
Lawrence Berkeley National Laboratory
Recent Work

Title
Capillary Wedges Revisited

Permalink
https://escholarship.org/uc/item/3tt3649p

Authors
Concus, P.
Finn, R.

Publication Date
1993-02-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3tt3649p
https://escholarship.org
http://www.cdlib.org/


l 

LBL-33553 
UC-405 
Pre print 

Lawrence Berkeley Laboratory 
UNIVERSITY OF CALIFORNIA 

Physics Division 
Mathematics Department 

To be submitted for publication 

Capillary Wedges Revisited 

P. Concus and R. Finn 

February 1993 

---..... n ol-'-r 
t1 t1 0 

Q > 
~s:::z: 

...... 
.: ID n 
IDr+O 
Ill Ill ., 
~mo< 
m ---
tiJ 
...... 
0. 
lQ 

Ul 
IS) 

r 
...... 
trn 
t1 0 
ID'O 

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098 ti"< 
"< . 1\) 

r 
tiJ 
r 
I 
w 
w 
Ul 
Ul 
w 



DISCLAIMER 

This document was prepared as an account of work sponsored by the 
United States Government. Neither the United States Government 
nor any agency thereof, nor The Regents of the University of Califor
nia, nor any of their employees, makes any warranty, express or im
plied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, 
or process disclosed, or represents that its use would not infringe pri
vately owned rights. Reference herein to any specific commercial 
product, process, or service by its trade name, trademark, manufac
turer, or otherwise, does not necessarily constitute or imply its en
dorsement, recommendation, or favoring by the United States Gov
ernment or any agency thereof, or The Regents of the University of 
California. The views and opinions of authors expressed herein do 
not necessarily state or reflect those of the United States Government 
or any agency thereof or The Regents of the University of California 
and shall not be used for advertising or product endorsement pur
poses. 

Lawrence Berkeley Laboratory is an equal opportunity employer. 

.. 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



·"' 

( . .. 

CAPILLARY WEDGES REVISITED* 

Paul Concus 

Lawrence Berkeley Laboratory 
and 

Department of Mathematics 
University of California 

Berkeley, California 94 720 

Robert Finn 

Department of Mathematics 
Stanford University 

Stanford, California 94305 

February 1993 

LBL-33553 

*This work was supported in part by the Applied Mathematical Sciences Subprogram of the Office 
of Energy Research, U. S. Department of Energy, under Contract Number DE-AC03-76SF00098, by the 
National Aeronautics and Space.Administration under Grant NAG3-1143, and by the National Science 
Foundation under Grant DMS89-02831. 



~ j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

Q j 

. j 
• 

. j 

. j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 



,. 

' ... 

Capillary wedges revisited 

Paul Concus and Robert Finn 

This paper is devoted to the results announced in our earlier note [1], concerning 

existence and nonexistence of capillary surfaces over domains with comers, when the data 

on the two sides of the comer niay differ. The behavior of the ~lutions can differ in 

significant qualitative ways from that which occurs in the previously considere_d case of 

constant data; we are able to a large extent to characterize the conditions under which such 

. qualitative changes must occur. 

1. For background cOnsiderations, we refer the reader to our earlier papers [2, 3] 

and to Chapters 1, 5, and 6 in [4]. In general terms, we consider a cylindrical capillary tube 

Z with section 0, closed at one end and partly filled with fluid in the absence of gravity, 

forming a free surface fJJ. We suppose the boundary :E of 0 to be piesewise smooth and to 

have an isolated comer P of opening 2a, 0 < 2a < 1r, forming a local "wedge domain" at 

P, see Figure 1. We seek conditions under which, for prescribed constant (contact) angles 

y 1 and y 2 in the interval [0,1r], there will exist an IF that can be (locally) represented by a 

function z = u(x, y) over a neighborhood 0* of Pin 0, and which meets the sides Z1 and 

Z2 , over adjacent segments :E 1 and :E2 of a 0 that abut at P, in the angles y 1 and y 2 • 

(a, b) 

(sin a,- cos a) 

Figure 1: The wedge configuration 
1 

Specifically, we seek a solution of 

div Tu =2H (1) 

in some 0*, with 

(2) 

and Han arbitrary prescribed constant, such that 
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v·Tu =cos y1 

v·Tu =cos y2 
(3) 

v being unit exterior normal vector. Geometrically, His the mean curvature of fll; when H 

= 0, fJl becomes a minimal surface. In a physical situation, His determined by the global 

configuration of nand by the boundary conditions over the entire boundary. One sees 

easily that meaningful physical conditions can give rise to ~y desired value of H. It is 

worth noting that if y 1 = y 2 '* 1£12 over the entire boundary, then H * 0; if y 1 = y 2 = n/2 

over the entire boundary, then the global problem admits the solution u = 0 inn, which is 

unique up to ran additive constant. 

