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Adaptive Landscape Flattening Accelerates Sampling of 
Alchemical Space in Multisite λ Dynamics

Ryan L. Hayes†, Kira A. Armacost†, Jonah Z. Vilseck†, and Charles L. Brooks III*,†,‡

†Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States

‡Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States

Abstract

Multisite λ dynamics (MSλD) is a powerful emerging method in free energy calculation that 

allows prediction of relative free energies for a large set of compounds from very few simulations. 

Calculating free energy differences between substituents that constitute large volume or flexibility 

jumps in chemical space is difficult for free energy methods in general, and for MSλD in 

particular, due to large free energy barriers in alchemical space. This study demonstrates that a 

simple biasing potential can flatten these barriers and introduces an algorithm that determines 

system specific biasing potential coefficients. Two sources of error, deep traps at the endpoints and 

solvent disruption by hard-core potentials, are identified. Both scale with the size of the perturbed 

substituent and are removed by sharp biasing potentials and a new soft-core implementation, 

respectively. MSλD with landscape flattening is demonstrated on two sets of molecules: 

derivatives of the heat shock protein 90 inhibitor geldanamycin and derivatives of benzoquinone. 

In the benzoquinone system, landscape flattening leads to two orders of magnitude improvement 

in transition rates between substituents and robust solvation free energies. Landscape flattening 

opens up new applications for MSλD by enabling larger chemical perturbations to be sampled 

with improved precision and accuracy.
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Introduction

Free energy methods, including free energy perturbation (FEP),1,2 thermodynamic 

integration (TI),3 enveloping distribution sampling,4,5 lambda dynamics,6–8 and others,9–11 

have become an important class of techniques for obtaining thermodynamic predictions 

from molecular dynamics simulations. While frequently utilized in computer aided drug 

design,12–14 such techniques can also be applied to a wide variety of problems including pKa 

predictions,15,16 peptide binding,17,18 and solvation free energies19 (Figure 1). Within most 

free energy methods, λ is a reaction coordinate that tunes the potential between two systems 

of interest. FEP and TI rely on several simulations run at closely spaced fixed λ values, 

while λ dynamics treats λ as a dynamic variable within a single simulation. In addition, λ 
dynamics can be performed between more than two systems of interest by introducing 

additional λ coordinates.6 For these two reasons, λ dynamics requires far fewer simulations 

than conventional methods like FEP and TI.

Several recent improvements to λ dynamics have broadened its scope and increased its 

efficiency. First, λ dynamics was generalized to allow chemical perturbations at multiple 

sites.20 In that work, multisite λ dynamics (MSλD) was shown to yield precision similar to 

FEP with about 1/50th of the computational expense. Second, an implicit constraint 

technique was developed, which simplified constraining λ between the physically relevant 

endpoints of 0 and 1 and also biased sampling towards those endpoints.21 Finally, in a 

follow-up study, solvation free energy simulations were attempted for 2,5-benzoquinone 

derivatives with large perturbations at the 2,5 positions. Sampling the large perturbations 

was facilitated by the enhancement of biasing potential replica exchange (BP-REX) and the 

concession of lowering the bias of the implicit constraints toward the endpoints.22 Even with 

these changes, methyl to phenyl perturbations were difficult, and larger volume changes 

were not sampled adequately. Solvation simulations also demonstrated that grouping 

substituents by volume improved sampling, so three sets of geldanamycin derivatives with 

small, medium, and large substituents were simulated bound to heat shock protein 90. 

Appropriate grouping in chemical space can affect convergence, and has been addressed in 

FEP and TI through the use of methods like the lead optimization mapper (LOMAP).23

In this work we revisit the geldanamycin and benzoquinone systems to show that the lack of 

sampling is due primarily to large alchemical barriers that can be flattened with biasing 

potentials to enhance transitions between the physically meaningful endpoints. Previously, 

the bias of the implicit constraints towards the endpoints was weakened to avoid becoming 

trapped in endpoint wells, but this could give rise to substantial error, since the relative free 

energy is the difference between endpoints. Landscape flattening improves sampling to such 

an extent that previous concessions in the implicit constraints are no longer necessary, 

removing this source of error. Additionally, while in theory hard-core potentials lead to slow 

convergence, results show that in practice the use of hard-core potentials leads to incorrect 

relative solvation free energies due to common MSλD approximations. These errors are 

corrected through the use of soft-core potentials.24,25 The use of landscape flattening and 

soft-core interactions allow MSλD to be applied to larger and more complex perturbations 

with improved precision and accuracy.
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Methods

