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Abstract 
Trucks have a significant impact on infrastructure, traffic congestion, energy consumption, pollution and 
quality of life.  To better understand truck characteristics, comprehensive high resolution truck data is 
needed.  Higher quality truck data can enable more accurate estimates of GHGs and emissions, allow for 
better management of infrastructure, provide insight to truck travel behavior, and enhance freight 
forecasting.  Currently, truck traffic data is collected through limited means and with limited detail.   
Agencies can obtain or estimate truck travel statistics from surveys, inductive loop detectors (ILD) and 
weigh-in-motion (WIM) stations, or from manual counts, each of which have various limitations. Of 
these sources, WIM and ILD seem to be the most promising tools for capturing detailed truck 
information.  Axle spacing and weight from existing WIM devices and unique inductive signatures 
indicative of body type from ILDs equipped with high sampling rate detector cards are complementary 
data sources that can be integrated to provide a synergistic resource that otherwise does not exist in 
practice, a resource that is able to overcome the drawbacks of the traditional truck data collection 
methods by providing data that is detailed, link specific, temporally continuous, up-to-date, and 
representative of the full truck population. This integrated data resource lends itself very readily toward 
detailed truck body classification which is presented as a case study.  This body classification model is 
able to predict 35 different trailer body types for FHWA class 9 semi-tractors, achieving an 80 percent 
correct classification rate.  In addition to the body classification model, the large data set resulting from 
the case study is itself a valuable and novel resource for truck studies.    

 

 

Keywords: weigh-in-motion (WIM), inductive loop detector, inductive signature, truck monitoring, truck 
body type, vehicle classification  
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Introduction 1 
At the national level, trucks account for approximately 10 percent of the annual vehicle distance 2 
traveled (1).  Although this represents a small portion of the total travel, the impacts of trucks on the 3 
economy and freight transportation, air quality, traffic performance, pavement and infrastructure, and 4 
safety are much more substantial than that of passenger vehicles.  The economic impacts of trucks in 5 
regard to freight transport are considerable.  The Bureau of Transportation Statistics reported that 6 
“trucking as a single mode (including for-hire and private use) was the most frequently used mode, 7 
hauling an estimated 70 percent of the total value, 60 percent of the weight, and 34 percent of the 8 
overall ton-miles” (1).  In terms of environmental impacts, according to the California Air Resources 9 
Board (CARB) Mobile Source Emissions Inventory, heavy-duty diesel trucks are the “single largest source 10 
of nitrogen oxide emissions in California” as well as the “largest source of diesel particulate matter”, 11 
both pollutants that have significant health impacts in addition to their contribution to environmental 12 
degradation (2).   Further, due to their large size and mass, medium and large commercial vehicles often 13 
travel slower, possess lower acceleration rates and require much longer braking distances, leading to 14 
moving bottlenecks which have adverse impacts on traffic performance (3).  This concern has led to 15 
investigations into traffic performance impacts such as increased congestion as well as potential 16 
operational solutions like truck only lanes (4).  Studies of commercial vehicle safety impacts have 17 
confirmed that accidents involving large commercial vehicular traffic are often severe with higher 18 
fatality rates, due to their larger profile and mass compared with passenger vehicles (5).   19 

