concept descriptions. However, 
the domain examined in Duda and Hart's analysis was noise-free, was described only by 
relevant attributes, and was infinite in size. Can algorithms based on the k-nearest neighbor 
prediction function perform well in practical prediction tasks? 

The answer in the pattern recognition literature is mixed. Tomek (1976b) investigated 
Wilson's (1972) k-NN-editing algorithm. This algorithm is a foil of IB2; the only instances 
saved are those whose target values are correctly predicted. Tomek applied it to an arti­
ficial domain and described empirical evidence that the k-NN editing algorithms improve 
predictive accuracy. However, Gates (1972) investigations convinced him that k-NN edit­
ing algorithms offered "no further improvements" in performance. He investigated k-NN 
versions of Hart's (1968) CNN algorithm, which is much more closely related to IB2 since 
it stores only the instances whose target values are incorrectly predicted. Gates applied 
variants of the CNN algorithm to R. A. Fisher's (1936) iris database. He found that k­
NN editing sharply increases storage requirements without consistently improving predictive 
accuracy. This result isn't surprising considering the nature of the iris database. One of 
its three classes is linearly separable from the others, which are nearly separable from each 
other. It is difficult to improve on the high classification accuracies obtainable using the 
CNN algorithm. Can the k-NN prediction function improve the learning behavior of IBL 
algorithms in other applications? 

The answer is a resounding yes. For example, the ALFA system (Jabbour, Riveros, 
Landsbergen, & Meyer, 1987) uses an 8-nearest neighbor function to predict the power load 
required in three central New York State cities for the Niagra Mohawk Power Company. Its 
average accuracy is as good as that of human experts but requires two orders of magnitude 
less time to generate. Stanfill and Waltz (1986) used a 10-nearest neighbor algorithm in their 
MBRtalk algorithm, which performed well in a word pronunciation and stress prediction 
task. Connell and Utgoff (1987) used a weighted k-NN prediction function in their CART 
algorithm in an application to the cart-and-pole task. While other methods for solving this 
task have required between 75 and thousands of learning trials, CART learned to balance a 
pole after an average of less than than 16 learning trials. Finally, Moore (1990) used a k-NN 
algorithm to combat noise in his application to robotic manipulation tasks. There is no 
doubt that a k-NN prediction function can support good learning behavior in applications 
to a large variety of tasks. 

However, these applications were case studies. Few comparisons of the nearest neighbor 
and k-NN algorithms have been published (e.g., Aha & Kibler, 1989). This section compares 
these algorithms on the same two sets of applications used earlier by varying the value of 
k from one to eleven by two. Although this is only a subset of the possible settings for k, 



136 David W. Aha 

Table 5.8: Average percent accuracy ± standard error and percent storage requirements for 
four s b r d' t' k £ . . f k ym o IC _E_re IC Ion tas s or SIX settmgs o 

Database k IBl l IB2 IB3 IB4 

Hungarian 1 56.1±2.2 53.1±2.4 36.9 79.4±0.9 4.3 79.8±0.7 3.9 
3 61.2±2.2 57.4±2.0 32.4 49.7±3.7 0.9 51.2±3.9 1.4 
5 65.2±2.1 65.7±1.5 30.2 46.5±2.6 0.6 43.8±3.0 1.3 
7 68. 7±1.6 66.1±1.8 29.0 48.8±2.9 0.8 46.0±3.0 0. 7 
9 70.8±1.6 67.3±1.5 28.1 46.0±2.4 0.6 47.4±2.3 0.4 
11 71.6±1.4 69.1±1.6 28.6 49.5±2.4 0.5 46.8±2.3 0.9 

Voting 1 91.8±0.4 90.9±0.5 11.6 90.6±0.6 3.5 93.8±0.4 3.0 
3 92.4±0.4 92.5±0.6 11.7 61.8±4.7 2.1 58.2±4. 7 1.3 
5 92.8±0.4 92.6±0.6 11.7 46.4±2.3 0.5 47.6±2.4 0.4 
7 92.9±0.4 92.5±0.4 11.8 50.8±2.5 0.5 42.8±1.8 0.6 
9 92.6±0.4 93.0±0.6 12.2 48.1±2.1 0. 7 46.7±2.4 0.5 

11 92.5±0.4 93.0±0.6 9.3 46. 7±2.3 0.4 47.1±2.0 0.5 
LED-25 1 47.9±0.6 43.7±0.8 60.9 46.6±0. 7 25.3 66.1±0.6 25.5 

3 57.7±0.8 50.1±0.6 55.4 52.4±0.8 26.1 65.4±2.3 32.2 
5 60.5±0.9 54.4±0.9 52.6 55.2±1.0 23.8 49.8±7.6 33.3 
7 65.2±0.8 55.8±0.6 50. 7 55.1±0.9 20.6 26.2±5.3 30.0 
9 66.1±0.6 57.7±0.7 49.7 42.8±4.1 14.6 21.6±4.8 26.8 
11 67.2±0.6 57.9±0.7 49.1 32.8±4.5 9.6 16.9±3.8 27.7 

Waveform-40 1 68.6±0.7 64.0±0. 7 38.3 67.2±1.1 11.8 72.1±1.2 12.6 
3 72.3±1.0 65.7±0.9 34.9 61.7±2.8 7.6 52.1±3.4 7.8 
5 74.7±0.9 69.0±1.0 33. 7 43.2±3.5 3.3 37.8±2.2 3.8 
7 76.0±0.9 69.4±1.2 32.7 37.2±2.1 1.3 36.4±1.6 2.2 
9 75.8±0.9 70.5±1.1 31.7 34.4±1.6 1.2 33.9±1.1 2.1 

11 76.5±0.6 72.4±0.9 31.1 35.1±1.1 0. 7 34.6±1.4 1.4 

which can be set as high as the size of the training set, they were sufficient to show that 
a repeating pattern of learning behavior emerges as k is increased. Table 5.8 summarizes 
the results for a representative subset of the symbolic prediction tasks. Figure 5.5, which 
summarizes the results for the Cleveland database, lends more intuition to the behavior of 
the IBL algorithms as k is increased. In general, the experiments show that IBl and IB2's 
accuracies increase as k increased, peaked, and decrease for higher values of k. The value 
of k for peak performance differs depending on the application. However, IB3 and IB4, as 
currently defined, are extremely sensitive to the value of k. They perform poorly when k > 1. 
The following paragraphs describe these results in more detail. 
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Figure 5.5: Average classification accuracy and storage requirements for the Cleveland data­
base as k is varied. 

Noisy artificial domains: 

The results for the LED-7 and Waveform-21 applications were similar to the results 
shown in Figure 5.5 for the Cleveland database. IBl's behavior was impressive. Its accuracy 
increased with increasing values for k for the LED-7 application until k = 5, where it recorded 
a 74.2% average classification accuracy. This is 1. 7% higher than IB3's best classification 
accuracy (at k = 1) and 5.2% higher than C4's average classification accuracy. In fact, 
this is even higher than the Bayes optimal classification rate of 74%, which suggests that 
no empirical learning algorithm will outperform IBl in this domain. IBl 's accuracy then 
gradually decreased to 68.9% when k = 11. This general pattern of behavior occurred for 
both IBl and IB2 in all the applications. There is some optimal setting for k at which IBl 
records its highest average classification accuracy. Its accuracy gradually tapers off with 
higher and lower settings. This occurs because predictions derived from a set of similar 
instances decrease the effects of noise, which most severely decreases performance for the 
k = 1 setting. However, if too many instances are used (i.e., if k is too high), then the 
average similarity of the instances used to generate predictions becomes lower. Since less 
similar instances less frequently have the same target value, they can be expected to yield 
less accurate predictions. This explains why IBl 's average accuracy peaks and drops with 
increasing settings for k. This also occurred for the Waveform-22 application, where IBl's 
highest average accuracy (81.5%) was achieved when k = 11. In this case, IBl's accuracy 
will peak at higher values for k. This accuracy was 3.5% higher than IB3's best and a full 
10.0% higher than C4's accuracy on this domain. 

However, IB3 and .IB4's learning behavior is extremely sensitive to k's setting. They 
performed best when k = 1. Their accuracies decreased quickly to random guess as k is 
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increased. This occurs because, as k increases, it becomes exceedingly difficult for instances 
to become acceptable. When k is large, dissimilar instances are used to generate prediction 
decisions, which are invariably wrong. This decreases their estimated accuracy and they are 
eventually eliminated from the partial concept description. This explains why IB3 and IB4's 
storage requirements decreased quickly in Figure 5.5. This also occurred for the LED-7 and 
vVaveform-21 applications. Their standard errors increase during this time before settling 
to lower values for higher values of k. This occurs because IB3 and IB4 will occasionally 
manage to accept instances for low values of k > 1, which will allow them to record high 
accuracies in learning trials. However, when k is large, then IB3 and IB4 consistently record 
predictive accuracies near chance. The standard errors are lower for these settings. 

These results suggest that IB3 cannot work well with higher values of k. However, it can 
be modified to improve its performance for these settings. For example, it can be trained 
using k = 1 and then be directed to use k > 1 settings during testing. Lower initial values 
for acceptance will also improve IB3 and IB4's learning behavior. These modifications have 
not yet been evaluated and they remain a project for future research. 

Databases with Imperfect Attribute Sets: 

As shown in the figure, the IBL algorithm's behavior for the Cleveland database applica­
tion was similar to their behavior for the applications to the noisy artificial domains. IBl's 
highest accuracy (80.4% at k = 5) was again higher than IB3 and IB4's best (78.4% and 
78.1% respectively). It was also 5.2% higher than C4's average accuracy. Also, IBl's accu­
racy continually improved for the Hungarian database application, beginning at 56.1 % and 
ending at 71.6%. These results suggest that, although the majority of similar instances have 
similar classifications in this database, more than 1 instance is required to tolerate its large 
number of missing values, its imperfect attributes, and its noise to achieve high predictive 
accuracies. Its accuracy should approach IB3's and IB4's with sufficiently high values of k. 

IB3 and IB4 again performed poorly. Their accuracies quickly dropped to chance as k 
was increased. 

Noise-Free Databases 

The IBL algorithms performed similarly in the Congressional Voting database applica­
tion. However, this is the only application where IBl's apparent peak (92.9%) is lower than 
IB4's best (93.8%). IB2 performed relatively well in this application, recording accuracies as 
good as IBl 's for higher values of k. This occurred because there is not much noise in this 
dataset. IB2's good performance was anticipated by the experiments in Section 4.2.4, which 
showed that IB2's accuracy was as good as IBl 's in an application to an artificial domain 
with low levels of noise. 

C4's accuracy (95.6%) was highest for this domain. It's possible that C4 will record 
higher classification accuracies than IBL algorithms for noise-free applications. 
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Noisy Domains with Irrelevant Attributes: 

Higher values for k repair IBl 's low accuracies for both the LED-24 Display and the 
Waveform-40 artificial domain applications. IBl 's peak occurs for k 2:: 11 for both of these 
applications. Its highest average accuracies for these domains (i.e., 67.2% and 76.5% re­
spectively) are higher than the highest for IB3 and IB4. They are also higher than C4's 
accuracies, which were 66.9% and 70.9% respectively. 

Summary: 

IBl 's behavior improved in each application as k was increased. Its accuracy peaks for 
a certain value of k and will, by definition, approach the frequency of the target value with 
the highest observed relative frequency as k increases to the size of the training set. IB2's 
behavior is similar, although its accuracies are slightly lower. IB3 and IB4's behavior is 
sensitive to the setting for k. They perform well when k = 1, but poorly when k > 1. 
Moreover, IBl 's highest accuracy was better than IB3 and IB4's best in five of the seven 
applications. In the other two applications, it approached IB4's best for the Congressional 
Voting database and is still rising for the Hungarian heart disease database application. 
It can be argued that IB3 and IB4 cannot, in their current form, be relied on to yield 
higher classification accuracies than IBl. However, a search is required to find the setting 
for k which yields IBl 's peak classification accuracy. Also, the other algorithms sharply 
reduce IBl's storage requirements. Finally, IB3 and IB4's performance can be improved by 
modifications that allow instances to be more easily accepted earlier in the training process. 
In summary, IB3 and IB4 should perform well when k > 1 after suitable modifications. 

The IBL algorithms' behavior for numeric prediction tasks was somewhat similar to 
their behavior for symbolic prediction tasks. Table 5.9 summarizes their behavior for four 
of the seven numeric prediction tasks. Figure 5.6 summarizes the results for the heart 
disease diagnosis task using the Cleveland database. As with the symbolic prediction tasks, 
IBl and IB2's accuracies increase with k, peaking at some value before degrading to a 
weighted-average guess using all the instances in the partial concept description. However, 
the performance of IB3 and IB4 is no longer always at an optimum for k = 1. Instead, the 
performance of these algorithms also follows a peaking curve, as shown in the figure. As 
before, IB3 and IB4's storage requirements decrease with higher values of k, indicating that 
the acceptance test is more difficult to pass when more instances are used to generate target 
value predictions. The following paragraphs describe the results in more detail. 

Skewed Distributions: 

The results for the degree of heart disease target function for the Hungarian database are 
similar to those shown for the Cleveland database. However, IBl's lowest average relative 
error, obtained when k = 11, is still high (0.33). The results suggest that it will decrease more 
with increasing values of k, but IBl 's "recovery" from this database's array of challenges is 
slower than it was for the same symbolic prediction task. IB3 and IB4's relative errors dip 
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Table 5. 9: Average relative error and storage requirements for three of the numeric prediction 
tasks. 

j Target Function II k I IBl J IB2 IB3 IB4 

Tumor Size 1 0.22 0.23 62.0 0.21 16.1 0.21 17.5 
3 0.20 0.20 55.8 0.19 17.8 0.1917.6 
5 0.19 0.20 53.8 0.18 18.1 0.19 17.6 
7 0.19 0.19 53.0 0.18 17.6 0.18 18.0 
9 0.19 0.19 51.8 0.18 17.3 0.18 18.2 

11 0.19 0.19 51.8 0.17 18.3 0.18 18.4 

Horsepower 1 0.04 0.06 24.9 0.08 16.8 0.07 17.8 
3 0.05 0.07 20.8 0.07 16.3 0.07 17.l 
5 0.05 0.07 21.4 0.08 15.8 0.08 16.6 
7 0.05 0.07 21. 7 0.08 16.1 0.08 16.6 
9 0.06 0.07 22.5 0.09 13.7 0.09 13.3 

11 0.06 0.07 23.7 0.10 12.2 0.11 9.9 
#of Months 1 0.20 0.22 57.4 0.20 18.4 0.20 17.3 

3 0.17 0.18 55.4 0.1720.7 0.18 20.7 
5 0.17 0.18 55.0 0.16 23.3 0.17 22.3 
7 0.16 0.17 54.8 0.1721.7 0.17 22.4 
9 0.16 0.17 55.8 0.20 18.9 0.19 18.3 

11 0.16 0.17 56.1 0.22 13.9 0.22 13.0 

to approximately 20% at k = 5 before rising. Their storage requirements also peak at this 
setting for k. 

The results with the horsepower prediction function are unique due to its low level of 
noise. In this case, all the algorithms peaked for the k = 1 setting. Storage requirements for 
the IB3 and IB4 algorithms immediately decreased with increasing values for k. 

Normal Distributions: 

IBl and IB3 tied for the lowest relative error when predicting the number of months 
lived after a heart attack. However, IB3 peaked at k = 5 again while IBl's lowest average 
error was recorded at k = 11, the highest value fork tested. The patterns for the algorithms' 
behavior in this experiment were similar to the other experiments. 

The patterns repeat again for the cholesterol level prediction task. However, IB3 and 
IB4's peaks occur when k = 9. IB2's storage requirements decrease gradually, indicating 
that it makes fewer errors when it relies on larger numbers of instances for predicting target 
values. 
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Figure 5.6: Average relative error and storage requirements for the degree of heart disease 
prediction task (Cleveland database) as k is varied. 

Finally, the results for predicting breast cancer tumor size all have peaks at k ~ 11. 
IB3's predictive accuracy (17.5% average relative error) is about equal to average guess's 
relative error (17.1%) and is still better than IBl's (18.8%) at this setting. Performance 
improvement with increasing values of k is obviously slowing down between the two highest 
values for k tested. The familiar peaking pattern should occur for slightly higher settings 
for k. 

Summary: 

The results for the numeric prediction tasks were relatively consistent across the six 
applications tested. The performance of the algorithms peaks at a certain value for k and 
decreases gradually afterwards. IB3 and IB4 are not as sensitive to this parameter's setting 
for numeric prediction tasks as they were for symbolic prediction tasks. This occurs be­
cause, for numeric prediction tasks, most-similar instance predictions are rarely better than 
a weighted average prediction generated from a small set of highly similar instances. 

The setting for k at peak performance varied from 1 for the horsepower target function 
to at least 11 for the prediction of tumor size. A brief analysis of the applications shows that 
these differences reflect the sparsity of the application's instance spaces. Table 5.10 displays 
the value of k for IB3's peak performance in each application and a rough estimate of the 
sparsity of each application (i.e., the dimensionality of the database divided by the size of 
its training set). The peak occurs at lower settings for k for sparse instance spaces and 
higher settings for more densely populated spaces. It's not surprising that the horsepower 
target function, where the peak performances occurred when k = 1, has the largest sparsity 
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Table 5.10: The value of k that supports IB3's peak performance increases with the sparsity 
of the ap r t" t" t db th f th t ' . t d" 'd db . d" "onality. p 1ca 10n, es 1ma e y e sJZe o e r amm_g_ se lVl e y its imens1 

Database Application Sparsity Measure Peak for IB3 

Horsepower 17.4 k=l 
Number of Months 9.8 k=5 
Hungarian Degree of Heart Disease 6.3 k=5 
Cleveland Degree of Heart Disease 6.1 k=7 
Serum Cholesterol Level 6.1 k=9 
Tumor Size 5.0 k = 11 

measure. This measure can be used to estimate which setting for k should be used for IB3 
in numeric prediction tasks. 

5.3 Alternative Learning Components 

This section describes a high-level parameter study for the IBL framework's learning 
component, which consists of the memory updating function. The purpose of this study is 
to determine whether a popular alternative to the design choice made for the learning compo­
nent supports significantly improved learning behavior in the types of database applications 
studied throughout this dissertation. 

The sequence of IBL algorithms described in Chapter 4 are examples of the simplest 
family of IBL algorithms, namely instance-filtering learning algorithms. These algorithms 
do not modify the set of instances selected to be saved, although their interpretations are 
modified as instance accuracy and relative attribute relevance information is learned. 

The most popular alternative to instance-filtering IBL algorithms are instance~averaging 
IBL algorithms. These algorithms differ only in how they process instances whose target val­
ues are correctly predicted. Instead of discarding them, they are averaged with the instance 
responsible for the prediction. 

There are different ways to average two instance's numeric attribute values. For exam­
ple, Kohonen (1986) suggested using a cautious averaging strategy in which the classifying 
instance was replaced by an instance that was only 1/5th. of the distance towards the in­
stance that was correctly classified. This fraction is slowly reduced over time. Although this 
strategy has its advantages, Kohonen embedded it in a non-incremental learning algorithm 
that introduced several additional parameters that require tuning by the user. Therefore, 
I chose to investigate Bradshaw's (1987) Disjunctive Spanning algorithm, which does not 
introduce additional parameters and is more familiar to the machine learning community. 
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The Disjunctive Spanning algorithm is an instance-averaging IBL algorithm that replaces an 
instance's values using a weighted-average of the two instance's values. Weights are assigned 
to each instance, they are initialized to one, and they are incremented by one each time 
the corresponding instance is averaged. The weighted-averaging approach ensures that the 
affects of the averaging process are reduced over time. That is, the stored instance will be 
"moved" successively smaller distances in the instance space with successive averagings. An 
instance with a large weight behaves like an instance saved by an instance-filtering algorithm 
because its values will be virtually unchanged with subsequent averagings. 

This suggests that instance-averaging and instance-filtering algorithms will behave sim­
ilarly after several averagings have taken place. If the target concepts are describable by 
a prototype plus noise, then instance-averaging algorithms could support superior learning 
behavior since the averagings help to filter the noise. For example, the disjunctive spanning 
algorithm should perform well on the LED Display and Waveform domains. However, these 
algorithms can yield an averaged "instance" that (1) does not exist due to constraints in the 
application domain or (2) has a different target value. The latter situation occurs when the 
set of instances along the line segment (in the instance space) between the two instances to 
be averaged have different target values. For example, the instances being averaged may lie 
in different disjuncts. If this situation occurs often, then the disjunctive spanning algorithm's 
predictive accuracy will decrease. 

I applied variants of the disjunctive spanning algorithm to the set of symbolic prediction 
tasks introduced in Chapter 4 to gather information on their learning behavior. The results 
are summarized in Table 5.11. IBl's results are not included in this table since it simply 
saves all training instances. IB2, IB3, and IB4 were modified to average correctly classified 
instance instances rather than filter them. I allowed the disjunctive spanning variants to 
interpret Boolean/binary-valued attributes as numeric-valued, but did not implement any 
notion of averaging for symbolic values. The results, which are discussed in detail in the 
following paragraphs, confirmed most of my expectations. 

Noisy Artificial Domains: 

The disjunctive spanning (DS) algorithm performed well in the Waveform-21 application 
because the target concepts are prototypes plus added noise. Instance-averaging helps to 
eliminate this noise. IB2's improvement in accuracy was significant ( t(24) = 1.89, p < 0.05). 
However, DS did not perform particularly well in the LED-7 display domain even though it 
also has these domain characteristics. This was due to the small number of training instances 
(200) in this application and the large number of target concepts (10). Since approximately 
50% of the instances in this domain are noisy, few aver agings took place during each learning 
trial. Thus, the instance-averaging algorithms' learning rates are not faster than the instance 
filtering algorithms in this application. 
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Table 5.11: Average percent accuracy ± standard error and percent storage requirements 
for the · filt · d · t 1 'th mstance- erm__g_ an ms ance-averaEn__g_ a~on ms. 

Database Method IB2 IB3 IB4 

LED-7 Filtering 63.0±0.9 41.6 72.5±0.4 20. l 32.1±3.0 21.3 
Averaging 61.6±0.9 43.l 70.3±0.6 20.0 19.4±3.0 17.1 

Waveform-21 Filtering 68.4±1.1 32.3 74.2±1.2 11.1 76.9±1.0 13.4 
Averaging 77.6±0.8 38.8 80.3±0. 7 11.6 80.2±0.9 14.6 

Cleveland Filtering 71.4±0.9 32.0 78.4±0.9 3.9 78.1±0.7 4.2 
Averaging 72.9±0.8 28.6 78.1±1.7 3.5 78.1±0.9 3.7 

Hungarian Filtering 53.1±2.4 36.9 79.4±0.9 4.3 79.8±0. 7 3.9 
Averaging 55.8±2.2 34.5 78.0±1.4 3.7 79.5±1.4 3.5 

Voting Filtering 90.9±0.5 11.6 90.6±0.6 3.5 93.8±0.4 3.0 
Averaging 89.3±0. 7 14.2 89.1±0.8 4. 7 93.2±0.5 3.8 

LED-24 Filtering 43. 7±0.8 60.1 46.6±0. 7 25.3 66.1±0.6 25.4 
Averaging 49.8±0.7 54.8 56.6±0.7 17.1 73.2±0.7 15.2 

Waveform-40 Filtering 64.0±0. 7 38.3 67.2±1.1 11.8 72.1±1.2 12.6 
Averaging 73.3±1.0 30.0 73.5±1.0 5.6 73.4±1.1 6.5 

Databases with Imperfect Attributes: 

The algorithms performed equally well when applied to the two heart disease databases. 
The instance-averaging algorithm could not repair IB2's problems with the latter database, 
indicating that, like the instance-filtering variant of IB2, it suffers from the wrong (1) choice 
of normalization function, (2) algorithm for processing missing attribute values, and (3) 
setting for k for this application. Since the instance-averaging algorithms had low storage 
requirements for IB3 and IB4, the results indicate that the predictor attributes are imperfect 
or that the target concepts are not describable only by prototypes. Otherwise, the disjunctive 
spanning variants would have recorded near-perfect classification accuracies. 

Noise-Free Databases: 

The instance-averaging algorithms did not outperform the instance-filtering algorithms 
in the application to the Congressional Voting database. They recorded similar average 
classification accuracies and slightly higher storage requirements. The instance-averaging 
variant for IB4 was again able to learn attribute relevance information that resulted in 
increased accuracies. 

Applications with Irrelevant Attributes: 

The instance-averaging algorithms performed exceptionally well on the LED-24 and 
Waveform-40 applications. The latter was expected for the same reasons that they per­
formed well for the Waveform-21 application. The improvement in IB2's accuracy was again 
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significant (t(24) = l.85,p < 0.05). There were also large reductions in storage requirements 
for all three algorithms, indicating that the instance-averaging variants learned prototypes 
of the three target concepts. 

The instance-averaging algorithms' most spectacular improvement was with IB4 in the 
LED-24 Display domain. IB4's instance-averaging accuracy increased significantly (t(24) = 
1.87, p < 0.05). Furthermore, its average accuracy (73.2%) was close to the 74% Bayes 
optimal rate and well above C4's average accuracy (66.9%). It also substantially reduced 
storage requirements for all three IBL algorithms. Instance-averaging learning components 
perform well in applications where the target concepts are defined by prototypes and the 
noisy training instances are described by irrelevant attributes. 

Summary: 

In summary, the instance-averaging algorithms perform about as well as the instance­
filtering algorithms except when the target concepts are defined by prototypes and when the 
instances are described by multiple irrelevant attributes. Under these conditions, several of 
the algorithms using an instance-averaging memory updating function recorded significantly 
increased classification accuracies and significantly decreased storage requirements. 

Bradshaw (1985) used the disjunctive spanning algorithm in his NEXUS speech recog­
nition architecture. He compared its performance (i.e., classification accuracy) against 
CICADA, a non-learning speech recognition system developed at Carnegie Mellon University, 
on a two-speaker letter-pronunciation database. NEXUS was able to correctly recognize the 
speakers' letter in an average of 93% of the classification attempts after having cycled through 
the database thirty times. CICADA's accuracy was 80%. One reason that NEXUS performed 
well is because the concepts are defined by prototypes. This is an excellent application for 
the disjunctive spanning Algorithm. 

Bradshaw didn't evaluate NEXUS versus other learning algorithms. Based on the results 
in this section and Aha and Kibler's (1989) evaluations, it appears that this algorithm 
performs well in comparisons with decision tree algorithms in a large set of applications. 

I also applied the disjunctive spanning algorithm to the standard set of six numeric 
prediction tasks. The results are listed in Table 5.12 In summary, the instance-averaging 
memory updating function did not improve learning behavior for these tasks. Average rel­
ative error rates and storage requirements were roughly identical. This suggests that the 
target concepts in these applications, unlike in the artificial LED and Waveform domains, 
are not accurately describable with a single prototype. Furthermore, since the experiments 
in Section 4.4.3 showed that the instances in these database applications have few irrelevant 
attributes, it is not surprising that the instance-averaging variants' did not outperform the 
instance-filtering algorithms. 
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Table 5.12: Average relative error and and percent storage requirements for the instance-
filtering and · t 1 ·th ms ance-aver~n_g_ a!_g_on ms. 

Target Function Method IB2 IB3 IB4 
Tumor Size Filtering 0.23 62.0 0.21 16.1 0.21 16.6 

Averaging 0.23 62.5 0.21 16.5 0.21 15.6 
Cholesterol Level Filtering 0.15 52.3 0.13 13.6 0.14 13.3 

Averaging 0.15 51.7 0.14 13.2 0.13 13.1 
Degree of Disease Filtering 0.20 52.9 0.19 14.2 0.18 13.9 

(Cleveland) Averaging 0.20 52.4 0.18 12.3 0.17 12.7 
Degree of Disease Filtering 0.43 36.7 0.23 6.3 0.20 7.5 

(Hungarian) Averaging 0.44 33.8 0.22 7.1 0.21 7.0 
Horsepower Filtering 0.06 24.9 0.08 16.8 0.07 16.0 

Averaging 0.06 24.7 0.08 17.6 0.07 16.l 
Number of Filtering 0.22 57.4 0.20 18.4 0.20 17.3 

Months to Live Averaging 0.24 60.7 0.23 17.9 0.22 17.4 

5.4 Chapter Summary 

This chapter described five investigations with alternative design choices for IBL algo­
rithms. These high-level parameter studies are unique; they have not appeared in other 
publications concerning IBL algorithms. Therefore, it is not surprising that several the con­
clusions drawn from these studies offer several contributions to the literature on instance­
based learning algorithms: 

1. Pre-processing component: The choice of normalization function can significantly al­
ter learning rates and classification accuracies. Surprisingly, the linear normalization 
method performed relatively well in comparison with the standard normalization al­
gorithm. However, normalization should be done; the no-normalization option worked 
well only when the attribute ranges corresponded to relative attribute relevance. 

2. Performance component: 

(a) Similarity function: The choice of algorithm for processing missing attribute values 
can significantly alter learning rates and classification accuracies. None of the 
three strategies tested consistently outperformed the others. 

Furthermore, metrics for processing symbolic attribute values that compare con­
straints on target value distributions do not always outperform the simple overlap 
metric. In fact, no clear consensus emerged from these experiments, suggesting 
that further study is needed in this area. 

(b) Prediction function: The performance of !Bl and IB2 generally improve with 
increasing values of k. The level of IB3 and IB4 's performance both decrease with 
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increasing values of k. Furthermore, there appears to be a best value of k for 
IBl and IB2 in each application that can be approximated by analyzing simple 
domain characteristics such as dimensionality and training set size. IB3 and IB4 
should be extended to relax their high instance-acceptance standards during the 
early parts of the training process so that they can perform well when k > 1. 

3. Learning component: Instance-averaging algorithms can support significantly improved 
learning behavior in application where the target concepts are described by prototypes 
and where the instances are described by multiple irrelevant attributes. However, these 
algorithms otherwise perform at about the same level as instance-filtering algorithms 
and are susceptible to deriving "instances"' in their partial concept descriptions that 
are misclassified. 

The purpose of this chapter was to begin to gain insight concerning the quality of the 
design decisions used for the basic IBL algorithms introduced in Chapter 4. The investiga­
tions suggested that alternatives to the basic algorithms should be explored and that more 
investigations (e.g., factorial designs) and domain characterization analyses are required to 
determine when each alternative should be used. 

Several other alternatives and design decisions should be explored that were not discussed 
in this chapter. For example, a normalization function that normalized using a geometric 
averaging function may lead to improved learning behavior. So may alternative similarity 
functions, such as the city-block distance function, which Cost and Salzberg (1990) claim 
works as well in PEELS as does the Euclidean distance function. Similarly, similarity func­
tions that decrease exponentially with the distance between pairs of instances should also be 
investigated since there is a great deal of empirical evidence that people use these functions 
(Shepard, 1987). These functions are investigated in Chapter 6. Another alternative not 
discussed in this chapter are prediction functions for learning graded concept descriptions 
(Aha, 1989a). IBL algorithms can learn such descriptions, but the method by which they 
do this has not yet been analyzed. Finally, alternative memory updating functions have not 
been fully analyzed. For example, one of Bradshaw's (1987) most pressing concerns with 
the Disjunctive Spanning algorithm is that it has a tendency to allow classifications to take 
place between instances that are distant in the instance space. While investigations have 
examined adding distance-thresholding methods to instance-filtering and instance-averaging 
algorithms (Kibler & Aha, 1988), no investigations have compared and analyzed alternative 
means for solving this problem. The results of these investigations may suggest that al­
ternative instance-averaging algorithms could solve this problem, such as Kohonen's (1986) 
algorithm, which cautiously averages instances instead of replacing them by their weighted 
average. 