It is important to observe that in the statement of the problem, g; is not assumed to 

be defined over P, and no growth conditions are imposed as Pis approached from within 

n. 

2. In earlier work [2,3], we have shown that if y 1 = y 2 = y, then a solution of the 

local problem (1), (2), (3) can exist only if a<!! I~- y I; if H * 0 and if .E1, .E2 are linear 

segments then this condition also suffices, while if H = 0 then a > I ; -y I suffices for 

existence. Again we emphasize that no growth restriction is required at P. Tam [6] showed 

that whenever a solution exists, then the surface fJl is continuous and has a continuous unit 

normal N up to P, see also Miersemann [7] and Lieberman [8] for further developments. 

This remarkable behavior is the underlying reason that Vreeburg obtained in [9] the 

identical expression a <!! I ~ -y I as condition for existence of a surface with normal vector 

continuous to the vertex, without any use of the differential equation. 

In the interim Keller, King, and Merchant [1 0] studied again the question of a 

capillary surface u(x,y) defined in a wedge, with (possibly) differing angles y 1, y2 on the 

two sides. They assume that the sides are linear and extend to infinity and that the surface 

extends to the entire infinite wedge with the same boundary condition; this is possible only 

in the particular case H = 0, thus limiting the physical interest of their discussion. For this 

among other reasons that we indicate below, the assertion of the authors on p.l61 of [10] 

that they provide a simple derivation of our result described above is in our view 

misleading. (We find additionally the authors' justification that H = 0 to be unconvincing; 

however, the result can be proved, using methods developed in [11], [12], and [13].) 

The authors of [10] then assume further that the solution is uniquely determined by 

the data. From a mathematical point of view this question is unsettled, see, e.g., Theorem 4 

in [14]. They conclude from the assumed uniqueness that the surface must be ruled, and 
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give a reasoning to the effect that every ruled minimal surface must necessarily be a plane. 

The right helicoid z = arctan ylx provides a counterexample to their assertion. 

Nevertheless, it is known [15 ] that the right heli90id is the oruy ruled minimal 

surface other than the plane; since the helicoid does not meet the wedge walls in constant _ 

angles, the boundary condition excludes it from consideration. Hence, subject to the 

missing proof of uniqueness, we may conclude with the authors of [ 1 0] that any surface 

u(x;y) satisfying their conditions interior to the (infinite) wedge and on its edges is a plane. 

We emphasize here that uniqueness cannot routinely be expected, see, e.g., [ 16], where 

configurations with a continuum of solutions are discussed, and especially the remarks in 

the Postscript of that reference. 

The authors proceed in [10] to derive the formal condition that a plane covering the 

infinite wedge can meet both wedge walls in the prescribed angles, and then to use that 

criterion as the physical one for the (local) existence of a capillary surface near the vertex. 

But the condition they thus obtain excludes, for example, the case a = ~- y I in the equal 

angle configuration, for which a lower hemisphere provides an explicit solution; the 

existence and particular properties of this solution are crucial in our own discussion of the 

behavior of capillary surfaces at corner points, and we believe them to be crucial for a 

correct understanding of what can occur. 

The criterion of [10] excludes many other significant solutions. In our Example 2 

(and in Theorem 3) below, we point out the existence of surfaces u(x,y) of constant H, 

defined in a neighborhood of Pin wedge domains and meeting the walls in (different) 

constant angles, but for which the unit surface normals are discontinuous at P (thus they 

behave locally very differently than do planes). These surfaces satisfy the correct physical 

conditions and it must be expected that they will be observed in practice; they are however 

not encompassed in the discussion of [10]. For this reason, we cannot concur with the 

--proposal at the end of §2 in [10], to use that paper's Criterion as abasis for a procedure to 

measure contact angle; we believe that such a procedure would lead to erroneous results in 

a large range of cases of particular interest. 