The availability of detailed truck data pales in comparison to the large impact trucks have on our 20 
environment, health, and infrastructure.   Agencies can obtain or estimate truck information from truck 21 
Global Positioning Systems (GPS) data, paper-based surveys, vehicle detection stations (VDS) and weigh-22 
in-motion (WIM) stations, or from manual counts.  Truck GPS data is capable of providing origin 23 
destination (OD) tracking and performance statistics (6) but it does not provide truck characteristics 24 
such as body types or industry served and represents only subpopulations. Additionally, there are 25 
significant privacy concerns that limit the availability of GPS data, and large commercially available 26 
datasets can be costly.  Paper based surveys, such as the Vehicle Inventory and Use Survey (VIUS), 27 
conducted by the US Census Bureau (7), require expensive and time consuming data collection tasks like 28 
interviews, intercept surveys, and mail-based surveys, and are only able to provide data from one point 29 
in time from a sub-sample of the truck population and cannot be related to specific routes or links.  A 30 
further drawback of VIUS is that it was conducted only every five years, leaving a major data gap for 31 
years in between, and was discontinued in 2002.   Loop detector data from VDS, such as that provided 32 
by the Caltrans Performance Measurement System (PeMS) in California cannot measure truck volumes 33 
directly and must rely on estimation algorithms to estimate broad truck classes, and can only be used at 34 
aggregate levels (8).  Furthermore, while VDS are prevalent in metropolitan areas, they are limited 35 
outside of them, and may not be ideal for capturing long haul truck traffic.  WIM sites, on the other hand, 36 
are able to provide truck counts by axle-based classes along with gross vehicle weights, but lack further 37 
detail about the cargo type or distance traveled by trucks.  Finally, manual counting entails recording 38 
truck traffic for short sampling periods, and then extrapolating the sample counts to get an estimate for 39 
a whole year, i.e. Annual Average Daily Truck Traffic (AADTT).  AADTTs typically possess significant errors, 40 
as they depend on short sampling periods which do not effectively capture the seasonal and diurnal 41 
trends of truck travel patterns, even with the use of adjustment factors, due to the heterogeneous 42 
disposition of truck travel patterns (8).   Not surprisingly, the last method is discouraged by the USDOT 43 
(9). 44 
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In this paper, we present a novel approach of integrating WIM and inductive signature data for building 1 
more advanced models for monitoring truck travel.  WIM and inductive signature data are exceptionally 2 
complementary.  WIM data provides information on a truck’s axle configuration and weights; however, 3 
the axle-based information cannot be directly associated with a truck’s function or body configuration.  4 
On the other hand, inductive signatures have been demonstrated an ability to distinguish trucks by body 5 
configuration, although inductive signatures obtained from conventional loop sensors are not suited for 6 
obtaining detailed axle configuration information (10).  Furthermore, the location of axles from WIM 7 
data can be used to partition signatures into body components in multi-unit trucks, allowing each 8 
component, such as the drive unit and the trailer unit to be analyzed separately.  The detailed truck data 9 
provided by this integrated data resource can then be applied to obtain classification and truck behavior 10 
through vehicle re-identification analyses.  As demonstrated through the case study presented in this 11 
paper, integration of WIM and inductive signature data can be used to develop detailed body type 12 
classification models.   Knowledge of body type permits many kinds of useful analyses, such as 13 
calculating fees and cost allocations to highway users by class or associated industry, spatial and 14 
temporal analysis of safety risks, energy efficiency and environmental impact of truck fleets through 15 
VMT estimation, determining fuel demands, and linking between sampled/survey data and population 16 
data.   17 

This paper outlines the procedure used to integrate WIM and inductive loop signature data at the 18 
hardware and data handling levels.  A case study of truck body type classification using data collected in 19 
California is presented as a demonstration of the potential of the proposed integrated data source.   20 

Background 21 
Conventionally, WIM technology is used to obtain axle-configuration-based classification of trucks, such 22 
as the scheme used by the Federal Highway Administration (FHWA), while inductive loop sensors are 23 
used to provide volume measures.  However, the instrumentation of existing inductive loop sensors with 24 
signature capability provides significant potential improvements in truck data.   In this paper, we 25 
integrate WIM data with inductive loop signature technology to provide a high resolution truck data 26 
source.    To the best of our knowledge there have not been any prior studies which integrate WIM data 27 
with inductive loop signatures, thus the integration method described in this paper is quite novel.   28 

WIM Detectors 29 
WIM detectors are implemented in many states for the purpose of reducing delay at static scales by pre-30 
screening, and for collecting site specific continuous truck traffic information.  WIM data can be used for 31 
pavement studies, highway monitoring and capacity studies, accident rate calculations, and general 32 
truck transport practices (11).  There are a limited number of vendors of WIM devices that operate in 33 
each state and for California all 106 WIM data stations are controlled by a single vendor, International 34 
Road Dynamics (IRD) (11).  In California, WIM sites are located throughout the state but concentrated in 35 
urban regions (see Figure 1a).  A typical WIM station includes bending plates or pressure sensors 36 
surrounded by square inductive loop detectors in the outermost lanes and piezoelectric sensors 37 
surrounded by inductive loops in the innermost lanes (see Figure 1b).  WIM stations collect vehicle 38 
arrival time and date, axle weights and gross weight, axle spacing, and speed (12).  Vehicle classification 39 
is determined from these measures according to the truck specific classes of FHWA Scheme F which 40 
includes 13 axle-based classes (14 classes for the State of California).  Based on the axle spacing and 41 
weights the truck class is assigned by a predetermined table.   42 
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   1 

