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In recent years, machine learning (ML) and, more noticeably, deep learning (DL), have be-

come increasingly ubiquitous. Applications of these technologies are being seen in many

fields, including health care, manufacturing, and end-consumer services. In terms of deploy-

ment, deep neural networks (DNNs) are found in consumer devices, small internet-of-things

devices, embedded in vehicles, and on a large scale in data centers and servers. The trend

indicates that the use of DL in smart applications will continue to increase in the coming

years.

As the name suggests, learning is an integral part of the functionality of DNNs, whether

this learning takes place off-line before deployment, or happens in real time while the DNN

is carrying out its assigned task. As part of the learning process, training is required to set

the parameters, also known as weights, of the DNN in order to achieve high accuracy in the

assigned task. Without training, the DNN is rendered useless, given that the parameters

are not set correctly. It has been shown that this training process requires large amounts

of data and a high number of training iterations for the DNN model to be effective. The

weights are updated in each iteration based on the subset of the training data provided. The

training process has proven to be a challenge given the long timescale involved. The amount

of training data, the number of weights, and the computational complexity of updating those

xvii



weights are all factors that contribute to this challenge. One way to reduce training time is

to allocate processes to a multitude of processors, thus achieving some sort of sub-optimal

parallelism. One approach is to have this decision be carried out by ML or DL experts. The

problem with this is the absence of concrete information to ensure the best decision is taken:

the time it takes for a particular process to run on a particular processor, and the costs of

inter-communication between processors, are in fact unknown. Even with the intuition of an

expert in this domain, a sub-optimal solution that outperforms a single-processor use case

is not achieved.

In this dissertation, a hybrid-based multi-step optimization framework is presented. The

framework explores the vast design space of mapping processes to processors. The search

and evaluation are conducted in real time while training the DNN. In the first stage of the

framework we compare the algorithmic intuitive approach with the Bayesian optimization

(BO) approach. In the second stage of the framework, we create a predictive function for the

performance of a single iteration of training, comparing the accuracy of different predictive

functions created by different ML algorithms. The developed predictive model is then used

as a surrogate function when identifying the best mapping. This stage in the search applies

genetic algorithms (GA). An adaptive feature is also presented and tested for responsiveness

to any changes that affect the performance of the training in the system.

We also present heterogeneous earliest finish time (HEFT): a deterministic approach to map-

ping. In addition, we present the concept of node splitting, which refers to the computational

graph of the DNN being split in order to accommodate a higher level of model parallelism.

It is noted that this would also affect the accuracy of the DNN, since the hyperparameters

are affected.

The framework and methodologies were evaluated in real, non-simulated systems using wall-

clock time. The DNNs were built using Google’s ML/DL library, TensorFlow (TF).
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Chapter 1

Introduction

Machine learning (ML), and more recently deep learning (DL), have been utilized as powerful

tools in many fields including computer vision [12], finance [31], recommender systems [15],

search engines [53], and games [65]. ML is a dominant branch of artificial intelligence (AI)

based on the idea that a system uses algorithms to learn from data, identify patterns, and

make decisions, rather than being explicitly programmed via a rule-based approach. This

paradigm shift in AI has required systems to become engaged in learning.

Deep neural networks (DNNs) and DL algorithms [59] are the latest iterations of ML tool-

sets. In their simplest form, they are inspired by the human brain, and thus they have been

developed to mimic the human brain’s synapses and neurons. The neurons in this case are

the functions, while the synapses are the connections that carry the information from one

neuron to the next. The strength of the connections, also known as the synaptic weights,

dictate how the neural network performs and functions. The values of these weights in turn

need to be learned via training. This is achieved based on experience, analogous to data in

ML terms. The amount of time it takes to train a neural network model is very strongly

correlated to the amount of data, the number of weights that need to be adjusted, and how
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much adjustment is required to attain the target level of accuracy. This process needs to be

accelerated. To address this problem, an understanding of what DNNs are, how they are

represented in software, and how they are dealt with in hardware is required. In addition, we

need to understand the learning process, as well as how DL algorithms in DNNs are different

from rule-based algorithms.

1.1 Artificial Neural Networks

In its simplest form, an artificial neural network (ANN) consists of weights and neurons.

The structure of an ANN consists of layers, where the output of the neurons of one layer

connects to the neurons of the next layer. The directed connections are the weights, which

are multiplied by the output of the neuron. A layer is a collection of neurons, and each

neuron is an activation function that applies to the sum of all its inputs. It is also noted that

the neurons in a particular layer all use the same type of activation function. An example

of a three-layer ANN is shown in Figure 1.1.

Equation 1.1 shows the computation output of the three nodes in the hidden layer from

Figure 1.1.

z1 = σ1(x1w
[1]
11 + x2w

[1]
21)

z2 = σ1(x1w
[1]
12 + x2w

[1]
22)

z3 = σ1(x1w
[1]
13 + x2w

[1]
23)

(1.1)

In w
[a]
bc ; a is the layer, b is the starting node and c is the end node. zd is the resulting

output from σd(.). Equation 1.2 shows the the computation output of the model depicted

in Figure 1.1.

ŷ = σ2(z1w
[2]
11 + z2w

[2]
21 + z3w

[3]
31) (1.2)
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Figure 1.1: A simple three layer neural network. Input is a vector of size two containing x1
and x2 and output is a scalar ŷ. The activation functions are σ1 in the hidden layer and σ2
in the output. The computation of the model is shown in Equations 1.1 and 1.2.

An effectively functioning ANN would produce a ŷ that is close or equal to y given any x.

There are two requirements in this case: a well-structured computational model, and the

correct parameter values. The computational model structure is static, and its components

are referred to as hyperparameters. The parameter values are tunable while the hyperparam-

eters are not. Learning is the process by which the parameters, in this case w, are tuned.

Hyperparameters are not affected by the training process. See Figure 1.2, showing part of

a DNN, where ws are tunable and the hyperparameters; size of layer, number of layers, and

activation functions, are not.

1.2 Deep Learning

DL is the process of updating the weights, or parameters, of a DNN, resulting in the DNN

being able to take in an input and predict an output that is the same as the expected output.

This can be described as a mapping process from a set of inputs to a set of desired outputs.
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Figure 1.2: An intersection of a DNN. The value of each of the weights w[k]
ij

may change

during training. The number of nodes and type of activation function does not change.

In its most recognized form, learning requires a large dataset of input and output pairs. In

each iteration, the DL process works to minimize the error between the predicted output

and the desired output of a particular input. The weights are updated in response to the

error observed between the desired and predicted outputs. This is an iterative process, as in

each iteration the weights are updated in order to reduce the observed error.

Prior to deploying any ML model to be used for inference, the model should be trained. In

the case of supervised learning, the input x and the intended output y are provided in order

to subsequently produce a trained model fNN . It is intended that for any given input data
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point x(i) (where x is the input vector and (i) is a instance of data in the dataset where

i ∈ Ndataset and Ndataset is the size of the dataset), fNN(x(i)) −→ ŷ(i) where the intention

is ŷ(i) ≈ y(i). An untrained model would most likely produce a ŷ that is not close to the

intended y. To evaluate this discrepancy a loss function L is used. One such metric in DNNs

is the L2 norm [18] loss function, shown in Equation 1.3.

L(y, ŷ) =
N∑
i=1

(y(i) − ŷ(i))2 (1.3)

In the case of classification problems, where the output is a category rather than a specific

number, the cross-entropy function is used:

L(y, ŷ) = − 1

n

∑
i

ln

(
ey

(i)∑
j e

ŷ(j)

)
(1.4)

The objective of training is to find weights that would result in a fNN that is L ≈ 0. The

process of searching, via training, for the correct parameter values is complex and takes a

long time. The search space of the error function is non-convex given the nature of the

activation functions [11]. A well-known method for training DNNs is stochastic gradient

descent (SGD) [11]. SGD provides the direction for ŷ to be closer to y. The weights

are changed, which affects ŷ. This change is brought about using a technique known as

backpropagation [57]. Simply put, backpropagation adjusts the weights to produce a ŷ closer

to y. Therefore, in each training iteration, using a subset or mini-batch of input data x, L is

assessed. Backpropagation updates the weights, and then the process is repeated. This whole

process in DNNs is what is known as DL [46, 60]. The following Figures illustrate a single

training iteration where backpropagation is used on an ANN with four layers: Figure 1.3

shows the structure of the ANN and the parameters (the weights ws that will be updated);

Figure 1.4 shows, in three consecutive steps, the forward propagation; Figure 1.5 shows the

error updates (also in three steps starting from the dy), and lastly, Figure 1.6 shows the

weight updates.
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Figure 1.3: Four-layer ANN with input vector of size 2 (x1 and x2); number of weights is ten;
three types of activation functions (σ1,σ2 and σ3), and one output ŷ. Figures 1.4, 1.5, and 1.6
illustrate a single iteration of training where the weights, ws, are updated and modified.

The number of cycles, or training iterations, is related to many factors including the dataset

size, the number of features per data point, the desired accuracy, etc. The duration of a

single training iteration is correlated to the number of layers in the DNN and, less strongly,

to the number of weights. The reason for the number of layers being a more significant factor

in the duration of an iteration is that the update processes for all weights within a layer take

place in parallel via vectorization. This parallelism is utilized within a single device (e.g.

graphics processing unit [GPU]), assuming that the weights within a layer can fit into the

devices memory.

1.3 ANN to Computational Graph using TensorFlow

A number of software libraries have been developed to assist practitioners in building and

training DNNs. TensorFlow [3, 2] (TF), a computational graphs and numerical models

library developed by Google, is a prominent example of such tools. The Application Pro-

gramming Interface (API) makes it possible for data scientists and ML practitioners to build
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and train large models with large datasets in a distributed system without prior knowledge

of the hardware architecture. Keras [17], a high-level API, runs TensorFlow as its de facto

library. Although it is easier and faster to develop DNNs in Keras, it does not allow for

higher levels of control, such as assigning devices to specific operations. This has led to TF

being the optimal choice when dealing with parallelism.

Figure 1.7 shows the pictorial translation of a simple ANN to a TF graph. TF uses the

computational graph approach: each node in the TensorFlow graph G is an operation opi,

and the vertices are tensors ; i.e., multi-dimensional matrices.

The API employed by TF makes it an easy task for the programmer to assign devices (GPUs,

central processing units [CPUs], etc.) to operations. If no explicit assignment is made, all

operations will be assigned to a single GPU, provided GPU-enabled TF is installed.

When it comes to DL, GPUs have been more desirable than Multi-core CPUs. The main

usage of CPUs is to process complex computations given the architecture of CPUs, while

GPUs contain many but simple cores that can handle many simple computations in parralel.

Therefore when it comes to parallelism, high bandwidth and given the simple but many

arithmetic computations, the default has been to use GPUs in DNNs and DL.

The GPU homogeneous mapping (where a single GPU is mapped to every operation in an

ANN TF computational graph) is not optimal when it comes to performance. Even though

a single GPU performs well when it comes to intra-parallelism, there is more potential

for performance optimization when using multiple devices and multiple types of devices.

How this mapping is supposed to operate is non-intuitive; thus, expert placed mappings

will not always result in improved performance. This is due to the unknown costs that

result from inter-communication costs of operations mapped to different devices. This, in

turn, makes the performance of the ANN with respect to mapping a black box: we cannot

deterministically predict the outcome of the ANNs performance.
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1.4 Dissertation Contribution

Mapping operations to devices in a computational graph is an NP-hard problem [56, 40, 70];

thus, the challenge of finding a mapping that outperforms the homogeneous mapping is a

non-trivial one. This dissertation provides a methodology that searches the design space

and finds a mapping, or several candidate mappings, that could outperform homogeneous

mapping. The methodology can succeed where an expert would fail, given the narrow candi-

date solution space. The methodology is graph-agnostic and system-agnostic, meaning that

neither the types and number of devices, nor the structure and size of the graph, will affect

the method of search: it will, therefore, depend on the observations made in each training

iteration.

The time taken per training iteration is a restrictive aspect given the large exploration area

of the design space. A way to mitigate this part of the methodology is to build a predictive

model that is used as part of the exploration, rather than the search being completely

dependent on observations. The construction of such a model and the analysis of different

types of suitable models is analyzed in this dissertation.

In this dissertation, the different optimization methods are shown and analyzed in each stage

of the method’s pipeline.

Overall, this work provides a rich analysis of methods for searching a solution space for a sub-

optimal operation to device mapping that best utilizes computational graph parallelization

to speed up DNN training. This in return helps ML practitioners to speed up the training

process with out affecting the accuracy of their DNN models.

The contributions of this dissertation can be summarized as follows:

8



• Presenting a methodology to concurrently train and search for improved mapping per-

formance in a TF computational graph.

• Developing and presenting an algorithmic approach to mapping that is part of the

larger pipeline.