Multisite λ Dynamics

In λ dynamics, λ is a dynamic variable that switches the potential energy function between 

the potential for one ligand at λ = 0 and another ligand at λ =1. To generalize to MSλD, λ 
is replaced by the set of dynamic variables {λsi} that represent the position of the ligand in 

alchemical space, where s is the index of an attachment site on a core ligand, and i is the 

index of one of several substituents that may be attached at that site. In MSλD, the potential 

energy of the system is

(1)

where x0 is the set of positions of the particles present in all systems, including the solvent 

environment, xsi is the set of positions of the particles at site s in substituent i, M is the total 

number of sites, Ns is the total number of substituents at site s, and VBias is a biasing 

potential on the set of λ coordinates that is used to enhance sampling. V(x, y) is the 

interaction potential between two groups of atoms x and y, thus V (x0, x0) is the interaction 

of the environment atoms among themselves, V (x0, xsi) + V (xsi, xsi) is the interaction of 

substituent i at site s with the environment and with itself, and V (xsi, xtj) is the interaction 

potential between substituents i and j at different sites. As is typical in MSλD calculations, 

bonds, angles, dihedrals, and impropers are not scaled by λ. This ensures the geometry and 

basic connectivity of a substituent are maintained even when it is in the non-interacting λ = 

0 state, which allows efficient reverse transitions. These terms may be kept unscaled without 

causing artifacts because they cancel with analogous terms in the other thermodynamic half-

cycle.

Physically meaningful endpoints are states in which λsi = 1 for one substituent i at each site 

s, and all remaining λsj = 0 for j ≠ i. Under these conditions, the potential energy in eq 1 

reduces to the potential energy for a single ligand and its environment. The constraints

(2)

(3)

ensure that only one ligand, or one substituent at each site, interacts with the rest of the 

system at each of the physically relevant endpoints. This set of constraint conditions can be 

maintained by the implicit constraints
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(4)

previously introduced for use with MSλD.21 With these implicit constraints, the dynamic 

variables θsi, rather than λsi, evolve with fictitious masses under the forces due to the 

potential. The value c = 5.5 was found to be optimal, as lower c values sample the endpoints 

less and higher c values lead to numerical instability.21

The free energy difference between two ligands may then be calculated as

(5)

where P ({λsi} > λc) is the probability within the simulation of finding λsi > λc for all M 
substituents associated with a particular ligand. As λc approaches 1, this equation becomes 

exact. In practice a cutoff of λc = 0.8 is typically used to bin states, though this work 

demonstrates a more stringent cutoff of λc = 0.99 reduces error.

Form of the Biasing Potentials in MSλD

In order to accurately determine the relative free energy between two end states, it is 

necessary, though not always sufficient, to obtain many transitions between the endpoints. 

Fluctuations in alchemical λ space cannot become statistically independent until barrier 

crossing occurs, though slower dynamics in the environment may further limit 

independence. Thus the number of transitions provides a lower bound on the precision of 

free energy estimates. Transitions can either be limited by high barriers or by low diffusion 

in the transition region.26 In MSλD, transitions are limited primarily by high barriers, and 

lowering barriers with biasing potentials substantially improves sampling.

The implicit constraints in eq 4 bias sampling towards the physically meaningful endpoints 

because large volumes of θ space map to near the endpoints and relatively small volumes of 

θ space map to alchemical intermediates. This effect grows stronger with increasing c and 

weaker with increasing number of substituents, Ns. Consequently, the implicit constraints 

give the endpoints higher entropy and lower free energy in λ space without producing 

barriers in θ space. The bias of the implicit constraints towards the endpoints is desirable 

and focuses sampling on the states of interest, but free energy barriers in excess of this bias 

will inhibit sampling.

The intrinsic entropy of the implicit constraints may be estimated by Monte Carlo sampling 

the implicit constraints according to the following procedure. Several million random θ 
values are generated from a uniform distribution, λ values are calculated using eq 4 and 

sorted into 100 bins according to the same procedure described for estimating free energies 

in the SI. The intrinsic entropy is then kB ln p, where p is the probability of occupying a 

particular λ bin. To prevent the flattening algorithm from flattening the bias of the implicit 
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constraints along with the rest of the barrier, the free energy due to the intrinsic entropy of 

the implicit constraints is subtracted from the total free energy, and biasing potentials are 

then used to flatten the remaining free energy.

Previously, two biasing potentials were used: a fixed bias VFixed and a variable bias VVariable.

(6)

(7)

(8)

The fixed bias ensures that with proper choice of the Fsi parameters the endpoints have 

similar free energies and can be sampled within the same simulation.7 This biasing potential 

alters the free energy of the physically relevant endpoints, so it must be subtracted out when 

calculating free energies with eq 5. The variable bias has been used as a rough way to tune 

barriers.20 The cutoff at 0.8 was intended to ensure that the populations near the endpoint 

were not perturbed, but fails in this regard because the λ’s are linked by eq 3. Furthermore, 

if different k are used for each substituent si, then this alters the biasing energy of the state 

λsi = 1 by −0.64ksi beyond the fixed bias.

This work presents a new set of biasing potentials that are more easily tuned. The fixed bias

(9)

which is a linear biasing potential, is still absolutely essential and is retained unchanged. The 

parameters ϕsi, or equivalently −Fsi, are adjusted to ensure the endpoints have similar free 

energies and can be sampled concurrently. The remaining biasing potentials are chosen to be 

zero on the endpoints so they only effect nonphysical intermediates.