(a) WIM sensor locations in California   (b) WIM sensor configuration (12) 2 

Figure 1 WIM Sensor Characteristics 3 
 4 

 5 

Inductive Loop Detectors 6 
Conventional loop detectors measure bivalent signals from inductive loops embedded in the pavement 7 
and are capable of measuring aggregated volumes and occupancies.  Unlike many other detector 8 
systems such as imaging or acoustic sensors, loop detectors are inherently accurate, achieving volume 9 
count accuracies typically between 98 and 99 percent even in conventional bivalent system applications, 10 
providing a good technology platform to develop the proposed system.  Finally, because magnetic 11 
inductance is invariant to changes in temperature, lighting, visibility and humidity, ILDs are robust.    12 
Advanced inductive loop detectors measure the inductance change in an inductive loop sensor at rates 13 
of up to 1200 samples per second (13), producing analog waveform outputs, referred to as inductive 14 
signatures, for each traversing vehicle. A significant advantage of advanced inductive loop detectors is 15 
their compatibility with existing conventional bivalent ILDs.  This allows existing conventional ILDs to be 16 
swapped with advanced ILDs without suffering any loss in system functionality. 17 

Integrating Data Sources 18 
Given the complementary nature of the WIM and inductive signature data, along with the physical 19 
embedded configuration of inductive loops within the WIM station, the two are ideally suited for 20 
integration to provide a synergistic data resource.  The data integration procedure is presented in the 21 
following section in two parts: hardware integration and data handling.  Hardware integration involves 22 
replacing the existing bivalent inductive loop module of the WIM controller with advanced inductive 23 
loop signature detector cards.   Data handling includes the pre-processing of inductive signatures and 24 
WIM records into a database structure that is then accessed through a customized user interface.  A 25 
third dimension of the integrated data source that is necessary for model development, but not needed 26 
for actual implementation, is the addition of still image capture hardware triggered by the loop 27 
detectors. This is to obtain detailed side picture profiles of trucks which are incorporated into the 28 
database and user interface for later identification of truck characteristics such as body type.   29 

 30 



Hernandez, Tok, and Ritchie  

4 
 

Hardware Integration 1 
Two main types of WIM controllers are currently deployed in California: the earlier DOS-based IRD 1060 2 
series controllers and the current Linux based IRD iSinc family of controllers, which include the iSinc 3 
WCU-II and iSinc WCU-3 Lite.   We have found the main distinction between the controllers for the 4 
purpose of this study is in their built-in ability to log inductive signature data.  The loop sensor module 5 
(LSM) of the 1060 WIM controllers is designed only to obtain conventional bivalent inductive loop data.  6 
On the other hand, the LSM of the iSINC controllers have the ability to obtain inductive signature data.  7 
The caveat for the iSINC controller however, is that inductive signature data is currently designed only 8 
for diagnostic and troubleshooting purposes.  Hence, the inductive signature data can only be manually 9 
logged when the system is in diagnostic mode, and is not currently available as an operational feature 10 
within the system.  Furthermore, 1060 series controllers are currently deployed at about 80 percent of 11 
current WIM sites within the California.  Hence, despite their age, a hardware integration solution with 12 
the 1060 series controllers would be applicable to a much larger number of candidate sites currently 13 
available for deployment consideration.  14 