In conclusion, this chapter only partially investigated the IBL algorithm design choices 
and left more questions unanswered than solved. Nevertheless, this is a sign of progress. 
These investigations now suggest which design decisions are critical and should be the focus 
of future studies. 
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Chapter 6 

Psychological Analyses 

Gaining a deeper understanding of human learning will continue to 
provide important clues about what to imitate and what to avoid in 

machine learning programs ... it follows that among the most important 
kinds of learning research to carry out in AI are those that are 

oriented towards understanding human learning. 
- Herbert Simon (1983, page 36) 

This ... is exactly the way of cognitive science - moving freely 
back and forth between the data-oriented methods of psychology 

and the system-oriented methods of artificial intelligence. 
Alan Newell (Laird, Rosenbloom, & Newell, 1986, page xiii) 

Exemplar models in general tend to be short on processing details. 
- (Medin & Shoben, 1988, page 184) 

Research in artificial intelligence (AI) has often influenced the development of psycho­
logically plausible theories in the cognitive science literature, dating as least from the time 
that Newell, Shaw, and Simon's (1963) observations that search plays a central role in AI 
systems was also found to be true for human problem solving behavior (Newell & Simon, 
1972). Similarly, several psychologists and computer scientists (e.g., Anderson, 1983; Fisher, 
1987; Schlimmer, 1987a; Langley et al., 1989) have used the conclusions drawn from ex­
periments with cognitively plausible models to constrain their computational models. As a 
burgeoning branch of artificial intelligence, machine learning is no exception to this ongo­
ing cooperation between these disciplines. More specifically, several instance-based learning 
systems were inspired by psychologically plausible models of categorization. Therefore, any 
discussion on instance-based learning algorithms would be incomplete without a description 
of exemplar-based models of categorization, which assume that predictions are based solely 
on the dynamic extraction of information from a set of stored exemplars. 

However, this chapter contains more than an introductory survey on exemplar-based 
models of categorization; it also contains the first contribution to the literature on these 
models from a computer scientist's perspective. My contribution centers on demonstrat­
ing that an instance-based learning algorithm can improve current exemplar-based models' 
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fits to subject data. This is important since, as Medin and Shoben (1988) have noted, 
exemplar-based models are seldom if ever fully specified in their literature. In this regard, 
the contributions in this chapter complete the loop referred to above by Newell: the algo­
rithms described in Chapter 4, whose study advanced the understanding of instance-based 
learning algorithms in the machine learning literature, were inspired by models in the cate­
gorization literature. After much elaboration, I have now used them to extend the body of 
knowledge on psychologically plausible exemplar-based models. 

This chapter reads a bit differently than the others because the vocabulary of cognitive 
psychology differs somewhat from that in computer science. I will use the term experiment to 
denote a study with biological subjects and simulation to denote an investigation with a com­
puter program. Feature will be used synonymously with attribute-value pair. The common 
phrase exemplar-based model will be used to refer to psychologically plausible instance-based 
algorithms for categorization. However, models are not necessarily equitable with algorithms 
since they are generally left underspecified. A fully specified model of categorization is called 
a process model. The term exemplar will be used to denote a specific instance even though 
Smith and Medin (1981) allowed it to also denote a subset of a category (e.g., the exemplar 
robins is a subset of the category birds). 

The models described in this chapter address only symbolic prediction tasks. Although 
categorization models are now being developed for predicting numeric values, the vast ma­
jority of work on models of categorization addresses the modeling of symbolic concepts. 
Also, these models ignore many issues of interest to the machine learning community, such 
as missing values and noisy data. 

This chapter begins in Section 6.1 with a discussion of the motivation for attending 
to the study of psychologically plausible models of categorization. The research related to 
the development of exemplar-based models is surveyed in Section 6.3. Four exemplar-based 
process models (i.e., IBL algorithms) are introduced in Section 6.4, evaluated against each 
other in simulations in Section 6.5, and are evaluated against subject data in Section 6.6, 
which describes an experiment with an artificial domain that investigates whether subjects' 
categorization processes are sensitive to context. The results show that the most context­
sensitive of the four IBL algorithms also provides the best fits to subject data. Section 6.7 
completes the study of exemplar-based models with a discussion concerning how these results 
fit with other studies on psychologically plausible models concerned with context sensitiv­
ity, including several recent proposals concerning context-sensitive exemplar-based models. 
Benefits and limitations of exemplar-based models are also described. Finally, Section 6.8 
summarizes the contributions of this chapter. 
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6.1 Motivation for Studying Cognitive Models 

There are several reasons for studying the literature on psychological models of cat­
egorization. The reason most relevant to this discussion is that they provide behavioral 
guidelines for computational models of learning. Several learning systems have been de­
signed to display psychologically plausible behavior, including SOAR (Laird et al. 1986), 
PUPS (Anderson, 1989), and ICARUS (Langley et al., 1989). Under the assumption that 
intelligence can be computationally simulated, these three integrated cognitive architectures 
attempt to computationally model (among other things) psychologically plausible learning 
processes For example, SOAR's central thesis is the chunking theory of learning, which pro­
poses that practice improves performance via the acquisition of knowledge about patterns, 
called chunks, from the task environment. Their theory was developed from evidence that 
chunking accounts for some aspects of human problem-solving behavior (Miller, 1956; Bower, 
1972; Chase & Simon, 1973). PUPS, which embodies another theory of how production rules 
are acquired, uses spreading activation to implement its method for processing information. 
Several researchers have described evidence showing that spreading activation methods ac­
count for some aspects in human problem-solving behavior (e.g., Collins & Quillian, 1972; 
Meyer & Schvaneveldt, 1971; Anderson, 1974). Finally, ICARUS's architecture, which is 
based on the development of a probabilistic concept hierarchy, was directly influenced by 
Smith and Medin's (1981) discussion on the psychological plausibility of probabilistic con­
cepts. In summary, these three systems are applicable to a large set of problem solving tasks 
and their generality is derived, at least in part, from their concern with modeling cognitively 
plausible behavior. 

None of these systems are specifically instance-based, although two of them (PUPS and 
ICARUS) retain and exploit specific instance information during problem-solving episodes. 
Although several learning systems that use an instance-based approach have little or no 
connections with the psychological literature (e.g., Bradshaw, 1985; Stanfill & Waltz, 1986; 
Kurtzberg, 1987; Connell & Utgoff, 1987; Clark, 1989) research on psychologically plausible 
models of categorization directly inspired the development of several other IBL systems 
(e.g., Bareiss, Porter, & Wier, 1987; Kibler & Aha, 1987; Salzberg, 1988). In fact, all three 
groups derived their motivation from Smith and Medin 's ( 1981) discussion on exemplar-based 
models. Each group reported that IBL algorithms support surprisingly good computational 
learning behavior in practical supervised learning applications. Thus, psychological research 
on modeling categories directly inspired the development of well-behaved learning algorithms. 

Although Bareiss (1989) and Salzberg's (1990) dissertations were inspired by exemplar­
based models of categorization and lead to the development of interesting computational 
learning algorithms, they did not include contributions to the psychological literature. This 
is unfortunate since many of the ideas they developed with their colleagues and used in their 
algorithms could extend the capabilities of psychologically plausible exemplar-based models. 
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Section 6.6 contains an evaluation of the psychological plausibility of an exemplar­
based process model that was inspired by the design of IB4, a computational learning algo­
rithm with no claims of consistency with known psychological behavior. More specifically, 
Section 6.4, describes an investigation of the fit of four IBL algorithms to data collected 
from subjects. The learning task involves a simple artificial domain that encourages using 
a context-specific attribute weighting strategy. The objective of the experiment is to show 
that subjects use contextual information to determine an attribute's relevance in prediction 
tasks. This is a novel experiment; this is the first investigation showing that context-sensitive 
prediction strategies improve the fits of exemplar-based process models. 

6.2 On Dimensions for Distinguishing Psychological 
Models 

It is necessary to survey the literature on psychological models of categorization to 
understand the background for the design decisions used in the creation of the exemplar­
based process models described in Section 6.4. This section sets the stage for the survey in 
Section 6.3 by presenting three ways in which models of categorization can be differentiated. 

There are many ways to characterize the ability of a model to account for psychologically 
plausible behavior. A good method for characterizing models should be lucid and based 
on a small number of easily-measured dimensions. Section 6.2.l begins by describing the 
most popular method and explains why it is insufficient. An alternative method that was 
recently advocated by Barsalou (1989) is presented in Section 6.2.2 which also explains why 
his method is also insufficient. I introduce a new method for accomplishing this task in 
Section 6.2.3 and use it in the remainder of this chapter to compare and contrast models of 
categorization. 

6.2.1 Category Structure 

Smith and Medin's (1981) partitioning of models into three disjoint views is currently the 
most popular dimension for distinguishing models of categorization. However, as Table 6.1 
shows, this dimension is in fact itself multi-dimensional. The following paragraphs summarize 
these three views. 

Categorization is the process of determining that a specific instance is a member of a 
concept or that a concept is a subset of another. The primary purpose of studying categoriza­
tion in humans is to develop an understanding of what behaviors are exhibited by humans 
during categorization tasks. A secondary purpose is to develop models whose behavior is 
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Table 6.1: The three views of categorization, summarized by the constraints they impose on 
attrib t t d · t' d th h · f t t' f t d · tions. u es m cone~ escnp 10ns an e c 01ce o represen a 10n or cone~ escnp 

Name Constraints on Attributes Representation 

Classical Necessary and sufficient Centralized, conjunctive 
Probabilistic Probabilistic Centralized, implicitly disjunctive 
Exemplar Describe at least 1 member Distributed, explicitly disjunctive 

consistent with known subject behavior. The central assumption of cognitive psychologists 
is that categorization plays an essential role in the majority of cognitive behavior. 

Early researchers on category learning (e.g., Bruner, Goodnow, & Austin, 1956) suggested 
that people abstract relatively rigid summary descriptions for categories that were defined by 
necessary and sufficient features. Concepts were restricted to conjunctive descriptions and 
concept members were assumed to be equally representative of their category. Furthermore, 
the set of defining features for a category was assumed to be a proper subset of the corre­
sponding set for its subordinate concepts. This was called the classical view by Smith and 
Medin (1981). Mitchell's (1977) candidate elimination algorithm, which locates conjunc­
tive concepts using a version space approach, is perhaps the best-known machine learning 
algorithm that adopts the classical view. 

This view fell from favor as more information became known concerning human catego­
rization behavior. The following list highlights several properties displayed during human 
categorization behavior that are in opposition to the pure classical view. 

1. Concepts are frequently disjunctive. 

2. Unclear cases frequently arise during categorization attempts. 

3. People cannot specify defining features for most concepts. 

4. People tend to use non-necessary features to define concepts. 

5. Concept members vary in their typicality, which is correlated with family resemblance, 
defined as an increasing function of the number of attributes in common with other 
members of the category and a decreasing function of this number for non-members 
(Rosch & Mervis, 1975; Rosch, 1978). 

6. Concepts are often judged to be more similar to distant than to immediate subordinate 
concepts. 

A few of the typicality effects exhibited by subjects are summarized in the following list. 

1. The time required to classify an instance is an inverse function of its typicality. 

2. Categorizations for typical instances are generally learned earlier than for other in­
stances. 
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3. Most prototypical instances are given first (and most frequently) by subjects when 
asked to list members of a category. 

4. Performance on the categorization of prototypes, even if not presented during train­
ing, decreases less than performance with other training exemplars when subjects are 
delayed before being tested. 

Several attempts have focused on revising the classical view to account for these observations, 
but they have met with limited, success. 

Consequently, two other views have been developed that successfully model all of these 
behaviors. These alternative views comprehensively relax the definition of a concept, as 
shown in Table 6.1. The probabilistic view (Smith & Medin, 1981) extends the classical 
view by allowing attributes to have a probabilistic rather than a Boolean relationship to 
concept membership. This view allows concepts to be less stable; instances aren't guaran­
teed to be either members or non-members. Otherwise, the probabilistic view is similar to 
the classical view in that it also assumes that concepts are represented by a single abstrac­
tion derived during training. The probabilistic view allows for degrees of disjunctiveness 
by permitting different combinations of features to achieve above-threshold requirements for 
concept membership. It also defines unclear cases as those that don't quite reach this thresh­
old, explains the lack of defining features and use of non-necessary features by requiring the 
latter in concept descriptions, and explains typicality effects by relating the similarity of 
a member instance's properties to its parent concept. Finally, the probabilistic view does 
not restrict concepts to have more properties in common with immediate than with distant 
subordinates. Several machine learning algorithms adopt the probabilistic view, including 
COBWEB (Fisher, 1987), STAGGER (Schlimmer, 1987a), Quinlan's (1990a) probabilistic 
extension for decision tree algorithms, Michalski 's (et al., 1986) probabilistic extension for 
the AQ series of algorithms, and Rendell's (1986) PLSl algorithm. 

The exemplar view takes a different tact; it assumes that categorizations are based solely 
on specific instance information. This view postulates that abstractions are derived at the 
time of retrieval and are not explicitly maintained. Thus, this view further relaxes the defi­
nition of a concept. The exemplar view prescribes lazy models of categorization; it does not 
advocate that people derive abstractions when exemplars are presented. Instead, it assumes 
that people based their categorization decisions solely from stored instance information. This 
view is explicitly disjunctive, explains unclear cases as instances having comparable summed 
similarities to multiple concepts, places no requirements on defining properties other than 
that they are represented by an exemplar (i.e., member), and explains typicality effects based 
on assumptions that concept exemplars have high family resemblance scores. Machine learn­
ing algorithm's based on this approach include Bareiss's (1989) Protos system, Salzberg's 
(1990) NGE algorithm, and Aha, Kibler, and Albert's (1991) instance-based learning algo­
rithms. 
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6.2.2 Information Storage 

Smith and Medin (1981) suggest that a mixed probabilistic and exemplar view is more 
psychologically plausible than either extreme view. As will be shown in later sections, this 
position has been hotly debated and has not yet subsided. There is currently no consensus on 
whether people use exemplar-only, abstraction-only, or mixed representations for categories, 
although several arguments have been made for each possibility. However, these contradic­
tory (and, subsequently, distressing) arguments have at least had a common theme: if any 
argument for one of the three perspectives is published that discourages the plausibility of 
another, then surely a more elaborated model supporting the other perspective will soon 
be published that soundly refutes the original argument. Indeed, authors who now present 
favorable evidence for their models state explicitly that they do not rule out the possibility 
that other models, once properly extended, might improve fits. It appears that the only 
consensus in this literature is that it is impossible to determine which type of model subjects 
use to solve categorization tasks. 

Barsalou (1989) is the strongest advocate of this perspective. He argues that trying 
to determine whether people use only exemplars or both exemplars and abstractions is fu­
tile because they are informationally equivalent. That is, abstraction-based approaches can 
contain information on specific instances (e.g., as in the property set model (Hayes-Roth & 
Hayes-Roth, 1977), information on attribute correlations, and can modify the abstractions 
over time. Likewise, exemplar-based approaches can be modified to resemble abstraction 
models. Thus the degree-of-abstraction dimension does not distinguish models of catego­
rization. The focus, he argues, should be on comparing representation-process pairs, wherein 
both the model's representation and identification procedure (i.e., performance and learning 
component) must be considered to determine whether it supports psychologically plausible 
behaviors. In this sense, arguments rejecting types of representations is misguided. Since 
Smith and Medin's (1981) view-based dimension for distinguishing models is based mainly on 
representational issues and is lean on processing issues, their partition of categorization mod­
els into three views is misleading and, consequently, unsatisfactory for predicting a model's 
ability to exhibit psychologically plausible behavior. 

Barsalou (1989) argued that process models can be distinguished by how they store 
information. He noted that exemplar-based representations tend to exhibit information 
duplication (i.e., stored instances can share some of the same attribute values) whereas 
abstraction-based models remove redundant information and tend to rely more on infor­
mation revision (e.g., we will see in Section 6.3.2 that feature-frequency models maintain 
counts on attribute value occurrences, which must be incrementally revised as when new 
instances are processed). However, psychologically plausible abstraction-based models can 
exhibit both information duplication and contain redundant information (Hayes-Roth & 
Hayes-Roth, 1977) and plausible exemplar-based models exist that revise their instances 
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(Hintzman, 1986). Therefore, this method's ability to predict a model's consistency with 
psychologically plausible behavior is also flawed. 

6.2.3 Ability to Utilize Attribute Correlation Information 

Barsalou's argument was not in vain since he shifted the emphasis from representations 
to process models. I will use an alternative process-related dimension to distinguish models of 
categorization: the degree to which the model utilizes information concerning inter-attribute 
correlations. Medin and Schaffer (1978) originally introduced the distinction of models that 
use no correlational information, which they called independent cue models, and models 
that base their predictions on correlational information, which they called relational cod­
ing models. Independent cue models use an additive combination of attribute values to 
derive predictions whereas relational coding models derive predictions from an interactive 
combination of attribute-value information. Unlike Medin and Schaffer, I will highlight the 
continuous nature of this dimension and argue that it correlates better with a model's ability 
to simulate psychologically plausible behavior than the dimensions suggested by Smith and 
Medin or Barsalou. 

Four methods for representing category information have been repeatedly studied in the 
psychological literature: prototype, feature frequency, exemplar-based, and connectionist 
networks. The following four sections describe models based on these representations and 
distinguish them based on their ability to utilize correlational information. I will highlight 
evidence for the hypothesis that there is a positive correlation between the amount of attribute 
correlational information utilized by a psychological model and the number of psychological 
phenomena that they can explain. The following sections will then introduce psychological 
models in increasing order of their ability to utilize attribute correlation information. These 
models will be evaluated on the basis of their relative learning speeds in simulations described 
in Section 6.5 and their ability to fit subject data in experiments described in Section 6.6. 
These evaluations will show that the models' abilities correlate with the amount of attribute 
correlation information that they utilize during the categorization process; the model that 
best utilizes attribute correlation information will perform best in the simulations and have 
significantly better fits to the collected subject data. 

6.3 Psychological Models of Categorization 

This section contains a summary of relevant research dating from the development of pro­
totype models to Nosofsky's (1986) introduction of the generalized context model. The three 
models to be surveyed in this section represent categories by prototypes, feature frequency 
counts, exemplars, and by connectionist networks respectively. These representations can 
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be best introduced with an example. Suppose that the following three instances describing 
people are available for training: 

Number Weight Height Gender 
Denise Heavy Average Female 
David Average Short Male 
Daniel Skinny Average Female 

If the target concept is Female, then the prototype model would represent the concept 
with a single prototype with values of Average for both weight and height. A simple fea­
ture frequency model would save counts on each attribute-value pair: weight[heavy]=l, 
weight[skinny]=l, weight[average]=O, height[tall]=O, height[average]=2, and height[short]=O. 
An exemplar-based model would simply represent the female concept by the set of saved in­
stances, where Denise and Daniel would be interpreted as positive examples and David would 
be interpreted as a negative example. 

6.3.1 Prototype Models 

Posner and Keele (1968; 1970) popularized the prototype model, which represents a target 
concept with single prototype. A category prototype's location in instance space is the point 
that has minimal summed distance to all members of the category. Prototypes are commonly 
assumed to be learned from the incremental averaging of attribute-values. These probabilistic 
models are independent cue models because they categorize instances based on their distance 
to each category's prototype, where distance is defined as an independent summation of 
attribute-value differences. Posner and Keele described evidence that prototype models 
account for several of the behaviors listed on page 154, including (1) subjects abstract and 
retain prototypes when trained on random dot patterns, (1) subjects recognized prototypes 
more quickly and accurately than other instances, and (3) after a delay between learning and 
testing, their performance on learned patterns suffered even though they retained knowledge 
of the prototype. They also argued that abstraction occurs during learning rather than at 
the time of retrieval, which is contrary to the thesis of exemplar-based models. 

Franks and Bransford (1971; Bransford & Franks, 1971) extended these results. They 
developed a prototype plus transformation model and found that categorization accuracy 
is inversely related to an instance's transformational distance to a prototype. They found 
no evidence that subjects based classification decisions on the memorization of specific in­
stances in their experiments with geometric patterns. They showed that the fits of their 
model were significantly better than the fits with a simple feature frequency model, which 
determines categorization judgments based on the number of times a probe's features oc­
curred in previously processed exemplars. More elaborate feature frequency models were not 
considered. 
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Figure 6.1: Early models' relative utilization of attribute correlation information. 

Finally, Reed (1970; 1972) provided evidence that a weighted-prototype model often 
fit subject data significantly better than several other models, including a simple exemplar­
based model (Sebestyen's (1962) proximity algorithm) that uses a nearest neighbor prediction 
algorithm. The weights on his models emphasized the relative relevance of features for 
predicting classifications. Reed also found that the proximity model fared better than his 
weighted-prototype model in one experiment, but he did not pursue the development of 
sophisticated exemplar-based models. 

Figure 6.1 qualitatively describes the relative utilization of attribute correlational infor­
mation by the four models mentioned in this section. The weighted-prototype model utilizes 
more correlational information than the primitive prototype model because its weights reflect 
the relative contributions of the attributes. Assuming that the target concept is describable 
by a single prototype, the prototype model is higher along this dimension than the simple 
feature frequency model, which completely discards correlational information in its repre­
sentation and uses it only weakly during categorization. The proximity model retains all 
correlational information in its representation, but only uses some of it during processing 
(i.e., the information contained in the nearest instance). Therefore, it doesn't use correla­
tional information as well as the weighted-prototype model. 

Perhaps the most well-known limitations of "pure" prototype models is that they are 
insensitive to instance distributions. For example, this model will derive the same prototype 
for a concept whose only instance is the prototype itself and for a concept whose instances 
lie in a ring centered around the prototype. Although humans can learn distributions (Fried 
& Holyoak, 1984), the prototype model cannot distinguish these two concepts. Also, the 
pure prototype model, unlike people, cannot learn non-linearly separable categories (Medin 
and Schwanenflugel, 1981). 
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6.3.2 Feature Frequency Models 

Neumann (1974) repeated Franks and Bransford's (1971) experiments and showed that a 
more elaborate feature frequency model fits their data more closely than does the prototype­
plus-transformation model. His model differs from the simple one in that it also maintains 
higher-order feature frequency counts. That is, it maintains counts for pairs of features. 
Neumann called these relational state frequencies. This model's prediction function is the 
same for a first-order feature-frequency model: classify an instance as a member of a cate­
gory c if all the frequency counts of relevant to the instance are higher for c than for any 
other category. Neumann's model was one of the first that was shown to be able to derive 
prototypes without maintaining them explicitly in memory. Higher-order feature frequency 
models can support this behavior because, as the distance of an instance to a prototype 
decreases, the presentation frequencies of its component frequencies increase sharply. 

This increase can be exponential when counts are maintained on n-ary conjunctions of 
features. This is epitomized in the property set model (Hayes-Roth & Hayes-Roth, 1977), 
which maintains counts on the power set of feature conjunctions. This probabilistic-view 
model blurs the distinction between abstraction-based and exemplar-based models since 
it retains all specific instance information. Classification is based on the instance's most 
diagnostic frequency count, where the diagnosticity of a count for a category c is the 
count's value for c divided by the sum of its count for all known categories. Consider 
the instance with the two features climate=sunny and air=smoggy. Suppose that the 
category named Costa del Sol cities has feature counts climate=sunny[2], air=smoggy[O], 
and climate=sunny/\air=smoggy[OJ and the category New York cities has the counts cli­
mate=sunny[l], air=smoggy[l], and climate=sunny/\ air=smoggy[O]. The conjunctive feature 
count has no diagnosticity. The diagnosticity of the climate=sunny feature is ~for the Costa 
del Sol cities category and the diagnosticity of air=smoggy is f for the New York cities cate­
gory. Since this latter feature is most diagnostic, the instance would be classified in the New 
York cities category. 

The relative measures for the models mentioned in this section are shown in Figure 6.2. 
The property-set model provided better fits of subject data from a simple artificial domain 
than 24 other models, including a prototype model, a simple feature frequency model, and the 
simple proximity exemplar-based model. This isn't surprising since the property-set model 
explicitly maintains information on all conjunctive relations of features. It also retains more 
correlational information than Neumann's (1974) feature-pairs model, which in turn makes 
better use of correlational information than does the proximity algorithm. 

Hayes-Roth and Hayes-Roth (1977) concluded that their property-set model of catego­
rization provides the best theoretical explanation available for classification performance at 
that time. However, this model has a few serious limitations. First, as mentioned earlier, 
the number of feature counts required increases exponentially with the number of features 
used to describe the training instances. This problem may be alleviated by discarding counts 
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Figure 6.2: Feature frequency models' relative utilization of attribute correlation information. 

for conjunctions that are not utilized during categorization tasks, as is done in both PUPS 
(Anderson, 1989) and STAGGER (Schlimmer, 1987a). A more serious limitation is that no 
feature frequency model has yet been developed to simulate selective attention processes, 
where some attributes are given more attention by people according to their utility in cate­
gorization tasks. Finally, these models have not been developed to work with numeric-valued 
attributes. Recent exemplar-based and connectionist models do not have these limitations. 

6.3.3 Exemplar-Based Models 

The Context Model 

In their seminal paper, Medin and Schaffer (1978) introduced the context model, the first 
exemplar-based model whose similarity function is defined by a relational rather than an 
independent function of attribute-value comparisons. Their model states that the probability 
that instance x is a member of category t is the sum of x's similarities to all members oft 
divided by the sum of its similarities to all stored exemplars. That is, 

. . EyeS(t) Similarity(x, y, P) 
Probab1hty(x, t, P) = """' s· .1 . ( P)) , 

L.,,zES lIIll anty x, z, 
(6.1) 

where S(t) is the set of stored exemplars with target value t and S is the set of all stored 
exemplars. Similarity is defined as 

S. ·1 . ( P) II ( 1 if Xj = Yi ) irm anty x,y, = th . , 
iEP Wi o erw1se 

(6.2) 

where P is the set of predictor attributes and Wi is a pre-assigned weight for attribute i 
in the range [O, l]. Low weights indicate that the predictor attribute is highly relevant for 
categorization tasks. The context model was unique among exemplar models; it was the first 
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Table 6.2 T · · · t f th ramu~ ms ances or t t d 1 example. econ ex mo e 
Instance Category Attribute Values 
Number a b c d 

1 A 1 1 1 1 
2 A 1 1 1 0 
3 A 0 0 0 1 
4 B 0 0 0 0 
5 B 0 0 1 1 
6 B 1 1 0 0 

model to (1) use all stored instances to derive similarity judgments, (2) use a multiplicative 
definition for similarity, and (3) define similarity without using a distance measure. The 
main benefit derived from using a multiplicative similarity function is to cause the similarity 
of two instances to decrease exponentially with their Euclidean distance. This allows "close" 
instances to have exponentially more influence on classification decisions than "distant" 
instances. Although this point was not emphasized in this way by Medin and Schaffer 
(1978), we will see that Nosofsky (1986) explicates it in Section 6.3.3. 

An example should help to clarify how this model predicts target values. Suppose that 
the model is given the six training instances described by four binary-valued attributes (i.e., 
a,b,c, and d) for the binary classification task shown in Table 6.2. The exemplars of category 
A generally have more attributes with the value 1 than the exemplars of category B. The 
prototype for categories A and B are (~, ~' ~' ~) and (~, ~' ~' ~) respectively. Since the test 
instance x with attribute values (a = 0, b = 0, c = 1, d = 1) is located midway between 
these two prototypes, a prototype model's classification would not favor either category. 
The property-set model (Hayes-Roth & Hayes-Roth, 1977) predicts x to be a member of 
category A because the most diagnostic features (both c and d) have a diagnosticity value of 
~ for category A. Both of these predictions seem somewhat absurd because the test instance 
is identical to category B's training instance number five. The context model predicts the 
probability that x will be classified in category A as 

P(x EA)= ab+ abd + c 
ab + abd + c + cd + 1 + abed 

(6.3) 

and that it will be classified in category B as 

P(x E B) = cd + 1 +abed 
ab+ abd + c + cd + 1 + abed 

(6.4) 

where the values a, b, c, and d refer to the weights of the four attributes respectively. If we 
assume that these weights are equal and sum to 1, then P(x EA)= 23.5% and P(x EB)= 
76.5%, which clearly indicates that the context model predicts x to be a member of category 
B. This example highlights how the context model works: classification is most influenced by 
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the categorizations of similar instances, although slightly less similar instances also impact 
on prediction decisions. 

Extensive testing has shown that the context model can account for several behaviors 
previously assumed accountable by only by abstraction-based models or mixed models, where 
both abstractions are maintained and specific instances are stored. For example, Medin and 
Schaffer (1978) showed that, like the higher-order feature frequency models, the context 
model can simulate prototypicality effects without maintaining explicit abstractions. The 
context model can simulate differential forgetting effects, where subjects tend to misclassify 
old exemplars more frequently than unseen prototypes, by selectively attending to attributes. 
Hintzman and Ludlam (1980) showed that exemplar-based process models can also simulate 
these effects by randomly deleting attributes over time. These two methods simulate a form 
of abstraction; specific instances are essentially replaced by partially remembered instances 
during categorization processes. The context model can also simulate subject behavior when 
applied to categories with large numbers of instances (Medin, Dewey, & Murphy, 1983), thus 
refuting arguments that both abstractions and specific instances are required to model this 
behavior (Robbins, Barresi, Compton, Furst, Russo, & Smith, 1978; Homa, Sterling, & 
Trepel, 1981). However, this is not to say that Medin and his colleagues believe that ab­
stractions have no place in categorization models. In fact, Medin, Altom, and Murphy (1984) 
found that the type of information used (i.e., specific instances or abstractions) depends on 
the task; if subjects are trained on prototypes, then they are used during transfer tasks. 
However, if prototypes are not included among training instances, then they can be derived 
but are not necessarily stored by subjects. 

The context model also explains subject data better than prototype models in many 
situations. For example, Medin and Schwanenfl.ugel (1981) showed that independent cue 
models predict that linearly separable categories are easier to learn. They also found no 
evidence that humans learn linearly separable categories more easily than non-linearly sep­
arable categories. Not surprisingly, the context model provided significantly better fits than 
prototype models in several experiments when the target categories were not linearly sepa­
rable. This is because the context model's thesis is that individual cases of high similarity 
between exemplars of different categories is the major determinant of task difficulty rather 
than linear separability. In another paper, Medin, Altom, Edelson, and Freko (1982) found 
that people are sensitive to correlated attributes. They described evidence showing that 
the context model provides better fits to subject data than prototype models, which are 
insensitive to correlated attributes because they derive predictions based on an independent 
summation of attribute-value differences. 

Finally, Medin and Schaffer (1978) argued that the context model also provides better 
fits than feature frequency models because, in their current form, feature frequency models 
cannot differentially attend to features so that more relevant ones are emphasized during 
categorization tasks. In contrast, the context model's weights can be changed to simulate 
the selective attention to attributes during categorization tasks. 
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The MINERVA II Process Model 

Although Medin and others showed that exemplar-based models can support several 
psychologically plausible behaviors, they never ruled out the possibility that subjects were 
using both derived abstractions and specific instances to solve categorization tasks. Indeed, 
Elio and Anderson (1981) explored this issue with an open mind when they evaluated the 
assumption that their ACT rule-based system requires saving only abstractions to accurately 
explain categorization behavior. Their experimental results convinced them that ACT should 
store specific instances and compute partial matches to stored production rules (i.e., abstrac­
tions). However, their claim that generalizations are abstracted and used for categorization 
tasks was rejected later by Hintzman (1984; 1986) in his simulations with his MINERVA II 
exemplar-based model. 

Hintzman's model is worth discussing for several reasons. First, it is the most detailed 
exemplar-based process model in the psychological literature. Second, although it also rep­
resents categories by a set of stored instances, it embodies four processing assumptions that 
are radically different from those advocated by Medin and his colleagues. First, each pre­
sentation of an instance is assumed to leave a distinctive trace in memory. That is, if an 
instance is presented n times during training, then MINVERA II stores n copies of it in 
its partial concept description. This is done to help the model to explain how repetition 
affects behavior exhibited during the categorization process. Second, MINERVA II works 
like an associative memory; it can be used to predict any attribute's value. It inputs an 
instance described by a set of numeric values and outputs a result that denotes the average 
activation of each of the attribute values, any of which could be the target value of interest. 
Third, categorization~ is not a single-step process. Instead, this vector output is used as an 
input in the following time-step. This echo resonance procedure is repeated until the echo 
unambiguously resembles one of the stored category labels, which are uniquely encoded us­
ing a subset of the numeric-valued attributes. Finally, instances that are highly similar to 
a probe spread activation to similar instances. This is reminiscent of McClelland's (1981) 
node-network extension of the context model that spreads activation among stored instances 
and predicts target values based on which nodes have the highest activation levels. 