• Incorporating a Bayesian optimization (BO) method to search for the best possible

mapping.

• Developing an ML pipeline to build a predictive model for the execution time, or

makespan, of the TF computational graph.

• Analyzing and showcasing different ML approaches to building an ML predictive model

of the makespan.

• Incorporating Genetic algorithms (GA) with the predictive model to search for the

best makespan.

• Analyzing different initial populations for the GA and their effects on the search.

• Presenting a self-correcting approach i.e. an adaptive approach, to correcting the

mapping that reacts to system-level changes.

• Presenting a methodology for mapping using a greedy approach that incorporates the

heterogeneous earliest finish time (HEFT) algorithm.

• Presenting a method for splitting computational nodes, to achieve higher parallelism

and therefore provide more options for partitioning the graph.
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1.5 Dissertation Organization

The dissertation is organized as follows. Chapter 2 summarizes the different methods for

increasing the performance of DNNs. These performance enhancing methods will be cate-

gorized as those that affect accuracy and those that do not.

Chapter 3 presents the computational graph used in TF and the precursor to the optimization

problem. This chapter also introduces the notations used to tackle the problem of mapping,

makespan valuation, and the search for the mapping that produces the desired makespan.

Chapter 4 presents methods for generating mappings. Bayesian optimization (BO) and its

modification for generating mapping is presented. The expert-intuition-centric approach

of determining mappings is also discussed, and is referred to as the algorithmic approach.

Results are presented and shown.

Chapter 5 presents the ML approaches and identifies the final incorporated ML approach. We

present feature extraction, determining the accuracy of the predictors, and the motivations

behind using certain ML algorithms to build the makespan predictor.

Chapter 6 describes our frameworks Heterogenous TensorFlow Mapper known as HTF-MPR,

and it’s succesor Adaptive HTF-MPR. How GA is used with the surrogate function is de-

scribed, as well as the adaptivity feature that is used in Adaptive HTF-MPR. The results of

HTF-MPR and Adaptive HTF-MPR conclude the chapter.

Chapter 7 presents the application of HEFT in determining the best mapping, laying out

how to establish the inputs to HEFT. The limitations of HEFT are also discussed, as well

as why HTF-MPR does not have such limitations.
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Chapter 8 presents work carried out in pruning the DNN for the purpose of increasing the

potential for parallelism. Recommendations for future work in the area of searching the

mapping space are also discussed.
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Figure 1.4: Forward propagation. First, the input is multiplied by w
[1]
x weights as shown

(top). The activation function σ1 is applied to the two sums. The resultants, z
[1]
1 and z

[1]
2

are multiplied and the new results are propagated to the next layer, where σ2 is applied
to the sums (middle). Finally, the sum of the resultants is calculated and applied with an
activation function σ3, resulting in the output ŷ (bottom).
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Figure 1.5: The error is updated. Note that δy can be a mean square; for simplicity it is

shown as y − ŷ. The error values are updated and propagated up to δ
[1]
i .
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Figure 1.6: Using the calculated errors (δs) the weights are updated, starting from the

weights w
[1]
i and ending with the weights w

[3]
i .
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Figure 1.7: ANN and its equivalent TF graph.
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Chapter 2

Related Work

With regard to DNN performance, and more specifically training performance, several ap-

proaches have been considered in industry and academia. The proposed approaches may be

split into categories: those that affect the accuracy of the DNN, and those that do not. The

approaches that affect the accuracy change the structure of the DNN, while those with no

effect on accuracy keep the structure intact and achieve performance improvements in other

ways, mainly based on resource management.

2.1 Structural Changes to DNNs

Historically, DNNs have been known to be large and therefore over-parameterized [20], in-

dicating that there is room for improvement via size reduction. Size reduction of DNNs

has several benefits: it saves space in terms of storage; reduces computation, thus resulting

in reduced latency and power consumption; and requires less transfer of parameters to and

from memory. Structural changes with the objective of reducing size can be based on two

types of approaches: reduction of parameters, and lowering of precision weights.
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2.1.1 Pruning

Some of the earliest work in reducing the number of weights, also known as pruning, are

Optimal Brain Damage [45], where a local error function is used to determine which weights

to remove, and Optimal Brain Surgeon [29], which improves on and further reduces the

number of weights achieved by [45]. The development of convolutional neural networks

(CNNs) [42], which use the convolutional layer, is a major contributor to the speeding up of

DNNs in both training and inference, as well as accuracy. This is due to convolutional layers

having significantly lower numbers of weights than fully connected layers. Other pruning

methods target more specific types, or parts, of DNNs, while some use different decision

criteria: [30] prunes channels or feature maps in a convolutional layer via statistical selection

methods based on regression. The purpose of these approaches is to accelerate the training

process.

Chapter 8 touches on pruning in relation to partitioning to achieve parallelism for the sake of

accelerated training in DNNs. This indicates that pruning is one of the set of tools available

for working toward acceleration.

2.1.2 Lower Precision

Reducing the precision to a lower bit size has the effects of reducing computation and reduc-

ing space. A particularly aggressive approach to compression is taken in BinaryConnect [19],

where the values of the weights are a single bit and are trained as such. A less aggressive

approach is taken in [75], where the weights are restricted to -1, 0, and +1, while [71] uses

two-bit precision. In [51], three-bit precision is used via base-2 logarithmic representation.

In [28], the authors reduce the number of parameters via quantization, another form of

lowering the precision by having weights share values.
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2.2 Resource Management

One key consideration when carrying out structural changes is that they can affect accuracy.

However, when resource management is applied, it does not affect either the functionality

or the accuracy of the DNN; therefore, in many instances, it is less invasive.

2.2.1 System Level

One approach within this category of accelerating the training of DNNs is to partition a

DNN along many GPUs. This is known as model parallelism, as mentioned above. Extensive

research has been conducted in this domain: using commodity off-the-shelf high-performance

computing, research by [14] uses a cluster of GPUs to train one billion parameters. Similarly,

Adam [16] presents and implements a distributed system to train two billion parameters,

where the system is designed to accelerate the training. In Tetris [24], the researchers propose

a hardware architecture that implements scheduling as well as partitioning of tensors in a

3D memory. In [34], each layer of the DNN uses a different parallelization strategy, while in

FlexFlow [35], the parallelization search is expanded to different dimensions using samples,

operations, and attributes, as well as parameters using simulation. In all of the works

mentioned so far in this section, hardware and large distributed systems have been designed

and used for the sole purpose of accelerating the training process.

2.2.2 Semi-automatic Partitioning

Automatic partitioning of computational graphs is not a recent phenomenon, but is relatively

new in relation to DNNs. Early works from Bell labs [39] partition by investigating the edges

or links between the operations. A similar approach but with different cost evaluations is

carried out in [22]. In [36], meta-heuristic approaches are used to partition computational
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graphs, while [27] tackles application-specific cases using mathematical and optimization

methods.

In terms of DNNs, Google Brain [49] tackles the graph partitioning problem using reinforce-

ment learning (RL) as an optimization method; however, manual work is involved since many

of the operations in this are grouped and therefore share a device. In Tofu [73], automatic

partitioning occurs while requiring input from the domain expert. The domain expert in

this case is required to communicate with the system using a descriptive language.

In Chapter 7 we present a static heuristic approach to creating a mapping that partitions

the DNN.

2.3 Automatic Partitioning

There are many options for accelerating the training of DNNs. These are not mutually

exclusive and may work in conjunction with one another. The route of model parallelism

through partitioning is the least invasive since it does not affect the accuracy of the DNN.

Work using partitioning, and more specifically automatic partitioning, in DNNs is relatively

recent. Many trials still require some input or intervention from a domain expert to en-

sure the most effective partitioning of the DNN. This dissertation presents our work, which

achieves speeding up of the search due to modeling the makespan (single training iteration)

prediction, as well as adaptability due to device and system changes.
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Chapter 3

Computational Model

3.1 TensorFlow and Computational Graphs

TF uses the computational graph approach: each node in the TensorFlow graph G is an

operation opi, and the vertices are tensors, i.e. multi-dimensional matrices. Figure 3.1

illustrates a directed graph in TF. The dataflow graph in Figure 3.1 shows the dependencies:

certain operations will not execute unless all data dependencies are executed. Let G =

(Op,E), where Op = {op1, op2, ..opNop} are the operations, and E = {(opa, opb), (opc, opd)...}

are the directed edges where ei = (opa, opb) is a tensor from opa −→ opb and a 6= b. Note

that the TF graph G is assumed to be an acyclic dataflow graph.

The order in which operations are executed is determined by the TF scheduler. The Dis-

tributed Master evaluates the TF Graph G’s nodes; i.e., the Worker Services schedules the

operations according to the Distributed Master’s request.

20



Place
holder

Variable

mathmul add softmax

Variable

...

op1

op2

op3 op6op5

op4

Tensor e=(op5,op6) 

GPU-0 ...
op1 op2 op3 op4 op5 op6

GPU-0 GPU-0 GPU-0 GPU-0 GPU-0

Figure 3.1: Homogeneous mapping: All the operations, by default, are mapped to GPU-0.
See Code 3.1.

Code 3.1: NN model in TF (default homogeneous mapping). See Figure 3.1.

import tensorflow as tf

op1=tf.placeholder(tf.float32,[None, 784])

op2=tf.Variable(tf.zeros([784,10]))

op3=tf.matmul(op1, op2)

op4=tf.Variable(tf.zeros([10]))

op5=tf.add(op3,op4)

op6=tf.nn.softmax(op5)

...

In TF, the programming paradigm requires a construction of a model (graph) where the

hyperparameters are set before the model is run. A model run could either be for training

or inference. Code 3.1 shows a model construction of Figure 3.1, while code 3.2 shows the

script required to run the model. A Session is created and the last operation in G, in this

case op6, is passed on as a parameter to the Session.
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A single run would provide the actual makespan of the graph. The makespan is the time it

takes to complete one iteration (i.e. run) of the graph.

Code 3.2: Run model in Session

...

sess = tf.Session()

sess.run(op6,feeddict=...)

...

3.2 Mapping

Mapping, also referred to as device placement, is the assignment of an operation to a device.

By default, TF maps all the operations to a single device. If GPU-enabled TF is installed

and the hardware is supported, then all the operations in a TF graph are mapped to a single

GPU; otherwise, all the operations are mapped to a CPU. A workaround to defining your

own mapping is to use the tf.device directive. An illustration of a mapped TF graph and its

accompanying code is shown in Figure 3.2.

Given a set of devices D = {d1, d2, ..dND
}, and a set of operations Op = {op1, op2, ...opNop},

a particular mapping is defined as mi = {(op1, dx), (op2, dy)...(opNop, dz)} (where dx,dy,dz

denote any device since the device-to-operation mapping is one-to-many). Note that the size

of mi,|mi| = |Op| = Nop. The mapping of devices to operations is one-to-many, meaning

that several operations could be mapped to a single device in any particular mapping, while

the opposite is not true (see Figure 3.2).
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Figure 3.2: Heterogeneous mapping: op1,op3 and op5 are mapped, i.e. assigned, to CPU−0,
op2 to GPU − 0, op4 to GPU − 1, and op6 to GPU − 2. See Code 3.3.

Code 3.3: Addition of tf.device

import tensorflow as tf

with tf.device(’/cpu:0’):

op1=tf.placeholder(tf.float32,[None, 784])

with tf.device(’/gpu:0’):

op2=tf.Variable(tf.zeros([784,10]))

with tf.device(’/cpu:0’):

op3=tf.matmul(op1, op2)

with tf.device(’/gpu:1’):

op4=tf.Variable(tf.zeros([10]))

with tf.device(’/cpu:0’):

op5=tf.add(op3,op4)

with tf.device(’/gpu:2’):

op6=tf.nn.softmax(op5)

...

23



In our notation, mTF = mgpu−0 = m2 is the GPU-0 mapping, which is the default TF

mapping (as shown in Figure 3.1), while mcpu = m1 is the homogeneous CPU mapping and

mgpu−1 = m3 is the homogeneous GPU-1 mapping. The rest of the mappings, mi|i > 3,

are different heterogeneous mappings (an example of a heterogeneous mapping is shown in

Figure 3.2). No two mappings are the same; i.e., mi 6= mj|i 6= j where mi,mj ∈M .

3.3 Optimization

The objective is to find a mapping m that results in a faster execution time than the default

TF mapping, thus speeding up the overall training time. The optimization problem is

therefore:

m? = arg min
m∈M

ft(m) (3.1)

where ft(m) is the makespan (execution time) of a single training iteration of the TF graph

using mapping m. m∗ is any mapping that outperforms the TF mapping. Note that possible

mappings of G are represented by M , which has a size of |M | = N
Nop

D , where ND and Nop are

the number of devices and operations, respectively. The search for an optimal mapping in

the search space is thus considered an NP-hard [56, 40, 70] problem. The mapping problem

could be reduced to NP-Complete by relaxing the condition; i.e., by finding a mapping that

outperforms the default homogeneous TF mapping rather than finding the global optimal

mapping ( M∗ ⊂ M and m∗ ∈ M∗|ft(m∗) < ft(mTF )). Some of the characteristics of the

makespan ft(m) are as follows:

• It is a continuous function; i.e., the execution time is a real number.