A prototype LSM adapter was designed to adapt advanced inductive loop signature detector cards to 15 
replace the 1060 WIM LSM.  Inductive loop signature data was logged into a field processing unit via the 16 
USB port located on the front panel of each signature detector card.  Schematic layouts showing a 17 
comparison of the hardware setup for a standalone 1060 WIM controller and the proposed integration 18 
with an advanced signature detector card are shown in Figure 2.  With this set-up both inductive loop 19 
signatures and WIM weight and axle spacing data can be collected at the WIM site.   Lastly, in addition 20 
to inductive loop signature and WIM data, still image data was collected for each passing vehicle by 21 
connecting a digital SLR camera with a remote trigger to the loop detector card such that each loop 22 
activation triggered the camera and a series of still images were captured for each passing vehicle at a 23 
rate of three frames per second while the vehicle was over the loop.  In the next section, the data 24 
processing to join the data types and photos is described.  25 

 26 

Figure 2 Comparison of Hardware Setup for Standalone 1060 WIM Controller (top) and 1060 WIM 27 
Controller Integrated with Advanced Inductive Loop Signature Detector Cards for Inductive Signature 28 
Data Logging 29 

1060 
Controller

IST-222 LSM 
Adapter for WIM 

lanes 1 & 2

1060 
Controller

Loop Sensor 
Module

IST-222 
Signature 

Detector Card
222 Input 

File Interface

IST-222 
Signature 

Detector Card

WIM Lane #1

WIM Lane #2

Field 
Processing Unit

Null Modem Serial Cable

USB Cable

Custom Dual VGA-type 
15-pin  Interface

222 Interface

1060 Module Interface

WIM data logging

In
du

ct
iv

e 
Si

gn
at

ur
e 

da
ta

 lo
gg

in
g

Scale Sensor 
ModuleModem

Standalone 1060

Integrated 1060

Replaces Loop Sensor Module



Hernandez, Tok, and Ritchie  

5 
 

 1 
Data Handling 2 
All inductive loop signature, WIM record, and photo data was stored in a relational database powered 3 
by PostgreSQL.  Currently, the 1060 WIM controller output is captured as a text file which is processed 4 
and stored as individual vehicle records according to a unique vehicle identification number.   Future 5 
work will investigate the ability to replace the text file readout with binary data output from the serial 6 
port of the WIM 1060 controller so that it can be directly inserted into the database without pre-7 
processing.   The inductive signature data is also pre-processed prior to insertion into the database 8 
where each signature is stored according to a unique identification number.    9 
 10 
A specially developed software user interface was developed in Visual Basic to efficiently integrate the 11 
WIM data and signature data while also examining photos of each vehicle record for classification or 12 
other desired purposes.  The user interface was designed to communicate with the database and allow 13 
the user to scroll through photos and select the vehicle class parameters while also linking inductive 14 
loop signature records and WIM data records to the appropriate vehicle record.  Figure 3 shows the user 15 
interface for truck classification purposes.   The rightmost image is the inductive loop signature and the 16 
table below the signature is the list of vehicle signature records within the user-designated time window. 17 
The center FHWA image based on the FHWA class predicted by the WIM controller and the table below 18 
is the list of WIM vehicle records with the user-designated time window for the WIM data.   The largest 19 
table in the upper right is the list of vehicle records derived from the set of photos taken by the still 20 
camera and grouped into vehicle records such that there may be one to five photos for each vehicle 21 
record which the user can scroll through. The photo corresponding to the vehicle record, WIM record, 22 
and inductive signature is show at the left.  Lastly, since this interface was developed to classify vehicles 23 
by body type, below the photo there is a selection region where the user designates the axle and body 24 
configuration of the vehicle.   25 

Classification is only one of the applications of this integrated data source and the method in which the 26 
data is collected, pre-processed, and managed by the database can be applied for other uses for which 27 
alternate user interfaces could be developed.   For example, for vehicle re-identification, using the same 28 
pre-processing techniques and database structure, the user interface could display signature and WIM 29 
information from two sites which the user could then toggle through to find matched vehicle pairs.  Also, 30 
pairing of the WIM and signature data can be undertaken by a simple program that can map the 31 
signature to its WIM record based on time, headways, and duration, for example.   In the next section, 32 
we present an application of the integrated data source for truck body classification.  33 
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 1 

Figure 3 Integrated Data System User Interface Example for Vehicle Classification 2 