It seems appropriate here to reiterate for the present context, the point made in our 

earlier note [1] with regard to Vreeburg's paper [9]. Although the circumstances differ in 

detail, the two discussions [9] and [10, §2] have in common that the authors have unduly 

restricted the class of surfaces admitted into consideration, thus overlooking solutions of 

the equation and boundary conditions that are mathematically (and also physically) 

significant . It is a curious accident that when the contact angles on the two wedge sides are 

equal, all procedures lead to criteria that look formally similar. Despite the apparent 
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similarities, the criteria do differ in an important way, even in that particular case; it is 

presulllably a failure to recognize this distinction that led the authors in [10] to the 

erroneous statement in their Abstract that "the height of the free surface ar'the corner tends 

to infinity as the wedge angle decreases to a critical value dependent on the contact angle." 

This assertion is in conflict with the discontinuous disappearance of the surface that is a 

feature of the discussion in our work to which they refer; it seems clear on the basis of 

experiments already conducted (cf.,[4] p. 137, also [5]) that the discontinuous behavior 

will be observed in practice. 

When differing contact angles on the two sides are contemplated, the distinctions 

become still more marked, and a whole range of solutions appears that is envisaged neither 

in [9] nor in [10, §~].The criteria for existence of these solutions are very different from 

the ones established in those references, and lead in particular to different predictions as to 

results of experiments. It should be of considerable interest to design such experiments, 

which could be carried out in a suitable microgravity environment. 
,. 

3. In what follows, we discuss solutions under the generality introduced at the 

beginning of this paper. 

In the (B 1, Bz) plane we introduce the closed elliptical domain 

(4) 

inscribed in a square 2l as indicated in Figure 2 . ~ cuts off domains 21J+, 21J- of 2l that 

are interior to the strip .4: IB 1 - B21 < 2cos2a , and domains 9J+ , ~- of 2l that are exterior 

to .A . Note that the lines 11r - ~ = ±2cos2 a pass through the intersection points of a ~ 
with a fl. We then have 

Theorem 1: Set B 1 = cosy 1 , Bz = cosy 2 • A necessary condition for existence of a 

solution surface f/J, u(x,y) of(l),(2),(3) with unit nonnal N continuous up toP is that the 

point (B 1, Bz) lie in ~; the boundary of~ corresponds to those configurations for which fiJ 

is verticalrN horizontal) at P. On a~ n a 21J+ there holds y1+y2 = 1t- 2a; on a~ 
n a 21J- there Jwlds y1+y2 = 1t + 2a. On a~ n a 9J\ o ~ n a 9J- there Jwld, 

respectively, y 1 - y 2 = 1r - 2a and y 1 - y 2 = -1r + 2a. For existence of such a solution in a. 
domain 0* of the type considered and for arbitrary H, it suffices that .E 1, .E2 be linear 

segments, and that (B 1, Bz) lie interior to ~.If (B 1, Bz) E a ~ n a 21J+ then there is a 

solution (in some 0*) for any H > 0 ; if(B 1, Bz) E a ~ n a 21J- there is a solution for any 

H<O. 
Any solution u(x,y), corresponding to interior points of~ or to points of a ~ 

interior to .A, is continuous and admits a continuous unit nonnal vector up to P. 
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Figure 2: Elliptical domain iff, reference strip A, square fl; 
and domains 9J. ±; case 2 a < 1112. If 2 a > 1112, the 
directions of triajor and minor axes interchange. 

B - B =1co~a 
1 2 

\ 

Proof of Theorem 1: Write N = <a, b, c> with c ~ 0, a2 + b2 + c2 = 1. Referring to 

Figure 1, we find 
cos y 1 = a sin a + b cos a 
cos y 2 = a sin a - b cos a ' 

and the first sentence of the necessary condition follows. immediately from the observation 

that az + b 2 ~ 1, equality holding if and only if c = 0. For any (B1, Bz) E a g n a !fi+, 
there corresponds a unique (y 1, y2 ) withy 1, y2 in [0, n]. We rewrite 

in the form 

(1-Bf)(l-~) = (B1B2 +cos 2a)2 
• 

Since on the indicated arc we have 

there follows from (5) 

B1B2 +cos 2a > 0 . 