MINERVA II linearly normalizes its numeric-valued predictor attributes to the range 
[-1, 1], where 1 represents an excitation of the attribute and -1 represents its inhibition. 
Similarity between an instance x and a stored instance y is defined as the average of the 
product of their pairwise attribute values 

S. .1 . ( P) '2:1eP Xi x Yi 
im1 anty x, y, = IPI , (6.5) 

where P is the set of predictor attributes. Hintzman decided to define similarity to decrease 
more quickly than linear with distance. He noted that this property is an important part 
of the context model. 1 Therefore, his categorization function is based on the activation of a 

1I will discuss this point in detail in Section 6.3.3. 
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stored trace, defined as 

Activation(x, y, P) = Similarity(x, y, P) 3 (6.6) 

The choice of exponent (i.e., 3) is based primarily on the fact that it preserves the sign of the 
similarity measure; Other odd-valued exponents would also suffice. Finally, the predicted 
value of any attribute i is defined as 

Feature_prediction(x, i, P, S) = L Activation(x, y, P) x y;, 
YE!S! 

(6.7) 

where S is the set of all stored instance traces. An instance's predicted categorization is the 
one that has the highest correlation with the target values of the echo resonance result. 2 

MINERVA II simulates a large number of psychologically plausible behaviors, includ­
ing all of the prototypicality effects described earlier in this section. A few of its relevant 
characteristics are summarized in the following list. 

1. Like humans, it learns concepts more easily when exemplars are low-level distortions 
of prototypes than when they are high-level distortions. 

2. Learning is predicted to become more difficult as the prototypes of categories become 
more similar. 

3. The MINERVA II model is similar to PUPS (Anderson, 1989) and SOAR (Laird, 
Rosenbloom, & Newell, 1986), which employ separate working and long-term memories. 
MINERVA !I's long term memory is the set of stored traces. Its short term memory 
is the set of activations recorded for each of the attributes. However, MINVERA II is 
currently limited to encoding attributes using numeric values. 

4. MINERVA !I's echo resonance loop solves the ambiguous recall problem, where the 
initially output values for the target attribute( s) do not correspond well with any of 
the possible set of target values. The echo resonance loop improves correlation to. the 
actual target value and was used to reject Elio and Anderson's (1981) argument that 
ACT needs to maintain explicit abstractions. 

MINERVA II has only recently been evaluated on subject data (Hintzman, 1988). However, 
it has proven to be a qualitatively accurate simulator of many psychologically plausible 
behaviors. It assumes that instances are retrieved in parallel and that abstractions are im­
plicitly derived from the summed responses of the traces that were most strongly activated. 
In summary, MINERVA II is a model that can simulate many different categorization behav­
iors without relying on stored abstractions. However, it relied on several elaborate extensions 
of the pure exemplar-based model to achieve these capabilities. 

2MINERVA II encodes a category name using a set of target attributes. 
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The Generalized Context Model 

Perhaps the most ambitious claim voiced recently in cognitive psychology is Roger 
Shepard's (1987) on his universal law of generalization, which states that the probability 
that two instances will be generalized (i.e., predicted to have the same target value) is an 
exponentially decreasing function of their psychological distance. A psychological space is an 
instance space with the following property: the probability that a response learned for an 
instance will generalize to similar instances is an increasing function of the distance between 
them. This law has extensive empirical support from studies with both pigeons and people 
over the past 35 years, both on artificial and real-world domains (e.g., spectral hues, shapes, 
morse code signals, vowel phonemes, etc.). Most of the recently proposed models of catego­
rization exhibit behavior that is consistent with Shepard's law (Hayes-Roth & Hayes-Roth, 
1977; Medin & Schaffer, 1978; Hintzman, 1984; Nosofsky, 1984; Gluck, Bower, & Hee, 1989; 
Aha & Goldstone, 1990; Kruschke, 1990). 

Nosofsky (1984) was the first person to relate this empirical law to exemplar-based models 
when he showed that the context model's (Medin & Schaffer, 1978) multiplicative similarity 
function can be described as an instantiation of this universal law. Subsequently, Nosofsky 
(1986) developed the generalized context model (GCM), which explicates the relationship 
of the context model and Shepard's law as applied to the definition of similarity functions. 
The GCM defines similarity to decrease exponentially with distance 

Similarity( x, y' P) = e-SxDistance(x,y,P)2' 

where distance is defined as a weighted variant of Euclidean distance 

Distance(x, y, P) = L wi(Xi - yi) 2 , 

iEP 

(6.8) 

(6.9) 

where P is the set of predictor attributes and the w; are attribute weights of the form used 
in IB4. S is a scaling parameter that determines the degree of exponential gradient; higher 
values for Simply a steeper exponentially decreasing function of distance. Nosofsky showed 
that this definition of similarity is equivalent to the multiplicative similarity rule used in the 
context model: 

Similarity( x, y, P) = e-SxDistance(x,y,P)2 (6.10) 

e-syl2:,ePWi(Xi-Yi)22 
(6.11) 

e-S L:ieP Wi(Xi-Yi)2 (6.12) 

Since 

e- L:, J(i) IT e-f(i) (6.13) 
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ln e- L. f(i) ln IT e-f(i) (6.14) 

- L J(i) - 2:.,J(i), (6.15) 

then 

Similarity(x, y, P) IT e-Sw;(x;-y;)2 (6.16) 
iEP 

= IT w; (6.17) 

where w; is attribute i's assigned weight in the context model and, when Xi # Yi, w; = 
e-Sw;(x;-1.1;)2 • The GCM uses the context model's definition for categorization, namely that 
an instance is classified according the category that maximizes Equation 6.1 on Page 160.3 

The GCM model provided good fits in both in-depth studies and in experiments with 
larger numbers of subjects (Nosofsky, 1986; 1987; 1989). Two of Nosofsky's contributions to 
exemplar-based modeling are highly relevant to the exemplar-based process models described 
in Section 6.4 First, the GCM relaxes the Context Model's restriction to Boolean-valued at­
tribute dimensions; the GCM's reformulation of the multiplicative similarity rule allows it to 
be applied to domains with numeric-valued attribute dimensions. Second, Nosofsky adopted 
the attention-optimization hypothesis in the GCM, which states that humans selectively at­
tend to attributes to maximize their categorization performance. Selective attention, which 
leads to systematic changes in the structure of the psychological space (Shepard, 1964), is 
achieved by modifying the GCM's attribute weight settings. These weights are not learned, 
but are instead computed by a multi-dimensional scaling (MDS) procedure that determines 
the weight settings from subjects' similarity assessments for all pairs of instances in the 
instance space (Carroll & Wish, 1974). Although the attention-optimization hypothesis 
was explored previously by Reed (1972), his exemplar-based models did not incorporate 
Shepard's law. 

Nosofsky's model depends on the settings for a large number of parameters (i.e., the 
scaling parameter and the attribute weight parameters). This property of categorization 
models is generally regarded as problematic; given an infinite number of parameters, a model 
can fit any subject data. Furthermore, although Nosofsky posited that humans employ a 
selective attention process for setting these parameters, he offered no process algorithm for 
setting these weights. Finally, although Nosofsky noted that similarity is context-dependent 
(Tversky, 1977; Barsalou, 1982; Roth & Shoben, 1983; Medin & Edelson, 1988), Aha and 
McNulty (1989) pointed out that the GCM requires a unique set of attribute weights for each 
target concept because the weights, which reflect an attribute's classificatory significance, 
do not necessarily have the same setting for each target concept. Aha and Goldstone (1990) 

3I am ignoring Nosofsky's (1986) concept bias parameters here, which modify the prediction function 
based on the pre-determined bias for predicting that a member is in a given category. By ignoring them, I 
assume that they have equal value. 
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Figure 6.3: Exemplar-based models' relative utilization of attribute correlation information. 

further argued that a separate set of weights is needed for each instance to capture the notion 
that an attribute's classification relevance varies according to the settings of an instance's 
other attribute values. These extensions require the introduction of a tremendous number 
of parameters and shed doubt on the GCM model's capability to extend to more complex 
categorization tasks. However, Section 6.4 describes experimental evidence that process 
models for extensions of the GCM with category-specific and instance-specific attribute 
weighting strategies significantly improve its capability to fit subject data. 

Summary 

Figure 6.3 summarizes the relative use of correlational information of the three exemplar­
based models described in this section with three previous models of categorization. The con­
text model, MINERVA II, and the generalized context model all employ Shepard's (1987) law 
and they all support processes for selectively attending to attributes. However, MINERVA 
II supports selective attention by spreading activation between similar instances whereas the 
other two models modify explicit attribute weights. Therefore, they appear to use corre­
lational information equally well. All three models utilize correlational information better 
than the property set model, which does not support selective attention. 

6.3.4 Connectionist Models 

Connectionist models date at least to Rosenblatt's (1962) description of the perceptron 
convergence theorem. A perceptron is a linear separating function that yields a value based 
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Figure 6.4: The configural cue model defines similarity to increase exponentially with the 
number of shared attribute values. This graph describes the similarity of any instance with 
all other instances in the 3-dimensional space in terms of their number of shared primitive 
and pairwise conjunctive attributes. 

on a weighted sum of its input values. A perceptron can be trained to learn weights cor­
responding to a hyperplane in the instance space, which can be used to partition instances 
into two categories. Perceptrons utilize correlational information in a manner similar to 
Reed's (1972) weighted prototype model. Both models maintain a probabilistic view and 
are restricted to learning linearly separable categories. 

Gluck and his colleagues (Gluck, Bower, & Hee, 1989) examined the behavior of a per­
ceptron that inputs values for both primitive attributes and for their pairwise conjunctions. 
This model, which was named the con.figural cue network, is in accordance with Shepard's 
law because the number of conjunctions and primitive attributes shared between two in­
stances decreases exponentially with their psychological distance. As an example, consider 
an instance described by three binary-valued attributes. Figure 6.4 describes the similarity 
of one such instance with all others that are encodable using three binary-valued attributes. 
As shown, its similarity with other instances increases exponentially with their number of 
shared attribute values. In this regard, the configural cue network represents an extension 
of the perceptron that is similar to Neumann's (1974) model, which extended the simple 
feature frequency models by adding counts for pairs of features. Like Neumann's model, 
the configural cue network greatly increases the utilization of correlational information. The 
configural cue model qualitatively simulated learning curves collected from subjects in Medin 
and Schwanenfl.ugel's (1981) experiments, where subjects often learned non-linearly separa­
ble categories faster than linearly separable categories. It also recorded significantly higher 
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rank-order correlations than the single cue model with subject data from Hayes-Roth and 
Hayes-Roth (1977) experiments. Finally, it provided better fits to subject data in an experi­
ment that was used to show that people are sensitive to attribute correlations (Medin et al., 
1982). 

Kruschke (1990) recently introduced ALCOVE, a connectionist model of category learn­
ing that was directly inspired by Nosofsky's (1986) work on the GCM. ALCOVE is a variant 
of the standard back propagation algorithm (Rumelhart et al., 1987) that uses radial basis 
functions rather than perceptrons for its hidden nodes. Radial basis functions compute a 
weighted distance function of its input values to a pre-specified point in the instance space. 
(The general idea is to associate a point with each radial basis hidden node in such a way 
that a "good" covering of the space is obtained - one that will support accurate classification 
behavior.) Therefore, these functions are similar to exponentially decreasing similarity func­
tions such as the one used by Nosofsky (1986) in the GCM. ALCOVE also learns attribute 
relevance weights on its input attributes. Kruschke (1990) evaluated ALCOVE's ability to 
display a wide range of psychological phenomena. It simulates all of the behavioral phenom­
ena exhibited by con:figural cue networks, simulates base-rate neglect exhibited by subjects 
in Gluck and Bower's (1988) studies, captures the entire range of typicality effects, and, 
unlike con:figural cue models, can qualitatively simulate the asymmetric similarity ratings 
recorded in Tversky's (1977) experiments. 

Kruschke found that ALCOVE's performance is qualitatively indistinguishable from a 
variant of his model that used what are essentially specific exemplars for each of its hidden 
nodes. In fact, the exemplar-based hidden nodes slightly improved qualitative :fits in the 
experiments on which both variants were tested. It also accounted for some base-rate effects 
that Gluck and Bower (1988) claim were unaccountable by exemplar-based models. However, 
it can not account for the inverse base-rate effects exhibited by subjects in an experiment 
run by Medin and Edelson (1988). They found that an extension of the context model 
can account for these effects if instance-specific weights are used, which allow an attribute's 
relevance to vary depending on the values of other attributes. It appears that ALCOVE, 
in its current form, does not utilize instance-specific correlational information. Kruschke 
(personal communication) notes that ALCOVE can be extended with what are essentially 
instance-specific weights and plans to explore this issue in the future. 

The relative amount of correlational information utilized by the three connectionist mod-
. els mentioned in this section is shown in Figure 6.5. As in each previous case, models that 
utilize more of the attribute correlation information in the training data can explain larger 
sets of psychological phenomena. For example, the con:figural cue model extended the per­
ceptron model's representation by adding higher-order inputs, which greatly increased the 
correlational information that is utilized by the algorithm and allowed it to simulate phe­
nomena not explainable by the perceptron model. ALCOVE, which is closely related to 
Nosofsky's (1986) GCM model, extends the configural cue model by adding layers of radial 
basis hidden nodes. This allowed it to explain phenomena not explainable by configural cue 
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Figure 6.5: Connectionist models' relative utilization of attribute correlation information. 

networks (e.g., base rate neglect). However, in its current form, it doesn't appear to be able 
to use instance-specific correlational information in the extended context model described 
by Medin and Edelson (1988). Nonetheless, Kruschke's process model represents an excit­
ing advancement in understanding how connectionist networks can model a wide range of 
psychologically plausible behavior. It is probable that this relatively new area of study will 
lead to models that can explain previously unaccountable behavior in the near future. 

6.3.5 Summary 

In summary, research on psychologically plausible models of categorization has progres­
sively relaxed the definition of concepts. The classical view, which states that a concept is 
defined by a set of necessary and sufficient features, has. been replaced by both the proba­
bilistic view, which relaxes the requirement on features, and the exemplar view, which also 
relaxes the requirement that a concept description be an abstraction. I summarized evidence 
indicating that there is a monotonic relationship between the models' capability to explain 
psychological phenomena and their ability to use correlational information contained in the 
training instances. Four models have received the majority of attention in the literature 
(i.e., prototype, feature frequency, exemplar-based, and connectionist models). Prototype 
models, which embody a probabilistic view, were abandoned because they do not retain 
specific instance information and are insensitive to the variances in a concept's exemplar 
information. Feature frequency models distribute a category's representation among a set 
of feature counts, thus relaxing the notion of a centralized abstraction. Models that save 
higher-order feature frequency counts store specific instance information, but they have not 



A Study of Instance-Based Algorithms 171 

yet been extended to model selective attention. Exemplar-based models, such as the con­
text model and generalized context model, provide excellent fits for subject data in a wide 
variety of experiments, can model selective attention, and are in accordance with Shepard's 
numerous empirical observations suggesting that similarity decreases exponentially with psy­
chological distance. Although it is probable that people retain and use abstractions to solve 
categorization tasks, exemplar-based models can fit the behaviors normally attributed only 
to mixed representation models. Finally, a recently developed connectionist process model 
that uses exemplar-based nodes can account for a wide variety of psychological phenomena. 
However, it has not yet been developed to exploit instance-specific correlational information. 

In fact, no process model has been developed to account for evidence that attribute 
relevance varies depending on the context of the classification task. Therefore, existing 
models cannot be expected to provide accurate fits when attribute relevance varies according 
to context, which occurs frequently in real-world classification tasks. Section 6.6 describes 
a process model that extends Nosofsky's (1986) generalized context model so that it can fit 
subject data when learning requires context-specific strategies for selective attention. 

6.4 Exemplar-Based Process Models 

Barsalou (1989) noted that at least three key results have been learned during the past 
two decades of research on models of categorization: 

1. people use specific instance information in categorization decisions, 

2. people use attribute correlation information to derive categorization decisions, and 

3. people represent categories with dynamic rather than static representations. 

Current process models of categorization must minimally support these behaviors to be 
considered psychologically plausible. Barsalou's chapter can be interpreted as a plea to fellow 
researchers to end their bickering concerning the relative strengths of classes of models and 
instead focus on models that have the following properties: 

1. they inspire empirical and theoretical progress, 

2. they have plausible assumptions, 

3. they develop the space of category learning models, and 

4. they are inspired by motivations outside the cognitive psychology literature, including 
computational tractability. 

This section summarizes the development of a research line that lead to the development of 
a model with all four of these properties. 
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Table 6.3: W · ht" t f th f e!.& m_g_ stra eg1es or e our GCM b d ocess models. - ase pr 
Name Attribute Weighting Strategy 

GCM-NW No Weights 
GCM-SW Single Set of Weights 
GCM-MW Multiple Sets of Weights 
GCM-ISW Instance-Specific Weights 

More specifically, this section introduces a sequence of four exemplar-based process mod­
els based on Nosofsky's (1986) GCM and summarizes simulations that distinguish their 
abilities. All four models linearly normalize numeric-valued attributes and use the context 
model's prediction function, which is Equation 6.1 on Page 6.1. The four models are distin­
guished from each other by their attribute weighting strategies and are distinguished from 
the previously described IBn algorithms primarily in that they save all training instances 
and use the context model's prediction function. 

6.4.1 Summary Descriptions 

The four models' weight-learning strategies are summarized in Table 6.3. Each algorithm 
in the sequence uses an extension of the previous algorithm's attribute weighting strategy. 
The first model, named GCM-NW, uses no weights. More specifically, all of GCM-NW's 
weights are set to 1~ 1 , where P is the set of predictor attributes, and are not modified during 
the training process. This model was included to determine determine whether attribute 
weighting is useful. The second model, named GCM-SW, is a process model for Nosofsky's 
GCM model, except that concept bias parameters are assumed to equal. 4 This model should 
learn accurate concept descriptions more quickly when categorization relevance varies among 
the predictor attributes. The third model is named GCM-MW (Aha & McNulty, 1989). It 
uses a separate set of attribute weight settings for each target concept and is expected to 
increase learning rates when both the prediction task involves learning multiple concepts 
and the categorization relevance of the attributes varies among target concepts. The fourth 
and last algorithm is named GCM-ISW It uses a separate set of attribute weights for each 
(instance,target-concept) pair. This model should learn more quickly than the others when 
attribute relevance varies among the instances in the application. 

4Concept bias parameters reflect category frequencies, but not association strength. ALCOVE (Kruschke, 
1990) learns such error-driven association strengths for each target category. Since ALCOVE permits these 
strengths to be either positive or negative, it can simulate base-rate neglect behavior. The GCM model does 
not have this capability. However, exemplar-based models appear to be able to model this phenomenon; 
Medin and Edelson {1988) described extensions of the context model that uses instance-specific weights to 
help simulate base-rate neglect. 
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An example should clarify why these models' learning behaviors should be distinguish­
able. Consider the problem of predicting whether a pro-life politician will endorse proposed 
legislation on abortion rights. As with most real-world categorization tasks, some attributes 
should be given more attention than others. In this case, attributes such as "past voting 
record" should be weighted more than attributes such as "height." An attribute's relative 
predictive relevance depends on the prediction task (Aha & McNulty, 1989; Aha, 1989a) (e.g., 
"past voting record" is far less relevant than "height" when predicting the ability to dunk a 
basketball). However, an attribute's relevance to a categorization task often also depends on 
its context, which I define as the values of the other attributes in an instance. For example, 
the relevance of the "past voting record" attribute will be low if the "percentage of pro-choice 
constituency" attribute has a high value (due to pressure from pro-choice political action 
groups). However, it will be high if the "seek re-election" attribute value is "false", which 
diminishes the influence of political action groups. Context sensitive attribute weights are 
required to derive an appropriate psychological space and satisfy the attention-optimization 
hypothesis when attribute relevance is context-dependent. 

Figure 6.6 should help to clarify the relationships between and evolution of these four 
process models. The generalized context model (Nosofsky, 1986) is a generalization of Medin 
and Schaffer's (1978) context model in which its relationship to Shepard's (1987) universal 
law of stimulus generalization is made explicit. The GCM-SW algorithm is a process model 
for the GCM. GCM-NW is a straw man version of the GCM-SW whose weights are fixed. The 
GCM-MW process model (Aha & McNulty, 1989) was influenced by IB4, which also employs 
concept-dependent attribute weights. The GCM-ISW model (Aha & Goldstone, 1990) is 
a direct descendant of GCM-MW that conforms with many studies providing evidence for 
context-sensitive categorization phenomena. These algorithms differ from the IBn algorithms 
introduced in Chapters 2 and 4 in that they do not use a normalization function, they define 
similarity to decrease exponentially with distance, they use Equation 6.1 on page 160 for 
their prediction function, and they save all training instances. 
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Figure 6.6: Relationships and influences of the four process models. 
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6.4.2 GCM-SW: Learning Attribute Relevance 

GCM-SW's similarity function is 

where 

S. .1 't ( P) -sDistance(x,y,P) im1 an y x, y, = e , 

Distance(x, y, P) = 2::: w;(x; - y;)2, 
iEP 
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where parameter s's setting determines the slope of the exponential decay and w; is GCM­
SW's weight for attribute i. Parameters is set to 10 in all of the simulations and experiments. 
Values for attribute weights are always initialized to 1 ~ 1 , range in [O, 1], and are normalized 
to sum to 1. 

GCM-SW's prediction function was taken from the context model. It is 

. . . :Z::::::yES(c) Similarity( x, y) 
Probab1hty(x,e) = I:: s· .1 . ( ) , 

yES im1 anty x, y 
(6.18) 

where S( c) is the set of stored exemplars in concept e's description and S is the set of all 
stored exemplars. 

GCM-SW's memory updating function modifies the attribute weights for target concept 
e's partial concept description (PCDc) based on the the current training instance x's simi­
larities with stored instances in PCDc. It then linearly normalizes e's attribute weights and 
adds x to e's description. The GCM-SW training algorithm is: 

1. PCDc ~ 0 
2. for each x E training set do 

2.1 for each y E PCDc: compute Similarity(x, y, P) 
2.2 for each y E PCDc: 

- for each predictor attribute i: AdjusLweight(i, x, y, e) 
2.3 Linearly..normalize_weights(x, y, e) 
2.4 PCDc ~ PCDc U {x} 

As in IB4, attribute weights denote the estimated relevance of an attribute for a categoriza­
tion task. However, a different weight-learning algorithm is used in these algorithms; each 
predictor i's weight is computed using a function of the estimated conditional probability 
that two instances will have the same class, given that their similarity is high and the differ­
ence of their values for i is small. If this probability at time t is denoted by Pr; ( t), then the 
attribute weight for i after t training instances is computed by the AdjusLweight algorithm 
as follows: 
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1. if (x; = y;) then r - 1 else r - 0 
2. Pr;(t + 1) - Pr;(t) + (r - Pr;(t)) x Similarity(x, y, P) x e-slx;-y;j x p 
3. w; - Pr;(t) - (1 - Pr;(t)) 

where pis the learning rate parameter, which is set to 0.01 for GCM-SW and GCM-MW in 
the simulations and experiments in Sections 6.5 and Section 6.6. The size of the update to 
predictor attribute i's conditional probability increases exponentially with linear decreases 
in both Distance(x, y, P) and the attribute-value difference Ix; -yJ Therefore, attribute i's 
weight is most strongly influenced by highly similar instances with similar values _for i. 

Instances can either be members or non-members of a concept, corresponding to "pos­
itive" and "negative" target values. Instance x is predicted to be a member of a concept 
c only if the sum of its similarities to e's positive instances is greater than to e's negative 
instances. Given a target attribute e, the testing algorithm used for all four of these process 
models is (1) compute the current training instance x's similarity to the instances in e's con­
cept description, (2) compute the probability that Xe is "positive", and (3) output "positive" 
if this probability is above 0.5 (otherwise, output "negative"). 

6.4.3 GCM-MW: Learning Concept-Dependent Relevance 

The GCM-MW model's concept-dependent similarity function is 

Similarity( e, x, y, P) = e-aDistance(c,x,y,P)' 

where we, denotes the weight of attribute i for target concept e in 

Distance(c,x,y,P) = l:wc,(x; -y;)2. 
iEP 

(6.19) 

(6.20) 

The GCM-MW model should outperform the GCM-SW model when attribute relevance 
varies among target concepts. However, GCM-MW's assumption that an attribute's rele­
vance is invariant across all instances is easily violated. For example, attribute relevance can 
vary among a concept's disjuncts. Furthermore, it can also vary within a disjunct. Figure 6. 7 
displays a two-dimensional domain containing three disjuncts of a single target concept. The 
horizontal attribute is more relevant than the vertical for disjunct A: small perturbations 
in the horizontal's values will more frequently change disjunct membership status than will 
perturbations in the vertical's values. The vertical attribute is more relevant for B while C's 
attributes are approximately equally relevant. However, attribute relevance differs greatly 
among instances. For example, although both attributes are relevant for classifications made 
by instance w, the horizontal attribute is more relevant for x and less relevant for y. Finally, 
z's vertical attribute is more relevant. GCM-MW's learning rate can be significantly reduced 
in these situations. 
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Figure 6.7: Attribute relevance can vary among instances. 

6.4.4 GCM-ISW: Learning Attribute Relevance in Context 

The GCM-ISW model differs from GCM-MW in that it learns sets of instance-specific 
attribute weights, one set for each (attribute,target) pair. This provides greater flexibility 
than found in GCM-MW; GCM-ISW relaxes the assumption that attribute relevance is 
invariant among a target concept's saved instances and uses an instance-specific selective 
attention mechanism. 

GCM-ISW's instance-specific weights can be easily misapplied. For example, consider 
the set of disjuncts shown in the instance space in Figure 6. 7. If GCM-ISW decides that the 
only relevant attribute for instance z is the vertical attribute, then z will appear to be very 
similar to x, which is located far from z in this instance space. This implies that instance­
specific weights should be used only when the instance being classified is highly similar to 
the classifying instance. GCM-ISW solves this problem by learning both concept-dependent 
weights (as is done in GCM-MW) and a separate set of instance-specific weights. GCM­
ISW's similarity function then dynamically combines these two sets of weights to compute 
the context-specific similarity of two instances as follows: 

Distance(c, x, y, P) = L Combine_weights(c, x, y, i) x (xi - y;)2. 
iEP 

When computing the similarity of a new instance x to previously processed instance y, 
Combine_weights calculates attribute i's context-specific weight as follows: 

Combine_weights(c,x,y,i) = (wcJY) x scale.factor)+ (we; x (1- scale_factor)), 

where scale.Jactor = (1 - Ix; - y;!Y, Wc;(Y) is i's attribute weight for saved instance y, 
and r is a combination parameter that determines the relative impact of the concept­
dependent and instance-specific attribute weights in calculating the context-sensitive weight. 
Combine_weights uses instance-specific weights more confidently when the difference of the 
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Figure 6.8: The exemplar-based process models' relative utilization of attribute correlation 
information. 

values for i is small. This reduces the frequency with which instance-specific weights are 
used when the distance between instances is large. After GCM-ISW computes similarities, 
it updates the conditional probabilities and attribute weights for both its concept-dependent 
and its instance-specific weights. 

The combination parameter r was set to 0.5 in the simulations and experiments described 
in the following sections. GCM-ISW's learning rate parameter p was set to a higher value 
(i.e., 0.1) than its value in the other models when it updates instance-specific weights (the 
value 0.01 was still used to update concept-dependent weights). This is needed because, given 
any one training instance, few other training instances are highly similar to it. However, when 
updating concept-dependent weights, there will be several highly similar pairs of instances, 
which allows it to be updated more quickly even though the GCM-SW and GCM-MW models 
use a lower setting for learning rate. 

6.4.5 Summary 

Figure 6.8 summarizes the relative use of relational information for the four exemplar­
based process models. The GCM-SW model uses the same information as the GCM. GCM­
NW uses less since it cannot selectively attend to attributes. GCM-MW is an improvement 
over GCM-SW since its selective attention mechanism allows it to distribute attention dif­
ferently depending on the target concept. Finally, GCM-ISW uses the most relational infor­
mation since it learns this information for each stored instance. This advantage will allow 
the GCM-ISW model to outperform the other models in the simulations in Section 6.5 and 
experiments in Section 6.6. 
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Figure 6.9: Learning curves for the four IBL algorithms. Left: GCM-NW learns slowly 
when attributes have different relevance. GCM-SW and GCM-MW behave identically in 
this simulation since there is only one target concept. Right: GCM-SW learns slowly when 
each attribute's relevance differs among target concepts. 

6.5 Simulations 

The four exemplar-based process models introduced in the previous section were applied 
to three artificial domain that were designed to highlight flaws in the designs of GCM-NW, 
GCM-SW, and GCM-MW respectively. All of the results described in this section were 
derived from averaging over 20 pairs of training and test sets with 250 and 100 instances 
respectively. Values for predictor attributes were randomly selected from the range [O, 1] 
according to a uniform distribution. 

The first simulation highlights the utility of using attribute weights. GCM-SW's at­
tribute weights are useful when attribute relevance varies among predictors. It's perfor­
mance was compared with GCM-NW's, whose weights remain fixed with value 1~ 1 • GCM­
NW learns slowly when attribute relevance differs among the predictors. The graph in the 
left of Figure 6.9 shows the average learning curves for a simulation with one target concept 
and ten numeric-valued predictors, only one of which was relevant. Target concept members 
were defined to be those whose relevant attribute's normalized value was greater than 0.5. 
As expected, GCM-SW's average accuracy (measured across the ten applications to the test 
set per trial) was significantly greater than GCM-NW's (t(19) = 4.54,p < 0.001). 

However, since the GCM-SW model uses the same setting of attribute weights for all 
targets, it performs relatively poorly when the relative relevance of attributes differs greatly 
among target concepts (Aha & McNulty, 1989) or when relative attribute relevance varies 
among instances. The right-hand graph in Figure 6.9 shows the average learning curves when 
the artificial domain was extended to contain an additional three target concepts, where 
each of the four target concepts have a single (different) relevant predictor. GCM-SW's 
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Figure 6.10: Learning curves for the simulation in which attribute relevance varies among 
instances. 

learning curve rises slowly because it is unable to learn an attribute's concept-dependent 
relevance: its weights for the four relevant attributes each converge to 0.25. GCM-SW's 
average classification accuracy is significantly lower than GCM-MW's (t(19) = 5.33,p < 
0.001) in this simulation. 

However, the GCM-MW model does not perform particularly well when attribute rel­
evance varies among instances. Figure 6.10 displays the average learning curves when the 
learning task is changed so that each of the four concepts is defined by a set of five disjuncts. 
In this case, each disjunct is defined by a single relevant attribute and each attribute in the 
domain is relevant to exactly two disjuncts overall. The threshold values for inclusion in a 
disjunct were below 0.14 for the disjuncts of the first two target concepts and above 0.86 
for the latter two target concepts. GCM-MW's average accuracy is significantly lower than 
GCM-ISW's (t(l9) = 3.85,p < 0.002) in this simulation. 