Case Study:  Body Classification 3 
The integration of WIM and inductive loop signatures lends itself readily to detailed truck body 4 
classification which is presented as case study of the integrated data source described in this paper.  In 5 
addition to the body classification model, the large data set resulting from the case study is itself a 6 
valuable and novel resource for truck studies.    7 

Background 8 
Body classification data of commercial trucks can contribute significantly towards improved emissions 9 
estimates, infrastructure and pavement management, and freight forecasting.  Currently, the main truck 10 
data available for emissions and freight models is limited to axle based classification from WIM, count 11 
estimates from inductive loops, fleet size and commercial use from vehicle registration records, trip 12 
patterns, commodity type, vehicle type, and trip lengths from state and national shipper/carrier surveys, 13 
and vehicle miles traveled from AADTT counts.   The data from these sources is commonly mapped to 14 
the FHWA 13 class axle-based scheme, or simplified schemes based on weight classes which divide 15 
trucks into medium, heavy, or light duty types.  None of the sources are capable of providing body type 16 
information, which can be a key indicator of the industry served by the truck as well as the travel 17 
patterns of the truck.  And while survey data is capable of providing origin-destination information and 18 
truck or body type, surveys are limited by costs and cannot yet provide individual link or route level data.   19 

As an illustrative example of the lack of detail in axle-based classification, consider the most common 20 
truck axle configuration, the five axle tractor trailer corresponding to FHWA class 9. Within class 9, there 21 
exists a diverse distribution of trailer body types as shown in Figure 4, with the most common being 22 
enclosed and refrigerated vans, platforms, and tanks. It is important to know the specific trailer type 23 
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because each trailer body type may have dissimilar travel patterns, unique emission rates, and distinct 1 
effects on congestion and safety. For example, in relation to travel patterns, box containers travel 2 
between ports and intermodal facilities whereas enclosed vans might be commercial delivery vehicles 3 
traveling between regional distribution centers and businesses.  The breakdown of class 9 into the wide 4 
variety shown in Figure 4 clearly illustrates the significant amount of unknown information that exists in 5 
existing truck monitoring data.   6 

 7 

Figure 4 Trailer Body Type breakdown of FHWA Class 9 tractor-trailers 8 
 9 

In comparison to the previous classification methods which use inductive loop detectors (13-19), none 10 
have been capable of distinguishing trucks into detailed body types shown in Figure 4.   Even the most 11 
detailed model by Tok and Ritchie (10) which focused on commercial vehicles contains only 10 trailer 12 
unit types, and this level of detail required an advanced prototype loop detector to be installed in the 13 
pavement. 14 

As for body classification based on WIM data, there has only been one study by the FHWA (20), in which 15 
data from WIM devices and truck characteristics from the 1992 Truck Inventory and Use Survey (TIUS) 16 
were merged in an attempt to relate truck body type, weight, and cargo carried.   The study examined 17 
the potential of determining 11 distinctly defined body types from characteristics found in TIUS- the 18 
total number of axles, the number of lift axles, total vehicle length, average gross vehicle weight (GVW), 19 
the number of axles on trailers pulled by truck tractors, and the number of axles on trailers pulled by 20 
straight trucks (20).  The authors noted that “significant overlaps” were found in the body types that are 21 
possible for a given set of variables and that using all five variables would provide the most accurate 22 
inference on body type.  The level of detail in body types achieved in this study is an improvement over 23 
existing available data sources, but still lacks detail in the body type classification that are needed for 24 
freight modeling. 25 

Classification Scheme Development 26 
A key component in the development of the body classification model was the creation of a 27 
classification scheme that captured the diversity of truck bodies found in the data.   The truck body type 28 
classification scheme originally based on the 28 VIUS defined body classes was further refined to 35 29 



Hernandez, Tok, and Ritchie  

8 
 

trailer body types as revealed by the collected data and shown in Table 1.  Definitions of each body type 1 
including a photo and inductive signature example can be found online1. 2 

Table 1 Classification Scheme for Trailer Units 3 

 4 
Study Locations and Data 5 
Four sites were selected for data collection ranging geographically from urban centers in Southern 6 
California to more rural areas in Northern California.  Sites were selected to enhance the variety body 7 
types collected.  The location, site name, data type, date of collection, and number of collected truck 8 