• The input data m represent a tuple of categorical data; i.e., the values of the operations

are device labels which are discrete.
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• A single evaluation is expensive, meaning that an actual run of the graph has to occur

to find the makespan value.

• It is a black-box function; i.e., its structure is unknown (not convex, not linear, etc.).

• Given that it is a black-box function, it is thus non-differentiable. Neither the first-

nor the second-order derivative may be utilized.

For this process to be worthwhile, the whole training time needs to be shorter than the

training time of the default homogeneous TF mapping:

Ft(π, ohπ) < Ft(πmTF
, 0) (3.2)

where Ft(π, ohπ) is the sum of execution times plus overhead given a policy of mappings π =

ma,mb, .... Note that generating such policy is an overhead, represented by ohπ. Fτ (πmTF
, 0)

is the TF total training time with a policy of using a single type of mapping, which is a

homogeneous mapping, mTF , and no search overhead.

Ft(πmTF
, 0) =

I∑
i=1

ft(mTF ) (3.3)

where I is the number of training iterations it takes to reach the final desired model fNN .

Regardless of policy used, and as long as the number of iterations is I, the desired fNN is

unchanged. Figure 3.3 illustrates this concept of training where the path is set regardless of

the value of t.

3.4 Experimental Setup

For evaluation purposes, a multi-core CPU (Intel(R) Core(TM) i7-7700 CPU 3.60Ghz) and

2 GPUs (Nvidia GeForce GTX 1050 Ti) are used. For implementation, we use Python 2.7.15
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t t t

Best Lt: Time taken to run a single iteration of training 

Figure 3.3: The gradient path of the model. t does not change in each iteration (as long as
device mapping does not change). The values of w1 and w2 change in each iteration as part
of the training process. fNN is the final trained DNN that has the best possible values for
the parameters given the training method. The mapping does not affect fNN , just how fast
the process of reaching this value is.

with the Anaconda bundled package of libraries. The benchmarks are implemented in GPU-

supported TensorFlow 1.9.0, running on CUDA 9.1 and CuDNN v7.1. The gradient boosting

regressor (GBR) makespan predictive model (described in Chapter 6) is implemented using

scikit-learn 0.19.1 [54]. The Bayesian optimizer (described in Chapter 5) is implemented

using Hyperopt 0.2 [9].

To evaluate the proposed method, three state-of-the-art benchmarks are run using HTF-

MPR, Adaptive HTF-MPR, and the default TF mapper. Table 3.1 shows the benchmark

list, the number of eligible operations for mapping, and the number of training iterations

per benchmark.

Mappable Total Training
Benchmark Operations Operations Iterations

MNIST Softmax 10 99 60K
ALEXNET 54 294 500K

VGG-16 69 376 500K

Table 3.1: Benchmarks.
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Name(s) Operation Type count
y 2 tf.add 1
y 1 tf.matmul 1
y tf.nn.softmax 1

cross entropy tf.nn.softmax cross entropy with 1
logits

x, y tf.placeholder 2
reduce mean tf.reduce mean 1

train step tf.train.GradientDescentOptimizer 1
W, b tf.Variable 2

Table 3.2: MNIST Softmax distribution of operations and labels(names) of said operations.

Unigine’s SuperPostion benchmarking tool [67] is used to stress-test the system in order to

test out the adaptive feature of Adaptive HTF-MPR.

3.4.1 MNIST Softmax

The MNIST Softmax used in our evaluation is a simple TF implementation [8] that trains

a classifier for a ten-digit grayscale image dataset MNIST [47]. The dataset contains 60,000

training and 10,000 testing images. Each image is 28x28 grayscale and, as the dataset

suggests, the classifier has ten classes. Figure 3.4 shows the graph representation.

Given that there are only ten mappable operations (operations in the computational graph

that are explicitly mentioned in the Python TF code), the total number of possible mappings

in this case is NNOP
D = 310. With this small number of mappings, it is possible to generate

and evaluate the whole search space; therefore, a brute-force analysis can be conducted to

find the global optimal mapping. In future chapters, we will compare the m∗ of HTF-MPR,

Adaptive-HTFMPR, mTF , and the global optimal. In addition, we will compare Ft (see

Equation 3.2).

The distribution of operations is shown in Table 3.2:
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entery_op

x

train_step

Figure 3.4: MNIST Softmax computational graph. There are ten mappable operations. The
entry op and sink op are virtual operations and are not mapped to any device.

3.4.2 AlexNet and VGG-16

AlexNet [43] and VGG-16 [64] are deep CNNs that are designed to classify images from the

ImageNet [58] dataset. The ImageNet training dataset contains 1.2 million labeled images

of 1000 labels, i.e. classifications. The input to the neural network is a three-channel rescale

image with a resolution of 224x224x3. HTF-MPR and Adaptive HTF-MPR are tested on

both neural networks to gauge and evaluate the speeding up, by comparing the respective

ft(m
∗
htf.mpr) and ft(m

∗
A.htf.mpr). In addition, the total training time of Ft(πhtf.mpr, oh) and

Ft(πA.htf.mpr, oh) are measured.
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For VGG-16, we run 500,000 training iterations with a batch size of 32 per iteration. For

AlexNet, we run 500,000 training iterations with a batch size of 64 per iteration. The

computational graphs for VGG-16 and AlexNet are shown in Figures 3.5 and 3.6, respectively.
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Figure 3.5: VGG-16 computational graph. There are 69 mappable operations. The source
and sink are virtual operations and are not mapped to any device.

Table 3.3 shows the operation count for VGG-16, while Table 3.4 shows the operation count

for AlexNet.
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Operation Type count
tf.concat 1

tf.constant 11
tf.expand dims 2

tf.nn.relu 8
tf.nn.relu layer 3

tf.nn.softmax cross entropy with logits 1
tf.range 1

tf.reduce mean 1
tf.reshape 9

tf.size 1
tf.stack 1

tf.truncated normal 8
tf.Variable 22

Table 3.3: VGG-16 distribution of operations.

Operation Type count
tf.concat 1

tf.constant 8
tf.expand dims 2

tf.nn.relu 5
tf.nn.relu layer 3

tf.nn.softmax cross entropy with logits 1
tf.range 1

tf.reduce mean 1
tf.reshape 6

tf.size 1
tf.stack 1

tf.truncated normal 8
tf.Variable 16

Table 3.4: AlexNet distribution of operations.
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Figure 3.6: AlexNet computational graph. There are 54 mappable operations. The source
and sink are virtual operations and are not mapped to any device.

3.5 MNIST Softmax Brute-Force Analysis

In this section, we evaluate the whole space design of mappings for MNIST Softmax. This is

in order to provide a general idea of the distribution of makespans, and of which mappings

are optimal.

We have generated all N
Nop

D = 310 = 59049 mappings for MNIST Softmax. Figure 3.7 shows

part of the distribution of the makespan, as well the average makespan and the makespan

of the mGPU−0 homogeneous mapping. The makespan values extend to approximately 0.02

seconds. Makespan distribution beyond 0.002 is not shown in the figure. The three highest-
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performing mappings and the three least effective mappings are shown in Figure 3.8, along

with the makespan values of the respective mappings.

Figure 3.7: MNIST Softmax makespan distribution: x-axis shows the makespan and y-axis
shows the count for that makespan. The mean of the distribution is shown by the red vertical
line. Note that the figure caps at 0.002s, but the distribution has a long tail that extends to
0.02s. Approximately 5% of mappings outperform the default TF mGPU−0 mapping in the
MNIST Softmax case given the current state of the TF software.

3.5.1 Analysis

Due to the small size of the model, CPU resources are used for the majority of the operations,

rather than GPU resources. The brute-force analysis in this case does not show that CPU

allocation is better, but rather indicates that a mix of resources is most effective and that

the mix is non-intuitive, meaning that an expert would not have devised the mapping that is

indicated in Figure 3.8. Thus, this analysis presents a justification for using a meta-heuristic

approach to discovering and searching mappings.
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Figure 3.8: The three mappings at the top of the figure are the top three mappings in terms
of makespan. The topmost has seven operations mapped to CPU-0, and three operations
mapped to GPU-0, with a makespan of 0.484 ms per iteration. The three at the bottom
of the figure are the least effective mappings: the worst has a makespan of 20.2 ms, with
two operations mapped to CPU-0, six operations mapped to GPU-0, and two operations
mapped to GPU-1. The mapping mGPU−0 has a makespan ft(mGPU−0) =0.72 ms. Note that
the worst mappings change devices after each operation, incurring high communication costs
as overheads.
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Chapter 4

Generating Initial Mappings

The importance of the initial mappings is two-fold; one is for building the predictive model

and is therefore used as the training dataset (described in a chapter 5), the other is for

usage in the genetic algorithm (GA) applied in both HTF-MPR and Adaptive HTF-MPR

(described in Chapter 6).

4.1 Algorithmic Mapping

Algorithmic mapping, as the name suggests, is a way of generating mappings that is done

in a methodological way. An illustrative example of the mapping types generated by the

algorithmic approach is shown in Fig 4.1. The initial mapping types provide variety, are

useful in training the fitness predictive model, and are promising initial starting points for

the GA. One of the mappings is the default mapping of heterogeneous (GPU support) TF

(all GPU-0). The other mapping is the default mapping for non-GPU supported TF (all

CPU-0).
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Briefly, the initial mappings used in the algorithmic approach are generated with the char-

acteristics listed below.

• Homogeneous mapping: A single device for all operations. Figure 4.1 shows an

example of homogeneous mapping. The number of mappings is proportional to the

number of devices, i.e. ND. (Figures 4.1a and b).

• Longest path mapping: A single device is mapped to the operations making up the

longest path in the graph, while the other operations are mapped to different devices

than the one on the longest path.(Figures 4.1c and d)

• Random homogeneous path mapping: A single device is mapped to a non-longest

single path, while the rest of the operations are mapped to different devices than the

one on the designated path. (Figure 4.1e).

• Color mapping: Whenever possible, no two connected operations should be mapped

to the same device. Note that, in terms of makespan, this would result in the worst

possible performance; however, this approach is used for variety in the training dataset

used for building the ML predictive model. (Figure 4.1f).

A high level of variety in the initial mappings leads to a more versatile generalized predictive

model, but a less accurate model on any given concentrated region where the search takes

place. An alternative method, that of Bayesian Optimization (BO), will be presented in the

subsequent section.

In cases of homogeneous mapping, all operations are assigned to one device, eliminating

any type of communication cost. This is beneficial when communication costs are relatively

high compared to computational costs, and work best when all operations, and therefore

parameters, fit into the device’s memory. Later chapters will indicate that even small models

such as MNIST Softmax will have better mappings that are not homogeneous. Intuitively, the
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Figure 4.1: Examples of some initial mappings: a and b are homogeneous (single device), c
and d are longest paths, e is non-longest path, and f is color mapped.

justification of such mapping is considered to be reasonable due to the lack of communication

cost. The default mapping in GPU-enabled TF is a homogeneous GPU-0 mapping, and non-

GPU-enabled TF uses a homogeneous CPU mapping.

The intuition behind the longest path approach is that all the dependent operations in

the longest path should use one device while other operations use other devices to utilize

parallelization. This would reduce the cost of inter-device communication in the longest path

and, since parallelization is not achievable due to dependencies, there is no opportunity cost

to consider.

Given that the communication costs are unknown and that the computational cost per opera-

tion is also hidden information, it could be that a non-longest path (where length is measured

by number of operations in the path of the graph) would best be made homogeneous due to

the path having the highest latency.

With color mapping, the inter-communication tax is insured to be taken. Color-mapped

mappings are expected to have the worst makespans. The justification of their use in this

case is to add variety for the dataset that is used in the ML process to create the predictive

model.
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4.2 Bayesian Optimization

Bayesian optimization (BO) [55] is based on Bayesian reasoning, where the reconstruction

of the objective function ft(m) is updated based on new evidence; i.e., due to evaluation of

new data points in ft(m). The higher the number of data points evaluated, the closer the

surrogate function becomes to ft(m). The Tree Parzen Estimator (TPE) [10, 9] is one of

the methods for constructing the surrogate function. The target of the Bayesian optimizer

is to find the data point (input) that would result in the minimum of the function. This is

achieved by choosing the next input to be evaluated according to the surrogate function and

past results. The surrogate function is described by a probabilistic model approach:

P (t|m) ∼ N (µ(m), σ(m)2) (4.1)

where N (µ, σ2) is the normal distribution, with µ as the expected mean function and σ2 as

the expected variance function.