Early λ dynamics simulations showed a roughly parabolic or quadratic barrier.7 Quadratic 

barriers can be flattened with a potential of the form

(10)

Hayes et al. Page 5

J Phys Chem B. Author manuscript; available in PMC 2018 February 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where ψsi,sj/4 is the amount the biasing potential changes the height of the quadratic barrier 

between si and sj. This potential has Ns(Ns − 1)/2 independent parameters, allowing each 

barrier to be tuned independently, to maximize all-to-all transitions. A special case of this 

potential with fewer parameters is given by

(11)

where eq 3 can be used to show ψsi,sj = − (ψsi + ψsj) converts the coefficients of eq 11 to the 

coefficients in eq 10. Eq 11 is closely related to the previously introduced variable bias (eq 

8), but with the endpoint differences removed and no cutoff. While eq 10 is used, we find the 

barriers are within about 1 kcal/mol of the barriers given by the simpler biasing potential of 

eq 11.

The barriers are more or less quadratic between λ values of 0.1 and 0.9, however, deep free 

energy wells or traps exist at the endpoints. The free energy increases sharply as λ increases 

from zero because energy is required to disrupt the solvent and make a solvent cavity for the 

substituent to occupy. Consequently, larger substituents have deeper wells at λ = 0. Similar 

traps exist at λ =1 because other competing ligands will be at λ = 0. It can be shown for a 

simple test system of a methyl converting to a methoxy that the free energy is steep but 

approximately linear, and quickly saturates with increasing λ (SI Figure S3). A biasing 

potential which fits this form is given by

(12)

where ωsi,sj is the amount of energy required to make a small amount of substituent si when 

substituent sj is dominant, and α is the value of λ at which the trap is half of its depth at the 

endpoint. α = 0.017 was found to give good fits to the free energy for a broad range of 

substituents in both vacuum and solvent simulations, so these traps are narrow in λ space. 

The traps can also be several kcal/mol deep for large substituents; for example, the 

geldanamycin substituents (Figure 2), have depths around 5 kcal/mol, and the largest 

benzoquinone substituent (Figure 3) has a depth of 12 kcal/mol. While the depths ωsi,sj· vary 

widely, the widths α are fairly consistent when using hard-core interactions, so the value α = 

0.017 was used without further optimization. With the use of soft-core interactions, the 

shape of the endpoint traps changes, so future work will be needed to fully flatten the 

endpoint traps and optimize transition rates with soft cores.

Since the endpoint traps are so narrow, when an implicit constraint parameter of c =2.5 is 

used the trap is not fully accessible. The minimum λ value for c =2.5 is 0.007, and has very 

low entropy. Thus the previous concession c =2.5 improved sampling by preventing λ from 

becoming trapped in the endpoint states. However, if endpoint trap depths differ between the 

vacuum, solvent, or protein binding branches in the thermodynamic cycle, use of the 

concession c =2.5 introduces errors in computed free energies. By flattening endpoint traps 
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as introduced here, endpoints can be more fully sampled with the optimal c = 5.5 without 

risk of trapping λ or introducing systematic errors.

Adding Soft-Core Potentials to MSλD

We demonstrate that the use of hard-core potentials for non-bonded interactions in our 

simulations disrupts the solvent and gives erroneous free energies. Hard-core potentials 

contain a singularity at an interaction distance of r = 0. As λ approaches 0 at the endpoints, 

atoms may approach each other more closely, and the potential changes sharply on very 

short length scales, which may lead to numerical instability. In MSλD, the implicit 

constraints are bounded from above and below not by 0 and 1, but by (1 + (Ns − 1) 

exp(±2c))−1, which approach 0 and 1 as c increases. Consequently, MSλD simulations avoid 

numerical instability due to hard-core interactions because the implicit constraints have a 

very small but non-zero minimum,20 and the solvent excluded radius is still rather large due 

to the one twelfth power dependence on λ. However, since this excluded volume radius is 

non-negligible (still about half the full value for c = 5.5), atoms never completely disappear 

as λ approaches 0, and this can lead to large solvent inaccessible cavities.

If these solvent cavities are small or inside other atoms, as has mostly been the case for the 

small substituents sampled in the past,6,7,20 the errors introduced are small, but if the cavities 

are larger, as they are for many of the substituents sampled in this work, substantial errors 

may arise due to approximations made in MSλD. The assumption underlying the calculation 

of free energies with eq 5 is that the free energy of the λ =1 state is approximately equal to 

the free energy of the λc < λ < (1 + (Ns − 1) exp(−2c))−1 state, up to an additive constant 

due to bin width that cancels in relative free energies. This assumption is clearly violated if 

the solvent configurations with which a substituent would interact have been disrupted by 

solvent cavities. In theory, a more sophisticated analysis involving an FEP calculation 

between the two λ states could bridge this gap. However, such a calculation would still fail 

in practice because many of the important states remain inaccessible since their free energies 

are too high to be adequately sampled at the maximum λ value, and if they were sampled 

they could lead to further numerical instabilities in the solutions to the equations of motion.