                                                           
1 Trailer Unit Body Type Dictionary: http://goo.gl/nACH7 
 

Body Category Body Type 

Vans 

Enclosed 
Reefer 

Drop Frame 
Curtain-side 
Open Top 

Agricultural 
Open Agricultural Van 

Platforms 
Basic 

Low Boy 
Platform with devices 

Tanks 

Hot Product Tank 
Deep Drop Tank 
Food Grade Tank 
Petroleum Tank 
Chemical Tank 
Crude Oil Tank 

Air Compression Tank 
Propane Tank 

Pneumatic 

Specialty 

Hopper 
Beverage 

Pole/logging/pipe (with and without 
platform) 

Automobile Transport 
Livestock 

Dump 
End Dump 

Bottom Dump 
Bulk Waste Transport 

Containers 

Container Chassis 
40ft Box Container 
20ft Box Container 

20ft Box Container on 40ft Chassis 
53ft Box Container 

Small Trailers 
Recreational Vehicle or ‘5th Wheel’ 

Towed Passenger Vehicle 
Small trailer or dolly 

 

http://goo.gl/nACH7
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samples as well as the total number of FHWA Class 9 records are shown and summarized in Figure 5.  1 
Figure 6 shows a typical data collection hardware setup at the southbound SR-99 Fresno WIM station. 2 

 3 

Figure 5 WIM Data collection sites 4 
 5 
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 1 
Figure 6 Data collection setup at SB SR-99 Fresno WIM station 2 
 3 
Preliminary Body Classification Model 4 
The body classification model developed in this case study focuses on the trailer portion of FHWA Class 5 
9 semi-truck configurations since these represent the most commonly observed truck types and have a 6 
very diverse set of trailer body types.  A total of 5,667 FHWA class 9 truck records were fully processed, 7 
i.e. still captured image, vehicle body configuration, inductive loop signature, and WIM-based vehicle 8 
length, axle spacing and weight records were assigned to each vehicle record.   The completed records 9 
were used for model development and testing.  The classification methodology was divided into two 10 
parts: feature extraction and model development.    11 
 12 
Feature Extraction 13 
At the most primitive level, if inductive loop signature data is used to distinguish body type, then weight 14 
data can be included to differentiate weight classes (i.e. medium-heavy, heavy, heavy-heavy, etc. as 15 
used by the California Air Resources Board) by body type.  A more enhanced method, and that adopted 16 
here, was to use the WIM axle spacing and vehicle length data to parse the inductive loop signature of 17 
each vehicle such that features are only extracted for the portion of the signature pertaining to the body 18 
unit being distinguished. For example, given a signature from a semi-tractor-trailer combination, the 19 
WIM axle spacing was used to break the signature into the tractor portion and the trailer portion which 20 
would then be feed separately into classification models. Figure 7 shows an example of how the WIM 21 
axle spacing data was used to parse the tractor and trailer portions of an inductive loop signature 22 
resulting in change in magnitude between each pair of equally spaced interpolated magnitudes.   23 
 24 

Still image camera 

Inductive Signature 
Detector Cards 

WIM Controller 
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 1 

Figure 7 Data Fusion Approach for Combined WIM and Inductive Loop Signature Model 2 
 3 