In summary, the GCM-ISW model performed significantly better than the other models 
in the third simulation and performed as well as the GCM-SW and GCM-MW models in the 
first and second simulations respectively. However, this does not necessarily mean that it will 
fit subject data better. The following section describes two experiments with these models. 
The experimental results provides evidence the GCM-ISW model yields significantly better 
fits than the other models to subject data in applications where attribute relevance varies 
among instances. 
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6.6 Experiments 

The GCM-based process models described in the previous section were evaluated against 
subject data collected from two experiments designed to encourage the subjects to assign 
different relevance to an attribute depending on its context (i.e., the instance's other attribute 
values). The GCl'vI-ISvV model was expected to provide the best fits to the subject data. 

6.6.1 Experimental Design 

Forty subjects participated in two experiments (i.e., twenty per experiment). The sub­
jects were students enrolled in an undergraduate course on introductory psychology at the 
University of Michigan. They were compensated with course credit for participating in the 
study. 

Both experiments used the same instance space. The space has two integer-valued di­
mensions, each with a range of 8 values. Subjects were trained on 12 training instances in a 
binary classification task; the choice of training instances distinguished the two experiments. 
Practice continued until four perfect runs through the set of 12 training examples was com­
pleted. These four runs did not have to be contiguous. Subjects were tested once on each 
instance in the space. Both training and test items were shown in random order, including 
a shuffling of the training items for each presentation cycle. The subjects were trained and 
tested and their classification responses were gathered using a computer program developed 
by Robert L. Goldstone of the University of Michigan. The two dimensions were line posi­
tion, which move from left to right across the field of view, and the size of a square shown on 
the video screen. Scales were shown next to the training and test instances so that subjects 
could more easily estimate square height and line position. 

The models were trained and tested in the same manner except that their instances 
are represented as vectors in a two-dimensional space and they were directed to yield the 
probability that they would classify an instance as a member of category 2 rather than a binary 
classification guess. GCM-MW will be indistinguishable from GCM-SW in this task since 
they only differ when the prediction task involves more than two target concepts. Therefore, 
fits will be described for only three of the models. Furthermore, the GCM-NW model is 
expected to perform similarly to the GCM-SW model because the two predictor attributes 
appear to be equally useful for classification purposes in applications where attributes have, 
on average, relatively equal relevance for predicting accurate target values. Since GCM-SW's 
attribute weights are expected to be relatively equal for the two attributes, its should behave 
similarity to the GCM-NW model. 

The training sets for the two experiments are shown in Figure 6.6.1. The twelve training 
instances in each experiment are labeled with their category name (i.e., "1" or "2"). Question 
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Experiment #1: Experiment #2: 
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 

1 1 
2 2 ? 2 2 2 2 ? 

3 2 1 3 ? 1 1 1 
4 2 1 4 1 ? 

5 ? 1 5 1 2 
6 1 1 1 ? 6 1 2 
7 ? 2 2 2 7 ? 2 
8 8 

Figure 6.11: Training sets and critical test instances for the two experiments. 

marks indicate test instances of key interest. In the first experiment, the vertical axis appears 
to be the only relevant attribute in the lower left portion of the space while the situation 
is reversed in the upper right portion of the space. That is, subjects are expected to state 
that the test instance in row seven, column two ([7, 2]) is a member of category 2. Similarly, 
subjects are expected to state that the test instance located at [5, 6] is also member of 
category 2. However, both [6, 5] and [2, 7] are expected to be labeled with category 1. In 
the second experiment, the expected responses for test instances [3, 4] and [7, 2] is category 
number 1, while the expected responses for [2, 7] and (4, 3] is category number 2. 

6.6.2 Results 

Fisher's method for converting correlations (r) to Z-scores was used to evaluate the fits of 
each model to the subject data. The detailed results are listed in Appendix B. The correlation 
between GCM-ISW's results and the averaged subject data for the 64 test instances was 0.81 
and 0.85 for the first and second experiments respectively. GCM-MW's was 0.66 for both 
of the experiments and GCM-NW's was 0.65 and 0.68. The GCM-ISW model's results 
correlated significantly better with the subject data from the first experiment than did the 
GCM-NW (Z = 2.75,p < 0.01) and the GCM-MW (Z = 2.61,p < 0.01) models. GCM­
ISW's results for the second experiment also had significantly better correlations with the 
subject data than did the GCM-MW and GCM-NW algorithms (i.e., (Z = 3.62,p < 0.0005) 
and ( Z = 3.36, p < 0.002) respectively). 

Furthermore, GCM-ISW performed even better for the four highlighted test instances. 
Table 6.4 summarizes the results for these instances in both experiments. Although it is 
unusual to compute correlations over only four instances, the following results highlight the 
fact that GCM-ISW provided significantly better fits to the subject data than did the other 
models. Its correlations with the average of the subjects' predictions for these two sets of 
four test instances was 0.97 and 0.95 respectively. GCM-MW's respective correlations were 
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Table 6.4: Model predictions and percent subjects voting for category number 2 for the four 
critical test instances in each experiment. 

I Experiment I Location II GCM-NW I GCM-MW I GCM-ISW I Subjects I 
1 [2, 7] 62 66 33 20 

[5, 6] 40 35 57 70 
[6, 5] 47 42 37 10 
[7, 2] 50 55 75 90 

2 [2, 7] 53 47 76 90 
[3,4] 44 51 36 40 
[4, 3] 37 43 58 50 
[7, 2] 64 59 31 15 

0.17 and -0.84 while GCM-NW's were -0.42 for both experiments. Although this is a small 
number of instances, GCM-ISW's correlations were significantly better than the GCM-MW 
and GCM-NW's models for both the first (Z(l) = l.92,p < 0.1; Z(l) = 2.53,p < 0.025) and 
second (Z(l) = 3.05,p < 0.0025; Z(l) = 2.28,p < 0.025) experiments respectively. Both 
the majority of subjects and the GCM-ISW model guessed these eight test instances would 
have the values described earlier. The GCM-MW model agreed on only two of these eight 
instances while the GCM-NW model agreed on only four. 

These results provide evidence that the GCM-ISW model is a more psychologically 
plausible model than its predecessor models. The combination of concept-dependent and 
instance-specific attribute weights captures the context sensitivity of attribute relevance in 
these experiments. In summary, these results support the claim that a psychologically plau­
sible learning algorithm's selective attention processes must be a context-dependent function; 
a simple strategy of using one weight per attribute will not necessarily provide optimal fits 
to subject data. 

6. 7 Discussion 

6. 7.1 Evidence of Context-Dependent Categorization 

Tversky (1977) was one of the first advocates of the notion that the salience of an 
attribute is determined in part by the context of the categorization task. Tversky's defi­
nition of context concerns the situation in which a question is asked. This can be related 
to my definition for context as follows. Exemplar models interpret questions are referring 
to specific target attributes. In the GCM-ISW, these attributes are associated with a set 
of attribute weights for each instance. Using this interpretation, a question-specific con­
text directly relates to GCM-ISW's definition of context. Tversky described evidence that 
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a two-way relationship exists between similarity and classification: pairwise similarities are 
modified by experience with classification attempts. This provides support for the plausibil­
ity of the latter three GCM-based models, which modify similarity parameters in response 
to classification attempts. However, Tversky's main result was that his contrast model of 
similarity accounts for empirical evidence that subjects' similarity functions are asymmetric 
(i.e., Similarity( x, y) # Similarity(y, x)). The contrast model can account for asymmetries 
in subjects similarity ratings because it defines similarity as a function of two instances' 
shared features minus the ones they do not share. Furthermore, three parameters are used 
to determine the relative weight of the shared features, the features held only by the first 
instance, and the features held only by the second instance. Asymmetries result by varying 
these parameters' settings depending on the ordering of the two instances in the similarity 
computation. The GCM-ISW models' similarity function is also asymmetric because it is 
instance-specific. That is, it uses a different set of instance-specific weights for each instance. 
Asymmetries result whenever these weights are different for the pair of instances being com­
pared. More experimentation would be required to determine whether GCM-ISW's similarity 
function provides good fits for subjects' similarity ratings, but it certainly is an improvement 
over the similarity functions used in the context model and the GCM, both of which cannot 
account for these asymmetries. 

Many other researchers agree that models of categorization should be context-sensitive. 
Barsalou (1982) argued that an instance's context influences its perceived typicality and 
determines which of its attributes receives attention. For example, he noted that, while 
some attributes of "basketball" (e.g., "round") are always salient, others (e.g., "floats") only 
become salient (i.e., quickly retrieved) in contexts involving water. This provides psycholog­
ical support for the GCM-ISW model: people on a luxury liner attend more to the "floats" 
attribute when the ship is sinking (to judge whether objects are members of the "can sup­
port me in the water" category) than when it is in port. Barsalou also argued that concepts 
contain both context-dependent and context-independent properties and that only the latter 
is activated independent of context. 5 Roth and Shoben (1983) and Caplan and Barr (1988) 
described similar results in which context affects typicality ratings. Furthermore, Roth and 
Shaben argued that typicality has no effect on the time required to identify a concept ex­
emplar independent of context while Caplan and Barr argued that context does not affect 
category structure (i.e., its intrinsic features, which are true of the category in isolation), 
but only its extension. Ortony, Vondruska, Foss, and Jones (1985) argued persuasively that 
models of similarity must assume that the relevance of an attribute can vary across instances 
and that the relevance of an attribute for a given instance can vary across contexts. Finally, 
Goldstone, Medin, and Gentner (in press) argue that, when comparing instances, the influ­
ence that one attribute has depends on the other attributes that are shared by the instances. 
In summary, concepts are no longer regarded as static definitions, but rather as dynamic, 
context-dependent representations of categories (Barsalou & Medin, 1986). 

5This notion is similar to Michalski's (1990) arguments for a two-tiered concept representation, in which 
a concept has an identifiable core and a set of procedures for usage, one per context. 
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6.7.2 Other Context-Specific Exemplar-Based Models 

Three other exemplar-based models that relax the restriction of one attentional weight 
per attribute dimension have recently been described in the literature. The common thesis 
of these models is that selective attention processes can mediate the tension between devel­
oping general abstractions and retaining specific instances. First, Nosofsky, Clark, and Shin 
(1989) considered value-specific weighting algorithms in which each attribute value would 
be associated with a unique weight setting. This strategy is not as flexible as instance­
specific weighting algorithms: value-specific weights for some attribute i will not work well 
when i's relevance varies over instances that have the same value for i. A better suggestion 
is Medin and Edelson's (1988) proposal to use context-sensitive retrieval processes in the 
process model. Their model, which is the only model found to account for subjects' context­
specific sensitivity to base rate information during categorization tasks, is extremely similar 
to the GCM-ISW model in that it assumes that similarity parameters are associated with 
specific exemplar representations rather than with attribute dimensions in their entirety. 
However, their proposed process model differs from GCM-ISW's learning algorithm. When 
an instance is correctly classified, their model assigns high relative weights to the attributes 
shared by the classifying instance and the instance being classified. Misclassifications result 
in assigning higher weights to attributes that are not shared by these two instances. This 
is in contrast with the GCM-ISW model, which also reduces the weights for attributes that 
( 1) are not shared during correct classifications and ( 2) that are shared during misclassifica­
tions. It is not obvious what the comparative benefits are of these two sets of assumptions, 
but experience with the GCM-ISW model suggests that their proposed model's similarity 
function should be extended to ensure that instance-specific weights are not used to classify 
instances located in distant regions of the instance space. Finally, Medin and Shoben (1988) 
present examples that suggest an instance-directed attribute-weighting scheme is a promising 
model that requires further investigation. They found that, while VVhite is more similar to 
Gray than is Black for the attribute hair, exactly the opposite pattern emerges with the 
attribute clouds. That is, gray hair is generally considered to be more similar to white hair 
than it is to black hair, but gray clouds are generally considered to be more similar to black 
clouds than to white clouds. This suggests extending the instance-specific weighting method 
to distinguish between directions along numeric-valued attribute dimensions. For instances 
of hair, the gray-black distance is widened while the gray-white distance is reduced. In any 
case, a single predefined weight for the color dimension will not survive changes of context. 

Models that learn context-specific attribute weights resemble rule-based learning algo­
rithms (Nosofsky, Clark, & Shin, 1989; Aha & Goldstone, 1990). By weighting dimensions 
selectively on the basis of their category diagnosticity, the exemplar-based systems are qual­
itatively distinguished from the simple storage of instances in a "raw form." Although 
instance information is not discarded, it is selectively emphasized. This representation is 
similar to that used for rules. For example, consider the concept of legal-sized suitcases (i.e., 
those with lengths less than five feet). An instance-directed weighting algorithm could learn 
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a high weight for 4' 9" in the positive direction and a low weight in the negative direction 
for legal-sized suitcases. This is similar to the rule "if 4' 9" or less, then legal-sized luggage, 
otherwise illegal." 

The GCM-ISW model adds an enormous number of parameters into the GCM model. 
Although it increases learning rate, its additional parameters are not needed when attribute 
relevance remains constant across the entire dimension. A more elaborate model would learn 
which parameters should be permanently fixed without need for subsequent attention. The 
algorithm would initially assume that all dimensions are weighted equally for all categories. If 
this assumption does not yield sufficiently fast learning rates, then the system would relax its 
assumptions and allow an attribute's weight to vary across categories. The assumption that 
weights are fixed across instances could also be automatically relaxed. Shifts in the target 
concept description could lead to more or less specific weighting algorithms in attempts to 
maximize classification accuracy while minimizing the number of unique weights that are 
postulated. 

6. 7.3 Other Benefits and Limitations 

Psychologically plausible exemplar-based models are not limited to simple categorization 
tasks. In fact, this approach may be applicable to explaining several other behaviors. For 
example, one of the main advantages of an exemplar-based approach is that little (if any) 
specific information is lost. Therefore, these models may explain how people dynamically 
construct ad hoc categories to achieve their goals (Barsalou, 1983; Kahneman & Miller, 
1986). Barsalou argued that people often develop ad hoc categories, which he noted possess 
graded structure. An example of an ad-hoc category is things sold at a garage sale. These 
categories are assumed to not be represented by abstractions. Instead, they are postulated 
to be constructed by a dynamic process at the time of categorization. Since exemplar-based 
process models can describe graded category structures (Aha, 1989a), represent concepts 
extensionally, and determine category boundaries dynamically, they should prove useful in 
modeling ad hoc categories. Next, Logan (1989) showed that an exemplar-based approach 
can simulate the well-known power-function speedup of practice. Furthermore, his algorithm 
also provides tight quantitative fits to subject data exhibiting this speed up. Finally, Fried 
and Holyoak (1984) argued that an exemplar-based approach is perhaps the only type of 
model that can fit subject data in which subjects learn categories that are not normally 
distributed. They made this suggestion after explaining why their Bayesian model cannot 
describe this behavior. 

However, exemplar-based models are not without their limitations. One limitation is 
that they do not appear to be good simulators for continuous stimulus-response relations 
(i.e., numeric prediction tasks). Koh and Meyer (1988) described evidence that an adaptive 
regression model fits subject data significantly better than a simple exemplar-based model for 
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three different stimulus-response relations. Although the exemplar-based approach performs 
well during interpolation, it performs poorly during extrapolation. However, Koh and Meyer 
did not attempt to modify the simple exemplar-based approach to determine whether a more 
elaborate variant would provide better fits. 

Perhaps the main limitation of exemplar-based models is that they do no not incorporate 
causal knowledge nor ascribe a role for theories in organizing concepts (Medin & Shoben, 
1988). Murphy and Medin (1985) argued that the notion of similarity relationships does 
not sufficiently constrain which concepts will be coherent and which are meaningful. The 
core of the problem is that they cannot represent intra- and inter-concept relations and 
domain specific knowledge in general. This might be debated by Fisher ( 1989). He argued 
that his COBvVEB system, which learns a probabilistic concept hierarchy whose leaves 
are specific instances, is an instance-based learning algorithm with an efficient retrieval 
mechanism. 6 It might also be argued by Bareiss (1989a), who showed how the Protos 
exemplar-based knowledge-acquisition system can become proficient in the domain of clinical 
audiology. However, these algorithms bear little resemblance to the exemplar-based models 
in the psychological literature that have been empirically evaluated for their ability to fit 
subject data. 

6.8 Chapter Summary 

This chapter summarized the status of psychologically plausible instance-based learning 
algorithms, which are normally referred to as exemplar-based process models in the liter­
ature on psychological theories of categorization. I also presented a process model for the 
GCM (Nosofsky, 1986), a popular exemplar-based model, and extended it to account for 
situations in which attribute relevance varies across target concepts and where attribute rel­
evance is context-dependent (i.e., dependent on the instance's other attribute value settings). 
While formal psychological models involving context-specific weight learning do not exist, 
there is a plethora of psychological data suggesting the existence of such specific weighting 
systems. Results from simulations suggest that previous exemplar models that selectively 
weight attribute dimensions, while better than no selective weighting at all, can be improved 
by representing context-sensitive attribute weights. The GCM-ISW model recorded signifi­
cantly faster learning rates than the other models in the simulations and provided the best 
fits to the subject data in an experiment where attribute relevance appeared to be context 
sensitive. 

6 Fisher (1988) also showed how a version of COBWEB can simulate basic level effects (Mervis & Rosch, 
1981), where subjects' classify instances as members for some concepts more quickly than for their sub­
ordinate or superordinate concepts. COBWEB is the only machine learning algorithm that can currently 
account for these effects. 
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Chapter 7 

Survey of Related Work 

... we might say that the machine is "learning." The machine learns 
to characterize classes by the selection of "typical" samples 

from a larger collection of samples that are introduced sequentially. 
- George S. Sebestyen (1962, page 103) 

Instance-based learning algorithms evolved from influences in pattern recognition, ma­
chine learning, and cognitive science. Section 6.3 reviewed psychologically plausible models 
of categorization based on the storage of specific instances. This chapter summarizes the re­
lationship of the algorithms described in this dissertation to similar algorithms in the pattern 
recognition and the machine learning literature. 

Instance-based learning algorithms are descendants of edited nearest neighbor algorithms 
in the pattern recognition literature. Section 7.1 briefly summarizes the evolution of these 
algorithms and discusses how their performance criteria differs. Section 7.2 summarizes 
the contributions of IBL algorithms in the machine learning literature to the framework 
described in Chapter 2. Finally, Section 7.3 summarizes examples of algorithms in other 
learning paradigms that depend on the storage of specific instance information to achieve 
their goals. 

7.1 Edited Nearest Neighbor Algorithms 

A vast amount of attention has been given to analyzing the behavior of k-nearest neigh­
bor ( k-NN) algorithms in the pattern recognition literature. Surprisingly, the development 
of IBL algorithms in the machine learning literature has proceeded independently of this 
body of knowledge. This occurred because the goals of the researchers in the two litera­
tures differ considerably. Machine learning researchers are concerned with issues such as 
overfitting effects, incremental learning, tolerating missing values, and processing symbolic 
attributes. Researchers in pattern recognition address issues such as ensuring that concept 
descriptions perfectly classify training data and focus on creating algorithms with decreased 
upper bounds on misclassification rates, assuming infinitely-sized training sets. Nonetheless, 
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these two areas have several common concerns (i.e., maximizing predictive accuracy, min­
imizing resource requirements) and methodologies (i.e., mathematical analyses, empirical 
validations with both artificial and real-world databases). Furthermore, many pattern recog­
nition researchers have mathematically and empirically analyzed storage reduction strategies 
for instance-based pattern classification algorithms. This section briefly summarizes their 
progress. 

7 .1.1 The Nearest Neighbor Algorithm 

As mentioned previously in Section 3.1, Fix and Hodges (1951; 1952) were the first to 
publish reports on algorithms resembling k-NN. Cover and Hart (1967) were the first to pub­
lish detailed analyses of these algorithms. Their most important contribution was showing 
that the nearest neighbor (NN) algorithm's error rate is within twice that of the Bayes op­
timal error rate. This rate is the lowest rate of misclassification given complete information 
concerning the probability density functions for all of the instances in the instance space. 
Cover and Hart proved that 

(7.1) 

where PB is the Bayes optimal error rate. This rate is determined as follows. Given a set C 
classes, let P( c) be the prior probability of class c, where c E C. Bayes theorem tells us that 
the conditional probability that an instance x is a member of class c is 

P(x E c) = P( c)PDensity\x, c) , 
L:c'EC P(c')PDens1ty(x, c') 

(7.2) 

where PDensity( x, c) is the probability density of class c at instance x. Let L( c, c') be the 
loss incurred when an instance in class c is incorrectly classified as a member of class c'. 
In their analysis, the metric loss function L must be transitive, symmetric, have a positive 
range, and yield 0 only when c = c'. If instance x is predicted to be a member of category 
c', then its conditional loss is 

ConditionalJoss(x, c') = L P(x E c)Loss(c, c') 
cEC 

(7.3) 

The Bayes decision rule simply minimizes this value. That is, the Bayes rule's probability 
of error PB for instance x is 

PB(x) =mine {ConditionalJoss(x, c')} (7.4) 

and the overall expected Bayes error rate is 

PB= E[PB(x)], (7.5) 
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where the expectation is computed with respect to 

PDensity(x) = L P(x, c)PDensity(x, c) (7.6) 
cEC 

The value E[PB(x)] can be thought of as a weighted mean of the conditional probabilities 
that instance x is a member of category c, where the weights are the probability density 
functions PDensity(x, c). 

Cover (1968) later extended these results when he showed that the nearest neighbor's 
error rate is twice that of the Bayes optimal rate and the k-NN algorithm's error rate is 

(7. 7) 

Thus, the difference between k-NN's error rate and the Bayes optimal rate decreases expo­
nentially with linear increases in k. The experimental results in Section 5.2.2 reflect this 
fact; as k was increased, IBl 's predictive accuracy initially increased greatly and tended to 
taper off with higher settings of k. However, there were many cases in which increasing k 
after some point resulted in lower predictive accuracies. This occurred because the domain 
characterization assumptions used in Cover and Hart's formal analysis are gross simplifica­
tions of real-world domains. They assumed that the data was noise-free, that all attributes 
are relevant, and that the training set is infinite in size. These assumptions do not normally 
hold for training sets used in practical applications. Nonetheless, their results are valuable 
because they imply that the k-NN algorithm can often improve on the nearest neighbor 
algorithm's error rate, which is now known to be bounded above by twice the Bayes optimal 
error rate. 

7.1.2 Storing Only Misclassified Instances 

IB2 (Kibler & Aha, 1987) was introduced without any awareness of similar algorithms in 
the pattern recognition literature. In fact, Hart's (1968) condensed nearest neighbor (CNN) 
algorithm is an iterative variant of IB2 that uses the nearest neighbor function to predict 
symbolic target values. 1 Although both CNN and IB2 are "failure-driven" (i.e., they store 
only misclassified instances), CNN differs in that it repeatedly cycles through the data set 
until none of the remaining training instances are stored during a cycle. Hart found that, like 
IB2, the vast majority of the stored instances lie near a concept boundary. Hart tested CNN 
in a letter recognition task, where the letters were selected from nine different font styles 
and were represented with 96-dimensional binary vectors. In a single run of the program, 
CNN cycled four times, stored 197 of the 6295 training samples, and recorded a 98.72% 
classification accuracy on the disjoint set of 5705 test instances. Although this appears to be 

1 IB2 and CNN also differ in that IB2 normalizes numeric attribute values and has defined procedures for 
processing both symbolic and missing attribute values. 
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Figure 7 .1: Eight instances, labeled in order of decreasing distance from the concept bound­
ary. 

a good result, Hart explained that it is "disappointing" since other classification algorithms 
had recorded superior classification accuracies with this dataset (i.e., in the range 99.5%-
99.8% ). However, he was surprised and pleased by CNN's low storage storage requirements 
(i.e., 3.1 %). 

Hart (1968) lamented the lack of theoretical analysis for CNN and posed four questions 
for others to consider in its future research: 

1. What is its expected storage requirements? 

2. How would it perform when k > 1? 

3. What is its expected increase in error rate in comparison to the nearest neighbor 
algorithm for a finite-sized training set? 

4. How many iterations does CNN require? 

The analyses in this dissertation have answered the first two questions. That is, the mathe­
matical analyses in Chapter 3 suggest that CNN's expected storage requirements are poly­
nomial in the size of the target concept's boundary. The empirical analyses in Section 5.2.2 
showed that IB2's predictive accuracy increased with increasing values for k and eventually 
peak before dropping with higher settings for k. However, the experiments showed that that 
k's setting for peak performance depends on the characteristics of the application domain. 
CNN's behavior should be highly similar. The latter two questions remain unanswered, 
although their solutions must also account for domain dependent variables. 

The set of instances retained by CNN is dependent on the ordering of the training 
sequence. Consider the ordering of the training instances shown in Figure 7.1, where the 
line in the center of the figure delineates positive from negative instances. The instances 
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are labeled according to their relative distance from the concept boundary. For example, 
instance number 1 is located furthest form the boundary. If these eight instances comprised 
the training set and had this ordering, then CNN would save only instances 1 and 2. If they 
had the reverse ordering, then CNN would save only instances 7 and 8. The two instances 
saved in both cases are consistent with all of the training instances (i.e., the saved instances 
correctly classify all eight instances using the nearest neighbor prediction function). Also, 
the number of instances retained by CNN is not always optimal. If the first three instances 
in the sequence were 7, 2, and 8, then all three would be saved. An algorithm that discarded 
currently useless instances would help to further reduce CNN's storage requirements. Gates 
(1973) examined such an algorithm, which he called the reduced nearest neighbor (RNN) rule. 
RNN cycles through the stored instances, testing to see whether their removal introduces 
classification errors for the original training set. If not, then the instance is removed. This 
continues until none of the stored instances are removed during a cycle. Gates applied several 
variants of both algorithms to Sir Ronald A. Fisher's (1936) iris database and found that 
RNN always reduced CNN's storage requirements and its accuracy on test instances was at 
least as good as CNN's in all but one of the fourteen experiments. However, Gates reported 
that RNN usually required more than twice the amount of time to execute. Explorations 
of the tradeoff between RNN's additional computational costs and its potential increase in 
predictive accuracies have not been published. 

Kurtzberg (1987) also used a variant of the CNN and IB2 algorithms in his application 
to a handwritten character recognition task. His algorithm is identical to IB2 except that it 
employs a domain-specific normalization function, it is not defined for symbolic and missing 
attribute values, and it uses domain-specific parameters in its similarity function. Similarity 
is defined as the city-block distance (i.e., Minkowskian metric with r = 1) between two 
instances, which were represented by seven numeric-valued attributes that were carefully 
chosen for the application. These attributes are normalized to allow for the comparison 
of handwritten symbols that were written at different rates. Attribute_difference yields a 
Boolean value, which depends on whether the difference of the two numeric values is less 
than a pre-specified threshold difference. These value thresholds are are attribute-dependent. 
A second set of thresholds, which denote the limit to which characters could be stretched and 
shrunk in comparisons, was used to minimize the number of costly instance comparisons. 

Kurtzberg trained his algorithm with several different threshold settings and also did a 
lesion study to determine whether the reduced set of attributes improved the performance of 
his algorithm. The training set consisted of four sets of 72 target concepts (i.e., handwritten 
characters). The algorithm's accuracy on a separate test set of 288 characters was 99.0%. 2 

Also, it saved only 22. 7% of the training instances after saving the first set of 72 characters. 
The lesion test showed that the reduction to the small set of seven attributes did not alter the 
program's accuracy or storage requirements, but it greatly decreased its computational costs, 
measured as the amount of instance-matching required during training. Stricter thresholds 

2Unfortunately, comparison studies with alternative algorithms were not performed. 
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Table 7.1: Upper bounds on the error rates for the k-NN and Wilson's edited k-NN algorithms 
for three settings. 

I k II k-NN I Edited k-NN I 
1 2PB 1.2PB 
3 l.3PB l.l5PB 
5 1.2PB l.lOPB 

on attribute-value matches decreased storage requirements and the amount of time required 
to match instances, but also decreased classification accuracy. 

In summary, Kurtz berg showed that the IB2 algorithm can exploit domain-specific knowl­
edge using value-matching thresholds and carefully selected attributes. This additional in­
formation greatly increased his algorithm's efficiency. Section 7.2 describes other ways in 
which IBL algorithms can use domain-specific knowledge to improve their efficiency. 

7.1.3 Storing Only Correctly Classified Instances 

Only a few descendants of Hart's (1968) condensed nearest neighbor algorithm have 
been examined in the pattern recognition literature. However, there still has been a burst 
of activity on edited nearest neighbor algorithms. Wilson (1972) began a second line of 
interest in these algorithms by detailing proofs of convergence for an algorithm that (1) 
removes training instances that were incorrectly classified by k-NN using the other training 
instances and (2) uses 1-NN to classify test instances with the remaining training instances 
The purpose of the editing algorithm is to eliminate instances that are a minority among 
their k-nearest neighbors so that the 1-NN can obtain classification accuracies closer to the 
Bayes optimal rate. Wilson showed that the error rate for this editing algorithm, with k = 3, 
is lower than for the 5-NN algorithm. Table 7.1 displays the upper bounds on the error rates 
for the k-NN and Wilson's edited k-NN algorithms for three of k's settings. As shown in 'the 
table, the edited k-NN algorithm's error rate more closely approximates the Bayes optimal 
rate (PB) for smaller values of k. However, this does not imply that better results will 
always be obtained by using Wilson's editing algorithm because his analysis assumes an 
infinite number of noise-free instances are available for training. 

Wilson's work inspired a flurry of mathematical analyses of his edited k-NN algorithm. 
For example, Wagner (1973) showed how Wilson's lengthy proofs can be reduced to one page 
in length. Penrod and Wagner (1977) later showed that Wagner's and Wilson's proofs were 
incorrect; they had mistakenly assumed that the instances saved after the editing process 
were uniformly distributed. By restricting the instance space's dimensionality to one and 
by restricting the selected nearest neighbors of an instance x to have higher values along 
the predictor dimension, Penrod and Wagner were able to show that Wilson's algorithm 
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Table 7.2: Upper bounds on the error rates for k-NN, Wilson's (1972) estimates for edited k­
NN, and Penrod and Wagner's (1977) revised estimates for Wilson's edited k-NN algorithm 
for three s tt" e m_g_s. 

k k-NN Edited k-NN: Wilson Edited k-NN: Penrod & Wagner J 
1 2PB l.2PB l.27P B 

3 l.3PB l.15P B l.20PB 
5 l.2PB l. lOP B l.17P B 

Table 7.3: Upper bounds on the error rates for the k-NN, Penrod and Wagner's (1977) esti­
mates for Wilson's (1972) edited k-NN algorithms for 1-dimensional spaces, and Kaplowitz 
and Brown's (1981) modified edited k-NN algorithm for any dimensionality (where k' = k) 
for three settings. 

,...., k---..11-k"""'"--N-N--,-l _E_d_i t-ed-k--N-N-: l---d1-. m-e-n-si-o-na_l_,l_E_d_i-te_d_k ___ N_N_:_n--d-i_m_e-ns_i_on-a--,1 j 

1 2PB l.27P B l.27PB 

3 l.3PB l.20PB l.12P B 

5 1.2PB l.l 7PB l.06P B 

converges slower than was thought to the Bayes optimal rate. The updated convergence rates 
are about 6% slower, as exemplified in Table 7.2. Koplowitz and Brown (1981) extended 
this work to n dimensional instance spaces, but had to introduce a somewhat contorted 
modification of Wilson's original algorithm to guarantee Wilson's implicit assumption that 
the retained instances are uniformly distributed in the instance space. Their algorithm first 
partitions samples into groups of k. It then checks to see whether at least k' ~ k instances 
in each group have the same classification. If so, then all of the instances in the group 
are relabeled with the majority classification. Otherwise, the entire group of instances is 
deleted from the training set. This process highlights the locations of disjuncts. Koplowitz 
and Brown showed that their modified k-NN editing algorithm speeds the convergence to the 
optimal Bayes rate, as exemplified in Table 7.3. However, Broder, Bruckstein, and Kaplowitz 
(1985) later learned that Wilson's assumption does hold when the dimensionality is large, 
which they proved based on the fact that, for larger dimensional spaces and sufficient number 
of training instances, the set of k-nearest neighbors for two instances that are among the set 
of k-nearest neighbors of a third instance are, with high probability, mutually disjoint except 
for their own inclusions. Thus, Wilson's results still stand for higher dimensional spaces, but 
the dimension at which the independence assumption begins to hold is still unknown. 