.. .
. .... . .

After 3 evaluations After 3+5 evaluations

.

.

.

.
.

 : Point evaluated.

.

 to evaluate according to 

..

Figure 4.2: Bayesian optimization general method.

The surrogate function is optimized via Bayesian methods by selecting an m that will per-

form well on P (t|m). Figure 4.2 shows a general overview of how an increased number of

evaluations affects P (t|m). As an overview, the steps taken by the Bayesian optimizer are:

1. Build P (t|m) according to the already evaluated ft(m). In our case, the homogeneous

mappings m1,m2,..mND
and their results on ft(m) result in an initial P (t|m).
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2. Then, the Bayesian optimizer chooses the next m that would be assumed to perform

well on P (t|m).

3. The chosen m is evaluated with ft(m).

4. P (t|m) is updated based on the results of m on ft(m).

Steps 2–4 are repeated several times. The reason for the use of ft(m) rather than f ′t(m) (the

predictive model and less costly function) is that BO is an expensive approach; specifically,

the construction of P (t|m) from history, and selection of the next m to evaluate, are expen-

sive. Therefore, the BO would perform well on expensive functions such as ft(m), given that

the whole Bayesian process is expensive. Using f ′t(m) in the BO would not be beneficial with

regard to time. BOs are expensive in terms of computation time, yet they require fewer calls

to the objective function compared to other optimizers, since they apply reason in deciding

what to evaluate next; i.e., they use P (t|m), to choose the next m to evaluate.

To decide on which m to evaluate next (step 3), a utility function known as the acquisition

function [62] is used:

EI(m) = E[max
m

(0, ft(m)− ft(mbest))] (4.2)

mnext = arg max
m

EI(m) (4.3)

EI is the expected improvement, a type of acquisition function. mbest is the current best

solution, while mnext is the next m that would be evaluated. EI(m) is analytically evaluated

as follows:

EI(m) =


(µ(m)− ft(mbest))Φ(Z)

+σ(m)φ(Z) σ(m) > 0

0 σ(m) ≤ 0

(4.4)
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where Z =
µ(m)− ft(mbest)

σ(m)
(4.5)

where µ(m) and σ(m) are the mean and the standard deviation of the distribution of P (t|m)

at point m, respectively (as was mentioned in Equation 4.1), while Φ and φ are the cumulative

distribution function and probability density function of the normal distribution, respectively.

Note that the acquisition function is less costly in terms of computation compared to f(m);

i.e., µ(m) and σ(m) are very inexpensive to evaluate. EI displays a high value if the evaluated

m is in a known neighborhood that outperforms mbest (high µ(m)), or if we evaluate in an

unknown territory (high σ(m)). Both approaches; exploitation (high µ(m)) and exploration

(high σ(m))are used. For categorical data [25], which is the case with the mapping where the

values are devices, the best way to construct the probabilistic surrogate function, and thus

to evaluate and search, is to use TPE. TPE is used by constructing (step 4) the surrogate

function P (t|m) by applying Bayes rule:

P (t|m) =
P (m|t)P (t)

P (m)
(4.6)

where P (m|t) is the probability of a mapping m given an actual makespan t.

P (m|t) =


l(m) t < tth

g(m) t ≥ tth

(4.7)

tth is the makespan threshold of the two distributions. Note that l(m) and g(m) both have

normal distributions. With that said, EI would be:

EI(m) =
l(m)

g(m)
(4.8)
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A selection strategy would be to selectmmore toward the l(m) distribution, given arg maxmEI(m).

As the Bayesian optimizer progresses through higher number of iterations, EI converges

more toward exploitation than exploration, given that P (t|m) becomes closer to ft(m). An

overview of the Bayesian optimizer is shown in Figure 4.2.

4.3 Results

We generate 700 initial mappings using BO, GA, algorithmic, and random approaches. The

mappings generated by the BO approach (a), the algorithmic approach (b),the GA approach

(c), and the random approach (d) are compared (see Figure 4.3). Note that the number of

training runs per mapping is equal to five in our case: this is in order to mitigate the time

overhead incurred by reconstructing the graph with a different mapping.

In each case, we show the final distribution of makespans for the mappings generated by

the different methods and show the final average of each method. Figure 4.4 and Figure 4.5

show the distribution for VGG-16 and AlexNet, respectively, with N=700. Note that the

BO method has an overall lower mean and the distribution is skewed to lower makespans.

Figure ?? show further insight into how the averages of the makespan distributions change

with time. The default mapping in this case is most effective, for now, given that this is

the first stage. The BO approach shows steady improvement, meaning that better mappings

are found with each iteration. A similar, but slower, trend is displayed in the GA method

results. The algorithmic method starts off with relatively good mappings, but does not show

much improvement with each iteration (although it does find a good mapping later on, which

is not shown by the latest average but can be observed in the latest minimum figure): this

is indicative of running out of good mapping ideas, where intuition does not pan out much

further.
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Figure 4.3: Configurations of initial mappings. a) is the Adaptive HTF-MPR approach
(described in a later chapter) NB is the number of mappings generated by the BO while
ND is the initial homogenous mapping (which is also used as a starting point for the BO).
b) is the HTF-MPR approach (described in a later chapter). c) is using GA as the initial
mappings where NG is the number of mappings generated by the GA. Finally, d) uses the
Random approach where NR is the number of mappings generated randomly. Note that N
is equal for all configurations. The number of mappings generated is N=700 in each case.

Figure 4.7 shows the latest minimum at each iteration. Note that Genetic, Algorithmic and

Bayesian all eventually converge within the same neighborhood. Genetic seems to get there

quicker while Algorithmic, and Bayesian get there at a later on iteration.

Important considerations for training time include not only the final makespan that is

achieved, i.e. ft(m
∗), but the whole process Ft(π, ohπ). Figure 4.8 shows the overall time

taken to carry out the first stage (before the ML stage and running the GA with the predictive

model function). Note that in the initial stage the default outperforms the other methods;

however, when used in conjunction with the later stages, a better mapping is found and
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Figure 4.4: Makespan distribution for VGG-16. The x-axis is the makespan (seconds)
and the y-axis is the count of mappings. The vertical red line indicates the average of the
distribution. In the Bayesian figure, the makespan of the TF default mapping is indicated
with a black arrow labeled mGPU−0.

therefore a faster overall training time is achieved (as shall be shown in subsequent chapters

regarding HTF-MPR and adaptive HTF-MPR).
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Figure 4.5: Makespan distribution for AlexNet. The x-axis is the makespan (seconds)
and the y-axis is the count of mappings. The vertical red line indicates the average of the
distribution. In the Bayesian figure, the makespan of the TF default mapping is indicated
with a black arrow labeled mGPU−0.

43



Figure 4.6: The latest average with each iteration for a) VGG-16 and b) Alexnet. The
x-axis shows iteration count, while the y-axis shows the average makespan (seconds). Note
that the plot starts from iteration 50. the Bayesian improves with each iteration, same goes
for the GA method.

Figure 4.7: The latest minimum with each iteration for a) VGG-16 and b) Alexnet. The
x-axis shows iteration count, while the y-axis shows the minimum makespan (seconds). Note
that the plot starts from iteration 100.
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Figure 4.8: Total duration of first stage (Figure 4.3) for a) VGG-16 and b) Alexnet. The
total time is the sum of the overhead due to search and reconstruction of the graph with
each new mapping, and the actual run of the fNN , which contributes to the reduction of
number of training iterations left. With the default TF model, there is no reconstruction of
the graph as the mapping is constant; thus, there is no overhead. Note that with N=700,
there are five training iterations per evaluated mapping; therefore, the figure shows the time
for 700x5=3,500 training iterations of fNN .
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Chapter 5

Makespan Predictive Model

In this chapter, ML is introduced in relation to regression problems, and the different fun-

damental ML algorithms relating to regression are explained. Ensemble methods, the basis

of gradient boosting regressors (GBR), is introduced to properly understand the GBR algo-

rithm. The pipeline for the predictive model is showcased and the results of different ML

models are compared with GBR.

The purpose of a makespan predictor f ′t(m) is to speed up the overall training time Ft. With

a reliable makespan predictor, it is possible to perform a search on M (the mapping solution

space) in a fraction of the time that is required when using the results of ft(m); i.e., the

actual run. The training set for building the predictor is {(mi, tmi
)}Ni=1.

5.1 ML in Regression

There are different ML algorithms that deal with regression problems: the class of problems

where the output is a continuous real number. Each of these ML algorithms have benefits

and drawbacks, and there is no one ML algorithm that is an all-encompassing solution to any
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regression problem. Note that the makespan prediction is solved using a supervised learning

technique, meaning that the true output t that results from ft(m), of a given m, is known

and used to build the model f ′t(m) in hopes of a resulting t′ that is close to t.

5.2 Linear and Polynomial

The simplest type of ML model is a linear model. Assuming that m contains a single variable,

the relationship then becomes:

t′ = wm (5.1)

where w is the parameter that needs to be tuned in order to have the relationship fit; i.e.,

to reduce the loss error.

L(t, t′) =
Nm∑
i=1

(t(i) − t′(i))2 =
Nm∑
i=1

(t(i) − f ′t(mi))
2 =

Nm∑
i=1

(t(i) − wmi)
2 (5.2)

where the desire is to find a w that minimizes L. Note that Nm is the number of parameters

in the model.

w? = arg min
w∈R

L(t, t′) (5.3)

This can clearly be extended to a multi-variable input, meaning m now has multiple variables

or multiple features. In this case, the ML model is still linear, since the output variable(s)

are a linear combination of the input features. In polynomial regression ML models, the

concept is the same, except that the model is a non-linear combination of the input features.

Linear regression ML models work well in cases of non-complex relations between input and

output, while polynomial regression models are very hard to design; i.e., it is complex to

design the nonlinear functions that must be used. Gradient descent is used to update the

w ∈ W values, where W start at a random point and the values are then updated iteratively.
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5.3 Ensemble Models

Ensembling is the process of combining multiple models, which may be referred to as sub-

models. Each of these ML sub-models learns and updates its parameters in order to reduce

the errors in a given training dataset. This is done prior to the models being combined into

the ensemble. In regression, the output prediction of the sub-models can be combined in a

simple form either by averaging, or by taking a weighted average of the outputs. This form

of combining or ensembling is referred to as bagging in the literature. Figure 5.1 illustrates

the process by which an ensemble is constructed using bagging. Boosting is another form

of ensembling. Unlike bagging, the sub-model is trained using the entire dataset. Then,

the weak dataset predictions are trained on subsequent sub-models. Boosting is thus a

sequential method. Figure 5.2 illustrates the process by which an ensemble is constructed

using boosting.

Figure 5.1: Ensemble created using bagging method. The sub-models (f ′t(m)a, f
′
t(m)b,

f ′t(m)c) are trained in parallel. Each sub-model uses a different subset of the dataset to
train.
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Figure 5.2: Ensemble created using boosting method. The sub-models are trained in se-
quence. The sub-dataset of erroneous predictions from f ′t(m)a is added to the training
dataset to train the model that produces f t(m)b.

5.4 Encoding

The purpose of encoding is to change the features of data points from one representation to

another. We demonstrate two types of encodings: one-hot encoding and integer encoding.

Each feature input is henceforth referred to as a variable.

In one-hot encoding, a variable is expanded to multiple variables, each taking on a value of

either 0 or 1. Exactly one of the expanded variables from the original variable is assigned a

value of 1, while the rest are set to 0. In the case of a mapping m, the the size of m, or the

number of variables of m, without the one-hot encoding is |m| = Nop. If one-hot encoding

is applied then the size would be the multiple of the number of values each operation would

take; i.e., the number of devices. More formally, |mone−hot| = NopṄD. Figure 5.3 illustrates

the difference between integer encoding, as is applied in HTF-MPR, and one-hot encoding,

as is applied in Adaptive HTF-MPR.
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Figure 5.3: Encoding: ma is encoded using integer encoding, where CPU-0−→ 0, GPU-
0−→ 1, GPU-1−→ 2, and GPU-2−→ 3. The integers are then normalized. The top part
illustrates one-hot encoding, where dummy variables are used. This increases the number
of features ; in this case, a single variable is expanded to four, since there are four devices.
Note that CPU-0−→ 1000, GPU-0−→ 0100, GPU-1−→ 0010, and GPU-2−→ 0001.

Categorical variables have nominal values, meaning that their values have a qualitative

property rather than a quantitative property. Integer encoding (as is applied in HTF-MPR,

see Figure 5.3) assumes order ; that is, numbers have an order in relation to each other.