Model Development 4 
The body classification model using the parsed features defined above was implemented as Feed 5 
Forward Neural Network with a single hidden layer comprised on 15 neurons.  A neural network 6 
approach was chosen based on the previous success of this method with classifying inductive signatures 7 
(10, 20) and the ease of implementation through Matlab.  The simplicity and effectiveness of the model 8 
implementation makes it ideal as a baseline reference.  Each dataset was proportionally split by vehicle 9 
body class into training (60% of the total samples), validation (20%), and testing (20%) sets. 10 
 11 
Preliminary Body Classification Model Results 12 
The Correct Classification Rate (CCR) by vehicle class, as well as the average CCR for the model is used as 13 
the performance criteria for evaluating the classification model.  CCR is defined as the number of 14 
correctly matched vehicles divided by the total number of vehicles.  The overall CCR for the Class 9 15 
trailer body classification model was 75%.  Figure 8 shows the confusion matrix for the collapsed set of 16 
18 body classes with an overall CCR of 80%.  Classes were collapsed based on body type group and 17 
misclassification distribution.  For FHWA Class 9 trailer body classes, individual class CCRs ranged 18 
between 29 and 100%, for classes with more than five samples in the test dataset.  Tank semi-trailers 19 
had a low CCR (70%) and were commonly misclassified as basic platform semi-trailers.  53ft Box 20 
Containers also had a low CCR (36%) and were commonly misclassified as enclosed van semi-trailers.  On 21 
the other hand, several classes showed high CCRs including basic and low boy platform semi-trailers, 22 
enclosed van semi-trailers, open top van semi-trailers, 40ft box containers, automobile transport semi-23 
trailers, livestock semi-trailers, and non-semi-trailers listed in the confusion matrix as ‘Single Trailers’.   24 
 25 
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 1 
Figure 8 Cross-classification Matrix for FHWA Class 9 Trailer Body Classification Model Collapsed 2 
Classes for Inductive Loop Signature and WIM 3 

Conclusion 4 
The integrated data source presented in this paper is a result of combining two highly complementary 5 
technologies, WIM and inductive signatures, to create a synergistic resource that is highly detailed, link 6 
specific, temporally continuous, up-to-date, and representative of the full truck population.   The 7 
integrated data is a valuable and novel resource that fills a significant gap in truck data sources and has 8 
broader implications for emissions estimation and operations and monitoring in terms of safety, 9 
pavement management, and enforcement. While this case study focuses on body type classification, the 10 
integrated data source can also be leveraged to track truck OD patterns and travel times through truck 11 
re-identification techniques.   12 

In this paper, we described the hardware interface between inductive signature equipment and WIM 13 
controllers which yielded a working configuration by which inductive signatures could be collected from 14 
a WIM controller.  In addition, we described the data handling and storage procedures that allow the 15 
data to be easily joined to still images collected from a digital SLR camera triggered by vehicle presence 16 
over the inductive loop sensor.  Also, a specialized software user interface was established to link photo, 17 
inductive loop signatures, and WIM data. 18 

As a demonstration of the potential of the integrated data source, a truck body classification model was 19 
developed from the dataset collected at four WIM sites in California.   The truck body classification 20 
scheme, initially based on VIUS, grew to include 35 trailer body types reflecting various body 21 
configurations found in the collected data.  Results were promising with a CCR of 80% for multi-unit 22 
truck trailers consisting 18 trailer body classes.   23 
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Low Boy Platform 1 2 60 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 68 88%
Enclosed Vans 1 9 1 370 51 6 0 2 1 0 1 0 0 2 0 0 1 1 446 83%
Reefer Van 0 6 0 43 246 1 0 0 1 0 2 0 1 0 0 0 0 0 300 82%
Open Top Van 0 3 0 2 2 64 1 0 2 1 0 0 1 0 0 0 1 0 77 83%
Drop Frame Van 0 0 0 1 1 0 13 0 0 0 0 0 1 0 0 0 0 0 16 81%
Agricultural Van 0 1 0 0 0 1 0 10 0 0 0 0 0 0 0 0 1 0 13 77%
40ft Container 0 3 0 1 0 1 0 0 39 0 0 0 0 1 0 0 0 0 45 87%
20 ft Container 0 1 0 1 1 0 0 0 1 2 0 0 0 1 0 0 0 0 7 29%
53 ft Container 0 2 0 25 1 0 0 0 0 0 16 0 0 0 0 0 0 0 44 36%
Logging 0 1 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 10 90%
Auto Transport 0 2 1 0 1 0 0 0 0 0 0 0 18 0 1 0 0 0 23 78%
Dump 1 0 1 2 0 2 0 4 1 0 0 0 0 11 0 0 6 0 28 39%
Livestock 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 0 0 0 18 100%
Pneumatic Tank 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -
Tank 0 19 0 0 2 5 0 0 2 1 0 0 1 6 0 0 86 0 122 70%
Other 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 5 80%
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