Thus, using positive square roots, we obtain from (6) 

J l-Br J l-Bi = B1B2 +cos 2a, 

which is equivalent to 
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(6) 
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(10) 

so that either y 1 +y 2 = :rt- 2a or y 1 +y 2 = :rt + 2a. But from (5), we fmd at the symmetry 

point B1 = B2 = B > 0 on a a' n a 9{+ that B = sin c:x = cos ( rr/2 - c:x). Thus, the fonner 

relation must hold at the symmetry point, and hence it holds throughout the arc. Similarly, 

on a a' n a 9{-, there holds y1+y2 = :n: + 2a. 

On the remaining two arcs a ~ n a 9i+ and a ~ n a 9i-' we obtain by analogous 

reasoning that y 1 - y 2 = rr- 2c:x and -rr + 2c:x, respectively. -

To prove the sufficiency, observe that if (B1, B2) is interior to a', then a, b, care 
uniquely determined by the conditions just given, and that c < 0. The plane II through P 

-+ 

with nonnal N then solves the problem when H = 0. If H > 0 then a lower hemisphere of 

radius 11 Hand tangent to II at P provides an explicit local solution, while if H < 0 then an 

upper hemisphere yields a solution (see Figure 3). 

n 

Figure 3: Covering of neighborhoods of P by hemispheres; when 
n is vertical (corresponding to points on a a') only one of 
the two hemispheres achieving the boundary data at P 
covers a neighborhood of Pin n. 

If (B1, B2) is a boundary point of a', then this procedure always fails when H = 0; if 

H '* 0 then the procedure can under some circumstances yield a solution, provided the trace 
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of II on the plane of n does not enter the (closed) wedge domain. That is, the vector <a,b > 

of Figure 1 must be a linear combination, with positive coefficients, of the two other 

vectors in the figure. Since c = 0 in this case, the condition becomes lbl < cos a, or 

equivalently IB1- B2l < 2cos2a ; that is, (B1, B2) E ..J. But even with that restriction, not 

all possibilities can be achieved, as the signs of ux,uy now reverse for the two hemispheres 

tangent to II at P that cover a neighborhood of Pin n (see Figure 3 ), and thus changing 

the sign of H also rever'ses the signs of ux ,uY. Nevertheless~ on o ~ n a !lf.+ the condition 

y 1 +y 2 = :n: - 2a can be realized by an explicit construction with a lower hemisphere of 

arbitrary radius; the construction is indicated in Figure 4. 

Figure 4: Construction of solution as lower hemisphere; 

y1 + y2 = 1t -: 2a, H > 0. 

Similarly, on a~ n a !ll-' there must hold YI+Y2 = :n: + 2a 'and an explicit 

construction can be achieved with an upper hemisphere of arbitrary radius. 

With regard to the remaining two arcs a ~ n a 9J+ and o fff n a 9J~, it will be 

shown below (in §5) that solutions exist, at least at the symmetry points of these arcs; 

these solutions are however not known explicitly. 

The final statement of the theorem follows from the method of Tam [6], which 

applies without essential change to the extended situation considered here.O 
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It should be emphasized that we have not excluded the possibility of solutions with 

negative H achieving tlie data on the segment a ~ n a !fi+ , or with positive H achieving 

the data on the segment a ~ n a !ll-. 

In view of the four relations just obtained for y 1 and y 2 on a ~, we see that ~ 

appears as a rectangle in the y 1, y 2 coordinates, with sides inclined at 45° to the axes 

(FigureS). 

-··---n-2a 11 

Figure 5: Image of ~ and of J2 in ( y , y ) coordinates 
- 1 2 

4. In the above discussion, the requirement that :E 1 , :E2 be linear was introduced 

solely to facilitate a simple explicit sufficiency proof; it is not essential to the substance of 

the problem. It is less clear under what conditions solutions with discontinuities at Pare 

excluded, as happens in the equal angle case. To study that point, we attempt to extend the 

method we introduced for that case to t:ms more general situation. Following in general 

outline our earlier procedure, we apply Green's Identity to (1) in the subdomain o<A) 
indicated in Figure 6, cut off by f and A (the segment A is introduced to exclude possible 

singularities at the vertex P). We obtain 

2H!o<A1=h:\4osv 1 +~kv2 + L v·Tu tis { v·Tu tis . (11) 

The crucial observation in what follows is that jv · T~ < 1 for any function u(x, y). 