Thus, CPU-0 does not have a closer relationship to GPU-0 than it does to GPU-1. If the

integer 0 is assigned to CPU-0, 1 is assigned to GPU-0, 2 is assigned to GPU-1, etc., we

have implicitly assigned relations. These relations have an effect when used mathematically

in ML models. Since no ordinal relationship between the devices exists, one-hot encoding is

more suitable.
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5.5 Gradient Boosting Regression

Based on investigation of several ML algorithms, the gradient boosting regression (GBR) [23]

algorithm outperforms others tested in terms of the Kendall tau rank distance [41] metric.

GBR consists of weak learners that are assembled together and made into an ensemble of a

strong prediction model. This ensembling of weak learners occurs after each iteration where

the new weak learner improves upon the whole predictive model; therefore, the weights, as

well as the hyperparameters, are adjusted during training:

f ′t,k+1(m) = f ′t,k(m) + h(m) = tm (5.4)

where f ′t,k+1(m) is the makespan predictor at step k + 1 of its training, which is made up

of the previous predictor f ′t,k(m) and an estimator h(m). Therefore, the final makespan

predictor f ′t(m) is made up of many weak predictors:

f ′t(m) =
n∑
j=1

hj(m)γj + const. (5.5)

where n is the total number of training iterations required to construct the predictive model.

γ is an optimized coefficient that is multiplied by the weak learner i.e. the weight of the

learner. Training happens in an incremental manner, initially set as:

f ′t,0 = arg min
γ

N∑
i=1

L(ti, γ) (5.6)

where ft(m) −→ tm, and during the training of the predictive model. N mappings are

used as input X, and N timings are used as the output Y (see Figure 6.1, ML algorithm

for training). Subsequently, the makespan predictive model is updated by computing the

residual :

rj(mi) = −
[
δL(tmi

, f ′t,j−1(mi))

δf ′t,j−1(mi)

]
, for i = 1, ..N (5.7)
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Then, the base learner, i.e. estimator hj(m), is constructed using the residual rj(m) and

input m. Therefore, the training set for hj(m) is {(mi, rj(mi)}Ni=1. The γj is then updated:

γj = arg min
γ

N∑
i=1

L(ti, f
′
t,j−1(mi) + γhj(mi)) (5.8)

The model is then updated as demonstrated in Equation 5.4:

f t,j(m) = f t,j−1(m) + γjhj(m) (5.9)

This whole process is repeated n times, resulting in a final predictive model f ′t(m), which is

used by the GA.

5.6 Metrics

Given two mappings ma and mb, the Kendall number is calculated as follows:

k(ta, tb, t
′
a, t
′
b) =


1, if ta < tb and t′a > t′b.

1, if ta > tb and t′a < t′b.

0, otherwise.

(5.10)

where ft(ma) −→ ta and ft(mb) −→ tb are the actual makespans of mapping ma and mb,

respectively, and f ′t(ma) −→ t′a and f ′t(mb) −→ t′b are the predicted makespans of ma and

mb, respectively. A value of 1 indicates a mismatch in the pair-wise order between the actual

and the predictive makespans, and 0 indicates a preserved ordering. The normalized Kendall

tau ranking distance is thus:

Knorm =
∑
i

∑
j<i

2 · k(ti, t
′
i, tj, t

′
j)

N(N − 1)
(5.11)
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Figure 5.4 shows an example of five mappingsm1,m2,m3,m4,m5, where the actual makespans

are t1 < t3 < t5 < t4 < t2 and the predicted makespans are t′3 < t′4 < t′5 < t′2 < t′1.

Figure 5.4: An example of the Kendall values for five makespans. The resulting Knorm = 0.5.

The K-fold method used to validate the predictive model is shown in Figure 5.5. The

mappingsfitness pairings are shuffled and then partitioned into k parts. The predictive model

f ′t(m)i is trained using all the partitions except for partition i. Partition i is then used as a

validation measure to observe the normalized Kendall tau ranking distance. This process is

repeated k times, using a different partition i for the validation each time. Figure 5.5 shows

how this process is carried out.
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Figure 5.5: K-fold method of validation. The mappings (input) and the makespan timings
(labels) are shuffled, then split into k parts. A partition is selected to be the test dataset,
while the rest of the partitions are used for training the model using GBR. The resulting
predictive model is then tested using the test dataset partition. The Normalized Kendall
tau ranking is noted and the process is repeated, with a different partition used as the test
dataset each time. Note that the use of m20, m1, and m7 is arbitrary for illustrative purposes
to indicate that the dataset is shuffled.

5.7 Results

We have applied k-fold cross validation across a number of ML algorithms. The number

of mappings used is different for each benchmark, while the value of k = 5 is used for all

benchmarks:

Mp M Training Testing

benchmark Size Size Size Size

ALEXNET 105 55 84 21

MNIST softmax 135 10 108 27

VGG-16 105 69 84 21
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The average results are shown in Fig 5.6. GBR outperforms all other ML algorithms across

the board. The reason why decision tree, Adaboost and GBR outperform the other ML

models considerably is that ft(m) is not only nonlinear but discontinuous; therefore, it

requires a tree-like and ensemble-like model structure.

Figure 5.6: Predictive model performance using k-fold (k=5) and different ML algorithms.
The chart shows the average results from five runs and includes the standard deviation of
the five runs. SVR: Support Vector Regression; Ridge: Ridge Regression; LARS: Least
Angle Regression; OMP: Orthogonal Matching Pursuit; Kneighbor: Regression-based on
k-nearest neighbors.

The results are shown in Figure 5.7. We compare the use of one-hot encoding and integer

encoding, where the training dataset is generated either by BO (as in the case of Adaptive

HTF-MPR) or an algorithmic approach (as in the case of HTF-MPR) both generation

methods were described in the previous chapter. Note that in each case the one-hot encoding

outperforms the integer encoding. The performance will affect how many mappings will be
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chosen for evaluation; that is, the top K mappings after the GA stage (to be described in

Chapter 6).
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Figure 5.7: K-fold results. The y-axis is the normalized Kendall, where a lower number
indicates a lower error rate. Note that N=700 (number of mappings) and K=5 (number
of folds). The bar indicates the average of the five runs (normalized Kendall of five tested
partitions) and the standard deviation shown is due to the difference of the five runs.
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Chapter 6

Heterogeneous TensorFlow Mapper

In this Chapter, HTF-MPR and Adaptive HTF-MPR are explained. The point of using

these frameworks is to find a sub-optimal mapping that outperforms TF’s mapping. The

duration of the whole search process should outperform TF default mapping (where the TF

default does not have the overhead of searching a sub-optimal mapping).

6.1 HTF-MPR

HTF-MPR [4] is a framework that finds a better device-to-operations mapping in order to

speed up execution times of TF computational graphs. Mappings are evaluated by measuring

the execution’s runtime using a particular mapping; i.e., ft(m) −→ tm. Once a reasonably

sized sample of mappings and their speeds is collected, a predictive model f ′t(m) is produced.

The reason for the use of a predictive model, rather than the actual run, is that the makespan

of a certain mapping is returned almost 750 times faster. In other words, 750 mappings can

be analyzed using the makespan predictive model compared to one mapping using the actual

run. Note that there are accuracy issues with the predictive model, as is the case with any
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model; therefore, the best mappings according to f ′t(m) are run again to evaluate their ft(m).

An overview of HTF-MPR is shown in Figure 6.1.
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Figure 6.1: HTF-MPR overview: 1. N initial mappings are generated (Chapter 4). 2. These
mappings are then run on the TF graph, where their makespans, ft(m) −→ tm, are recorded.
The number of iterations left to train the model (and therefore get it closer to the final model
fNN) is I−N . 3. The input data X and output data Y are used to construct the predictive
model (Chapter 5). 4. The predictive model as well as the mappings are provided to the
GA (Subsection 6.1.1). 5. Top mappings are selected according to the predicted makespans
(Subsection 6.1.2) . 6. The top mappings are then run on the TF graph to obtain actual
makespans ft(m). The number of training iterations is advanced by K (the number of top
mappings), thus reducing the required runs to I −N −K. 6. Finally, the top mapping, m∗,
is found and used for the rest of the training; i.e., for I −N −K iterations.

6.1.1 Search with Genetic Algorithm

Genetic algorithms (GAs) [50] are a type of optimization technique that is metaheuristic,

meaning they are designed to work on non-deferential and non-linear search spaces [26]. They
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are known for solving task-mapping [33] problems. In HTF-MPR, the GA uses f ′t(m) as the

inverse fitness of a particular solution, i.e. mapping. The fitness of a solution is proportional

to the likelihood of its being chosen as one of the parents to generate a new solution. This

new solution is assessed using f ′t(m) and added to the population. The search process is

shown in the GAs part of Figure 6.1. Initially, the algorithmically generated mappings are

provided to the GA, where the t′m of each mapping is calculated. Then, two parents with

a probability proportional to the fitness are selected; i.e., the inverse of t′m, whereby these

two parents generate a new mapping via crossover. In our approach we use two methods for

crossover (Figure 6.2 and Figure 6.3). Figure 6.2 shows a stochastic approach to generating

a new mapping. The fitness of the parent dictates the percentage of operation mapping that

the new mapping will inherit from that parent. Figure 6.3 shows another approach, where

<

Number of  ops 
selected from 

OP1 OP3 OP4 OP5 OP6OP2 OP1 OP3 OP4 OP5 OP6OP2

OP1 OP3 OP4 OP5 OP6OP2

Number of  ops 
selected from 

Mapping from Mapping from Mutated mapping

Figure 6.2: Crossover using a stochastic method whereby the number of mappings taken
from a particular parent is relative to how fit the parent is. In this case, ma is more fit than
mb given the lower predicted makespan; i.e., t′ma

< t′mb
. Therefore, more operation mappings

are copied from ma than mb. Some operations mappings also go through mutation, meaning
they are not copied from either parent. In this example, op3 has been mutated.

the crossover points dictate the number of newly generated mappings. For example, if there

were two crossover points, then at most six new mappings would be generated from the
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parents (see Figure 6.3). If there were three crossover points, then at most 14 new generated

mappings would occur; i.e., at most 2Nc+1 − 2 generated mappings, where Nc is the number

of crossover points.

...

OP1 OP3 OP4 OP5 OP6OP2OP1 OP3 OP4 OP5 OP6OP2

OP1 OP3 OP4 OP5 OP6OP2OP1 OP3 OP4 OP5 OP6OP2OP1 OP3 OP4 OP5 OP6OP2

Figure 6.3: Crossover using crossover points. In this example, six new mappings are gener-
ated from the parents ma and mb.

6.1.2 Final Selection

P new mappings, and their predicted makespans t′m, are generated by the GA as shown in

Figure 6.1. These mappings are then sorted in t′m ascending order. The top K mappings

are then selected and run on the TF graph to obtain the actual makespans tm. The top

mapping m∗, according to tm, is then run until the training of the TF graph is completed,

thus reaching the final state of the model fNN . Note that the training advances when the

model is run. During a run, regardless of the mapping used, there is the added benefit of

acquiring ft(m) while not affecting the path of the training. This indicates that the final

destination of fNN is the same, with the only difference being how quickly a given model

can reach it.
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6.2 Adaptive HTF-MPR

6.2.1 Overview

Adaptive HTF-MPR uses a similar methodology to HTF-MPR with some modifications

(see Figure 6.4). One modification is the introduction of the BO [55] step using ft(m) as

the function for performance evaluation. The aim of applying BO is to find the locale,

or neighborhood, of the best mappings via intelligent search. The resulting mappings are

then used to construct the makespan predictive model f ′t(m). Another modification is the

removal of the initial mappings using the algorithmic approach. This is due to using the

results of the BO as input to the ML to create the makespan predictive model as well as

the initial population for the GA. The input or initial starting point for BO consists of the

homogeneous mappings.

6.2.2 Adaptivity

The training time for some state-of-the-art neural networks could reach hundreds of thou-

sands of iterations [74], with each iteration taking a certain period of time depending on

the employed hardware and the batch size of the input data. There is no guarantee that

either the state or performance of the system will remain consistent throughout the training;

i.e., parts of the system’s hardware, CPUs or GPUs, could have different loads at different

times due to external processes. This would affect the makespan and thus the training time.

To combat this, the makespan time has to be monitored. The monitoring module would

detect any drastic divergence from the average performance level, whether representing im-

provement or degradation. If one of the system components (i.e., the load of one of the

devices) were to increase or decrease, it would affect ft(m) and thus changes what could

be considered m∗. In this paper, among other things, we add a monitoring mechanism and
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Figure 6.4: Adaptive HTF-MPR overview: 1. N initial mappings are generated using
BO (Chapter 4). 2. Mappings are then run on the TF graph where their makespans,
ft(m) −→ tm, are recorded. The number of iterations left to train the model (and therefore
get it closer to the final model fNN) is I − N . 3. Input data X are turned to one-hot
encoding (Chapter 5) and makespan predictive model is constructed (Chapter 5). 4. GA
is run (Subsection 6.1.1) until population size reaches P . 5. Top mappings are selected
according to the predicted makespans. 6. The top K mappings are then run on the TF
graph to obtain the actual makespans ft(m). The number of training iterations is advanced
by K, thus reducing the required runs to I −N −K. 6. The top mapping, m∗, is identified
and used for the rest of the training. The monitor triggers a rerun of the process if required.

a way to deal with and adapt to these changes in the system. Our Adaptive HTF-MPR

takes corrective measures to find a new m∗ once the monitoring module sets a trigger. Our

monitoring module works with both gradual, slow changes [72] and abrupt changes [6].