In summary, k-NN editing algorithms speed the convergence rate of k-NN algorithms. 
A plausible question to ask is whether iterative-editing algorithms would further improve 
convergence. Penrod and Wagner (1977) showed that, for at least in one dimensional instance 
spaces, the upper bound on the error rate for one and two iterations of Wilson's (1972) editing 
algorithm is l.269PB and l.162PB respectively for k = 1, which indicates that iterative 
editing schemes might be practical. Tomek empirically tested the iterative algorithm and 
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the all-k algorithm in an application with a one-dimensional instance space. The all-k 
algorithm applies Wilson's algorithm first with k = 1 and repeats with incrementally higher 
values of k until k is equal to the size of the training set. Tomek found that, while the 
iterative editing algorithm recorded lower misclassification rates, the all-k editing algorithm 
recorded the lowest error rates among all the algorithms tested. Devijver (1986) describes 
similar results with an iterative k-NN editing algorithm and also proves that the upper 
bound on the fraction of instances edited by his algorithm is bounded above by twice the 
1-NN algorithm's error rate on the initial training set. 

Another way to obtain higher classification accuracies with k-NN editing algorithms is 
to require that classifications be based on more than a simple majority vote among the k­
nearest neighbors. Tomek (1976b) explored the use of a threshold f $ k' $ k with Wilson's 
k-NN editing algorithm. Like Koplowitz and Brown's (1981) algorithm, this modification 
clarifies the boundaries between disjuncts in the instance space. Tomek's threshold proved 
useful in an application with a simple artificial domain. He also discussed the utility of 
similarity thresholds, which is of keen interest to IBL researchers in machine learning (e.g., 
Bradshaw, 1987; Kibler & Aha, 1988). These thresholds are needed to prevent stored in­
stances from classifying highly dissimilar instances. If a novel instance's k-nearest neighbors 
are sufficiently similar, then it should be stored. Test instances in these situations are said 
to be rejected (Hellman, 1970). Tomek described four methods for implementing this option 
and applied one method to a simple artificial domain with impressive results. However, he 
left unspecified how these thresholds could be learned. 

Dasarathy (1980) provided a solution for learning both of these thresholds. His neigh­
borhood census rule (NCR) defines the threshold on the lowest number k' $ k of instances 
required by a class c among a novel instance's k-nearest neighbors to differ among classes: 
it is the smallest number of acceptable stored instances in c among any stored instance's 
k-nearest neighbors. A stored instance in class c is acceptable when it is within distance 
De of the instance to be classified, where De is the maximum distance between any stored 
instance y and an instance in class c among y's k-nearest neighbors. Dasarathy's learn­
ing algorithm first uses Wilson's k-NN editing algorithm, during which time it learns the 
class-dependent majority vote and similarity thresholds. It then uses these thresholds in 
its modified k-NN classification algorithm to classify a set of test instances. The set of 
"rejected" (i.e., unclassified) test instances are given to an unsupervised learning algorithm 
for clustering and labeling. Afterwards, this process cycles with these newly-labeled test 
instances as the training instances. The threshold parameter settings are updated during 
each cycle. Dasarathy noted that this algorithm is useful when not all of the classes in the 
instance space are known a priori to training. In such cases, his algorithm tends to classify 
them as having '"unknown" classifications rather than misclassify them as members of one 
of the known classes. Dasarathy tested his algorithm on Fisher's (1936) iris database. He 
ensured that instances in the well-separated class (i.e., Iris Setosa) appeared only in the 
test set. His algorithm reduced the number of instances misclassified by a k-NN algorithm 
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Figure 7.2: An unedited training set (left) and the instances retained after 3-NN editing. 
Retained instance x would misclassify instance y from the unedited training set. 

from 58 to 4. However, this experiment was tailored for Dasarathy's algorithm; the un­
known class is linearly separable from the classes represented in the training set. Devijver 
(1981) pointed out that Dasarathy's algorithm incorrectly assumes that the instances saved 
by Wilson's k-NN editing algorithm are consistent with the instances in the original training 
set. A subset of a training set is consistent only if its instances correctly classifies all of 
the instances in the original training set using the 1-NN algorithm. In fact, k-NN editing 
does not guarantee this will occur. For example, if the unedited training set contains the 
instances in the two-dimensional instance space shown in the left of Figure 7.2, then the 
retained instances from 3-NN editing are those shown in the right instance space. Negative 
instance x would misclassify positive instance y from the original training set. Several other 
of the original training set's instances would also be misclassified by the edited training set. 
Thus, the 3-NN editing algorithm did not preserve the consistency of the training set. Since 
Dasarathy's algorithm assumes that k-NN editing preserves a training set's consistency, its 
applicability to more challenging task domains is still in doubt. 

7.1.4 Combined-Editing Algorithms 

While Wilson's (1972) editing scheme tends to retain instances that are distant from con­
cept boundaries, Hart's (1968) CNN rule tends to save instances near the boundary between 
concepts. An algorithm that combines both methods might yield lower storage requirements 
than would either editing method used alone. Tomek (1976a) examined the behavior of a 
combined algorithm on an application involving a simple two-dimensional artificial domain. 
The k-NN algorithm removed most of the boundary instances. Afterwards, the CNN al­
gorithm removed the instances that were on the "interior" of the remaining clusters. The 
reduction in storage requirements was tremendous (i.e., 53%, 67%, and 11 % of the training 
set was retained by CNN, k-NN editing, and the combined algorithms respectively). Voisin 
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and Devijver (1987) described two applications of the Multiedit algorithm, an iterative vari­
ant of Wilson's (1972) k-NN editing algorithm, followed by the CNN rule. Both applications 
were complicated character recognition tasks involving several type fonts and type qualities. 
The first application was limited to a single font style, although several different type qual­
ities were represented in the 10,000 instance training set representing 57 categories. The 
algorithm's error rate on an independent set of 9057 characters was 0.15%, the lowest among 
the eight algorithms they tested. An optimized perceptron learning algorithm's error rate 
was twice as high. Voisin and Devijver explained that this occurred because the concepts, 
which are not unimodal, are also not linearly separable. Furthermore, their algorithm saved 
only 70 instances (i.e., 0. 7% of the training set) to achieve this high performance. In a 
second experiment, the algorithms were trained on 3780 instances drawn from three type 
fonts and tested on 8303 separate characters. Their combination algorithm retained only 136 
instances (i.e., 3.6% of the training set) and recorded a nearest neighbor misclassification 
rate of only 0.6%.3 In summary, combining the two types of editing algorithms resulted in 
high classification accuracies in a challenging character recognition application. 

The instances saved by these combined algorithms are somewhat similar to the ones 
saved by IB3 and its descendants. As shown in Figure 4.15 on page 87, IB3 tends to discard 
instances along the boundaries between concepts and retains a set of separating instances 
closer to the interior of each disjunct. The combined k-NN editing and CNN algorithm 
does likewise, where the the former removes boundary instances and the latter removes 
surrounded instances in the interior of disjuncts. However, IB3 differs from this algorithm 
in that it processes instances incrementally; it does not require a second pass through the 
set of stored instances. 

7.1.5 Summary 

In summary, the pattern recognition community has mathematically and empirically an­
alyzed several storage-reduction strategies for instance-based prediction algorithms. Their 
central concern with editing algorithms is that they approximate the behavior of the Bayes 
optimal classifier on the original training set. Since instances are assumed to be noise-free, a 
primary concern is that the edited data set can correctly classify all of the original training 
instances. Several issues that are of concern in the machine learning community have not 
been addressed in the literature on edited nearest neighbor algorithms, including the toler­
ation of noisy data, the reduction of dimensionality, PAC-learning analyses, and, in most 
cases, careful comparison studies with algorithms from other computational frameworks, al­
though Voisin and Devijver's (1987) study is an exception. However, several useful ideas 
have been proposed and evaluated in this literature that have not yet been implemented in 
algorithms described in the machine learning literature, including discarding only incorrectly 
classified instances, combining different editing methods, repeating the editing process, and 

3Results for the other algorithms were not given for the second experiment. 
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requiring more than a simple majority among the k-nearest neighbors for correct classifica­
tions. Likewise, several ideas developed for supervised learning algorithms have not yet been 
studied for edited nearest neighbor classifiers, such as incremental learning, the IB3 noise­
toleration strategy (Aha & Kibler, 1989), methods for deriving abstractions (e.g., Salzberg, 
1990), normalization functions, indexing strategies (e.g., Moore, 1990), and exponentially 
decreasing similarity functions. Cross-fertilization of these literatures should yield improved 
IBL algorithms. 

Not all of the instance-based algorithms in the pattern recognition literature have been 
described in this section. Surprisingly, the oldest edited nearest neighbor algorithm closely 
resembles one of the most prominent IBL algorithms in the machine learning literature and 
has been applied to similar tasks. For this reason, it is described in the following section. 

7.2 Other Instance-Based Learning Algorithms 

This section describes a dozen instance-based learning systems that were developed to 
solve supervised learning tasks. Although most of these systems are well-known in the 
machine learning literature, some of them were not conceived of as learning algorithms. 
Nonetheless, all of them can be described by how they instantiate the framework detailed in 
Chapter 2. The following subsections describe each system's applications, evaluations, and 
contributions to the IBL framework. 

There are a large number of dimensions on which these systems can be compared, con­
trasted, and organized. Some were grouped according to their principal contributions to the 
IBL framework. For example, Sections 7.2.1 and 7.2.2 describe systems that use instance­
based methods to learn generalizations and process symbolic attribute values respectively. 
Other systems were grouped to highlight the issues involved with applying IBL algorithms 
to a specific task. For example, Section 7.2.3 describes IBL systems that solve problems for 
physical systems. Section 7.2.4 describes two influential systems that use domain specific 
knowledge to compute similarities. Finally, Section 7.2.5 summarizes the most successfully 
applied IBL system. 

7.2.1 Learning Abstractions of Specific Instances 

Instance-Averaging Algorithms 

The term instance-based learning was first used by Bradshaw (1985) to describe his 
NEXUS speech architecture's error-recovery process. This system builds a network whose 
nodes represent primitive acoustic concepts. Raw speech is converted to a usable instance 
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T bl 7 4 S a e .. ummary o f th d' . 'h e lSJunc ive spannm_g_ alg_ont m. 
Component Definition 

Pre-processing Normalization: Dynamic time warping 
Performance Similarity: Euclidean distance 

Prediction: Nearest neighbor 
Learning Average correctly classified instances 

Save misclassified instances 

representation through a sequence of transformations. First, Raw speech input is trans­
formed by a filter to a digital waveform signal. Fast fourier transforms are then applied to 
these signals to yield 256-frequency segments from 20 millisecond intervals of speech. These 
segments are then compressed using 25 filters, whose derivative yields a 25-frequency vec­
tor. Finally, a dynamic time warping procedure is used to compare two instances' frequency 
vectors during similarity computations. NEXUS was applied to the task of learning to rec­
ognize spoken letters of the alphabet. The database consisted of two speakers' 30 different 
pronunciations of the 26 letters. Bradshaw (1987) summarized NEXUS's evaluation in con­
tinuous training experiments. After the first 25 blocks of 26 letter pronunciations, NEXUS's 
average classification accuracy was 93% on the last 5 blocks in single-speaker experiments. 
In comparison, a non-learning speech recognition system recorded an 80% average classifi­
cation accuracy for the entire database. NEXUS's accuracy dropped to 84% in a limited 
multi-speaker experiment. 4 

NEXUS's instance-based learning strategy is summarized in Table 7.4. This algorithm, 
which Bradshaw (1986) called the disjunctive spanning algorithm, is identical to IB2 except 
that it employs a domain-specific normalization function and averages rather than saves 
correctly classified instances. This averaging process allows a single instance in the instance 
space to summarize the locations of any number of similar instances. Therefore, it can be 
viewed as an abstraction of its nearby neighbors in the training set. Bradshaw's application 
highlighted the need for domain-specific normalization functions for temporal data. However, 
the instance-averaging process is of even greater interest because it is a domain-independent 
algorithm. The experiments in Section 5.3 showed that instance-averaging can achieve bet­
ter performance than instance-filtering algorithms when the target concepts' disjuncts are 
unimodal, which may characterize speech data. 

Bradshaw (1987) postulated the use of a distance threshold to prevent the disjunctive 
spanning algorithm from averaging together two highly dissimilar instances. This would 
help prevent the averaging of two instances in separate disjuncts, which can result in a 
generalized instance that has an incorrect classification. Furthermore, averaging, which is a 
form of generalization, can also lead to "instances" that cannot exist due to other application­
speci:fic constraints. 

4The non-learning system's performance was not reported for this second experiment. 
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Table 7.5: Summary of Sebestyen's (1962) adaptive learning algorithm. 
I Component I Definition I 

Pre-processing Normalization: Dynamic time warping 
Performance Similarity: Euclidean distance 

Prediction: Nearest neighbor 
Learning Average instances that satisfy the threshold 

Save all other instances 

As explained in Section 7.1.3, Tomek (1976a) and Dasarathy (1980), among others, have 
examined methods for learning and using distance thresholds in edited nearest neighbor algo­
rithms. However, Sebestyen (1962) is the only pattern recognition researcher that described 
the use of distance thresholds in an instance-averaging IBL algorithm. Sebestyen developed 
his instance-averaging algorithm after gaining experience with applications of the nearest 
neighbor function to a speaker recognition task whose training set consisted of two sentences 
at 20-millisecond intervals spoken by 100 subjects. Speech input was converted to instances 
that were represented by 4 attributes corresponding to 4 aural frequencies. The nearest 
neighbor algorithm yields a 91.3% accuracy on a disjoint set of test sentences. However, 
Sebestyen was concerned with the algorithm's large storage requirements. Therefore, he 
developed the instance-averaging algorithm summarized in Table 7.5. It is surprisingly sim­
ilar to Bradshaw's (1987) disjunctive spanning algorithm except for the definition of their 
prediction functions, which differ in two respects. First, Sebestyen's algorithm saves all in­
stances whose nearest stored instance's distance is above a pre-determined distance threshold. 
Second, previously stored instances with other classifications are ignored during classification 
attempts. 5 Sebestyen applied his adaptive learning algorithm to a speaker recognition task. 
It was trained on 200 instances and tested on 200 disjoint instances from each of two speakers. 
The algorithm recorded a correct speaker classification accuracy of 89.4%. Unfortunately, 
the value for the distance threshold was neither stated nor varied. Also, Sebestyen did not 
compare the instance-averaging algorithm and the nearest neighbor algorithm on the same 
task. 

One of the weaknesses of Sebestyen's (1962) algorithm is that the value for the distance 
threshold was pre-determined rather than learned. Kibler and Aha (1988) examined an ex­
tension of Bradshaw's (1987) disjunctive spanning algorithm that learns distance thresholds 
for each target concept. Distance thresholds were defined as the the shortest distance be­
tween a pair of instances in a target concept that appear to lie in different disjuncts. Their 
algorithm initializes thresholds to unreasonably large values, recomputes their values after 
each classification attempt, stores all instances until after these thresholds stabilize, and ap­
plies the thresholds to the entire training set afterwards. Their algorithm also uses Kohonen's 

5Sebestyen (1962) did not explain the reasons for this decision. It was probably an oversight since his 
calculations concerning storage requirements assumed that only one stored instance would lie in an area in 
the instance space equitable with the size of the pre-determined distance threshold. 
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Table 7.6: Summary of the NGE learning algorithm. 
Component I Definition 

Pre-processing Normalization: linear 
Instance seeding 

Performance Similarity: Doubly weighted Euclidean distance 
Prediction: Nearest neighbor or hyper-rectangle 

Learning Save misclassified instances 
Derive hyper-rectangles for all others 
Update classification records 
Update attribute weights 

(1988) more conservative instance-averaging method to reduce the number of misclassifica­
tions in the partial concept description. 6 The adaptive thresholding algorithm decreased 
the likelihood of storing misclassified instances and increased classification accuracy in 21 of 
their 24 experiments. Unfortunately, it also substantially increased storage requirements. In 
summary, thresholds can be learned and can improve the performance for IBL algorithms 
that average instances. However, more research is needed to determine whether higher stor­
age requirements can be avoided. One method worth considering is to employ a set of local 
thresholds for each target concept, which should reduce storage requirements by setting low 
threshold distances near concept boundaries and high threshold distances elsewhere. This 
would allow for more opportunities to average non-boundary instances. 

Learning Hyper-Rectangular Abstractions 

Many popular machine learning algorithms for supervised learning tasks partition the in­
stance space into hyper-rectangular subspaces (e.g., Quinlan, 1986a; Clark & Niblett, 1989). 
Salzberg (1988; 1990) recently developed an IBL algorithm that also has this capability. His 
algorithm, called NGE (Nested Generalized Exemplars), is summarized in Table 7.6. The 
NGE algorithm uses the standard linear normalization algorithm to pre-process instances 
and seeds its partial concept description by storing a pre-determined number of instances 
before training on the remainder of the training set. NGE creates hyper-rectangles whenever 
it uses a stored instance to correctly classify a training instance, at which time it replaces the 
stored instance with the smallest hyper-rectangle that includes both instances. If a hyper­
rectangle was responsible for the correct classification but did not "contain" the instance, 

6Initially, Kohonen's (1988) instance-averaging algorithm weights stored instances four times more heav­
ily than the instances they classify. These weights increase slowly each time a stored instance correctly 
classifies a subsequently presented instance. Thus, while Bradshaw's algorithm initially averages liberally 
and quickly becomes extremely conservative, Kohonen's algorithm ensures that concept instances are never 
quickly averaged far away from their initial location in instance space and that all correctly classified training 
instances have a non-trivial impact on the formation of the partial concept description. 
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then it is minimally extended to include the new instance. Incorrectly classified instances 
are simply saved. 7 Instances can be nested inside hyper-rectangles with different classifi­
cations. Thus, NGE can represent exceptional disjuncts without modifying overly general 
hyper-rectangular abstractions. NGE maintains a classification record with its stored in­
stances and hyper-rectangles as is done in IB3 and its descendants. However, N GE differs 
from IB3 in that it continuously weights stored instances rather than require that they pass 
an acceptance test before they can be used to classify subsequently presented instances. 
NGE's similarity function is 

Similarity(x,y,P) = -Strength(y) Lwif(x,y,i) 2 

iEP 

(7.8) 

where P is the set of predictor attributes, Strength(y) is the percentage of stored instance 
y 's accuracy in previous classification attempts, and Wi is an attribute weight similar to the 
ones used in IB4. Function f(x, y, i) =Xi - Yi when y is a specific instance. If y is instead a 
hyper-rectangle, then 

{ 
upper > upper 

Xj - Yi Xi Yi 
J(x, y, i) = Y~ower _ X; X; < Y~ower 

Q ~ower < X . < ?-pper 
Yi - i - Yi 

(7.9) 

where yrpper is the higher-valued and y}ower is the lower-valued side of the hyper-rectangle 
whose plane is parallel to the ith axis. NGE updates attribute weights using the function w; = 
w; x Weight....adjust(p ), where pis a parameter that determines the rate at which attributes are 
adjusted and Weight....adjust(x) = l+x for correct classifications and Weight....adjust(x) = l-x 
otherwise. Salzberg notes that this function is imperfect; it does not properly converge 
on optimal attribute weight settings. IB4's algorithm for learning attribute weights is an 
improvement on this algorithm in that it tends to avoid this problem, but its behavior has 
not been formally analyzed. 

Salzberg (1988; 1990) applied several variants of his algorithm to four database applica­
tions. Although his results were promising, they are difficult to interpret. Some of the results 
reflected single or few runs of NGE rather than averages over several learning trials. Different 
variants of the algorithm and different parameter settings were used for each experiment. 
However, NGE's performance appeared to be similar to or higher than the performances of 
other supervised learning algorithms on the standard databases included in the experimental 
evaluation. 

NGE introduced several contributions that should prove worthy of future study. The 
central contribution is a demonstration of how IBL algorithms can learn higher-order "ex­
emplars" efficiently. Salzberg showed how the analyses of hyper-rectangles can lend insights 

7This is a property of the greedy NGE algorithm (Salzberg, 1988; 1990). However, another variant 
attempts to shrink hyper-rectangles that incorrectly classify instances. Salzberg (personal communication) 
has since decided to abandon this strategy. 
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T bl 7 7 S a e .. ummary o f MBR lk' 1 .h ta · s earnm_g_ a~ont m. 
Component Definition 

Pre-processing Transformation of words to a set of instances 
Performance Similarity: Weighted distribution comparisons 

Prediction: Weighted k-nearest neighbor 

Learning Save all instances 
Update counts for weights 

on the target concept's structure, which is of central concern for explaining the instance­
based algorithm's predictions. The use of hyper-rectangles should also significantly decrease 
storage requirements for large training sets, especially if the hyper-rectangles can be mod­
ified to account for mistakes near concept boundaries. The continuous weighting of stored 
instances and hyper-rectangles is an interesting and less time consuming alternative to using 
significance tests. NGE's weight-learning algorithm inspired the development of IB4, which 
improved on the algorithm and extended it to support concept-dependent attribute weight 
settings. 

Although instance-averaging and instance-generalizing IBL algorithms offer several useful 
alternatives to storing specific instances, they are currently limited to processing numeric­
valued attributes. The next section summarizes IBL algorithms that can process symbolic­
valued attributes. 

7.2.2 Processing Symbolic-Valued Attributes 

MBRtalk 

Stanfill and Waltz (1986) introduced a similarity algorithm that can process symbolic­
valued attributes and used it in MBRtalk, an instance-based system that was applied to 
word pronunciation tasks. 8 MBRtalk's description is summarized in Table 7.7. MBRtalk 
was given a database of words that was also used to test the NETtalk system (Sejnowski & 
Rosenberg, 1987). A word with /letters is represented using l instances. Instances have nine 
attributes: 9 the four preceding letters, the focus letter, the four following letters, phoneme, 

8They referred to MBRtalk as a memory-based reasoning system to emphasize the strategic importance 
of memory as the foundation of intelligent reasoning processes. However, all learning algorithms have some 
form of memory. The distinguishing property of MBRtalk and other instance-based algorithms is that they 
retain and use specific instances during supervised learning tasks, placing more emphasis on the dynamic 
derivation of generalizations rather than on deriving statically applied abstractions. In retrospect, IBL 
algorithms should instead have been named extensional or lazy learning algorithms, which highlights their 
distinguishing behavior. 

9Stanfill and Waltz have investigated using various numbers of attributes. 
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Table 7.8: MBRtalk represents the word "file" with four instances. 
I Letters I Phoneme I Stress I 

- - - - f 1 1 e - f + 
- - - f 1 l e - - A 1 
- - f 1 1 e - - - 1 -

- f 1 1 e - - - - - -

and stress. The last two attributes are the target attributes. The word representation is 
exemplified in Table 7.8. Each word is transformed to a set of instances by MBRtalk's pre­
processing component. The similarity function is detailed in Section 5.2.1 in Equation 5.14 on 
Page 131. This algorithm weights attributes according to the degree to which they constrain 
the potential values of the target attribute. When two instances' values for a predictor 
attribute a differ, their difference is quantified by comparing the distributions of the target 
attribute's values for two sets of stored instances - those whose value for a corresponds to a's 
values in the two instances being compared. The experiments in Section 5.2.l showed that 
this similarity function, named the value-difference metric, did not improve performance on a 
set of database applications in comparisons to two other algorithms that were considered and 
rejected by Stanfill and Waltz. However, this similarity function is more appropriate than 
the other functions for the word pronunciation task. In particular, it is more appropriate 
than the overlap metric because predictive relevance varies among an instance's predictor 
fields. Stanfill and Waltz argued that it is also more appropriate than the weighted-distance 
metric because different values of a predictor attribute differ in their degree of sirnilarity. 10 

MBRtalk's prediction function retrieves the k = 10 most similar concept instances, weights 
them according to the inverse of their distance, and sums the weights for each diagnostic 
class value. Test instances are classified according to the highest-weighted class. The learning 
component saves all training instances. Since MBRtalk is implemented on the Connection 
Machine System, 11 large storage requirements do not significantly decrease the speed of 
the system. MBRtalk was trained on 4438 words with a total of 32, 768 letters and tested 
on 100 other words with 772 letters. The words were randomly selected from a dictionary. 
MBRtalk's classification accuracy was 43% for word pronunciations and 86% for phonemes.12 

Comparisons with other speech-pronunciation systems were not reported. 

Stanfill (1987) described a test using an extended 11-attribute representation. MBRtalk 
was trained on 131,072 instances and recorded an 88% phoneme classification accuracy on 

10Unfortunately, Stanfill and Waltz did not publish performance comparisons with these other two sim­
ilarity functions. Therefore, this assumption has not yet been validated for the word pronunciation task. 

11Connection Machine is a registered trademark of the Thinking Machines Corporation. 
12Stanfill and Waltz (1988) later stated that their accuracy rate for phonemes was 92% in the experiments 

described in (Stanfill & Waltz, 1986), but this figure is at odds with the results reported in the original ACM 
article. 
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a separate set of 1024 instances. He also found that MBRtalk's performance did not tol­
erate greatly decrease when instances were extended with up to seven irrelevant predictor 
attributes whose values were randomly selected. This is not too surprising since the value­
distance similarity function learns relevance weights for each attribute similar to the weights 
used in the context model (Medin & Schaffer, 1978). However, Stanfill also reported some 
impressive results concerning MBRtalk's ability to tolerate predictor attribute noise; its 
classification accuracy did not appreciably deteriorate until 80% of the predictor attributes' 
values were noisy, where an N% noise level for an attribute a was defined as replacing a's 
value with a randomly selected value for a randomly selected N% of the training instances. 
It is possible that few non-noisy instances in this domain are required to achieve relatively 
high classification accuracies. Nonetheless, these noise-toleration results are still quite im­
pressive. However, MBRtalk's accuracy decreased linearly with the level of target attribute 
noise, which is similar to IBl's noise-toleration ability. 

PRO 

Lehnert (1987) also describes an application of IBL techniques to the problem of word 
pronunciation. She used an activation-based representation for a network of nodes to rep­
resent instances. Using a training set of 750 instances, Lehnert's PRO system correctly 
determined the pronunciations for 75% of 100 test instances. PRO required fewer instances 
but larger storage requirements to achieve a classification accuracy similar to that achieved 
by MBRtalk. PRO was never compared with MBRtalk on the entire training set of 4438 
words. Lehnert suggested that doing so would be interesting, but perhaps the time would be 
better spent after PRO was re-implemented on a high-speed parallel processor, which would 
allow for more reasonable response times with this large database. 

JOHNNY 

More recently, Stanfill (1988) used the MBR approach to teach itself how to pronounce 
written words without supervision in a system named JOHNNY. This system was given a 
set of pronunciation rules relating letters with pronunciations and a phonetic vocabulary, 
but not a written vocabulary. It then uses these rules to generate plausible pronunciations. 
JOHNNY then searches the phonetic vocabulary for the most plausible alternative, which 
is assumed to be correct and is memorized. JOHNNY's word-pronunciation accuracy was 
93% on 1024 words from a dictionary. This accuracy increased to 96% on a second pass 
through these words when the newly memorized instances were allowed to participate in 
classification attempts. Higher accuracies were recorded in experiments where JOHNNY 
was told (1) whether its predictions are correct and (2) when it was always given the correct 
answer after mistakes. Classification accuracies in the latter experiment reached nearly 100% 
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Table 7.9: Summary of the PEBLS learning algorithm. 
Component I Definition 

Pre-processing Set attribute value similarities 
Performance Similarity: Weighted distribution comparisons 

Prediction: Nearest neighbor 
Learning Save all instances 

on the final 100 instances in the training set. This demonstrates the utility of using instance­
based algorithms as a learning apprentice, which is a topic discussed further in Section 7.2.4. 

PEBLS 

Cost and Salzberg (1990) recently used a variant of the value-difference similarity func­
tion in their PEBLS instance-based learning algorithm, which is summarized in Table 7.9. 
PEBLS is an amalgamation of Salzberg's (1990) NGE algorithm and MBRtalk (Stanfill & 
vValtz, 1986). It was developed specifically to solve supervised learning tasks when the at­
tributes are all symbolic-valued. PEBLS uses the same pre-processing function as MBRtalk 
for the NETtalk pronunciation task (Sejnowski & Rosenberg, 1987). PEBL's similarity 
function is 

where 

Similarity(x, y, P) = -Strength(y) I: Attribute_difference(x;, y;, iY, 
iEP 

Attribute_difference( a, b, i) = L I ?i -~i I 
jEC a b 

(7.10) 

(7.11) 

where C is the set of target concepts, Ca is the number of previously stored instances that 
had value a for attribute i, and Cai is the subset of Ca whose value for the target concept is 
j .13 The value of r was varied depending on the application. Strength weights are defined 
as the inverse of an instance's accuracy. The first instance's weight is initialized to 1/1. 
Subsequent instances' weights are initialized to the weight of their nearest neighbor. PEBLS's 
prediction function, unlike NGE's and MBRtalk's, is simply the nearest neighbor function. 
Finally, PEBLS saves all training instances in its partial concept descriptions. PEBLS's 
contribution is a demonstration that variants of the value-difference similarity function can be 
used in applications other than the NETtalk pronunciation task. Cost and Salzberg reported 
that PEBLS recorded the highest average classification accuracy for Qian and Sejnowski's 
(1988) protein folding application and accuracies as high as KBANN's (Towell, Shavlik, & 
Noordewier, 1990) in their promoter sequence database. In summary, PEBLS performance 

13PEBLS requires two passes over the training set. It records all the data used in Equation 7.11 during 
the first pass and uses this information during the second pass. 
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was as good as or better than other algorithms, including several connectionist networks, for 
these two applications. Therefore, it appears that the utility of the value-difference similarity 
function is not limited to applications with the NETtalk database (Sejnowski & Rosenberg, 
1987). 

7.2.3 Learning to Control Physical Systems 

Instance-based algorithms are excellent choices for solving learning tasks in which control 
knowledge must be learned for dynamic physical systems. These applications require that 
learning algorithms respond and learn in real time. All IBL algorithms can learn quickly sim­
ply by storing newly presented instances. An IBL algorithm can also support quick response 
times by either (1) restricting the number of instances stored in its partial concept descrip­
tion, (2) using smart indexing techniques which discard old and less accurate instances, or 
(3) by reducing the number of attributes consulted during classification attempts. This sec­
tion describes three IBL algorithms that employ these respective methods for decreasing the 
time required to derive predictions. 

Balancing A Pole 

CART (Connell & Utgoff, 1987) is an IBL algorithm that employs the first alternative 
mentioned above: it significantly reduces the number of instances stored. CART was applied 
to the cart-and-pole problem (Michie & Chambers, 1968; Selfidge, Sutton, & Barto, 1985), 
where the objective is to balance a vertically-placed pole on a cart traveling along a one­
dimensional track of bounded length. Instances are defined in a four-dimensional space 
whose numeric-valued attribute dimensions are 

1. the position of the cart on the track, 

2. the velocity of the cart, 

3. the angular position of the pole, and 

4. the angular velocity of the pole. 