Soft-core interactions are a natural solution to the problem. They remove the singularity 

from the interaction function so that interactions may be effectively scaled to zero by λ near 

λ = 0. Consequently, solvent cavities disappear near the endpoints and the assumptions 

underlying eq 5 are restored. A variety of soft-core potentials exist: some remap interaction 

distances near r = 0 to some finite value,24,25 while others extend the potential in a non-

singular way inside some radius.27 Soft-core parameters typically vary with λ in such a way 

that at λ = 1, the hard-core potential is recovered.

The current implementation of soft-core potentials in the CHARMM molecular dynamics 

package28,29 has been used effectively in TI calculations and is given in ref 24. In this 

formulation of soft cores by Zacharias et al., the distance r between two particles is mapped 

to a distance r′, where
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(13)

and r′ is substituted into the λ-scaled Van der Waals and Coulomb potentials instead of r. 
Unfortunately, this soft-core implementation is not available with MSλD in CHARMM and 

has two undesirable features. First, since r′ ≠ r at the potential energy minimum, the 

position of the minimum is moved even for λ near one and only approaches the correct 

position linearly with 1 − λ (SI Figure S4). Second, since distances all the way up to the 

force cutoff are mapped to r′ ≠ r, the forces become very complex when using shifting and 

switching functions to mitigate cutoff effects. Consequently, a new soft-core scheme was 

implemented inside the CHARMM molecular dynamics package for the purpose of this 

study that mimicked the old soft-core potential without these undesirable features.

In the new soft-core implementation, only inter-particle distances r inside a λ dependent 

cutoff of rλ are remapped:

(14)

where λ is the scaling factor for the pairwise interaction (see eq 1) and r0 = 2 Å. λ = λsi if 

atoms in substituent si are interacting among themselves or with the environment, λ = 0 if 

atoms are in different substituents i and j at the same site s, and λ = λsiλtj if atoms are at 

different sites s and t. Then the real distance r is mapped to

(15)

and this r′ is substituted into the potential (eq 1) instead of the real distance between 

particles r. Thus the potential is undisturbed for r> rλ which solves both difficulties in the 

previous implementation. Appropriate derivatives may be taken to obtain the spatial and 

alchemical forces. For a comparison between eq 13 & 15, see SI Figure S4.

Simulation Details and Learning the Landscape

Simulations were run in the CHARMM molecular dynamics package, developmental 

version 41a2.28,29 Simulations used the DOMDEC package30 within CHARMM on CPU for 

vacuum simulations and GPU for solvent simulations. Timesteps of 1.25 fs were used to 

ensure simulation stability. (Previously, timesteps of 1.5 fs were used with c = 5.5,20 and 

timesteps of 2 fs were used with c =2.5.22) Hydrogen bond lengths were constrained using 

the SHAKE algorithm.31 Van der Waals interactions were switched off between 10 Å and 12 

Å, and electrostatic interactions were truncated with force switching over the same interval. 

The implicit constraint θ coordinates were given a pseudomass of 5 amu·nm2 and a 

Langevin drag coefficient of 5 ps−1. Ligands were prepared using MarvinSketch 16.6.6.0, 

2016, from ChemAxon (http://www.chemaxon.com), and forcefield parameters were 
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obtained using MATCH.32 Systems were solvated in boxes with at least 10 Å on each side 

(20 Å periodic image distance) using TIP3P water.33 Simulations were performed using an 

NVT ensemble unless otherwise noted in a Langevin bath with temperature T = 298 K.

A three phase procedure is used to learn the parameters in eqs 9, 10, and 12 that flatten the 

free energy landscape. First, a 100 ps simulation is performed with a very strong biasing 

potential (all ψsi set to 500 kcal/mol or 1000 kcal/mol in eq 11). The slope of the free energy 

with respect to λsi can then be computed from the average 〈λsi〉 as 2ψsi(1/Ns − 〈λsi〉). This 

slope gives an initial estimate for the fixed bias, which is generally accurate to within 10 

kcal/mol.

In the second phase this strong biasing potential is removed, and all ψsi,sj and ωsi,sj are set to 

0. We note that more reasonable initial guesses would likely allow biasing parameters to 

converge in fewer iterations. Up to 50 iterative 100 ps simulations are performed, gradually 

refining estimates of ϕsi, ψsi,sj, and ωsi,sj parameters after each simulation. Results from the 

previous 10 simulations are combined together using WHAM34 to obtain an estimate of the 

free energy landscape that is more robust than a single simulation, which can suffer from 

trapping or a lack of sampling. Older simulations are ignored because they tend to be out of 

equilibrium and corrupt the free energy estimation. The free energy landscape is used to 

update estimates for ϕsi, ψsi,sj, and ωsi,sj. The exact algorithm for estimating parameters is 

outlined in the SI. Parameters are not allowed to change very rapidly because very little 

alchemical space is sampled at first and overshooting degrades sampling. Changes are 

limited to 1 kcal/mol in ϕsi and ωsi,sj·and to 4 kcal/mol in ψsi,sj. In the third phase the same 

fitting procedure is used, but longer simulations of 1 ns are run. Results from the last 6 

simulations are combined with WHAM to estimate the free energy and update ϕsi, ψsi,sj, and 

ωsi,sj. Up to 12 simulations of this length are run. In all, 8 to 17 ns of sampling were used to 

determine biasing coefficients to flatten the energy landscape. Future simulations should 

need less time because a method to obtain reasonable initial guesses for the flattening 

parameters is given in eqs 17 and 18.