This inequality permits us initially to move A to the vertex P, with the integral over that 

segment disappearing in the limit Our next step is to replace v · T,u in the other integral 
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1.1 

p 

Figure 6: Configuration for Theorem 2. Note that a 
1 
> 0, a 2< 0; 

both are in the range (2a -7TI2, 7TI2). 

by its positive and negative bounds, and then to let f move to P by parallel translation. 
Referring to Figure 6, we chQOSe a~, <X2 in (2a- ~.~)such that <Xt + <X2 = 2a. Since the 

area term in ( 11) tends to zero faster than any of the lengths and since I: 1 , 1:2 are 

asymptotically linear, we are led to the inequality 

cos Y1 cos Y2 . 
1--- + ·~.tan <X1 +tan <X2 
cos a 1 cos a2 · 

· · as a necessary condition for existence of a solution. Setting A 1 = cos a 1, A 2 = cos a 2 and 

intro~ucing B1, B2 as above, we are led to 

Leiilma 1: If ex~. c:x2 are as above andiB2A1 + B1A2i >sin 2c:x then there is no solution to 

the problem, regardless of growth conditions at P. 

Clearly the conditions of Lemma 1 cannot be satisfied when (Bt, B2) is interior to 

~.as Theorem 1 would then imply existence of a solution. We ask whether the conditions 

are necessarily satisfied for points exterior to a: In formal terms, we have the 

Question: Given (B 1, B2) disjoint from ~,do there exist <Xt, c:x2 in (2a- ~. ~) such that 

C:Xt + <X2 = 2a and IB2A1 + B1A2l >sin 2c:x? 

To answer the question, we prove first: 

~mma 2: ·For <Xt, c:x2 in (-1C/2, 1C/2), the constraint C:Xt + c:x2 = 2a implies the relation 
A[ +A~- 2A1A2cos 2a = sin22c:x ; A1 A2 > 0 (12) 

' 
describing that portion of an elliptical arc & partly inscribed in a unit square in the 

(At, A2) plane, that lies in the .first quadrant (see Figure 7). Conversely, whenever (12) 

holds there is a unique pair ex~. <X2 (up to permutation) such that C:Xt + c:x2 = 2a and <Xt. 
c:x2 are in (2a- ~, ~). 
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Proof: From a1 + a2 = 2a we find A1-A2 - cos (2a) = ±V 1-At J 1- A~, from which 

(12) follows on squaring both sides. Conversely, if (12) holds it can be rewritten in the 

form just indicated. Choosing a 1 = cos-1 (A1). a 2 = cos-1 (A:z) in [0, rr/2) we find 

cos(a1 ± a 2 ) = cos2a, from which a 1 ± a 2 = ±2a. By changing the signs of a1 or a2 or 

both we can arrange to have a1 + a2 = 2a, with a1, a2 in (-rr/2, rr/2).1f a1 < 2a....: rr/2 or 

a2 < 2a- rr/2 then a1 + a 2 < 1a. This contradiction completes the proof. D 

I 
I L __ 

Figure 7: Elliptical domain (ff, elliptical constraint arc&; case 2a < w2. 

We set 

A1=-x-+_Y_ 
cos a sin a (13) 

A2 = __::_!_ + _y_ 
· cos a sin a 

transforming the elliptical arc (12) into a circular arc C centered at the origin, of radius R 

= sin a cos a, and restricted to the upper sector between the lines 

y= ± xtan a (14) 

(see Figure 8). The two lines Lt, L2 determined by B2A1 + B1A2 = ± sin 2a 

10 
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\ 
sin a cos a \ 

\ 
\ I 
a\ I 

X 

Figure 8: Normalized configuration (tentative); reference lines. 

become now 
Bt - B2 Bt + B2 · . x+ y=±sm2a 
cos a sin a 

(15) 

TheinequalityjB2A1 + B1A2! >sin 2aholdsifandonlyif(x,y) lies.outsidethestripOJf 

bounded by the lines, and each line has distance 

d= .sin22a 
I 2 2 . . 

2v B1 + B2 + 2BtB2cos 2a 

from the origin. When (B1, B2) is exterior to~, we find 

d<sinacosa=R. 