The learning algorithm is given a new training instance in each time step (i.e., 0.02 seconds). 
A learning trial begins with the pole balanced near vertical with the cart centered along the 
track. The trial ends after the pole fall or after it has been balanced for a satisfactorally 
long period of time (e.g., Connell and Utgoff chose 5000 time steps). The operation to 
be controlled is the choice of direction in which to push the cart at each time step. The 
task involves prediction of numeric rather than symbolic values; each stored instance is 
labeled with its degree of desirability for balancing the pole. The CART algorithm, which 
is summarized in Table 7.10, is told that the initial upright position is desirable (i.e., has a 
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Tabl 7 10 S e ummary o f CART' . s mstance-b d 1 ase l 'thm. earnm_g_ a~on 
Component Definition 

Pre-processing Normalization: none 
Performance Similarity: Euclidean distance 

Prediction: Weighted k-nearest neighbor 
Learning Save up to 2 instances per learning trial 

target value of 1). If the pole falls during a learning trial, then the instance/ state that existed 
when the pole's angle from vertical exceeded 12 degrees is chosen as a negative instance and 
is stored with the target value -1. If the pole remained standing for at least 100 time steps, 
then a heuristic is used to select a relatively good instance that occurred during the learning 
trial, which is stored with desirability value 1. The prediction function decides which position 
to push in the current time step by comparing the degree of desirability of the current and 
previous time steps. This value is calculated using 

. . . I:iWeight(x,yi)Yt 
Desirab1hty(x) = Ln W . h ( ') , 

i eig tx,i 
(7.12) 

where n is the number of stored instances, Yt is stored instance y's target value (i.e., degree 
of desirability), and weights are found by computing 

n 

Weight(x,i)= II Distance(x,yj) 2 , 

j#.i,j=l 

(7.13) 

where the Distance function computes the Euclidean distance between stored instance Yi 
and the newly presented instance x. The effect of this function is to give more weight to 
highly similar instances when computing target value predictions. If the computed degree 
of desirability increased from the previous time step to the current, then the action used for 
the last time step (i.e., either push left or push right) is repeated for the current time step. 
Otherwise, the opposite action is chosen. CART's results were excellent; in 14 separate ex­
periments, it always balanced the pole within 18 learning trials. Since at most two instances 
are stored for each trial, it needed to save at most 34 instances before balancing the pole 
indefinitely. The fewest number instances stored by CART was 10. In comparison, previous 
approaches for solving this problem required between 75 and 10,000 learning trials. 

CART's main contributions to the IBL framework are a demonstration of how to learn to 
control a dynamic physical system and, more specifically, the realization that a strict domain­
specific critic can be used to carefully choose and limit storage requirements. However, this 
method is insufficient if larger magnitudes of instances are required to achieve good predictive 
accuracy. CART's strategy is also insufficient for more challenging target functions that 
exhibit concept drift (Schlimmer & Granger, 1986) since CART assumes that the target 
function does not change over time. 
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Table 7.11: Summary of Moore's (1990) learning algorithm. 
I Component I Definition I 

Pre-processing Normalization: linear 
k-nearest neighbor smoothing 

Performance Similarity: Euclidean distance 
Prediction: Thresholded nearest neighbor 

Learning Store all instances 
Discard old and less accurate instances 

Learning to Control Motor Behavior 

Instance-based learning strategies must employ a smart indexing strategy to support 
fast response times when training sets are large. They must also accept more instances 
and continuously remove old and less useful instances when the target concept drifts over 
time. Moore (1990) combined these strategies in his algorithms for learning robotic control 
information. Moore's algorithm, which is summarized in Table 7.11, stores instances in 
a k-d tree (Samet, 1990; Sproull, in press). As mentioned earlier in Section 4.2.1, this 
strategy significantly decreased the time required to determine an instance's nearest neighbor. 
Instances in Moore's applications are represented by (state,action,behavior) triples, where 
the state describes the position and velocity of a robotic arm from the perspective of the 
robot's retina, the action is vector of joints applied to the state, and the behavior is the 
observed acceleration of the arm on the retina. Since the applications are subject to noise, 
Moore also stored an additional "smoothed" behavior value with each state that is calculated 
using a weighted k-nearest neighbor function on all the instance's neighbors within a pre­
specified distance. Storage requirements were minimized by discarding old instances and 
those whose smoothed behavior value is sufficiently different from the perceived behavior 
value. Moore's algorithm can be applied to situations in which the state and requested 
behavior are known while the action is the target attribute. In these cases, the nearest 
stored neighbor is located using the instance's state and smoothed behavior as the predictor 
attributes. However, if the nearest neighbor's distance is larger than another pre-specified 
threshold, then a procedure is used to prevent the choice of poor actions and encourage 
the robot to experiment with promising alternative actions. Moore (1990) showed that his 
algorithm can learn to guide a doubly-jointed robotic arm along a sphere, even in the presence 
of noise and drastic concept shift. The algorithm was also applied to the more challenging 
task of batting a thrown ball into a bucket, where distances were measured along a single 
dimension. In this case, the learning task was partitioned into three subtasks: (1) predicting 
when the ball must be hit, (2) computing an acceleration of the arm to the ball, and (3) 
positioning the bat appropriately to strike the ball with the correct force to return it into 
the bucket. Each subtask can be solved using an application of Moore's algorithm. As in 
the first experiment, information such as the location of the end of the arm (i.e., where 
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the bat is located), the location of the bucket, the location and velocity of the ball, and 
the ball's landing location are all given to the learning system. All three subtasks can use 
the same representation used previously for instances, but the tasks use the information in 
an associative manner. That is, in some cases the target attribute is the behavior while in 
others it is the action. Moore's algorithm was able to learn to bat the ball into a statically 
located bucket after 5 learning trials. It also learned to bat the ball close to the bucket even 
if it was randomly relocated after a periodic number of learning trails. Finally, it was able 
to accomplish this same task even when the speed and direction from which the ball was 
thrown varied with each trial. 

Moore's (1990) main contribution was an impressive demonstration on how an instance­
based approach can be used to solve robotic control tasks. Moore's algorithm exploits the 
fact that IBL algorithms can determine when sufficiently new situations occur, at which 
time experimentation is required rather than duplication of the action stored with the near­
est but dissimilar stored instance. Another lesson learned is that forgetting by removing 
less accurate instances can support good !BL performance in applications involving concept 
drift. Similar processes for removing instances and rules are used in several other learn­
ing algorithms in both the machine learning and experimental psychology literatures (e.g., 
Hintzman, 1986; Schlimmer, 1987a; Fisher, 1987; Minton, Carbonell, Etzioni, Knoblock, & 
Kuokka, 1987; Markovitch & Scott, 1988; Aha & Kibler, 1989). Finally, Moore's second 
experiment demonstrates how domain-specific knowledge can be used to structure problem 
solving into a set of IBL applications. 

A Cost-Sensitive Learning Algorithm 

Moore's robotic applications involve objects that have a single operation; although there 
is a choice for how to move the arm, there is no choice among different operations such as 
walking, moving the arm, or grabbing an object. These operations have different compu­
tational costs involved with determining their values. Under these conditions, a prudent 
algorithm would employ a cost-effective attribute evaluation method rather than blindly 
evaluate all available attributes. That is, control is required to choose which attributes to 
evaluate based on their cost-effectiveness. Tan and Schlimmer (1990) studied this problem 
and compared the performance of IB2 with a cost-sensitive variant, which they named CS­
IBL. This algorithm is summarized in Table 7.12. CS-IBL differs from IB2 in that it limits the 
number of attributes and instances involved in computing the similarities required to make 
nearest neighbor predictions. CS-IBL repeatedly selects one stored, cost-effective example 
and evaluates one of its attributes until the nearest neighbor is located. More specifically, 
CS-IBL selects the stored instance y that maximizes the ratio of expected match success to 
cost, defined as 

(7.14) 



212 David W. Aha 

Table 7.12: Summary of the CS-IBL algorithm. 
I Component I Definition 

Pre-processing Normalization: linear 
Performance Similarity: Restricted Euclidean distance 

Prediction: Incremental nearest neighbor 
Learning Store only misclassified instances 

where P' is the set of predictor attributes evaluated for y but not for the new example x, 
Pr( x; = Yi) is the observed frequency with which the two instances have the same value 
for attribute i (sorted in decreasing order of Pr(x; = y;)/C(i) ratios), and C(i) is the cost 
required to evaluate predictor attribute i. CS-IBL chooses an inexpensive attribute that 
has a likely value (i.e., one that maximizes Pr(x; = Yi)/C(i)). This is repeated until the 
upper bound on the distance from the selected stored example is less than the lower bound 
for one from any other class. If a misclassified instance's evaluated attributes are identical 
to those for the misclassifying instance, then additional attributes of the new instances 
are evaluated until it is sufficiently distinguishable from the stored instance, where this 
difference threshold is determined by a pre-specified parameter setting. Tan and Schlimmer 
applied IB2 and CS-IBL to a domain in which the objective of the Heath Hero 2000 was 
to determine how to grasp seven classes of cylindrical objects. CS-IBL reduced the overall 
computation time from over 2100 seconds to about 100 seconds, but it also doubled IB2's 
error rate. Experiments with irrelevant attributes increased CS-IBL's computation time 10% 
and its error rate from 11.6 to 15.5 before convergence. IB2's computation time increased 
by 50% while its error rate was unaffected. Experiments with a simple artificial domain 
showed that CS-IBL requires less time to converge, generates more errors before convergence, 
evaluates fewer attributes, and its computational costs remain relatively constant with the 
introduction of additional irrelevant attributes (although its errors increase). In summary, 
the cost-sensitive IBL algorithm decreased costs, incurred more classification errors during 
training, but also increased learning rate. 

Tan and Schlimmer's (1990) experiments are the first evaluation of algorithms that 
attempt to reduce training costs for supervised learning tasks. Their central contribution to 
the IBL framework concerns the relationship of the similarity and prediction functions; the 
!BL framework should be extended to allow the prediction function to control the behavior of 
the similarity algorithm (i.e., choose which attributes and instances for which to compute 
similarity). Figure 7.3 displays the extended performance component of the IBL framework. 

All three algorithms in this section are given domain-specific information to improve 
their efficiency. For example, CART was given a domain-specific critic to determine which 
instances to save, Moore's algorithm was told how to decompose a difficult volleying task, 
and CS-IBL was given the relative costs of its available attributes. This domain-specific 
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Tabl 7 13 S e : f 0 t' . t' . t ummary o p lffilS s ms ance-b d 1 ase 1 'thm. earnm_g_ a!,g_on 
Component Definition 

Pre-processing Normalization: none 
Performance Similarity: Product of feature similarities 

derived from a rule-based domain theory 
Prediction: Weighted k-nearest neighbor 

Learning Stores all instances 
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information is drawn from an underlying theory that describes the relationships of differ­
ent objects in the domain. The following subsection summarizes two IBL algorithms that 
generate explanations of their classifications based on the underlying domain theory. 

7.2.4 Using Domain Theories to Explain Classifications 

Optimist 

Clark (1989) applied an IBL algorithm to the problem of geologic prospect appraisal. 
The instance-based learning algorithm used in his system, named Optimist, is summarized 
in Table 7.13. Optimist is given interpreted well information (i.e., instances), relevant seis­
mic information (i.e., location of faults), and a domain theory of rules that help to define 
its similarity function. Optimist's prediction function is a similarity-weighted all-neighbor 
algorithm. Two instances' similarity is defined as 100 times the product of their attribute 
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Rule for Major Faults:: 
if fault (F) is between~rospect..and_well 
and fault(F) isn't postdepositional 
and type of fault(F) is major 
then major_fault(f) major fault attribute weight"' 0.4 
else major_tault(f) major fault attribute weight"' 1.0 

Distance Rule: : 
if the distance between a prospect and a well is D kilometers 

then Distance (D) modifier = 1001~~x 5 

Figure 7.4: Two rules used by Optimist's similarity function. 

value similarities, which are determined by a rule-based domain theory. Two of these rules 
are shown in Figure 7.4. As an example, suppose that a prospecting site lies 5km from 
a previously explored well and that a major fault lies between them. If the only two at­
tributes defining instances are distance and the presence of intervening major faults, then 
these instances' similarity is defined as 

100 x 0.4 x (100 - (5 x 5))/100 = 30 (7.15) 

Clark calls this an estimate of the relevance of the stored instance towards predicting the 
target values for the prospecting site, which are the site's reservoir thickness and porosity. 
Clark views the relevance-constructing process as an explanation-generation process. In 
effect, Optimist's similarity-weighted all-nearest neighbor prediction is based on explanations 
of the relevance of stored instances for the purpose of predicting the new site's target values. 
Optimist was delivered to the Enterprise Oil Company in 1989 and has been used regularly 
on a weekly basis. The eight experts that have used the system remain enthusiastic about 
its ability to help in the appraise prospective drilling sites. 

The main contribution of Optimist is the use of a rule-based theory to dynamically 
determine instance similarities. Spatial information (i.e., the location of fault lines) is also 
used to determine these similarities, but it is not specifically stored with any instance. 
Therefore, Optimist extends the !BL framework with additional knowledge that is used by 
the similarity function. This extension is reflected in Figure 7.5. Optimist's similarity 
function is similar the one used in the context model (Medin & Schaffer, 1978). Their 
respective prediction functions also are similar in that they are defined by similarity-weighted 
k-nearest neighbor functions. However, the context model predicts symbolic target values 
while Optimist solves numeric prediction tasks. Also, Optimist uses a rule-based theory to 
set its attribute weights whereas there is no process model for setting the context model's 
weights. Nonetheless, Optimist's IBL algorithm can be viewed as an instantiated variant of 
the context model. 
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Figure 7.5: The IBL framework's performance component extended to allow domain theories 
to help derive similarities. 

Protos 

Optimist uses a rule-based theory to determine attribute similarities. Protos (Bareiss, 
Porter, & Wier, 1987; Bareiss, 1989a) is another IBL system that uses domain-specific 
information to determine similarities. Protos is a learning apprentice; it is a knowledge 
acquisition system that interacts with the user during the normal course of problem solv­
ing. Protos is unique among the algorithms described in this section in that it learns a 
network of features (i.e., symbolic attribute-values), concepts, and exemplars (i.e., possibly 
generalized instances. Four types of indices are used to relate these objects in the category 
structure network. First, remindings are indices in the network that associate features or 
exemplars with concepts. Remindings have associated strengths; strong remindings indicate 
that the feature or exemplar is strongly associated with the corresponding concept. Thus, 
they can be thought of as attribute weights. Second, censors indices indicate that a feature 
or exemplar is negatively associated with a concept. Absolute censors completely reject po­
tential classifications while weaker censors weaken hypotheses that a new instance will be 
classified according to the censor's associated concept. Third, prototypicality indices link 
concepts with their stored exemplars. The prototypicality of an instance is defined as a 
function of its accuracy in previous classification attempts. Finally, difference indices are 
used to distinguish similar instances. These links connect two similar exemplars according 
to their distinguishing features. The Protos system, which is summarized in Table 7.14, as­
signs classifications using a two-step process: (1) hypothesis construction and (2) hypothesis 
confirmation. Step (1) combines remindings and censors associated with the new instance's 
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Table 7.14: Summary of Protos's instance-based learning algorithm. 
I Component I Definition 

Pre-processing Normalization: none 
Performance Similarity: attribute-weighted city block 

derived from explanations of featural equivalence 
Prediction: nearest neighbor derived 

from knowledge-based pattern matching 
Learning Merges sufficiently similar instances 

Stores all others 
Updates strengths of links in network 
Adds difference links 
Updates domain knowledge through user interaction 

features to yield a list of possible classifications. The combining process uses nineteen heuris­
tics to explain the relevance offeatures to category memberships (e.g., two terms which share 
a common function are likely to be equivalent). Step (2) begins by comparing an instance 
to the most prototypical instance in the most probable target concept. Their similarity is 
defined as their number of shared features. However, Protos also constructs an explanation 
of the shared features equivalence using a process called knowledge-based pattern matching. 
This process locates domain knowledge in the category network that relates the features in 
the two instances. The domain knowledge consists of a sequence of relations that attempt 
to equate the two instance's features. Eight types of relations can be encoded in Protos's 
category structure for this purpose (e.g., generalization relations, part-to-whole relations, 
causal relations, etc.). Nineteen different heuristics can be used to formulate explanations 
of the equivalence of features (e.g., the length of a sequence of generalization relationships 
should not diminish belief in its quality). If unmatched features exist that have high remind­
ing values, then Protos traverses those features' difference links that lead from the stored 
instance to others that were closely identified with it during past classification attempts. 
When a sufficiently similar nearest neighbor is located, Protos presents it to the teacher for 
confirmation. If the teacher rejects the stored exemplar as sufficient for explaining concept 
membership, then Protos requests the teacher to determine which of its assumptions lead to 
the incorrect match. Protos then cycles with this new knowledge, repeating the process until 
the teacher accepts a candidate. At this time, the new instance will e.ither be merged with its 
nearest neighbor if their similarity is sufficiently high or otherwise stored as a new exemplar 
in the category network structure. The merging process makes explicit in an exemplar a 
relationship that was implicit in Protos's domain knowledge, such as replacing features by 
more general ones. Strength values for remindings, censors, and prototypicality links are 
updated based on Protos's behavior during the classification attempt. Finally, difference 
links are inserted between the new exemplar and any that matches that were rejected by the 
teacher during the classification attempt. 
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Protos was applied to a clinical audiology database containing 200 training and 26 test 
instances representing 24 categories. Instances were described by an average of approximately 
10 Boolean attributes. 14 Protos retained 120 cases. Its accuracy on test instances was 92.3% 
(i.e., 24/26) on its first attempt to classify each instance. When directed to attempt a second 
classification, Protos can correctly classify all 26 test instances, even when no additional 
knowledge is provided. Two professional clinicians recorded 69% and 85% accuracies on the 
same test data, while the mean accuracy of 17 graduate students studying clinical audiology 
was 69%. In summary, Protos's accuracy was better than experts who had spent years 
studying clinical audiology. 

Protos's main contributions to the IBL framework is a demonstration of how a seman­
tically rich definition for similarity can be used to guide the instance-based learning process. 
This is combined with an indexing scheme that greatly reduces the number of instances 
entering into similarity comparisons. Other novel contributions include the use of censor 
links (i.e., negative attribute weights) and a detailed demonstration of how users can supply 
additional domain knowledge to the IBL algorithm. 

Several of Protos's innovations are similar to the contributions of other IBL algorithms. 

1. Both Protos and CS-IBL (Tan & Schlimmer, 1990) incrementally update the similarity 
between the new instance and a stored instance through a cyclic process between its 
prediction and similarity functions. 

2. Protas and Moore's (1990) algorithm both use tree-based indexing structures to sig­
nificantly reduce similarity comparisons. 

3. Protos, IB4 (Aha, 1989a), Optimist (Clark, 1989), and NGE (Salzberg, 1990), all use 
weights to encode attribute relevance information. 

4. Like NGE and NEXUS (Bradshaw, 1987), Protas generalizes new instances that are 
similar to previously stored instances and retains those that are sufficiently different. 

However, none of these other algorithms learn anything equivalent to the domain-specific 
network that Protas uses to relate features, exemplars, and concepts. Of course, other IBL 
algorithms have unique capabilities that are not supported in Protas. These abilities include: 

1. processing numeric-valued attributes (e.g., Kibler, Aha, & Albert, 1989), 

2. processing symbolic-valued attributes (e.g., Stanfill & Waltz, 1986), 

3. tolercating concept drift (Moore, 1990), 

4. tolerating noise and irrelevant attributes (e.g., Aha, 1989a), 

5. predicting numeric values (e.g., Clark, 1990), and 

6. sensitivity to attribute measuring costs (Tan & Schlimmer, 1990). 

14This database is characterized by a large percentage of missing attribute values. 
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Table 7.15: Summary of ALFA's instance-based learning algorithm. 
I Component I Definition j 

Pre-processing Normalization: Standard normal deviation 
Performance Similarity: Attribute-weighted Euclidean distance 

Prediction: 8-nearest neighbor average 
- value-difference thresholds decrease search 

Learning Stores all instances 
Post-processing Modifies output using a rule base 

Nonetheless, Protos is an excellent example of an exemplar-based learning apprentice. Even 
though it has only been applied to the domain of clinical audiology, it is highly probable 
that Protos can be successfully applied to other knowledge-intensive tasks. 

7.2.5 Lessons from an Industrial Application 

None of the previous eleven IBL algorithms surveyed in this section are being used to 
support an industrial task on a daily basis, although Optimist receives weekly use. However, 
ALFA (Jabbour et al., 1987) is used on a daily basis by the Niagra Mohawk Power Company 
(NIMO) as a load forecasting assistant. NIMO supplies electricity to 3.5 million people in 
669 cities, towns, and villages covering approximately 24,000 square miles in New York State. 
The company employs several experts to predict expected power load requirements for its 
109 coal, oil, natural gas, nuclear, and hydro power-generating facilities on an hourly basis. 
NIMO wastes money when large coal generators and other plants are needlessly activated 
due to excessively high predictions for power load. Money can also be squandered when 
excessively low predictions cause the company to buy expensive electricity from other power 
companies. Thus, millions of dollars can be saved by making accurate power load predictions. 
ALFA, which was installed in 1987, has helped NIMO to achieve this goal. ALFA is the first 
automated load forecasting assistant of its kind to be installed in the United States. 

Although ALFA is the most successful IBL algorithm to date, measured in its ability to 
solve a practical problem of interest to a large community, it is a relatively simple algorithm 
that requires little extension to the IBL framework. ALFA's instance-based algorithm is 
summarized in Table 7.15. ALFA is given a database of hourly weather data extending 
over a period of 10 years (i.e., 87,672 instances). Yearly averages are obtained and used to 
normalize the instances to account for population growth, which increases average power 
load. ALFA doesn't learn its attribute weights; they were derived from a multivariate linear 
regression analysis on 15 years of hourly data. Instances are composed of 16 attributes, 
including hour, day, year, and the target attribute (i.e., numeric power load). The other 12 
predictor attributes are three sets of four weather variables obtained from the airports at 
three cities in New York State. These variables are dry bulb temperature, relative humidity, 
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wind speed, and opaque cloud cover. ALFA uses the coefficients from the regression analysis 
in its similarity function - an attribute-weighted Euclidean distance measure. Its predictions 
are generated using a simple 8-nearest neighbor function. However, as in Protas and CS-IBL, 
ALFA's prediction 'function controls the set of stored instances for which similarities will be 
computed; similarities are computed only for those stored instances whose hour is within 
one hour and whose day is within one month of the current instance's hour and day. These 
can be interpreted as value-difference thresholds in the similarity function. For example, 
any stored instance whose hour value differs by more than 1 with the current instance's 
hour value are discarded from the potential set of classifying instances. ALFA stores all new 
instances; it is continually updating its data base. 

ALFA unnormalizes the prediction output by its IBL algorithm. However, additional 
processing is required to account for social factors influencing power load that are not eas­
ily derivable by the empirical learning algorithm. These include hourly, daily, and weekly 
variations due to such factors as working hours and sleeping patterns. Other factors include 
holidays, special events, major economic events, Christmas shopping and decorative lighting, 
power plant shutdowns, and plant blackouts. ALFA uses a domain theory of rules to predict 
absolute offsets based on these factors, which is added to the empirical IBL prediction to 
derive a final prediction. Thus, ALFA is similar to Protas (Bareiss, 1989a) and Optimist 
(Clark, 1989) domain-specific knowledge to help make predictions, but it does not integrate 
this knowledge into its performance component. It instead uses domain knowledge to modify 
the prediction output by the IBL algorithm. This post-processing step is unique to ALFA. 

ALFA's predictions were within 23 average deviation when trained on data collected in 
during 1970-1983 and tested on the data collected in 1984. This is equivalent to NIMO's 
experts' accuracy on the same data. ALFA's main benefit is in its efficiency; it requires only 
twenty seconds to generate daily predictions that require two hours by human experts. Before 
installing ALFA, NIMO relied on daily rather than hourly predictions from its experts. Since 
the system inputs weather data collected via satellite to achieve fast response times, NIMO 
can now update its predictions at any time. For example, NIMO employees use ALFA to 
generate updated predictions to determine how potential meterological changes might affect 
power load requirements. 

In summary, ALFA (Jabbour et al., 1987) is currently the most successful IBL system. 
It demonstrated an alternative strategy for amalgamating domain-specific information in 
which empirical predictions were derived separately from domain-specific influences. This 
requires an additional post-processing component for the IBL framework, as displayed in 
Figure 7.6. ALFA also used a value-difference threshold to account for periodic changes 
in the target function, which limited similarity computations to only the relevant stored 
instances. Finally, this system is the only one that sets attribute weights based on regression 
coefficients. 
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Figure 7.6: Lessons with ALFA suggest that the IBL framework should be extended with a 
post-processing component. 

ALF A's learning component is limited; it doesn't learn new relational information like the 
category structure used in Protos. It also doesn't learn to update its rule-base or its attribute 
weights. An interesting question is whether ALFA's general approach, once extended to 
automate knowledge acquisition, can be used in similar applications. 

7.2.6 Summary 

Table 7.16 summarizes a major contribution and primary application(s) of the dozen IBL 
systems surveyed in this section. The contributions refer to novel suggestions concerning 
the framework described in Chapter 2. The developers of these systems might suggest 
alternatives and/or additional contributions than the ones shown in this table. However, 
the purpose of this section is to demonstrate that the IBL framework helps to compare and 
contrast a large number of inductive learning algorithms that form the basis of a growing 
paradigm in the machine learning community. All of these systems, with the exception of 
Sebestyen's (1962) pattern recognition system, were developed within the past six years. 
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T bl 7 16 S a e ummary o f th . t ems ance-b d 1 ase t earnmz sys ems. 
Name Major Contribution Primary Application 

NEXUS Instance-averaging Speech recognition 
(Sebestyen, 1962) Distance thresholding Speaker recognition 
NGE Learning hyper-rectangles Medical diagnosis 
MBRtalk Processing symbolic values Word pronunciation 
PRO Activation-based network Word pronunciation 
PEELS Applications Molecular biology 
CART Domain-specific storage Pole balancing 
(Moore, 1990) Indexing/Maintenance method Robotic motor control 
CS-IBL Cost sensitive prediction Robotic decision control 
Optimist Domain-specific similarity Oil prospecting 
Protos Learning apprentice Clinical audiology 
ALFA Post-processor component Power load prediction 

The algorithms described in this survey, with the exception of Bradshaw's (1987) dis­
junctive spanning algorithm and Salzberg's (1990) NGE, utilize far more domain-specific 
knowledge than the IBn algorithms studied in this dissertation. This includes domain spe­
cific information concerning how to represent instances, choose which instances to store, 
determine which instances to discard, assign costs to attributes, and reason about the ap­
plication domain's theory. The main utility of domain-specific information is to improve the 
algorithm's learning efficiency. An interesting research problem is to determine how, and 
under what conditions, can this domain-specific information can be learned without resort­
ing to assistance from experts. The investigation could show many negative results, but the 
experiments in Chapter 4 showed that domain-independent methods can at least determine 
domain-specific information such as the predictive effectiveness of stored instances and rela­
tive attribute relevance. Other investigations might explore how the benefits of the systems 
surveyed in this section can be combined without sacrificing efficiency. 

Many dimensions for comparing and contrasting the dozen systems have been ignored 
or not highlighted. In this regard, this survey is incomplete due to its attention to the IBL 
framework. Also, several other algorithms could have been surveyed. Some were included in 
Section 7.l's discussion of pattern recognition algorithms. Likewise, some of the algorithms 
presented here could equally well have been presented in that section. The following section 
briefly surveys algorithms that, while not properly categorized as instance-based algorithms, 
depend on the storage of specific instances to achieve their processing goals. 
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1.3 Using Instances in Other Learning Paradigms 

Several algorithms specified by other learning architectures depend on the storage of 
specific instance information to achieve their goals. Accordingly, this section describes the 
use of specific instance information in algorithms specified by four learning paradigms that 
use different representations for concept descriptions: cases, production rules, decision trees, 
and connectionist networks. The focus of the following discussion is on examples of how 
algorithms specified by these learning paradigms use specific instance information. 

7.3.1 Case-Based Reasoning 

Several of the algorithms surveyed in Section 7.2 have been referred to as examples 
of case-based reasoning (CBR) systems. These include MBRtalk (Stanfill & Waltz, 1986), 
Protas (Bareiss, 1989a), and PRO (Lehnert, 1987). Case-based reasoning algorithms use pre­
viously processed cases (i.e., instances) to solve a new problem case (Rissland, Kolodner, & 
Waltz, 1989). This definition implies that IBL algorithms are case-based reasoners. However, 
they address few of the issues of interest to the CBR community. In general, CBR algorithms 
do the following when processing a new case: 

1. recall relevant cases from memory, 

2. select the most promising case( s), 

3. construct a solution or interpretation of the new case, 

4. evaluate the output from (3), 

5. apply the retrieved case, and 

6. update the memory by storing or integrating the new case with the memory's previously 
processed cases. 

The key issues in case-based reasoning are the development of methods for 

1. indexing cases and their solutions properly in memory so that they are retrieved when 
similar cases are given to the system, 

2. selecting relevant stored cases, and 

3. adapting solutions stored with previously processed cases so that they can be used 
with the current case. 

While the first list closely resembles the typical processing of instances in the IBL framework, 
the second list distinguishes their goals. First, indexing and memory organization are of 
crucial concern to CBR researchers. These issues were completely ignored in this dissertation; 
instead, my primary interests have been to measure generality, accuracy, learning rate, and 
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storage requirements in applications to supervised learning tasks. Second, cases in CBR 
algorithms usually consist of complex structures that are not necessarily representable using 
a fiat set of attribute-value pairs. For example, cases can be plans, problem-solving traces, or 
even episodes describing a set of interrelated facts. Third, many CBR algorithms operate in 
problem-solving domains whose problems are not usually viewed as simple prediction tasks. 
These algorithm store associated solutions and failures with previously processed cases in 
memory. Retrieved solutions associated with stored CBR cases generally require adaptation 
so that they can be used to solve the new case. This topic has also been ignored in this 
dissertation. 

I would not argue that CBR algorithms are knowledge-intensive and IBL algorithms are 
not. Although I focused on investigating knowledge-poor IBL algorithms in this disserta­
tion, the survey in Section 7.2 described several IBL algorithms that use domain-specific 
knowledge. However, their reasoning mechanisms may differ. For example, IBL algorithms 
have not yet been designed to reason by analogy, at least from the perspective that analogy 
requires knowledge-rich graph-matching procedures (Hall, 1989). CBR algorithms can be 
described as analogical problem solvers. 

Nonetheless, there are several reasons to view IBL algorithms as narrowly-focused and 
memory-intensive CBR algorithms. IBL algorithms address the issues of retrieving relevant 
cases from memory for solving problems framed as classification tasks. They also address the 
task of updating memory after classification attempts, at which time instances are stored or 
generalized and relevant classification information is also updated (e.g., attribute weights, 
prediction records, etc.). Several of the algorithms surveyed in Section 7.2 further blur 
the distinction between IBL and CBR. For example, CS-IBL (Tan & Schlimmer, 1990), 
Protos (Bareiss, 1989a), Moore's (1990) algorithm, NEXUS (Bradshaw, 1985), and PRO 
(Lehnert, 1987) all address the retrieval problem and attempt to minimize the work involved 
with classifying a novel case. All but CS-IBL also use intelligent methods for indexing 
stored cases. Protos additionally addresses the issue of representing failures in the form of 
difference links. However, none of the surveyed IBL algorithms address the task of adapting 
retrieved cases because they were designed to solve relatively simple prediction tasks rather 
than problems that required analogical reasoning. 