Finally, four production runs of 10 ns are run with the optimized biasing potential. Free 

energies are obtained from populations of λ greater than λc = 0.99 using eq 5. This high 

cutoff was used to minimize the effect of residual variation in the free energy near the 

endpoints. Relative free energies are obtained by Boltzmann averaging over the n = 4 

simulations

(16)

which equates to averaging populations before applying eq 5. Uncertainties were estimated 

using bootstrap analysis: the standard deviation in fifty free energy estimates was taken to be 

the uncertainty. Bootstrap analysis requires sampling from a set of independent 

measurements, so free energies were calculated using the first and second half of each 

simulation to give n = 8 independent measurements. (Using whole simulations with n = 4 is 

more susceptible to noise, and using shorter segments approaches the correlation time for 
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some systems, which violates statistical independence.) Each of the fifty free energy 

estimates was made by choosing eight ΔGi values randomly with replacement from the eight 

independent half-simulations and Boltzmann averaging the n = 8 values together.

Results and Discussion

To test the effects of landscape flattening on transition rates and MSλD convergence, 

relative solvation free energy simulations (Figure 1) were run on two previously 

characterized systems: geldanamycin and benzoquinone.22 While the primary goal was to 

improve sampling in order to accelerate convergence and broaden the range of tractable 

problems, consistency checks that varied the implicit constraint c value and the number of 

substituents revealed two previous sources of error that this study corrects. The fidelity of 

results to the correct free energy for the forcefield or to experimental results are not 

considered and will form the basis of a future study.

Geldanamycin

A previous MSλD study observed that grouping substituents of similar size together 

optimized transition rates and expedited convergence.22 Consequently, that study explored 

three sets of geldanamycin substituents: small, medium, and large, with the large 

substituents proving most challenging. In the present work, the large substituent 

geldanamycin derivatives (Figure 2) were sampled to test the efficacy of landscape 

flattening. Only the solvent side of the thermodynamic cycle (ΔGsolvent and not ΔGvacuum in 

Figure 1) was run in order to focus on convergence. Four simulations of 10 ns each were run 

with implicit constraints using c = 5.5 (eq 4). The total transition rate was 188.5/ns (Table 1), 

which compares well with the 401.5/ns observed previously without landscape flattening, 

using c =2.5 and BP-REX. While the transition rate is somewhat lower in the present study, 

this transition rate was obtained without the benefit of replica exchange, and with the use of 

c = 5.5 rather than c =2.5, which enabled the system to more fully explore the circa 5 

kcal/mol wells at the endpoints.

The flattened landscape was also sampled using constant pressure NPT simulations and BP-

REX with five replicas. Free energies and uncertainties were computed (Table 2). It is 

noteworthy that the precision with replica exchange (rms uncertainty of 0.13 kcal/mol) was 

substantially better than without it (rms uncertainty of 0.21 kcal/mol), however this can be 

explained in terms of sampling. Since the BP-REX results contained five times more 

sampling, an improvement of a factor of  in the precision is expected, which is not 

too far from the factor of 1.6 that is observed.

Benzoquinone Derivatives

As a next step, a set of substituents with widely varying sizes were used to test the limits of 

landscape flattening. The 2,5-benzoquinone derivatives provided an ideal test set (Figure 3). 

Previously these derivatives were only be sampled in pairs,22 and some of the largest 

perturbations had very low transition rates, but in this study, landscape flattening enabled all 

of them to be sampled within the same simulation. In addition, since this system is 

symmetric, simulation convergence can be assessed not only with the variance of repeated 
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simulations, but also by checking that ΔΔG is the same when substituents at two sites are 

switched. For benzoquinone derivatives, both the vacuum and solvent simulations were run 

to obtain relative solvation free energies (Figure 1).

Initially, simulations were performed with only methyl (a) and phenyl (c) at the two sites. 

Four simulations of 10 ns each were used to assess precision. A transition rate of 160 

transitions/ns was obtained with landscape flattening and c = 5.5, a slight improvement over 

the 134.4 transitions/ns previously observed with c = 2.5 and BP-REX.22 (The vacuum 

transition rate was 270 transitions/ns.)

Simulations using lower c values are expected to be in error because the narrow endpoint 

wells cannot be fully explored. In particular, the well depth for phenyl differs by 4 kcal/mol 

between vacuum and solvent simulations (ωc,a is 6 kcal/mol in solvent and 2 kcal/mol in 

vacuum), and since these wells are not fully explored, calculations utilizing c =2.5 will not 

capture this difference. To assess the error induced by using c =2.5 rather than c = 5.5, the 

same simulations were performed with the endpoint biases (eq 12) set to zero and c =2.5. As 

expected, ΔΔGaa→cc deviated from the c = 5.5 value by 1.2 kcal/mol with the stringent 

population cutoff of λc = 0.99, and by 3.0 kcal/mol when the previously accepted cutoff of 

λc = 0.80 was used (Table 3).