6.2.3 Training the Predictive Model

As in HTF-MPR, we train a surrogate function f ′t(m) to be used in the GA. Using the

mappings generated by the BO evaluations, we train in order to create a makespan predictive
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model f ′t(m) using GBR as explained in Chapter 5. Note that the two main differences

between the predictive model used in HTF-MPR and that of Adaptive HTF-MPR are:

• The training dataset uses mappings that are skewed more toward better performing

makespans: ∑
m∈MBayesian

ft(m) <
∑

m∈Minitial

ft(m) (6.1)

where MBayesian and Minitial are the mappings generated by the Bayesian optimizer

(Adaptive HTF-MPR) and the initial mappings (HTF-MPR), respectively. In addition,

|MBayesian| = |Minitial|, so as to make the comparison from Equation 6.1 fair.

• One-hot encoding is used rather than normalized integer encoding. This is a better fit

given that the values in the mapping are non-ordinal categorical data.

6.2.4 Genetic Algorithm Search

As in HTF-MPR, GA is used to search for an optimal mapping that outperforms TF’s default

GPU homogeneous mapping, using the makespan predictive model f ′t(m) as the surrogate

function to evaluate performance of a given solution. The differences here are that:

• The initial population consists of the mappings from the Bayesian optimizer, meaning

a more concentrated search space.

• A makespan predictive model f ′t(m) that is designed to work well within the neighbor-

hood of the search space of the initial population.
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6.2.5 Adaptive Run

During the run on m∗, both the average and the standard deviation are taken for a window

size of Q iterations of ft(m
∗). If, after the Q iterations, ft(m

∗) changes to become higher or

lower than βx of the standard deviation, this causes a trigger to occur. The trigger would

start the Adaptive HTF-MPR process again. Note that the number of iterations left for

training and reaching the final trained model fNN would be reduced (see Figure 6.4).

Initialization:
set the mean:
µwin = 1

Q

∑Q
i=1 ft(m

∗)i;
set the standard deviation:

σwin =

√∑Q
i=1(ft(m

∗)i−µwin)2

Q
;

set upper-bound:
P trigger = µwin + βσwin;
set lower-bound:
N trigger = µwin − βσwin;
start location of monitoring: i = Q + 1;
Trigger=False;

while fNN still training do
Advance fNN training;
i=i+1;
if N trigger< ft(m

∗)i < P trigger then
Trigger=True;
Break from while loop;

end

end
if Trigger then

run Adaptive HTF-MPR on fnn from
iteration i

end
Algorithm 1: Monitoring algorithm: The average makespan of each run is taken for a
window size of Q. The standard deviation is recorded, and the triggers are set. While run-
ning the neural network on mapping m∗, we check the current makespan. If the makespan
is above the P trigger or lower than the N trigger, a trigger is set and Adaptive HTF-MPR
is run again.

A trigger indicates that there has been a change in the hardware state; either a drop or an

improvement in performance (both could be either gradual or abrupt). In either case this

would require a reassessment of the values of ft(m) and therefore a search for a new m∗.

Algorithm 1 shows the monitoring mechanism.
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6.3 Results

6.3.1 Genetic Algorithm on Predictive Model

In this section the results of the GA on the predictive model are presented. The factors that

are essential in evaluating the performance of this part are the following:

• The time it takes to search using the GA on the makespan predictive model f ′t(m).

The time is indicated by TN+P , while the size of the search is N + P .

• The results of the search. The first occurrence of a mapping that has a makespan

ft(m
∗) better than the default mapping ft(mTF ) makespan.

• What number of evaluations K, using ft(m), are needed to find the best possible

makespan ft(m
∗∗) among the ensuing GA results. Number of evaluations is correlated

to time TK . Note that ft(mTF ) > ft(m
∗) ≥ ft(m

∗∗).

Model N + P TN+P K TK i∗ ft(mTF )
ft(m∗) rank′(m∗) rank(m∗) i∗∗ ft(mTF )

ft(m∗∗) rank′(m∗∗)

1 Bayesian 10,000 25.7s 1,000 770s 1021 1.04 6 12 7836 1.205 16

2 Bayesian 100,000 1012s 1,000 768s 74611 1.04 1 521 10026 1.209 9

3 Bayesian 10,000 25.36s 100 77.6s 7428 1.036 2 37 7290 1.201 69

4 Algorithmic 10,000 22.22s 1,000 769s 2935 1.04 4 89 9342 1.19 58

5 Algorithmic 100,000 1099s 1,000 743s 8002 1.038 7 51 10247 1.204 81

Table 6.1: GA results using predictive model f ′t(m) on AlexNet.

Model N + P TN+P K TK i∗ ft(mTF )
ft(m∗) rank′(m∗) rank(m∗) i∗∗ ft(mTF )

ft(m∗∗) rank′(m∗∗)

1 Bayesian 100,000 1014s 1,000 752s 1 1.00 1 1 1 1.0 1

2 Bayesian 150,000 1806s 1,000 765s 100179 1.06 56 3 130775 1.14 87

3 Algorithmic 100,000 920s 1,000 698s 1 1.00 112 1 1 1.00 112

4 Algorithmic 150,000 1846s 1,000 703s 1 1.00 18 1 1 1.00 18

Table 6.2: GA results using predictive model f ′t(m) on VGG-16.

As indicated in [21], the initial population is an important metric for the GA. Table 6.1 and

Table 6.2 show that the initial populations generated by the Bayesian optimizer outperform
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the algorithmic initial population in both instances. Regarding the size of the search, 10,000

searches in the GA and 100 evaluations prove sufficient to identify the best mapping in

AlexNet. For VGG-16, the search space is larger; therefore, 150,000 searches are required

mTF .

6.3.2 Run and Adaptivity

In this section the full runs of the TF default mapper, the HTF-MPR, and the Adaptive

HTF-MPR are presented. In addition, a stress test is applied on the system and the changes

of the makespan are observed. We see how Adaptive HTF-MPR reacts and how it affects

the overall training time. The total training times for VGG-16 and AlexNet are shown in

Figure 6.5. The overhead with AlexNet is low due to the fact that the GA part is not run

for long (only 10,000 mappings). The GA slows down over time and does not have a linear

relationship with number of iterations, as can be seen from Table 6.1: when comparing

10,000 runs and 100,000 runs, the increase in TNP
is 40x, while the number of GA iterations

increases by only 10x.

Figure 6.6 shows what happens to the makespan when a high load is applied.

We apply a high load on GPU-0 for a 30-minute duration. The makespan per iteration is

shown in Figure 6.7. The performance of the predictor worsens when Adaptive HTF-MPR is

triggered (due to the GPU-0 high load). The reason for the low performance of the predictor

is the high variance of the makespan (see Figure 6.6).

Depending on the load duration and how sporadic the load is, the adaptive component

performs accordingly. In the case of high variance (sporadic load) the makespan predictor is

unable to generate a single-point prediction. In case of bumps over or below the P trigger

and N trigger, respectively, Adaptive HTF-MPR would perform as usual.
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Figure 6.5: Total training time (minutes). The Bayesian Optimization approach (Adaptive
HTF-MPR) improved the overall time by 3.5% in VGG-16 and 18.7% in Alexnet. The
overhead in the Bayesian accounts 9.5% of the whole process in VGG-16 while it accounts
for 1.1% in Alexnet. Note that the Algorithmic did not find a better mapping for VGG-16 as
shown in Table 6.2. As for Alexnet, the overall improvement was by 12% and the overhead
accounts for 5.6% using the Algorithmic approach.

6.4 Conclusion of Previous Chapters

We have presented HTF-MPR and Adaptive HTF-MPR approaches to optimizing the map-

ping of devices to operations in order to improve performance. The proposed frameworks

use algorithmic and BO processes, respectively. A predictive model is applied in the GA to

search for a mappings, which outperforms the TF default mapping overall. The predictive

model is trained using algorithmic and BO approaches, respectively, resulting in mappings

and makespan observations. The predictive model is constructed using GBR. Experimental

results show a substantial overall speeding up for the investigated benchmarks. In addition,

we have presented our analysis of the solution space using the small benchmark MNIST-

Softmax. We have observed that only a small percentage5%of mappings outperform the

default TF mapping, indicating that it is difficult to identify a successful search scheme for

a large computational graph. The proposed search technique has been shown to be capable

of finding a mapping that outperforms the default TF mapping. We have also presented the

adaptive mechanism and explored how it reacts when the system experiences stress.
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Figure 6.6: The TF default mapping on: a) VGG-16; b) AlexNet. The y-axis is the
makespan and the x-axis represents the iterations number. The makespan changes when
there is a high load (using Unigine’s SuperPostion benchmarking tool [67]) on the GPU. The
red line shows the threshold for when Adaptive HTF-MPR would be triggered if the default
mapping were also the m∗ mapping. β = 10 in this case. The higher the Beta coefficient the
less sensitive to changes Adaptive HTF-MPR is. Note that different loads have been used
in both instances. In addition, the load has high variance in this case.

Figure 6.7: AlexNet makespan at each iteration: a) without; and b) with Adaptive HTF-
MPR. Note that GA happens offline (meaning that it does not contribute to the advancement
of the training step) and therefore is not shown. The top K of the resulting GA results are
run on fNN and therefore are shown. In this case K=100. The high load is applied for 30
minutes in both cases.
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Chapter 7

Static Mapping Method

In this chapter, we tackle the mapping optimization problem using methods borrowed from

static-scheduling algorithms, more specifically heterogeneous earliest finish time (HEFT).

7.1 List Scheduling

In static task-scheduling, and more specifically in list-based scheduling, there are two main

phases [7]:

1. The ordered list of processes phase (in our case TF operations), where operations are

mapped according to their priority levels.

2. The selection of resources (i.e., devices) per process, where the resource allocation is

set in the order determined by item 1.
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In our list-based scheduling framework, we apply the HEFT algorithm. In this static-list-

based task-scheduling algorithm, two forms of information are required as input to the sched-

uler:

• A table of execution times that shows the execution time for each operationdevice pair.

• The dependency graph in the directed acyclic graph (DAG), which shows the operation

dependencies (i.e., the successor of each operation).

Dependencies are easily extracted since the TF graph is already implemented in a DAG

fashion. With regard to the execution times, these need to be extracted and captured for

every device–operation pair.

7.2 Task Mapping

The fact that no changes may occur after the TF graph is run implies that the use of static

scheduling [44] is required. List scheduling [44] is a type of static scheduling that consists

of two main steps: a prioritization step and a device selection step. Many types of list-

scheduling algorithms are available [7, 66, 48]. One approach that has been thoroughly

tested and fits our need for static scheduling on DAGs, which are heterogeneous both in

operations and in devices, is the HEFT algorithm [68]. In terms of the construction of

scheduling and mapping, HEFT is a fast heuristic approach: it is greedy and works well

with DAG [13].

In order to utilize HEFT, two pieces of information are required: the operation dependencies

that are represented by the DAG, and the execution time of these operations on every device

available. In our case, the execution time of an operation on each device is unknown a priori.
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7.3 Execution Time

As discussed in the previous section, list scheduling requires the execution time of each

device–operation pair. One way to obtain the execution time is by using the analytical model

approach. This requires considerable information, some of which is platform-dependent

(i.e., based on hardware, devices, type of device, and inner workings of the operations) [5].

Although the analytical approach gives a better prediction model [5], it requires a lot of

unknown information that is not easy to obtain in a heterogeneous environment.

Another way to obtain the execution time is to build a prediction model for the device–operation

pairs. In order to use the execution time prediction model, inputs must be given to the model;

i.e., input to features. Features in this case could be the number of tensors that are inputs,

the dimensions of the input, and the sizes of each dimension. In addition, more features

can be constructed via polynomial feature extraction. Using ML approaches, the models

can be constructed ahead of time and any new TF graph would fetch the appropriate set of

device–operation models to obtain approximate values of execution times. Note that feature

values, per TF operation type, must be extracted in this case to be fed to the model. In addi-

tion, the learning process would require the generation of many and varied data points that

need to be run on TF operations in order to train each and every device–operation model.

Such an approach would not guarantee variable data-point generation that would span the

range of values, and thus would not guarantee the proper training set for the execution-time

prediction model.