In summary, although IBL algorithms can be viewed as a proper subset of CBR al­
gorithms, their fundamental focus is on maximizing predictive accuracy while minimizing 
resource requirements (e.g., time, space) rather than on supporting analogical problem solv­
ing in its entirety. The supervised learning task provides IBL with a focus, which allows 
researchers to more easily evaluate these algorithms empirically. Consider the set of algo­
rithms described in Section 7.2: all of these algorithms have been empirically evaluated in 
challenging applications. Some IBL algorithms have been mathematically examined to de­
termine their problem solving capabilities (e.g., Kibler, Aha, & Albert, 1989; Aha, Kibler, 
& Albert, 1990). Others have also been tested for their ability to tolerate domain character­
istics that hinder the learning process (e.g., Stanfill, 1987; Aha & Kibler, 1989; Aha, 1989a; 
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Bareiss, 1989b; Tan & Schlimmer, 1990). Still others have been evaluated for their psycho­
logical plausibility (e.g., Aha & McNulty, 1989; Aha & Goldstone, 1990). Most publications 
on case-based reasoning focus on issues related to the organization and retrieval of cases from 
memory. Those that do tend to describe single example demonstrations of the methodology 
proposed, but tend not to describe the rigorous mathematical, empirical, or psychological 
analyses such as the ones described in Chapters 3, 4, and 6. For example, none of the 69 
papers presented at the 1989 Case-Based Reasoning Workshop (Hammond, 1989) described 
mathematical evaluations while only two (Bareiss, 1989b; Goodman, 1989) described exten­
sive empirical results and only one (Ross, 1989) summarized extensive psychological evalua­
tions of CBR approaches. In fact, the most thoroughly evaluated CBR systems have all been 
instance-based learning algorithms that were applied to supervised learning tasks (Lehnert, 
1987; Stanfill & Waltz, 1988; Bareiss, 1989a; 1989b).15 CBR algorithms are difficult to an­
alyze, which explains why most evaluations of CBR research have been speculative rather 
than empirical (Hall & Kibler, 1985). In summary, supervised learning provides a focus that 
allows IBL algorithms to be empirically evaluated on narrowly constrained problem-solving 
tasks. 

7.3.2 Production Rules 

IBL algorithms use similarity functions to yield graded matches between instances. 
Thus, they can support partial matching. This is a valuable capability for algorithms that 
learn rules-based concept descriptions (e.g., Michalski et al., 1986; Clark & Niblett, 1989). 
Without it, rules must match exactly to new instances before they can be applied. 

For this reason, Elio & Anderson (1981) extended their ACT rule-based learning system 
to include partial matching capabilities, which allows ACT to determine the degree of match 
between its rules and a given instance rather than determine only which ones the instance 
can instantiate. ACT was proposed as a model of cognitive behavior. Therefore, when Elio 
and Anderson found that specific instance information was required to simulate behavior 
displayed by subjects in their experiments, they also extended ACT to save specific instances. 

IBL algorithms can be used to reduce training sets so that learning algorithms can derive 
rules more efficiently. Michalski and Larson (1978) used this approach in their ESEL pre­
processor for their AQll rule induction algorithm. ESEL's purpose was to reduce training 
sets to more manageable sizes while still providing AQll with sufficient information to yield 

150ne exception to this claim is Fisher's (1987; 1989) evaluations with COBWEB, an incremental algorithm 
that has primarily been used to solve conceptual clustering problems rather than supervised learning tasks. 
Fisher argued that COBWEB can be viewed as an efficient implementation of case-based reasoning because 
it can requires time logarithmic in the number of stored cases to yield classification predictions. COBWEB 
builds a probabilistic concept hierarchy in the form of a tree whose leaves each contain a set of stored 
instances. Its hierarchy-updating functions depend on the storage of specific instance information to re­
calculate conditional probabilities associated with its nodes. 
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Table 7.17: The ESEL algorithm. 
1. Find the distance from each instance to the origin. 
2. Locate the instances x and y that are minimally and 

maximally distant from the origin. 
3. Divide the distance d between x and y into r intervals, 

where r has a pre-specified setting. 
4. Partition the training set into r subsets, where the distances 

to the origin of each instance in the ith subset lie in [ir, (i + l)r]. 
5. Select the s instances in each subset whose power set 

product of distances is maximal (i.e., they are maximally 
distant from each other among the subset). 

6. Union these selected instances to form the edited training set. 
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learn accurate concept descriptions. ESEL selected representative training instances using 
the algorithm described in Table 7.17. This non-incremental editing algorithm attempts 
to choose instances that form ever-increasing rings around the origin. Thus, it will work 
best when the training instances are uniformly distributed around the origin. Later versions 
of the AQnn series of algorithms (e.g., Michalski et al., 1986) did not employ this pre­
processing algorithm, presumably because Michalski and his colleagues learned the same 
lesson discovered later with algorithms that induce decision trees: post-processing concept' 
descriptions is more robust than pre~processing (Niblett & Bratko, 1986; Mingers, 1989a). 

However, Michalski and his colleagues more recently adopted other strategies for their 
rule-based learning algorithms that are inherent in IBL algorithms. First, Michalski (et al., 
1986) introduced a partial matching strategy for AQ15, which helped it to record compara­
tively good classification accuracies in applications with three medical databases. Michalski 
(1990) also introduced the concept of lazy generalization into his rule-based learning algo­
rithms. The main thrust of his approach is that concepts can be represented in two parts: 
a base and a set of inference methods. The base includes assertions describing a rule-based 
concept description, possibly with additional positive and negative instances. The inference 
methods are used to dynamically alter the concept according to the context of the cur­
rent classification task. Thus, Michalski's two-tiered concept description performs limited 
generalization when training instances are introduced and additional processing during clas­
sification attempts. This modification increases the resemblance of the AQ15 system and 
NGE (Salzberg, 1990). Both systems learn hyper-rectangular exemplars to describe con­
cepts. Both systems also employ partial matching strategies - NGE uses a simple similarity 
function while AQ15 has a set of matching functions dependent on the relationship between 
the hyper-rectangle and the instance to be classified. However, Salzberg's algorithm is in­
cremental, learns attribute weight settings, maintains a set of specific instances, and can 
also process numeric-valued attributes without requiring a discretization process that loses 
specific value information. NGE also recorded higher classification accuracies (i.e., 78% to 
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68%) for the breast cancer database (Salzberg, 1990; Michalski, 1990), which is the systems' 
only common application domain. 

Part of Michalski's (1990) motivation for retaining a non-incremental rule-based ap­
proach for concept induction is due to his belief that IBL systems cannot identify exceptional 
instances, support context-dependent classifications, record changes to concepts, or store in­
variant information concerning concepts. Recent work with IBL algorithms have refuted 
these claims. For example, NGE (Salzberg, 1990) identifies exceptional instances, IB4 (Aha, 
1989a) and GCM-ISW (Aha & Goldstone, 1990) support context-dependent classifications, 
Moore's (1990) algorithm can tolerate concept shift, and several IBL algorithms retain some 
invariant information in their concept descriptions such as classification records, attribute 
weights, and higher-order generalizations. 

7.3.3 Decision Trees 

Algorithms that learn decision trees have a tremendously successful application record 
(Michie, 1990; Quinlan et al., 1986; Several such algorithms have been described in the 
machine learning literature, including RuleMaster (Michie et al., 1984), CART (Breiman et 
al., 1984), ID3 (Quinlan, 1986a) and Assistant-86 (Cestnik et al., 1987) These four algorithms 
derive decision trees by recursively partitioning the training set based on the selection of a 
most informative attribute. An attribute test is associated with each interior node n of 
the tree that partitions the training instances funneled to n. An instance i is classified by 
following a path through the tree, beginning from the root, whose attribute values match i's 
until a leaf node l is reached, at which time a classification is made based on a function of the 
target values corresponding to the training instances that were funneled to l. Recent advances 
in this area include the development of decision trees algorithms that support the automatic 
translation to rules (Quinlan, 1987), probabilistic classification (Quinlan, 1990a), efficient 
multi-attribute splitting techniques (Utgoff, 1989; Utgoff & Brodley, 1990), and constructive 
induction (Pagallo, 1989; Matheus & Rendell, 1989). Studies of decision tree algorithms 
have found that they tolerant noise effectively (Quinlan, 1986b ), perform better with post­
pruning rather than pre-pruning methods (Mingers, 1989a), are relatively insensitive to 
the splitting algorithm (Mingers, 1989b ), and tolerate missing attributes values effectively 
(Quinlan, 1989). 

Schlimmer and Fisher (1986) were the first to publish results on an incremental algorithm 
for learning decision trees. Their motivation for introducing the incremental ID4 algorithm 
is the same as Michalski and Larson's (1978) for pre-processing AQll 's training sets: both 
methods reduce training costs. However, ID4 does not require a separate pre-processing 
step. Instead, it incrementally updates a decision tree as training instances are processed; it 
does not need to have at its disposal the complete training set before it builds the tree. 
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An important characteristic of incremental learning algorithms is that they have low 
updating costs. However, Schlimmer and Fisher expected that ID4 requires several passes 
through the data set (i.e., one per level in the tree) to stabilize the tree before an ID3 
equivalent tree will be constructed. This prompted the development of ID5R (Utgoff, 1989) 
which requires only one pass to correctly classify all training instances. ID5R transforms 
the tree at a node n when an alternative test yields a more informative partition of the 
training instances funneled to n. The transformation process depends on the storage of 
specific instances at the leaves of IDS to support the dynamic re-evaluation of each attribute 
test's information gain. Van de Velde's (1990) IDL incremental algorithm for constructing 
minimal-sized decision trees also depends on the storage of specific instance information to 
achieve its goal. 

In summary, algorithms that induce decision trees incrementally use specific instance 
information to guide the tree-updating transformation process. Instances are used not for the 
purposes of deriving inductions, but instead for the purpose of improving learning efficiency 
by reducing updating costs. 

7.3.4 Connectionist Networks 

Specific instance information also can be used to improve the performance of connec­
tionist algorithms. For example, Volper and Hampson (1987) investigated the use of specific 
instance detectors (SIDs) as additional attributes in multi-layer perceptron networks for 
learning Boolean functions. They found that adding SIDs can only improve the convergence 
rate of perceptron training. Furthermore, they found that, if only a limited number of SIDs 
are available, they are best used to learn the classifications of exceptional instances. Finally, 
the number of adjustments required for the combined algorithm was found to be empiri­
cally lower than when using either SIDs or the base set of features alone for learning several 
different types of Boolean functions. 

Volper and Hampson's work is one of the few on adding links between nodes that are 
activated for specific instances. At an extreme, their system could delegate one hidden unit 
per training instance; hidden units would maximize their output for a specific instance. An 
alternative strategy would (1) link only the input attributes rather than SID detectors to 
inputs on hidden units and (2) initialize the hidden units to recognize a specific instance. 
That is, the hidden units' output would be maximized when the input represents their 
encoded specific instance. Using sigmoidal functions, the hidden units could be designed to 
activate according to a function of their "distance" from the input instance. If the network 
has one output node per target class and outputs of each hidden unit Hi activates the class 
corresponding to its encoded instance and inhibits all other output nodes, then the weights 
on links between nodes can be set to simulate the nearest neighbor function. This network 
is summarized in Figure 7. 7, which depicts the structure of a network for concept learning 
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Figure 7.7: Structure for a nearest neighbor network. 

when the training set consists of N instances in ad-dimensional instance space for an m-ary 
classification task. Weights for this multi-layered network can be updated using a feed­
forward approach. With appropriate extensions, the k-nearest neighbor algorithm can also 
be implemented as an artificial neural network (Specht, 1990). 

While the nodes of a multilayered perceptron networks learn hyper-planes, the nodes in 
an instance-based network learn to attend to hyper-polygonal areas in the instance space. 
Generalizations are determined by interpolating the predictions of hidden-instance nodes in 
the instance space. If the similarity function decreased exponentially with distance, as it 
does in the exemplar-based process models described in Chapter 6, then the interpolation 
is constrained to correctly classify all of the training instances. In effect, this means that 
the multi-dimensional interpolation mapping from training instances to classifications must 
pass through the training instances. Therefore, k-nearest neighbor networks with an expo­
nential similarity function are a subset of networks whose hidden nodes compute radial basis 
functions (Broomhead & Lowe, 1988). Radial basis function (RBF) networks contain hidden 
nodes that compute an exponentially decreasing function of the weighted distance of their 
inputs. Kruschke's (1990) ALCOVE model, which was described in Section 6.3, is a sim­
ple example of an RBF network. However, while typical RBF networks encode attentional 
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strengths in hidden nodes, ALCOVE encodes attentional strengths in the input nodes, which 
gives it the power of the GCM-MW model (Section 6.4). Attentional weights serve to stretch 
and shrink the instance space as they do in IB4 (Section 4.4). The activation of ALCOVE's 
hidden node Hi is computed using the function 16 

Activation( Hi) = e-c;lnput..Distance(H;)2 (7.16) 

where 
d 

InpuLDistance(Hi) = L w;IHi, - Activation(In;)l 2 (7.17) 
i=l 

where Ci is a constant that determines the degree of the exponential gradient, w; is input 
node In;'s attribute weight, and Hi, is the attribute value of hidden node Hi for predictor 
attribute j. The ALCOVE model sets the RBF hidden nodes location to an arbitrary 
position in the instance space. The Gaussian spheres around an RBF node overlap. Each 
hidden node responds to a small area in the instance space. Weights from a hidden node to 
an output/category node Oc indicates the association strength between the nodes region in 
instance space and category c. The activation at e's output node is simply the sum of the 
product of these weights with the corresponding hidden node's attentional weight. Weight 
settings are updated using a gradient descent function. 

RBF networks have a guaranteed learning procedure and can explicitly model nonlinear 
relationships (Broomhead & Lowe, 1988). This contrasts with multi-layered perceptron 
networks, which learn weights using an unconstrained lea.st squares optimization process, 
since there is no global convergence theorem for these algorithms. A serious problem with 
RBF networks is that they tend to overfit the training set. Broomhead and Lowe describe 
variants of strict RBF networks in which the interpolation constraint is relaxed so that 
the function need not classify all of the N training instances correctly. One way to relax 
these constraints is to use fewer than N RBF hidden nodes. Moody and Darken (1988) 
examined several such RBF networks and used an adaptive k-means clustering algorithm 
(Kohonen, 1988) to learn locations for a pre-determined number of hidden RBF nodes. While 
this process learns the centers for the radial basis functions, the network learning process 
determines their width (i.e., the gradient of their exponential function). Moody and Darken 
compared their RBF network to the standard back propagation algorithm (Rumelhart et 
al., 1987) on a challenging time-series prediction task. They found that their algorithm 
can achieve similar accuracies but requires only 0.01 % of the cpu time required by back 
propagation (BP). They explained that RBF networks learn more quickly because, unlike 
the hidden nodes in the BP algorithm, their hidden nodes are tuned to only a small portion 
of the instance space. Also, BP requires three layers of weights while the self-adaptive RBF 
network requires only two. In summary, BP is slow because it performs a global fit to the 
training data. Self-adaptive RBF networks require only local fits. However, these networks 

16 ALCOVE's (Kruschke, 1990) presence parameters for tolerating missing attribute values are ignored 
here to simplify the discussion. 
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are limited; they are not appropriate for tasks involving real-time information processing due 
to their large storage requirements. Nonetheless, significant increases in learning rates result 
from replacing the sigmoidal functions used in hidden nodes with exponentially decreasing 
functions. 17 An interesting topic of research on connectionist networks is to investigate 
whether methods for reducing IBL storage requirements can also be used to reduce the 
number of hidden RBF nodes required to attain fast learning rates. 

One of the drawbacks of the algorithms studied by Kruschke (1990) and Moody and 
Darken (1988) is that they do not exploit localized attention information as is done in 
the GCM-ISW (Aha & Goldstone, 1990). However, Volper and Hampson (1990) recently 
showed that a focusing mechanism can support this behavior. A perceptron focuses on a 
misclassified instance by rotating its weight vector towards the instance by simultaneously 
decreasing its threshold. Quadratic functions that use this procedure represent localized 
attention information by stretching and shrinking their localized descriptions. Therefore, 
their algorithm can simulate the behaviors displayed by GCM-ISW, including asymmetric 
similarity ratings. However, Hampson and Volper note that an exponential number of hidden 
nodes may be required to learn arbitrary Boolean functions in a multi-dimensional space, 
much as storage requirements for IBL algorithms increase exponentially with dimensionality. 
Again, research on storage reduction in IBL algorithms may be able to contribute useful 
methods for reducing the number of hidden nodes required in these networks. 

Poggio and Girosi (1990) have recently related RBF networks to regularization theory, 
which assumes that the mapping from inputs to classes is smooth; small changes in the 
instances cause small changes in the probabilities of classification predictions. Methods in 
regularization theory .select the hyper-surface f that minimizes the function 

N 

H(f) = L(ti - f(Yi)) 2 +.\jjP1112, (7.18) 
i=l 

where ti are the hyper-surfaces's target value predictions for the N training instances Yi and.\, 
the regularization parameter, can be varied to explore trade off between the smoothness of the 
hyper-surface and its degree of consistency with the training set. Poggio and Girosi prove that 
multilayer feed-forward RBF networks can be used to find solutions to Equation 7.18. They 
also describe a self-adaptive method for reducing the number of RBF nodes required that is 
similar to the algorithms examined by Moody and Darken (1988). These learning algorithms, 

17In another example, Specht (1990) reported a speed improvement of 200,000 to 1 when switching from 
BP to an RDF network. The application involved identifying hulls of ships in data donated by the Naval 
Ocean Systems Center. The RBF networks, run on an IBM/PC at 8 MHz, completed a complete cross­
validation study of the 113 instances in the data set in 9 seconds, most of which was spent on screen I/0. 
Back propagation, run on a DEC VAX 8650 and tuned to use a minimal number of hidden units, required 
being run over the span of a weekend. BP recorded an accuracy of 82% compared to 85% by the RBF 
network. Specht guessed that the BP algorithm might attain the RBF network's accuracy if allowed to run 
for 3 weeks. The RBF network was also run on a PC/AT 386 with a 20 MHz clock. It completed in 0.7 
seconds, again with an accuracy of 85%. 
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which perform task-dependent dimensionality reduction using attentional weights, are similar 
to instance-based approaches that employ instance-averaging techniques, storage reduction 
strategies, and learn attribute weights. Poggio and Girosi refer to this general class of RBF 
network algorithms as hyper basis functions and argue that it encompasses several other 
frameworks for prediction, including k-nearest neighbor algorithms. 

As a final note, Wolpert (1990) recently argued that the back propagation algorithm is a 
poor generalizer. He developed a formal and architecture-independent theory of generaliza­
tion that relates the underlying semantics of several different learning approaches. He notes 
that regularization theory comes the closest to matching his generalization theory of surface­
fitting, but argues that regularization theory is too closely tied to viewing generalization as 
surface-fitting. That is, regularization theory is a formalism that disregards constraints of 
what constitutes good generalizations in real-world prediction tasks. According to Wolpert's 
generalization theory, a generalizer should be invariant under rotations, translations, and 
scaling of the instance space and also invariant with respect to the ordering of the train­
ing instances. Learning algorithms that abide by these constraints include all algorithms 
that generalize based on interpolations from an instance's k-nearest neighbors. Wolpert 
showed that, using the overlap similarity function, a similarity-weighted 4-nearest neighbor 
algorithm records a lower misclassification rate (18%) than BP (22%) on the NETtalk ex­
periment (Sejnowski & Rosenberg, 1987). Furthermore, Wolpert found that an extension of 
his algorithm that used statically valued attribute weights could reduce this error rate to as 
low as 7% on the test set. Thus, Wolpert refutes the argument that BP is a good generalizer 
for the NETtalk database. However, Wolpert does not address whether RBF networks are 
compatible with his theory of generalization. He states: 

Nor is there any reason to think that alternative neural net generalization 
schemes . .. would perform any better (in comparison . .. ) at 
these tests. (page 44 7) 

Quite the contrary; as this survey explains, any of Wolpert's algorithms, including the one 
he described in his paper, could easily be represented by an artificial neural network that 
appropriately uses RBF hidden nodes. 

In summary, an exciting branch of research on artificial neural networks has recently 
focused on the use of radial basis functions for hidden nodes in feed-forward networks. The 
behavior and semantics of these networks is highly similar to IBL algorithms that define 
similarity to decrease exponentially with distance and use k-nearest neighbor prediction 
functions. An interesting area of research would be to determine whether variants of storage 
reduction algorithms used in IBL algorithms might be able to help reduce the number of 
hidden nodes used in RBF networks. 
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7.4 Chapter Summary 

This chapter reviewed research related to the study of instance-based learning algorithms 
in the pattern recognition and machine learning literatures. Research on IBL algorithms were 
predated by the study of edited nearest neighbor algorithms, which began with Sebestyen's 
(1962) study of an instance-averaging algorithm, which was applied to the task of speaker 
recognition, and Hart's (1968) condensed nearest neighbor rule, which was applied to the 
task of typewritten character recognition. Algorithms that retain only misclassified instances 
as well as algorithms that retain only correctly classified instances have been examined. 
Research on these algorithms has focused both on empirical studies and on the development 
of rigorous proofs of increased convergence to Bayes optimal rates. The survey of instance­
based learning algorithms in the machine learning literature related a dozen IBL systems 
by focusing on their contributions to the instance-based learning framework described in 
Chapter 2. The majority of publications in this literature have been case studies, including 
applications for power load prediction, oil prospecting appraisal, clinical audiological diag­
nosis, learning robotic control tasks, word pronunciation, and speech recognition. Most of 
the systems surveyed fit well in the IBL framework, although some provide suggestions on 
how it should be extended. Contributions to the framework included cost sensitive similarity 
and prediction functions, methods for supporting learning apprentice systems, methods for 
defining similarity for symbolic attribute values, and several methods for learning abstrac­
tions. Finally, instances have been used in other learning paradigms to support more efficient 
learning behavior. For example, there is a growing interest in connectionist networks whose 
hidden nodes use Gaussian functions rather than linear separators. This class of networks 
can implement most IBL algorithms. 
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Chapter 8 

Contributions and Perspective 

8.1 Contributions of this Dissertation 

The survey in Section 7.2 showed that most investigations on IBL algorithms have fo­
cused on their empirical behavior. Several of these were detailed case study demonstrations 
for supervised learning tasks (Sebestyen, 1962; Stanfill & Waltz, 1986; Jabbour et al., 1987; 
Kurtzberg, 1987; Bareiss, 1989a; Clark, 1989; Moore, 1990). Some also described compar­
isons to other algorithms (Bradshaw, 1985; Lehnert, 1987; Connell & Utgoff, 1987; Salzberg, 
1990; Cost & Salzberg, 1990). Finally, a few reported more detailed investigations of an 
algorithm's behavior in one or two application domains (Bareiss, 1989a; Stanfill, 1987; Tan 
& Schlimmer, 1990). 

These empirical evaluations are a good sign for the IBL paradigm; they provide evidence 
of good performance on a large range of challenging supervised learning tasks. However, 
these studies can be complimented by the problem-focused empirical evaluations and the 
alternative types of evaluations that I have discussed in this dissertation, whose primary 
contributions for clarifying the strengths and weaknesses of the IBL paradigm are as follows: 

• A Framework: I introduced the first framework for IBL algorithms in Chapter 2 and 
used it to explain the relationships among and limitations of the four algorithms in­
vestigated in Chapters 4 and the algorithms surveyed in Chapter 7. This framework 
provides a focus for algorithm design; improvements to IBL algorithms can be de­
scribed by how they instantiate this framework's components, as exemplified by the 
parametric studies in Chapter 5. 

• Mathematical Analyses: Chapter 3 describes the first PAC-learning analyses of IBL 
algorithms. The proofs applied only to IBl, but for any value of k, any dimension­
ality space, any instance distribution, and for both symbolic and numeric prediction 
tasks. These analyses helped to determine the generality of IBl and suggested how its 
efficiency can be improved (e.g., by saving only near-boundary instances, by reducing 
dimensionality, etc.). 

• Empirical Analyses: More elaborate IBL algorithms are not as amenable to mathemat­
ical analysis. Thus, the three algorithms introduced in Chapter 4 that reduce storage 

234 
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requirements, tolerate noisy instances, and learn domain-specific similarity functions 
were empirically evaluated in rigorous and systematic experiments with artificial do­
mains and several databases. The results showed that these algorithms achieve their 
goals in both symbolic and numeric prediction tasks. Storage reductions can be ob­
tained by storing only those instances that delineate concept boundaries. Noise can be 
tolerated by using a significance test to ensure that only predictively accurate instances 
are used to derive target value predictions. An attribute's predictive relevance can be 
represented using weights in the algorithm's similarity function that stretch and shrink 
the interpretation of the instance space independently for each target concept. These 
strategies all improved the efficiency of the basic IBl learning algorithm. 

• Parametric Studies: The first systematic studies of five high-level design choices for IBL 
algorithms were described in Chapter 5. Different definitions for the pre-processing, 
similarity, prediction, and learning functions were empirically evaluated in several ap­
plications for both symbolic and numeric prediction tasks. 

• Exemplar-Based Process Models: Chapter 6 introduced four psychologically plausible 
models of categorization. A survey of the literature indicated that a model's capa­
bility to explain psychological phenomena associated with categorization is a function 
of how well it utilizes attribute correlation information implicit in training instances 
during prediction tasks. Results from simulations and experiments with the four mod­
els added additional evidence to support this claim. This completes the loop relating 
computer science and cognitive psychology; work on exemplar-based models inspired 
the development of the IBn algorithms, which in turn inspired details of the GCM-xW 
process models. 

• Relationship with Other Algorithms: Chapter 7 detailed the relationship of IBL and 
edited nearest neighbor algorithms. Relationships with other learning algorithms were 
also explained, including the close ties with multilayer neural networks that use radial 
basis functions in their hidden nodes. 

In summary, this dissertation described mathematical, empirical, and psychological analyses 
for instance-based learning algorithms from the perspective of a general paradigm framework. 

8.2 The Paradigm in Perspective 

Many dissertations in machine learning focus on the presentation and evaluation of a spe­
cific system, one which displays sufficiently significant improvements or novel contributions 
to justify its creation. My dissertation is not of this ilk. Instead, it focuses on a burgeoning 
learning paradigm, attempting to unite a set of relatively disparate systems sharing a similar 
thesis but different goals and vocabulary. Therefore, this section focuses on the strengths 
and weaknesses of the paradigm itself rather than on IB4, which, as its name implies, is but 

. one point in a continuum. 
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Limitations and benefits always occur with respect to the degree to which some goals 
are satisfied. The main pursuit of research on IBL algorithms has been to improve learning 
performance. I will focus on the efficiency performance dimension described in Section 2.4. 
However, concepts can serve several purposes (Matheus, 1987); other relevant performance 
dimensions will be considered where appropriate. 

8.2.1 Limitations of the Paradigm 

Breiman et al. (1984) published the most comprehensive critique of instance-based 
algorithms for learning concept descriptions. The status of these concerns are described 
in the following list. 

1. !BL algorithms are computationally expensive: they save and compute similarities to all 
training instances. Practical IBL algorithms reduce or eliminate this problem by using 
storage reducing techniques, indexing strategies, parallel processing techniques, and/or 
smart similarity functions (Stanfill & Waltz, 1986; Bradshaw, 1987; Bareiss, 1989a; 
Salzberg, 1990; Aha & Kibler, 1989; Moore, 1990; Tan & Schlimmer, 1990). Although 
Waltz (1990) argues that a powerful parallel processor is required by "memory-based 
reasoning" algorithms, this is an overly-general statement. In fact, these machines are 
not required when smart indexing strategies or similarity functions are amenable to 
the application domain. However, they should always be exploited when available; 
Stanfill, Waltz, and their colleagues have demonstrated several impressive applications 
of their algorithms, which fall under the banner of the IBL framework. 

2. !BL algorithms cannot tolerate noise. Stanfill's (1987) results with the pronunciation 
task suggest that IBL algorithms can tolerate noise without much extension, but it is 
unknown whether other algorithms will perform well in this application. Simple IBL 
algorithms are sensitive to noise, as demonstrated by Breiman et al. (1984) and the 
studies in Section 4.2. However, several strategies (e.g., significance test filtering (Aha 
& Kibler, 1989), strength weights (Salzberg, 1990), and k-nearest neighbor smoothing 
(Moore, 1990)) helped IBL algorithms achieve good performance in the presence of 
noise. These methods can also locate exceptional instances - those that belong to 
small-sized disjuncts. 

3. !BL algorithms cannot tolerate irrelevant attributes. Attribute weighting strategies 
used by IB4 (Aha, 1989a), NGE (Salzberg, 1990), and Protos (Bareiss, 1989a) have 
supported good performance in the presence of irrelevant attributes. 

4. !BL algorithms are sensitive to the chosen similarity function. Methods that learn 
(Stanfill & Waltz, 1986; Aha, 1989a; Salzberg, 1990) or are given (Clark, 1989; Bareiss, 
1989a) domain-specific similarity functions have been shown to eliminate this problem. 
However, these learning methods are limited since they assume that a sufficient function 
can be found by learning appropriate parameter settings. Also, convergence proofs have 
not been derived for these algorithms. 
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5. !BL algorithms cannot easily tolerate missing attribute values. The investigation in 
Section 5.2.1 suggests otherwise. 

6. !BL algorithms cannot easily process symbolic-valued attribute values. The investiga­
tions in Section 5.2.1 and the results obtained by Stanfill and Waltz (1986) and Cost 
and Salzberg (1990) refute this claim. 

7. !BL algorithms do not convey the structure of the data. Several !BL algorithms derive 
abstractions (e.g., Bradshaw, 1985; Bareiss, 1989a; Salzberg, 1990). Protos can build 
a comprehensive category structure, although most of its information is taught rather 
than learned. NGE can learn hyper-rectangular abstractions similar to those used in 
decision trees or rule-based systems. 

In summary, all of Breiman et al.'s concerns with the !BL approach have been refuted 
through the construction of algorithms that adopt the benefits of abstraction-oriented sys­
tems while still maintaining the basic !BL philosophy of using stored instance information 
to derive predictions. More elaborate IBL algorithms that learn and maintain abstraction 
information tend to blur their distinction with abstraction-based learning algorithms (Clark, 
1988). Breiman and his colleagues might argue that the resulting algorithms are no longer 
instance-based. I disagree; these algorithms still derive their predictions based on similarity 
calculations with a set of exemplars (e.g., possibly generalized instances). 

Nonetheless, current-generation !BL algorithms still have several limitations. For ex­
ample, Branting (1989) argued that the attribute-value representation for instances severely 
limits the applicability of IBL algorithms; they cannot process higher-order relations or struc­
tured attributes (Thompson & Langley, 1989), which are required to represent facts such as 
legal case histories. IBL algorithms must be given large amounts of domain-specific knowl­
edge to process these types of attributes meaningfully in their similarity functions. This 
knowledge is usually represented by a graph that details inter-attribute relations. Subsets 
of these graphs can probably be learned, perhaps by an algorithm that builds concept hi­
erarchies (e.g., Fisher, 1987; Gennari, 1990). Although incremental and non-incremental 
algorithms exist that can process relational attribute-values (e.g., Iba, Wogulis, & Langley, 
1988; Quinlan, 1990b ), this remains an unsolved topic for IBL algorithms. 

Another problem that plagues IBL algorithms is their restriction to selective induction 
(Rendell, 1986). Principled procedures for inducing higher-order attributes are necessary if 
concept descriptions are inherently disjunctive or if the space has high dimensionality, in 
which case weight-learning strategies such as the one used in IB4 will require more time to 
learn which attributes are relevant. These situations require representational adjustments so 
that learning rate improves in a space defined by more relevant predictors (Schlimmer, 1987a; 
Pagallo, 1989; Matheus & Rendell, 1989). Two particular methods might lead to a solution 
for IBL algorithms. First, Mehra and Rendell (1989) discuss a method that analyzes inverted 
instance spaces, where attributes are points in the space and instances are the dimensional 
axes. The problem is simplified to finding "instances" that lie in different parts of the 
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space. However, these inverted spaces have high dimensionality, and because the problem 
of reducing the number of instances in the original space requires a form instance-based 
learning, the problem is inherently cyclic. Nonetheless, this alternative remains appealing. 
Another possibility is to maintain logical sufficiency and necessity weights for attributes, 
which STAGGER (Schlimmer, 1987a) used to constrain the search for predictive higher­
order attributes. This method might also assist IBL algorithms. 

A third problem with IBL algorithms is that they tend to be needlessly redundant (Clark, 
1988); predictions for two similar instances will involve highly redundant similarity computa­
tions. This information can be stored to predict values for subsequently presented instances. 
IBL algorithms implicitly derive predictions using a Voronoi diagram, which partitions the 
instance space as determined by the similarity function, the prediction function, and the 
stored instances. Strategies that store and modify these hyper-polygonal partitions and use 
them in a localized fashion can reduce the number of redundant computations. Since NGE's 
(Salzberg, 1990) learned hyper-rectangles approximate this information, this problem has 
been partially solved. IBL algorithms that learn more general hyper-polygonal representa­
tions are worthy of future research. 