Next, simulations were performed with all six substituents at both sites. Such a simulation 

with a large variety of substituent volumes would have been intractable without landscape 

flattening. With c = 2.5, BP-REX, and just two substituents, previous simulations ranged 

from 242.7 total transitions/ns for a-b to 4.3 total transitions/ns for a-f.22 The total transition 

rate in the present study of 367.8/ns (Figure 4 and SI Table S1) is a marked improvement of 

up to two orders of magnitude, and samples a wider variety of substituents simultaneously. 

The solvation free energies are given in Table 4. The uncertainties are somewhat higher than 

with two substituents because there are 36 physical ligands to sample instead of 4. The 

largest deviation between identical symmetric molecules is 0.70 kcal/mol between ce and ec. 

For substituents a-d, the symmetric errors are all below 0.3 kcal/mol.

It is worth noting that ΔΔGaa→ccc is −8.57 kcal/mol in the simulation with 6 substituents 

while it was −4.37 kcal/mol in the simulation with just a and c. This 4.2 kcal/mol 

discrepancy signals another source of error. The most likely cause for this discrepancy is in 

the use of hard-core interactions. While both simulations utilize hard-core interactions, there 

are more substituents and larger substituents in the six substituent simulation, so the solvent 

is disrupted to a greater extent in the six substituent simulation.

Hard Cores Cause Solvent Disruption

In order to test the degree of solvent disruption by hard-core interactions, a simple 

thermodynamic cycle was devised (Figure 5). Benzoquinone site 2 on carbon 5 was given a 

methyl, while site 1 on carbon 2 was changed from methyl (a) to isopropyl (b) to phenyl (c), 

and back to methyl (a). In each of the three transitions, only the two substituents involved 

were included. Consequently, the solvent is disrupted differently at the endpoints when λ ≈ 
0 in each simulation. For example, the solvent environment of (ba) (2-isopropyl 5-methyl 
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benzoquinone) is relatively undisturbed in the presence of low levels of (aa), but is more 

disrupted by the bulky phenyl group in the presence of low levels of (ca).

The free energy of this thermodynamic cycle should be zero since it begins and ends with 

the same state, (aa), but when computed with hard cores, it is not. It deviates from the 

expected value by 0.57 kcal/mol (Figure 5). (This is smaller than the 4.2 kcal/mol aa → cc 

discrepancy in the two and six substituent benzoquinone systems because in those systems, 

two sites are involved rather than one, and in the six substituent case, more and larger 

substituents are present than in this simple system.)

To make sure this deviation was in fact due to solvent disruption by hard-core interactions, a 

soft-core interaction potential (eq 15) was implemented in the DOMDEC package30 of 

CHARMM.28,29 After re-flattening the landscapes, the change in free energy of the 

thermodynamic cycle is zero to within statistical precision (Figure 5), demonstrating that the 

error in the thermodynamic cycle can indeed be attributed to solvent disruption.

Calculations employing soft-core potentials are more consistent with each other as shown by 

thermodynamic cycle closure, and this, together with the theoretical arguments noted above 

indicate soft-core calculations almost certainly provide more accurate results. Even in this 

small, simple, relatively clean system, hard cores at the endpoints give errors of up to 1.3 

kcal/mol for ΔΔGsolvation(ca→ aa).

Since soft cores gave improved results on the simple benzoquinone cycle, the two site 

systems with two and six substituents were re-flattened and rerun with soft cores. Soft-core 

free energy estimates are shown in Tables 5 and 6. (The infinite uncertainties for five 

compounds arise because those compounds were not sampled in one or more simulations, 

but the estimates of ΔGsolvation for those molecules are still in reasonable agreement with 

their symmetric partners.) With soft-core interactions, the two and six substituent results are 

consistent (Tables 5 and 6), while with hard cores they were not (Tables 3 and 4). For 

example, two and six substituent differences in ΔΔGsolvation(αα → cc) were 4.20 ± 0.13 

kcal/mol for hard cores and 0.15 ± 0.56 kcal/mol for soft cores.

Given that soft-core calculations are more accurate, comparison between Tables 4 and 6 

reveals that hard cores introduce substantial errors in the full benzoquinone system relative 

to soft cores: dimethyl (aa) to diphenyl (cc) differs by 6 kcal/mol, and aa → ff differs by 12 

kcal/mol. The soft-core results show that hard-core simulations underestimate the solvent 

affinity of smaller molecules, and the larger the difference in size, the larger the effect. This 

is because the solvent environment around smaller substituents is severely disrupted by the 

presence of several very bulky substituents.