Another approach, and that which we follow, is to run each operation with its actual argu-

ment values. This obtains the execution time for the deviceoperation pair with the exact

requested values, and does so for each and every deviceoperation pair. Although the cost of

carrying out this extraction is repeated for every TF model, it is more accurate and hassle-

free, as there is no need to figure out what the parameters are or to generate data points.
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In addition, given that neural networks, in this case TF models, are run multiple times in

magnitudes of at least hundreds of thousands when training the models, and unknown times

when a model is run in an inference manner, the overhead of running the operation to obtain

the execution time is negligible.

7.3.1 Execution Time Calculation

For every device–operation pair, a session run is made in order to obtain the runtime of

said operation in said device (see Figure 7.1). Once the session-time matrix is completed,

the execution calculation is applied to each device–operation pair tτi,dx . This calculation is

given according to the adjacency list, where the inverse of the adjacency list would provide

all required incoming operations:

tτi,dx = sτi,dx −
∑

τj∈pred(τi)

sτj ,dx (7.1)

An example of an adjacency list (represented in Figure 7.1 as a directed graph) follows:

operation successor(s)

τc τb

τb τd

τa τd

τd ...

The inverse of which is:

72



operation predecessor(s)

τd τb τc

τb τc

τa ...

τc ...

This is used for the calculation of the execution time for each operation using the session

time: an example for tτd is given in Figure 7.1.

Figure 7.1: Execution-time calculation

The number of runs required to determine each deviceoperation execution time is V XD.

Thus, the overhead of using TF-Mapper is directly proportional to the number of TF oper-

ations in the model and the number of devices in the system.
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7.4 HEFT Scheduling for Mapping

Once the execution-time matrix is complete, it is used alongside the adjacency list (which

describes the DAG) in the scheduling algorithm. HEFT [69] is chosen as our scheduling

algorithm based on [13]. The computational complexity of HEFT is O(V 2D) [63], while

that of a brute-force approach is O(DV ). HEFT has two main phases. Firstly, the upward

rank of each operation is determined, so the operations can be scheduled according to their

priority levels: the largest corresponds to the highest priority. Note that if an operation has

no inputs and is considered the source of the DAG, it will have the largest rank. The rank

calculation is determined as follows:

ranku(τi) = tτi + max
τj∈succ(τi)

(rank(τj)) (7.2)

where ti is the average execution time of the operation over all devices (i.e., the average of

the row in the execution-time matrix). succ(τi) are all the successors of τi in the DAG. In

this situation, the maximum rank between all successors is added to the calculation. Note

that the use of communication costs is not considered when calculating the rank [63].

The aim of the scheduler is to reduce the completion time or makespan. In the case of neural

networks, a single run of the backpropagation is considered to represent the DAGs makespan

without completion; i.e., the completion occurs only when the DAG is run multiple times

(rather than once). Thus, in our case, the makespan is a single run.

Once the rank of each operation has been determined, the second phase starts. The scheduler

conducts its operation selection phase in descending order according to rank [69]. The device

dx ∈ D that would be selected is the device that would provide the earliest finish time (EFT ):

EFT (τi, dx) = tτi,dx + EST (τi, dx) (7.3)
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where EST is the earliest start time given by:

EST (τi, dx) = max{available(dx), max
τk∈pred(τi)

(EFT (τk))} (7.4)

available(dx) is the earliest time when dx is available to run τi, while the inner max term

represents the moment at which all the predecessor operations have completed their execu-

tion. Thus, the earliest finish time depends on the max of device availability or predecessor

operation completion. Note that:

EST (τentery, dx) = 0 (7.5)

This indicates that the highest-ranked operation, which is the entry operation in the DAG,

has an earliest start time of 0.

7.5 Experimental Results

7.5.1 Experimental Setup

To test our framework, we use a system that consists of a multi-core CPU (Intel(R) Core(TM)

i7-4770K CPU 3.50Ghz) and GPU (Nvidia GeForce GTX 770). The TF version used is 0.12

with GPU capability (using Nvidia CUDA 8.0 and cuDNN v5), and the Python version is

2.7.12. The following benchmarks are tested:

• AlexNet, a CNN used to classify images.

• MNIST Softmax classifier, a very simple image classifier.

• VGG-16, a CNN used on ImageNet.
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The benchmarks are run with TF, without any forced mapping, and the total execution time

of each benchmark is recorded. The same benchmarks are run through TF-Mapper to obtain

the mappings, which are then run using the resulted mappings. Total execution time of each

benchmark and the processing time of TF-Mapper are recorded. Also, as an extra measure

for comparison, we randomly generate a mapping and apply it to the benchmark in order

to compare results (and determine that the proper mapping via the scheduling algorithm

is contributing to speeding up the process). Below is a summary of the benchmarks. Note

that the learning process is an iterative process; thus, the DAG is run several times. The

majority of operations are not handled within TF-Mapper. This is because these operations

are generated by TF; thus, the user may not assign a mapping via a tf.device. With these

hidden operations, TF handles the mapping via its default mechanism.

7.5.2 Results

Given the overhead of running TF-Mapper, an average speed-up of 1.05 is still accomplished

with AlexNet, 1.35 with MNIST-Softmax classifier, and 1.11 with VGG-16. The default

TF device mapper (as of version 0.12), using TensorFlow-GPU, maps the majority, or in

some cases, all of the operations to the GPU.

Excluding the overhead time of the TF-Mapper, and basing our results on the mapping

resulting from this, the average speed-up values are 1.16 for AlexNet, 1.85 for MNIST-

Softmax classifier, and 1.16 for VGG-16.

The majority of the process time in TF-Mapper is taken up by the execution-time calcu-

lation stage. More specifically, a session run is required per TF operation in each device, in

order to capture the session time. The time taken by the HEFT scheduling algorithm

is insignificant compared to the execution-time calculation: less than 1% of the time

is taken up by the scheduling stage. An increased number of devices would thus mean an
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Figure 7.2: Distribution deviceoperation mapping from TF-Mapper

increase in the overhead time of TF-Mapper. Note that random mapping affects the per-

formance negatively, indicating that proper mapping via HEFT scheduling contributes to

speeding up the overall process.

With regard to the distribution of device mapping, the exclusive use of GPUs in TensorFlow-

GPU default mapper is not always ideal. This is due to different systems running different

types of GPU hardware (some are high-end while others are low-end). In addition, the states

of the devices (i.e., CPU(s) and GPU(s)) at any given time are unknown and contribute to

the overall performance. Thus, a check on the execution time per deviceoperation pair is

required before (within a short period of time) running a benchmark.

According to the execution times and scheduling algorithm, TF-Mapper does not favor GPU

for every operation, as can be seen by the distribution of the mapping (see Figure 7.2). With

such mapping the performance improves (see Figure 7.3).
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Figure 7.3: Comparison of relative execution times

7.6 Conclusions

In this paper, we have presented our TF-Mapper framework, which is used to optimize

the mapping of devices to TF operations. The TF-Mapper extracts the execution time

of each deviceoperation pair. Using the HEFT scheduling algorithm, it finds an optimal

deviceoperation mapping, providing better performance than the one carried out by the

default TF mapper. This method works when using two devices, but would fail with any

more than two. A more effective approach for three or more devices would be to use HTF-

MPR or Adaptive HTF-MPR.

78



Chapter 8

Operation Split for higher Parallelism

In this chapter, operations in the graph will be divided into sub-operations. In other words,

the NN will be partitioned in order to make more use of inter-parallelism (parallelism between

devices, as opposed to parallelism within a single device such as a GPU). The methodol-

ogy [61] presented will therefore increase the operations but decrease the computation time

required for each operation. In order to split the operations within a fully connected NN

layer, it is necessary to prune some weights; i.e., to reduce the number of parameters. The

method of removal and the choice of which parameters to remove are of importance in this

case.

8.1 System Model

Our framework targets neural networks that have some or all of their nodes fully connected

to the subsequent nodes. The set of starting nodes, Ninitial, is fully connected to the

subsequent nodes Nfinal; i.e., the model has fully connected layers. A link, which is a

parameter, is a connection represented by Lij , where i is the starting node number and, j
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is the connected node number within a layer. The link’s value (i.e., the parameter’s weight)

is represented by wi,j . Li,j = 0 if the link is pruned, and if not, Li,j = 1. Note that wi,j

may contain any value. The set of weights, Wi, consists of links, Li, that connect between

the set of nodes Ni and Nj . Figure 8.1a shows an example of a fully connected layer of size

6× 8. Figure 8.1b shows the matrix representation of the fully connected layer. Figure 8.1c

indicates the weight matrix of the fully connected layer. The connectedness number, C, is

simply;

C =

|Ninitial|∑
i=1

|Nfinal|∑
j=1

Li,j (8.1)

A fully connected layer is annotated as Cfull, thus;

Cfull = |Ninitial| × |Nfinal| (8.2)

Therefore, the connectedness ratio, R, is:

R =
C

Cfull

(8.3)

Figure 8.2 shows an example of a two-partition pruning of the fully connected layer from

Figure 8.1. Figure 8.3 visually illustrates the partitions of Fig 8.2 and the reduction of the

number of weights due to that partitioning. Given that there are |P | partitions, where a

Px ∈ P , then any given Ninitial,j ∈ Px will not be in any other partition. The same applies

to nodes in Nfinal,i . More formally:

{Pi, Pj ∈ P |i 6= j, Pi ∩ Pj = ∅} (8.4)

Equation 8.4 is the constraint of the groupings of nodes in Ninitial and Nfinal. That is, once

a particular node is in a particular partition, it cannot be a member of another partition.
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L1,1
L1,2

L1,3

L6,8

L7,1

Ninitial
Nfinal

Ni,1

Ni,2

Ni,3

Ni,4

Ni,5

Ni,6

Nf,1

Nf,2

Nf,3

Nf,4

Nf,5

Nf,6

Nf,7

Nf,8

L1,1 L1,2 L1,3 L1,4 L1,5 L1,6 L1,7 L1,8
L2,1 L2,2 L2,3 L2,4 L2,5 L2,6 L2,7 L2,8
L3,1 L3,2 L3,3 L3,4 L3,5 L3,6 L3,7 L3,8
L4,1 L4,2 L4,3 L4,4 L4,5 L4,6 L4,7 L4,8
L5,1 L5,2 L5,3 L5,4 L5,5 L5,6 L5,7 L5,8
L6,1 L6,2 L6,3 L6,4 L6,5 L6,6 L6,7 L6,8

(b)

(a)

w1,1 w1,2 w1,3 w1,4 w1,5 w1,6 w1,7 w1,8

w2,1 w2,2 w2,3 w2,4 w2,5 w2,6 w2,7 w2,8

w3,1 w3,2 w3,3 w3,4 w3,5 w3,6 w3,7 w3,8

w4,1 w4,2 w4,3 w4,4 w4,5 w4,6 w4,7 w4,8

w5,1 w5,2 w5,3 w5,4 w5,5 w5,6 w5,7 w5,8

w6,1 w6,2 w6,3 w6,4 w6,5 w6,6 w6,7 w6,8

(c)

Figure 8.1: a) Example of a model representation of a fully connected layer. b) shows the
connection’s representation in matrix form. Note that in the above case, C = Cfull =
6 × 8 = 48 and R = 1. c) represents the values of the weights (values of the links)
represented in matrix form.

Another way of stating this is:

Ni ∈ Pn Then Ni 6∈ Pm, ∀m 6= n (8.5)

Note that there is an upper,
⌈
|Ninitial|

|P |

⌉
, and lower,

⌊
|Ninitial|

|P |

⌋
, bound to the number of

Ninitial,i nodes that are members of a partition Pn. The same is true for Nfinal,i nodes. In

addition, the number of partitions that contain the upper limit is |Ninitial| mod |P |, while

the number that contain the lower limit is |P | − (|Ninitial| mod |P |). As an example, if

|Ninitial| = 22 and |P | = 5 (i.e., number of partitions), then an example of partition sizes

for Ninitial, ignoring Nfinal, would be

(|P1|, |P2|, |P3|, |P4|, |P5|) = (4, 5, 4, 4, 5)
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. Therefore, the example suggests that there are three partitions of size four and two parti-

tions of size five. This bound description also applies to Nfinal.