Naturally, the framework presented in this dissertation is also limited; it is too abstract 
for some algorithms and, as shown in Section 7.2, must be extended to describe some of 
the more elaborate IBL algorithms. For example, Tan and Schlimmer's (1990) cost sensitive 
learner, which calculates similarities incrementally, required adding a control loop from the 
prediction function to the similarity function. Nonetheless, it remains a useful tool since it 
focuses attention on algorithm design choices and highlights existing problems. However, 
alternative frameworks were not considered; they may provide better methods for these 
purposes. 

8.2.2 Benefits of the Paradigm 

Based on recent advances, the IBL paradigm now appears to be an attractive method 
for solving supervised learning tasks. Any discussion of their advantages should be prefaced 
with a note concerning their relative simplicity, an opinion that has been echoed in pattern 
recognition (Gates, 1972), categorization theory (Hintzman, 1984), and machine learning 
(e.g., Bradshaw, 1987). IBL algorithms represent concepts with a set of possibly general­
ized instances. Predictions are derived from the target values of similar stored instances. 
Although more elaborate IBL algorithms now retain abstraction-related information, the 
basic representation and prediction process remains easy to comprehend. 

There are several reasons to retain specific instances. For example, the IBL paradigm of­
fers an alternative to standard expert systems methodology in that rules need not be derived 
from experts. Instead, they require only instances, which Michie (1985) noted as being more 
easily provided by experts. Of course, all algorithms that learn from examples share this 
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advantage. However, IBL algorithms differ from most other paradigms in that they process 
instances incrementally and do not reprocess previously observed instances. Specific instance 
storage helps support efficient incremental variants of non-incremental algorithms (Utgoff, 
1989; Van de Velde, 1990). It also supports the generation of precedent explanations in which 
similar instances are used to explain predictions. This type of explanation procedure is used 
by experts in several applications, including telephone traffic switching (Bareiss, personal 
communication), medical diagnosis (Bareiss, 1989a), power load prediction (Jabbour et al., 
1987), oil prospect appraisal (Clark, 1989), and legal reasoning (Rissland & Ashley, 1988; 
Branting, 1989). Naturally, arguments have also been made for using abstractions to ex­
plain predictions (e.g., Michie, 1985). IBL algorithms that learn generalizations (Salzberg, 
1990) and abstraction-oriented algorithms that store specific instances (e.g., Utgoff, 1989) 
have both capabilities, thus blurring the distinction between instance-based and abstraction­
oriented learning algorithms. 

Storing specific instances reduces information loss, which plagues abstraction-only algo­
rithms. IBL algorithms can solve ad-hoc queries (Barsalou, 1983; Kahneman & Miller, 1986), 
which require predictions for attributes other than the pre-selected target attributes. This 
is possible because a store of specific instances includes all attribute correlation information 
in the training set. IBL algorithms can exploit this information to learn a wide range of 
probability distributions for concepts; they are not limited to assuming that instances have 
a uniform or Gaussian distribution (Fried & Holyoak, 1984). IBL algorithms also can effi­
ciently support concept drift (Schlimmer & Granger, 1986; Moore, 1990), where the concept 
definitions change over time. This is possible because little work is required to update IBL 
concept descriptions (i.e., simple addition or removal of instances). Finally, specific instance 
storage allows for the learning of graded concepts (e.g., Aha, 1989a) in which the typicality 
of instances can be exploited to enhance the learning process (Bareiss, 1989a; Clark, 1988; 
1989). This capability also allows IBL algorithms to learn overlapping concepts (Aha, 1989b) 
and recognize relatively novel instances due to their low similarities with stored instances 
(Dasarathy, 1980; Waltz, 1990). Not surprisingly, this partial matching capability, which is 
inherent in IBL algorithms, has recently been introduced into abstraction-oriented schemes 
to improve their learning behavior (e.g., Michalski, 1990; Quinlan, 1990a). 

The IBL strategy has certain speed advantages. Computing similarities is an inherently 
parallel process (Stanfill & Waltz, 1988). Furthermore, smart indexing and control strategies 
can be used to limit the number of similarity comparisons required to build concept descrip­
tions (Bareiss, 1989a; Tan & Schlimmer, 1990; Moore, 1990). For example, a decision tree 
algorithm requires on the order of 0(111 2 x IAl 2 ) attribute references to generate an accurate 
decision tree, where I is the set of training instances and A is the set of attributes used to 
describe instances (Utgo:ff, 1989). Updates to variants of k-d trees require an average time of 
only O(log 111 2 ). Thus, IBL algorithms require only O(III log 111 2 x IAI) attribute references 
to learn concept descriptions (Overmars & Leeuwen, 1982). This can be a significant savings; 
given 1000 training instances described by 10 predictor attributes, ID3 requires 108 attribute 
references while the IBL algorithm requires less than 2x105 references. Both algorithms will 
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generally classify instances in O(log Ill) time, but this will not always be true since numeric 
attributes can be repeatedly used along paths of an ID3 tree and k-d trees are not guaran­
teed to display O(log Ill) retrieval times for nearest neighbors (Sproull, in press), although 
Moore (1990) reported such times for his low-dimensional applications. Also, retrieval times 
will be higher for values of k ~ 1. Nonetheless, properly implemented IBL algorithms have 
competitive processing times and appropriate heuristics can yield additional improvements 
(Bareiss, 1989a). 

Many abstraction-oriented learning algorithms either discretize or use splitting points 
for numeric attribute values to increase learning efficiency (Schlimmer, 1987a; Michalski et 
al., 1986; Quinlan, 1986a). This is useful in decision tree algorithms to counteract its bias 
for selecting symbolic-valued attributes defined over a large set of values (Cestnik et al., 
1987). IBL algorithms process numeric values without requiring discretization processes or 
splitting points. IBL algorithms also have a more relaxed learning bias than algorithms that 
learn hyper-rectangular partitions of the instance space. Symbolic predictions are implicitly 
obtained from a Voronoi diagram partitioning of the instance space, which allows more 
general hyper-polygonal representations for concept descriptions as shown in Figures 2.4 
and 2.6 in Section 2.3.2. IBL algorithms can achieve faster learning rates when a bias 
different from hyper-rectangles is required to accurately describe the concept. However, 
hyper-rectangle partitioners will record faster learning rates in applications that fit their 
assumptions better than the more general IBL bias. 

Finally, IBL algorithms can support knowledge acquisition. Although Protos (Bareiss, 
1989a) is a prime example of this capability, most instance-based learners abstract some 
form of empirically-derived knowledge from the training set. For example, IB3 learns which 
instances should be used to derive predictions while IB4 learns which attributes are relevant 
to prediction tasks. However, most successful IBL algorithms are given large amounts of 
domain-specific information. For example, CART (Connell & Utgoff, 1987) is given an 
efficient instance-selection strategy, Optimist (Clark, 1989) is given domain-specific rules for 
defining similarity, ALFA (Jabbour et al., 1987) is given attribute difference thresholds and 
a set of rules for modifying predictions, Moore's (1990) algorithm is given various parameter 
settings to determine properties such as forgetting rates, and CS-IBL (Tan & Schlimmer, 
1990) is told the costs involved with evaluating attributes. My interest has been to determine 
how much and what types of domain-specific information can be learned rather than taught. 
These other IBL algorithms demonstrate how to encode domain-specific information and 
provide a focus for investigating what can be learned efficiently. 
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8.2.3 The Paradigm in situ 

IBL is a healthy paradigm for learning. Several researchers have recently explored issues 
that are of general importance to the machine learning community. These include cost­
sensitivity, similarity functions for symbolic attributes, robotic control tasks, domain-specific 
definitions for similarity, learning apprentices, and industrial applications. IBL algorithms 
differ from most other learning algorithms in that they have fewer processing demands at pre­
sentation time and more processing demands at classification time. However, IBL algorithms 
that learn large amounts of abstraction-related information tend to blur the distinction with 
algorithms from other learning paradigms (e.g., consider NGE (Salzberg, 1990) and AQ15 
(Michalski et al., 1986)). In fact, the dominant trend in improving the performance of IBL 
algorithms has been towards increasing their workload when instances are processed and 
decreasing their workload during classification attempts. The opposite trend reflects much 
of the recent progress on abstraction-oriented algorithms (Michalski et al., 1986; Volper & 
Hampson, 1987; Quinlan, 1990a; Michalski, 1990). In most cases, experiments with these hy­
brid algorithms indicate that they succeed in exploiting benefits of both approaches without 
greatly reducing learning efficiency. This tends to confirm observations that multiple rep­
resentations support improved learning algorithms (Utgoff, 1989; Branting, 1989; Matheus, 
1987; Michalski, 1990). 

Most learning algorithms can be categorized by how they search for accurate concept 
descriptions. For example, AQ15 (Michalski et al., 1986) uses a specific to general search, 
TDIDT algorithms (Quinlan, 1986a) conduct a general to specific search strategy, and version 
space learning algorithms (Mitchell, 1977) use a bi-directional approach. That is, they begin 
at both ends of a lattice (i.e., the most general and the most specific concepts that can 
be represented) and move their frontiers towards one another. However, the version spaces 
method can also be viewed as a general to specific search since it incrementally reduces the 
number of concept descriptions that perfectly fit the training instances. The search strategy 
used by IBL algorithms can also be viewed as a general to specific search because storage 
of additional instances increases the granularity with which the implicit Voronoi diagrams 
partition the instance space. 

8.3 Suggestions for Future Research 

The mathematical analyses in Chapter 3 indicate that transformations of the instance 
space that reduce concept boundary sizes will reduce the number of instances required to 
learn accurate concept descriptions. Unfortunately, no methods for inducing higher-order 
attributes yet exist for use in IBL algorithms. Thus, this should be a focus for future research. 
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Chapter 6 described a psychologically plausible exemplar-based model that exploits lo­
calized attribute relevance information. None of the existing IBn algorithms that learn at­
tribute relevance information can support this capability. Extensions of IB4 that learn this 
information should increase learning rates in applications where attribute relevance varies 
depending on the location in instance space. 

Several IBL approaches have recently been proposed for solving challenging learning 
tasks. These algorithms have not yet been fully investigated to determine their ability to 
tolerate additional complexities in the training data. For example, Moore's (1990) algo­
rithm may not produce fast retrieval times in high dimensional instance spaces (Sproull, 
in press). A strategy for learning relative attribute relevance might be required for these 
spaces. Therefore, I would like to determine whether IB4 can improve the learning efficiency 
for robotic controls tasks. Another topic worth investigating is whether higher-order abstrac­
tions can be used to focus robotic control tasks on learning general patterns of movement 
rather than making a series of small adjustments in response to perceived deviations from 
a goal position. For example, Moore (1990) trained his algorithm to follow a circular path 
by continually tracking the location of a point that moves along that path. This task would 
be more easily accomplished if the algorithm could reason that the path is circular. These 
types of abstractions should improve tolerance for noise. They should also improve the toler­
ance for higher-order concept shifts, where abstraction-oriented concept description remain 
useful but require shifting to a different location in the instance space. Other hybrids worth 
investigating involve determining whether CS-IBL (Tan & Schlimmer, 1990) benefits from 
strategies that tolerate noise, adapt to concept drift, and learn indexing structures. Several 
hybrids of IBL algorithms are well worth studying. 

IBL algorithms might also be usefully integrated with other types of learning algorithms. 
For example, they might usefully serve as empirical components in integrated learning sys­
tems (e.g., Pazzani, 1989) because they can tolerate noise, tolerate concept shift, and provide 
typicality ratings. It is possible that problem solving tasks addressed by integrated systems 
can be decomposed into a set of tasks that can be learned by an IBL algorithm, which is the 
basic approach that Moore (1990) followed when he trained a robotic arm to bat a thrown 
ball into a bucket. This might involve the logical chaining of IBL predictions; previously 
generated predictions could be used to help form the input for subsequent prediction tasks. 
Automated methods for proposing causal relationships between attributes could similarly 
improve the performance of IBL algorithms, essentially serving as a constructive induction 
process. Integrated learning systems could also suggest what types of information are worthy 
of abstracting during prediction attempts rather than derived repeatedly. 

Finally, contrary to claims based on empirical evidence with one algorithm from each 
paradigm (Waltz, 1990; Cost & Salzberg, 1990), many of the algorithms specified by the IBL 
framework cannot record significantly better predictive accuracies than those representable 
with multilayer connectionist networks. In particular, those that use radial basis functions 
for their hidden nodes can simulate simple IBL algorithms such as the IBn algorithms and 
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MBRtalk (Stanfill & Waltz, 1986). However, these networks have not yet been analyzed em­
pirically, so they may be less efficient than the non-network IBL algorithm implementations. 
Also, more complex algorithms (e.g., Protos (Bareiss, 1989a)) would be substantially more 
difficult to implement using a connectionist network. Investigations on the relationships 
of these two types of algorithms is a useful topic for future research. Of particular inter­
est are investigations for automatically identifying an appropriate number of and locations 
for hidden RBF nodes (Poggio & Girosi, 1990). Storage reduction strategies used by IBL 
algorithms might assist in the development of improved RBF network algorithms. 

8.4 Closing Remarks 

This dissertation investigated whether algorithms that do not maintain abstractions de­
rived from specific instances can support robust learning behavior. I introduced a framework 
for describing these algorithms and summarized mathematical, empirical, and psychological 
investigations of algorithms specified by this framework. Although seemingly at a disad­
vantage, instance-based algorithms are competitive choices for solving supervised learning 
tasks; several algorithms encompassed by this paradigm performed well in a varied set of 
challenging research and industrial applications. 

Most dissertations on machine learning algorithms focus on one or two types of evalua­
tions. For example, the previous dissertations on instance-based learning algorithms focused 
on empirical investigations (Bradshaw, 1985; Bareiss, 1989; Salzberg, 1990). However, other 
types of evaluations are also encouraged in this field, including analyses of mathematical 
properties and evaluations of cognitive plausibility. I have tried to furnish a first step to­
wards evaluating IBL algorithms along these dimensions under the assumption that others 
could extend my results in the future. I have also emphasized the empirical study of do­
main characteristics such as noisy data and irrelevant attributes rather than a more exciting 
demonstration of achievement in challenging domains such as speech recognition, clinical 
audiology, and robotic control tasks. 

Nonetheless, I hope that it proves useful; I prefer to view my contribution as providing a 
foundation for understanding the strengths and limitations of the instance-based approach. 
The framework is simple, pliable, and can relate the algorithms surveyed; it should continue 
to serve as a means of distinguishing the design choices used in these algorithms. The 
surveys on edited nearest neighbor algorithms and exemplar-based models should serve as 
a somewhat biased guide to similar algorithms in pattern recognition and experimental 
psychology. 

Progress on instance-based methodology has attained a level of maturity and accom­
plishment that places it alongside other valuable paradigms for supervised learning. It is 
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an exciting and growing topic that is worthy of further study, especially in applications in­
volving robotic decision making, learning apprentices, industrial assistants, and massively 
parallel computing. Considering its strengths in computational feasibility and psychological 
plausibility, it should also serve as a means to further progress in cognitive science. 
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Appendix A: 
Brief Descriptions of Applications 

All of the databases and domains used in the symbolic and numeric prediction tasks 
that were used to evaluate the IBL algorithms in Chapters 4 and 5 can obtained from the 
U.C.I repository of machine learning databases and domain theories. Queries for information 
should be sent to ml-databases@ics.uci.edu. This section briefly describes these databases 
and data generators. 

1. LED Display domains 

Instances in the LED-7 domain are described by 7 binary-valued attributes that corre­
spond to 7 light-emitting diodes. These settings correspond to one of the ten decimal digits, 
as shown below. This domain was corrupted with a 10% probability of attribute noise. That 

is, each value of each instance's attribute was negated with a probability of 10%. The class 
probabilities are equal (i.e., 10% probability for each class). The Bayes optimal classification 
rate of this domain is 74%. 

The LED-24 domain contains an additional 17 irrelevant binary-valued attributes whose 
values are randomly assigned. This domain was first investigated by Breiman et al. (1984, 
pp. 48). 

2. Waveform domains 

The Waveform-21 domain consists of 21 numeric-valued predictor attributes and three 
target concepts (Breiman et al., 1984, pp. 49). Each class's instances are defined by a linear 
combination of two waves. Three waves are defined in terms of the 21 attributes using the 
function Jc E Attribute ~ ?R as follows: 

{ 
i-1 

fi(i)= ~-(i-8) 

{ 
i- 9 

h(i)= ~-(i-16) 

265 

2$i$7 
8 :5 i :5 12 
otherwise 

10 :5 i :5 15 
16 :5 i :5 20 
otherwise 
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{ 
i-5 6<i<ll 

h( i) = 5 - ( i - 12) 12 $ i $ 16 
0 otherwise 

Depending on which class the instance exemplifies, attributes Xi are assigned the following 
values: 

Class 1: Xi= uf1(i) + (1 - u)h(i) + fi 

Class 2: Xi= uf1(i) + (1 - u)fa(i) + fi 

Class 3: Xi= uh(i) + (1 - u)fa(i) + f1 

where u is a uniform random number and the random numbers f1 are normally distributed 
with mean 0 and variance 1. The class probabilities are equal (i.e., 33.3% probability for 
each class). The Bayes optimal classification rate of this domain is approximately 86%. Note 
that the fi values are interpreted as attribute noise. 

The Waveform-40 domain uses an additional 19 irrelevant attributes to describe each 
instance. Their values have a mean of 0 and a variance of 1. 

3. Cleveland database 

This domain was donated by Dr. Robert Detrano, M.D., and is described in (Detrano et 
al., 1989). It consists of 303 patient diagnoses described by 13 predictor attributes collected 
at the Cleveland Clinic Foundation. The predictor attributes are: 

1. Age in years 

2. Gender, coded as 0 or 1 

3. Chest pain type: typical (0), atypical (1), non-anginal (2), or asymptotic (3) 

4. Resting blood pressure in mm Hg on admission to the hospital 

5. Serum cholesterol in mg/ dl 

6. Fasting blood sugar: if above 120 mg/ dl then 1 else 0 

7. Resting ecg results: normal (0), abnormal (1), or indicative of hypertrophy (2) 

8. Maximum heart rate achieved 

9. Exercise-induced angina: if occurred then 1 else 0 

10. ST depression induced by exercise relative to rest 

11. The slope of the peak exercise ST segment, discretized as up (0), fiat (1), or down (2) 

12. Number of major vessels (0-3) colored by fiourosopy 

13. Type of defect: Normal (0), fixed (1), or reversible defect (2) 
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Four of these predictor attributes (i.e., numbers 3, 7, 11, and 13) are symbolic-valued 
but were interpreted as numeric-valued with the values shown. The class refers to the degree 
of heart disease diagnosed and ranges in [O, 4]. For symbolic prediction tasks, this value was 
predicted to be either 0 or positive. Three examples are: 

52 1 2 120 325 0 0 172 0 0.2 1 0 3 fine 
53 0 4 138 234 0 2 160 0 0.0 1 0 3 fine 
56 1 4 125 249 1 2 144 1 1.2 2 1 3 sick 

4. Hungarian database 

This domain was also donated by Dr. Detrano. These 294 diagnoses were collected 
from the Hungarian Institute of Cardiology in Budapest, Hungary. The set of attributes 
are identical to the ones used in the Cleveland domain. However, the target attribute is 
restricted to binary values. Although the Cleveland database contains only 6 instances with 
missing values, this database contains 781 missing attribute values. 
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5. Congressional Voting database 

The voting database consists of instances described by 16 binary-valued predictor at­
tributes. The target attribute is political party, either democratic or republican. Each of the 
335 instances describes the known (yes/no) voting record of a United States Congressional 
representative during the second session of 1984. The predictor attributes are 

1. Handicapped infants 

2. Water project cost sharing 

3. Adoption of the budget resolution 

4. Physician fee freeze 

5. El Salvador aid 

6. Religious groups in schools 

7. Anti satellite test ban 

8. Aid to Nicaraguan contras 

9. Mx missile 

10. Immigration 

11. Synfuels corporation cutback 

12. Education spending 

13. Superfund right to sue 

14. Crime 

15. Duty free exports 

16. South Africa export administration act 

Although this 288 missing values appear in this database, Steve Hampson (personal commu­
nication) has shown that it is linearly separable along the political party target attribute. 
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6. Automobile database 

This database, built from several sources by Jeff Schlimmer (1987b), contains 205 in­
stances described by 25 predictor attributes (15 continuous and 10 nominal-valued). Each 
instance describes a 1985 imported automobile. I examined the car's horsepower rating in 
Chapters 4 and 5. The predictor attributes are: 

1. Risk factor symbol (continuous) 

2. Normalized-losses (continuous) 

3. Make of automobile (22 types) 

4. Fuel type (diesel or gas) 

5. Aspiration (standard or turbo) 

6. Number of doors (continuous) 

7. Body style (5 types) 

8. Type of drive ( 4 wheel, rear, front) 

9. Engine location (front or rear) 

10. Wheel-base (continuous) 

11. Length (continuous) 

12. Width (continuous) 

13. Height (continuous) 

14. Curb weight (continuous) 

15. Engine type (7 types) 

16. Number of cylinders (continuous) 

17. Engine size (continuous) 

18. Type of fuel system (8 types) 

19. Bore (continuous) 

20. Stroke (continuous) 

21. Compression ratio (continuous) 

22. Peak revolutions per minute (continuous) 

23. City miles per gallon (continuous) 

24. Highway miles per gallon (continuous) 

25. Price (continuous) 

A total of 59 values are missing in this database of 205 instances. Three example instances 
are: 
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0 78 honda std four wagon fwd 96.5 157.1 63.9 58.3 2024 ohc 4 
92 1bbl 2.92 3.41 9.20 6000 30 34 7295 76hp 

O 118 mazda std four sedan rwd 104.9 175.0 66.1 54.4 2670 ohc 4 
140 mpfi 3.76 3.16 8.00 5000 19 27 18280 120hp 

-1 74 volvo turb four wagon rwd 104.3 188.8 67.2 57.5 3157 ohc 4 
130 mpfi 3.62 3.15 7.50 5100 17 22 18950 162hp 

7. Echocardiogram database 

This database was collected by Dr. Evlin Kinney of the The Reed Institute, located in 
Miami, Florida. It contains 132 diagnoses of patients who have suffered heart attacks. These 
instances are described by 9 numeric-valued predictor attributes: 

1. Still alive: O=dead at end of survival period, 1 means still alive 

2. Age at heart attack: Age in years when heart attack occurred 

3. Pericardial effusion: 0 if no fluid around the heart, otherwise 1 

4. Fractional shortening: A measure of contractability around the heart 

5. EPSS: E-point septal separation, another measure of contractability 

6. Left ventricular end-diastolic dimension: A a measure of the size of the heart at end­
diastole. 

7. Wall motion score: A measure of how the segments of the left ventricle are moving 

8. Wall motion index: The wall motion score divided by number of segments seen. Usually 
12-13 segments are seen in an echocardiogram. 

9. Alive at 1: Whether the patient lived after 1 year or had been followed for less than 1 
year. 

The target attribute used in this dissertation was the number of months patient survived 
since their heart attack. Three typical examples are 

0 71 0 0.26 9 4.600 14 1 0 11 
1 57 0 0.16 22 5.750 18 2.25 0 19 
0 72 0 0.38 6 4.100 14 1.7 0 19 
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8. Breast cancer database 

This database was donated by the Institute of Oncology at the University Medical Centre 
in Ljubljana, Yugoslavia. It contains 286 diagnoses of breast cancer patients. Nine predictor 
attributes were used and my experiments focused on predicting the size of the breast tumor 
detected. The predictor attributes included 

1. Recurrence events: 1 if recurrence occurred, otherwise 0 

2. Age 

3. Time of menopause: before age 40, after 40, or pre-menopause 

4. Number of nodes affected as observed by X-rays 

5. Node caps (yes ,no) 

6. Degree of malignancy (1, 2, or 3) 

7. Breast (left,right) 

8. Breast quadrant (left-up,left-low,right-up,right-low,central) 

9. Using irradiation treatment (yes,no) 

Only 9 values are missing among this database's instances. Three example instances from 
this database are: 

0 40 pre-menopause 
0 40 pre-menopause 
0 60 geater_than_40 

0 0 2 1 right_up 0 size=20 
0 0 2 0 left_low 0 size=20 
0 0 2 1 left_up 0 size=15 





Appendix B: Details of the Subject 
Experiments 

This appendix details the results for the two subject experiments that were summarized 
in Section 6.6. The following details the percent subjects and GCM-ISW's percentage es­
timates for classifying each of the instances in the first experiment as a member of class 
2: 

1 
2 
3 
4 
5 
6 
7 
8 

Subject Averages: 
1 2 3 4 5 6 7 8 

50 45 45 40 50 65 10 30 
65 60 80 80 85 90 20 25 
55 50 55 60 70 85 0 20 
40 55 45 40 65 85 0 15 
20 20 15 25 30 70 0 20 
10 0 5 10 10 5 5 15 
85 90 90 95 90 85 75 80 
55 60 65 60 55 60 55 60 

1 
2 
3 
4 
5 
6 
7 
8 

GCM-ISW Estimates: 
1 2 3 4 5 6 7 8 

67 74 77 78 78 76 34 31 
50 63 72 76 78 78 33 30 
31 43 58 69 74 74 29 28 
20 26 37 52 64 69 26 24 
17 19 23 32 46 57 23 21 
21 21 22 27 37 48 26 25 
74 75 77 78 78 74 53 61 
78 78 78 78 76 72 42 49 

The subjects' results are the percentage of the subject who predicted that the instance was 
a member of class number 2. GCM-ISW's results reflect its estimate of the probability that 
the instance is a member of this same class. The correlation of these results is 0. 78. The 
two sets of results agree on 50 of the 64 instances' classifications, but they disagree on most 
classification in the top-left and bottom-right corners of the instance space. That is, one 
result favors class 1 (i.e., below 50%) while the other favors class 2 (i.e., at least 50%).These 
also happen to be the areas that are located furthest from the given data. In most of these 
disagreements, GCM-ISW favored class 1 while the subjects favored class 2. These majority 
subjects' classifications and favored classification by GCM-ISW in the first experiment are: 

1 
2 
3 
4 
5 
6 
7 
8 

Subject's Classifications: 
1 2 3 4 5 6 7 8 
2 1 1 1 2 2 1 1 
2 2 2 2 2 2 1 1 
2 2 2 2 2 2 1 1 
1 2 1 1 2 2 1 1 
1 1 1 1 1 2 1 1 
1 1 1 1 1 1 1 1 
2 2 2 2 2 2 2 2 
2 2 2 2 2 2 2 2 

GCM-ISW's Classifications: 
1 2 3 4 5 6 7 8 

1 
2 
3 
4 
5 
6 
7 
8 

2 
1 
1 
1 
1 
1 
2 
2 

2 
2 
1 
1 
1 
1 
2 
2 

2 2 
2 2 
2 2 
1 2 
1 1 
1 1 
2 2 
2 2 

2 2 1 1 
2 2 1 1 
2 2 1 1 
2 2 1 1 
1 2 1 1 
1 1 1 1 
2 2 2 2 
2 2 1 1 

It is not obvious why these particular locations (i.e., top-left, lower-right instances, and main 
diagonal) are the ones that differ between the two sets of predictions. However, these are 

272 
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the instances that are most in doubt amongst all 64 instances in the space. GCM-ISW's 
correlation on the four instances of special interest was extremely high (0.97), which shows 
that the subjects also used a something akin to a localized attribute weighting scheme in 
these areas. 

GCM-NW and GCM-SW's estimates of the probability that the instances are classified 
as members of class 2 in the first experiment are: 

1 
2 
3 
4 
5 
6 
7 
8 

GCM-NW's Estimates: 
1 2 3 4 5 6 7 8 

63 68 72 75 77 75 69 62 
55 61 67 71 74 77 62 52 
43 49 57 63 66 65 41 39 
32 36 42 50 58 57 34 32 
26 27 31 37 43 40 26 28 
27 24 30 36 47 47 39 34 
42 50 65 70 73 66 57 49 
55 62 69 73 75 72 67 61 

1 
2 
3 
4 
5 
6 
7 
8 

GCM-SW's Estimates: 
1 2 3 4 5 6 7 8 

70 73 75 77 78 77 73 67 
62 66 70 73 75 78 66 57 
50 55 60 63 65 64 42 41 
35 39 45 50 54 55 35 33 
26 27 30 34 38 35 25 27 
28 24 28 33 42 44 40 36 
47 55 67 72 74 68 61 55 
61 67 72 75 76 75 71 67 

Their correlations with the subject data was 0.65 and 0.66 respectively. GCM-NW's results 
are relatively difficult to analyze, but it is obviously not fitting the subject data as well as 
GCM-ISW. GCM-NW guesses wrong on three of the four instances of special interest and 
its correlations with the subjects on.these instances is poor (i.e., -0.42). GCM-MW's results 
are a bit easier to analyze. It tends to favor giving the same classifications to all instances 
in the same row, which applies for all but rows three and four. This occurred because GCM­
MW assigned a higher weight to the x axis than the y axis. This causes predictions to be 
more influenced by the predictions for instances along the same row than for instances on 
different columns. GCM-MW's low correlation with the subjects on the 4 special instances 
(i.e., 0.17) suggests that the subjects do not classify these instances using a strategy similar 
to GCM-MW's. 

The results for the subjects and GCM-ISW for the second experiment are: 

1 
2 
3 
4 
5 
6 
7 
8 

Subject's Averages: 
1 2 3 4 5 6 7 8 

65 50 65 55 55 60 65 60 
70 75 85 90 90 90 90 80 
15 10 15 15 10 10 0 10 
15 5 85 35 15 15 5 25 
20 5 90 60 35 40 50 35 
20 0 85 70 50 60 50 60 
30 15 90 80 75 75 60 60 
30 10 70 55 55 50 55 50 

1 
2 
3 
4 
5 
6 
7 
8 

GCM-ISW's Estimates: 
1 2 3 4 5 6 7 8 

47 39 69 75 77 78 78 78 
59 50 72 77 77 77 76 74 
24 25 46 36 27 23 21 21 
22 22 58 49 36 28 23 21 
25 26 68 65 55 42 32 25 
28 30 75 74 70 61 48 36 
30 31 76 77 76 72 65 54 
29 31 74 77 77 76 74 68 
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GCM-ISW's correlation with the subject data for this experiment was quite good (i.e., 0.86). 
Its correlation on the four special instances was 0.95. Its poorest fits were again located in 
regions of greatest doubt - near the corners intersected by the main diagonal. GCM-NW 
and GCM-MW's results for the second experiment are: 

1 
2 
3 
4 
5 
6 
7 
8 

GCM-NW's Estimates: 
1 2 3 4 5 6 7 8 

65 70 74 75 74 71 65 59 
53 60 67 74 71 66 53 45 
36 40 45 44 34 29 24 27 
27 25 37 40 36 30 27 26 
33 35 56 55 50 44 38 34 
40 42 65 65 63 59 53 47 
55 64 78 75 72 69 65 60 
65 71 76 77 76 74 71 68 

1 
2 
3 
4 

5 
6 
7 
8 

GCM-MW's Estimates: 
1 2 3 4 5 6 7 8 

55 64 71 74 72 67 59 51 
44 53 64 73 69 63 47 39 
33 38 49 51 38 31 25 27 
28 27 43 47 39 32 27 25 
31 33 59 57 50 41 34 30 
37 40 66 67 62 53 45 38 
48 59 76 74 70 63 56 48 
58 66 74 76 74 69 63 57 

Their overall correlations were 0.68 and 0.67 respectively and -0.84 and -0.42 for the four 
instances of special interest in the second experiment. In summary, these results strongly 
suggest that GCM-ISW's localized weighting strategy is more similar to the strategy used 
by the subjects than the strategies used by either GCM-NW or GCM-MW. 