It is noteworthy that while soft-core interactions likely give better accuracy, their precision is 

poorer. For example, uncertainty is about twice as large with soft cores as with hard cores in 

the two substituent system. Furthermore, in the six substituent system, deviations between 

symmetric derivatives (which should be zero) are larger with soft cores than with hard cores: 

e.g. ΔΔGsolvation(ab → ba) is 0.14 ± 0.13 kcal/mol with hard cores and −0.57 ± 0.51 

kcal/mol with soft cores. This occurs because the soft-core potentials modify the free energy 

landscape and especially the endpoints. Eq 12 does not model the endpoint traps as well, so 
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the landscape cannot be as fully flattened, there are fewer transitions, and the uncertainty 

goes up. The shape of the endpoint well depends rather strongly on the exact form of the 

soft-core potential so modification of eq 12 or the soft-core potential parameters may be 

required to optimize sampling and is the subject of ongoing investigation.

Landscape Parameters Depend on Substituent Volume

In this work, a method that found parameters to flatten the energy landscape in λ from many 

short simulations has been presented. However, reasonable initial estimates for csi,sj and ssi,sj 

can further decrease the number of these initial simulations required to learn the landscape. 

The landscape parameters are strongly correlated with the volume of the substituents. The 

parameters in vacuum tend to be slightly below half of what they are in solvent, but vacuum 

simulations are much less expensive, so there is less need to make good initial guesses for 

the landscape flattening parameters. Therefore, the following analysis focuses on solvent 

simulation parameters.

The ψsi,sj parameters in eq 10 can be fairly well approximated by using the simpler ψsi 

parameters in eq 11. Using this smaller set of parameters led to a root mean square deviation 

of 2.6 kcal/mol from the full ψsi,sj parameters learned by landscape flattening. (A 2.6 

kcal/mol error in ψsi,sj corresponds to a 0.65 kcal/mol error in the barrier). The ψsi 

parameters in turn are strongly correlated with volume of the substituent si (Figure 6a). 

Volumes were obtained using the coordinate volume functionality in CHARMM.28,29

Likewise, the ωsi,sj parameters in eq 12 are largely independent of sj, and can be 

approximated as ωsi with a 0.6 kcal/mol root mean square deviation. The ωsi parameters are 

also strongly correlated with the volume of the substituent si (Figure 6b).

The full parameters can then be predicted to be

(17)

with mψ = 0.0803 kcal/mol/Å3 and bψ = 0.5084 kcal/mol and

(18)

with mω = 0.0598 kcal/mol/Å3 and bω= −3.193 kcal/mol.

Discussion

In this work, landscape flattening has proven very effective in lowering barriers and 

increasing transition rates. This opens up many new possibilities in MSλD simulations. The 

improved convergence of MSλD calculations can be traded to look at more substituents 

simultaneously or to examine larger chemical perturbations.

Landscape flattening is most useful in the context of large, flexible substituents, because 

transition barriers are approximately proportional to substituent volume (Figure 6). 
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Previously, MSλD calculations were limited to perturbations akin to methyl to phenyl in 

difficulty. The collection of benzoquinone substituents shown in Figure 3 contained 

substituents with transition rates which previously varied by two to three orders of 

magnitude.22 In the present work, substituent transition rates vary by about a factor of five, 

suggesting that even larger perturbations than those considered could potentially be 

explored, though additional techniques such as solute tempering2,35 or orthogonal space 

random walk10 may be necessary to sample the internal degrees of freedom of large flexible 

substituents. MSλD has historically focused on modifying small functional groups.6,7,20 

While such calculations have many applications, the ability to look at larger perturbations 

with landscape flattening opens up new possibilities in fragment-based drug design13,36 and 

in exploring the effects of protein mutation on drug binding.37–39

With larger substituents come new pitfalls, two of which were noted and corrected. Both 

pitfalls were related to the endpoints. First, the larger the volume of the substituent, the 

deeper its endpoint trap. This occurs largely because there is an energetic and entropic cost 

to move water out of the way to make room for the repulsive portion of the Lennard-Jones 

potential before favorable dispersion and electrostatic interactions begin to have an effect. 

Without landscape flattening, these traps cannot be fully explored or the simulation will 

become trapped, yet fully sampling the endpoints is required for accurate results. Landscape 

flattening allows the simulation to fully sample the endpoints without becoming trapped.

The ability to sample the endpoints fully without becoming trapped is quite useful, as it 

allows one to return from using c = 2.5 to using c = 5.5 in the implicit constraints (eq 4). The 

value c = 5.5 was chosen as a compromise between lower c values, which improve 

simulation stability, and higher c values, which bias sampling towards the endpoints and give 

better statistics. In subsequent work with larger substituents, biasing λ towards the endpoints 

promoted trapping, which made biasing λ towards the endpoints a liability, so c =2.5 was a 

better choice. With landscape flattening, trapping is no longer a consideration and biasing λ 
towards the endpoints improves sampling, so c = 5.5 is a better choice. As MSλD systems 

become more complex due to increasing numbers of substituents or sites, the bias of the 

implicit constraints towards the endpoints becomes less effective, so increasing c beyond 5.5 

may improve convergence. Each additional site lowers the fraction of time spent in the 

physical endpoint states, so increasing c can have a stronger effect on the endpoint sampling 

for systems with more sites. When increasing c, it may be necessary to lower the timestep or 

increase the pseudomass of the alchemical particles to maintain stability.