L1,1
L1,2

L1,3

L6,8

L7,1

Ninitial
Nfinal

Ni,1

Ni,2

Ni,3

Ni,4

Ni,5

Ni,6

Nf,1

Nf,2

Nf,3

Nf,4

Nf,5

Nf,6

Nf,7

Nf,8

Nf,1 Nf,2 Nf,3 Nf,4 Nf,5 Nf,6 Nf,7 Nf,8

Ni,1 1 0 1 1 0 0 0 1
Ni,2 1 0 1 1 0 0 0 1
Ni,3 0 1 0 0 1 1 1 0

Ni,4 0 1 0 0 1 1 1 0
Ni,5 1 0 1 1 0 0 0 1
Ni,6 0 1 0 0 1 1 1 0

(b)

(a)

w1,1 w1,2 w1,3 w1,4 w1,5 w1,6 w1,7 w1,8

w2,1 w2,2 w2,3 w2,4 w2,5 w2,6 w2,7 w2,8

w3,1 w3,2 w3,3 w3,4 w3,5 w3,6 w3,7 w3,8

w4,1 w4,2 w4,3 w4,4 w4,5 w4,6 w4,7 w4,8

w5,1 w5,2 w5,3 w5,4 w5,5 w5,6 w5,7 w5,8

w6,1 w6,2 w6,3 w6,4 w6,5 w6,6 w6,7 w6,8

(c)Pruned

Unpruned

Li,j =0, Pruned Li,j =1, unpruned

Figure 8.2: a) indicates what links are to be pruned from the fully connected layer; b) shows
the connection’s representation, with 0 representing the absence of a link. Note that in the
above case, C = Cfull = 12 and R = 0.5.

8.2 Partition Pruning Overview

There are two types of objectives of partition pruning : pruning with the objective of having

balanced partitions, and pruning with the objective of having the least absolute weight loss.

The second objective guarantees a smaller loss of accuracy, while the first allows for maximum

parallelism. Note that the number of parameters pruned is directly related to the number
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Ni,1

Ni,2

Ni,5

Nf,1

Nf,3

Nf,4

Nf,8

Ni,3

Ni,4

Ni,6

Nf,2

Nf,5

Nf,6

Nf,7

P2

P1

(a)

w1,1 w1,2 w1,3 w1,4 w1,5 w1,6 w1,7 w1,8

w2,1 w2,2 w2,3 w2,4 w2,5 w2,6 w2,7 w2,8

w3,1 w3,2 w3,3 w3,4 w3,5 w3,6 w3,7 w3,8

w4,1 w4,2 w4,3 w4,4 w4,5 w4,6 w4,7 w4,8

w5,1 w5,2 w5,3 w5,4 w5,5 w5,6 w5,7 w5,8

w6,1 w6,2 w6,3 w6,4 w6,5 w6,6 w6,7 w6,8

w1,1 w1,3 w1,4 w1,8

w2,1 w2,3 w2,4 w2,8

w5,1 w5,3 w5,4 w5,8

w3,2 w3,5 w3,6 w3,7

w4,2 w4,5 w4,6 w4,7

w6,2 w6,5 w6,6 w6,7 (b)

P1

P2

Figure 8.3: a) the resulting partitions show full independence; b) shows the reduction of
parameters resulting from the two-partition targeted pruning.

of partitions desired. The connectedness ratio, in relation to the number of partitions, is

R|P | = 1
|P | . Thus, for a given |P |, partition pruning will find the following:

min
x

|Cfull

∑
|wi,j| −

∑
xi,j|wi,j||

subject to xi,j = 0 or 1∑
xi,j = R|P |Cfull

{Pm, Pn ∈ P |n 6= m,Pm ∩ Pn = ∅}

From the objective function, we determine which 1−R|P |Cfull parameters are pruned for

a particular fully connected layer while minimizing the cumulative weight loss.
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8.3 Input/Output

The input to the partition pruning algorithm is a matrix representation, Wfc,i, of the tar-

geted fully connected layer, i. This is exemplified in Figure 8.1c. Note that the fully con-

nected layer is assumed and asserted to be trained; that is, the parameters have the correct

values for the targeted neural network’s base accuracy. In a fully connected layer, every ele-

ment of the matrix Lfc,i is 1 (see Equation 8.2). After partition pruning, the output will be

Lpart,i and the sum of all its elements would be RCfull. This is exemplified in Figure 8.2b.

8.4 Methodology

This section presents the methodology of selecting the links to prune, taking into considera-

tion the partitioning. The example of |Ninitial| = 7, |Nfinal| = 10, and |P | = 3, will be

used to describe the process. Figure ?? shows an overview of the methodology and where

partition pruning resides.

8.4.1 Start: Selection of Ninitial,i, and Nfinal,j1,j2..:

In the first stage, a row in the matrix is randomly selected; that is, a random Ninitial,i is

selected for processing. Note that currently |Pn| = 0 for all n, because no pair of nodes has

joined a partition. After choosing an Ninitial,i, a set of Nfinal nodes is chosen, and in this

case, the set size is
⌈
|Nfinal|

|P |

⌉
. The node Ninitial,i, and the nodes Nfianl,j1,j2.., are chosen

to be part of the first partition, P1. Those selected will have their Li,j = 1, while those not

selected will have their Li,j′ = 0. Note that the links selected have the highest magnitudes

(refer to Figure 8.4a as an example). Figure 8.4b illustrates an example of the changes in
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values and a pictorial representation of the first partition.

Figure 8.4: Random selection of Ninitial,i, where i = 4 in this example. The top four
weights, in terms of magnitude, are wi,7, wi,3, wi,4, and wi,5 in descending order. Note
that its top four because of the upper bound, d|Nfinal|/|P |e = d10/3e = 4 b) P1, after
partitioning, contains four nodes (the limit) from Nfinal, and one node from Ninitial. The
L matrix is updated for row i=4.
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8.4.2 Non-Start: Selection:

Moving forward, another Ninitial,i node is selected at random. The highest non-partition

members, wi,js, are sorted from the highest to the lowest magnitude, as was carried out

previously. The sum of the highest upper bound (or a lower bound if all upper bound

partitions are fulfilled) is compared with the sum of the magnitude of partition-member

weights/links that still have capacity (as per the upper and lower bounds of the number of

nodes of type Ninitial).

Ninitial, i

wi,1

wi,2

wi,3

wi,4

wi,5

wi,6

wi,7

wi,8

wi,9

wi,10

|wi,9|>|wi,7|>
|wi,3|>|wi,8|>
|wi,4|>|wi,1|>
|wi,6|>|wi,10|>
|wi,2|>|wi,5|

P1 P2 P3

(a) (c)

|wi,9|+|wi,8|+|wi,1|
vs

|wi,7|+|wi,3|+|wi,4|+|wi,5|

N4

Ninitial, i

Nf,3

Nf,4

Nf,5

Nf,7

P1
N4

Nf,3

Nf,4

Nf,5

Nf,7

P2
Ninitial, i

Nf,1

Nf,8

Nf,9

P3

1

2

(b)

Figure 8.5: Second random selection of Ninitial,i (where i 6= 4). The top three weights (1) in
terms of magnitude that are non-partition members are wi,9, wi,8, wi,1, in descending order.
Note that its top three due to the capacity for Nfinal node type is (P1, P2, P3) = (4, 3, 3)
b) shows the situation in case of |wi,7|+ |wi,3|+ |wi,4|+ |wi,5| > |wi,9|+ |wi,8|+ |wi,1|.
c) is the case scenario.
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8.4.3 End and Try Again:

This process is repeated until every partition Pm is at capacity in terms of Ninitial nodes

and Nfinal nodes. Note that the partitioning is dependent on which row, i.e Ninitial,i, is

selected at each iteration. Once the process is completed, the weight loss is recorded.

8.5 Conclusion

One of the main reasons for operation splitting via partition pruning is to increase the

parallelism of the execution. One potential future direction for this work would be to include

sub-operations that are mapped, thus increasing the mapping search space. An even further

development would be to consider the different iterations of splits that could occur and

within those different mapping search spaces. With pruning, the number of parameters

would decrease drastically and the accuracy would thus change. The approach taken had

minimal affect on the accuracy which was the intention by removing those parameters that

had the smallest affect due to their small magnitude.
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Chapter 9

Conclusion and Future Work

Machine-learning (ML) applications are ever-increasing in todays world, from the health care

industry to space exploration and consumer goods. Moreover, the applications are getting

more and more complex. With increasing complexity, high-parameter and interconnected

models are required. A notable structure is the deep neural network (DNN) model. Indeed,

these parameters need tuning, which requires a large amount of data, which itself requires

training. This training is referred to as deep learning (DL). DL is computationally intensive

and requires a lot of time to complete.

This dissertation tackles the time aspect, specifically how it is possible to reduce execution

time via parallelism by virtue of resource management. This can be achieved via the optimal

or sub-optimal allocation of processors to process, referred to as mapping. The number

of possible mappings is large, which is problematic if an optimal mapping is to be found

manually.

To understand the viability of non-manual mapping, we investigated a small model by test-

ing every possible mapping. We observed that the absolute best mapping is non-intuitive,

indicating that the function of time to mapping is not straight forward.
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We, therefore, devised an automated framework to search for a sub-optimal mapping. This

framework uses an array of approaches and tools. We used Bayesian optimization (BO)

to initiate the search space while simultaneously running the training of the DNN. While

training the DNN, observations of the execution times were made in order to direct the BO

with respect to the best performing mappings. We compared different initial search methods,

which are also referred to as initial mapping generations, finding that the BO outperformed

the other approaches in the initial search task.

Given that the search space is large, running the DNN to gather observations would be

likely to hinder the speed of the search. To remedy this, we trained a function (model) using

the gradient-boosting regressor (GBR) ML algorithm to predict the observed makespans,

depending on the particular mapping. It takes the predictive model orders of magnitude less

time to calculate the makespan than it takes to observe makespan via actual DNN run, thus

expanding the horizons of the search function.

In order to benefit from the speed of the predictive function, a lightweight optimization search

algorithm needs to be used. BO, although effective, is best utilized with heavy functions

(such as the actual run of the DNN), which defeats the purpose of using it with light functions

(such as the predictive model). Thus, a genetic algorithm (GA) was used, which is much

faster when it comes to generating new mappings from parent mappings (as was explained

in Chapter 6).

Finally, once the top predicted observations are found, the corresponding mappings are used

on the DNN in order to find the actual best, rather than the predicted best, since actual

observations and predicted observations may be different.

An adaptive mechanism is added to the framework in order to continuously monitor the

performance of the system in terms of execution time. In the case of any changes in the

execution time, a new search for a better mapping occurs.
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This framework has shown that the performance is better than that of the homogeneous

default mapping of the system. In addition, it outperformed intuitive-based mapping.

We also introduced a non-search-based mapping methodology in Chapter 7. Here, we took

the lead from scheduling algorithms, where device-operation times were observed, and com-

munication costs ignored. This method would not work well with many devices or large

computational graphs. Thus, its use is limited and indicates that the execution time of the

computational graph is a black box.

As a precursor to future work, we developed a method to partition a DNN via pruning the

links between layers; i.e., we reduced the number of parameters in a partition-centric way

and removed those that affected the accuracy of the DNN the least.

9.1 Future Work

There are different paths that may be taken to expand the work of this dissertation, all of

which target improving the performance of the execution time of the DNN during training.

Therefore, the different approaches tackle the same problem from different angles, thereby

improving the accuracy of the predictive model and its recovery; i.e., the adaptive mechanism.

9.1.1 Deep Probabilistic Modeling

Given that when the system is unstable, or less so when even stable, the makespan for any

particular mapping will not give the same value at each run. This is due to unaccounted

elements in the system. Rather than having a predictive model that provides a strict value,

the makespan predictive model provides a range of values or a probability of the values.

Note that the probabilistic [52] approach is an inherent part of machine learning.
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9.1.2 Graph Convolutional Networks

When the mapping is represented, it is done so in flat terms. This means that the connections

and their relations are lost. To remedy this issue, we may borrow ideas from convolutional

neural networks (CNNs). When CNNs take an image as an input, the proximity of the pixels

are taken into consideration, demonstrating that an image is nothing but a rigid rectangular

graph comprised of pixels that link each other. Rather than flatten the computational

graph, we keep its structure intact. Indeed, graph convolutional networks have proven their

effectiveness in many graph applications [32].

9.1.3 Principle Component Analysis

By using principle component analysis (PCA) [37] as a statistical method to reduce the

dimensionsand thus the size of feature setused in creating the makespan predictive model,

we can essentially improve the accuracy of the predictor. Moreover, we can extend the usage

of PCA on the GA. Indeed, Other methods of dimensional reduction and feature selection

could be explored [1] beyond PCA.

9.1.4 Reinforcement Learning

In the adaptivity part of adaptive HTF-MPR, where the system is monitored for any per-

formance changes, reinforcement learning (RL) [38] can be used. When a trigger occurs,

HTF-MPR performs an incremental search using RL methods, rather than starting the

search over from scratch, which saves time. In other words, rather than run the HTF-MPR

all over again from the start, RL continues the search and utilizes past data.

91



9.1.5 Split Node

As discussed in the conclusion of Chapter 8, research could continue with respect to how

to further utilize concurrency, as well as with respect to making parallelisms available by

partitioningpartitioning being an operation wherein a node is split into smaller operations

that deal with smaller tensors. The draw back here is that the accuracy of the neural

network might be affected. Luckily, however, most networks (such as VGG-16 and AlexNet)

are over-parameterized, leaving potential for reduction of paramters in this regard.
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