(16) 

(17) 

Despite the inequality in this last result, it ~.happen that C lies strictly interior to 

6)(/, as C contains only a portion of the full circle. In such a case, the method yields no 

information. But it can also occur that interior points of C lie exterior to O)f, whenever that 

happens, any such point of C yields by Lemma 2 a suitable pair a 1, a 2 and excludes the 

possibility of any solution to the original problem. We summarize what we have found: 

Theorem 2: lfC contains points exterior to the closed strip OJfdetermined by (15), then 

there is no solution of(1), (2), (3) in any neighborhood 0* of Pin O,for any constant H; 
this result holds without growth condition at P. lfC lies interior to OJf, then the method 

provides no information. 

The final statement of the theorem does not reflect a technical failure of the method, 

but arises rather from actual properties of the solutions. This will be apparent from the 

second of the following examples. 
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5. Example 1: 1:1 and 1:2 are linear, y 1 = y2 = y (equivalently, B1 = B2 =B). 
·2 

Then ( 15) becomes the pair of horizontal lines y = ± sm a cos a . The arc C is 
B 

independent of Band is indicated in Figure 9. If (B,B) is exterior to a' then one of the lines 

crosses C as indicated and points of C will lie exterior to O)f, hence by Theorem 2 no 

\ 
· sm a cos a \ 

\ 

y 

\ I 
\I a 

I 
I 

I 

Figure 9: Configuration for Example 1. 

X 

solution can exist If (B,B) is in the closure of ~ then C lies in the closed strip and 

Theorem 2 yields no information. However in this case we clearly have IB1 - B21 < 2cos2a 

and hence, by Theorem 1, a solution with continuous normal exists. Since (B,B) is 
exterior to ~ if and only if a < F2 - ~ we retrieve exactly our earlier result for the constant 

angle case, from a more general point of view .. 

Example 2: 1:1 and 1:2 are linear, y 1 = 1r- y2 :f.~ (B1 =- Bz = B :f. 0). Now Cis as 

before, but (15) now yields the two vertical lines Bx = ± sin a cos2a . Since IBI ~ 1, C 

always lies interior to OJf, and thus Theorem 2 yields no information. 

If in addition B > cos a , then (B, - B) is exterior to ~. and according to Theorem 1 

no solution with continuous normal can exist. Nevertheless, a solution to the original 

problem without growth hypotheses can exist, at least in a significant family of cases. 

Examples with B = 1 and any a are provided by the "moonies" whose existence is proved 

in [17]. These surfaces have y 1 = 0, y 2 = 1r on adjacent circular arcs of differing radius, 

see Figure 10. Theorem 1 provides a new proof independent of the one given in [17], that 

these surfaces have discontinuous normals at P. 
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/ 

Figure 10: Domain for Moonie 

The existence proof in [17 ] can be modified without essential change to show that 
f 

if the data y = 0 and y = 1r are modified to y and 1r- y, with 0 ~ y ~ n/2, then a solution 

exists in the identical domain. Thus we obtain a solution of the problem just formulated for 

any B with 0 ~ B ~ 1; these solutions have normai vectors discontinuous at P if B > cos a. 
It can be shown that if B < 1 then the surface is bounded above and below in 0; if B = 1 

then u(x,y) - -'- oo for any approach to the smaller circle, but remains bounded below on 

the larger one. 
' 

Thus, in a configuration with differing contact angles, solutions may appear whose 

behavior at Pis very different from that which can occur in the equal angle case. These 

solutions could not have been obtained by the procedures used for Theorem 1. D 

We observe that if Bt =- B2, then according to Theorem 1 solutions that are 

smooth up to P can be obtained with successively larger values of 1.81 tending to unity, as 

the opening angle 2a closes down to zero. This is despite the discontinuity that occurs 

· when 1.81 > cos a, and in contrast with the equal angle case, where the admissible B 

necessarily become small in magnitude with a. 

Example 3: I: l. and .!:2 are linear, B 1 = B, B2 = 0, a < 1T./4. We obtain once more the 

same C , but ( 15) yields the sloping lines 
_lL__x + --JL-y = ± sin 2a . 
cos a sm a 

These two lines will enclose C if and only ifi.BI ~sin 2a (see Figure 11). This is exactly 
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if~ = -1. The left hand endpoint of C lies on ~ if OJUl only if ~ = 1; it lies on L2 if OJUl 

only if B.z = -1. Both endpoints lie always interior to the closed strip o/f. 