Second, the use of hard-core interactions leaves small solvent inaccessible cavities near the 

endpoints. For perturbations of one or maybe two heavy atoms, these cavities are few and 

typically inside other heavy atoms. Consequently, previous MSλD studies suffered very 

little from the use of hard cores because they focussed on small perturbations. For bigger 

substituents however, these cavities are quite numerous and seriously disrupt the solvent, 

leading to errors of up to 12 kcal/mol in the present study. For MSλD simulations with 

medium or large substituents, soft-core interactions are absolutely essential for accuracy.

In this study the use of landscape flattening improved sampling and precision and the use of 

soft-core interactions improved accuracy, correcting errors from hard-core calculations of up 
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to 12 kcal/mol introduced by the approximations of eq 5. It is worth asking how well these 

methods work together, since both precision and accuracy are necessary in many contexts. 

As previously noted, soft-core interaction change the shape of the endpoint traps. As a 

result, the landscape is not fully flattened, and there are fewer transitions, which lowers 

precision. In the benzoquinone system, increases of roughly a factor of two or three were 

observed in the statistical uncertainty of the results with soft cores. Even with the lower 

precision, uncertainties were typically less than a kcal/mol, and were small enough to clearly 

show the improved consistency in the benzoquinone system with changing numbers of 

substituents. In the future we expect landscape flattening together with soft cores to give 

accurate results with better than 1 kcal/mol precision even on difficult systems like the large 

substituents in the benzoquinone system. Further improvements in the endpoint potential and 

the flattening algorithm may improve soft-core precision to be competitive with the hard-

core results.

Conclusions

Free energy calculations are important to a broad range of chemical and biochemical 

problems, including drug design, peptide binding, pKa calculations, and solvation free 

energy. Multi-site λ dynamics is a free energy technique with features that are well suited to 

address many problems of ligand and receptor optimization because it allows large 

perturbations, requires fewer simulations, and is highly scalable. In the past MSλD has been 

limited by high free energy barriers. In this work we presented a new technique to flatten the 

energy landscape in λ space, thus substantially increasing transitions and improving 

convergence. We discovered deep traps at the endpoints, and that recent implementations of 

MSλD were not fully exploring these physically relevant traps due to concessions in the 

implicit constraints. Flattening of the landscape removed the need for such concessions. 

With the improved sampling, we also found that the use of hard-core interactions was 

disrupting the solvent and causing serious errors in even very simple systems. The hard-core 

errors were removed through the use of a new style of soft-core interaction. These 

improvements open the way for more aggressive use of MSλD with substantially improved 

precision and accuracy.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The relative solvation free energy ΔΔGsolvation (L1 → L2) between two ligands L1 and L2 is 

the difference between the horizontal (physical) processes, ΔGsolvation (L2) − ΔGsolvation 

(L1). These two free energies are typically difficult to calculate, but their difference is equal 

to the difference between the two vertical (alchemical) processes, ΔGsolvation − ΔGvacuum, 

which can each be readily calculated with free energy methods.
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Figure 2. 
Geldanamycin and the set of large substituents that were previously tested.22
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Figure 3. 
Symmetric benzoquinone derivatives. Several substituents representing a wide variety of 

sizes were chosen from a previously studied list of ten.22
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Figure 4. 
Average transition rates (per ns) of benzoquinone derivatives in solution with flattened free 

energy landscape.
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Figure 5. 
A closed thermodynamic cycle based on the benzoquinone substituents in Figure 3 designed 

to test solvent disruption by hard-core interactions. The free energy for the cycle sums to 

zero within statistical uncertainty for the soft-core cycle, but not for the hard-core cycle.
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Figure 6. 
There is a strong correlation between the optimized parameters obtained in this study for 

solvent simulations and the volume of the substituents. (a) The ψsi,sj parameters can be 

decomposed into the sum ψsi,sj = −(ψsi + ψsj), where ψsi is strongly correlated with volume. 

(b) The ωsi,sj parameters are largely independent of sj, and are strongly correlated with the 

volume of si.
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Table 1

Geldanamycin transition rates

substituent transitions/ns

a 62.0

b 22.1

c 21.3

d 23.9

e 28.9

f 30.3
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Table 2

Geldanamycin solvent simulation free energies (kcal/mol)

substituent 10 ns NVT 10 ns NPT 10 ns BP-REX

a 0.000 ± 0.13 0.00 ± 0.18 0.00 ± 0.08

b −4.45 ± 0.30 −4.32 ± 0.31 −4.25 ± 0.06

c −3.25 ± 0.19 −4.12 ± 0.13 −3.60 ± 0.09

d −33.48 ± 0.18 −33.95 ± 0.17 −33.84 ± 0.10

e −24.07 ± 0.22 −24.12 ± 0.19 −23.93 ± 0.11

f −59.14 ± 0.18 −58.91 ± 0.11 −58.99 ± 0.24
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Table 5

Soft-Core Benzoquinone Free Energies with Two Substituents (kcal/mol)

R2-a R2-c

R1-a 0.00 ± 0.03 −1.07 ± 0.04

R1-c −1.02 ± 0.04 −1.99 ± 0.04
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