Proof: Setting 

F(x,y) = ~- ~ x- ~.+ Bz y-sin2a 
cosa sma 
n -B n +B 

G(x,y)=~ 2 x-~. 2 y+sin2a 
COSa sma 

the lines L1, ~are characterized, respectively, by F(x,y) = Oand by G(x,y) =0. 

Choosing for x,y the coordinates of the right hand end point of C we find 

F(x,y) = (~ -l)sin2a, G(x,y) = (~ + l)sin2a.This proves the assertions relating to ~; 

those relating to· Bz are proved analogously. The same relations show that if I ~I < 1 then 

the right hand endpoint of C lies strictly between the two lines; similarly, the left hand 

endpoint lies between the lines when I~ I < 1. 0 

As a consequence of Lemma 3, we see that the configuration indicated in Figure 8, 

which was drawn to be indicative of a general situation, cannot occur as shown, as one of 

the endpoints ofC lies exterior to the strip in that configuration. 

Referring to Figure 2, we introduce 9j+, Sl{-, 91+ ,91- as in that figure. We adjoin to 

these domains all the boundary points that lie on the boundary of the square. On the line 

segment~ = Bz = B > 0, ~ takes the form y = sin
2 
a cos a/ B, a horizontal line ~tis 

tangent to C at its midpoint when (B,B) is on the boundary of iff, and cuts through C 

when (B,B) lies exterior to iff, as in Figure 9. Thus, according to Theorem 2, the '":edge 
. . 

problem admits no solution corresponding to the segment 1 ;;:: B > sin a ( cf., Example 1). 

We now allow (~, B.z) to move along the arc of a iff between the two nearest contact 

points with the square. According to· ( 16), the distance of· L1 to the origin remains 

unchanged, and thus we obtain a family of lines tangent to the circle on which C lies. Since 

I~ I < 1, I Bz I < 1 interior to the arc of a iff considered, we find by Lemma 3 that all 

corresponding contact points with the circle actually lie interior tO C. Again by Lemma 3, 

as the points on a iff move to the contact points with the square, ~ becomes tangent to C 

at the respective endpoints; thus, all of C is covered. It is easy to see that the covering is 

1-1. 
Through each of the considered points of a iff, we construct the extended line 

segment from the origin. Repeating the reasoning given above for the ~ = ~ > 0 

configuration, we find that for all points of that line segment exterior to iff there exists no 

solution to the wedge problem. Since these lines sweep out Sl£+ , there can be no solution 

for any point of Sl£+ . An identical reasoning excludes solutions for any point of !1{-. 

We now consider the two remaining complementary domains 91+ ,9i-, which have 

( 1,-1) and ( -1,1) as boundary points. In Example 2 above, we have shown the existence of 
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solutions for every point on the line segment -1 ~ ~ =- ~ ~ 1; thus C lies between 4 
and 4. for all points on that segment (see Figure 12). These solution surfaces have 

discontinuous normals at P for all points exterior to ~. ~sentially a repetition of the 

reasoning directly above shows that C lies between ~ and 4. for all points of f!IJ.+ and of 

f!IJ.-. We have proved: 

Theorem 3: For any points ( ~, ~) in. the domains fll+, !IJ- defined above, there are 

points of C exterior to the strip 91; and hence there exists no solution to the wedge problem 

(1), (2), (3) in any neighborhood of the vertex P,for any constant H. In f!IJ.+ ,~-, C lies 

interior to OJf, solutions do exist, at least on the symmetry line ~ = -·.~ of those domains. 

For all points of that line exterior to ~.the unit normals to the solution surfaces are 

discontinuous at P. 

For all interior points of ~ and any H, solutions exist and all such solutions are 

smooth up toP. We conjecture that for any ex in the range 0 <ex< rr/2 considered, 

solutions (with discontinuous normal) exist for all. ( ~, ~) lying in f!IJ.+ ·or in f!IJ.-. 

We close with: 

Theorem 4: Whenever a bounded solution exists in a wedge domain, then every solution 

in that domain is bounded. 
This is an immediate formal consequence of the general comparison principle for 

capillary surfaces, see [20] Section 2 or [4] Chapter 5. Unboup.ded solutions can occur, as 

in the "moonie" example above. In such a case, every solution is unbounded. 

We wish to thank Erich Miersemann for helpful discussions. 

This work was supported in part by the Applied Mathematical Sciences Subprogram of the Office of 
Energy Re..c;;earch, Department of Energy, under Contract Number DE-AC03-76SF00098, by the 
National Aeronautics and Space Administration under Grant NAG3-1143, and by the National Science 
Foundation urider Grant DMS89-02831. 

References 

1. P. Concus and R. Finn: On a comment by J. P. B. Vreeburg, Microgravity ScL 
Technol. JV(1991), p.60. · 

2. P. Concus and R Finn: On capillary free surfaces in the absence of gravity, Acta 
Math., 132 (1974); pp.177-198. 

3. P. Concus and R. Finn: On the behavior of a capillary free surface in a wedge, Proc. 
Nat Acad. Sci. U.S.A. 63 (1969), pp.292-299. 

4. R. Finn: "Equilibrium Capillary Surfaces", Springer-Verlag, New York, 1986. 

17 



5. D. Langbein, R. Grossbach, and W. Heide: Parabolic flight experiments on fluid 

suifaces and wetting, Microgravity Sci. Techno!. II, (1990), pp.198-211. 

6. L.-F. Tam: Regularity of capillary suifaces over domains with comers: borderline 
case, Pacific J. Math.124 (1986), pp.469-482. 

7. E. Miersemann: On capillary free surfaces without gravity, Z. Anal. Anwend. 4 
• (1985), pp.429-436. 

8. · G. Lieberman: Holder continuity of the gradient at a cor:ner for the capillary 
problem and related results, Pacific J. Math.133 (1988), pp.115-135. 

9 J.P.G. Vreeburg: Comment on the paper "Parabolic flight experiments on fluid 
surfaces and wetting", Microgravity Sci. Techno!. III(l990); p. 125. 

10. J.B. Keller, A. King an4 G. Merchant: Surface tension, in "Proc. Symp.for John 
Miles", Scripps lnst. Oceanography, Univ. of Calif. at San Diego (1991), pp.161-168. 

11. S. N. Bernstein: Surles surfaces dejinies au moyen de leur courbure moyenne ou 
totale, Ann. Ecole Norm. Sup. 27 (1910), pp. 233-256. 

12. E. Heinz: Uber Fliichen mit eineindeutiger Projektion auf eine Ebene, deren 
Krommungen durch Ungleichungen einbeschrlinkt sind, Math. Annalen 129 (1955), 
pp. 451-454. 

13. R. Finn: Remarks.relevant to minimal suifaces and to surfaces of prescribed mean 
curvature, J. d'Analyse Math. 14 (1965), pp. 139-160. 1 

14. J .-F. Hwang: On the uniqueness of capillary surfaces over an infinite strip, Preprint, 
Acad. Sinica, R.O.C., to appear in Pacific J. Math. 

15. E. Catalan: Surles surfaces reglees dont l'aire est un minimum, Journal de Math. 7 
(1842), pp. 203-211. 

16. P. Concus and R. Finn: Exotic containers for capillary surfaces, J. Fluid Mech. 224 
(1991), pp. 383-394. 

17. R. Finn: Moon suifaces, and boundary behavior of capillary surfaces for peifect 
wetting and non-wetting, Proc. Lon. Math. Soc. 57 (1988), pp.542-576. 

18. N.J. Korevaar: On the behavior of a capillary surface at a re-entrant comer, Pacific 
J. Math., 88 (1980), pp.379-385. 

19. P. Concus, R. Finn, and F. Zabihi: On canonical cylinder sections for accurate 
determination of contact angle in micro gravity, in "Fluid Mechanics Phenomena in 
Microgravity", D. A. Siginer and M. M. Weislogel, eds., AMD-Vol. 154 and FED
Vol.142, Amer. Soc. Mech. Engineers, New York (1992), pp.125-131. 

20. R. Finn: Comparison principles in capillarity. In "Partial Differential Equations and 
Calculus of Variations", ed. S. Hildebrandt and R. Leis, Springer Lecture Notes in 
Mathematics 1357 (1988), pp.156-197. 

Lawrence Berkeley Laboratory and 
Mathematics Department 

University of California · 
Berkeley, CA 94720, U.S.A. 

18 

Mathematics Department 
Stanford University 
Stanford, CA 94305, U.S.A. 

,f. 



p ...... ~-

LA~NCEBERKELEYLABORATORY 

UNIVERSITY OF CALIFORNIA 
TECHNICAL INFORMATION DEPARTMENT 

BERKELEY, CALIFORNIA 94720 

............... ~· 




